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ABSTRACT 

Image restoration involves the reduction or complete removal of image degradation 

in an effort to enhance an image and recover its original form. One of the main 

methods of image restoration is Joint Statistical Modeling (JSM). This thesis 

proposes method for image restoration based on JSM and the statistical 

characterization of the nonlocal self-similarity and local smoothness of natural 

images. In an effort to improve the image restoration results through JSM, the 

proposed method involves the addition of a Switching Median Filter (SMF) to JSM 

and a Median Filter (MF) at the end of every iteration in the restoration process. 

Overall, the proposed image restoration method makes the following contributions: it 

establishes JSM in a domain for hybrid space-transformation; using JSM, it develops 

a new type of minimization function to be used in solving inverse problems in image 

processing; and JSM is developing a new rule-based in the Split Bregman method, 

which is intended to solve any prospective image problems related to a theoretical 

proof of convergence. 

The proposed method was experimentally tested for three kinds of image restoration: 

image deblurring, image inpainting (text removal), and the removal of mixed 

Gaussian and salt-and-pepper noise. The results of these experiments indicate that 

image restoration using the proposed method is a significant improvement compared 

to conventional JSM. Furthermore, the convergence of the proposed method was also 

considerably improved relative to JSM. 
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ÖZ 

Resim onarma işlemi, resimdeki mevcut bozunumun azaltılması tamamen ortadan 

kaldırılması amacıyla yapılan iyileştirme ve asıl haline dönüştürme işlemidir. En 

başta gelen yöntemlerden bir taneside Ortak İstatiksel Model (OİM) yöntemidir. Bu 

tezde, resimlerin yerel olmayan özbenzeşlik ve yerel pürüzsüzlük istatiksel 

nitelendirilmesi ile OİM’e dayalı yeni bir resim onarma yöntemi sunulmuştur. Bu 

yöntemde OİM’den alınan sonuçları iyileştiremek amacıyla, OİM yöntemine 

anahtarlamalı ortancı süzgeci eklenerek onarma sürecinde ortancı süzgecin her bir 

iterasyonda kullanılması öngörülmüştür.   

Sonuç olarak, şu katkılar sağlanmıştır; OİM kullanarak resmi tersten işleme 

problemini çözmede yeni bir azaltma fonksiyonu geliştirilmiştir. Geliştirilen kural 

bazlı Split Bregman yöntemi ile OİM iyileştirilmiş her türlü olası tersten resim 

işleme problemlerine kuramsal bir yakınsama kanıtı sunulmuştur.   

Önerilen yöntem deneysel olarak üç ayrı resim onarma uygulamasında test 

edilmiştir; Bunlar, resim netleştirme, resim iç boyama (metin giderme) ve karışık 

Gauss ve tuz-ve-biber gürültüsünün kaldırılmasıdır. Yapılan deneylerin sonucuna 

göre resim onarmada önerilen yöntem ile anlamlı bir gelişme sağlanmıştır. Buna ek 

olarak önerilen yöntem ile yakınsama OİM’den daha iyi olmuştur. 

Anahtar kelimeler: resim onarma, ortak istatistiksel modelleme, resim iç boyama, 

resim netleştirme, gürültü giderme 
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Chapter 1 

INTRODUCTION 

As electronic photographs of a scene, digital images are typically composed of 

pictorial elements called pixels, which are organized in the formation of a grid. Each 

pixel contains a particular, quantized value representing the tone at that exact point. 

Images are captured in a variety of fields, from remote sensing, astronomy, medical 

imaging, microscopy, down to everyday photography etc. [1].  

The removal of noise (image restoration) is one of the most critical stages in image 

processing applications. The process often finds use in many applications – including 

pattern recognition, image compression, and image encoding – as part of 

preprocessing. It is possible for an image to become corrupted during any of the 

preprocessing, acquisition, transmission, and compression processing phases. The 

corruption of the images usually results from impulse noise caused either by errors 

with the channel transmission or noisy sensors [2].  

Developed in the 1950’s, the application of image restoration spans a number of 

domains including scientific exploration, filmmaking and archrivals, legal 

investigations, consumer photography, and image and video decoding. It is, however, 

mostly used in image reconstruction in tomography, radio astronomy, and radar 

imaging [3]. 
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1.1 Definition of Restoration  
The reduction or total removal of degradation in an image is the primary objective of 

image restoration. As a method of image enhancement, it also involves an attempt at 

reconstructing the image in its original form. Where both differ is that while image 

restoration concerns fixing an image blurred for whatever reason, image 

enhancement works based on human vision and, as such, aims to make the image 

more appealing. 

The methods of image restoration fall into one of two categories: the first includes 

images where the cause of the degradation is known, while the other is for images for 

which there is no prior knowledge. For images falling into the former category, a 

degradation model could be built and subsequently inverted to recover the original 

image. Figure 1.1 illustrates the result of using image restoration to remove noise 

from an image [4]. 

 
                (a) Noisy image                                            (b) Noise removal  

Figure 1.1: Image restoration 
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1.2 Sources of Image Degradation 
The degradation process, which is a low pass filter is visually represented as follows:  

  

 

Figure 1.2 shows a two-dimensional image f (x, y) and the original input is 

manipulated on the system h (x, y). Adding noise n (x, y) results in the degraded 

image g (x, y). The process of digital image restoration is essentially an attempt at 

approximating the original image f (x, y) from the degraded image [5]. 

g(x,y) = H[ f(x,y)] + n(x,y) (1.1) 

wherein Eq. 1.1, the non-invertible linear degradation operator is represented by the 

matrix H and the added Gaussian white noise is represented by n. Image denoising 

and image deblurring are the objectives when H is an identity or a blur operator, 

respectively. Image inpainting, however, is the aim when H is a mask, a diagonal 

matrix, the diagonal entries of which are either killing (0) or keeping (1) the related 

pixels [6]. 

1.3 Applications of Restoration  

Image restoration can be used to rectify a host of potential problems with images in 

different fields. While the majority of modern applications restrict themselves to 

dealing with data stored on storage mediums (such as magnetic tape) that have been 

processed a while after the image’s formation, technological advancements in the 

Degradation 
function 

 

Degraded   
image 

 

Noise n(x,y) 
 

h(x,y) 

g(x,y)  f (x,y) 

Figure 1.2: Degradation model 
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form of advanced hardware and speedy algorithms have increased the likelihood of 

real-time restoration. 

The restoration of the images returned from the Mariner spacecraft at the California 

Institute of Technology Jet Propulsion Laboratory in 1960 was one of the first 

instances of image restoration. The images suffered from geometric distortion, which 

was attributed to the vision onboard camera [7]. Digital restoration techniques were 

utilized to remove said distortion and the chosen algorithm found registration reseal 

marks and calculating a coordinate transformation, which the image was 

subsequently subjected to overtime. Restoration techniques have found use in the 

diverse areas of surveillance data (aircraft and satellite imagery), medicine (X rays, 

acoustic imagery), forensic science (smudged fingerprints), oil exploration (seismic 

signals), and even in music, as exemplified by Stockham’s use of holomorphic 

deconvolution in the restoration of Enrico Caruso’s recordings [8].  

1.4 Structure of Thesis 

This thesis is structured into 5 chapters. Following this introductory chapter, the 

second chapter presents a comprehensive review of the literature on Image 

Restoration using JSM. The third chapter outlines the proposed algorithm, data sets, 

and an evaluation of the proposed method. The fourth chapter presents and discusses 

the results of the experiments testing the proposed algorithm. The fifth and final 

chapter contains the conclusion and recommendations. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Image Restoration 

Image restoration is an essential key concern in image processing. The main aim is to 

recover an image from a distorted version such as blurred, painted and noise image. 

These basic restoration techniques will be introduced in the following sections.  

2.1.1 Image Deblurring 

The process of deblurring involves the removal of the blur, such as motion blur 

or defocus aberration, from images. The blur is usually modeled after 

the convolution of an (occasionally space/time-varying) Point Spread Function (PSF) 

related to a supposedly sharp input image, where the PSF and the intended sharp 

input image for recovery are unknown [9]. The degradation of the image is computed 

as: 

y = h ��x + w   (2.1) 

where in Eq. 2.1, the original image and the degraded image are represented by x and 

y respectively, the additive noise is represented by w (white Gaussian noise is taken); 

the blurring operator’s PSF by h, and * represents the mathematical operation of 

convolution and could alternatively be denoted by its spectral equivalence. Similarly, 

the following equation is the result of the application of DFT to Eq. 2.2:  

Y=H*X +W   (2.2) 
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where in Eq. 2.2, the Fourier Transforms of y, x, h and w are represented by their 

capital letters. However, due to the fact that the DFTs restoration filters are typically 

the result of spectral representation when properly executed, it is often the preferred 

choice. Conversely, noise explosion results from using the PSF of the blurring filter 

to divide the Fourier Transform [10]. 

The problem of deblurring an image is inherently challenging as the blurred image 

we observe only partly contains the solution, thus resulting in added constraints as 

there is an infinite number of images and blur kernels that can be combined to create 

in the observed blurred image. There are also numerous sharp images that, even 

when the blur kernel is known, could possibly match the observed blurred and noisy 

image following their convolution with the blur kernel. Figure 2.1 shows an image 

(a) with an added blur and its deblurred image (b) [10]. 

(a) Blurred image                                                    (b) Deblurred image 
Figure 2.1: Image deblurring 

 

2.1.1.1 Blurring  

Image blurring is caused by a number of different reasons, including optical 

aberration, atmospheric scatter, lens defocus, and temporal and spatial sensor 

integration. While it is also easily noticed by the human eye, the creation of a metric 
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for estimating the blur in images has proved to be a considerable challenge since 

relatively little is known about the relevant processing mechanism [11]. 

Uniform Blur  

Uniform blur is one method of removing specks and noise from an image and is used 

when the noise covers the image entirely [11]. The blurring of this kind usually 

moves either vertically or horizontally and can be circular with a radius R, calculated 

as:  

                                                    R= ! +f                                                            (2.3) 

where in Eq. 2.3, ! is the horizontal size blurring direction, f is the vertical blurring 

size direction, and R is the radius size of the circular average blurring. As in Figure 

2.2, shows the matrix of the uniform blur. 

                           "
#

1 1 1
1 1 1
1 1 1

 

 

Gaussian Blur  
The Gaussian blur effect is a filter, which is used to incrementally blend a specific 

number of pixels in the pattern of a bell shape. The resulting blurring is concentrated 

in the center; thus, it is less prevalent around the edges as shown in Figure 2.3. A 

Gaussian blur is applied to an image when the objective is maximum control over the 

level of blurring [12,13].  

Box blur (Uniform blur)       

              Figure 2.2: Matrix of uniform blur 
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         "
	"&

1 2 1
2 4 2
1 2 1

                   "

)*&

1 	4
4 16

			 6 4
24 16

				1
4

6 24
4 16

				36	 24
24 16

				6
4

1 	4							6			 	4 		1

 

   
 

Figure 2.3: 3x3 and 5x5 matrix representation of Gaussian blur 
                                

Motion Blur  

Another filter is the motion blur effect, which involves adding blur in a specific 

direction, such that it makes the image appear as though it is moving. Depending on   

the specific computer program used, the motion blur can either be controlled by pixel 

intensity, distance (0 to 255), or by direction or angle (–90 to +90 or 0 to 360 

degrees) [11,12]. As in Figure 2.4, shows the matrix of motion blur. 

"

	#

1 0 0
0 1 0
0 0 1

 

2.1.2 Image Inpainting  

The process of reconstructing parts of images and videos that have been lost or 

damaged is known as inpainting. In the world of museums, such a task would be left 

to the expertise of an experienced art restorer or conservator. In the digital world, 

however, the task of inpainting (image or video interpolation) is carried out using 

complex algorithms that substitute the image data’s corrupted parts (primarily minute 

defects or regions). As a technique for transforming a seemingly undetectable image 

form, inpainting is as old as art itself. It is used for a variety of reasons and in a 

similarly wide range of applications, including, but not limited to, the 

(a) Gaussian blur (3x3)   (b) Gaussian blur (5x5) 

Motion blur (3*3) 

Figure 2.4: Matrix of motion blur 
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replacement/removal of selected objects and the restoration of damaged paintings 

and photographs. Inpaining is geared towards the total reconstitution of the artifact in 

question in an effort to restore its unity and improve its legibility [14].  

How the gap is to be filled is determined using the global picture with the primary 

objective of restoring the image’s unity. The structure of neighboring gaps is 

intended to fade into the affected gap at the same time as contour lines at the 

boundaries are extended into the gap. The various regions in the gap’s interior, 

represented by the contour lines, are filled with colors corresponding to the 

boundaries and the smaller details are painted on to add texture.  

Structural Inpainting  

Structural inpainting utilizes a geometric approach to fill in the information missing 

from the intended inpainting region. The algorithms center on the consistency of the 

geometric structure.  

Textural Inpainting  

As with everything, the methods of structural inpainting have their advantages as 

well as disadvantages. The primary concern, however, is that they are not all capable 

of restoring texture. The reason for this is that a missing portion cannot be restored 

by simply extending the surrounding lines into the gap since texture has a repetitive 

pattern.  

Combined Structural and Textural Inpainting  

A combination of textural and structural inpainting techniques attempt to 

simultaneously texturally and structurally fill in the missing image data as many of 
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an image’s parts have both structure and texture. The boundaries separating the 

regions of an image accumulate a host of structural information in a complex fashion 

that results from the blending together of distinct textures. It is for this reason that 

innovative inpainting techniques represent an attempt at combining textural and 

structural inpainting, Figure 2.5 below illustrates the removal of an image inpainting 

[15]. 

 
(a) Painted image                                            (b) Restored image 

Figure 2.5: Image textural inpainting  

2.1.3 Image Noise  

Image noise refers to random variations in the color information or brightness in 

images; it is typically a feature of electronic noise. While image noise is usually 

created by the sensor and circuitry of a digital camera or scanner, it can similarly 

occur in film grains and the inevitable shot noise of a model photon detector. Image 

noise remains an unintended consequence of capturing images and involves the 

addition of bogus, inessential information to the image(s) in question [16]. 

2.1.3.1 Impulsive Noise 

Impulsive noise is made up of a series of short pulsating “on/off” noise; it is caused 

by a number of sources, including a communication system’s opposing channel 

environments, switching noise, surface degradation or dropouts in audio recordings, 

computer keyboard clicks, amongst others [16]. 
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Consequently, an impulsive noise filter is used to enhance the intelligibility and 

quality of noisy signals, and to improve the strength of adaptive control systems and 

pattern recognition. Median filters are the conventional impulsive noise removal 

method; however, they usually cause a degradation of the original signal [17]. 

Salt and Pepper Noise 

“Salt” and “pepper” noise results when corrupted pixels adopt either the minimum 

value of 0 or the maximum value of 255 as this results in black and white spots in the 

image. It is necessary to note that such noise, in whatever form it manifests, is first 

removed from the image before it undergoes any further processing [18]. “Salt” and 

“pepper” noise, also known as intensity spikes, is a type of impulsive noise. It is 

typically the result of analog-to-digital converter errors, dead pixels, errors in data 

transmission, faulty memory locations, pixel element malfunctions in the sensors of 

the camera, or digitization process timing errors. As can clearly be seen from Figure 

2.6, the probabilities are taken between the minimum (./) and maximum (.0). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6: PDF for salt and pepper noise model 

Gray level 

Probability 

 
.0 

 
./ 

b a 
Salt & pepper noise 
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.(!) = 					
					./										456				! = 7	 	Pepper
.0											456					! = <	 	Salt

       

                                                       0                            otherwise                            (2.4) 

where in Eq. 2.4, .(!) is distribution of salt and pepper noise in the image, a and b 

denotes level of gray. So if b > a, gray level b will appear as a light dot in the image 

and level a will appear like a dark dot. If either ./ and .0 are zero, the impulse noise 

is called unipolar noise. Then if neither ./ and .0 are zero and if they are 

approximately equal the impulse noise called “salt and pepper”. The typical intensity 

values are 0 for “pepper” noise and 255 for “salt” noise in an 8-bit image. Figure 2.7 

below provides an illustration of “salt” and “pepper” noise [19]. 

 
                 (a) Noisy Image                                              (b) Restored Image 

Figure 2.7: Removal of salt and pepper noise 

2.2 Image Enhancement 

The process of enhancing an image includes some variety of techniques aimed at 

either improving an image’s visual form or converting it to an entirely different from 

where it can easily be analyzed by humans and machines alike. The image 

enhancement process involves improving the quality of the image even without 

knowing how it came to be degraded. It is a procedure used to improve how easily 

the image can be perceived or interpreted by its human viewers [20]. It is also aimed 
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at making the quality of the resulting image superior to the original, especially in 

relation to its intended purpose as the quality of a resulting image might be reduced, 

relative to the original, when it is converted from one form to another through 

transmission, scanning, imaging, and other similar processes [21].  

2.2.1 Spatial Domain Techniques  

The pixels of an image are handled individually using spatial domain techniques. 

These techniques – such as histogram equalization, logarithmic transforms, and 

power law transforms – enhance images by directly and systematically altering the 

values of their pixels. They are also suitable for improving the overall contrast of the 

image as they allow the gray values of single pixels to be altered accordingly. 

Despite their individual effect on the image’s pixels, they improve the overall quality 

of the image, which can sometimes lead to unintended results [22]. 

 Log Transformation Technique  

One of the simpler spatial domain image enhancement techniques is log 

transformation. It is used primarily to improve the contrast of darker images. 

Essentially a grey level transform, the technique involves altering the grey levels in 

the pixels of the image. The transformation process used involves generating a 

broader range of low grey output level values from an initial, narrower, range of 

values [20]. The log transformation technique, in its general form, is presented 

mathematically using the following formula: 

S=c log(1+r)   (2.5) 

where in Eq. 2.5, c is an arbitrary positive constant, r and s are the intensities of the 

original and transformed images, respectively, with intensity profile 0 through 255.  
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Power Law Transformation Technique  
Another widely used grey level transformation technique, power law transformation 

shares a number of conceptual similarities with frequency-domain-based alpha 

rooting to the extent that it involves increasing the input grey level by a particular 

numeric power [23]. It is also operationally similar to log transforms since power law 

transforms having γ fractional values are mapped into a limited variety of output 

levels, thus resulting in increased contrast. It is mathematically represented as 

follows:  

                                                           A = <6B (2.6) 

where in Eq. 2.6, b and γ are the arbitrary positive constants, r and S are the 

intensities of the original and transformed images.  

2.2.2 Transform Domain Techniques 

Frequency domain or transformation techniques – rather than affect the image 

directly – alter the orthogonal transform of the image instead. As such, they are more 

fitting for image processing with a focus on the frequency content of the image in 

question. As a method of image enhancement, frequency domain techniques are 

based on computing a discrete, unitary, 2-D transform of the image; for example, 

implementing an inverse transform after the transform coefficients have been altered 

using the operator M in the case of the 2-D DFT. Two components: the magnitude 

and phase, are used for the orthogonal transform. While phase allows for the return 

of the image to the spatial domain, magnitude is comprised of the image’s frequency 

content. A conventional transform domain allows for the manipulation of the image’s 

frequency content, thus permitting the enhancement of high-frequency content (e.g. 

edges) and other subtle elements [23].  
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2.2.3 Discrete Fourier Transform (DFT) 

The Discrete Fourier Transform (DFT) is used in mathematics to convert a fixed 

series of equidistant samples in a function to complex-valued frequency function in 

the form of a series of equidistant samples of the discrete-time Fourier transform 

(DTFT) having the same length. The DTFT is sampled at an interval equal to the 

length of the input sequence. A reverse DFT is a Fourier series that utilizes DTFT 

samples as the coefficients of complex sinusoids and the DTFT frequencies to which 

they correspond. It also uses sample-values identical to those found in the input 

sequence, making it a representation of the latter in the frequency domain. The DTFT 

of the input sequence is continuous (as well as periodic) if the sequence spans every 

possible non-zero value of a function, while the DFT provides a discrete sample of 

one cycle. Conversely, the DFT of a once-cycle sequence produces the none-zero 

values of the DTFT cycle [27].  

 

As the foremost type of discreet transform, the DFT is used to conduct Fourier 

analysis in a variety of contexts. Function samples can take the form of pixel values 

in a row or column of a raster image as in image processing. They can also take the 

form of a time-variable signal or quantity like a radio signal, sound wave pressure, or 

daily temperature readings over regular intervals, as they do in digital signal 

processing. The DFT can further be used to solve partial differential equations and a 

variety of other operations like the multiplication of large integers and convolutions 

efficiently [25]. 

 

The DFT is easily executed on computers through either dedicated hardware or 

numerical algorithms due to its use of a limited amount of data. Such computer-
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based implementations typically utilize fast Fourier transform (FFT) algorithms. In 

fact, this is so often the case that the terms “DFT” and “FFT” are used 

synonymously. Previously, however, “FFT” was used to refer to the more ambiguous 

expression (finite Fourier transform) [28].  

Fast Fourier Transform (FFT)  

Both the DFT and IDFT are computed using a FFT algorithm. The algorithmic 

analysis transforms a signal received in its original form (typically space or time) 

into its corresponding frequency representation and vice-versa. It does so and rapidly 

compute the transformations by factoring the DFT matrix into a collection of sparse 

(primarily 0) factors [28]. 

Of particular importance where frequency (spectrum) analysis is concerned, the DFT 

produces a discrete frequency representation from a discrete time-based signal. 

Calculating the Fourier transform using either a DSP-based system or a 

microprocessor would be nearly impossible in the absence of a transform that 

produces a discrete-frequency signal from a discrete-time signal.  

The computing process in initial DFT methods was exceedingly time-consuming. 

Consequently, FFT emerged as a way to reduce the computing time, making it 

possible to surmise that FFT is simply the algorithmic computation of DFT in a 

manner such that it shortens the computational stage(s). 

2.3 Convolution Method 

Convolution can be described as the method of blurring out colors into the missing 

areas in an image. Mathematically identical, both repeated blurring and diffusion are 
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founded on the notion of isotropic diffusion. The colors of each pixel in a blurry 

image are averaged with a small section of the colors in surrounding pixels.  

The primary aim of convolution is to form some kind of kernel (an N by N matrix) 

that is repetitively convolved over the image and fills in the necessary pixels on the 

basis of the values of their surrounding pixels. The manner in which the colors are 

spread into the corrupted space(s) from the surrounding areas is determined by 

values in the matrix. The process of spreading the colors is repeated as many times as 

necessary until the entire image has been restored to its original form. Additionally, 

this method is particularly advantageous as it involves only repeated multiplication 

[29]. 

The following example shows how to compute the 2-D discrete convolution of two 

input matrices. Figure 2.8 shows the first input matrix (I1) representing an image and 

is denoted as: 

I1 = [17  24   1   8  15 

         23   5   7  14  16 
          4   6  13  20  22 

         10  12  19  21   3 
         11  18  25   2   9] 

 
Figure 2.9 shows the second input matrix (I2) representing another image and is 

denoted as:  

           Figure 2.8: First matrix (I1) 
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I2 = [8   1   6 
         3   5   7 

         4   9   2] 

The matrixes given above in Figure 2.8 and Figure 2.9 shows the process by which 

the (1,1) output element (zero-based indexing) can be produced using these steps: 
1. Rotate the second input matrix, I2, 180 degrees around the element at its center. 

2. Reposition the element at the center of I2 such that it lies on top of the (0,0) 

element in I1. 

3. Multiply each element of the rotated I2 matrix using the I1 element below. 

4. Add up the individual products gotten in the above third step. 

Thus, the (1,1) output element is calculated as: 

0*2+0*9+0*4+0*7+17*5+24*3+3+0*6+23*1+5*8= 220, this calculating (1,1) 

output of Convolution show in the Figure 2.10 [30].  

 

 
Figure 2.10: Convolution method 

2.3.1 Blind Deconvolution Algorithm Technique  

The blind deconvolution algorithm is particularly useful when no other information 

is known about the distortion (noise and blurring). It is used to simultaneously 

Values of rotated I2 matrix 

Alignment of center 
element of I2 

Image pixel 
values 

Alignment of 
I2 matrix 

Figure 2.9: Second matrix (I2) 
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refurbish the image and the PSF. Each iteration uses the speed-up, restrained 

Richardson Lucy algorithm. The characteristics of optical systems, such as cameras, 

double as supplementary input parameters with the advantage of improving the 

quality of the resulting post-restoration image. The constraints of PSF could be 

conveyed using a function specified by the user. The blind deblurring method is 

mathematically denoted as: 

g(x, y) =PSF * f(x,y) + η(x,y) (2.7) 

where in Eq. 2.7, the observed image is represented by g (x, y), the constructed image 

by f (x,y), and the additive noise term by η (x,y) [29,31].  

Two kinds of devolution methods exist, maximum likelihood restoration and 

projection-based blind devolution. The latter involves the simultaneous restoration of 

the true image, as well as the PSF. The resulting process begins, first, by making 

projections of the PSF and the true image, in that order, and is cylindrical. The 

process is repeated severally until a specific previously-determined convergence 

condition has been met. In addition to its insensitivity to noise, one other benefit of 

this particular process is that it seems to be consistent even in the face of support-size 

inaccuracies. Conversely, it is problematic in that it is hardly unique and has been 

known to result in local minima-associated errors [29].  

The second approach (maximum likelihood restoration) involves the approximation 

of the maximum likelihood of the covariance matrices and PSF. Other factors, such 

as symmetry and size also need to be taken into account since the resulting PSF 

estimate is not unique. The approach is advantageous in that it involves a minimal 

level of computational complexity and also allows for the discovery of the noise, 

blur, and power spectra of the true image [32].  
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2.4 Joint Statistical Modeling (JSM)  
A holistic approach to nonlocal self-similarity and local smoothness makes it 

possible to define a unique JSM via the combination of Nonlocal Statistical 

Modeling (NLSM) at the block level in the transform domain and Local Statistical 

Modeling (LSM) for smoothness in the space domain at the pixel level. This 

combination is mathematically expressed as Eq. 2.8, [6]. 

																																				CDEF(G) = H. CDEF(G) + J	.	 CKDEF(G)    (2.8) 

As such, the trade-off between two competing statistical terms in Eq. 2.8 is 

controlled by the regularization parameters τ and λ. NLSM corresponds to the 

nonlocal self-similarity above and maintains image nonlocal consistency, effectually 

retaining the sharpness and edges. LSM on the other hand corresponds to the local 

smoothness above and maintains image local consistency, effectively suppressing 

noise. Figure 2.11 provides an illustration of the image restoration process as carried 

out using the JSM [6]. 

                                              
                    (a)                                        (b)                                                    (c)              
Figure 2.11: Illustrations for (a) Natural images (c) Local smoothness, (b) Nonlocal 

self-similarity.  

												CLEF(G) = H. CDEF(G) + J	.	 CKDEF(G) = H. MG " + λ . ⊝G " (2.9) 
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In Eq. 2.9 τ and λ are regularization parameters, above, JSM denotes both the 

nonlocal self-similarity (⊝G) and local smoothness (MG) of natural images, while 

also combining the benefits of both. Consequently, the Split Bergman Iterative (SPI)s 

developed to make JSM tractable and robust, and to resolve any problems that may 

arise when effectively optimizing JSM as a regularization term. The implementation 

of the JSM regularization term and proof of convergence are detailed in the next 

chapter. Furthermore, the results of extensive experiments also attest to the validity 

of JSM [6]. 

Figure 2.12 (a) is the degraded image of House with 20% of the original sample, i.e., 

Ratio=20%. As the iteration number k increases, it is evident that the quality of the 

restoration image also increases as can be seen in Figure 2.12 (b)-(e) [6].  

 
(a) k=0                 (b) k=60            (c) k=120             (d) k=210              (e) k=300 

Figure 2.12: Image restoration process for different values of k 

2.4.1 Local Statistical Modeling (LSM) 
The closeness of neighboring pixels in an image’s two-dimensional space domain is 

described as local smoothness, which also implies that neighboring pixels share 

similar intensities. Although many models can be used to aid the characterizing 

image smoothness, a mathematical formulation of LSM for 2D space domain 

smoothness is used for present purposes. Figure 2.13 shows illustrations of local 

statistical modeling for smoothness in a space domain at the pixel level: (a) Gradient 
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picture in the horizontal direction of image Lena; (b) Distribution of horizontal 

gradient picture of Lena [33]. 

                                   
(a)                                                            (b)                                                           

Figure 2.13: Illustrations for LSM 

The horizontal and vertical finite difference operators respectively represented 

as	MO = 1					 − 1  and MQ = 	 1					 − 1 R, are the most commonly used filters. The 

gradient picture in the horizontal direction of the image Lena and its corresponding 

histogram are shown in Figure 2.13 above. Figure 2.13 also reveals a very narrow 

distribution of pixel values, which is mostly close to zero. The statistics of both 

filters mentioned above are modeled using a Generalized Gaussian Distribution 

(GGD) [34], which is denoted as: 

																																	STTU V = 	
W. X(Y)

2. Z(1 W)
.
1

[\
]^ 	_ ` . \ /bc

d 
  (2.10) 

where X Y = Z(3 Y)Z(1 Y)  and  Z e = ]^fgh^"
i

j
 du are a gamma function, 

the standard deviation is represented by [\	and v is the shape parameter. If v=2, then 

the distribution STTU V  is a Gaussian distribution function, if v =1, it is a Laplacian 

distribution function, and lastly, it is a hyper-Laplacian distribution if 0<v <1 (see 

[35] for a more intricate discussion on the values of v). 
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The Laplacian distribution was chosen to model the marginal distribution of 

gradients in natural images as part of a trade-off between accurate image statistics 

modeling and the efficient solution of the optimization problem. As such, we take D       

= [M`; MO] and v = 1 in Eq. 2.11 to calculate LSM at the pixel level in the space 

domain. The conforming regularization term CDEF

 

is expressed as: 

																													CDEF(G) = MG " = 	 M`G " +	 MOG "                                (2.11) 

2.4.2 Nonlocal Statistical Modeling (NLSM) 

Local smoothness is an important consideration when it comes to natural images. 

Also important is nonlocal self-similarity, which represents the textural and structural 

uniformity of natural images in a nonlocal area and can be used for effectively 

maintaining sharpness and edges to keep the nonlocal image consistent. The 

traditional nonlocal regularization terms covered in the first section, however, use a 

weighted approach when characterizing self-similarity through the introduction of a 

nonlocal graph that trails the level of similarity between the blocks. This approach is 

infamous for its inability to recover more accurate structures and finer image 

textures. 

Recent attempts at transforming a 3D array of similar patches and decreasing their 

coefficients have led to commendable results in the areas of the image and video 

denoising [36,37]. 

The 3D array generated by stacking identical image patches needs to be transformed 

to determine the transform coefficients’ distribution. This distribution, in turn, is 

used to mathematically represent natural images’ nonlocal self-similarity. As such, 

this model is termed NLSM for 3D transform-based self-similarity. 
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In a 3D transform domain, the NLSM for self-similarity is mathematically denoted 

as:  

																							CKDEF(G) = ⊖f " = mnU(ofp) "
q
rs"   (2.12) 

The convexity of NLSM in Eq. 2.12 can be technically justified as follows: to make 

it clear, define trnUas the matrix operator that extracts the 3D array ofp from g, i.e., 

ofp = trnU	g. Then, define vrnU = mnUtrnU, which is a linear operator. It is important 

to observe that mnU(ofp) "
= 	vrnU	g "

is convex with respect to	g. Since the sum 

of convex functions is also convex, Eq. 2.12 is convex as to g. 

The main benefit offered by NLSM is that it exploits the self-similarities of image 

blocks that are globally positioned in a more statistically efficient manner in the 3D 

transform domain, as opposed to nonlocal regularization-incorporated graphs [38]. 

2.12 Related Works 

The Nonparametric Bayesian methods proposed by Mingyuan et. al. [39] are used to 

recover images based on their specific incomplete, noisy, and/or compressive 

measurements. By way of an abridged Beta-Bernoulli process, they suggest an 

appropriate dictionary for the image under recovery and the corresponding data being 

tested. The use of these learned dictionaries has resulted in significant advancements 

in image recovery where compressive sensing is concerned, relative to the use of 

standard orthonormal image expansions. Furthermore, just as projections for the 

compressive measurement are specifically adjusted for the learned dictionary, so also 

are basic (incomplete) measurements determined using a subset of randomly-selected 

uniform image pixels. Dirichlet and probit stick-breaking processes are used to 

exploit the existing spatial interrelationships within imagery, for which numerous 

examples and comparisons can be found in the literature. 
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The method proposed by Elad et. al. [40] presents a new algorithm for inpainting that 

fills in overlapping texture holes and the image layers of cartoons. The algorithm was 

directly adapted from Morphological Component Analysis (MCA), which is a new 

method of sparse, representation-based image decomposition intended for the 

separation of cartoon layers and combined linear texture in an image [40], redundant 

multiscale transforms, and their application for morphological component analysis. 

The method involves the natural fitting of missing pixels into the framework of 

separation, thus resulting in separate layers (as a by-product of the inpainting 

process). The method considers hole-filling, separation, and denoising to be a single, 

unified task in contrast to that proposed by Bertalmio et al [40], which takes the 

decomposition and filling stages as two separate tasks in a wider system. 

Hiroyuki et. al.’s [41] method is a generalization of the tools and results used in the 

fields of image reconstruction and processing. The generalization is done in 

reference to the non-parametric statistics field. More specifically, the ideas 

underlying kernel regression is adapted and expanded for use in upscaling, fusion, 

interpolation, and denoising, amongst others. In an effort to illustrate how several 

existing algorithms like the popular bilateral filter are simply special cases of their 

proposed framework, the authors drew parallels between other existing methods and 

theirs while also providing practical illustrations of the resulting algorithms and 

analyses. 

The method outlined by Yan Ran et.al. [42] was intended to rectify the problem of 

restoring images that had been subject to impulse and Gaussian noise. While 

conventional solutions for these kinds of noise are geared towards the minimization 

of an objective functional with a ℓ1 fidelity term and a MumfordShah regularizer, the 
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proposed algorithm aimed to minimize an entirely new objective functional, which 

has a content-dependent fidelity term that incorporates ℓ1 and ℓ2 norm-measured 

fidelity terms. The functional’s regularizer is a product of the ℓ1 norm of the 

underlying image’s constricted framelet coefficients. The filters of these coefficients 

are used in extracting images’ geometric features. An Iterative Framelet-Based 

Sparsity Approximation Deblurring Algorithm (IFASDA), who are automatically 

determined parameters adaptively vary at each iteration, is then proposed for the 

functional. As such, IFASDA can be considered to be a parameter-free algorithm, 

making it a more realistic and appealing choice. Its efficacy can be seen in how it 

handles the deblurring of images corrupted by impulse and Gaussian noise, in 

addition to enhancements in visual quality and PSNR relative to other existing 

methods. Additionally, an alternative accelerated from IFASDA, fast-IFASDA, was 

also developed. 

The method proposed by Yu Xiao et. al. [43] is geared towards restoring images 

corrupted by both Gaussian and impulse noise. It presents an approach whereby the 

relevant terms are respectively used for impulse denoising and partial representation 

in an undetermined image patch dictionary. The algorithm itself is comprised of three 

phases: in the first, the outlier candidates most susceptible to corruption by impulse 

noise are identified; the second involves the recovery of the image by way of 

dictionary learning on the free-outlier pixels; the third and final stage involves the 

use of an alternating minimization algorithm to find a solution to the proposed 

minimization energy function, resulting in an improved restoration based on the 

image recovered in the second phase. Results show that the proposed method fared 

better relative to other alternatives. 
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Lastly, Stefan et. al.’s [44] method establishes a framework for the development of 

nonspecific expressive image priors that describe the characteristics of natural scenes 

such that they can be applied in various machine-vision tasks. The method provides a 

practical way of studying the high-order Markov Random Field (MRF) models with 

possible functions covering a large area of pixels. The clique potentials are shaped 

using a Product-of-Experts framework, which itself uses the non-linear functions of 

numerous linear filter responses. Training data is used to map the values of all 

parameters – linear filters inclusive – in contrast to earlier MRF approaches. The 

proficiency of this Field-of-Experts model is confirmed by its potential application 

for both image inpainting and image denoising through a basic, imprecise inference 

scheme. The results that were obtained through this method are on such a level that 

they can compete with specialized techniques, even though the model itself was 

developed using a nonspecific image database that is not intended for specialized 

usage. 
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Chapter 3 

JSM WITH NON-LINEAR FILTER 

This chapter outlines an algorithm for use in image restoration based on the 

derivations provided in the previous chapters. All of the issues encountered when 

dealing with the three sub-problems outlined earlier (as seen in Section Appendix 

B.1) have been resolved in an efficient manner. In the first, several experiments are 

conducted in order to discover the best values for image restoration in the JSM 

algorithm. In the second, the method involves the addition of a Switching Median 

Filter (SMF) to the JSM and a Median Filter (MF) at the end of every iteration in the 

restoration process. In simple terms, the algorithm is essentially a hybrid denoising 

method that uses an improved SMF. The restoration of images is an important aspect 

of image processing that involves estimating a high-quality version of a given image 

of a considerably lower quality due to a lower resolution and the presence of noise. 

The main purpose served by the SMF here is to compare the given pixel values and 

the differences between the median values of pixels in the filtering 

window. Extensive experiments on image inpainting, image deblurring and mixed 

Gaussian plus “salt” and “pepper” noise removal applications validate the 

effectiveness of the proposed algorithm based on JSM. 

3.1 Joint Statistical Modeling (JSM) 

In addition to a previous mention in Section 2.4, further formulations of JSM can be 

found in Appendix B. So the Split Bergman Method can be found in Appendix A. 
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3.1.1 Image Inpainting 

If we take Eq. B.1 (see Appendix B for u sub-problem) as a minimization problem of 

a strictly convex quadratic function, there is actually a closed form for u, which is 

written as: 

u = ( wR	H +	xy  )^". z,         (3.1) 

where q = wR	{ + 	x1(| + <) + 	x2	 } + ~	 , y	is an identity matrix, and 	x = 	x1 +

x2. Eq. 3.1 can be efficiently calculated for problems related to image inpainting and 

image deblurring. In regard to image inpainting, because the sub-sampling matrix H 

is in fact a binary matrix that can be generated using the subset of an identity matrix’s 

rows, H satisfies wR	H = I. The application of the Sherman-Morrison-Woodbury 

(SMW) matrix inversion formula to Eq. 3.1 results in the following formulation: 

g	 = 	
"

	�
(y–

"

"Å	�
wR	w	). q  (3.2) 

Therefore, to efficiently calculate for u in Eq. 3.2 without calculating the matrix 

inverse in Eq. 3.1. Since		wR	w	is equal to an identity matrix with a particular number 

of 0’s in its diagonal, these 0’s correspond to the locations of the pixels that are 

missing. As such, the cost associated with Eq. 3.2 is entirely equal to O(N).   

Image inpainting is done by following steps: 

Ø First, read the damaged image and the mask (text image) to fill it. 

Ø Clear damaged area by killing or keeping the pixels by replacing it with either 

0 or 1, respectively.  

3.1.2 Salt-and-Pepper 

Noise removal using a mixture of Gaussian and “salt” and “pepper” noise removal is 

considered to be a unique case of image inpainting, which is discussed in detail in the 

next section.  
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3.1.3 Image Deblurring 

In regards to image deblurring, H represents a circular convolution. This convolution 

is factorized as:  

H =É^"DU,  (3.3) 

where the 2D, DFT is denoted by the matrix U, which has the inverse É^", and H, 

which represents the convolution operator, has its DFT coefficient contained in the 

diagonal matrix D. As such: 

	(wR	H	+xy		)^"	=	(É^"	Ö∗	DU	+xÉ^"		U	)^"=	É^"	(|Ö|) + xy)^"	U	, (3.4) 

where (∙)∗ denotes a complex conjugate and |Ö|) is the squared absolute values of 

entries in the diagonal matrix D. Due to the fact that |Ö|) + xy	 is a diagonal, the cost 

of its inversion is O(N); in practice, the products of É^"	and U can be implemented 

with O(NlogN) using the FFT algorithm.  

Algorithm 1. Image Deblurring 

Step 1: We take the original image as the input image. 
Step 2: Original image is then convoluted with PSF 
Step 3: Apply Inverse FFT. 
Step 4: Convoluted output is added with motion blur, uniform blur and Gaussian blur 
Step 5: Apply either motion blur, uniform blur or Gaussian blur to get the blurred 
image. 
Step 6: The output of the blurry image is then de-convoluted by JSM. 
Step 7: After de-convolution, we get the deblurred image. 

Algorithm 2s a description of JSM after adding a MF at the end of every iteration in 

the restoration process. 
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Algorithm 2 a complete description of proposed method using JSM 
Input: y (observed image) and H (linear matrix operator) 
Initialization: ã = 0, g(j) = å, <(j) = ~(j) = ç(j) = é(j) = 0, H, J, x1, x2; 
Repeat 
Compute g(êÅ")<{	ëz. 3.4 	56	ëz. (3.2); 
S(ê) = 	g(êÅ") −	< ê ; 	å =

í

�"
; 

Compute ç(êÅ")	<{	ìyAmî; 
ï(êÅ") = 	g(êÅ") − ~ êÅ" ; 7 =

ñ

�)
; 

Compute }(êÅ") = <{	ëz. ó. 3 ; 
<(êÅ") = <(ê) − g êÅ" −ç êÅ" ; 
~ êÅ" = ~(ê) − g êÅ" − } êÅ" ; 
ò(ê) = ò]ôö7õ g êÅ"  
Until the highest possible iteration number has been reached.  
Output: g (the restored image) 

Figure 3.1 shows a flow diagram of JSM where it can be seen that the input image is 

subjected to three types of noise:  

(I) Blurred image. 

(II) Inpainted image by text.  

(III) Mixed Gaussian noise pulse “salt” and “pepper” noise. 

A series of experiments (the output images) on blur removal and inpainting removal, 

and noise removal.    
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(III) 
 

 
 
 
 

 
 
 
 

 
 
 

 
   (I) 

 
                    

                       
Figure 3.1: Flow Diagram of different images reconstruction process using JSM 

3.2 Non-Linear Filtering  

The primary purpose of a nonlinear filter is the location and removal of data 

considered to be noise. It is nonlinear because it individually evaluates data points to 

determine whether or not they are noise. Noisy data points are subsequently removed 

and replaced with an estimate derived from neighboring data points, while non-noisy 

data points are left unmodified. Linear filters, such as those used in high, low, and 

bandpasses, do not have the capacity to differentiate noise and thus modify all data 

points. Nonlinear filters also find occasional use in ridding data of brief wavelengths 
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with high amplitude features. Filters of this sort are known as noise spike-rejection 

filters and are also useful for the removal of the geological features of short 

wavelengths. The process of image restoration involves the estimation of a clean, 

original image from a noisy/corrupted image; the image corruption may manifest in a 

number of ways, such as motion blur noise [19]. 

3.2.1 Median Filtering(MF) 

One type of non-linear filtering is MF. This technique is renowned for its ability to 

preserve sharp edges while simultaneously removing impulsive types of noise. As an 

order statistics filter, it does not involve the replacement of pixel values with the 

average of the surrounding values, but with their median instead. This median is 

calculated by numerically sorting the values of the neighboring pixel and then 

replacing the noisy pixel with the middle value [53]. As Figure 3.2, shows the 

technique of an MF, (a) degraded image, (b) a matrix (3x3) which we selected from 

the degraded image. Then we convert all the 3x3 matrix elements into single row 

matrix ordering from smallest to highest as shown in part (c). The black color 

represents pepper noise while the white color represents salt noise. The other colors 

are pixels` between salt and pepper. In (c) we find median by calculating numerically 

and sorting the values of the neighboring pixels from black color to white color in the 

array and the replacing the noisy pixel with the middle value. 
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3.2.1.1 Switching Median Filter(SMF)  

The SMF is characterized by a comparison of the difference between the median 

pixel value in the filtering window and the present value with a predetermined 

threshold in an attempt at determining whether or not an impulse is present. Only 

pixels found to have been subject to impulse noise are subsequently filtered. This 
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Figure 3.2: Technique of MF 
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method finds its basis in two schemes: a switching scheme, whereby only a fraction 

of pixels is filtered due to the use of an impulse detection scheme; and progressive 

methods, where a number of iterations are subject to both noise filtering and impulse 

detection. The method is primarily advantageous in that it can lead to better 

restoration results (particularly in extremely corrupted images) by properly detecting 

and filtering impulse pixels contained in large blotches of noise [52]. 

The main purpose of the SMF is to observe each and every pixel from the beginning 

till the end. The process begins with the classification of pixels into either of 3 

categories: low-intensity, medium-intensity, and high-intensity pixels. In a 3x3 

window, the pixels adjacent to the center pixel are evaluated. If the center pixel is 

outside the range of medium-intensity, then all the pixels are taken to be corrupt. 

Accurate boundary values are intrinsic to the determination of an accurate range of 

intensity. All the pixels in the noisy image undergo the same process to determine 

whether or not they are corrupted. This process involves the formation of a two-

dimensional map with values 0 (uncorrupted pixel) and 1(corrupted pixel). To do 

this, two boundaries – B1 and B2 – are determined for each pixel being processed. 

The pixel is considered to be low-intensity when 0 < X (i, j) < B1 medium-intensity 

when B1 < X (i, j) < B2 and high-intensity when B2 < X (i, j) < 255. There are two 

iterations contained in the algorithm; the first involves determining, by increasing the 

size of the window, whether or not an uncorrupted pixel is present and if none is 

found, the next iteration can be omitted. 

Consider the following matrix below as an example (see Algorithm 3): 
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The steps necessary in determining whether or not impulse noise is present in an 

M×N sized image with an 8-bit gray-scale pixel resolution are outlined in Figure 3.3: 

Step 1) As shown in the image below, a 3x3 two-dimensional filtering window is 

first superimposed on a contaminated image.  

161 162 159 163 63 

167 255    0 255 255 

164 255 255 255 255 

165 0 255 255 255 

166 255 159 255 167 

Figure 3.3 Matrix (5*5) 

Step2) The pixels within the window are then numerically arranged. 
0 159 162 163 255 255 255 255 255 

Step 3) Here, we determine the minimum, maximum, and median values in the 

window. In the example above, these are 0, 255 and 255. 

Step 4) Central pixels with a value between the maximum and minimum are 

considered to be uncorrupted and are left unmodified. In cases where the pixel is not 

between the maximum and minimum values, the relevant pixel is considered to be 

corrupted such as in the present example where the central pixel 255 is also the 

maximum. 

Step 5) Here, the median value in the window is used in replacing the corrupted 

central pixel provided the median itself is not an impulse. If it is an impulse, then the 

immediate top neighboring pixel îr^",ú  is used to replace the central pixel in the 
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filtering window. The present example is an instance of an impulse median and so 

the pixel is replaced by the top value: 159.  

161 162 159 163 63 

167 255 159 255 255 

164 255 255 255 255 

165 0 255 255 255 

166 255 159 255 167 

Figure 3.4: Matrix (5*5) 

Figure 3.4 shows how the window is subsequently relocated to cover a new 

collection of pixel values for which the relevant pixel is in the center. This process is 

repeated until all of the image’s pixels have been processed. The following 

conditions forms the basis for the detection and filtering of impulse noise:  

Algorithm 3. Switching Median Filter 

if		îùrq <îr,ú < îù/ü 
{îr,ú	ö†	7	õ5ö†]°]††	¢ö}]°; no filtering is performed on îr,ú	} 

else 
{îr,ú	ö†	7	õ5ö†{	¢ö}]°; determine the median value} 
if median ≠ 0	7õô	•]ôö7õ	 ≠ 255 

{Median filter is performed on îr,ú	} 
îr,ú	 = îùß® 

else 
{Median itself is noisy} 

îr,ú	 = îr^",ú 
end; 

end; 
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where in algorithm 3, îr,ú		is the intensity of central pixel inside the filtering window, 

îùrq	, îù/ü	and	îùß®	are the minimum, maximum and median pixel value in 

filtering window of the noisy image. îr^",ú is the intensity of the already processed 

immediate top neighboring pixel. 

 

In processing the border pixels, the initial and final columns get duplicated, 

respectively, at the front and back of the image matrix. In a similar manner, the 

initial and final rows are also duplicated at the topmost and bottommost parts of the 

image matrix. The processing of the pixels in the first row uses the algorithm 

outlined above, except for Step 5 – an impulse median value is to be replaced by the 

nearest untouched neighboring pixel in the filtering window. 

Figure 3.5 shows a flowchart for the SMF. The steps involved in using a SMF are as 

follows: 

Step-1: In a large window with x (i, j) at its center, the current pixel in the 

image should be the center pixel. 

Step-2: The pixels are numerically arranged and stored in an array A. The 

median is then determined and the result is stored in M. 

            Step-3: For every pair of adjacent pixels within the array A, the intensity 

difference is calculated and the result is stored in the difference vector Ad.  

            Step-4: Find the pixels from Ad that corresponds to the maximum differences 

in the intervals of [0, M] and [M, 255]. Set these pixel’s intensities as the decision 

boundaries B1 and B2 respectively.  
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            Step-5: If the processing pixel belongs to the middle cluster then it is 

classified as uncorrupted and the process stops. Otherwise, it must go for the second 

iteration, which will be invoked as follows.  

Step-6: Steps 2-4 are repeated in an imposed 3x3 window centered on the 

relevant pixel. 

Step-7: The current pixel is uncorrupted if it belongs to the middle cluster 

and is corrupted otherwise. 

            Step-8: Based on this algorithm we are updating the detection map. If the 

processing pixel is uncorrupted the detection map is updated with “0” otherwise 

detection map is updated with “1”.  

          Step-9: Here, we arrive at the restored Image. 
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Figure 3.5: Flowchart of SMF 
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Figure 3.6 shows the block diagram for JSM with a MF. The proposed method is a 

variation of JSM with the addition of a SMF and a MF at the end of every iteration in 

the restoration process. 

 
 
 
 

                         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             Figure 3.6: Block diagram for the JSM with MF 

3.3 Mean Squared Error (MSE)  

MSE is an error measurement technique; it is used for a pixel-by-pixel computation 

of the mean square error of the test image in comparison to the original [54] and is 

usually mathematically written as: 

                             MSE = "
FK

[f }, { − g(}, {)])K^1
Øsj

F^1
\sj   (3.5) 

 

Input Degraded Image 

SMF with 
JSM for deblurring, inpainting and “salt” and “pepper” 

MF 

Output Image 
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where g(x,y) and f(x,y) are the distorted and reference images of pixels with a size 

MxN, respectively. This metric is advantageous in that it is simple; it does, however, 

correlate poorly with subjective results. 

3.3.1 Peak Signal to Noise Ratio (PSNR)  

This method similarly involves a pixel-by-pixel comparison of the reference and 

distorted images and is mathematically written as [54]: 

                       PSNR=10log (	 ()∞^")±

≤
≥¥

[µ ü,∂ ^∑(ü,∂)]±¥∏≤
π∫ª

≥∏≤
c∫ª 	

) (3.6) 

Eq. (3.6) can alternatively be denoted as: 

                                        PSNR = 10log (  ()
∞^1)±

FEº
	) dB (3.7) 
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Chapter 4 

RESULTS AND DISCUSSION 

4.1 Results and Discussion 

The primary objective of this thesis has been the use of high-precision image 

restoration in the production of a high-quality image. This process is based on the 

statistical characterization of the nonlocal self-similarity and local smoothness of 

natural images. Here, we present the results of image restoration using the proposed 

algorithm in comparison to pure JSM. The algorithms mentioned in Chapter 3 are 

applied to image deblurring, image inpainting, and mixed Gaussian plus “salt” and 

“pepper” noise removal. All the experiments are performed in Matlab R2016a on a 

MacBook Pro (Retina, 13-inch, Early 2015), processor 2.9 GHz Intel Core i5, 

memory 8 GB 1867 MHz DDR3, and operating system. In our implementation, if not 

specially stated, the size of each block is set at 8x8 with a 4-pixel separation between 

adjoining blocks; the size of training window for searching matched blocks, i.e., L×L 

is set to be 40×40, and the number of best-matched blocks, i.e., c is set to be 10. 

Thus, the relationship between N and K is K =40N. The PSNR (measured in dB) is 

used for evaluating the quality of the post-reconstruction image. The cover images 

and text mask (grayscale images) are: "House", "Barbara", "Leaves" and 

"TextMask", selected for experiments; the size of each image is set to 256 x 256 

pixels as shown in Figure 4.1. 
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(a) House                                                        (b) Barbara 

(c) Leaves                                                          (e) TextMask                                          
Figure 4.1: Cover-Images and Text Mask 

4.1.1 Image Deblurring  

The original images subject to image deblurring are initially blurred using a blur 

kernel, to which Gaussian noise is added using standard deviation. The simulation 

utilizes three blur kernels: a motion blur kernel, a Gaussian blur kernel, and a 9x9 

uniform kernel. The image deblurring results get from the proposed method are then 

compared to JSM (shown in Table 4.1). A visual comparison of the blurred and 

deblurred images using the proposed method is provided in Figures 4.2, 4.3 and 4.4.  

Figure 4.2 shows the effect of a uniform blur for the three test images, these are  

Leaves, House and Barbara. In Figure 4.2 (a) the original image Leaves is blurred 
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with a (9*9) uniform blur, then the deblurring result is demonstrated using the 

proposed method with PSNR 32.77dB. Figure 4.2 (b) shows the effect of blurring for 

the image House. The original image made noisily and blurred with a (9*9) uniform 

blur. Here the deblurring result using the proposed method is achieved with PSNR 

39.74dB. Finally, in Figure 4.2 (c) the same process is applied to image Barbara. The 

deblurring result using the proposed method is achieved with PSNR 33.29dB.  

Figure 4.3 shows the effect of Gaussian blur of size 25 pixels, with the standard 

deviation sigma 1.6 for the three test images, there are  Leaves, House and Barbara. 

In Figure 4.3 (a) the original image Leaves is blurred with a Gaussian blur, then the 

deblurring result is demonstrated using the proposed method with PSNR 33.54dB. 

Figure 4.2 (b) shows effect of blurring for the image House. The original image 

made noisy and blurred with a Gaussian blur. Here the deblurring result using the 

proposed method is achieved with PSNR 37.15dB. Finally, in Figure 4.2 (c) the same 

process is applied to image Barbara. The deblurring result using the proposed method 

is achieved with PSNR 31.25dB.  

Figure 4.4 shows the effect of motion blur of length 20 pixels and an angle of 45 

degrees for the three test images, there are  Leaves, House and Barbara. In Figure 4.4 

(a) the original image Leaves is blurred with a motion blur, then the deblurring result 

is demonstrated using the proposed method with PSNR 38.26dB. Figure 4.4 (b) 

shows effect of blurring for the image House. The original image made noisy and 

blurred with a motion blur. Here the deblurring result using the proposed method is 

achieved with PSNR 39.04dB. Finally, in Figure 4.4 (c) the same process is applied 

to image Barbara. The deblurring result using the proposed method is achieved with 

PSNR 41.72dB.  
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            i                   ii                       i                   ii                       i                  ii 

(a)                                          (b)                                     (c) 
Figure 4.2: Image deblurring with uniform blur 

 

                                        
i                       ii                     i                        ii                    i                    ii 

                    (a)                                           (b)                                         (c) 
Figure 4.3: Image deblurring with Gaussian blur 

 

          
          i                  ii                       i                      ii                     i                     ii 
                    (a)                                        (b)                                        (c) 

Figure 4.4: Image deblurring with motion blur 

The graph line in Figure 4.5 illustrates the relationship between the PSNR and 

number of iterations used in deblurring for the three test images and thus. The plots 

show the evolution of the PSNR in relation to the iteration numbers for various 

initializations of the test images. It is evident from the plots that the PSNR curve 

monotonically increases and tends towards convergence with each additional 
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iteration, thus proving the convergence of the proposed method. Further details are 

provided below.  

Figure 4.5 (a) shows the three test images for image deblurring. The original images 

are blurred by a 9*9 uniform blur and sigma 0.5, the deblurring image has been 

obtained by a minimum of 30 to 50 iterations. For image House, the initial PSNR is 

24.11dB, which increases to 31.70dB in the first iteration. When the iteration 

number reaches 26 iterations, the high PNSR value is achieved to 39.74dB. Then for 

image Leaves, the initial PSNR is 16.96dB, then in the first iteration, the PSNR 

increases to 23.97dB. When the iteration number reaches 44 iterations, the high 

PNSR value is achieved to 32.77dB. Finally, the initial PSNR of image Barbara is 

22.44dB, then in the first iteration, the PSNR is increased to 29.14dB. When the 

iteration number reaches 35 iterations, the high PNSR values is achieved to 33.29dB. 

Overall, the high PSNR values gave us a good result. 

Figure 4.5 (b) shows three tested images for image deblurring. The original images 

are blurred with a Gaussian blur of size 25 pixels with a standard deviation sigma of 

1.6 and sigma 0.5; the deblurring image has been achieved in a minimum of 30 to 50 

iterations. For image House, the PSNR is 27.98dB; after the first iteration, this 

increases to 32.62dB. When the iteration number reached 40 iterations, the highest 

PNSR value was achieved at 37.15dB. Then for image Leaves, the initial PSNR is 

20.81dB, then in the first iteration, the PSNR increases to 28.32dB. When the 

iteration number reaches 28 iterations, the highest PNSR value is achieved at 

33.54dB. Finally, the initial PSNR of image Barbara is 23.78dB, then in the first 

iteration, the PSNR is increased to 26.73dB. When the iteration number reaches 43 

iterations, the high PNSR value is achieved to 31.25dB. 
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Figure 4.5 (c) shows three tested images for image deblurring. The original image is 

blurred with a motion blur of length 20 pixels and an angle of 45 degrees, and sigma 

0.5; the deblurring image has been achieved in a minimum of 30 to 50 iterations. For 

image House, the initial PSNR is 21.63dB, then in the first iteration, the PSNR is 

increased to 29.02dB. When the iteration number reached 37 iterations, the high 

PNSR value is achieved at 39.04dB. Then for image Leaves, the initial PSNR is 

14.73dB, then in the first iteration, the PSNR is increased to 22.63dB. When the 

iteration number reaches 44 iterations, the high PNSR value is achieved to 38.26dB. 

Finally, the initial PSNR of image Barbara is 21.09dB, then in the first iteration, the 

PSNR is increased to 29.02dB. When the iteration number reaches 41 iterations, the 

high PNSR values is achieved to 41.72dB. Here, the high PSNR values also gave us 

a good result. 

In summary, the convergence of the algorithm simultaneously simplifies the 

execution of the proposed algorithm, which is only intended to run for a 

predetermined number of iterations. Additionally, the higher the quality of the 

initialization result, the fewer the number of iterations requires to reach convergence 

(see Figure 4.5). 
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(a) 

(b) 

(c) 
Figure 4.5: Verification of the convergence and robustness of the proposed 

algorithm. In the cases of image deblurring; (a) uniform blur; (b) Gaussian blur; (c) 
motion blur. 
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As shown in Table 4.1. First, in the case of the uniform blur table for image House, 

the JSM was checked as 37.73dB while the proposed method result is 39.74dB. In 

percentage terms, the PSNR is improved by 5.33%. For the image Leaves, the JSM 

was checked as 31.61dB; the proposed method result is 32.77dB. The calculated 

percentage PSNR improvement is 3.67%. For the image Barbara, the JSM was 

checked as 29.65dB. The proposed method result is 33.29dB. The PSNR 

experienced an improvement of as much as 12.28%. 

Second, in the case Gaussian blur table for image House, the JSM was checked as 

36.68dB. The proposed method result is 37.15dB. The calculated percentage PSNR 

improvement stood at 1.28%. For the image Leaves, the JSM was checked as 

32.18dB. The proposed method result is 33.54dB. The calculated percentage PSNR 

improved by 4.23%. For the image Barbara, the JSM was checked as 28.66dB. The 

proposed method result is 31.25dB. The calculated percentage PSNR improved by as 

much as 9.04%. 

Finally, for the motion blur table for image House, the JSM was checked as 37.40dB. 

The proposed method result is 39.04dB. Calculating the percentage PSNR difference 

reveals an improvement of 4.39%. For the image Leaves, the JSM was checked as 

33.95dB. The proposed method result is 38.26dB. The calculated percentage PSNR 

improvement stood as high as 12.70%. For the image Barbara, the JSM was checked 

as 34.25dB. The proposed method result is 41.72dB. The calculated percentage 

PSNR improved by an impressive 21.81%. 
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Summarily, it is evident that the proposed method significantly improves the results 

of image deblurring when compared to JSM as the PSNR value of the proposed 

method is considerably higher than in JSM. So the results of PSNR value is different 

for different images or for different formatted images since it is related to image 

quality and noise in the images. 

Table 4.1: PSNR for image deblurring  (JSM vs proposed method) 
Images House Leaves Barbara 

9*9 uniform Blur 
JSM (in dB) 37.73 31.61 29.65 

Proposed Method (In dB) 39.74 32.77 33.29 
Relative Improvement %   5.33%   3.67%    12.28% 

 
Gaussian Blur 

JSM (in dB) 36.68 32.18 28.66 
Proposed Method (in dB) 37.15 33.54 31.25 
Relative Improvement %   1.28%   4.23%   9.04% 

 
motion Blur 

JSM (in dB) 37.40 33.95 34.25 
Proposed Method (in dB) 39.04 38.26 41.72 
Relative Improvement %   4.39%    12.70%     21.81% 

4.1.2 Image Inpainting 

The primary purpose of text removal is the recovery of regions degraded by the 

pixels of a text to arrive at the original image. The simulation in this thesis utilizes a 

number of aspects, including text removal. The results of the proposed inpainting 

method are also compared to JSM (see Table 4.2).  

 

Figure 4.6 shows the visual quality comparison of text removal for image inpainting 

on three tested images, Leaves, House and Barbara. In Figure 4.6 (a) shows the 

image Barbara as a degraded image with a text mask and the PSNR of image Barbara 

after the added text is 12.93 dB; then the inpainting result is demonstrated using the 
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proposed method with PSNR 48.38 dB. Figure 4.6 (b) shows the image House as a 

degraded image with a text mask and the PSNR of image House after the added text 

is 12.91 dB; then the inpainting result is demonstrated using the proposed method 

with PSNR 46.67 dB. Finally, Figure 4.6 (c) the same process is applied to image 

Leaves with PSNR 9.70 dB. The inpainting result using the proposed method is 

achieved with PSNR 39.92 dB. 

               
i                    ii                     i                       ii                     i                    ii 

                    (a)                                        (b)                                           (c) 
Figure 4.6: Visual quality comparison of text removal for image inpainting 

The graph line in Figure 4.7 illustrates the relationship between the PSNR and 

number of iterations used for inpainting the three test images House, Leaves and 

Barbara in a single plot. The plot shows the evolution of the PSNR in relation to the 

iteration numbers for various initializations of the test images. It is evident from the 

plots that the PSNR curve monotonically increases and tends towards convergence 

with each additional iteration, thus proving the convergence of the proposed method. 

In this case of image inpainting, a text mask is added to the original image and the 

purpose of text removal is to extrapolate the original images from their degraded 

versions by removing the text region. It achieves image inpainting in a minimum of 

40 to 50 iterations. The PSNR values of the proposed method are increased after 50 
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iterations. For image House, the initial PSNR is 35.29dB, then in the first iteration, 

the PSNR increases to 40.47dB. When the iteration number reached 41 iterations, the 

high PNSR values is achieved to 46.67dB. Image Leaves, the initial PSNR is 

27.90dB, then in the first iteration, the PSNR is increased to 31.41dB. When the 

iteration number reaches 42 iterations, the high PNSR values is achieved to 39.92dB. 

Finally, the initial PSNR of image Barbara is 28.86dB, then in the first iteration, the 

PSNR increases to 33.61dB. When the iteration number reaches 42 iterations, the 

high PNSR values is achieved to 48.38dB. The high PSNR values give us the best 

results. 

In summary, the convergence of the algorithm simultaneously simplifies the 

execution of the proposed algorithm, which itself is only intended to run for a 

predetermined number of iterations. Additionally, the higher the quality of the 

initialization result, the fewer the number of iterations requires to reach convergence. 
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Figure 4.7: Convergence of inpainting process using the proposed method  

Table 4.2 below shows the comparison for the inpainting images. Here, we compare 

the proposed inpainting method to JSM in the case of the three test images. 

 First, for the image house, the JSM was checked as 41.91dB. The proposed method 

result is 46.67dB. Calculating the percentage PSNR shows an improvement of 

11.36%. Second, for the Barbara image, the JSM was checked as 37.99dB. The 

proposed method result is 48.38dB. The calculated percentage PSNR improved by as 

much as 27.35%. Finally, for the Leaves image, the JSM was checked as 34.04dB. 

The proposed method result is 39.92dB. The calculated percentage PSNR improved 

by 17.27%.  

In summary, it can clearly be seen that the proposed method is an improvement from 

the JSM as the PSNR value is significantly increased when compared to the JSMs of 
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image inpainting. So the results of PSNR value is different for different images or for 

different formatted images since it is related to image quality and noise in the 

images. 

Table 4.2: PSNR for image inpainting ( JSM vs Proposed Method) 
Images 

 
House 

 
Barbara Leaves 

 JSM (in dB) 
 

41.91 
 

37.99 
 

34.04 

Proposed Method (in dB) 46.67 
 

48.38 
 

39.92 

Relative Improvement % 11.36% 27.35% 17.27% 

4.1.3 Mixed Gaussian plus Salt-and-Pepper Noise Removal  

The images used in the simulations here are corrupted with Gaussian noise using 

standard deviation sigma and a salt-and-pepper noise density level r. Conventional 

methods for image denoising, capable only of handling a single kind of noise, are 

ineffective in the case of mixed Gaussian plus impulse noise due to the 

distinctiveness of the two degradation processes involved in this kind of noise. 

A series of experiments are conducted on the two gray test images (see Figure 4.8), 

where the standard variance of Gaussian noise equals 10 and the noise density level r 

is in variations from 20%, 40%, 50% 70% and 90%. Some visual results of the 

recovered images using the proposed method Are provided in Figure 4.8, including a 

visual quality comparison of mixed Gaussian plus salt-and-pepper impulse noise 

removal on the images House and Barbara. First, for the image Barbara, the PSNR 

for the noisy image corrupted by Gaussian plus “salt” and “pepper” impulse noise 

with ratio equal 20% stood at 12.33 dB while that of the denoised result using the 
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proposed method was 38.10dB; if  the ratio equal 40%, the PSNR reduces for both 

the original 9.37 dB and the denoised result using the proposed method 36.39 dB; if 

the ratio equal 50%, PSNR reduces even further 8.40 dB and the denoised result 

gotten through the proposed method has a PSNR of 34.74 dB; the original PSNR  

and the denoised result using the proposed method are 6.09 dB and 29.63 dB if the 

ratio equal 70%; and if the ratio equal 90%, the PSNR is the lowest at 5.82 dB and 

22.61dB for the original and the denoised result using the proposed method 

respectively, as shown in Figure 4.8 (a).  

 Second, the same process is applied for House, if ratio equal 20%, the PSNR is 

12.43 dB and the denoised result using the proposed method has PSNR 37.30 dB. 

Increasing the noise ratio reduces the PSNR and so when ratio equal 40%, original 

PSNR is 9.46 dB and 36.30 dB for the denoised result from the proposed method; if 

the ratio equal 50%, original PSNR 8.50 dB and 35.44 dB for the denoised result 

using the proposed method; if the ratio equal 70%, original PSNR 7.01 dB and that 

of the denoised result using the proposed method is 33.42 dB; if the ratio equal 90%, 

PSNR is the lowest for the original 5.93 dB and the denoised result from the 

proposed method 27.84 dB, as shown in Figure 4.8 (b). 
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(Ratio 20%)               (Recovered image) 

      
(Ratio 40%)                 (Recovered image) 

      
(Ratio 50%)               (Recovered image) 

      
(Ratio 70%)              (Recovered image) 

      
(Ratio 90%)            (Recovered image) 

(a) 

             
(Ratio 20%)             (Recovered image) 

                    
(Ratio 40%)                   (Recovered image) 

                       
(Ratio 50%)                     (Recovered image) 

                          
(Ratio 70%)                     (Recovered image) 

                 
(Ratio 90%)                       (Recovered image) 

(b) 
Figure 4.8: Visual quality comparison of mixed Gaussian plus salt-and-peppers 

impulse noise removal on images (a) Barbara and (b) House 

The graph line in Figure 4.9 clearly shows the mixed Gaussian plus salt-and-pepper 

impulse noise removal for two images (a) Barbara and (b) House. The plots show the 
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evolution of the PSNR in relation to the iteration numbers for various initializations 

of the test images. It is evident from the plots that the PSNR curve monotonically 

increases and tends towards convergence with each additional iteration, thus proving 

the convergence of the proposed method.  

In this case, the original image will be corrupted by Gaussian noise with sigma and 

“salt-and-pepper” noise density level ratios are set to 20%,40%,50%,70% or 90% 

and the sigma of Gaussian noise equals 10. Consequently, it achieves the Gaussian 

plus salt-and-pepper impulse noise removal in a minimum of 30 to 50 iterations. 

First, as shown in the Figure 4.9 (a), the initial PSNR values of the image Barbara at 

ratios 20%,40%,50%,70%, and 90% are 26.45, 25.70, 25.13, 23.68 and 21.64dB, 

respectively. We then set the pre-specified upper bound as 50 for all noise levels. 

When the ratio is equal to 20%, the high PNSR value is achieved at 38.10dB after 23 

iterations; when the ratio is equal to 40%, the high PNSR value is equal to 36.39dB 

after 24 iterations; when the ratio is equal to 50%, the high PNSR value is achieved 

at 34.74dB after 37 iterations; when the ratio is equal to 70%, the high PNSR value 

is achieved at 29.63dB after 45 iterations; and when the ratio is equal to 90%, the 

high PNSR value is achieved at 21.61dB after 26 iterations.  

Second, as shown in Figure 4.9 (b), the initial PSNR values of the image House at 

ratios 20%,40%,50%,70%, and 90% are 28.82, 28.38, 28.19, 27.40 and 25.08dB. 

When the ratio is equal to 20%, the high PNSR value is achieved at 37.30dB after 3 

iterations; when the ratio is equal to 40%, the high PNSR value is achieved at 

36.30dB after 6 iterations; when the ratio is equal to 50%, the high PNSR value is 

achieved at 35.44dB after 11 iterations; when the ratio is equal 70%, the high PNSR 
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value is achieved at 33.42dB after 25 iterations; and when the ratio is equal to 90%, 

the high PNSR value is achieved at 27.84dB after 40 iterations. 

(a) 

(b) 
Figure 4.9: Convergence of noise removal process using the proposed method 
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Summarily, the convergence of the algorithm simultaneously simplifies the 

execution of the proposed algorithm, which itself is only intended to run for a 

predetermined number of iterations. Additionally, the higher the quality of the 

initialization result, the fewer the number of iterations requires to reach convergence. 

Figure 4.10 provides a comparative look at the removal of Gaussian plus “salt and 

pepper” impulse noise from two test images using the proposed method and JSM.  

In Figure 4.10 (a) shows the results of Barbara image when it was corrupted by 

Gaussian noise with sigma is 10 and ratio (r) equals 20%,40%,50%,70%, or 90%. 

First, if the ratio equal 20%, the JSM was checked as 31.07dB while the proposed 

method result is 38.10dB. Second, if the ratio is equal to 40%, the JSM was checked 

as 29.17dB and the proposed method result is 36.39dB. Third, if the ratio is equal to 

50%, the JSM was checked as 27.95dB and the proposed method result is 34.74dB. 

Fourth, if the ratio is equal to 70%, the JSM was checked as 23.99dB and the 

proposed method result is 29.63dB. Finally, if the ratio is equal to 90%, the JSM was 

checked as 22.37dB and the proposed method result is 22.61dB. 

Figure 4.10 (b) shows the results of House image when it was corrupted by Gaussian 

noise with sigma is 10 and ratio (r) equals 20%,40%,50%,70%, or 90%. First, if 

the ratio is equal to 20%, the JSM was checked as 34.66dB and the proposed method 

result is 37.30dB. Second, if the ratio is equal to 40%, the JSM was checked as 

34.33dB and the proposed method result is 36.30dB. Third, if the ratio is equal to 

50%, the JSM was checked as 33.72dB and the proposed method result is 35.44dB. 

Fourth, if the ratio is equal to 70%, the JSM was checked as 32.25dB and the 
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proposed method result is 33.42dB. Finally, if the ratio is equal to 90%, the JSM was 

checked as 27.48dB and the proposed method result is 27.84dB. 

Summarily, it is evident that the proposed method significantly improves the results 

of Gaussian plus salt-and-pepper impulse noise when compared to JSM because the 

PSNR value of the proposed method is considerably higher than in JSM. 

 
(a) 

 

 
(b) 

Figure 4.10: Results of mixed Gaussian plus salt-and-peppers impulse noise removal    
when compared with JSM for the cover-images (a) Barbara and (b)House. 
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Chapter 5 

 CONCLUSION  

5.1 Conclusion 

Image restoration involves the reduction or outright eradication of the degradation of 

an image in an effort to enhance the image and recover its original form. The goal of 

recovering the original image is what distinguishes image restoration from image 

enhancement, which simply aims to improve the aesthetic appeal of the image and 

one of the foremost methods for image restoration is JSM. 

 

This thesis proposes a new method for image restoration based on JSM. The 

proposed method also finds its basis in the effective statistical characterization of the 

nonlocal self-similarity and local smoothness intrinsic to natural images. In an effort 

to improve the image restoration results gotten from JSM, the proposed method 

involves the addition of a SMF to JSM and a MF at the end of every iteration in the 

restoration process. 

Overall, the proposed method makes three major contributions: it establishes JSM in 

a domain for adjective hybrid space-transformation; using JSM, it develops a new 

type of minimization functional for solving the image inverse problem within a 

regularization-based framework and it improves JSM by developing a new rule based 

in the Split Bregman method. 
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The proposed method was tested for three applications of image restoration: image 

deblurring, image inpainting (text removal), and the removal of mixed Gaussian and 

salt-and-pepper noise. Experimental results indicate that image restoration using the 

proposed method is significantly improved relative to simple JSM. Furthermore, the 

convergence of the proposed method was also considerably improved relative to 

JSM. 

5.2 Direction for Future Research 

Despite the undoubtedly valuable contribution made by the proposed method to the 

field of image restoration, there is still room for future research to build on the 

proposed method in a number of ways. 

For example, the proposed method could be enhanced so as to increase the speed of 

image inpainting without corresponding decreases in the PSNR value of the restored 

image. Additionally, future research could also include a multi-scale investigation of 

natural image statistics and even extend the applicability of the proposed method 

beyond natural images – for example, to video restoration through the incorporation 

of skin detection methods. 
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Appendix A: Split Bergman Method  

Split Bergman Based Iterative Algorithm for Image Restoration. As a technique for 

finding solutions to a host of different L1-regularized optimization problems, the 

Split-Bregman method [50] is particularly efficient in cases of total-variation 

regularization and is one of the fastest means of resolving Total Variation denoising, 

convex image segmentation, image reconstruction from Fourier coefficients, 

amongst other problems.  

 So the results in the following image-restoration formulation:  

76!•öõü	
"

)
 wg − { )

) + H. CDEF(G) + J	.	 CKDEF(G)   (A.1) 

Where H	and	J	are control parameters. Note that the first term of Eq. (A.1) actually 

represents the observation constraint and the second and the third represent the image 

prior local and non- local constraints, respectively. Therefore, it is our belief that 

better results will be achieved by imposing the above three constraints into the ill-

posed image inverse problem. In this section, we apply the algorithmic framework of 

Split Bregman Iteration to solve Eq. (A.1)  

•öõfΩæ4 g + ! vg , 

where G tq∗ù,	4:	tq            R, !: tù            R. The split Bregman Iteration works 

as follows: 
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Algorithm 1 Split Bregman Iteration (SBI) 

7. Repeat until the stopping conditions have been met 

 

 

Invoking SBI, Line 3 in Algorithm 1 becomes:  
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 Where ô(ê) = 	 <
ê

~ ê
∈ ℛ)K	, < ê , ~ ê , ∈ ℛK	 Splitting l2

 

norm in Eq. (A.2), we 

have 

1. Set k = 0, choose x > 0, ô(j) = 0, g(j) = 0, Y(j) = 0. 
2. Repeat 
3. g(êÅ") = 76!•öõf4 g +	

�

)
 vg −	Y ê −	ô(ê)

)
; 

4. Y êÅ"  = 76!•öõf4 g +	
�

)
 vg −	Y ê −	ô ê )

; 
5. ô êÅ"  = ô ê − vg êÅ" −	Y êÅ" ; 
6.  √ ← 	√ + 1; 
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Next, Line 4 in Algorithm 1 becomes:  
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(A.4) 

Clearly, the minimization with respect to w x, are decoupled, thus can be solved 

separately, leading to  

|(∆Å«) = 	76!•öõ≈ H. CDEF | +		
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   (A.5) 

}(∆Å«) = 	76!•öõü J	. CKDEF | +		
�

)
	 g(êÅ") − } −	~(ê)
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)
   (A.6) 

According to line 5 in algorithms 1, the update of ôê 

																				ô(êÅ")= <(êÅ")

~(êÅ")
= 	 <

(ê)

~(ê)
−	( y

y
 g(êÅ") − |

(êÅ")

}(êÅ")
),                         (A.7) 

This can be simplified into the following two expressions: 

<(êÅ") = 	 <(ê) − (g êÅ" −| êÅ" ), 

~(êÅ") = 	 ~(ê) − (g êÅ" −} êÅ" ), 
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In summary, the minimization for Eq. (A.1) is useful in the resolution of three sub-

problems – u , w and x – based on the Split Bregman Iteration (SBI) [51]. The full 

algorithm used in solving Eq. (A.1) is outlined in Algorithm 2. 

Taking into account SBI convergence, the following theorem is used in proving the 

convergence of the proposed algorithm using JSM in Algorithm 2. 

Theorem 1. Outlined in Algorithm 2, the JSM solves Formulation (A.1) given 

above.  

Proof: The algorithm is evidently a form of the Split Bregman Iteration. Because the 

three functions f(.),	CDEF(.)  and 	CKDEF(.)  are all proper, closed, and convex, the 

following formulation guarantees the convergence of the proposed algorithm: 

Algorithm 2 a complete description of JSM 

Input: y (observed image) and H (linear matrix operator) 
Initialization: k=0, g j = {, < j = ~ j = | j = 0, x, H, J	 
Repeat; 

g(ê^") = 	76!•öõf
1

2
wg − { )

) +	
x

2
g − | ê − <(ê)

)

)
+	
x

2
g −	} ê − ~(ê)

)

)
 

¢(ê) = 	g(êÅ") −	< ê ; { = 	 H x ; 
|(êÅ") = 	¢65}B CDEF ¢ ê ; 
6 ê = 	g êÅ" −	~ ê ; 	»	 = 	 J }	 
}(êÅ") = 	¢65V/ CKDEF 6 ê ; 
< êÅ" = 	< ê 	− g êÅ" −	| êÅ" ; 
~(êÅ") = 	 ~(ê) − g êÅ" −	} êÅ" ; 
Until the stopping conditions have been met. 
Output: … (the restored final image).  
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Appendix B: Joint Statistical Modeling (JSM) 

Three major contributions are made here. First, it establishes, in a domain for 

adjective hybrid space-transformation, joint applied mathematics modeling JSM; this 

offers a way through which nonlocal self-similarity could be mixed with native 

smoothness such that the result simultaneously corroborates numerous reliable and 

equally robust estimations. Second, a new type of minimization functional to be used 

in solving the image inverse problem is developed within a regularization-based 

framework using JSM. Finally, a new rule based in the Split Bregman method is also 

developed in an effort to create a strong and tractable JSM; the rule is intended to 

resolve several prospective drawbacks that relate to theory-based evidence of 

convergence [6]. 

B.1 We have three sub-problems: 

B.1.1 u sub-problem  

In an effort to increase the flexibility of the solution for Eq. (A.3), two parameters – 

x"7õô	x) – are introduced to replace, as x does not include the convergence of the 

algorithm. So, given w,x, the sub-problem u outlined in Eq. (A.3) is rewritten as 

follows:  

g = 	76!•öõf
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) +	
x1

2
||g −	| ê −	< ê 2

2
+	
x2

2
g	 −	} ê

−	~(ê)||)
) 

 

 (B.1) 

B.1.2 w sub-problem  

w sub-problem, the proximal map associated to 	CDEF(.) , can be regarded as a 

denoising filtering with anisotropic total variation as mentioned before . To solve it, 
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one of the intrinsic overcome this difficulty, Chambolle suggested to consider adual 

approach, and developed a globally convergent gradi-Laplacian, or GGD process, 

which is more general. In our experiments, we exploit a fixed number of iterations of 

FISTA to solve w sub-problem, which is computationally efficient and empirically 

found not to compromise convergence of the proposed algorithm.  

B.1.3 é	sub-problem 

Taking into account w, u, the sub-problem é s expressed as[43]:  

é = ¢65é/	 CKDEF é = 	76!•öõé	
"

)
	 é − 6 )

) + 7. CKDEF é 	 				              

																																																		76!•öõé	
1

2
	 é − 6 )

) + 7. Θé "  

 

     (B.2) 

Consequently, the closed solution form of the sub-problem é in Eq. (B.2) is written 

as:                  

é=ΩKDEF(Θé) = ΩKDEF †54e	 ΘÃ, 2¢  (B.3) 

The consequence of taking 6 to be a noisy form of é is that the statistics of e=	é − 6 

then need to be experimentally investigated. 


