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ABSTRACT

This thesis deals with Quantum Computing Algorithms. The most important Quantum

Computing algorithms available in the literature have been summarized. After reviewing

the foundations of Quantum Computing and the necessary parts of Quantum Mechanics,

the quantum search algorithm by Grover was analyzed theoretically, and the simulation

on the publicly available real Quantum Computer provided by IBM using the Qiskit

package was carried out. The results from the simulation on the real quantum computer

agree with theoretically obtained results.

Keywords: Quantum Mechanics, Quantum Algorithms, Grover’s Algorithm
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ÖZ

Bu tez, kuantum bilgisayarlar ve algoritmaları üzerine bir çalışmadır. En önemli

kuantum bilgisayar algoritmaları ’Giriş’ bölümünde kısaca anlatılmıştır. Kuantum

bilgisayarlar için önemli olan kuantum mekaniğinin önemli postulatları bu tezde

anlatılmıştır. Grover tarafından sunulan Grover Algoritması teorik olarak anlatılmış

olunup gerçek bir Kauntum Bilgisayar ile denemesi yapılmıştır. Bu tez çalışmasında,

IBM’in kuantum bilgisayalarına Qiskit ile bağlanılmış olup sonuçları sunulmuştur ve

simulasyon sonuçları da eklenmiştir. Teorik olarak öngörülen sonuçlar halka açık olan

IBM bilgisayarları ile doğrulanmıştır.

Anahtar Kelimeler: Kuantum Mekaniği, Kuantum Algoritmaları, Grover Algoritması
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Çobanoğlu for reminding all deadlines during thesis process.

I would like to thank to my dear bestie Efecan Ünal and the strong woman-academic
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Chapter 1

INTRODUCTION

A computer is a physical machine and it computes all operations performed by such a

machine is in aspect a physical process. Nowadays, computers are classified generally

in two types as classical or quantum computers. Laws of computations are based on the

laws of physics.

In 1930s, Alan Turing, who is an English logician and mathematician and who obeyed

to physics laws and assumed that computation is performed by an idealized mechanical

computer, formulated the classical theory of computation [19]. Now, this model is

known as Turing Model and this has proved to have enough capability to the description

of computational operations by modern electronic or mechanical computers.

Here is some explanation about a new type of computers, called Quantum Computers.

Quantum Computers have the ability of storing information, loading and running

programs and reading output by the laws of Quantum Physics. This type of computers

works differently than classical computers. In this respect, we can compare the

difference between classical computers and quantum computers to the difference

between classical physics and quantum physics. Considering the history of quantum

computing, it dates back to 1982, when Richard P. Feynman suggested the idea at a

conference [9].
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He suggested the notation of simulating quantum mechanics with computers, and later

on it became universal quantum computers. In fact an earlier history of quantum

computers dates back to Maxwell’s Demon. It is an imaginary demon, which refers to

the second law of thermodynamic by part of separation of cold and hot particles through

opening an imaginary gate. Later on, Bennett, Fredkin, Toffoli and others proposed the

idea about reversible operations to general computation in the 1970s. They showed that

without erasing information, all computation can be reversible [3].

Much earlier, in 1935, Einstein, Podolsky and Rosen experimented with entanglement

[8]. The Quantum Theory can define the state of one particle out of two which affect

each other [3] (see following chapter).

Later, Bell came out with an acute result in 1964, showing that non-local interactions

can exist [1]. This theorem was supported by Aspect, Dalibard and Roger in 1982. They

showed which particles are in entanglement state and argued that their interactions must

travel faster than speed of light and therefore it is impossible [3].

The real developments of quantum computers took place with Benioff, in 1980 [2]. He

described one hybrid Turing machine which one can store qubits on the tape instead of

traditional bits. Nevertheless, his machine could not use any quantum theory effects

and for that reason each qubit was measured from the tape at each step.

A real breakthrough came with Feynman’s speech at a physics conference in 1982 [9].

In his speech, he clearly discussed the architecture of a machine that would operate on

quantum mechanical laws. He also spoke about the universal quantum simulator. The

2



machine would use quantum properties to explore the rest of quantum effects and run

simulators.

The first primitive quantum computing system was credited by Deutsch in 1985 [4].

However, there were some doubts about his system like including prohibition for the

gates and operational states of his machine.

Simon explained an oracle problem in 1993, and then the difference between quantum

and classic computers emerged with having the exponential fast [17]. Simon’s

algorithm solves the black-box problems exponentially faster than classical ones as

Deutsch-Jozsa algorithm does [5]. And in 1994 [16], Shor described his quantum

algorithm for an efficient factorization of large numbers, which drew attention on

quantum computers. Shor’s algorithm solves integer factorization problems in

polynomial time where classical algorithms run in super polynomial time. Shor

improved the algorithm from Simon’s algorithm.

Meanwhile, Weisner and Bennett explored and introduced the idea of quantum key

exchange in the early 1980’s, which enabled security systems to deal with quantum

computers by the ability of computational doable factorization [3].

In 1996, Grover described a quantum search algorithm [10]. This algorithm searches a

marked entry in an unordered database with N entries. Instead of O(N) with classical

way, it requires only O(
√

N). But this algorithm does not work exponential speed-up, it

works quadratic speed-up. In this thesis we work on Grover’s Algorithm.
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Finally, in 1998, the first functional two qubit nuclear magnetic resonance computer

was introduced at UC Berkeley. Later on, the efficiency and effectiveness of the systems

were proved, and in 2001, a 7-qubit NMR system was demonstrated at IBM Almaden

to execute Shor’s algorithm [3].

In sum, thanks to the aforementioned developments in quantum physics we have the

ability to predict probabilities.

My research problem is that how much fast and accurate is the Grover’s Algorithm.

Chapter’s Survey: In the first chapter is introduction. Chapter two is basic definition

of Quantum Mechanics, including superposition, Young’s double slit experiment and

entanglement. Chapter three is about Quantum Computing including Qubits and Circuit

Theory. Chapter four focuses on Grover’s Algorithm. And the last chapter presents

Conclusion.
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Chapter 2

QUANTUM MECHANICS

“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d

better make it quantum mechanical, and by golly it’s a wonderful problem, because it

doesn’t look so easy.” Richard P. Feynman [9]

Like what Feynman said, nature is complicated and that is why it is not easy to explain

it with classical physics. Quantum mechanics can help us for simulating the nature.

It gives us a quite accurate description of nature. Nature is so complex and quantum

mechanics predicts all probabilities of nature. Still, it is not known how it exactly works

in that way. Quantum mechanics can tell how it works but not why it works that way.

Here are the basic parts of quantum mechanics;

This is the wave function of a particle:

ih̄
∂ψ

∂ t
=− h̄2

2m
∂ 2ψ

∂x2 +V ψ (2.1)

It is called the Schrödinger equation, derived by Erwin Schrödinger in 1925 [15] . Here,

h̄ = h/(2π). ψ is the wave function, V potential and m mass. Explaining Quantum

Mechanics can take many chapters but essentially there is need to explain two main

topics that are fundamental for Quantum Computing and Quantum Information. These

are:

1) Superposition
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2) Entanglement

2.1 Superposition

Superposition is one of the main topics which gives the difference between classical

computing and quantum computing. It is the one of strange effects of quantum

mechanics that describe a new way of states. Superposition works on photons, phonons,

electrons and so on. In short, it means that a particle’s quantum state can be at a

different state. Here is a short version of superposition explanation with quantum

physics. The main idea of superposition can be explained by Figure 2.1. This

experiment can be observed in three parts.

First, there is the equipment of this experiment: a light source, semi-silvered mirror

(it helps to divide the light) and very sensitive detectors. These detectors are sensitive

enough even if an individual light passes through it will catch it. When the light falls

on the dimmer, the detector will observe it by giving a click. In the first part of this

experiment, there is a semi-silvered mirror placed in front of the light source [3]. The

result is the detector 1 and 2 observe the light with the same probability. The question

is ’How the light decides which way to go?’

In the second part of this experiment there is something really unusual. When two more

full mirrors are placed on the way of lights, signals are gathered from detector 1 only.

How would this be possible?

The classical explanation is that light might have predisposed to pass through the mirrors.

Or another classical explanation is that different photons may have a path of an object

moving through space. And comes the third part of this experiment. The result could be

6



Figure 2.1: An experiment of light’s behavior. [3]

estimated by classic physics but it would not work. This part of the experiment can not

be explained by any classical way.

Regarding the last part of this experiment, as it can be seen in Figure 2.1, if the way of

one light is blocked, light on both detectors with equal probability will be detected.

Surely, this phenomena can not be explained by classical physics. However, quantum

mechanics proves helpful to explain and understand this phenomena, which is called

superposition. It will be explained in detail in later sections. But the question is how

superposition is related with quantum computing.

In classical explanation, one bit is either 0 or 1, but in quantum theory qubits are 0 or

1 and can be both at the same time. Bits are sharply 0 or 1 but qubits are like moving

between 0 and 1. Having both states posits many advantages. However, when the

7



Figure 2.2: Light’s behavior of one particle [7].

particle is observed the superposition state is broken and it collapses in one state, 0 or 1

state. Plus, it can not be estimated in which state the particle will collapse. The particle

will choose what to do. It is the same with nature of light. As it was explained before,

light has two identities: particle and wave. Light decides which identity it is going to

have. It depends on the experiment. For example in ’Young’s Double Slit Experiment’;

it was expected that light would act as a particle but this experiment showed that light

also has a wave identity.

A brief explanation would be useful to describe what ’Young’s Double Slit Experiment’

is in order to answer the questions brought up earlier.

2.1.1 Young’s Double Slit Experiment

This experiment is the best way to understand what superposition exactly is. Plus, this

experiment is the beginning of the paradox that light is wave or particle in the Modern

Physics. In this experiment only a light source, some block which has slit on it and

a screen are used. First, the behavior of light acting as particle is observed. There is

only one slit on the block and there is one graph on the screen (Figure 2.2 ). All looks

like normal but when the same is applied on double slit block something different is

8



Figure 2.3: Acting like wave [7].

observed on the right side (Figure 2.2 ). Surprisingly, this result is completely different

from what is expected. This result is like the particles are coming from two different

sources showing that the light acts as wave. Dark and bright lines can be seen on the

screen, (Figure 2.3 ).

This result is completely the same when the same experiment is done with only one

particle. Even if there is only one particle, the results are the same. The question

is although there is only one particle and how it interferences or with what it gets

interference. The answer of this question is as follows. A particle in a superposition

state can be at two different places meaning it can get interference with itself (Figure

2.4). When a sensor is placed in there and when an electron passes through it will send

a signal and the observed result is on the screen what is seen is what was expected in

the beginning. The light decides to act like a particle now, (Figure 2.4). A new question

now is why and how? Is it too shy from sensor?

Actually it has got nothing to do with the sensor’s physical place. When the sensor

9



Figure 2.4: When there is an observer [7].

is plugged out again the interference shapes can be seen on the screen. How? The

unusual but beautiful reality is when it is observed, the light will collapse in one state.

That’s why it acts like a particle. Because the properties of being wave is gone now.

Another way of explanation is when the experiment is observed, the interference is

completely gone. A quantum system behaves gracefully when it is observed than

when it is not observed. This is a phenomenon called particle-wave duality. This

experiment is completely different from others. Some results can be predicted from

an observation of other physics experiments, but not any longer after quantum physics.

This awkward result is both a blessing and a curse at the same time for the design of

quantum computers.

Superposition is one of the mostly needed explanations like Entanglement for Quantum

Computers and Quantum Communication. The following section discusses

Entanglement.

2.2 Entanglement

Entanglement is the second phenomenon in quantum mechanics which can not be

explained by classical theories. Sometimes it is called as quantum entanglement too.

Entanglement is an interaction between two or more particles. Their physical properties

10



are entangled together but this can not be explained by classical physics. Considering

any two photons, it is not possible to tell anything about the first one’s state or the

second one’s state. This is sort of the same as superposition rule. Their state can not

be estimated unless looking at them because they will collapse in one state, entangled

particles are both 0 and 1 till they are checked. Plus, it does not matter how much they

are far from each other if one of them is observed, information from second one will be

gathered at the same time.

This part might be complicated so an explanation can be made using gloves as examples.

There is a pair of gloves and they are put in separate boxes and then one box is sent to

planet 986F4574E and the second one stays on Earth. Before the box is opened one can

not guess which hand is in the box and which one in the one on Earth and only when

the box is opened one can understand at the same time which hand was in the other box

on the other planet. This might seem like classical physics but the example was given

on macroscopic material. Reality is with the particle. And also information was clear in

the boxes even when the boxes were not opened. Entanglement is not working with that

way because each particle is still 0 and 1.

It does not seem normal but photons affect each other at the same time and Einstein did

not like the idea. He said that this caused non-local results. That is why there are some

”secret effects” which are not seen. After a long time John Bell fixed this phenomena

in 1960s [1]. He proved that ”secret effect” by math. Right after that Bell-test showed

Bell’s theory is correct by experiments with Bell-CHSH. This test proved to be working

because with that it was possible to observe if the particles are entangled and how strong

they are.

11



In 1935, Einstein, Podolski and Rosen formulated the Bell basis [8].

Bell States: These basis are known as Bell basis and it has four states;

|β00〉 , |β01〉 , |β10〉 , |β11〉 Also known EPR pairs or EPR states. [13]

|β00〉=
1√
2
|00〉+ 1√

2
|11〉 (2.2)

|β01〉=
1√
2
|01〉+ 1√

2
|10〉 (2.3)

|β10〉=
1√
2
|00〉− 1√

2
|11〉 (2.4)

|β11〉=
1√
2
|01〉− 1√

2
|10〉 (2.5)

The Entanglement State can be created as:

|0〉 H • •

|0〉

A B

It starts with |00〉, when it is measurement after Hadamard gate A is the result of that

point and B is the result of all circuit.

1√
2
(|0〉+ |1〉) |0〉= 1√

2
(|00〉+ |10〉) (2.6)

After Hadamard gate the CNOT gate is observed by: 1√
2
(|00〉+ |11〉)

The details are mentioned in the next chapter.

A = 1√
2
(|00〉+ |10〉) and B = 1√

2
(|00〉+ |11〉)
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After Hadamard gate state is not Bell state. That is why the CNOT gate needs to be

used. Finally, there is Entanglement state.

Ψ =
1√
2
(|00〉+ |11〉)
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Chapter 3

QUANTUM COMPUTING

The states 0’s and 1’s can be represented as either with Dirac notation |0〉 and |1〉 or

matris notation. The 0’s and 1’s are shown as vector way on Hilbert Space. Computer

language is all about 0’s and 1’s. All math and operations are done with only 0’s and

1’s. But there is little difference between classical and quantum computers. That small

but significant difference is that quantum computers use 0’s and 1’s at once and, not

only thing to do operations on 0’s and 1’s. Plus, phases, complex numbers and quantum

wave interference of them. This was explained in the previous section, ’superposition’.

A qubit can be in any linear combination of states. Qubits are represented in Dirac

notation [6] with ket.

The representation of a qubit’s state is: |ψ〉= α |0〉+β |1〉. Where α , β are complex

numbers and normalization coefficients : |α|2 + |β |2 = 1. Here |α|2 is the probability

of having 0 state and |β |2 is 1 state. For example if |α|2 = 0.6 so, |β |2 = 0.4. This

means that 60% possibility will collapse in 0 state and 40% in 1 state. As this was

mentioned before α and β can be complex numbers as well.

Representation of a qubit on the Bloch Sphere (Figure 3.1).

In Figure 3.2, there is states of classical computers, it is clear to see either 0 or 1. And
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Figure 3.1: State of a qubit on the Bloch Sphere. [13]

Figure 3.2: States of deterministic classical, probabilistic classical, and quantum bits.
[13]

then, in the middle probabilistic computer is shown. In the last one is a quantum bit’s

state. Qubit’s state can be anywhere on Bloch Sphere.

Quantum Bits - Qubits:

So far, the notion “bit” has been explained in terms of classical computers and quantum

computers. ‘Bits’ are the fundamental units of classical information and computation.

But now it is time to start to use ’qubit’. What is a qubit? Qubit is a basic unit of

quantum computing. It is the same as classical bit at storing binary value. However the

difference is qubit has 0 and 1 values at the same time.
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A qubit can be represented with Dirac or matris notation:

α |0〉+β |1〉or

α

β



where α , β are complex numbers and normalization coefficients : |α|2 + |β |2 = 1.

One-qubit with vector notation:

|0〉=

1

0

ground state

|1〉=

0

1

excited state

Multiple Quantum Bits:

And here 2-qubit states representation is shown:

|ψ〉= α |00〉+β |01〉+ω |10〉+ γ |11〉

with α , β , ω , γ ∈ C. This is called a two-qubit quantum register as well.

and normalization coefficients : |α|2 + |β |2 + |ω|2 + |γ|2 = 1.

Vector representation is this:

|ψ〉= α



1

0

0

0


+β



0

1

0

0


+ω



0

0

1

0


+ γ



0

0

0

1


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A single qubit lives in the two-dimension Hilbert (complex) space which is C2.

Two-qubit quantum register be a normalized vector in C4 . C4 can be built in C2 vector

space by tensor product. And n-qubits is an element of 2n-dimensional complex vector

space which is C2n
.

Now a calculation on what is

|00〉, |01〉, |10〉 and |11〉 {|0〉 , |1〉}⊗{|0〉 , |1〉}

= {|0〉⊗ |0〉 , |0〉⊗ |1〉 , |1〉⊗ |0〉 , |1〉⊗ |1〉}

or {|00〉 , |01〉 , |10〉 , |11〉}

In Hilbert (complex) space: HAB = HA⊗HB.

And here 2-qubits systems notations:

|00〉= |0〉⊗ |0〉=

1

0

⊗
1

0

=



1

0

0

0


(3.1)

|01〉= |0〉⊗ |1〉=

1

0

⊗
0

1

=



0

1

0

0


(3.2)
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|10〉= |1〉⊗ |0〉=

0

1

⊗
1

0

=



0

0

1

0


(3.3)

|11〉= |1〉⊗ |1〉=

0

1

⊗
0

1

=



0

0

0

1


(3.4)

The gates need to be separated as one-qubit gates and multiple-qubit gates. In the Table

3.4 is the explanation of some of the most important gates.

Single Qubit Gates: These gates work on one-qubit; that is why they are called

one-qubit operations. The Bloch Sphere was introduced before (Figure 3.1). One can

consider one qubit in Bloch Sphere as 3-dim vector and these operations are turning

around the axis. This way a qubit can be located at any point on Bloch Sphere.

There is Pauli matrices and they are coming from Pauli Spin matrices. Here, identity 1

matris, “which we always have to put in there to complete our mathematics-it doesn’t

do a damn thing!” [9].

σz = Z =

1 0

0 −1

 and σx = X =

0 1

1 0

 (3.5)
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Table 3.1: How X Gate Changes the states.
1-qubit states X Gate After X Gate
|0〉 → |1〉
|1〉 → |0〉

σy = Y =

0 −i

i 0

 and σ0 = I =

1 0

0 1

 (3.6)

And these are Hermitian.

Pauli-X Gate: Pauli-X Gate gives a tour around x-axis through π . This gate has

equivalent on classical computer as NOT Gate. It changes |0〉 state to |1〉 state and

opposite way like: |1〉 to |0〉.

The Pauli-X gate’s circuit representation is:

X

The matrix representation for this operator is: X ≡

0 1

1 0


The Dirac notation is: X = |1〉〈0|+ |0〉〈1|.

Pauli-Y Gate: With Pauli-Y Gate, qubit will turn around y-axis through π . Now

X-gate has extra phase. |0〉 to i |1〉 and |1〉 to −i |0〉.

The Pauli-Y gate’s circuit representation is:

Y

The matrix representation for this operator is: Y ≡

0 −i

i 0


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The Dirac notation is: Y = i |1〉〈0|− i |0〉〈1|.

Pauli-Z Gate: Again as can be understood by its name, with this gate, qubit will turn

around z-axis through π . |0〉 to |0〉 and |1〉 to −i |1〉.

The Pauli-Z gate’s circuit representation is:

Z

The matrix representation for this operator is: Z ≡

1 0

0 −1


The Dirac notation is: Z = |1〉〈0|− |0〉〈1|.

There is one more matrix called as Identity I.

I ≡

1 0

0 1



Plus, X2 = I, Y 2 = I and Z2 = I. Because all Pauli gates are unitary. That is why their

square will be equal to Identity.

For example:

X⊗X =

0 1

1 0

⊗
0 1

1 0

=

1 0

0 1

= I

Hadamard Gate:

This is the one of the most important gates, because, on which qubit this gate is used it
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will be in superposition state. And also Hadamard gate is used on same qubit it will

become or return same qubit as before. This gate belongs to quantum computers, no

equivalent on classical computers.

The Hadamard gate’s circuit representation is:

H

And matrix representation is: H ≡ 1√
2

1 1

1 −1



|0〉 H 1√
2
(|0〉+ |1〉

|1〉 H 1√
2
(|0〉− |1〉

H⊗|0〉= 1√
2

1 1

1 −1

⊗
1

0

=
1√
2

1

1

=
1√
2

[1

0

+

0

1

]

=
1√
2
(|0〉+ |1〉) = |+〉

H⊗|1〉= 1√
2

1 1

1 −1

⊗
0

1

=
1√
2

 1

−1

=
1√
2

[1

0

+

 0

−1

]

=
1√
2
(|0〉− |1〉) = |−〉

Here the new basis states are observed: |+〉 and |−〉. These are orthonormal basis states.
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Figure 3.3: Bloch sphere representation of the Hadamard operator applied to |0〉 and
|1〉 [18].

Figure 3.4: Visualization of the Hadamard gate on the Bloch sphere, acting on the input
state (|0〉+ |1〉)/

√
2. [14]

They called Hadamard basis too.

|+〉= 1√
2
(|0〉+ |1〉) (3.7)

|−〉= 1√
2
(|0〉− |1〉) (3.8)

Measurement of |+〉 , |−〉 probabilities are |α +β |2/2 and |α−β |2/2 , respectively.

Hadamard gate does rotations and reflections. In figure 3.4, it starts 1√
2
(|0〉+ |1〉. It
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does 90◦ around y axis and then a rotation about x axis 180◦. The result is |0〉.

H
[
|0〉+ |1〉√

2

]
=
|0〉+ |1〉

2
〈0|0〉+ |0〉− |1〉

2
〈1|0〉

+
|0〉+ |1〉

2
〈0|1〉+ |0〉− |1〉

2
〈1|1〉

=
|0〉+ |1〉

2
+
|0〉− |1〉

2
= |0〉 (3.9)

H
[
|0〉− |1〉√

2

]
=
|0〉+ |1〉

2
〈0|0〉+ |0〉− |1〉

2
〈1|0〉

−|0〉+ |1〉
2

〈0|1〉− |0〉− |1〉
2

〈1|1〉

=
|0〉+ |1〉

2
− |0〉− |1〉

2
= |1〉 (3.10)

Multiple Qubit Gates:

CNOT Gate: The name CNOT comes from Controlled-NOT. This gate is one of the

other most important gates. This gate has a difference from NOT gate. The difference

is that: there is control qubit and target qubit. It checks first bit and if it is 0 no changes

on second bit, but if it is 1 it changes second bit, see Figure 3.5.

It can be used on 2-qubit states (00,11,01,10). This does not mean, it can only be used

on 2-qubit states, also used for 3-qubit and n-qubit states as well, See Figure 3.6.

The CNOT gate’s circuit representation is:
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Figure 3.5: The representation of CNOT gate of control and target [18].

Table 3.2: How CNOT Gate changes the states.
2-qubit states CNOT Gate After CNOT Gate
|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

CNOT Gate

•

Here, how the CNOT gate works:

x • x

y x⊕ y

and here matrix form of CNOT Gate:

CNOT ≡



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


CNOT operator with Dirac notation:

CNOT = |00〉〈00|+ |01〉〈01|+ |11〉〈10|+ |10〉〈11|
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And now it is necessary to look at how it changes the states of (00,11,01,10).

(CNOT )⊗|00〉=



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


⊗



1

0

0

0


=



1

0

0

0


= |00〉 (3.11)

(CNOT )⊗|01〉=



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


⊗



0

1

0

0


=



0

1

0

0


= |01〉 (3.12)

(CNOT )⊗|10〉=



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


⊗



0

0

1

0


=



0

0

0

1


= |11〉 (3.13)

(CNOT )⊗|11〉=



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


⊗



0

0

0

1


=



0

0

1

0


= |10〉 (3.14)

CNOT gate is the gate qubits can be put in entanglement state with it.

SWAP Gate: This gate changes two qubits with each other. It is mostly used with

super conductive circuits.
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Figure 3.6: The representation of CNOT gate on 3-qubit states. [14].

The SWAP gate’s circuit representation is:

SWAP Gate

×

×

And matrix representation is:

SWAP≡



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



How SWAP Gate works:

|x〉 × |y〉

|y〉 × |x〉

Toffoli Gate: It is called as CCNOT gate too. The name is CCNOT coming from

controlled-controlled-NOT. The gate is mostly like CNOT gate. For this gate 3-qubits

are needed. Now first 2-qubits are control bits and it changes the third one. The rule is

first two qubits should be |1〉 and then X gate will do operation on 3. qubit.

The Toffoli gate’s circuit representation is:
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Toffoli Gate

•

•

And matrix representation:

To f f oli≡



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



Toffoli operator with Dirac notation:

To f f oli = |000〉〈000| + |001〉〈001| + |010〉〈010| + |011〉〈011| + |100〉〈100| +

|101〉〈101|+ |111〉〈110|+ |110〉〈111|

And now how it changes the states of (000,001,010,011,100,101,110,111), see Table

3.3.

3.1 Circuit Theory

The Linear Algebra Formulation of the Circuit Model: A qubit in state of ‘0‘

probability shown with p0 and in state of ‘1‘ probability is p1. And here is 2-dim
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Table 3.3: How Toffoli Gate Changes the states.
3-qubit states Toffoli Gate After Toffoli Gate
|000〉 → |000〉
|001〉 → |001〉
|010〉 → |010〉
|011〉 → |011〉
|100〉 → |100〉
|101〉 → |101〉
|110〉 → |111〉
|111〉 → |110〉

vector notation: p0

p1


With this information |0〉 and |1〉 can be written as

|0〉=

1

0


p0 = 1 because it is written as |0〉 so, having probability of state ‘0‘ is one and ‘1’s is

zero. That is why p1 = 0. With same logic |1〉 is written as

|1〉=

0

1


This part is really important. Because a particular gate can be used instead of some

other gates. For example, CNOT gate is used three times on a qubit it will be equivalent

to SWAP gate. Here;

• •

•

≡ ×

×

It is now time to show how after three times CNOT Gate will be equal to SWAP Gate,
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starting with |10〉 and ending with |01〉, showing how SWAP gate works.

|1〉 • |1〉 |0〉 • |0〉

|0〉 |1〉 • |1〉 |1〉

≡ |1〉 × |0〉

|0〉 × |1〉

Here the most important gates are shown below.
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Table 3.4: Quantum Gates
Name Circuit Representation Matrix Representation

Qubit Wire carrying a single qubit
(time goes left to right)

Classical Bit Wire carrying a single
classical bit

n qubits /n Wire carrying n qubits
Measurement Projection onto |0〉 and |1〉

Pauli-X X
[

0 1
1 0

]
Pauli-Y Y

[
0 −i
i 0

]
Pauli-Z Z

[
1 0
0 −1

]
Hadamard H 1√

2

[
1 1
1 −1

]
S S

[
1 0
0 i

]
T T

[
1 0
0 eiπ/4

]

CNOT •


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



C(Z) •

Z


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



SWAP ×

×


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



Toffoli •

•



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


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Chapter 4

GROVER’S ALGORITHM

Considering a map of a city is given and one is supposed to find the shortest route

by passing through all streets on this map. To find the shortest route, one needs to

check all streets one by one. On the other hand, it might be said a search algorithm is

created and the answer may be found in a quicker way. This is possible with Quantum

Search Algorithm which is known Grover’s Algorithm as well. It is known as the fastest

search algorithm. Grover’s Algorithm is a quantum search algorithm and it is a quantum

algorithm in which the qualities of quantum systems can be used, because it works with

quantum superposition of states. It can do a search in unordered sets. It uses iteration to

find the answer. It is quicker than classical algorithms, especially if there are too many

items to search to find the answer, since it has a quadratic speed up. For trying to find

the shortest route with classical way it takes N times but with Grover’s Algorithm it is

root of N times. Like most of quantum algorithms, Grover’s Algorithm uses ‘amplitude

amplification’.

Figure 4.1: Circuit diagram for Grover’s algorithm, with a scratch qubit for the oracle
[18].
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The way of these algorithms is shifting of selected phase which one has one state of

a quantum system and satisfies some conditions for all iterations. Algorithm shifts a

phase as π and change that state to ’−’.

Probability of that state stays the same but amplitude changes. As it was said earlier the

name is amplitude amplification.

One can consider there is an unordered set of N = 2n items and only one of them is

marked. The mission is finding this marked item.

One can only suppose that there is a function called as f and it has following properties:

f (x) = 1 if x is marked

f (x) = 0 otherwise

By ‘oracle’ the list of f can be searched. With classical way O(N) times need to be

calculated but with quantum only O(
√

N) operations. This is quadratic speed up. It

works with two different ways. First one is Phase Inversion and second one is Inversion

About Mean. In next chapter the steps of Grover’s Algorithms and why it runs in

√
N steps will be described. However this is not enough to understand that how it is

implemented the steps yet. Thus, the next part is about how one can implement the

steps.

Here an explanation is given about how Grover’s Algorithm works. To begin with, a

”Digital haystack” can be considered:
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N-1

x

3
2
1
0

..

.

..

.

Here is the problem.

Problem: Given f : {0,1, ...,N−1}→ {0,1} Find x : f (x) = 1

There is one special entry and one needs to find that special entry. Only in two steps

that special entry in Grover’s Algorithm will be reached;

1) Phase Inversion

2) Inversion About Mean

1) Phase Inversion:

Assuming that the special entry is f (x∗) = 1, that is what we are looking for at any

given iteration of the algorithm. So, the algorithm will work in a number of iteration

and actually the number of iteration is going to be
√

N but how? At any iteration what

the algorithm continues is a superposition over all ’x’s. So, it can be shown as,

∑
x

αx |x〉

Actually in the beginning, one may not have any idea which value of x is looked for.
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That’s why all αx =
1√
N

.

Phase inversion in step two does that it changes the superposition like this:

If x 6= x∗ it will leave it alone. This means that if it is not the special element. Otherwise,

it will invert the phase (x = x∗).

αx =
1√
N
→ ∑

x 6=x∗

(
αx |x〉−αx∗ |x∗〉

)

N-1x∗

the red line is amplitude of x∗ and x∗ will be inverted.

N-1
x∗

x∗−1 x∗+1

The red line inverted but blue lines will stay unchanged. Whatever x∗ was stays same

but inverted. That is the first operation.

2. Inversion About Mean:
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This is the second operation which is inversion about the mean.

Starting point with a superposition: ∑x αx |x〉.

What does it mean ’Inversion About Mean’ ? µ can be described here. It means ’mean’,

and is equal to

µ =
∑

N−1
x=0 αx

N

This is the average value of all the amplitude. Then time to settle the average.

Now is time to flip the amplitude about the mean:

N-1

αx→ (2µ−αx) = µ +(µ−αx)∑
x

αx |x〉 →∑
x
(2µ−αx) |x〉

αx < µ . This means that how much it is smaller than µ when it flips up. It is totally the

same as when it flips down.

Now time to explain how Grover’s Algorithm works.

Problem: Given f : {0, ...,N−1}→ {0,1} such that f (x) = 1 for exactly one x, find

x.
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x

αx

N-1

1√
N

0

Initially nothing is known about the marked item (x∗, special entry). So, to start with all

item’s amplitude is equal to 1/
√

N. Then the phase inversion is done.

Till here x∗ was equal to 1/
√

N but now it is equal to −1/
√

N.

x

αx

x∗

N-1

1√
N

0

µ

Now, it is time for the inversion about the mean. So, what is the mean? It would have

been 1/
√

N if one had not done the phase inversion. What the phase inversion does is it

lowers the mean just a little bit. Now what happens when about the is mean inverted?
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x

αx

x∗ N-1

∼ 3√
N

0

µ

Everything except x∗ amplitude drops a bit. It drops as much below the mean as it was

about the mean before. So, what happened to x∗. When it is flipped up it goes up as

much about this mean as it was below and it was below about 2/
√

N. So it goes up

2/
√

N and approximately about this mean above this mean was approximately 1/
√

N.

So x∗ got it’s amplitude increased by about 2/
√

N in these two steps. x∗ increased from

1/
√

2 to ∼ 3/
√

N. After this point proceeding will be same. It can continue these steps

over and over again. Each time this is done, each time the amplitude of x∗ increases

about 2/
√

N. With this case it will go to 5/
√

N, 7/
√

N and etc. It goes on and on in

roughly
√

N steps it reaches this amplitude to about 1/
√

2 . At this point if this is

measured, the chance that one can see the x∗ is on the needle ∼ 1/
√

2 and it is x∗’s

amplitude. And now the marked item is founded.

How many steps are needed?

What is the amplitude of the rest of the elements when the needle in the haystack (the

marked element) has 1/
√

2? The rest amplitude should be at least 1/
√

2N (each of

them).
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At this point how much improvement is made per step? One will reach 1/
√

2 in O(
√

N)

steps.

x∗
≥ 1√

2N

Improvement / step ≥ 2√
2N

=
√

2
N . So, to reach 1√

2
inO(
√

N) How many steps are

needed?

Number of steps ≤
1√
N√
2
N

=
√

N
2

This was analysis of Grover’s Algorithm. How is Grover’s Algorithm implemented in

these two steps?

Phase Inversion:

What was done was to take the marked element the one where f (x) = 1 and invert it’s

face. That means if it’s face was positive it was made negative as can be seen below in

the figures.

Problem: Given f : {0, ...,N−1}→ {0,1} such that f (x) = 1 for exactly one x, find

x.
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x

αx

N-1

1√
N

0

this turns to

x

αx

x∗

N-1

1√
N

0

So, what exactly is going on here, if it is started with a superposition:

∑αx |x〉 →phase
inversion ∑

x
αx(−1) f (x) |x〉

The phase that needs to be applied is (−1) f (x).

This box can be changed to (−1) f (x) |x〉. How will this be done? All needs to be done

is change |0〉 to |−〉 state. |0〉 is the answer bit!
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x

U {

x
x x
x x
x x
x x
|0〉 f (x)

0 0
0 0
0 0

∑x αx |x〉

F

∑x αx(−1) f (x) |x〉

|−〉 |−〉
0 0
0 0
0 0

And now this |−〉 state will stay unchanged and effect of f (U f ) is put that phase

(−1) f (x) part. How? |0〉 and |b〉 are replaced. So, b is 0 or 1. Now what is the output?

| f (x)⊕b〉. If b start with 0 then output is f (x). But, if b start with 1 output is opposite

of f (x).

b / f (x) 0 1

0 0 1

1 1 0

|−〉 |−〉 −|−〉

For first case f (x) = 0;

when b is 0, output 0. Because output is the same with f (x) when b is 0. On the other

hand, when b is 1, output 1. Because, when b is 1 then the output is opposite of f (x)

that is why output will be 1.

And the second case f (x) = 1;
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when b is 0, output 1. when b is 1, output 0.

Now it is time to see what happens if one starts with a state |−〉 which is:

|−〉= 1√
2
|0〉− 1√

2
|1〉 .

When |−〉 is put in it and when f (x) is 0: In the case that when f (x) and b was 0 output

was same with input which was 1. That’s mean if input is |−〉 output will be exactly

|−〉. What happens in the case of when f (x) was 1; when b was 0 output was 1. So the

result of |−〉 ’s first part will be: 1√
2
|0〉=> 1√

2
|1〉 and when b was 1 output was 0. So

the result of |−〉 ’s second part will be: 1√
2
|1〉=>− 1√

2
|0〉. The state that is obtained

from output is exactly −|−〉.

−|−〉= 1√
2
|1〉− 1√

2
|0〉.

That’s what was done up here. When input is |−〉 and if f (x) = 0 it is just exactly the

state −, if f (x) = 1 one picks up a phase of −1. So, that’s Phase Inversion! Now it

can be said that output of |−〉 is (−1) f (x) |−〉.

What about Inversion About Mean? Considering that inversion about mean, it has

started with superposition

∑
x

αx |x〉

Define the mean of the all amplitudes to be average value of all the amplitudes.

µ =
∑

N−1
x=0
N

(4.1)
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Figure 4.2: The general view of Grover’s algorithm as circuit

Now, what has been reached is this transformation

αx→ (2µ−αx) = µ +(µ−αx)

∑
x

αx |x〉 →∑
x
(2µ−αx) |x〉

So what the quantum circuit to do is in the Figure 4.2. All inputs will be ∑x αx |x〉

except last input. The last qubit’s input will be |−〉 and then Hadamard transformation

in the first step. Right after that one apply the function on n qubits. But what is going to

happen on when last qubit input is |−〉? And inputs called as y = ∑x αx |x〉.

If last qubit input is 0;

0 if y = 0, ...,0

1 if y 6= 0, ...,0

This is unitary transformation and now consider a function from n bits to one bit:

g : {0,1}n→{0,1}

the function g(0, ...0) = 0 and g(y) = 1 if y 6= 0, ...0.

And the middle of the circuit is Ug. And then one can finish up by doing Hadamard
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transform on n qubits.

Going back to that Inversion About Mean part. It turns out that inversion about mean is

the same as doing reflection about means looking a quantum state. |u〉= 1√
N ∑x |x〉.

One way to do it is to transform u in to the all 0’s vector and than do reflection about

0’s vector:

1) Transform |u〉 into |0...0〉

2) Reflection about |0...0〉

3) Transform |0...0〉 back into |u〉.

What unitary transform should be taken? It’s clearly H transform H⊗n. How one

reflects about all 0 vectors. All 0 vectors should be alone and everything is orthogonal

to it, one multiply by −1. The transformation does this:

H⊗n



1 0 . . 0

0 −1 . .

. . . . .

. . . 0

0 . . 0 −1


(4.2)

and than transform back H⊗n its own inverse, so that is the transformation that needs to

be carried out. If one checks again Figure 4.2 that is exactly what is done there. One
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applied phase of −1 if and only if y 6= 0, ...0.

H⊗n



1 0 . . 0

0 −1 . .

. . . . .

. . . 0

0 . . 0 −1


H⊗n = H⊗n





2 0 . . 0

0 0 . .

. . . . .

. . . 0

0 . . 0 0


− I


H⊗n

= H⊗n



1 0 . . 0

0 −1 . .

. . . . .

. . . 0

0 . . 0 −1


H⊗n−H⊗nIH⊗n︸ ︷︷ ︸

I

Remember N = 2n = 22

=



2/
√

N 0 . . 0

. . . .

. . . . .

. . . . 0

2/
√

N . . 0 0


H⊗n− I =



2
N

2
N . . 2

N

. . . .

. . . . .

. . . .

2
N . . . 2

N


− I
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=



2
N −1 2

N . . 2
N

. . . .

. . . . .

. . . .

2
N . . . 2

N −1


The question is why this matrix does an inversion about the mean? The answer is that

when it operates on α’s. So, what is 2
N ∑y αy? It is just equal to 2µ . Because µ =

∑
N−1
x=0
N .



2
N −1 2

N . . 2
N

. . . .

. . . . .

. . . .

2
N . . . 2

N −1





α0

.

.

αx

.

.

αN−1



→



2
N ∑

N−1
y=0 αy−αx



= 2µ−αx

The result is exactly the same with inversion about mean.

If one checks Figure 4.3, the first part is initialization and right after that (U f ) is the

phase inversion and last three boxes are for inversion about mean. This whole circuit of

Grover’s algorithm but only for one iteration.

The computational complexity of the Grover’s algorithm is only O(
√

N) iterations.
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Figure 4.3: The general view of Grover’s algorithm as circuit

4.1 Worked Example with 3 Qubits

It can be shown how Grover’s Algorithm works with 3 qubits. As it was explained

before with N = 2n when there are 3 qubits it means that N = 23. That special item was

called as x∗ before. When it is assumed that x∗ = 011 . n = 3 qubits are needed and can

be described as

|x〉=α0 |000〉+α1 |001〉+α2 |010〉+α3 |011〉+α4 |100〉+α5 |101〉+α6 |110〉+α7 |111〉

αi is the amplitude of the state of i. In Grover’s Algorithm all states initialized to 0 and

after Hadamard transformation normalized to 1: 1 |000〉. After the Hadamard

transformation each state’s amplitude will be 1√
N

. For this example N = 8. So,

N = 1√
8
= 1

2
√

2
. Besides, all states have equal probability of being in any of the eight

possible states which are:

H3 |000〉= 1
2
√

2
|000〉+ 1

2
√

2
|001〉+ ...+ 1

2
√

2
|111〉= 1

2
√

2 ∑
7
x=0 |x〉= ψ

After this step, this graph can be shown as the situation of these 3 qubits:

αψ = 1
2
√

2

|000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉

A calculation can be made about how many iterations needed to do with π

4

√
N.
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For 3 qubits N = 8 so, π

4

√
8 = 2π

4

√
2 = π

2

√
2≈ 2.22. It takes 2 rounds.

|x〉= 1
2
√

2
|000〉+ 1

2
√

2
|001〉+ 1

2
√

2
|010〉− 1

2
√

2
|011〉+ ...+ 1

2
√

2
|111〉

Geometric representation of this step:

αψ = 1
2
√

2

αψ = −1
2
√

2
|000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉

Now, time to that diffusion transform 2 |ψ〉〈ψ|− I after this step the x∗ ’s amplitude

will be increased or decreased.

[2 |ψ〉〈ψ|− I] |x〉= [2 |ψ〉〈ψ|− I]
[
|ψ〉− 2

2
√

2
|011〉

]

= 2 |ψ〉〈ψ| |ψ〉︸ ︷︷ ︸
1

−|ψ〉− 2√
2
|ψ〉〈ψ| |011〉+ 1√

2
|011〉

〈ψ| |ψ〉= 1, Here 〈ψ| |ψ〉= 8 1
2
√

2

[ 1
2
√

2

]
= 1.

= 2 |ψ〉− |ψ〉− 2√
2

(
1

2
√

2

)
|ψ〉+ 1√

2
|011〉

= |ψ〉− 1
2
|ψ〉+ 1√

2
|011〉= 1

2
|ψ〉+ 1√

2
|011〉

=
1
2

[
1

2
√

2

7

∑
x=0
|x〉
]
+

1√
2
|011〉

=
1

4
√

2

7

∑
x=0,x 6=3

|x〉+ 1
4
√

2
|011〉+ 1√

2
|011〉

=
1

4
√

2

7

∑
x=0,x 6=3

|x〉+ 5
4
√

2
|011〉
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The notation will be as show before:

|x〉= 1
4
√

2
|000〉+ 1

4
√

2
|001〉+ 1

4
√

2
|010〉+ 5

4
√

2
|011〉+ ...+ 1

4
√

2
|111〉

Again in geometric way:

α|011〉 =
5

4
√

2

αψ = 1
2
√

2

α|011〉 =
−1

2
√

2

α|x〉 =
1

4
√

2

|000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉

Till here is the first completed iteration and now time for the second iteration with same

two transformation:

|x〉= 1
4
√

2
|000〉+ 1

4
√

2
|001〉+ 1

4
√

2
|010〉− 5

4
√

2
|011〉+ ...+

1
4
√

2
|111〉

=
1

4
√

2

7

∑
x=0,x 6=3

|x〉− 5
4
√

2
|011〉

=
1

4
√

2

7

∑
x=0
|x〉− 6

4
√

2
|011〉= 1

2
|ψ〉− 3

2
√

2
|011〉

after oracle touch and the diffusion transform:

[2 |ψ〉〈ψ|− I]
[

1
2
|ψ〉− 3

2
√

2
|011〉

]

= 2
(

1
2

)
|ψ〉〈ψ| |ψ〉− 1

2
|ψ〉−2

(
3

2
√

2

)
|ψ〉〈ψ|011|+ 3

2
√

2
|011〉

= |ψ〉− 1
2
|ψ〉− 3√

2

(
1

2
√

2

)
+

3
2
√

2
|011〉=−1

4
|ψ〉+ 3

2
√

2
|011〉

=−1
4

[
1

2
√

2

7

∑
x=0,x 6=3

|x〉+ 1
2
√

2
|011〉

]
+

3
2
√

2
|011〉

=− 1
8
√

2

7

∑
x=0,x 6=3

|x〉+ 11
8
√

2
|011〉
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and with other notation:

|x〉=− 1
8
√

2
|000〉− 1

8
√

2
|001〉− 1

8
√

2
|010〉+ 11

8
√

2
|011〉− ...− 1

4
√

2
|111〉

and again geometrically:

α|011〉 =
11

8
√

2

αψ = 1
2
√

2

α|011〉 =
−1

2
√

2

α|x〉 =
−1

8
√

2

|000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉

Now, it is easy to see the special item which is x∗ that how much it clearly stays ahead

from other states.

After this, it can be measured. Now it is time to find out the probability of |011〉 state.∣∣ 1
8
√

2

∣∣2 = 121/128≈ 94.5%

And also the probability of other states is∣∣−√7
8
√

2

∣∣2 = 7/128≈ 5.5%

It can be seen from this example that Grover’s Algorithm is approximately 17 times

more than to give the correct answer. This example was for when N = 8 means with

3 qubits. If the Grover’s Algorithm is used with much bigger number of qubits then

Grover’s algorithm will give more correct answer. Because it grows quadratic as O
√

N.
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Chapter 5

CONCLUSION

Up to now, what has been explained is the difference between classical computers and

quantum computers. What has been presented and discussed is expected to show how

efficient quantum computers are. Plus, it has also been shown that it is not possible to

simulate everything using classical computers. As has been mentioned before, nature

is so complicated and it is not possible to understand nature simply by simulating it.

That is why a machine is needed to simulate Nature. What is more, it has also been

shown that quantum computers can solve problems in very short period of time, with

more efficient results. This is because quantum algorithms are quicker than classical

algorithms.

In addition to these advantages, having both states like 0 and 1 gives many other

opportunities. For example infinite information can be stored in a qubit. The entire

Hamlet novel can be stored in a qubit, because of superposition. However, if one

observes that qubit, all information will be lost. It is going to act as classical bit. Having

said that, however, there is no need to be pessimistic. Quantum computing is growing

fast. Algorithms and simulations are evolving.

This study has showcased that Grover’s Algorithm is significantly faster than any

classical algorithm. There is an example of the difference between classical and

Grover’s algorithm.
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Considering a set of data, 1024 unsorted data and it is needed to find the special entry.

When it is unsorted data, the result will be found in 1024/2 = 512 steps. If all data

are sorted then n = 1024 = 210 so, in approximately 10 steps special entry would be

found. On the other hand, with Grover Algorithm it is
√

N =
√

210 and this is equal to

32. After 32 iterations the result is found. For Grover’s Algorithm no one needs to have

sorted data.

When using the classical methods, the special entry is found/calculated in 512 steps

but with Grover Algorithm it can be calculated in only 32. Furthermore, if the number

of entry increases Grover’s algorithm will be more successful to give the answer in a

shorter period of time. Because it has a quadratic speed up.
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Grover’s algorithm is followed as:

1) All qubits will be in superposition state with using Hadamard gate.

2) Implement the oracle to mark that special item. Oracle is the part that a phase

inversion.

3) Implement an amplification circuit to find the marked item by decreasing other states

amplitudes. Diffusion part will repeat π

4

√
N times.
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A.1

detailed explanation of Qiskit codes with the circuit. All circuits are showing in Figure 

An example with Qiskit. Qiskit is the IBM package which is public [11]. Here is a 

Steps in Grover’s Algorithms by circuits:

Steps in Grover’s Algorithms by circuits

/ home / f g n y i l m a z / . l o c a l / l i b / p y t h o n 3 . 6 / ∗

I n [ 4 ] : IBMQ . s a v e a c c o u n t ( ’ 24 f c ∗

I n [ 3 ] : i m p o r t math

: e x e c u t e , IBMQ , Aer )

C l a s s i c a l R e g i s t e r , Q u a n t u m C i r c u i t ,

I n [ 2 ] : from q i s k i t i m p o r t ( Q u a n t u m R e g i s t e r ,

example I n [ 1 ] : i m p o r t numpy a s np

  Listing A.1: Grover’s Algorithm - Phyton 

Here is the beginning of coding:

Connecting to IBM Quantum Computer with Qiskit:

At the end measurement. See Figure A.24)



w a r n i n g s . warn ( ’ C r e d e n t i a l s a l r e a d y p r e s e n t . ’

In [ 5 ] : IBMQ . l o a d a c c o u n t ( )

/ u s r / l i b / py thon3 / d i s t−p a c k a g e s / s ∗

In [ 6 ] : from q i s k i t i m p o r t compi l e

In [ 9 ] : p r o v i d e r = IBMQ . g e t p r o v i d e r ( hub= ’ ibm−q ’ )

In [ 1 0 ] : p i = math . p i

: q= Quan tumReg i s t e r ( 4 , ’ q ’ )

: c= C l a s s i c a l R e g i s t e r ( 4 , ’ c ’ )

: qc= Q u a n t u m C i r c u i t ( q , c )

Initialising Circuit:

Here the first step of doing initialisation of qubit. One have this state with Hadamard
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Figure A.1: The general schematic overview of the circuit for Grover’s Algorithm. [20]

Figure A.2: All circuits of Grover’s Algorithm for 2-qubits.[20]



Having all states in Oracle:

P r e p a r i n g O r a c l e c i r c u i t . . . .

I n [ 1 4 ] : qc . x ( q [ 0 ] )

: qc . x ( q [ 1 ] )

: qc . x ( q [ 2 ] )

: qc . x ( q [ 3 ] )

Out [ 1 4 ] : <q i s k i t . c i r c u i t . i n s t r u c t i o n s e t .

I n s t r u c t i o n S e t a t 0 x7fa23a2a2c18>
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Figure A.3: The first step is ‘Initialisation’.[20]

I n s t r u c t i o n S e t a t 0 x 7 f a 2 3 a 2 a 2 e b 8 >

Out [ 1 2 ] : < q i s k i t . c i r c u i t . i n s t r u c t i o n s e t .

: q c . h ( q [ 3 ] )

: q c . h ( q [ 2 ] )

: q c . h ( q [ 1 ] )

I n [ 1 2 ] : q c . h ( q [ 0 ] )

I n i t i a l i s i n g C i r c u i t . . .

gate as mentioned before. Hadamard gate on each qubit as Figure A.3.



Measurement:

In [ 6 5 ] : qc . b a r r i e r ( q )

: qc . measure ( q [ 0 ] , c [ 0 ] )

: qc . measure ( q [ 1 ] , c [ 1 ] )

: qc . measure ( q [ 2 ] , c [ 2 ] )

: qc . measure ( q [ 3 ] , c [ 3 ] )

Out [ 6 5 ] : <q i s k i t . c i r c u i t . i n s t r u c t i o n s e t .

I n s t r u c t i o n S e t a t 0 x7fa23a190cf8>

[ 6 6 ] : backend = p r o v i d e r . g e tIn b a c k e n d
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Figure A.4: The Oracle showed by dashed rectangle.[20]

Figure
 

A.5:
 

The
 

Grover
 

diffusion
 

gate.[20]

Figure A.6: The measurements are performed on first and second qubits.[20]



( ’ i b m q q a s m s i m u l a t o r ’ )

: p r i n t ( ’\ n E x e c u t i n g j o b . . . . \ n ’ )

: j o b = e x e c u t e ( qc , backend , s h o t s =100)

E x e c u t i n g j o b . . . .

I n [ 6 7 ] : r e s u l t = j o b . r e s u l t ( )

: c o u n t s = r e s u l t . g e t c o u n t s ( qc )

In [ 6 8 ] : p r i n t ( ’RESULT : ’ , coun t s , ’\ n ’ )

: p r i n t ( ’ P r e s s any key t o c l o s e ’ )

: i n p u t ( )

RESULT : { ’0100 ’ : 1 , ’ 0 10 1 ’ : 1 ,

’ 10 11 ’ : 47 , ’ 11 10 ’ : 1 ,

’ 01 11 ’ : 3 , ’ 11 0 0 ’ : 2 , ’ 10 0 0 ’ : 1 ,

’ 11 11 ’ : 2 , ’ 01 1 0 ’ : 2 , ’ 11 0 1 ’ : 2 , ’ 10 1 0 ’ : 3}

Examples of two states by IBM Quantum Simulator

State of |11〉 circuit by IBM Quantum Simulator:

The circuit of Grover’s algorithm that was executed on IBM’s 2-qubit quantum computer

and ibmqx4 was used [12]. These examples are on only 2-qubits and started with |11〉

state and then |10〉 state.
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Figure A.7: Whole Grover’s circuit with 3-qubits. [20]



And second example with |10〉. To having |10〉 state one uses X gates on first qubit.

And here again result of |10〉 state.
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Figure A.8: IBM Quantum simulator for |11〉 state [12].

Figure A.9: The result of |11〉 state from IBM Quantum simulator [12].

Figure A.10: IBM Quantum simulator for |10〉 state [12].

Figure A.11: The result of |10〉 state from IBM Quantum simulator [12].

A.9. It is obvious result is the same as what we were looking for.

Each example was executed by 1024 shots. This is the result of |11〉 state Fıgure 




