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ABSTRACT

Robust adaptive beamforming has long been an attractive research topic over several

decades due to wide applications in vast fields of signal processing such as, radar,

sonar, wireless communications, medical imaging, microphone array speech

processing and other areas. Adaptive beamforming improves the reception of desired

signals in the presence of interference signals automatically by sensing the presence

of interferences and suppressing them while simultaneously enhancing desired signal

reception without prior knowledge of the signal and interference environment.

However, under certain circumstances, adaptive beamformers suffer performance

degradation due to several reasons which include small sample size, the presence of

the desired signal in the training data, the presence of nonstationary interference, or

imprecise knowledge of the steering vector of the desired signal. Moreover,

conventional approaches are very sensitive to these types of mismatches, do not

provide sufficient robustness and may suffer from severe performance degradation in

such situations.

In this thesis, we propose three different types of novel adaptive beamforming

techniques to resolve the effects caused by some of the aforementioned difficulties.

A general goal in adaptive beamforming is to adaptively steer a beam towards a

desired signal, while placing nulls at interference directions. The well-known

minimum variance distortionless response (MVDR) adaptive beamformer is designed

to linearly combine the outputs of the sensors in order to minimize the array output

power, while maintaining a fixed response towards the desired signal. However, it is
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well known that the MVDR beamformer is quiet sensitive to the mismatch between

the actual steering vector and the assumed one, which could be caused by any array

imperfection. In the first approach, a robust adaptive beamforming technique based

on a modification of the robust Capon beamforming approach is introduced which

estimates the steering vector using eigenspace projection-based approximation. The

steering vector is estimated as a reasonable approximation for the orthogonal

projection of the presumed steering vector of the desired signal onto the

signal-plus-interference subspace. In this approach, the optimal diagonal loading

factor corresponds to the minimum of the estimated beamformer output power. Also,

estimation of the desired signal’s direction-of-arrival is utilized to update the

presumed steering vector.

On the other hand, during the past decade, many approaches based on the processing

of the sample covariance matrix have been proposed. However, since the desired

signal component is usually included in this matrix, the beamformer is sensitive to

slight mismatches. Although, some techniques have been proposed to remove the

signal-of-interest (SOI) component from the signal covariance matrix using the

reconstruction of the interference-plus-noise covariance (IPNC) matrix, these have a

number of drawbacks. In the second approach, we introduce a low complexity

procedure for IPNC matrix construction. The main motivation of this algorithm is to

simplify the estimation of the IPNC matrix using its theoretical expression which is

based on projection processing for covariance matrix construction and desired-signal

steering vector estimation. In this accordance, the optimal minimum variance

distortion-less response beamformer is closely achieved through approximating the

interference-plus-noise covariance matrix by utilizing the eigenvalue decomposition
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of the received signal’s covariance matrix. Moreover, the direction-of-arrival (DOA)

of the desired signal is estimated by maximizing the beamformer output power in a

certain angular sector. In particular, the proposed beamformer utilizes the

aforementioned DOA in order to estimate the desired-signal’s steering vector for

general steering vector mismatches.

In addition, adaptive beamforming methods are sensitive to underlying assumptions

on the environment, sources, or sensor array violation, especially when interferences

are moving fast. In recent years, research efforts have been devoted to the

development of beamforming using covariance matrix taper (CMT) or additional

constraints in the optimization programming for suppression of pre-defined angular

ranges. This research presents an innovative beamforming approach in which the

nonstationary interference source is estimated during the period in which snapshots

are taken. Then, a new interference-plus-noise covariance matrix reconstruction is

introduced which is derived from a simplified power spectral density function that can

be used to shape the directional response of the beamformer. Finally, the beamformer

is designed to impose nulls toward the regions of the moving interference based on

the reconstructed covariance matrix. The essence of the proposed method is to

express the inverse of the reconstructed covariance matrix in such a way that

significantly reduces computational complexity.

Theoretical analysis and simulation results indicate the superior performance of the

introduced proposed approaches in the presence of mismatches relative to other some

existing methods.

Keywords: Covariance matrix reconstruction, Diagonal loading, Fast moving
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interference, Orthogonal projection, Robust Capon beamforming, Steering vector

estimation.
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ÖZ

Dayanıklı uyarlanır demet oluşturucular, radar, sonar, telsiz haberleşme, tıbbi

görüntüleme, mikrofon dizileri gibi işaret işlemenin çeşitli alanlarındaki

uygulamalarından dolayı son zamanlarda ilgi çeken bir araştırma alanı olmuştur.

Uyarlanır demet oluşturma, istenen işaret ve girişimlerden oluşan ortam hakkında

önbilgi olmadan, girişimlerin varlığını otomatik olarak algılayıp istenen işaretlerin

alınmasını iyileştirir ve girişimlerin bastırılmasını mümkün kılar. Fakat uyarlanır

demet oluşturucular, küçük örnek miktarı, eğitim verisi içinde istenen işaretin

bulunması, girişimlerin durağan olmaması ve istenen işaretin yönlendirme vektörü

hakkında yeterli bilgi olmaması gibi durumlarda başarım kaybına uğramaktadır.

Ayrıca, geleneksel yaklaşımlar bu gibi uyumsuzluklara karşı çok hassas olup yeterli

dayanıklılık sağlamaktan uzaktırlar. Bu yaklaşımlar, bu gibi durumlarda ağır başarım

kaybına uğrayabilir.

Bu tezde, yukarıda bahsedilen zorlukları aşmak amacı ile üç farklı ve yeni uyarlanır

demet oluşturma yöntemi önerilmektedir.

Uyarlanır demet oluşturmanın genel amacı, girişimlerin yönünde dizilim yanıtını

sıfırlamak suretiyle dizilimin esas demetini uyarlanır bir şekilde istenen işarete

yönlendirmektir. Çok iyi bilinen bozunumsuz yanıtlı en az değişintili (MVDR)

uyarlanır demet oluşturucu, dizilim çıkış gücünü en aza indirgemek amacıyla

duyargaç çıkışlarını doğrusal olarak birleştirecek şekilde tasarlanır. Fakat, MVDR

demet oluşturucunun, dizilimin kusurlarından kaynaklanabilen ve istenen işaretin

gerçek ve varsayılan yönlendirme vektörleri arasındaki uyumsuzluğa karşı çok hassas
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olduğu iyi bilinmektedir. Önerilen birinci yaklaşımda, yaklaşık özuzay izdüşümüne

dayalı yönlendirme vektörü kestirimi yapan ve dayanıklı Capon demet oluşturma

yaklaşımının değiştirilmiş bir şeklinden oluşan bir uyarlanır demet oluşturma yöntemi

tanıtılmaktadır. İstenen işaretin varsayılan yönlendirme vektörünün işaret-girişim

altuzayına dikey izdüşümünü yaklaşıklayan bir vektör kestirimi yapılmaktadır. Bu

yaklaşımda, en iyi köşegen yükleme oranı demet oluşturucunun kestirilen çıkış

gücünün en az değerine karşılık gelir. Ayrıca, varsayılan yönlendirme vektörünü

güncellemek için istenen işaretin geliş yönü kestirimi kullanılır.

Diğer yandan, geçen on yılda, örnek özdeğişinti matrisini işlemeye dayalı yöntemler

önerilmiştir. Fakat, bu matrise istenen işaret bileşeni de dahil edildiği için, demet

oluşturucu hafif uyumsuzluklara karşı hassastır. Girişim-gürültü özdeğişinti (IPNC)

matrisini yeniden yapılandırarak istenen işareti özdeğişinti matrisinden dışlamak

amacı güden yöntemler önerilmiş olmasına ragmen, bu yöntemlerin bir takım

zorlukları vardır. İkinci yöntemde, düşük karmaşıklığa sahip bir IPNC matris

yapılandırma yöntemi önerilmektedir. Bu algoritmanın hareket noktası, IPNC

matrisinin kuramsal ifadesini kullanmak suretiyle kestirimini basitleştirmektir. Bu da

özdeğişinti matrisinin özuzay izdüşümünün işlenmesine ve istenen işaret yönlendirme

vektörü kestirimine dayanmaktadır. Bu şekilde IPNC matrisini yaklaşıklama ve alınan

işaretin özdeğişinti matrisinin özdeğer ayrışımını kullanmak yoluyla en iyi MVDR

demet oluşturucu yaklaşık olarak gerçekleştirilmiştir. Ek olarak, demet oluşturucunun

çıkış gücünü belirli bir açı aralığında enbüyüterek istenen işaretin geliş yönü

kestirilmektedir. Bu kestirim, özellikle genel yönlendirme vektörü uyumsuzluk

durumlarında istenen işaret yönlendirme vektörünün kestirimi için kullanıldı.
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Uyarlanır demet oluşturma yöntemleri, ortam, kaynaklar veya duyargaç dizilimine ait

yapılan varsayımlara karşı, özellikle girişimlerin hızlı hareket etmesine karşı

duyarlıdırlar. Son yıllarda, araştırma gayretleri özdeğişinti matrisi konikleştirme veya

önceden tanımlanmış açısal aralıkları bastırmaya yönelik eniyileştirme programlarına

ek kısıtlar getirme konularına adanmaktadır. Bu araştırmada durağan olmayan girişim

kaynağının hereketinin işaret enstantanelerinin alındığı aralık süresince takip edilip

kestirildiği yenilikçi bir demet oluşturma yaklaşımı da sunulmaktadır. Bu yaklaşımda,

basitleştirilmiş bir güç izge yoğunluğundan elde edilen bir IPNC matris

yapılandırması üzerinde durulmaktadır. Sözkonusu basitleştirilmiş güç izge

yoğunluğu işlevi, demet oluşturucunun yönsel yanıtını şekillendirmek için de

kullanılır. Sonuç olarak demet oluşturucu, girişim kaynağının hareket ettiği açısal

aralıkta dizilim yanıtını sıfırlayacak şekilde tasarlanır.

Önerilen yöntemin özünde yeniden yapılandırılmış özdeğişinti matrisinin tersinin,

hesaplama karmaşıklığını önemli ölçüde azaltacak bir şekilde elde ediliyor olmasıdır.

Anahtar Kelimeler: Özdeğişinti matris yeniden yapılandırma, köşegen yükleme,

hızlı hareketli girişim, dikey izdüşüm, dayanıklı Capon demet oluşturma,

yönlendirme vektör kestirimi.
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Chapter 1

INTRODUCTION

1.1 Introduction

Array processing is an area of signal processing that deals with techniques for

extracting information from signals collected using an array of sensors. The desired

information in the signal corresponds to either reflection that produces the signal in

radar and sonar systems or the content of spatially propagating signal from a certain

direction as often found in communication applications [2]. These signals are

broadcast spatially over a space, such as, air, and the samples are collected from the

wavefront by the sensor array. Then, the useful information is extracted by processing

the sensor array data. Some approaches, including adaptive beamforming and

parameter estimation are extended to sensor array application. Amongst the most

interesting topics of array processing techniques are beamforming and the estimation

of the DOA of signals. Adaptive beamforming and estimation of direction of arrival

of signals are spatial filtering techniques for Uniform Linear Array (ULA) of sensors

with widespread applications in a large number of fields like sonar [3], radar [4],

wireless communications [5, 6], seismology and imaging [7].

1.2 Uniform Linear Array

An array of sensors has long been an attractive solution for severe reception problems

that commonly involve signal detection and estimation. One of the most famous

arrays is the Uniform Linear Array. ULA is an antenna array configured of individual

beam elements with equal spacing between the elements and can be employed to
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produce a directional radiation array. Every single element antenna has beampatterns

that are broad and they have low directivity that is not appropriate for long distance

communications. A high directivity can still be achieved with single element antennas

by increasing the electrical dimensions with respect to the wavelength and the

physical size of the antenna. Antenna arrays come in different geometrical structures,

the most common being linear arrays. Arrays commonly use identical antenna

elements. The beam pattern of the array depends on the configuration, the distance

between the elements, the amplitude and phase excitation of the elements, and also

the radiation pattern of every sensor. Figure 1.1 shows the ULA, where interelement

spacing is defined by d and a single propagation signal impinges on the ULA from

angle θ.

Figure 1.1: Uniform Linear Array in a Beamforming Configuration [1]

However, one of the drawbacks of the ULA sensors is the presence of the left-right

ambiguity. Single line array receivers are cylindrically symmetric and, therefore,

cannot discriminate left from right, port from starboard (Port and starboard are
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nautical terms for left and right, respectively. Port is the left-hand side of or direction

from a vessel, facing forward. Starboard is the right-hand side, facing forward). Such

an ambiguity complicates the detection and tracking algorithms and may cause severe

performance degradation.

1.3 Beamforming

Generally, an array receives spatially propagating signals and processes them to

emphasize signals arriving from a certain direction. To this end, we want to linearly

combine the signals from all the sensors in a manner, that is, with a certain weighting,

so as to examine signals arriving from a specific angle. This operation is known as

beamforming [2, 8] since the weighting process emphasizes signals from a particular

direction while attenuating those from other directions, which can be regarded as

casting or forming a beam. In beamforming, an array processor steers a beam to a

particular direction by computing a properly weighted sum of the individual sensor

signals just as a Finite Impulse Response (FIR) filter generates an output (at a

frequency of interest) that is the weighted sum of time samples.

Beamforming is classified into two types, data independent and data dependent. The

weights in a data independent beamformer are designed so the beamformer response

approximates a desired response independent of the array data or data statistics. The

approximation of a desired response is the same as that for classical FIR filter

design [9]. In statistically optimum (data dependent) beamforming, the weights are

selected to obtain a desired response based on the statistics of data received at the

array. The goal is to optimize the beamformer response so the output contains

minimal contributions due to noise and interfering signals and maximize the Signal to

Interference plus Noise Ratio (SINR) [10].
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1.4 Thesis Objectives

Adaptive beamforming has found numerous applications in the field of signal

processing like radar, sonar, wireless communications, sonar, seismology and

diagnostic ultrasound. However, in practice the assumptions on the source,

environment and antenna array become imprecise, due to non-ideal conditions such as

mismatch in the direction-of-arrival of SOI, array calibration errors and finite sample

approximation of the array covariance matrix. Therefore, the adaptive beamforming

algorithm’s performance degrades substantially. Also, the adaptive weight vector is

quite sensitive to error of the signal steering vector and inaccurate estimation of the

covariance matrix, especially when the SOI component is present in the training data.

In this study, new approaches for adaptive beamforming are proposed which address

the aforementioned problems as follow:

1) Approximation of the eigenspace projection beamformer by using the Robust

Capon Beamforming (RCB) algorithm.

2) Estimation of the SOI’s steering vector as the orthogonal projection of the

presumed steering vector on the signal-plus-interference subspace.

3) Development of a method for determining the diagonal loading factor that

optimizes the steering vector estimate.

4) IPNC matrix is closely approximated by using the eigenvalue decomposition of

the received signal’s covariance matrix.

5) The DOA of the desired signal is estimated by maximizing the beamformer output

power in a certain angular sector.

6) Estimation of the desired-signal’s steering vector which is based on

signal-plus-noise covariance matrix.
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1.5 Thesis Contribution

This study is mainly focused on problems of adaptive beamforming such as

estimation of the DOA and steering vector of the desired signal, reconstruction of the

IPNC matrix and suppression of fast moving interference signals.

In this thesis, we first introduce a novel low complexity approach based on modifying

the robust Capon beamforming algorithm, which is proposed in an attempt to

approximate the eigenspace projection beamformer. This approach leads to an

estimate of the SOI’s steering vector which is shown to be a reasonably good

approximation for the orthogonal projection of the presumed steering vector on the

signal-plus-interference subspace. The proposed approach is also based on diagonal

loading of the covariance matrix. However, a new method is developed for

determining the diagonal loading factor that optimizes the steering vector estimate.

This method utilizes the beamformer output power calculated using the steering

vector estimate as a function of the diagonal loading factor. It is demonstrated that as

the diagonal loading factor increases, the beamformer output power approaches the

optimal output power that corresponds to an effective suppression of the

interference-plus-noise.

The main contributions of this method may be summarized as follows:

a) Desired signal’s steering vector estimate is considerably improved with respect to

the RCB estimate.

b) A new approach to the determination of the diagonal loading factor is introduced,

based on the beamformer output power.

c) A clear advantage of the proposed beamformer is that it overcomes the subspace

swap problem encountered in the eigenspace-based beamformer at low Signal to
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Noise Ratio (SNR)s, thus ensuring the validity of the orthogonal projection at all

SNRs.

d) The availability of an approximate orthogonal projection of the SOI’s presumed

steering vector onto the signal subspace enables the estimation of the SOI’s

direction-of arrival in a way similar to the Multiple Signal Classification (MUSIC)

methodology.

In some non-ideal situations, the performance of the adaptive beamforming methods

severely degrades since the desired signal component is present in the training

snapshots. Therefore, in order to remove the SOI component from the signal

covariance matrix, an approach based on the reconstruction of the IPNC matrix is

introduced. The main motivation of the proposed method is to simplify the estimation

of the IPNC matrix using its theoretical expression and the DOA estimate of the

desired signal.

The main focus of this approach is summarized as:

a) Avoidance of the estimation of the IPNC matrix based on reconstruction in terms

of the integral of rank-one matrices weighed by the corresponding incident power,

obtained using the Capon spectral estimator.

b) The IPNC matrix can be efficiently estimated under certain conditions by utilizing

the eigenvalue decomposition of the received signal’s covariance matrix.

c) Avoidance of desired signal steering vector estimation by formulating the problem

as a constrained optimization problem.

d) Estimation of the steering vector in a subspace corresponding to the desired signal

and the noise. This subspace can be accurately identified if the interference powers
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are much larger than the SOI’s and the noise powers

On the other hand, the capability of adaptive antenna array lies in forming higher gain

in the user directions and lower gain in the interferer directions. Therefore, when the

interference waveform or distribution change with time or location by antenna

platform vibration, propagation channel variation, the conventional adaptive

beamforming algorithm’s performance degrades drastically. Hence, it is then desired

to maintain a suppressed angular region in the beampattern for such moving

interferences. In this research, a novel method is proposed that is capable of creating

notches in the directional response of the array with sufficient widths and depths so

that interference signals from moving sources can be effectively suppressed.

The aim and contribution of the proposed method can be expressed as:

a) The time-varying DOA of a moving interference source is estimated during the

period in which snapshots are taken.

b) The null region is designed that spans the directions in which the interfering

source moves.

c) The IPNC matrix is replaced by another one derived from a simplified power

spectral density function that can be used to shape the directional response of the

beamformer.

d) An expression for the inverse of IPNC matrix is developed which facilitates fast

calculation of the beamformer weight given the interference signal DOAs.

1.6 Thesis Outline

The structure of the thesis is arranged as follows:

In Chapter 2, adaptive beamforming applications, aims and difficulties will be

reviewed. Then, the array signal model is presented and the optimum beamformer is
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formulated. Finally, we will consider several adaptive beamforming techniques which

have been proposed during the past decades.

In Chapter 3, the modification of the robust Capon beamformer is introduced. We

develop a new technique that leads to an estimate of the orthogonal projection of the

presumed steering vector of SOI onto the signal plus interference subspace. Also, the

minimum of the beamformer output power is utilized to find the optimal diagonal

loading factor which provides the possibility to estimate the DOA of the desired

signal.

In Chapter 4, the beamformer is designed according to projection processing for

covariance matrix construction and desired signal steering vector estimation. IPNC

matrix approximation is achieved by using the eigenvalue decomposition of the

received signal’s covariance matrix. Besides, the maximum of the beamformer output

power is utilized to estimate the DOA of the desired signal.

In Chapter 5, a robust adaptive beamformer is investigated in practical problems

where the interference waveform can rapidly change in time. The time-varying DOA

of a moving interference source is estimated during the period in which snapshots are

taken. Besides, inverse of the IPNC matrix is proposed which is derived from

simplified power spectral density function that leads to shape the directional response

of the beamformer.

In Chapter 6, summary of conclusions and a discussion on possibilities for the future

work are presented.
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Chapter 2

ADAPTIVE BEAMFORMING STRUCTURE

2.1 Overview

Adaptive beamforming is a spatial filtering technique for array of sensors with

numerous applications in the areas of sensor array processing such as radar, sonar and

communications. The main goal of adaptive beamforming is to detect and estimate

the SOI in the presence of interference and noise by means of data-adaptive spatial

filtering. Most of the existing adaptive beamforming methods depend on some

assumption and the exact knowledge of the array manifold. Moreover, some of them

are related directly to signal or interference source and thermal noise. Practically, if

problems exist in the form of non-ideal conditions such as the signal propagation

model, antenna array parameters and their underlying assumptions, the adaptive

beamformer’s performance degrades substantially. The main reason for such

degradation is sensitivity of adaptive beamforming algorithms to signal model and

array manifold mismatches.

In this chapter, the array signal model is presented and the optimum beamformer is

formulated. Then, we will consider several adaptive beamforming techniques which

have been proposed during the past decades.

2.2 Signal Model

It is assumed that a uniform linear array with N sensors and half wavelength spacing d

receives narrowband signals from R point signal sources located at distinct directions.
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The N× 1 received signal vector of the array at discrete time t which is corrupted by

additive noise can be expressed as follows:

x(t) = s(t)a(θ◦)+
L

∑
i=0

a(θi)si(t)+n(t) (2.1)

where s(t) = H( fc)s◦(t) is the impulse response of SOI to nth sensor and

si(t)(i = 1, . . . ,L) is the corresponding interference signals, respectively. θ◦ is the

desired signal and θi is the ith interference directions and the corresponding steering

vectors are a(θ◦), a(θi), respectively. n(t) is the N × 1 vector of unknown sensor

noise, and (·)T denotes the transpose.

The spatial signal has a different propagation between two sensors because the space

of elements is equal so the result of time delay can be:

τ(θ) =
dsinθ

c
(2.2)

Where c is the speed of propagation for signal. To end up the delay to the nth element

(sensor) will be

τ(θ) = (N−1)
dsinθ

c
(2.3)

It should be mentioned that full possible range for angle θ is −90◦ ≤ θ ≤ 90◦, the

space for sensor must be d ≤ λ/2, it will not let ambiguities. where λ = c/ fc is the

wavelength and the carrier frequency fc determines the wavelength of the propagated

wavefront.

For sonar systems, frequencies in the range 100–100,000 Hz are commonly

employed, whereas for radar systems the range can extend from a few megahertz up

into the optical and ultraviolet regions, although most equipment is designed for
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microwave bands between 1 and 40 GHz. The wavelength of the propagated

wavefront is important because the array element spacing (in units of λ) is an

important parameter in determining the array pattern.

Assuming that the sources and noise are statistically uncorrelated and the interference

steering vectors are linearly independent, the theoretical covariance matrix of the

received signal can be expressed as

R = E{x(t)xH(t)}= σ
2
s a(θ◦)aH(θ◦)+

L

∑
i=1

σ
2
i a(θi)aH(θi)+Q (2.4)

where σ2
s and σ2

i are signal and ith interference power, respectively.

Q = E{n(t)nH(t)} is the N×N full-rank covariance matrix of sensor noise, E{·} is

the statistical expectation, and (·)H stands for the Hermitian transpose. It is assumed

that sensor noises are temporally and spatially white complex Gaussian random

processes, that is,

E{n(t)nH(t)}= σ
2
nIN (2.5)

where σ2
n is the noise variance. In matrix form (2.4) is simplified as

R = σ
2
s a◦aH

◦ +AiDiAH
i +σ

2
nIN (2.6)

where Ai = [a1 a2 . . . aL] is the N×L interference direction matrix which contains the

steering vectors of the interference signals, and the diagonal elements of the diagonal

matrix Di are the interference signal powers.

The ultimate aim of the adaptive beamformer is to combine the sensor signals in such

a way that the interference signals and noise are rejected while the desired signal is
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preserved. We would like to maximize the ratio of the signal power to that of the

interference plus noise, which is known as the SINR. The beamformer’s performance

is usually measured using SINR as

SINR =
σ2

s |wHa◦|2

wHRi+nw
(2.7)

where w is the beamformer weight vector and

Ri+n = σ
2
nIN +AiDiAH

i (2.8)

is the interference-plus-noise covariance matrix. It is easy to find the optimal weight

vector by minimizing the interference-plus-noise output power while maintaining a

distortionless response toward the desired signal. Therefore, the maximization of SINR

is equivalent to

min
w

wHRi+nw s.t. wHa◦ = 1 (2.9)

wopt =
R−1

i+na◦
aH
◦R−1

i+na◦
(2.10)

Correspondingly, the optimal output SINR is given by

SINRopt = σ
2
s aH
◦R−1

i+na◦ (2.11)

In most applications, the precise interference-plus-noise covariance matrix is not

available. Hence, it is usually replaced by the covariance matrix of the received signal

which in practice is calculated using the finite sample approximation as

R̂ =
1
K

K

∑
t=1

x(t)xH(t) (2.12)
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where K is the number of snapshots. Note that R̂ includes the desired signal

component.

2.3 Review of Adaptive Beamforming Methods

An adaptive beamforming algorithm can automatically optimize the array pattern by

adjusting the elemental control weights until a prescribed objective function is

satisfied. Unfortunately, it is possible that mismatches occur between adaptive

weights and data, due to perturbation in the assumptions, imperfect knowledge of

source characteristics, environment or antenna array. Throughout this section we

review methods and techniques from the literature to provide insight into various

aspects of spatial filtering with a beamformer.

Several adaptive beamforming methods have been developed in research topics to

enhance robustness against beamformer’s difficulties in past decades; see,

e.g. [11, 12]. These could be divided into the following categories:

The first category covers methods that do not reconstruct the covariance matrix and

process the sample covariance matrix directly: The diagonal loading (DL)

methods [13], [14] are aimed at eliminating covariance matrix uncertainty. Diagonal

loading mitigates the effects of signal contamination, where the presence of the SOI

in the training snapshots degrades the beamformer’s performance and the effects of

the finite sample approximation of the covariance matrix [15, 16]. The diagonal

loading approaches are derived by imposing an additional quadratic constraint either

on the Euclidean norm of the weight vector itself or on its difference from a desired

weight vector [17, 18]. However, in this technique there is no rule as to how the

loading factor should be chosen. In the robust Capon beamformer developed in [19],

the DL factor is related to the uncertainty level and can be calculated by solving an
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optimization problem which has an equivalent solution in [20]. In order to calculate

the DL factor inclusion of an uncertainty set-based technique is used to process the

spherical or ellipsoidal steering vector estimation uncertainty set by solving an

optimization problem [19, 21]. The main disadvantage of these methods is that in the

presence of a large steering vector mismatch the set has to be expanded to cope with

the increased uncertainty at the cost of reduced output SINR [21]. Hence, its

performance will degrade as the input SNR increases. To decrease the computational

complexity, in [22] a generalized Hermitian matrix is estimated in which the

directional response of the array is modified and SOI is rejected. This matrix is added

to the sample covariance matrix in order to remove the SOI component from the

sample covariance matrix of the array input with low computational complexity.

In [23] the steering vector of the SOI is estimated under the requirement that the

estimate does not converge to any steering vector of the interferences.

In the shrinkage method, an enhanced covariance matrix is obtained instead of the

sample covariance matrix to improve robustness against steering vector

errors [24, 25]. However, the improvement in performance is very limited and the

method cannot completely solve the problems in theory. To improve this, a

shrinkage-based mismatch estimation algorithm has been addressed in [26], which

estimates the covariance matrix by using the Oracle Approximating Shrinkage

method only with prior knowledge of the antenna array geometry and the angular

sector, in which the actual steering vector is located.

In subspace based beamformers, only the signal subspace information is retained.

Their principle is that by utilizing the subspace component for signal plus interference
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of the sample covariance matrix and discarding the noise subspace the SNR is

effectively enhanced. In the Eigenspace-based projection approaches [27–29] the

desired signal steering vector is obtained by projecting the presumed steering vector

on the signal-plus-interference subspace where the signal subspace may be corrupted

by the noise subspace [30]. However, the error component lying in the interference

signal subspace cannot be eliminated and performance is dramatically degraded at

low SNRs. Also, in practical applications determining the number of sources is a

challenging issue to estimate the signal-plus-interference subspace. In [31] a modified

projection approach is proposed to increase the performance at low SNRs. However,

there is no clear guideline on how to choose the parameters in order to find the

projection of the presumed steering vector on the eigenvectors of the correlation

matrix. Besides, it is sensitive to large steering vector mismatches.

Although these algorithms improve robustness against covariance matrix uncertainty

or steering vector mismatches of the SOI, the effectiveness of the beamformer’s

performance would degrade at different input SNRs. Moreover, many approaches

have shown that even for small mismatch between the presumed and the desired

signal’s steering vector, the output SINR deviates from the optimal one. Since, in

these algorithms the sample covariance matrix is exploited directly.

The second category covers approaches which try to remove the SOI components by

reconstruction of the covariance matrix instead of using the sample covariance matrix.

Adaptive beamforming techniques are proposed in [32–36] based on IPNC matrix

reconstruction. A beamformer proposed in [37] attempts to remove the effect of the

desired signal by using a vector space projection algorithm and desired signal power

15



to form the desired-signal-free covariance matrix. In the algorithm of [33], the IPNC

matrix is reconstructed by integrating the Capon spectral estimator over an angular

sector that excludes the sector containing the direction-of-arrival of the desired signal.

Moreover, the desired signal’s steering vector is estimated by solving a quadratically

constrained optimization problem using quadratic programming methods (QCQP).

However, authors in [34] pointed out that the approach based on reconstructing the

IPNC matrix in [33] may have some theoretical difficulties. More importantly, these

algorithms are sensitive to large DOA and any other kind of steering vector

mismatches of the interferences, such as errors due to coherent local scattering and

random steering vector [38].

The beamformer in [39] reconstructs both IPNC and the desired signal covariance

matrices based on Capon spectral estimation. Then, a subspace is constructed that is

orthogonal to the interference subspace. The obtained subspace is rotated in order to

attain the optimal weight vector which maximizes the output power of the SOI. To

improve robustness of the adaptive beamformer against array steering vector

mismatch, the method in [40] utilizes closed-form formula to estimate the array

steering vector which lies within the intersection of two subspaces. Then, the

covariance matrix is reconstructed by using the eigenvalue corresponding to the

desired signal.

In [41], first, covariance matrices of the interference and SOI over predefined angular

sectors are constructed. Then, prime eigenvector of each signal corresponding to the

maximum eigenvalue is utilized to estimate the steering vector of the desired signal

and interferences. The method in [42] uses the same idea of the beamformer in [41].
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However, in order to improve the reconstruction against large look direction errors,

the authors exploit double estimation of the steering vector as an optimization

programme tries to obtain accurate SOI’s steering vector.

The adaptive beamformer in [32] uses sparsity to reconstruct the IPNC matrix by

computing a weighted sum of the outer products of the interference steering vectors,

the coefficients of which are estimated from a compressive sensing (CS) problem.

In [35], the beamformer algorithm utilizes a pair of decomposed coprime subarrays to

estimate the DOA and corresponding power for each signal source. These estimates

later are used to reconstruct the IPNC matrix and the desired signal steering vector.

To reduce the computational burden of solving the QCQP problem, a method has

been proposed in [43] to estimate the desired signal’s steering vector. The method

uses correlations between the presumed steering vector of the SOI and the

eigenvectors of the sample covariance matrix. This approach can not eliminate the

subspace swap error in the case of low SNRs. An adaptive beamforming [44] has

been proposed based on spatial power spectrum sampling (SPSS) which utilizes the

Capon spectrum to reconstruct the IPNC matrix. Also, covariance matrix tapering is

employed to improve performance. However, as the authors have shown in the

method’s derivation, the number of sensors must be sufficiently large.

On the other hand, there are yet many applications and signal scenarios such as

nonstationary interference where existing methods are inadequate. When the

interference waveform or distribution change with time or location by antenna

platform vibration, propagation channel variation, conventional adaptive cancelers

might perform poorly. One of the most popular approaches to adaptive beamforming

17



is the so-called MVDR processor, which minimizes the array output power while

maintaining a distortionless mainlobe response toward the desired signal [20].

However, in most of the conventional adaptive beamformers, a narrow null is

designed to cancel an interference by making the array’s response to that interference

zero [11], [22]. With multiple interferences, multiple similar constraints are imposed,

which lead to the Linearly Constrained Minimum Variance (LCMV)

beamformer [45]. However, this approach does not perform well with an interference

whose direction-of-arrival varies quickly with time. Unlike the LCMV methods, in

the null broadening approach [46] a transformation is applied to the sample

covariance matrix in order to extend a greater angular. Algorithm in [47] provides a

null region to interferences by introducing the concept of CMT. A multi-parametric

quadratic programming method is presented to control the null level of the adaptive

antenna array [48]. However, when the null width is broadened, there exist high

sidelobes and the depth becomes shallower.

Several methods have been proposed based on the CMT algorithm in order to

overcome the pattern distortion which arises from the moving interference. However,

these methods retain similar performance in the output in [49], where a beamforming

method is proposed based on the IPNC matrix reconstruction which imposes the null

toward the angular sector of a moving interference. This algorithm involves solution

by the QCQP technique. In the large aperture scenario, the deviation of the

interference location presents a serious problem because the directional pattern nulls

are sharp and interference may move out of the nulls region [50]. Also, the

multiparametric quadratic programming for covariance matrix taper minimum

variance distortionless response beamformer is proposed to resolve null-broading and
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sidelobe control problem in [51]. Nevertheless, the sidelobe domain constraint is

obviously broadening the mainlobe beam pattern which decreases array gain.

Moreover, the null-broadening method of derivative constraint was proposed

in [52], [53], but has more computational complexity than [46]. In [54] the quadratic

constraint of the optimization problem [55] is replaced by a set of linear constraints to

produce a widened null sector over moving interferences. Also, the adaptive array

with troughs produced by dispersion synthesis approach is proposed in [56]. On the

other hand, the minimum dispersion distortionless response beamformer is proposed

in [57] which tries to provide a sector over a predefined range of DOA. In [58] a

technique is proposed based on projection matrix which is established by choosing

eigenvectors corresponding to the large eigenvalue of the array correlation matrix.

The steering vector correlation matrix is constructed in the pre-defined angular

sectors of the interference direction. Moreover, diagonal loading approach is utilized

to obtain the sample covariance matrix.
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Chapter 3

MODIFIED ROBUST CAPON BEAMFORMING WITH

APPROXIMATE ORTHOGONAL PROJECTION ONTO

THE SIGNAL PLUS INTERFERENCE SUBSPACE

3.1 Introduction

In this chapter, we propose a method to estimate the desired signal steering vector

based on the Robust Capon Beamformer (RCB) [19]. Moreover, this estimate is shown

to approximate the orthogonal projection of the presumed steering vector onto the

signal-plus-interference subspace. Meanwhile, determination of the optimal value for

the diagonal loading factor is based on the Capon spectral estimator, which is used

here to detect the beamformer output power that corresponds to the desired signal.

The desired signal’s steering vector estimate can be further improved by estimating

the DOA of the desired signal, whereby the presumed steering vector is updated as

ā = a(θ̂◦), θ̂◦ being the DOA estimate. A procedure based on the MUSIC method [12]

and the steering vector estimate obtained from modified RCB is applied.

3.2 Mathematical Development of Modified RCB

The Modified RCB is obtained as the solution of the following optimization problem

min
a

aH(R̂−ζI)−1a s.t. ‖a− ā‖= ε (3.1)

which is the problem formulated in [19] and modified by subtracting a diagonal

matrix from the sample covariance matrix. It should be noted that the parameter ζ is
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assumed to be not equal to any eigenvalue of the covariance matrix, so that (R̂−ζI) is

nonsingular. The underlying motivation of this modification is that, with a proper

choice of the parameter ζ, the white noise component of the covariance matrix can be

minimized. This would result in a steering vector solution residing in the

signal-plus-interference subspace. Solution of (3.1) gives the following SOI steering

vector estimate [19].

â◦ = ā− (1+λζ)(I+λR̂)−1ā (3.2)

where λ is the Lagrange multiplier. It will now be shown that the vector â◦, in the

ideal case where the sample covariance matrix is replaced by the theoretical one (2.6),

is approximately equal to the orthogonal projection of the presumed steering vector ā

onto signal-plus-interference subspace.

Proposition I: The orthogonal projection of the presumed steering vector onto the

signal-plus-interference subspace is given by

cp = η◦a◦+Pi(ā−η◦a◦) (3.3)

where

η◦ =
aH
◦ (I−Pi)ā

aH
◦ (I−Pi)a◦

(3.4)

and

Pi = Ai(AH
i Ai)

−1AH
i (3.5)

is the orthogonal projector onto the interference subspace.
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Proof : The orthogonal projection of the presumed steering vector can be written as

cp = As(AH
s As)

−1AH
s ā (3.6)

where As = [a◦ Ai] contain the steering vectors of the desired and interference

signals, assumed to be linearly independent. It is relatively simple to demonstrate that

the projection matrix can also be expressed as (Appendix A)

As(AH
s As)

−1AH
s = Pi +

1
aH
◦ (I−Pi)a◦

(I−Pi)a◦aH
◦ (I−Pi) (3.7)

By substituting (3.7) into (3.6), the projection of the presumed steering vector is

obtained as

cp = Piā+
aH
◦ (I−Pi)ā

aH
◦ (I−Pi)a◦

(I−Pi)a◦ = η◦a◦+Pi(ā−η◦a◦) (3.8)

It will be helpful to examine the structure of the projection vector in (3.8), which

comprises two terms. The first one is a scaled version of the true steering vector a◦ of

the SOI, where the scaling factor η◦ is a complex scalar which approaches unity as

ā→ a◦. The second term can be interpreted as the error of the projection vector with

respect to a◦. This term itself is the projection onto the interference subspace of the

mismatch between the presumed and the scaled true steering vectors of the SOI.

Hence, if this mismatch does not have a component in this subspace the error of the

projection would be zero. Also, as the presumed steering vector approaches the true

steering vector (ā→ a◦), then cp→ a◦, showing that cp is a consistent estimate under

ideal conditions. However, if the difference between the presumed and true steering

vectors is large, the error of the projection vector is likely to be large as well.

Proposition II: With the choice ζ = σ2
n, the modified RCB estimate (3.2) can be
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expressed as

â◦(λ) = η(λ)a◦+P(ā−η(λ)a◦) (3.9)

where

η(λ) =
aH
◦ (I−P)ā

µ(λ)+aH
◦ (I−P)a◦

, µ(λ) =
1+λσ2

n
λσ2

s
(3.10)

and P is given by

P = Ai((λd +σ
2
n)D

−1
i +AH

i Ai)
−1AH

i (3.11)

Proof : The proof is given in Appendix B.

Note that the choice for ζ is not allowed by the requirement that the matrix (R̂− ζI)

be nonsingular. However, this choice may be regarded as a limiting case. It can be

observed that the vector (3.9) has the same structure as the projection cp in (3.8). There

are basically two differences between this expression and the projection cp. The first is

that Pi is replaced by P. However, note that P becomes approximately equal to Pi for

sufficiently large λ and noise power much less than the interference signal powers. The

second difference is that the factor η(λ) has an additional term µ(λ) in its denominator.

It can be easily shown that â◦ approaches cp as λ→ ∞ and σ2
n→ 0. Hence, â◦ can be

considered as a good approximation of cp for large values of λ and high SNR.

A basic difference of the estimate in (3.2) from the robust Capon beamformer estimate

is that the factor (1 + λζ) with the proper choice of ζ makes the new estimate â◦

approach the orthogonal projection cp. Furthermore, if the presumed steering vector is

a good approximation of the true steering vector, then the approximate projection will

be mainly in the subspace of the true steering vector, with a negligible component in the
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interference subspace. The presumed steering vector can be improved by estimating

the true DOA of the desired signal, as described in the next section.

3.3 DOA Estimation of the Desired Signal

In the MUSIC method for the estimation of the DOAs of signals impinging on an ULA,

the following cost function is minimized with respect to the angle θ.

FMUSIC(θ) = ‖a(θ)−
R

∑
r=1

(sH
r a(θ))sr‖2 = aH(θ)GGHa(θ) (3.12)

where ‖ · ‖ is the Euclidean norm, a(θ) is the array steering vector, {sr}R
r=1 are the

signal subspace eigenvectors (R is the number of signals), GGH = I− SSH and S is

the matrix with columns which are the signal subspace eigenvectors. Note that the

summation term in (3.12) is the orthogonal projection of the vector a(θ) onto the signal

subspace. A similar approach is applied to estimate the DOA of the SOI by minimizing

the following cost function in the vicinity of the presumed DOA

F̂(θ) = ‖ā(θ)− cp(θ)‖2 (3.13)

where cp(θ) is the orthogonal projection of ā(θ) onto the signal-plus-interference

subspace. In the preceding section it was shown that this projection can be

approximated by the vector â◦(λ). Hence, using this vector instead of cp(θ) in (3.13)

we get

F̂(θ) = ‖ā(θ)− â◦(λ)‖2 = (1+λζ)2‖(I+λR̂)−1ā(θ)‖2 (3.14)

Therefore, an estimate of the DOA of the desired signal can be obtained as the solution

of the minimization problem

θ̂◦ = argmin
θ∈Θ

‖(I+λR̂)−1ā(θ)‖2 (3.15)
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where Θ is an angular sector centered around the presumed DOA of the desired

signal. The selection of the parameter λ is discussed in the next section. The

optimization problem (3.15) can be solved using a simple steepest descent approach,

which is guaranteed to converge if the cost function is convex in the vicinity of the

minimum.

A basic feature of this estimation method is that, unlike the MUSIC method there is

no requirement for determining the signal subspace, since the orthogonal projection

to this subspace is indirectly obtained from the modified RCB formulation. Hence,

this ensures that the DOA estimate is not affected by low SNR conditions.

3.4 Principles of the Proposed Beamformer

For the implementation of the proposed beamforming method, the value of λ which

yields an optimal steering vector estimate should be determined. An approach different

from the RCB approach in [19] is adopted. A major reason for the adoption of a

different approach is that information regarding the uncertainties in the SOI steering

vector, represented by the parameter ε is generally unavailable. This inevitably leads to

an educated guess in determining this parameter. The proposed approach is based on

computing the output power of the beamformer. The beamformer weight vector using

the steering vector estimate (3.9) is

wpro =
R̂−1â◦(λ)

âH
◦ (λ)R̂

−1â◦(λ)
(3.16)

The beamformer output power is given by

P′◦(λ) = wHR̂w =
1

âH
◦ (λ)R̂

−1â◦(λ)
(3.17)
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Note that in computing the power output, the norm of the steering vector estimate must

be normalized to have the theoretical value
√

N, since the norm of the steering vector

estimate itself is a function of λ. After normalization the power becomes

P◦(λ) =
‖â◦(λ)‖2

N
P′◦(λ) (3.18)

The dependence of the power on λ can be best understood by expressing it in terms of

the Eigenvalue Decomposition (EVD) of R̂. Let the latter be expressed as

R̂ =
N

∑
j=1

q̂ jê jêH
j (3.19)

where q̂ j and ê j ( j = 1, ...,N) are the eigenvalues and eigenvectors of R̂, respectively.

By computing

âH
◦ (λ)R̂

−1â◦(λ) =
N

∑
j=1

1
q̂ j
(

λq̂ j

1+λq̂ j
)2(1− ζ

q̂ j
)2|êH

j ā|2 (3.20)

‖â◦(λ)‖2 =
N

∑
j=1

(
λq̂ j

1+λq̂ j
)2(1− ζ

q̂ j
)2|êH

j ā|2 (3.21)

and substituting into (3.18), it can be shown that the beamformer output power is a

monotonically decreasing function of λ. The minimum is attained as λ→ ∞, which

verifies the conclusion reached at the end of Section 3.2. This implies that λ should be

chosen sufficiently large so that the beamformer output power approaches its

minimum. From (3.20) and (3.21) we may deduce that λ should in general satisfy

λq̂ j

1+λq̂ j
≈ 1 j = 1, . . . ,N (3.22)

A stricter rule can be obtained through the following reasoning. Note that the

contribution of the noise terms in (3.20) and (3.21) would be considerably smaller
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than those of the signal terms if ζ is chosen to be around the noise eigenvalues. Also,

(3.22) would be satisfied for the interference eigenvalues, provided that they are much

larger than the SOI and noise eigenvalues. Therefore, it would suffice if (3.22) is

satisfied for the SOI eigenvalue. The minimum value of the power is

lim
λ→∞

P◦(λ) =
1
N

∑
N
j=1[1− (ζ/q̂ j)]

2|êH
j ā|2

∑
N
j=1[1− (ζ/q̂ j)]2|êH

j ā|2/q̂ j
(3.23)

An insight into the effectiveness of the proposed beamforming method can be gained

by calculating the beamformer output power under the conditions cited above. To

simplify the expressions, only one interference signal is considered. In the following,

‘s’ and ‘I ’ indicate the desired and interference signals respectively. With q̂ j = ζ,

j = 1, . . . ,J, q̂I � ζ,σ2
s , and q̂s = Nσ2

s +σ2
n [12], we obtain

lim
λ→∞

P◦(λ) = (σ2
s +

σ2
n

N
)[1+

1
σ2

s
(σ2

s +
σ2

n
N
)
|êH

I ā|2

|êH
s ā|2

] = (σ2
s +

σ2
n

N
)[1+

Pex

σ2
s
] (3.24)

In (3.24) the first term in the parenthesis can be shown to be the optimum beamformer

output power. Then, Pex is the excess power resulting from the noise-plus-interference

that cannot be eliminated. It can be observed, however, that if the angular separation

of the presumed steering vector from that of the interference steering vector is large,

the ratio of the inner product terms would be of the order of (1/N), leading to an

output power very close to the ideal.

It should be noted that the criterion based on (3.22), with q̂ j standing for the SOI

eigenvalue (q̂s ) is problematic at low SNR because of subspace swap. Hence, a

procedure based on detecting the λ value at which the relative change in the output

power with respect to λ is below a chosen threshold is adopted. It can be inferred

from the discussions following (3.22) that the λ value beyond which the power
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approaches its limit value is of the order of (1/q̂s ). The choice for the initial value of

λ is based on this observation (q̂s can be taken to be the largest eigenvalue, after

excluding the interference eigenvalues). Also, the parameter δλ used in the algorithm

below can be chosen as a small fraction of (1/q̂s )

The computational complexity of the desired signal steering vector estimation of the

proposed algorithm is dominated by the eigenvalue decomposition of R̂ which is

O(N3). The solution of the QCQP problem in [33] to obtain the final optimal weight

vector has complexity of at least O(N3.5). The beamformer in [43] has complexity of

O(N2S) for IPNC matrix reconstruction, where S (S� N), is the number of sampled

points in the DOA region of the desired signal and O(N3) for the eigendecomposition

operation on the covariance matrix R̂. Therefore the total complexity cost for

beamformer in [43] is O(N2S)+O(N3). The beamformer in [31] has the complexity

O(NK) for computing the covariance matrix by the shrinkage method and O(N3) in

order to estimate the steering vector mismatch. Hence, the total cost will be

O(NK)+O(N3).

3.5 The Algorithm of Proposed Modified RCB Method

1: Input: array received signal x(k).

2: Output: Beamformer weight wpro.

3: Initialize: ε=0.001

4: Calculate the eigendecomposition of R̂

5: ζ= minimum eigenvalue of R̂

6: λ = λ◦ = 1/(10q̂s), δλ = 1/(100q̂s)

7: for k = 0 : 1, . . . Do

8: Calculate Sp(k) =
∆Po(k)
P◦(λk)

=
P◦(λk)−P◦(λk +δλ)

P◦(λk)
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9: If Sp(k)< ε then

10: break;

11: end if

12: λk+1 = λk +
δλ

Sp(k)

13: end for

14: Solve (3.15) for the desired signal’s DOA estimate, θ̂◦

15: Update the presumed steering vector as ā(θ̂◦) = [1 e− jθ̂◦ . . . e− j(N−1)θ̂◦]T .

16: Calculate â◦ using (3.2) with ā replaced by the update in step 15.

16: Calculate wpro by (3.16)

3.6 Simulation Results

In all the simulation examples, we numerically evaluate the performance of the

proposed beamforming algorithm. The uniform linear array has N = 10

omni-directional sensors spaced by half-wavelength. In all scenarios, there is one

desired and two interfering sources with directions of arrival 5◦ and {20◦,30◦},

respectively. Also, the desired signal is always present in the training data. The

interference power in each sensor is fixed at 30 dB above the desired signal power at

all SNR values, except for the simulation where interference to noise ratio (INR) is

fixed at 30 dB. The additive noise is modeled as a zero-mean complex symmetric

Gaussian spatially and temporally white process that has identical variances in each

array sensor. For each scenario, 200 Monte-Carlo runs are performed. In the

performance comparison versus the input SNR, the number of snapshots is fixed at

K = 100 and when comparing the performances of the adaptive beamformers in terms

of the number of snapshots, the SNR in each sensor is set to -5 dB for all the

scenarios considered.
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The proposed beamformer is compared with the improved diagonal loading

beamformer [24], the beamformer with modified projection [31], the robust Capon

beamformer [19], the reconstruction based beamformer [33] and the correlation

coefficient calculation based beamformer [43], the Adaptive Uncertainty based

Iterative Robust Capon (AU-IRCB) beamformer [59]. The AUIRCB method is

applied without signal subspace reconstruction proposed for low SNR, because the

reconstruction procedure is very demanding computationally, causing this method’s

complexity to be much higher than those of the others. The angular sectors of the SOI

and the interference plus noise part for [33] and [43] are defined as

Θ̄ = (θ̄− 10◦, θ̄ + 10◦) and [−90◦, θ̄− 10◦) ∪ (θ̄ + 10◦,90◦], respectively. These

angular sectors are uniformly sampled to the discrete sectors with the same angular

interval 4θ = 0.5◦. The parameter ε = 7.5 is used in the AU-IRCB based

beamformer and ρ = 0.7 is considered in [31]. In the proposed method, the value of ζ

is taken to be equal to the minimum noise eigenvalue of R̂.

3.6.1 Mismatch Due to Signal Look Direction Error

In the first simulation example, a scenario with only signal look direction mismatch is

considered. We assume that both the presumed and actual signal spatial signatures are

plane waves impinging from the directions of 0◦ and 5◦, respectively. This corresponds

to a 5◦ mismatch in the signal look direction. Fig. 3.1 compares the output SINRs of

the aforementioned methods versus the number of snapshots. Also, the performance

curves versus the input SNR are displayed in Fig. 3.2.

In Fig. 3.1, it can be observed that the proposed method performs better than the other

tested beamformers for the number of snapshots more than 40. The slightly lower

performance of the beamformer in [33] from the expected is due to the fact that the
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DOA mismatch here is larger than those taken in [33].
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Figure 3.1: SINR vs number of snapshots in the case of look direction error
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Figure 3.2: SINR vs SNR in the case of look direction error

In Fig. 3.2, again the proposed method’s performance is higher than those of others

except for the beamformer in [43] which has slightly higher SINR for values more

than 10 dB. Also, the low performance of the AUIRCB method at low SNRs is due
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to the absence of the subspace reconstruction procedure which is not applied in the

simulations. In Fig. 3.3, INR is fixed to 30 dB and SINR versus SNR is shown for

all methods. It can be observed that the performances of the proposed method and the

algorithms of [33] and [43] remain the same as for fixed interference power, whereas

the performances of the other methods are adversely affected.

-20 -15 -10 -5 0 5 10 15 20

SNR (dB)

-20

-15

-10

-5

0

5

10

15

20

25

30

O
ut

pu
t S

IN
R

 (
dB

)

Optimal SINR
Proposed Beamformer
Beamformer in [43]
Beamformer in [24]
Beamformer in [33]
Beamformer in [31]
RCB [19]
Beamformer in [59]

Figure 3.3: SINR vs SNR in the case of look direction error when INR=30

3.6.2 Mismatch Due to Array Calibration Errors

In the second example, we simulate the situation when the presumed and actual signal

spatial signatures are plane waves impinging from the directions of 0◦ and 5◦,

respectively and the signal spatial signature is distorted by arbitrary array

imperfections. We assume that the desired signal wavefront is distorted by a random

error vector with zero mean and variance σ2
eIN×1. In each simulation run, each of the

distortions (which remains fixed for all snapshots) is drawn from a Gaussian random

generator with variance equal to 0.4. Fig. 3.4 shows the performances of the methods

tested versus the number of snapshots for the fixed SNR. Similar to the previous
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scenario the proposed method yields higher SINRs for number of training data more

than 30. The improvement of the performance of the beamformer [43] for training

data size less than 30 is due to higher calibration error in the signal SV. The

performance of the beamformer in [33] does not appreciably improve with increased

number of snapshots similar to the previous scenario.
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Figure 3.4: SINR vs number of snapshots in the case of calibration error

The performances of these techniques versus the SNR for the fixed training data size is

shown in Fig. 3.5. It can be observed that the proposed method’s performance is better

for the SNR range from -15dB to 10 dB. It should be mentioned that the performance of

the modified projection beamformer is decreased with respect to the previous scenario,

possibly because of the increased calibration error. Also, note that the performance of

the correlation coefficient method [43] is improved with respect to look direction error

case. This is due to the advent of calibration error, which contributes to the increased

performance of this method.
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Figure 3.5: SINR vs SNR in the case of calibration error

3.6.3 Mismatch Due to Coherent Local Scattering

In the third scenario, the impact of the desired signal steering vector mismatch due to

coherent local scattering [60] on array output SINR is considered. In this example,

the presumed signal array is a plane wave impinging from θ◦ = 5◦, whereas the actual

spatial signature is formed by five signal paths as

ã = a+
4

∑
i=1

e jϕid(θi) (3.25)

where a is the direct path and corresponds to the assumed signal steering vector, and

d(θi) represents the ith coherently scattered path with the direction θi, i = 1,2,3,4

which varies in every run for constant number of snapshots and randomly distributed

in a Gaussian distribution with mean θ◦ and standard deviation 2◦. Correspondingly,

the parameters ϕi denote the path phases which are changed from run to run for fixed

snapshots, which can be drawn uniformly from [0,2π] in each simulation run.
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Figure 3.6: SINR vs SNR in the case of coherent local scattering
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Figure 3.7: SINR vs number of snapshots in the case of coherent local scattering

The performance of the proposed method versus the number of snapshots K with the

fixed SNR is shown in Fig. 3.7. Although, the superiority of the proposed method over

the methods of [33] and [43] deteriorates for K < 30, it is clear that the performance

of the proposed method gets better as the number of snapshots is increased. Also, it

can be observed that AUIRCB’s performance for local scattering is worse than other
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scenarios. In Fig. 3.6 the performance versus SNR with the fixed number of snapshots

is shown. As can be seen, the proposed method has better performance for all SNRs

less than 10dB.

3.6.4 DOA Estimation Results

The accuracy of the DOA estimation method introduced in (3.15) is evaluated by

computing the estimation variance and average error. These are computed as averages

over all runs of (θ◦− θ̂◦) versus input SNR given in Fig. 3.8, where it can be observed

that the estimation variance (in dB) decreases almost linearly as SNR increases.
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Figure 3.8: (a) DOA estimation variance, (b) DOA estimation average error vs SNR

3.7 Conclusion

In this chapter a modified robust Capon beamforming technique is introduced. It is

shown that this method leads to a steering vector estimate which closely approximates

the orthogonal projection estimate used in the eigenspace beamformer. Furthermore,

this method, in conjunction with a MUSIC like approach allows estimation of the DOA
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of the desired signal. Also, a methodology for the selection of the diagonal loading

factor is developed which guides us to determine this factor in a more or less precise

way. Simulation results indicate that the proposed method’s performance is highly

robust under a wide range of scenarios, and better than or comparable to some of the

recently proposed methods.
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Chapter 4

ADAPTIVE BEAMFORMING BASED ON

THEORETICAL INTERFERENCE PLUS NOISE

COVARIANCE MATRIX AND DIRECTION OF

ARRIVAL ESTIMATION

4.1 Introduction

Adaptive beamformers suffer from output performance degradation in the presence of

imprecise knowledge of the array steering vector and inaccurate estimation of the

covariance matrix [11]. Classically the MVDR beamformer [61, 62] provides an

acceptable solution to the problem of recovering the SOI in the array input while

minimizing the array output power. However, in some non-ideal situations, the

performance of the adaptive beamforming methods severely degrades since the

desired signal component is present in the training snapshots.

In this chapter, a new approach for adaptive beamforming is proposed, where the

eigenvalue decomposition of the received signal’s covariance matrix is utilized to

approximate the IPNC matrix very closely. Furthermore, a new technique, which uses

as little as possible and easy to obtain imprecise prior information is introduced. The

objective for estimating the steering vector is the maximization of the beamformer

output to obtain DOA of the desired signal in a certain angular sector. This estimation

is expected to be more robust against general mismatches such as coherent local

scattering and calibration errors.
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4.2 Problem Statement

Even though the reconstruction based estimation of the IPNC matrix is in general

effective, it has a number of drawbacks. First, it makes the assumption that the array’s

response to a narrowband signal is the ideal steering vector, which cannot account for

array or wavefront distortions. Second, approximation of the integral by a summation

requires a large number of terms in order to be able to accurately synthesize powers

from narrowband signals. However, recognition of the fact that the only function of

the IPNC matrix is to generate notches in the array’s directional response at angles

that correspond to the narrowband interfering signals, makes it difficult to justify

estimation procedures with high computational complexities. The IPNC matrix may

be efficiently estimated under certain conditions by utilizing the eigenvalue

decomposition of the received signal’s covariance matrix, which is the approach

adopted in the proposed beamforming method.

The main motivation of this work is to simplify the estimation of the IPNC matrix

based on its theoretical expression. Also, it is aimed to avoid estimation of this matrix

based on reconstruction in terms of the integral of rank-one matrices weighted by the

corresponding incident power, obtained using the Capon spectral estimator [34].

On the other hand, estimation of the desired signal’s steering vector is the second

important aspect of the beamforming problem. In some of the recently proposed

methods in the literature, this estimation is achieved by formulating the problem as a

constrained optimization problem, with no analytical solution in general. Hence, the

optimization problem is solved iteratively, with the associated increase in the

computational burden of the method. The proposed method here offers a simple but

effective method to arrive at an accurate estimate of the SOI’s steering vector, with
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minimal additional burden. Effectiveness of the proposed strategy comes from the

fact that the steering vector estimate is sought in a subspace corresponding to the

desired signal and the noise. This subspace can be accurately identified if the

interference powers are much larger than the SOI’s and the noise powers.

4.3 Proposed Adaptive Algorithm

We introduce an effective adaptive beamforming algorithm for covariance matrix

construction and desired signal steering vector estimation based on projection

processing. The IPNC matrix is approximated by utilizing the eigenvalue

decomposition of the received signal’s covariance matrix. Moreover, the DOA of the

desired signal is estimated by maximizing the beamformer output power. Then, the

estimated DOA leads to formulate the new desired signal’s steering vector for general

steering vector mismatches. In particular, the proposed method avoids the

optimization problem.

4.3.1 Interference Plus Noise Covariance Matrix Estimation

The proposed method can be employed to obtain R−1
i+n from the eigenvalue

decomposition of the received signal’s covariance matrix. The inverse of

Ri+n = σ2
nIN +AiDiAH

i can be obtained by the application of the well-known matrix

inversion lemma (Woodbury) [63], which gives

R−1
i+n =

1
σ2

n

[
IN−Ai(σ

2
nD−1

i +AH
i Ai)

−1AH
i

]
=

1
σ2

n
(IN−P) (4.1)

In order to express the matrix P in terms of the eigenvalues and eigenvectors of the

covariance matrix R̂, it should be noticed that the eigenvectors of R̂ corresponding

to the interferences are not exactly the same as those of Ri+n. However, if the desired

signal power is much smaller than the interference signal powers, an interference signal

eigenvector of Ri+n is almost equal to the corresponding eigenvector of R̂ (Appendix
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C). Then, interference-plus-noise covariance matrix can be approximated as

R̂i+n = σ
2
nIN +

N

∑
j=J

λ̃ je jeH
j = σ

2
nIN +EiΛ̃iEH

i (4.2)

where e j are the eigenvectors of R̂ corresponding to the interference signals and J =

N − L+ 1. This can be used to structure Ei which spans the estimated interference

signal subspace as Ei = [eJ, ...,eN ] and Λ̃i = Λi−Λ
′
n, where Λi denote the interference

signal subspace eigenvalues of Ri+n and Λ
′
n = σ2

nIN−L [12]. Then, applying the matrix

inversion lemma to (4.2) gives,

R̂−1
i+n =

1
σ2

n

[
IN−Ei(σ

2
nΛ̃
−1
i +EH

i Ei)
−1EH

i

]
(4.3)

where

EH
i Ei = IL and σ

2
nΛ̃
−1
i = diag

[
λ̃ j−σ2

n

λ̃ j
, ...,

λ̃N−σ2
n

λ̃N

]
(4.4)

Note that λ̃ j ∼= λ j , j = J, ...,N (Appendix C).

By substituting (4.4) into (4.3), the interference-plus-noise covariance matrix

estimation can be written as

R̂−1
i+n =

1
σ2

n

[
IN−

N

∑
j=J

µ je jeH
j

]
(4.5)

where µ j = 1− (σ2
n/λ̃ j) and λ1, the minimum eigenvalue of R̂ can be used as an

estimate of σ2
n. The interference-plus-noise covariance matrix estimation-based

beamformer weight vector can be written as

west =
R̂−1

i+nā

āHR̂−1
i+nā

(4.6)
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Note that the presumed steering vector of the SOI is used instead of the unknown true

steering vector a◦. However, it is possible to improve the presumed steering vector

by estimating the desired signal’s DOA. In order to achieve this improvement, the

presumed steering vector can be replaced by the vector a(θ). Then, the output power

of the beamformer can be written as

P̂out(θ) = wH
◦ R̂w◦ (4.7)

The spectral decomposition of the matrix R̂ can also be written as

R̂ = EiΛiEH
i +EsnΛsnEH

sn (4.8)

where the eigenvectors and eigenvalues associated with the SOI and noise are the

columns of Esn and diagonal entries of Λsn, respectively. Also, Ei and Esn satisfy

EiEH
i +EsnEH

sn = IN . Inserting the proposed beamformer weight vector (4.6) and (4.8)

into the output power (4.7), we readily find that the output power can be formulated as

P̂out(θ) =
aH(θ)EsnΛsnEH

sna(θ)
|aH(θ)EsnEH

sna(θ)|2
(4.9)

which follows from the orthogonality of the eigenvectors. Maximum of the output

power in (4.9) occurs when θ is very close to the true DOA of the SOI. This can be

shown by substituting (2.4) and (2.10) into (4.7) and calculating the theoretical output

power as

Pout(θ) =
1

[aH(θ)(I−P)a(θ)]2
.

(
σ

2
naH(θ)(I−P)2a(θ)+σ

2
s |aH(θ)(I−P)a(θ)|2

+aH(θ)(I−P)AiDiAH
i (I−P)a(θ)

)
(4.10)
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Let us decompose the presumed signal steering vector as

a(θ) = Ai γ(θ)+a⊥(θ) (4.11)

where γ contains the coordinates of a(θ) in the interference subspace and a⊥(θ) = (I−

Pi)a(θ) is orthogonal to this subspace, where Pi = Ai(AH
i Ai)

−1AH
i is the orthogonal

projection matrix. Then, making the assumption

a◦ = a(θ◦) = Ai γ(θ◦)+a⊥(θ◦) (4.12)

and the approximation (I−P)Ai ' 0, will result in

Pout(θ) =
σ2

s |aH
⊥(θ◦)a⊥(θ)|

2

‖a⊥(θ)‖4 +
σ2

n
‖a⊥(θ)‖2 (4.13)

It can be shown in (4.13) that, if the angular separation between the interference signals

and SOI steering vector is large enough, the maximum of Pout(θ) occurs at θ = θ◦.

Then, the DOA of the SOI is estimated as

θ̂◦ = argmax
θ∈Θ̄

P̂out(θ) (4.14)

where Θ̄ = [θ̄−4θ̄, θ̄+4θ̄] is an angular sector centered around the presumed DOA θ̄

of the SOI. The parameter4θ̄ is chosen such that the true DOA is within the sector Θ̄.

A gradient algorithm can be employed to numerically obtain the maximum of P̂out(θ)

in a few iterations, where the computational load is negligible compared with the other

computations in the algorithm.

4.3.2 Desired Signal Steering Vector Estimation

If the uncertainty in the desired signal’s steering vector is not due to a simple

mismatch in the true and the presumed DOAs, then estimation of the desired signal’s
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DOA may not be sufficient for estimating the SOI steering vector. Here, a new

approach to estimating the desired signal’s steering vector is described that is capable

of improving the steering vector’s estimation for other types of mismatches, such as

array calibration errors and scattering of the incident signal.

First, we consider that part of the covariance matrix which corresponds to the SOI and

the noise only as

Rs+n = σ
2
nIN +σ

2
s a◦aH

◦ (4.15)

Then the theoretical estimate of the desired signal’s steering vector c is defined as

c =
(
Rs+n−ηIN

)
ā =

(
σ

2
n−η

)
ā+σ

2
s
(
aH
◦ ā
)
a◦ (4.16)

where ā is the assumed steering vector. Now, if η = σ2
n, then c becomes equal to a

vector which differs from the desired signal’s steering vector by a scalar factor.

Therefore, the desired steering vector can be recovered from c as

â◦ =
‖a◦‖
‖c‖

c (4.17)

The same idea can be applied to the approximate signal-plus-noise covariance matrix

to obtain,

â◦ =
‖a◦‖
‖ĉ‖

(EsnΛsnEH
sn−ηIN)ā (4.18)

where the signal-plus-noise covariance matrix can be approximately obtained from the

eigenvalue decomposition as

R̂s+n = EsnΛsnEH
sn (4.19)
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It is noticed that the parameter η can be chosen to be equal to the minimum of the

noise eigenvalues.

By inserting the estimated IPNC matrix (4.5) and approximated signal-plus-noise

covariance matrix (4.19) into (2.10), the weight vector with the new estimated

steering vector is obtained as

wprop =
‖ĉ‖ (R̂s+n−ησ2

nR̂−1
i+n)ā(θ̂◦)

‖a◦‖ āH(θ̂◦)(R̂s+n−ηIN)H(R̂s+n−ησ2
nR̂−1

i+n)ā(θ̂◦)
(4.20)

where θ̂◦ is the DOA estimate in (4.14). Note that ‖a◦‖ is in general unknown.

However, its exact value does not affect the output SINR of the beamformer.

The proposed desired signal steering vector estimation method has advantages over

the orthogonal projection method used in eigenspace-based beamformers, where the

presumed steering vector is projected onto the signal subspace comprising the desired

and interference signal eigenvectors. First, there is the possibility of a swap between

the desired signal eigenvector and one of the noise subspace eigenvectors. The

correlation based algorithm [43] can solve this problem to some degree. However, the

success of this method depends on the accuracy with which the presumed steering

vector represents the true steering vector of the desired signal. In other words, if the

presumed steering vector is not a good approximation for the true steering vector, a

noise eigenvector may lead to the maximum correlation with the presumed steering

vector. This in turn degrades the SINR performance of the correlation-based steering

vector estimation method.
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4.4 Summary of the Proposed Algorithm

The proposed beamformer steps is summarized as follows:

1: Compute the sample covariance matrix R̂ by using (2.12).

2: Reconstruct the IPNC matrix R̂−1
i+n according to (4.5).

3: Estimate the desired signal’s DOA, in (4.14) as the angle which maximizes the

output power according to equation (4.9).

4: Estimate the steering vector of the desired signal by using (4.18).

5: Obtain the beamformer weight vector using equation (4.20).

4.5 Computational Complexity

The computational complexity of the reconstruction of the IPNC matrix and desired

signal steering vector estimation of the proposed algorithm is dominated by the

eigenvalue decomposition of R̂ which is O(N3). The solution of the QCQP problem

in [33] to obtain the final optimal weight vector has complexity of at least O(N3.5).

The beamformer in [43] has complexity of O(N2S) for IPNC matrix reconstruction,

where S (S� N), is the number of sampled points in the DOA region of the desired

signal and O(N3) for the eigendecomposition operation on the covariance matrix R̂.

Therefore the total complexity cost for beamformer in [43] is O(N2S)+O(N3). The

beamformer in [31] has the complexity O(NK) for computing the covariance matrix

by the shrinkage method and O(N3) in order to estimate the steering vector mismatch.

Hence, the total cost will be O(NK)+O(N3).

4.6 Simulation

In all the simulation examples, we numerically evaluate the performance of the

proposed beamforming algorithm. The uniform linear array has N = 10

omni-directional sensors spaced by half-wavelength. In all the scenarios, there is one

desired and two interfering sources with directions of arrival 5◦ and {−20◦,30◦},
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respectively. Also, the desired signal is always present in the training data. The

interference power in each sensor is fixed at 30 dB. The additive noise is modeled as a

zero-mean complex symmetric Gaussian spatially and temporally white process that

has identical variances in each array sensor. For each scenario, 200 Monte-Carlo runs

are performed. In the performance comparison versus the input SNR, the number of

snapshots is fixed at K = 100 and when comparing the performance of the adaptive

beamformers in terms of the number of snapshots, the SNR in each sensor is fixed at

0 dB.

The proposed beamformer is compared with the improved diagonal loading

beamformer [24], the beamformer with modified projection [31], the reconstruction

based beamformer [33], the correlation coefficient calculation based

beamformer [43], the orthogonal projection matrix beamformer [30] and the

beamformer in [34] which is named as the SPSS beamformer. The angular sectors of

the SOI and the interference-plus-noise part for [33] and [43] are defined as

Θ̄ = (θ̄− 10◦, θ̄ + 10◦) and [−90◦, θ̄− 10◦) ∪ (θ̄ + 10◦,90◦], respectively. These

angular sectors are uniformly sampled to the discrete sectors with the same angular

interval 4θ = 0.5◦. CVX software [64] was used to solve this convex optimization

problem. The parameter ρ = 0.7 is considered in the beamformers of [31] and [30].

4.6.1 Random Signal Look Direction Mismatch

In the first simulation example, a scenario with only random signal look direction

mismatch is considered. We assume that the random direction mismatch of the

desired signal and interferences are subject to uniform distribution in [−5◦,5◦] for

each simulation run, which means that direction changes from run to run but kept

fixed from snapshot to snapshot. Fig. 4.1 compares the output SINRs of the
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aforementioned methods versus the input SNR. It can be observed in Fig. 4.1 that the

proposed method, with and without steering vector estimation, performs significantly

better than the other methods up to the SNR of 12 dB. Above this SNR, the proposed

method is superior than all the methods except the QCQP beamformer.
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Figure 4.1: SINR versus SNR for look direction error

Also, we examine the performance of the beamformers as the number of snapshots K

increases which is demonstrated in Fig. 4.2. In this figure, the proposed method’s

performance versus number of snapshots is higher than all the other methods for

number of snapshots in excess of 25. Below this number of snapshots, the

beamformer in [43] performs better than the proposed. It can be put forward that, the

generally higher performance of the proposed method is due to the better estimation

of the SOI’s steering vector and/or DOA. The accuracy of DOA estimation is further

investigated in section 4.4. It should be noted that the performance of [33] is sensitive

to some parameters of the beamforming scenario. Specifically, the interference signal

powers here are kept constant at all SNR values, whereas the INR is fixed at 30 dB
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in [33] so that the interference powers decrease as SNR increases. From the results

shown in Figs. 4.1 and 2, it can be observed that the proposed method’performance

has more robustness against look direction errors compared with the other tested

beamformers.
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Figure 4.2: SINR versus number of snapshots for look direction error

4.6.2 Signal Mismatch Due to Coherent Local Scattering

In the second scenario, the impact of the desired signal steering vector mismatch due

to coherent local scattering [60] on array output SINR is considered. In this example,

the presumed signal is a plane wave impinging from θ̄o = 5◦, whereas the actual

spatial signature is formed by five signal paths as ã = a+∑
4
i=1 e jϕid(θi), where a is

the direct path and corresponds to the assumed signal steering vector, and d(θi)

represents the ith coherently scattered path with the direction θi,(i=1,2,3,4) which are

randomly distributed in a Gaussian distribution with mean θ◦ and standard deviation

2◦. Correspondingly, the parameters ϕi denote the path phases which are drawn

uniformly from the interval [0,2π] in each simulation run. Note that θi and ϕi
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(i=1,2,3,4) only change from run to run while remaining fixed from snapshot to

snapshot. In Fig. 4.3 the performance versus SNR with the fixed number of snapshots

is shown. The performance of the proposed method versus the number of snapshots K

with fixed SNR is shown in Fig. 4.4. It is evident in these figures that the steering

vector estimation of the proposed method has increased performance compared with

DOA estimation only. Compared with the DOA mismatch case almost all methods

show slight improvements particularly in the low SNR range.
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Figure 4.3: SINR versus SNR in the case of coherent local scattering

4.6.3 Mismatch Due to Array Calibration Errors

In the third example, we simulate the situation when the presumed and actual signal

spatial signatures are plane waves impinging from the directions of 0◦ and 5◦,

respectively and the signal spatial signature is distorted by arbitrary array

imperfections. We assume that the desired signal wavefront is distorted by a random

error vector with zero mean and variance σ2
eIN×1. In each simulation run, each of the

distortions (which remains fixed for all snapshots) is drawn from a Gaussian random
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generator with variance equal to 0.3. The performances of these techniques versus the

SNR for fixed training data size are shown in Fig. 4.5. Fig. 4.6 shows the

performances of the methods tested versus the number of snapshots for fixed SNR.

The performance of the proposed approach is much better than that of the tested

methods when arbitrary array errors are considered up to SNR=10 dB. This

improvement is a result of the desired signal elimination in the covariance matrix

reconstruction and array steering vector estimation. It should be mentioned that the

performance of the modified projection beamformer is sensitive to the parameter ρ. In

Fig. 4.6 the proposed method’s performance is considerably better than the other

methods over a large range of the number of snapshots. The results show that the

proposed method yields better output SINR than all the other tested beamformers,

because of the high estimation accuracy of both the IPNC matrix and the steering

vector of the SOI.
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Figure 4.4: SINR versus number of snapshots in the case of coherent local scattering
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Figure 4.5: SINR versus SNR in the case of array calibration error
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Figure 4.6: SINR versus number of snapshots in the case of array calibration error

4.6.4 DOA Estimation Results

The accuracy of the DOA estimation method introduced in (4.14) is evaluated by

computing the estimation variance and average error. These are computed as averages

over all runs of (θ◦− θ̂◦) versus input SNR and also as a function of the mismatch
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between presumed and true DOAs of the desired signal. These are given in Fig. 4.7

and Fig. 4.8, where it can be observed that the estimation variance (in dB) decreases

almost linearly as SNR increases. In order to give an insight into the accuracy of the

estimates, we calculated the standard deviation of the DOA estimate at SNR=0 dB to

be 3.2× 10−3 rad. (0.1812◦). The average estimation error at the same SNR is 0.03

rad.(1.72◦) which is reasonably low considering that the DOA mismatch is 15.7◦(5◦

as AOA(Angle of Arrival)). In Fig. 4.8 it can be observed that the estimation

variances are almost independent of the AOA mismatch which verifies the accuracy

of the proposed estimation method.
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Figure 4.7: (a) DOA estimation variance, (b) DOA estimation average error vs SNR

4.7 Conclusion

In this chapter, a novel adaptive beamforming method is presented that is robust

against both the covariance matrix uncertainty and signal steering vector mismatch. It

is shown that the interference-plus-noise covariance matrix can be accurately

estimated in terms of the noise power estimate and the eigenvectors of the array’s
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Figure 4.8: DOA estimation (a) variance, (b) average error versus AOA mismatch

covariance matrix corresponding to the interference signals. With the knowledge of

the presumed DOA of the desired signal, the presumed steering vector of the signal

can be improved to maximize the array output power. Also, a method for estimating

the desired signal’s steering vector is introduced for general steering vector

mismatches. Simulation results demonstrate the effectiveness of the proposed

algorithm compared with some of recent ones in the literature.
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Chapter 5

ROBUST ADAPTIVE BEAMFORMING FOR FAST

MOVING INTERFERENCE BASED ON COVARIANCE

MATRIX RECONSTRUCTION

5.1 Introduction

We introduce a novel approach with respect to the time-varying DOA of a moving

interference source. This interference is estimated during the period in which snapshots

are taken. Then, the beamformer is designed to place a null region which spans the

directions in which the interfering source moves. The IPNC matrix is replaced by

another one derived from a simplified power spectral density function that can be used

to shape the directional response of the beamformer. An expression for the inverse of

this matrix is developed which facilitates fast calculation of the beamformer weight

given the interference signal DOAs. In this work, the desired signal’s DOA is assumed

to be available, as the focus is on suppression of moving interferences.

5.2 Proposed Beamformer

Adaptive beamforming is a classic problem in array signal processing and has broad

application prospects in radar, sonar and communications signal

processing [65], [45]. Although, adaptive beamforming has been developed to extract

the desired signal and suppress the interference as well as noise at the array output

simultaneously [37], if the assumptions of the source, environment and antenna

become imprecise, the performance of the adaptive beamforming degrades [20].

Variety of algorithms have been proposed to improve robustness against signal
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steering vector mismatch and covariance matrix estimation inaccuracy [33], [66], and

spatially cancel interfering signals [67], [11]. However, there are yet many

applications and signal scenarios such as nonstationary interference where existing

methods are inadequate. When the interference waveform or distribution change with

time or location by antenna platform vibration, propagation channel variation,

conventional adaptive cancelers might perform poorly. Since in general, these

methods include additional constraints in the optimization problem for suppression of

selected angular ranges and usually requiring online solutions.

In this research, we focus on the time-varying interference suppression problem, with

interference-plus-noise covariance matrix reconstruction on the condition that target

knowledge (interference DOA) is estimated. When the interference moves quickly or

the antenna platform vibrates, continuously updating of the adaptive weight vector

can be prohibitive; the mismatching between adaptive weight and data occurs due to

the change of interference locations. We propose a beamformer that can flexibly

adjust the null width and avoid the additional complexity of continuous updating.

5.2.1 Estimation of Time-Varying Interference DOA

Determination of the time-varying DOA of a moving interference during the interval

in which snapshots are taken is crucial for the implementation of the proposed

method. Here, a DOA estimation using correlation is adopted where inner products of

the received vectors with the steering vector corresponding to a general direction of

incidence are computed. The directions are chosen in the angular sector

corresponding to the moving interference. First, a coarse estimate of the interference

DOA is obtained from the discrete Fourier transform of the first received vector in the

set of snapshots. Then, an angular sector centered on this estimate is scanned and the
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angle which maximizes the magnitude of the inner product is taken as the DOA’s

estimate, as follows

θ̂i(k) = argmax
θ∈Θint(k)

xH(k)a(θ)
, k = 1, · · · ,K (5.1)

where Θint(k) is the angular sector of the interference signal corresponding to kth

received vector. This procedure is then repeated for the next vector in the snapshots.

When all snapshot vectors are processed, a polynomial of sufficiently high degree can

be fitted to the set of DOA estimates. The angular range of variation of the

interference’s DOA is determined using this polynomial. Aside from the correlation

estimator (5.1), there are other methods which use low resolution direction

finding [68].

It is noted that, the procedure enables the proposed method to adopt itself to the

motion of interference by determining the angular region where the null in the

beampattern is to be created. This is unlike most methods that provide null over a

predefined range of the interference signal which is expected to move [57].

5.2.2 Interference-Plus-Noise Covariance Matrix Reconstruction

We propose to reconstruct the IPNC matrix using a weighted sum of the outer products

of steering vectors, the coefficient of which can be estimated in the vicinity of the

DOAs of the interferences as follows

C =

ˆ
π

−π

γ(θ)a(θ)aH(θ)dθ (5.2)

where a(θ) is the steering vector associated with a hypothetical direction (θ) based on

the known array structure and γ(θ) may be interpreted as the spatial power spectrum

of the interference-plus-noise component of the received signal. However, in lieu of
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estimating this spectrum, a simplified approach is adopted where γ(θ) is chosen to have

a piecewise constant form with only two levels.

Here, the choice of γ(θ) is based on the fact that the interference with higher power

should be more suppressed. Hence, one level is assigned for the white noise (γL), and

the other for the interference signals (γH). Since scaling of γ(θ) does not change the

weight vector, the lower level can be fixed at unity. The higher level then can be chosen

as the relative power of the strongest interference with respect to the noise.

Figure 5.1: Weight function versus θ

In the following section, a procedure is described where the inverse of the IPNC matrix

is simply computed. Considering the structured feature of the integral, the matrix C

can be approximately calculated using a discrete sum

C∼=
M

∑
m=1

γ(θm)a(θm)aH(θm) for M� N (5.3)

and

γ(θm) =


γH, θm ∈ Θ̄

γL, θm ∈Θ

(5.4)

where Θ̄ stands for the direction range of interferences and Θ is the complement sector
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of Θ̄ in the whole spatial domain. This domain is discretized as follows

θm = θ1 +(m−1)∆θ, ∆θ = 2π/M, (m = 1, · · · ,M) (5.5)

Therefore, equation (5.3) can be written in matrix form as

C = EΓEH (5.6)

where E = [a(θ1), . . . ,a(θM)] ∈ CN×M and Γ = diag[γ(θ1), . . . ,γ(θM)] ∈ CM×M

The matrix E can be factorized as

E = Fθ1F∆θ (5.7)

where F∆θ is a matrix with the following elements

[F∆θ]n,m = e− j(n−1)(m−1)∆θ (5.8)

for (n = 1, . . . ,N;m = 1, . . . ,M), and

Fθ1 = diag[1,e− jθ1, . . . ,e− j(N−1)θ1] (5.9)

Based on (5.7), the matrix C can be written as follows

C = Fθ1(F∆θΓ FH
∆θ)F

H
θ1
= Fθ1FDFH

θ1
(5.10)

The matrix FD is nonsingular by virtue of the fact that F∆θ has full row rank. The

singular value decomposition (SVD) of F∆θ is

F∆θ = UΣVH (5.11)

where U ∈ CN×N , V ∈ CM×M and Σ are unitary and diagonal matrices, respectively.
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Column i of the unitary matrix U is denoted as ui and the ith diagonal element of the

diagonal matrix Σ denoted as σi, respectively. It is assumed that σi, i = 1, . . . ,N are

ordered in the descending order, i.e., σi ≥ σi+1, i = 1, . . . ,N− 1. The product UΣ in

(5.11) may be partitioned into

UΣ = [σ1u1 . . . σNuN | 0] = [Uσ 0] = Ũσ (5.12)

By utilizing (5.12), the matrix FD from (5.10) becomes

FD = Ũσ(VH
Γ V)ŨH

σ (5.13)

If the matrices V and Γ are partitioned as

V =

 V11 V12

V21 V22

 , Γ =

 Γ11 0

0 Γ22

 (5.14)

where V11,V22 are N×N,M×M and V12,V21 are ,N×(M−N),(M−N)×N matrices

respectively.

By substituting (5.14) in (5.13), the matrix FD becomes

FD = Uσ(VH
11Γ11V11 +VH

21Γ22V21)UH
σ = UσBUH

σ (5.15)

The diagonal matrices in (5.15) are chosen as

Γ11 = γLIN , Γ22 = γLIM−N + γHΓs (5.16)

where Γs is the diagonal matrix

Γs(n,n) =


1,

P⋃
i=1
{ni ≤ n≤ ni +Li−1},

0, Otherwise.

(5.17)
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where P is the number of interferences to be suppressed, and the range (ni ≤ n ≤

ni+Li−1) corresponds to an angular sector centered on the DOA of the ith interference

and the parameter Li determines the width of this range which are expected as follows,

Given the angular range in which the interference DOA varies ∆θint, and the center of

this range, θic, then

Li = ceil(
∆θint

2π/M
), Nic = ceil(

θic

2π/M
) (5.18)

where
(
ceil(X) rounds each element of X to the nearest integer greater than or equal to

that element and floor(X) rounds each element of X to the nearest integer less than or

equal to that element
)
. Also Nic is the index of the angular intervals corresponding to

the center of the range. Then, the index of the first angular interval of this range can

be calculated as

ni = floor(Nic−
1
2

Li) (5.19)

The unitary property of V implies that

VH
11V11 +VH

21V21 = IN (5.20)

Using (5.16-5.20), the matrix B in (5.15) becomes

B = γLIN + γHVH
21ΓsV21 = γLIN + γHSHS (5.21)

where S is the matrix
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S =


S1

...

SP

 , Si =


v21(ni)

...

v21(ni +Li−1)

 (5.22)

and v21(ni) is the nth
i row of V21. Application of the matrix inversion lemma

(Woodbury) yields

B−1 =
1
γL

(IN +
γH

γL
SHS)−1

=
1
γL

[IN−SH(
γL

γH
IJ +SSH)−1S] (5.23)

where J = ∑
P
i=1 Li. Therefore, the inverse of the matrix FD becomes

F−1
D =

1
γL
(UσUH

σ )
−1− 1

γL
UσSH(

γL

γH
IJ +SSH)−1SUH

σ (5.24)

Finally, C−1 in the weight expression can be computed as

C−1 = Fθ1F−1
D FH

θ1
(5.25)

By substituting the matrix C−1 and the assumed steering vector, ā back into the

objective function of (2.9), the proposed beamformer is obtained as

wpro =
C−1ā

āHC−1ā
(5.26)

It should be noted that the matrix Uσ depends only on N and M, so that the first term

on the right hand side of (5.24) can be computed once and stored. Similarly, the matrix

V21 can be computed and stored.

62



5.3 Theoretical Derivation of the Array Gain Within a Notch

To investigate the performance of the proposed method, this section gives the

directional response of the array in an angular interval corresponding to the

interferences which can be analytically obtained for the single interference case.

Also, this would be useful in understanding the relationship of the weights to the

depth of the notch in the beampattern.

Let the angular interval be [θ1,θ2] where a notch is to be created to suppress an

interference having DOA in the middle of this range. Then, the matrix C in (5.2) can

be written as

C = γL

ˆ
π

−π

a(θ)aH(θ)dθ+(γH− γL)

ˆ
θ2

θ1

a(θ)aH(θ)dθ

= 2πγLIN +∆γCI (5.27)

where CI defines a matrix in which the spatial region of the interference direction is

located over a broad null. Let eigenvalue decomposition (EVD) of CI be

CI = AiΛiAH
i (5.28)

where Ai =
[
e1 · · ·eR

]
and

{
er
}

r=1,··· ,R are the eigenvectors and diagonal matrix Λi

contains the eigenvalues of the matrix and (R ≤ N) denotes the rank of CI. The rank

R depends on the width of the angular interval [θ1,θ2], which goes to one as the width

shrinks to zero. If the width is sufficiently small, majority of the eigenvalues would be

zero, and the dominant eigenvalue would be of the order of λmax ≈ N(θ2−θ1) . Using

(5.28) the inverse of C can be obtained as

C−1 =
1

2πγL

[
IN−Ai

(2πγL

∆γ
Λ
−1
i +AH

i Ai

)−1
AH

i

]
(5.29)
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The beampattern obtained with the beamformer weight (5.26) is given by

D(θ) =
∣∣wH

proa(θ)
∣∣= ∣∣∣aH(θ)C−1ā

āHC−1ā

∣∣∣ (5.30)

By substituting (5.29) into (5.30), the numerator can be written as

∣∣∣aH(θ)C−1ā
∣∣∣= 1

2πγL

∣∣∣aH(θ)ā−aH(θ)Ai

(2πγL

∆γ
Λ
−1
i + IR

)−1
AH

i ā
∣∣∣ (5.31)

where the fact that AH
i Ai = IR is used. Note that the steering vector a(θ) can be

expressed as a(θ) = Aih(θ) for θ1 < θ < θ2.

Defining the vector

AH
i ā = u = [u1, · · · ,uR]

T (5.32)

which is the orthogonal projection of ā onto the subspace spanned by the eigenvectors{
er
}

r=1,··· ,R, (5.31) can be simplified as

∣∣∣aH(θ)C−1ā
∣∣∣= 1

2πγL

∣∣∣hH(θ)u−hH(θ)
(2πγL

∆γ
Λ
−1
i + IR

)−1
u
∣∣∣

=
∣∣∣ R

∑
l=1

h∗l (θ)ul

( 1
2πγL +λl∆γ

)∣∣∣ (5.33)

Also, The denominator of (5.30) can similarly be shown as

∣∣∣āHC−1ā
∣∣∣= 1

2πγL

[
‖ ā ‖2 −

R

∑
l=1
| ul |2

(
λl∆γ

2πγL +λl∆γ

)]
(5.34)

The norm of the projection u can be expected to be significantly smaller than the norm

of ā on the basis that the angular direction of the SOI is sufficiently separated from

the region [θ1,θ2]. Furthermore, most of the eigenvalues λl of CI would be either zero

or much smaller than the dominant one. Based on these facts, the summation term in
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(5.34) can be omitted. Then, the beampattern becomes

D(θ) =
2πγL

‖ ā ‖2

 R

∑
l=1

h∗l (θ)ul

( 1
2πγL +λl∆γ

) (θ1 < θ < θ2) (5.35)

This result indicates that the array gain within the notch can be made arbitrarily small

by choosing large values for ∆γ. However, since the array gain at angles outside the

interference sector is also affected by ∆γ, an unnecessarily large value may increase

the gain at these angles. Hence, it should be chosen large enough to annihilate the

interference without affecting array gain at other angles.

5.4 Computational Complexity of the Proposed Method

The computational complexity of the calculation of C−1 in (5.25) is considerably

lower than when C is computed from (5.3) and then inverted. In (5.3), the rank-one

matrices a(θm)aH(θm) must be first calculated and those matrices which correspond

to the angles belonging to Θ̄ are multiplied by γH. These calculations involve

(M + J)N2 operations. On the other hand, calculation of F−1
D in (5.24) involves

inversion of a J× J matrix, where J is an integer of the order of N. The computational

complexity of the JMB approach is O(2N3 + 2N2). The complexity of the SMI

beamformer is O(N3). The beamformer in MDDR beamformer has a complexity of

O(N3 +KN). The QCQP method has a computational complexity of O(N3.5 +N2)

and the complexity in the SVE method is O(N3 +N2S), where S is the number of

sampled points in the DOA region of the desired and interference signals.

5.5 Summary of the Proposed Algorithm

The proposed algorithm is summarized as follows:

1: Evaluate F∆θ and Fθ1 by (5.8) and (5.9).

2: Compute SVD of F∆θ by (5.11).

3: Calculate Uσ from (5.12).

65



4: Calculate S matrix by (5.22).

5: Calculate F−1
D using (5.24).

6: Compute covariance matrix inverse by (5.25).

7: Calculate the robust adaptive beamformer weight as (5.26)

5.6 Simulation Results

In all simulations, a ULA of N = 30 sensors with a half-wavelength spacing is

considered. The additive noise is modeled as independent spatially white Gaussian

with zero-mean. We assume that the incident angle of the desired signal is known or

previously estimated to the array receiver, which is set to be θs = 2◦ while the actual

one is 0◦. This corresponds to a 2◦ mismatch in the signal look direction. The INRs of

the interferences are both 30 dB. For each scenario, 200 Monte-Carlo runs are

performed.

The proposed beamformer is compared with the following beamformers: the

reconstruction based (QCQP) [33], the correlation coefficient based (SVE) [43],

minimum dispersion distortionless response (MDDR) [57], steering vector estimation

against jammer motion (JMB) [58] and sample covariance matrix (SMI). The number

of the base vectors, width of the null and diagonal loading factor for method in [58]

are set to be 6, 10◦ and 0.01 respectively. In the proposed method, the parameter M is

assumed to be 720 and γL and γH are the minimum and maximum eigenvalue of the

sample covariance matrix. Note that these methods are chosen for comparison based

on our assumption that there is no prior information on whether interferences move or

not.
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5.6.1 Beampattern of Beamformers

In the first example, we compared the beampattern of the aforementioned methods in

two scenarios. First, in Fig. 5.2 we assume that two independent interferences are from

the fixed directions −30◦ and a moving one is initially located at 40◦ and moves with

0.02◦ per snapshots, which means the interference is moving with the time varying

directions θi(k) = 40◦+0.02◦k.
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Figure 5.2: Beampattern of the beamformers for moving interference from 30◦

Then, in Fig. 5.3 it is assumed that two time varying interferences are from −30◦ and

40◦ and the fixed one is from 70◦ direction. Also, the input SNR is 0 dB and the

number of snapshots is 100. It is found that the JMB and MDDR methods are not able

to broaden the interference nulls, especially for moving interferences more than two

in numbers. However, in the proposed method it is indicated that the moving

interference is successfully suppressed by the deep null created to span the range of

DOAs in which it moves. It should be noted that, most of compared methods (except

in MDDR and JMB) are based on covariance matrix reconstruction to suppress the
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Figure 5.3: Beampattern of the beamformers for moving interferences from 20◦, −40◦

-30 -20 -10 0 10 20 30

 INPUT SNR, dB

-30

-20

-10

0

10

20

30

40

O
U

T
P

U
T

 S
IN

R
, d

B

Optimal SINR
Proposed
SVE
JMB
QCQP
MDDR
SMI

Figure 5.4: SINR versus input SNR for moving interference from 30◦

interference signals. However, in the case of fast moving interference their

performance deteriorates drastically.
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Figure 5.5: SINR versus input SNR for for moving interferences from 20◦, −40◦

In Fig. 5.4 and Fig. 5.5, the output SINR of the aforementioned beamformers versus

input SNRs is compared. As can be seen, the proposed method has better performance

than other tested methods over a wide range of SNR. By contrast, the JMB method

suffers a significant performance degradation due to the presence of two time varying

interferences. while the other methods do not change very sensibly.

5.6.2 Effect of Error Due to Wavefront Mismatch

In this scenario, we investigate the impact of the mismatch when the wave

propagation distortion affects the spatial signal in an homogeneous medium. It is

assumed that the SOI’s steering vector is distorted by a random error vector in which

phase increments are fixed in each simulation and chosen independently from a

Gaussian random generator with zero mean and variance σ2
nIM×1. We assume herein

that the mismatch errors are random with zero-mean and second-order moments

σ2
n = 0.4 and uncorrelated with the noise where the number of snapshots is fixed in

K = 100.
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Figure 5.6: SINR versus input SNR in the case of wavefront mismatch

Fig. 5.6 compares the performances of the proposed method and other techniques

with respect to the input SNRs. It is seen that the QCQP and SVE methods suffer

severe performance degradation due to the inaccurate estimate of steering vector in

the presence of time varying interferences. It is clearly seen that the proposed

algorithm has the best performance compared to the other beamformers in wavefront

mismatches. Obviously, it is very close to the optimal value, whether in high or low

SNRs.

We consider the normalized beampattern of proposed method versus the other tested

beamformers while SNR is fixed at 5 dB. It can be seen from Fig. 5.7 that the SMI

beamformer fails in wavefront distortion. The performance of the MDDR is better

than the JMB. However, its interference rejection level is degraded since the null is

not deep enough. The proposed method exhibits excellent performance than other

methods in interference suppression, providing wide and deep nulls in the direction of

interferences.
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Figure 5.7: Beampattern the beamformers in the case of wavefront mismatch

5.6.3 Coherent Local Scattering Error for Desired Signal Steering Vector

In this simulation, the steering vector of the SOI is disturbed by local scattering effects

so that the true steering vector is formed by five signal paths and is given by

ã = a+
4

∑
i=1

e jψid(θi) (5.36)

where a corresponds to the direct path, and d(θi) (i=1,2,3,4) corresponds to the

coherently scattered paths. We model the i th path as a plane wave impinging on the

array from the direction θi. The parameters θi varies in every run for constant number

of snapshots and randomly distributed in a Gaussian distribution with mean θs and

standard deviation 2◦. Correspondingly, the parameters ψi denote the path phases

which are changed from run to run for fixed snapshots, which can be drawn uniformly

from [0,2π] in each simulation run. This case corresponds to the so-called coherent

scattering [60]. Fig. 5.8 depicts the output SINR of the tested beamformers versus the

input SNRs for the fixed training data size K = 100. It can be observed that the

proposed beamformer still has better performance compared to the other methods
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Figure 5.8: SINR versus input SNR in the case of local scattering

except the SMI method which is slightly better than the proposed method for SNRs

less than -20 dB. Also, the performance of the QCQP and SVE methods have been

improved where as the JMB method degrades from optimal SINR compared to before

scenarios. As shown in Fig. 5.9, the proposed method’s beampattern places deep nulls

at the DOAs of the interference signals and maintain distortionless response for the

SOI. However, the SMI method is not able to follow the DOAs of the SOI and

interferences and it has high sidelobe levels.

5.6.4 Output SINR Versus the Number of Snapshots

We examine the performance of the beamformers as the number of snapshots K is

varied. It is assumed that, there is one moving interference which is from 30◦ direction.

The other parameters remain the same as in example 1. In Fig. 5.10 the SNR is fixed at

0 dB. As shown in this figure, the SINR of the proposed method is close to the optimal

one for all number of snapshots. This is the result of the proposed method’s ability

to adjust the widths of the notches in the directional response to correspond to the
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Figure 5.9: Beampattern of the beamformers in the case of local scattering

total angular variation of the moving interference. Although the JMB method shows

fast convergence rate, it suffers from performance degradation mainly due to increased

number of training data. The QCQP, SVE and SMI beamformers are sensitive to the

nonstationary interference. Moreover it seems that the SMI beamformer requires a

large number of snapshots. The performance of the MDDR method is expected to

increase as snapshots are increased. However, it does not show this tendency because

of its inability to create broad notches at moving interference directions.

5.6.5 Effect of Parameter M on Performance

The aim of this simulation is to investigate the effect of the parameter M. We assume

that interferences are the same as in example 1, the number of snapshots is 100 and

the input SNR is fixed at 0 dB while the parameter M is varied. The beampattern of

the proposed method with varying M is shown in Fig. 5.11. It is clearly evident that

the value of the parameter M does not affect the performance of the proposed method.

The width and depth of the notches almost always are the same for different values of
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Figure 5.10: SINR vs number of snapshots
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Figure 5.11: Beampatterns of the proposed method for different M values

M and the interferences are suppressed deeply enough.

74



-90 -40  0 30 90

Angle, degree

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

B
ea

m
pa

tte
rn

 G
ai

n,
 d

B

K=30
K=200

Figure 5.12: The effect of the number of snapshots on beampattern plots

5.6.6 Impact of the Number of Snapshots on Interference Suppression

If the number of snapshots used in the calculation of the sample covariance matrix is

large enough, the spatial signature of an interference signal would become blurred.

This, in turn, would deteriorate the interference rejection capability of the

beamformer. Also, it implies that the number of snapshots ought to be small enough

to enable tracking of a fast-moving interference, in which case SINR performance is

likely to be adversely affected. However, in the proposed method varying the

snapshots do not affect the output SINR. In order to show this, beampattern of the

proposed method is evaluated for two different numbers of snapshots, which are

demonstrated in Fig. 5.12. We assume that the input SNR is 0 dB and the parameter

M is set to 720. It is clearly demonstrated that the angular range in which the

interference moves when K = 200 is more than that of when K = 30. The proposed

method detects the total angular range of motion and automatically adjusts the width

of the corresponding notch in the directional response.
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5.7 Conclusion

Most of interference signals encountered in real-world applications are unknown,

whether they are fixed or time-varying. In this Chapter, a novel adaptive beamforming

method is presented for moving interferences. The method is based on designing a

weight vector which can be computed in an efficient way given the estimated DOAs

of the moving interference. Simulation results have demonstrated that the proposed

algorithm works effectively in generating broad notches corresponding to the

time-varying DOA of a moving interference. Comparisons indicate that the proposed

method outperforms some existing beamforming methods in the literature.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

Adaptive beamforming is quite sensitive to slight mismatches between the presumed

and actual steering vectors. Such mismatches can occur as a result of environmental

nonstationarities, look direction errors, imperfect array calibration as well as

distortion caused by source spreading and local scattering. In this thesis, we present a

number of new beamforming algorithms for the class of beamformers based on

generalized approaches in the presence of the aforementioned problems.

In the first algorithm, we propose a new robust adaptive beamforming technique

based on development of the RCB, attempting to determine the DL factor to improve

steering vector estimation. Meanwhile, the DOA of the presumed SOI is updated

every time through a MUSIC-like procedure by projecting it onto the signal subspace.

With respect to performance, the proposed method outperforms most existing

methods in a wide range of scenarios as well as low SNRs, which shows great

improvement in overcoming the problem of low SNR subspace swap.

The proposed algorithm in the second method is based on projection processing. The

IPNC matrix and the steering vector of the desired signal are estimated on the

condition that interference signals have stronger power. In this accordance, we aimed

to avoid estimation of this matrix based on reconstruction in terms of the integral of
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rank-one matrices weighted by the corresponding incident power from direction θ,

obtained using the Capon spectral estimator. The simulation results indicate that the

proposed method is robust against both the covariance matrix uncertainty and signal

steering vector mismatch compared to existing methods.

Traditional adaptive beamforming’s performance degrades with time-varying

interferences, since they are designed to suppress interferences from fixed directions.

Therefore, in the array observation vector interferences are time-varying, and

consequently time-varying beamforming weights are required to achieve adequate

interference cancellation. In the third approach, we investigate a robust adaptive

beamformer which considers fast moving interferences. The resulting beamformer

places a null region which spans the directions where the interfering sources move.

The proposed method can generate notches with controllable widths and depths to

suppress moving and/or stationary interference signals. Also, the beamformer weight

vector is calculated directly using the inverse of the simplified covariance matrix.

Simulation results have demonstrated that the proposed algorithm works effectively in

different scenarios and conditions by generating broad notches corresponding to the

time-varying DOA of a moving interference.

As a general conclusion, the resulting beamformers are seen to bring considerable

improvement in the output SINR performance compared to some well-known

approaches in the simulations.

6.2 The Future Work

Although, the treatment and provided analyses of proposed methodologies have

shown that they constitute a set of powerful approaches for array of sensors, there are

still some issues that require extensive studies for further improvement. Some of them
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can be summarized as below:

• In this thesis, uniform linear arrays are considered. Further work can be extended

to other array geometries such as planar and circular arrays.

• The signals induced in each array element and the reference signal are assumed

uncorrelated in this work. Assuming the signals to be correlated is another challenge.

Thus the work can be extended for correlated signals.

• The coupling effect between antennas in this work is not considered. Thus the

work can be extended by including coupling effect.

• Narrowband signals are considered in this work. Thus, wideband signals can be

considered for further studies.

Also, we aim to utilize a novel technique such as the Maximum Entropy Method

(MEM) instead of the Capon estimator to optimize the SINR performance of adaptive

beamforming.
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Appendix A: The Orthogonal Projection Matrix

The following inverse of a partitioned matrix [11] can be used to evaluate the inverse

on the left-hand-side of (3.7) A C

D B


−1

=

 0

I

B−1
(

0 I

)
+

 I

−B−1D

(A−CB−1D)−1
(

I −CB−1

)
(A.1)

where A ∈ Cm×m ,B ∈ Cn×n, C ∈ Cm×n, D ∈ Cn×m. We need to find the inverse

(AH
s As)

−1 as follows

(AH
s As)

−1 =

 ‖a◦‖2 aH
◦Ai

AH
i a◦ AH

i Ai


−1

(A.2)

with the appropriate associations

(AH
s As)

−1 =

 0

I

(AH
i Ai)

−1
(

0 I

)
+

1
‖a◦‖2−aH

◦Ai(AH
i Ai)−1AH

i a◦

.

 1

−(AH
i Ai)

−1AH
i a◦

( 1 −aH
◦Ai(AH

i Ai)
−1

)
(A.3)

Multiplying the left-hand side of (A.3) by As and the right-hand side by AH
s and

rearranging (A.3) will be expressed as (3.7).
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Appendix B: Computation of Approximated Desired signal’s SV

The matrix (I+λR) can be written as

I+λR = (1+λσ
2
n)I+λσ

2
s a◦aH

◦ +λAiDiAH
i = Rnλ +λσ

2
s a◦aH

◦ (B.1)

where Rnλ = (1+λσ2
n)I+λAiDiAH

i .

Using the well-known matrix inversion lemma, the inverse becomes

(I+λR)−1 = (Rnλ +λσ
2
s a◦aH

◦ )
−1 = R−1

nλ
−R−1

nλ

( λσ2
s a◦aH

◦
1+λσ2

s aH
◦R−1

nλ
a◦

)
R−1

nλ
(B.2)

Again by using the same lemma the inverse of Rnλ can be written as

R−1
nλ

=
1

1+λσ2
n

[
I−Ai((λd +σ

2
n)D

−1
i +AH

i Ai)
−1AH

i
]
=

1
1+λσ2

n
(I−P) (B.3)

where P is the second term within the square brackets and λd = 1/λ. By substituting

(B.3) into (B.2) , multiplying both sides by ā and simplifying gives

(I+λR)−1ā =
1

1+λσ2
n

[
(I−P)ā− aH

◦ (I−P)ā
µ(λ)+aH

◦ (I−P)a◦
(I−P)a◦

]
(1+λσ

2
n)(I+λR)−1ā = (I−P)

[
ā−η(λ)a◦

]
= ā−

[
η(λ)a◦+P(ā−η(λ)a◦)

]
(B.4)

where µ(λ) = (1+λσ2
n)/(λσ2

s ) and η(λ) = aH
◦ (I−P)ā/(µ(λ)+ aH

◦ (I−P)a◦). From

(B.4) we obtain

â◦(λ) = η(λ)a◦+P(ā−η(λ)a◦) = ā− (1+λσ
2
n)(I+λR)−1ā (B.5)

Note that the noise power σ2
n can be estimated from the eigenvalue decomposition of

the covariance matrix. Here, the minimum of eigenvalues is taken as an estimate of the

noise power.
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Appendix C: Interference Eigenvectors of SCM and IPNC

Let the theoretical covariance matrix of the signal received by the beamformer be

written as

R̂ = σ
2
s a◦aH

◦ +Ri+n (C.1)

The problem is to derive the relationship between the eigenvectors of R̂ and those of

Ri+n corresponding to the interference signals. Let’s write the EVD of Ri+n as

Ri+n =
N

∑
j=N−L+1

λ̃ jẽ jẽH
j = ẼΛ̃ẼH (C.2)

Also, let e be an eigenvector of R̂ with corresponding eigenvalue λ. The

representations of e and a◦ with respect to the basis vectors of CN×1 which are the

eigenvectors in Ẽ, can be expressed as

e = Ẽα, a◦ = Ẽβ, ‖e‖2 = ‖α‖2 = 1 ‖β‖2 = ‖a◦‖2 (C.3)

Then, by inserting (C.3) into and (C.1) and post multiplying that by e, it can be written

as

R̂e = (σ2
s a◦aH

◦ +Ri+n)e

= σ
2
s (Ẽβ)(Ẽβ)HẼα+Ri+nẼα

= (σ2
s β

H
α)Ẽβ+Ri+nẼα

= (σ2
s β

H
α)Ẽβ+ ẼΛ̃α

= Ẽ[(σ2
s β

H
α)β+ Λ̃α]

= λẼα (C.4)
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Since Ẽ in nonsingular, then Λ̃α+σ2
s (β

Hα)β = λα, and (C.4) implies that

(λI− Λ̃)α = (σ2
s β

H
α)β (C.5)

If (λ,e) is not an eigenpair of Ri+n then (λI− Λ̃) is nonsingular. Solving for α

α = (σ2
s β

H
α)(λI− Λ̃)−1

β (C.6)

Premultiplying (C.6) by βH, and assuming that a◦ is not orthogonal to e (so that βHα 6=

0)

β
H

α = (σ2
s β

H
α)βH(λI− Λ̃)−1

β ⇒ σ
2
s β

H(λI− Λ̃)−1
β = 1 (C.7)

which is written explicitly as

σ
2
s

N

∑
i=1

| βi |2

λ− λ̃ i
= 1 (C.8)

Solution of (C.8) gives the eigenvalues of R̂ which are not common with those of

Ri+n. Note that if R̂ has J eigenvalues corresponding to the noise only, then Ri+n has

J+1 noise eigenvalues [12].

After solving for the eigenvalue λ, the corresponding eigenvector e should be

determined by solving for α. For this the fact that ‖α‖= 1 is used, giving

σ
2
s |βH

α|= [
N

∑
i=1

| βi |2

(λ− λ̃i)2
]−1/2 (C.9)

Let λ = λk correspond to either an interference or the desired signal, with the

corresponding eigenvalue λ̃k of Ri+n. Note that if λk corresponds to the desired

94



signal, then λ̃k = σ2
n. The eigenvector ek is obtained as

e j = Ẽα = σ
2
s (β

H
α){

β j

λ j− λ̃ j
ẽ j +

N

∑
i=1,i 6= j

βi

λ j− λ̃ i

ẽi} (C.10)

It can be observed that, when the desired signal power is sufficiently smaller than the

interference signal powers, λk− λ̃k will be much smaller than λ j− λ̃i, i 6= j. This in turn

makes the coefficient of ẽ j in (C.10) much larger than those of ẽi. It is impossible to

solve for the eigenvalues of R̂ in terms of those of Ri+n for the general case of multiple

interferences, making it difficult for a quantitative assessment of the difference between

the eigenvectors of R̂ and Ri+n corresponding to an interference. However, closed form

solution of the eigenvalues is possible in the case of a single interference. For this case,

the interference eigenvalue and eigenvector of R̂ can be obtained approximately. Let

assume that λ̃i = σ2
n for i = 1, ...,N−1 and λ̃N is the interference of Ri+n

σ
2
s

( |βN |2

λ− λ̃N
+

N−1

∑
i=1

|βi|2

λ−σ2
n

)
= 1 (C.11)

Let ρ = ∑
N−1
i=1 |βi|2

σ
2
s

( |βN |2

λ− λ̃N
+

ρ

λ−σ2
n

)
= 1⇒

λ
2− [λ̃N +σ

2
n +σ

2
s‖a◦‖2]λ+[(σ2

n +σ
2
s ρ)λ̃N +σ

2
nσ

2
s |βN |2] = 0 (C.12)

By solving (C.12) for the interference eigenvalue λN of R̂

λN =
1
2
(λ̃N +σ

2
n +σ

2
s‖a◦‖2)

[
1+

√
1− 4(σ2

n +σ2
s ρ)λ̃N +σ2

nσ2
s |βN |2

(λ̃N +σ2
n +σ2

s‖a◦‖2)2

]
(C.13)
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If λ̃N � σ2
n +σ2

s ‖ a◦ ‖2 then

λN ∼= λ̃N +σ
2
n +σ

2
s‖a◦‖2− (σ2

n +σ2
s ρ)λ̃N +σ2

nσ2
s |βN |2

λ̃N +σ2
n +σ2

s‖a◦‖2

∼= λ̃N +σ
2
s (‖a◦‖2−ρ)− σ2

nσ2
s |βN |2

λ̃N

∼= λ̃N +σ
2
s |βN |2

(
1− σ2

n

λ̃N

)
(C.14)

and the eigenvector is

eN = σ
2
s (β

H
α){ βN

λN− λ̃N
ẽN +

N−1

∑
i=1

βi

λN− λ̃ i
ẽi} (C.15)

Assume that λ̃i = σ2
n and from (C.14), we have

λN− λ̃N = σ
2
s |βN |2

(
1− σ2

n

λ̃N
) (C.16)

then

eN = σ
2
s (β

H
α)
(

βN

σ2
s |βN |2

(
1− σ2

n

λ̃N
)

ẽN +
1

λN−σ2
n

N−1

∑
i=1

βiẽi

)
(C.17)

In order to simplify (C.17), we utilize ‖α‖2 = 1

‖α‖2 = σ
4
s |βH

α|2
N

∑
i=1

|βi|2

(λ− λ̃i)2
= 1 (C.18)

By assuming λ = λN we have

N

∑
i=1

|βi|2

(λN− λ̃i)2
=

N−1

∑
i=1

|βi|2

(λN−σ2
n)

2 +
|βN |2

(λN− λ̃N)2

=
ρ

(λN−σ2
n)

2 +
1

σ4
s |βN |2

(
1− σ2

n

λ̃N
)2

(C.19)
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By substituting in (C.18)

σ4
s |βHα|2ρ

(λN−σ2
n)

2 +
|βHα|2

|βN |2
(
1− σ2

n

λ̃N
)2

= 1 (C.20)

Using (C.19), (C.20) can be written as

|βH
α|2
(

σ4
s ρ

(λ̃N +σ2
s |βN |2)2

+
1

|βN |2)2

)
= (1− σ2

n

λ̃N
)2 (C.21)

By neglecting the first part, we can claim that

|βH
α| ∼= |βN |(1−

σ2
n

λ̃N
) (C.22)

and finally, the eigenvector of R̂ will be

eN ∼= ẽN + |βN |(
σ2

s

λ̃N
)(

λ̃N−σ2
n

λN−σ2
n
)

N−1

∑
i=1

βiẽi (C.23)

where λ̃N � σ2
n +σ2

s ‖ a◦ ‖2 and (1− x)1/2 ' 1− (x/2) have been made. It is clear

from (C.23) that if σ2
s � λ̃N then eN ∼= ẽN .
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