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ABSTRACT 

Selecting the optimum process parameter level setting for multi-quality processes is 

cumbersome. Robust parameter designs procedure that utilizes different strategies for 

improving performance/productivity during product and process design so that 

quality response can be obtained efficiently and optimally. An inevitable problem 

that is associated with the product and process design is in appropriating process 

variables that will yield optimal response. The complexity of the problem is peculiar 

with multiple response experiments (processes) where different factor level 

combinations yield varying responses. Previous methods are plagued with complex 

computational search, unrealistic assumptions, ignoring the interrelationship between 

responses and failure to select optimum process parameter level setting. This thesis 

proposes the implementation of modified variable return to scale (VRS) data 

envelopment analysis in the Robust Parameter Design (RPD) procedures to estimate 

and optimize responses of all non-dominated (significant) factors level combinations 

in multi-response experiments. This study also enhances the discriminatory tendency 

of the model by imposing VRS partitioning within the model.  

The model is conducted in a manner that with an adequate BPNN topology, 

experiment with incomplete, missing or censored data whenever encountered, could 

be investigated.  Here, standard DEA modes are allowed to self-assess, the upper 

bound is restricted and the VRS penalization coefficient is adopted to determine the 

optimum process parameter level setting. The proposed procedures are applied to 

seven different case studies and the results were compared with existing methods of 

principal component analysis (PCA), DEA based ranking approach (DEAR), genetic 
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algorithm (GA), grey relational analysis (GRA) and benevolent formulation (BF). 

The effectiveness of the proposed model measured by the total anticipated 

improvement yielded the highest total improvement over the existing methods. In 

overall, many inefficient DMUs that would have been promoted as efficient by the 

standard DEA models were revealed. The discriminative tendency further gives 

insight to DMUs that are within the convex set of the factor level settings and those 

that are not, thereby making the computation search for the optimal easy and simple. 

Keywords: VRS modified and penalization coefficient, robust parameter 

optimization, DEA discrimination, integrated exergetic-data envelopment analysis, 

multi-response robust parameter procedures 
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ÖZ 

Çok kaliteli işlemler için optimum işlem parametre seviyesi ayarının seçilmesi 

zahmetlidir. Ürün ve süreç tasarımı sırasında performans / üretkenliği arttırmak için 

farklı stratejilerden yararlanan sağlam parametre tasarımları prosedürü, böylece 

kalite yanıtının verimli ve optimal bir şekilde elde edilebilmesi için. Ürün ve süreç 

tasarımı ile ilişkilendirilen kaçınılmaz bir sorun, optimal yanıtı sağlayacak süreç 

değişkenlerini kullanmaktır. Problemin karmaşıklığı, farklı faktör seviyesi 

kombinasyonlarının değişken tepkiler verdiği çoklu cevap deneyleri (süreçleri) ile 

özeldir. Önceki yöntemler, karmaşık hesaplamalı arama, gerçekçi olmayan 

varsayımlar, yanıtlar arasındaki ilişkiyi görmezden gelmek ve optimum işlem 

parametresi seviyesi ayarını seçememekle boğuşmaktadır. Bu tez, çoklu yanıt 

deneylerinde, baskın olmayan (önemli) faktörler düzeyindeki tüm kombinasyonların 

yanıtlarını tahmin etmek ve optimize etmek için Sağlam Parametre Tasarımı (RPD) 

prosedürlerinde, ölçek değiştirmeli (VRS) veri zarflama analizine modifiye değişken 

getirisinin uygulanmasını önermektedir. Bu çalışma aynı zamanda modelde VRS 

bölümlendirmesi uygulayarak güçlü parametre prosedüründe modifiye değişken 

dönüş ölçeğine (VRS) modelin ayrımcı eğilimlerini de arttırmaktadır. 

Model, yeterli bir BPNN topolojisi ile, karşılaşılan eksik, eksik veya sansürlenmiş 

verilerle deneylerin araştırılabileceği bir şekilde gerçekleştirilmiştir. Burada, standart 

DEA modlarının kendi kendini değerlendirmelerine izin verilir, üst sınır kısıtlanır ve 

optimum işlem parametre seviyesi ayarını belirlemek için VRS cezalandırma 

katsayısı benimsenir. Önerilen prosedürler literatürden yedi (7) farklı vaka 

çalışmasına uygulanmış ve sonuçlar, temel bileşen analizi (PCA), DEA tabanlı 
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sıralama yaklaşımı (DEAR), genetik algoritma (GA), gri ilişkisel analiz (GRA) ile 

karşılaştırılmıştır. ) ve yardımsever formülasyon (BF). Önerilen modelin beklenen 

toplam iyileşme ile ölçülen etkinliği, mevcut yöntemler üzerinde en yüksek toplam 

iyileşme sağlamıştır. Genel olarak, standart DEA modelleri tarafından verimli olarak 

tanıtılacak çok sayıda verimsiz DMU ortaya çıkar. Daha da ilginç olarak, faktör 

seviyesi ayarlarının dışbükey kümesi içinde bulunan ve aramada dikkate alınmaması 

gereken DMU'lara içgörü sağlayan ayırt edici eğilim, hesaplama raporunu diğer 

rapor edilen yöntemlere kıyasla kolay ve basit hale getirmektedir. 

Anahtar Kelimeler: değiştirilmiş VRS ve cezalandırma katsayısı, gürbüz parametre 

optimizasyonu, DEA ayrımcılığı, ekserjetik yıkım dağılım eğrisi, entegre ekserjetik 

veri zarfı analizi, çoklu yanıt gürbüz parametre prosedürleri 
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Chapter 1 

INTRODUCTION  

1.1 Background of Study 

The old, online traditional methods of quality assurance are based solely and 

primarily on inspecting products as they are discharged from the production line and 

rejecting those products that fail to meet up with the specified acceptance range. 

However, it has been pointed out that no amount of inspection can improve the 

product's quality attributes and that quality must be built into the product right from 

conception (Taguchi et al., 2005). Robust parameter design is an engineering 

procedure that utilizes different strategies for improving performance during product 

and process design so that quality response can be obtained efficiently and optimally. 

This off-line quality control procedure idea stemmed up due to the need to enhance 

the dependability of controllable factors to the effects of the variations in the 

uncontrollable factors so that the overall quality response is insensitive to the effects 

of the variations (Taguchi et al., 2005; Al-Refaie and Al-Tahat, 2011). It involves 

experimental design using orthogonal arrays techniques to determine optimal factor 

level combinations for a specified efficiency or performance of quality indicators, 

usually signal-to-noise (SN) ratio. However, the robust parameter could not be used 

to attain optimum factor level combination that will maximize the multi-response 

objective. Liao (2004) described the Taguchi method as an efficient method used in 

off-line quality control in that the experiment design technique is combined with the 

quality loss. However, Wysk et al. (2000) informed that Taguchi was quick to point 
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out that no amount of inspection can improve a product and that quality must be 

designed into a product right from conception.  

Taguchi method has been used to improve quality through finding the optimal 

controllable factor combination (parameter factors) that will reduce the effects of 

variations due to the presence of the uncontrollable factor (noise factors) at both 

process and product design stage. Both parameter and noise factors are the input 

while the specified quality target serves as the response. It was found by Al-Refaie 

and Al-Tahat (2011) that one major problem of the Taguchi method ever identified 

was its inability to effectively and efficiently optimize multiple response problems. 

Taguchi method has been successful in its applications to single response 

experiments. In the real world and in reality, more than one quality target is 

necessary for most processes and industrial application even as customers' quality 

concerns and utility for consuming a product are usually more than one and thus 

given rise to multiple response problems. Attempts have been made by various 

researchers to solve this problem and a robust parameter design has been achieved 

through the use of data envelopment analysis (DEA) and artificial neural network 

(ANN) within the Taguchi procedures. However due to the failure of these attempt 

vis-a-vis the weak DEA model used. Also the ANN topology used in their various 

solutions was not selected by training and cross validation and thus the level of the 

uncertainty could not be adequately ascertained. Therefore there is the need to carry 

out further studies on to better solve the menace of classical DEA models in order to 

enhance the solution to the multi-response experiments in the robust parameter 

procedures domain. The purpose of the ANN in the proposed model of this study is 

to ensure that the model is versatile, viable and applicable to solve multiple response 

problems in the robust parameter procedures, in all situations, especially when 
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censured or missing data is encountered. With the inclusion of how to train, validate 

and select an adequate ANN, the proposed model is saved from being redundant in 

the presence of missing data.   

1.2 Concept of Robust Parameter Design  

Many companies have also discovered that the traditional techniques of quality 

control were not competitive with the Japanese quality control methods that have 

been in use since the 1940s. Traditional quality control methods are based strongly 

and solely upon inspecting products during production line and rejecting those 

products that fail certain acceptance or quality parameters or ranges. Taguchi method 

allows for improvement in the consistency of production output and performance 

irrespective of the environment in which it is carried out. Taguchi design noted that 

no amount of inspection can improve a product because not all factors that cause 

variability can be controlled. Therefore quality must be designed into the product 

from conception.  

Factors are classified into two distinct classes of those that are controllable and those 

are uncontrollable (noise). Taguchi therefore aimed at identifying optimum 

controllable factor settings (level combination) that minimize process variability. 

There is the need to understand these classes of process factors. Controllable factors 

(design or control factors) are those factors that can be easily moderated, adjusted or 

controlled by the designer. These are not limited to material choice, cycle time, or 

operating temperature, process route choice, and type of catalysts used, choice of the 

condition. Uncontrollable factors (noise factors) could be described as forces 

compelling or causing deviations from production or quality target. It can be 

subdivided into three types namely external, internal, and unit-to-unit noise factors. 
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External noise factors are those that arose due to the exposure or variation in the 

condition of use. Internal noise factors are due to production variations while unit-to-

unit are as a result of deterioration or variation with time of use.  Noise factors are 

difficult or almost impossible to control and could be expensive when attempted to 

control or eliminate them. Due to the foregoing, it is rather pertinent to render their 

effects null and void or better still, insignificant or insensitive to the quality output 

instead of eliminating them completely. In other words, noise factors are still within 

the system but properly and optimally selected controllable factor/level combination 

will be least sensitive to their presence and their effects.  

1.3 Taguchi Optimization Techniques 

Taguchi method sees, understands and treats quality control optimization problems 

as either static or dynamic problems. Static Taguchi Optimization Problems which 

could also be referred to as batch process optimization involves a process where 

several factors directly dictate the value of the target output (value of the quality 

attributes sought for). For the static problem, optimization will only be based on how 

to select the optimum control factor/level combination that will yield the output at 

the set target. This can be depicted in the Figures 1; 
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Figure 1. “Black” box depicting the Taguchi robust modeling of static problem 

 

Dynamic Taguchi optimization problem, on the other hand, could be thought of as a 

system proposed, having a signal input such that a particular signal input directly 

determines the value closest to the set target for the output. The major aim of the 

optimization will be to achieve optimum factor/level combination such that the rate 

of the input signal to the output signal is closest to the set output. This can also be 

illustrated in the Figure 2;    

 

 

 

 

 

 

Figure 2. “Black” box depicting the Taguchi robust modeling of dynamic problem 

Taguchi proposed three steps technique for developing good quality products and 

processes. These are system design, parameter design and tolerance design. An 

experiment must be carried out to implement parameter and tolerance designs. 
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1.3.1 System design 

System designs involve creating ideas on what to experiment. It is a 

conceptualization step where the aims of the research or experiment have identified 

the variables (factors) and response(s). Identification and classification of variables 

into controllable and noise factors are also done. 

1.3.2 Parameter design 

This can be done after the system design concepts are successfully set out. Control 

and noise factors values or levels are set. Controllable factor/level combinations that 

give most insensitivity to the noise factors are evaluated and selected. It has been 

referred to as the utilization of nonlinearity or utilization of interaction between 

control and noise factors. Parameter design is a two-step optimization approach with 

the first step in determining the combination of parameter levels that are competent 

enough to render the influences of the noise from noise sources. The second step 

involves the enhancement of the robustness of the product by setting the appropriate 

target through the selection of a control factor whose level change affects the average 

and at the same time affecting variability minimally.  This two-step differentiates 

robust parameter design from the conventional design of experiment (DoE). In DoE, 

the first step will be to try to achieve the target before the variability is dealt with. In 

the real world, experimental results and some analytical technique have been used for 

the parameter design. This is the most important step toward developing state and 

reliable manufacturing process that will lead to quality products and quality-

controlling countermeasures are achieved in this design. 

1.3.3 Tolerance design  

Similarly, when the results of the parameter design are concluded successfully, an 

effort can now be made to focus on the reduction and minimization of the variation 
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in the quality attributes. Here consideration is given to the process environmental 

conditions and the system components. These are considered as noise factors and are 

structured in orthogonal arrays in order to determine the extent of their influence on 

the responses. This involves the use of Orthogonal Array (OA). OA is so significant 

in the sense that it allows possible factor combinations to occur at equal time in a two 

columns experiment. Simpson et al. (2000) described Orthogonal Arrays (OA) as a 

tool that is specifically employed in Taguchi’s approach to systematically vary and 

test different levels of each of the control factor.  

Orthogonal Array columns are arranged as inner and outer arrays. The inner array 

consists of the controllable factors while the outer array consists of the noise factor. 

Most often, the inner array is usually orthogonal in design. Simpson et al. (2000) 

opined that inner array consists of the OA that contains the control factor settings 

while the outer array consists of the OA that contains the noise factors and their 

settings which are under investigation. They further concluded that the combination 

of the “inner array” and “outer array” constitutes what is called the “product array” 

or “complete parameter design layout. At this level, factors level combinations that 

can provide the optimal response will be generated. This is achieved by the 

evaluation of the quality loss function where appropriate Signal-to-Noise ratio (SN) 

quality indicators are selected. This can either be Smaller-The-Better (STB), Larger-

The-Better (LTB) and Nominal-The-Better (NTB) or it can be paired or the three 

used in combination depending on the type of response anticipated in the experiment.  

1.3.4 Robust Parameter design 

Robust parameter design is an engineering procedure that utilizes different strategies 

for improving performance during product and process design so that quality 

response can be obtained efficiently and optimally. Similarly, Martin and Ida (2008), 
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robust design methodology means systematic efforts to achieve insensitivity to noise 

factors. It is worthy to note that the application of Taguchi method inculcates quality 

control measures at both the product and process design stages to improve product 

manufacturability and reliability by making products insensitive to environmental 

influences and component variations. The end result is a robust design which is a 

design that has the minimum sensitivity to variations in uncontrollable factors.  

1.4 Data Envelopment Analysis 

In general, DEA has been referred to as a fractional mathematical programming 

technique solely responsible for evaluating the efficiency or performance of 

homogeneous decision-making units (DMU) with multiple inputs and outputs 

system. Rocha et al. (2016) described data envelopment analysis (DEA) as a linear 

programming technique used for determining the relative performance of a set of 

competing DMUs whenever multiple inputs and outputs make the comparison 

cumbersome. It is a non-parametric technique for measuring technical efficiency of 

various systems. By technical efficiency, we mean the degree of industry technology 

level that the production process of a production unit reaches. This can be 

determined from two perspectives (i) input and (ii) output. From input aspect under 

the input condition defined for the system, the technical efficiency is measured by 

the degree of output maximization and for output perspective under the output 

condition defined; the technical efficiency is measured by input minimization. In 

both cases, technical efficiency can be estimated quantitatively as a ratio of output to 

input.  

Wu et al. (2009) narrated that since its initial proposition, a constant return to scale 

assumption model CCR coined after the first letter of the first name of the proposers 
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have been used to determine the efficiency of many systems. The model according to 

Al-Refaie (2012) measures the technical efficiency of individual DMU relative to 

other DMUs with the same inputs and outputs. CCR model assumes that all 

appraised DMUs are at the optimal production scale stage, a stage of constant returns 

to scale even though the returns to scale of production technology varies. This is not 

true for real practical production since many production units are not likely to be in 

the constant scale of production. Hence the technical efficiency of the CCR model 

includes some component of the scale efficiency. The proposed second DEA model 

as reported in Ma et al. (2014) Variable Return to Scale (VRS) assumption model, 

also referred to as BBC coined from the first letter of the first name of the proposers, 

accounted for the component of scale efficiency thereby making it easy for processes 

examined in regions of increasing, constant and decreasing return to scale. CCR 

model can determine CCR efficiency in both primal and dual modes. In summary, 

DEA models see the production possibility set (PPS) as convex. This implies that all 

of the points on the line of the segment that connect any two DMUs belong to the 

PPS.  

1.5 Artificial Neural Network 

The two main reasons for using neural networks for this task instead of other 

classical estimation such as regression analysis are their non-parametric character 

and their generalization capability. Thus, on one hand, neural networks can 

approximate without making any prior assumption, any existing linear or nonlinear 

mapping between the control variables and Signal-to-Noise ratios. On the other hand, 

well-trained neural networks are able to estimate, with acceptable error levels, the 

output values for any control variable combination, not just the ones experimentally 

tested. Among the several conventional supervised learning neural networks are the 
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perception, back propagation neural network (BPNN), learning vector quantization 

(LVQ), and counter propagation network (CPN). The BPNN model is employed due 

to its ability to achieve effective solutions for various industrial applications and its 

power in the modeling of a nonlinear and complex relationship between systems 

input and output. Thus the number of input neurons equals the number of control 

variables; the output layer has one neuron corresponding to the response anticipated. 

1.6 Statement of Problem 

Taguchi robust parameter design method has been widely used to improve quality 

through the reduction of the effect of uncontrollable factors (noise factors) on the 

quality response both at the process and product design stages. However, one of the 

major problems of the Taguchi method was its inability to effectively and efficiently 

optimize processes with multi-quality response (Al-Rafaie and Al-Tahat, 2011). 

Several attempts, which have been made to solve this problem, ended up 

complicating the problem (Al-Rafaie, 2011, 2012; Liao, 2002). In reality, these 

previously adopted techniques are too cumbersome to be comprehended and applied 

by many decision makers. More so, most of these methods assumed that the variance 

between responses is constant throughout thereby snubbing the dispersal effect of 

those multi-quality responses.  

Similarly, reports of previous works established that standard DEA models (CCR 

and VRS) are weak. This weakness is an intrinsic menace within the VRS models is 

the tendency of the model to assign misleading efficiency scores thereby promoting 

DMUs with a pseudo weighing scheme as an efficient DMU. These weaknesses of 

the standard VRS model are (a) inability to offer scale (pure) technical efficiency (b) 

tendency to assign misleading scores to an inefficient units (c) efficiency score at 

input orientation is the same with the efficiency score at output orientation. It will be 
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noted that all the ranking approaches were used to cope with the weakness of the 

standard CCR DEA model. Their efforts were only geared toward removing the 

inability of the standard CCR model to produce scale (pure) technical efficiency but 

weaknesses (b) and (c) were not thoroughly dealt with. Adler et al. (2002) after a 

thorough review and application of some of the proposed ranking methods concluded 

that no one of them could be prescribed as an adequate solution to fully rank the 

DMUs in the DEA approach. This research used VRS (VRS) model because scale 

(pure) efficiency can be achieved by its application and the fact that weakness (c) 

does not occur with VRS model making it a veritable basis for partitioning and 

provide the leverage for the DMUs to self-assess to estimate the restriction for the 

upper bound of the free variable.  

The problems with the previous DEA integrated applications are mostly in the use of 

standard DEA models (CCR and BCC) and their inability to select adequate ANN 

topology in their procedures. Most of these methods could not select the optimum 

process parameter level setting. This study seeks to enhance the robustness of the 

application of DEA integrated model in the robust parameter design by increasing 

the discrimination among DMUs through the application of the  modified VRS to 

remove the menace of VRS model by restricting the upper bound of the free variable 

u0, incorporate BPNN topology with adequate numbers of neurons at the hidden 

layer  into the modified VRS model to optimize and select adequate process 

parameter level setting using the VRS penalization coefficient. In the proposed 

model, assumptions are drastically reduced, the inputs and outputs are allowed to 

self-assess to produce their weights, computations are simplified, and the procedure 
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is completely non-parametric ensuring its accuracy and its simplicity for quality 

engineers and managers to understand and implement.  

1.7 Objectives of Study 

The specific objectives of this study are; 

(a) to revamp and use the modified DEA (facet analysis) for optimizing and 

selecting optimum factor level setting for multi-response experiments in the 

robust parameter design by imposing VRS partitioning and select the 

optimum factor level combination,  

(b) to verify the effectiveness of the proposed model over the known and widely 

reported models, 

(c) to apply the revamped modified VRS-robust parameter procedures to 

exergetic analysis and other processes.  

1.8 Analysis of the technique 

This robust parameter procedure is achieved in four phases: data collection and 

generation, responses evaluation using the artificial neural network, efficiency 

determination using modified DEA, optimization to determine and select optimum 

factor level combination.  

Phase A (Data generation and collection) 

The major aim of this phase is to gather data for signal-to-noise ratio estimation 

using the orthogonal array, for neural network training for factor level combination 

and response prediction as the case may be. This phase consists of five steps: 

Step 1 (identifying controllable factors).   
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In this phase, process operating parameters are determined. This leads the identifying 

design/control factors and the noise factors. Effort is made to identify significant 

factors amongst selected design and noise factors. 

Step 2 (selecting adequate orthogonal array). After significant factors have been 

selected, various levels for each factor were suggested. This suggestion was only for 

an experiment that is fixed effect in nature.  

Step 3 (Conducting the experiment and literature data). After setting up the 

orthogonal array, the actual experiment is conducted to generate various inputs and 

outputs (responses) data are determined.  

Step 4 (estimation signal-to-noise ratios for responses from experimental data). 

For the experiment, their respective signal-to-noise ratio is predicted using an 

adequately trained ANN topology. The three quality loss functions of response used 

are those suggested according to the Taguchi method are the nominal-the-better 

(NTB), smaller-the-better (STB) and larget-the-better (LTB). 

Step 5 (Normalized signal-to-noise-ratio estimation NSNs) 

The normalized signal-to-noise-ratio (NSNs) values are estimated. Normalization of 

SN ratios converts the different units of the responses into dimensionless numbers. 

Salmasnia, Bastan, and Moeini (2012) gave the limit of the NSNs estimated as from 

a minimum of zero to a maximum of one (0 ≤ NSNi j ≤ 1). 

 

Phase B (Data prediction using BP-NN). This phase becomes necessary when all the 

data needed for the experiment could not be obtained from the experiment carried or 

as mentioned BP-NN neural network was used to predict the values other control 

factors levels combinations beyond the experimented data and their corresponding 

NSN. This phase is achieved in three steps as follow: 
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Step 1 (neural network topology and architecture selection). The BPNN model is 

employed due to its ability to achieve effective solutions for various industrial 

applications and neural networks power in the modeling of a nonlinear and complex 

relationship between systems input and output.  

Step 2 (selection of the training and the testing data). An adequate BPNN topology 

and architecture was trained, tested and validated using the actual experimental data.  

Step 3 (factor levels and corresponding signal-to-noise ratio prediction). A well 

trained, tested and validated BPNN topology and architecture was used to predict the 

SN ratios for all possible control factor levels combinations.  

Phase C (determination of the efficiency of DMUs using modified DEA). Facet 

analysis was used to evaluate the efficiency frontier of each factor level combination. 

Phase D Optimization to select optimum DMU 

To optimize and select optimum DMU, penalization coefficient of the efficient 

DMUs obtained at Phase C above is estimated. Based on the highest value of the 

penalization coefficient, the optimum system is selected. 

 

Seven case studies are examined altogether to demonstrate the effectiveness of the 

model over the existing models; out of which two case studies food fermentation and 

exergetic analysis is examined to further illustrate how the proposed model can be 

adopted for new concepts. These case studies are hard disk drive operation, gear 

hobbling operation, rhamnolipid production, apple dehydration, bio-fermentation 

experiment for the production of "Burkutu", a local Nigerian alcoholic beer and, 

exergy analysis and simulation of multicomponent carried out to integrate the 
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proposed model into exergetic analysis and supplier selection in supply chain 

management.  
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Chapter 2 

LITERATURE REVIEW 

2.1 Previous models proposed for solving multiple response problem 

of Taguchi robust parameter design 

These methods can be categorized into those that did not integrate DEA into their 

models, those that employed the classical Design of experiment models and those 

that used DEA integrated model. 

2.1.1 Previous non DEA integrated models  

The method of assigning weight as used by Lin and Lin (2002) was plagued with the 

difficulty of how to describe and evaluate weights for responses in a real case. The 

proposed method of regression further complicated the computational process by 

failing to establish vividly the correlations among the responses. This was evidently 

revealed by the larger means square error (MSE). Liao 2004 reported that the method 

of principal component analysis (PCA) has the shortcoming of how to trade-off to 

select feasible solution whenever more than one eigenvalue comes out to be greater 

than 1. This situation results in the multi-response losing their optimization 

directions when analyzed within the robust parameter strategy.  

Furthermore, PCA is based on the strict assumption that the residual errors of the 

variables are randomly multivariate normally distributed (Al-Refaie, 2011). 

Salmasnia et al. (2012a) tried to solve the PCA menace by incorporating desirability 

function (DF) and ANFIS, an AI tool but this could not account for the relative 
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significance of responses during optimization as it only achieved the reduction in the 

pair of the efficient system (Adler and Golany, 2001). Gomes et al. (2013) further 

attempted to improve on the identified drawbacks of PCA with a study using 

weighted multivariate MSE (WMMSE) integrated with PCA and response surface 

methodology (RSM) for process optimization. Their study obtained the uncorrelated 

weighted object functions using the original responses and optimized these functions 

with the help of the optimization algorithms. The efforts confirmed the selection of 

the optimum parameter setting with the illustrated case study. PCA, genetic 

algorithm (GA), desirability function (DF), grey relational analysis (GRA), 

exponential desirability function (EDF), simulated annealing (SA) and multiple 

adaptive neuro-fuzzy inference systems (MANFIS) have been used in the robust 

optimization (See, Noorossama et al., 2009; Chang, 2008; Chang and Chen, 2011; 

Sibalija et al, 2011, Salmasnia et al., 2012a). In reality, these techniques are too 

cumbersome to be comprehended and applied by many decision makers. More so, 

most of these methods assumed that the variance between responses is constant 

throughout thereby snubbing the dispersal effect of those multi-quality responses.  

2.1.2 Classical Design of Experiment (DoE) methods  

Fundamentally, Taguchi robust parameter design is hinged on the DoE methods, and 

since over two decades efforts have been geared toward the development of 

alternatives and improvements of the procedures of Taguchi robust design. Suitable 

classical experimental design approaches will be exposed comparatively to robust 

parameter design. The most common classical DoE is the response surface 

methodology (RSM). The dual response model formally proposed by Vining and 

Myers (1990) fitted for the mean and the variance requires the inner-outer arrays type 

of a replicated experiments. The single response of Welch et al. (1990) allowed the 
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control factors and the noise factors to coexist within the same model.  Steinberg and 

Bursztyn (1998) analyzed both single and dual response model and concluded that 

the single model has higher propensity than the dual only if the noise factors have 

been controlled with a fixed model or level experiments. Shoemaker et al. (1991) 

implemented the classical DoE (RSM) by including the noise factors and the control 

factors in the matrix and opined that the model could result in cost-efficient 

experiments. Sequel to this, a mixed resolution RSM model of Lucas (1989; 1994) 

was implemented with high resolution for the control-noise factor interactions and 

for control-control interactions with lower resolution for noise-noise interactions, and 

came out that a mixed resolution RSM model has superiority over the experimental 

designs as implemented by Taguchi robust parameter design (Borkowski and Lucas, 

1997). 

The Split-plot DoE model which allows incompletely randomized experimental 

order, where factors are disallowed to reset between each experiment was proposed 

by Box and Jones (1992), Letsinger et al. (1996) and Bisgaard (2000) was said to 

permit a precise determination of the control-noise factor interactions. This has been 

corroborated with similar recent studies of Kowalski (2002), Leoppky et al. (2002), 

Bingham and Sitter (2001; 2003), and McLeod and Brewstar (2006). Further studies 

on the application of various RSM techniques Aggarwal et al. (2007), Benyounis and 

Olabi (2008), Robinson et al. (2003) and Myer et al. (2004) revealed that design of 

experiment (DoE) is indeed useful for robust design and finally concluded that 

Taguchi robust parameter design is time-efficient and effective and could greatly 

improve product quality and reliability at low costs. Approaches such as the central 

composite design (CCD) of RSM (see Montgomery, 2009 for more explanation of 

this concept) as applied in the work of  Brito et al. (2014) used MSE  and reported 
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that it offered reduced sensitivity of the effect of process variability. It will be 

recalled that some efforts of Luzano and Gutierrez (2010) and Wu and Chyu, 2002 

reported that signal-to-noise ratio (SN) has been expressed as a function MSE (with 

both SN and quality loss said to be related to MSE. An integrated RSM-Generalized 

linear model (GLM) proposed by Lee and Nelder (2003) short-lived because the 

assumptions made in RSM could not justified, Eugel and Huele (1996) GLM where 

the residual variance cannot be assumed was proposed and Myers et al. (2005) 

suggested GLM with non-normal responses. 

In another related study of Rivero and Garcia (2001) parametric model was used 

concluded that parametric procedures could not adequately smoothen the 

uncertainties or variations in the system. Studies conducted by Arvidsson and 

Gremyr (2008) and Rao et al. (2008) to identify conflicts on the principles of robust 

design reported a wide range of agreements on the use of  Taguchi robust parameter 

design and its contribution in emphasizing insensitivity of the control factor level 

combination to noise factors. This has created several industrial interests and 

applications of the method. Taguchi robust design principally aims at making the 

response of the process insensitive to the effects of variations while DoE or RSM 

usually aim at removing or eliminating these effects by reaching a compromise that 

will make up for the noise effect within the process.  Effects from these noise factors 

are forces compelling or causing deviations from the quality target and they can be 

categorized into three namely external, internal and unit-to-unit noise factors. 

External noise factors are those that arise due to the exposure or variation in the 

condition of use. Internal noise factors are due to production variations while unit-to-

unit are as a result of deterioration or variation with time of use. Arvidsson and 

Gremyr (2008) reported that Taguchi robust design has the capability to deal with all 
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these categories of noise factors simultaneously unlike DoE techniques which most 

often can only deal with the unit-to-unit type.  

Conclusively, as related to the use of the classical DoE approaches, it should 

emphasized in addition to the aforementioned superiority of Taguchi over the 

classical DoE that those reviewed  DoE concepts are all based on explicit modelling 

of the responses and categorically aimed at increasing the understanding of the 

problem under study (understanding oriented). On the other hand, Taguchi robust 

parameter design is capable of both the understanding oriented as well as providing 

solution (solution oriented). Studies about the difference between Taguchi and 

statistical DoE approaches carried out by Lin et al. (1990) concluded that while DoE 

statistical methods provide what happened (how the problem happened – problem 

characterization) Taguchi robust parameter provides what or how make it happen 

(both problem characterization and solution or prevention). Therefore, a non-

parametric data envelopment-robust parameter design methodology has been poised 

to be able to handle variations due to noise factors which most often can only deal 

with the unit-to-unit type. A non-parametric data envelopment-robust parameter 

design methodology has been poised to be able to handle variations due to noise 

factors. 

2.1.3 Previously proposed integrated DEA model  

Amongst existing methods, those that implemented DEA and artificial neural 

network (ANN) within the robust parameter design are of interest to this study. Many 

ranking techniques have been proposed to completely rank DMUs. Cross-efficiency 

through cross-evaluation matrix technique was introduced by Sexon et al. (1986), to 

cope with fully ranking of the DMUs with either aggressive (AF) or benevolent 

formulations (BF) has the major shortcoming of it evaluation losing its relationship 
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with the weights of the input and output variables. Al-Rafaie and Al-Tahat (2011) 

showed that although BF achieved elimination of unrealistic weights problems of 

DEA model and midwifed a definitive ordering of DMUs, it is plagued by the use of 

average cross efficiency which does not offer Pareto results. Other efforts such as 

DEA game where all DMUs are seen as active competitors with the same chance has 

been put forward to tackle this problem where ultimate cross efficiency is used as 

ranking basis. Super-efficiency method as proposed by Andersen and Peterson 

(1993) has the following shortcomings; (i) objective function is regarded as the 

ranked position for the DMUs without minding the fact that each system is assigned 

different weight (ii) the presence of infeasibility evidently shows that the system did 

not attain a fully ranking status (See Zhu (1996a), Dula and Hickman (1997) and 

Seiford and Zhu (1999)), and (iii) the tendency of the super-efficiency to assign 

unusually high score to the specialized DMU. Similarly, the Benchmark ranking 

approach of Torgersen et al. (1996) has the problem of giving different conclusions 

as a result of an outlier where a choice DMU is always highly ranked and, 

consequently many DMUs are ranked with the same score.  

Multivariate statistical approaches of canonical correlation analysis (CCA), linear 

discriminant analysis (DDEA) and discriminant analysis of ratios (DR/DEA) have 

been used to fully rank the DMUs. According to the report given by Adler et al. 

(2002), the application of CCA revealed that the results obtained are statistically 

significantly close; nonetheless, its ranking is only realistic when the weights gotten 

are positive. DDEA as applicable using the traditional discriminant analysis only 

gave results that are statistically close to that of standard CCR model. The 

implication is that some of the efficient DMUs may be ranked lower than the 

inefficient DMUs or vice-versa. The DR/DEA approach attempted to correct the 
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infeasibility issues that have been found with CCA and DDEA is equally floored the 

inability to handle negative weights without incorporating another optimization 

model and even though this is done, there is still no assurance that the solution so 

obtained will be a global optimal. 

An integrated DEA-robust design procedure of  Liao (2004) to find an adequate 

solution to the existing problems of Taguchi robust involving censored or missing 

data using  CCR model and a supervised learning multi-layer perceptron (MLP) BP-

ANN model could only found significant and non-significant controllable factors and 

did not select the optimum factor level setting that will maximize the multi-response 

objective and thus the engineer is left with the choice of using his judgment in the 

selection. Luzano and Gutierrez (2010) attempted to solve the problems by 

incorporating BPNN in DEA to determine the mean response of the different 

parameter level settings. Therefore a three-step approach using a neural network with 

the VRS, non-radial score DEA model was presented to solve the problem of how to 

select the optimum factor level setting through robust quality loss penalization.  

The gain of the technique was that it achieved the selection of the optimum factors 

level setting by using BCC (VRS) model and the use of the penalization coefficient 

nevertheless it did not deal with the identified menace of the VRS model identified in 

weakness (c) (see, e.g., Luzano and Gutierrez [2010, 1139-1148] on this concept).. 

Also, BPNN topology with the adequate number of neuron within the hidden layer 

was not achieved and this is capable of increasing the uncertainty associated with the 

use of BPNN and consequently hampering the robustness of the VRS model. 

Another issue is that their method allowed the upper bound of the free variable of the 

VRS model to be free and take any value between to; this is capable of introducing 

vagueness into their model. Therefore, our study attempts to solve this problem by 
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imposing VRS partitioning within the modified VRS model and also determine the 

number of neuron at the hidden layer of the BPNN in order to reduce the uncertainty 

associated with the application of BPNN. 

2.2 The basis for the enhanced model approach  

It will be noted that all the mentioned ranking approaches were used to cope with the 

weakness of the standard CCR DEA model. Their efforts were only geared toward 

removing the inability of the standard CCR model to produce scale (pure) technical 

efficiency but weaknesses (b) and (c) was not thoroughly dealt with. Adler et al. 

(2002) after a thorough review and application of some of the proposed ranking 

methods concluded that no one of them could be prescribed as an adequate solution 

to fully rank the DMUs in the DEA approach. This research used VRS (BCC) model 

because scale (pure) efficiency can be achieved by its application and the fact that 

weakness (b) does not occur with VRS model makes it a veritable basis for 

partitioning and the leverage for the DMUs to self-assess to estimate the restriction 

for the upper bound of the free variable. By this, the restriction is only placed on the 

free (slack) variable instead of placing the bound on the weights of input and output 

variables as it was previously proposed and applied. Therefore, with this modified 

VRS, there is no need to set any non-Archimedean infinitesimal. 

Daneshvar, et al. (2014) presented three partitions for efficient DMUs according to 

the BCC model as (i) The strong efficient points (SEP), (ii) The efficient points (EP) 

and (iii) The weak efficient points (WEP). SEP are points that are located at the 

vertices of the frontier, EP are points that are not on the vertices of the frontier but 

are efficient point s at both the input and output orientations of the BCC structure. 

WEP are points that are neither efficient at input orientation nor efficient at output 
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orientation. However, their method did not include the partitioning of the efficient 

into the analysis. This study will incorporate partitioning into the analysis of the 

efficient DMU.  Hibiki and Sueyoshi (1999) presented a model called SA-BCC 

which can determine efficient DMUo at SEP, EP and WEP. Relating to the PPS, a 

super-efficiency BCC model was proposed by Jahanshahloo et al. (2005). Huang and 

Rousseau (1997) proposed a model that can estimate all the supporting hyperplanes 

of an efficient BCC model.  

In their opinions, Zollanvari et al. (2009); Fathi et al. (2011), ANN is a veritable tool 

for handling complicated system’s decision variables especially those with 

nonlinearities and interactions. ANN equally has the ability to learn from 

experimental data in order to predict the response values of those that were not 

covered during the experiment. There are many ANN architectures that are available, 

amongst such a well-known supervised ANNs architecture is a three (input, hidden 

and output) layer feed forward back propagation (BP) is adopted for the application 

of the model of this study. The work of Salmasnia et al. (2012b), though it does not 

incorporate DEA the manner of application of GA and their attempt to select 

adequate BPNN topology for training the model prior to prediction in the robust 

design was quite interesting. However, the selection was based only on the value of 

the mean square error (MSE) of testing and training, while the prediction was done 

from the normalized signal to noise ratio of the experimented data.  

This present study anticipates a holistic selection of the topology through MSE and 

the coefficient of determination or regression coefficient R2 of training and cross-

validation, and prediction will be done with the real experimental data. Selection of 

the adequate topology is based on the determination of the appropriate number of 
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neurons at the hidden layer. This determination has been thoroughly carried out using 

different methods which according to Stathalkis (2009), includes trial and error, 

heuristic search, exhaustive search, pruning and constructive algorithm, and the 

newest genetic algorithm (GA) search. The latter would have been the most 

appropriate but it usually overshadows and compromises the effectiveness of the 

neural network.  

Balestrassi et al. (2009) reported extensively applying DoE to estimate the 

parameters of an ANN through simulation. Taguchi, fractional and full factorial 

designs were employed for screening and to explored the ability to set the parameters 

of a feedforward multilayer perceptron neural network. Therefore this study will use 

a trial and error method for the evaluation and determination of the number of neuron 

at the hidden layer. BPNN is included in the model for prediction purposes when 

there are missing or censored data, as a result, uncontrollable circumstances such as 

impaired or faulty equipment, time inadequacy or constraint, cost limitation, human 

errors and such that may occur during the experiment. This situation may lead to the 

completion of just some parts of the experiment. Another reason could be that the 

experimenter may want to obtain response values beyond the inputs used during the 

experiment. These situations could result in data with less or incomplete information 

which are usually difficult to be analyzed. In these circumstances, BPNN is proposed 

to be used to handle the situation and its choice is predicated on its non-parametric 

feature and its generalization ability. 

The problems with the previous DEA-BPNN applications are mostly in the use of 

standard DEA models (CCR and BCC) and their inability to select adequate ANN 

topology in their procedures. Most of these methods could not select the optimum 
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process parameter level setting. This study seek to enhance the robustness of the 

application of DEA and ANN in the robust parameter design by increasing the 

discrimination among DMUs through the application of the  modified VRS to 

remove the menace of VRS model by restricting the upper bound of the free variable, 

incorporate BPNN topology with adequate numbers of neurons at the hidden layer 

into the modified VRS model to predict the response for any experiment with 

censored, missing and incomplete experimental data or whenever data beyond those 

experimentally obtained are required (See Liao [2004] for example of a censored, 

missing or experiment with incomplete data).  

The selection of the adequate process parameter level setting using the VRS 

penalization coefficient was also conducted. Another uniqueness of this study is in 

the proposition of the use of the fractional factorial number of the orthogonal array 

obtained for the robust parameter procedure as the number of neurons in the hidden 

layer of the BPNN. In the proposed model, assumptions are drastically reduced, the 

inputs and outputs were allowed to self-assess to produce their weights, 

computations are simplified, and the procedure is completely non-parametric 

ensuring its accuracy and its simplicity for quality engineers and managers to 

understand and implement. 

2.3 Exergetic analysis of multicomponent distillation system 

In laying a foundation for the integration of the proposed model of this study with 

thermoexergetic analysis, there is the need to also review some methods that have 

been applied to optimize and select optimum operating condition for multicomponent 

distillation systems involving multiresponse. Conventionally, thermo-exergetic 

analysis has been used successfully to examine the thermodynamic efficiency of 

multicomponent distillation columns as reported by Zemp et al., (1997); Mia and 



27 

 

Zemp, (2000), Demirel, (2013) and Alhaji and Demirel (2015). It is not an 

overstatement that distillation has been a widely used technique for separating about 

95% of all fluids in the chemical industry and that about 3% of the total energy 

consumption of the world are used in distillation units (Engelien et al., 2003). Many 

structural alternatives have been analyzed in the studies of Alatiqi and Luyben, 

(1985), Finn, (1993), Fidkowski and Krolikowski, (1990), Glinos and Malone, 

(1998), Rong et al., (2000), Rivero and Koeijer (2003), Hsuana and Wie (2005), 

Flores et al, (2003), Bandyopadhyay (2002), Shin et al., (2015), and Sun et al., 

(2012) to determine the operation of an energy-efficient multicomponent distillation 

unit. Exergy analysis and optimisation are the major qualitative and quantitative tools 

that are used in the decision making. Various thermodynamically concepts have also 

been applied to optimize and select thermo-feasible multicomponent distillation 

systems and Dhole and Linnhof, (1993); Moussa, (2001); Faria and Zemp, (2005) 

concluded that if the values for the exergy losses in the rectifying and stripping 

section are close, then the total exergy consumption of the column is minimized and 

thus are deemed to be thermo-feasible. Faria (2003) showed that for some cases of 

separation of non-ideal mixtures, useful exergy destruction curves are not easily 

obtained. Demirel, (2006a, 2006b) showed that there is a very close relationship 

between exergy loss and driving forces, given by the distance between the operating 

and equilibrium line and sections with large changes in composition and temperature 

also show large exergy losses, while sections with small driving forces show small 

exergy losses. Santanu (2002) introduced diagrammatical methods that could aid in 

the design and retrofit of energy efficient distillation processes. Column sections or 

individual stages that operate under large thermodynamic inefficiency are quickly 

identified. Ruchira and Masaru (1996), Taparap and Ishida (1996), Kusumaningtyas 
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et al., (2014) and Khoa, (2010) presented improved graphical methods that provided 

insight into column profiles.  

Narvaes-Garcia et al., (2015) proposed the use of three qualities or performance 

indices-Luyben’s capacity factor, total annual costs and annual profit to optimize a 

batch distillation column working at variable reflux and concluded that annual profit 

was the best quality index and minimum reflux was the best indicator for the 

optimum design of the batch distillation examined. They also submitted that for 

continuous distillation, energy consumption and efficiency remain the area of 

opportunity for distillation optimization. Ki-Joe and Diwekar (2000), Low and 

Sorensen (2003), Santos et al., (2012) used three performance indices-distillation 

parameters, energy consumption and money to discriminate between alternative for 

optimization. The method of equilibrium stage model and efficiency applied by Bhatt 

and Patel (2012), Lone and Ahmed (2012), Steffen and Da-Silva (2011) and Sing et 

al., (2015) was limited by the introduction of some uncertainties and variations 

caused largely by the effects of the uncontrollable (noise) factors that were not 

factored into the model used. Feyzi and Beheshti (2017) applied response surface 

methodology (RSM) and showed that a reduction in the exergy loss and energy 

consumption through predicted operating parameters. However, Cassettari et al., 

(2013) pointed out that one of the major assumptions of the RSM is that the 

experimental error that is strictly connected to the system under evaluation is fixed 

and cannot be controlled by the engineers. Adesina and Popooola (2016) reported 

that through exergy rate profile, exergy efficiency and irreversibility, the thermo-

feasible system which form the basis for system improvement can be identified. They 

also concluded that optimization and selection of the condition for the optimum 

sequence for the thermo-feasible system obtained will require further thermodynamic 
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concepts in terms of assumptions and computational search. Obviously, those 

uncontrollable parameters are also influencing the thermodynamics of the process.  

It is so obvious that no such thermo-exegetic analysis could on its own optimize the 

process to obtain the optimum conditions for the adequate multicomponent 

distillation sequence.  Little efforts have been dissipated on how to smoothen the 

effects of these variations. Our study basically suggests an integrated approach that 

seeks to consider the relationship between the controllable and the uncontrollable 

factors through the robust signal-to-noise ratio procedures so the thermo-exergetic 

responses of the system can be rendered insensitive to the effects of variations due to 

the noise indicators. We attempt revamping the modified Variable Return to Scale 

(VRS) model with the view of enhancing the discriminatory tendency of the model 

with the view of providing an adequate, simplistic and robust alternative to the 

optimum selection of the operating parameters for multicomponent distillation. As 

far as known, little or no studies have been conducted to integrate thermoexergetic 

analysis with data envelopment in the robust SN procedures for optimizing 

multicomponent distillation.  

2.4 Previous proposed models for solving supplier selection problems 

in the supply chain management (SCM) 

Globalization has been leading to emerging and evolving business strategies and 

these consequently stirred up competitions, reduction in business transaction speed or 

rate, revamping communication and technological ideas for the decision-making 

dilemma especially in supplier selection. This issue is becoming more pronounced, 

complicated and complex simultaneously. The convolution has been identified to be 

magnified through the selection problem which often requires qualifying and 
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quantifying performance indicators. In an ultimate attempt for making the profit, it is 

now a matter of compulsion that supplier selection must meet customers' 

requirements. Therefore organizations have to be logical in their actions and 

strategies when appraising suppliers and therefore a good working relationship with 

distributors, wholesalers, retailers, customers and suppliers of various kinds in the 

supply chain is sacrosanct in selecting adequate supplier toward gaining competitive 

advantages in the markets. Competitiveness has imposed on the survival of business, 

quick and fast decision making in selecting the right suppliers. It is no doubt that due 

to product life cycles which are usually limited, and to meet up demands, concerted 

efforts should be geared toward manipulating varying technologies, higher standards 

and surge in the other supporting services in the selection process. Invariably, 

priority should be on using adequate procedures in appraising countless suppliers 

with multi-performance indicators. Supplier selection procedures as opined by Beil 

(2010) usually gulp huge financial resources of an organization while substantive 

advantages are usually expected in return from the contracting suppliers. A thorough 

but simplistic and well-composed procedure is needed for the decision maker to 

effortlessly and accurately appraise and detail the right supplier among vast potential 

suppliers with countless performance and parameter indicators.   

Many studies such as De Boer et al. (2001), Ho et al. (2010), Wadhwa and Ravindran 

(2007) have been carried out and they have described various supplier evaluation 

criteria or indicators with the implementation of some selection models and 

frameworks for solving supplier selection issues within the supply chain 

management domain. Habib (2014) confirmed that over the previous decade diverse 

of multi-performance intentions had been applied toward solving supplier selection 

menace involving multi-performance indicator in profit-making supply chain 
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management firms. According to Ma et al. (2014) selection parameters vary with 

varying conditions and because of this, there is no a clear-cut or best procedure to 

assess and select suppliers. Therefore different organizations tend to adopt different 

avenues in their appraising procedures. As reported by Mukherjee (2014) such 

procedures have been broadly categorized into single and integrated models. The 

single model uses concepts of mathematics, statistics and artificial intelligence while 

integrated model involved blending or incorporating two or more approaches for 

solving the problem. Table 1 show how those approaches that have been applied to 

their corresponding outputs. Amongst all proposed models, analytic hierarchy 

process (AHP), analytic network process (ANP) and their respective integrated 

models have been mostly and widely reported elsewhere like Hou and Su (2007).  

Classical models especially fuzzy integrated models have been used over time for 

trading off between these supplier selections of different quantities (Chen et al., 

2006). Nazim et al. (2015) and Nazim and Yaacob (2017) proposed integrated AHP-

SCOR (Analytical Hierarchy Process-Supply Chain Operation Reference) model to 

improve the robustness of supplier selection system. It concluded that multi-

parameters that are mostly used by researchers for solving supplier selection problem 

in the supply chain are cost, quality, delivery and service. Elgarra at el. (2010) had 

described SCOR model as a business process redesigning, standardizing, and process 

dimensioning as analyses that could best be practice within the supply chain as a 

homogeneous model. The model served as the basis for which organizations have 

leverage on to fix within supply chain management by filling the gaps in the chain 

efficiency.  
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Agakishiyev (2016) studied the application of Z-information technique for solving 

supplier selection problem where fuzzy and partially reliable information was 

construed by Z-number. The Z-number of desired ideal and negative ideal solution 

was determined. The use of partially reliable information is not a good omen for the 

model proposed. The proposition of the use of non-parametric data envelopment 

analysis either singly or incorporated has been widely reported thus this study is 

basically interesting and aligned with such previously used DEA concepts.  A hybrid 

technique that incorporated multiple AHP, DEA and neural network (NN) was 

considered by Sung and Krishnan (2008) but the method only achieved a combined 

supplier score which was used for rating the supplier. Another integrated DEA-NN 

method appraising supplier under incomplete information was proposed by Celebi 

and Bayrakar (2008). Desheng (2009) added another hybrid technique with DEA-

decision tree (DT) -NN, hybrid DEA-AHP and activity-based costing (ABC). This 

hybrid produced enhanced overall efficiency and reduced indirect expenses. 

Integrated multiple multi-criteria decision making (MCDM) of Parthiban et al. 

(2013) clipped fuzzy logic and strength-weakness-opportunity-threat (SWOT) into 

DEA (also see MCDM of Wadhwa and Ravindran (2007)). According to Zeydan et 

al. (2011), the combination of Fuzzy AHP, Fuzzy TOPSIS (Technique for Order 

Preference by Similarity to Ideal Solution) and DEA could be used. This effort led to 

the use of a dummy input for the DEA method. A DEA cross efficiency design was 

conducted by Noorizadeh et al. (2012) to solve supplier selection problem by trying 

to treat undetected outputs in a way that it will be much easier to completely rank 

them and to eradicate unrealistic weighing plans amongst DMUs. So also did 

Mahdiloo et al. (2012).  Sean (2007)’s imprecise DEA was used to evaluate supplier 

selection using all available data both quantitative and qualitative but failed in 
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dimensioning the system legitimately. An augmented imprecise DEA methodology 

applied by Wu et al. (2007) which was an improvement on Sean’s (2007) exploit was 

able to properly handle imprecise data and also brought about an improved 

discriminatory tendency of the model.  

A structured methodology where SWOT was used to first to identify germane criteria 

and indicators, fuzzy weight scheme to determine weight of the indicators, DEA to 

screen potential supplier,  TOPSIS and MADA (multi-attribute decision making 

Analysis) was used for ranking was proposed by Chen (2011) which involve the use 

of Delphi technique as slated in Chou (2002). A Constant Return to Scale (CRS) 

DEA model, where a rigid relationship between input criteria and output indicators 

would force them to produce equal efficiency at both orientations was used. 

Moreover, the weakness of the CRS model used which is the tendency of the model 

to produce a misleading result by promoting DMUs with inadequate weight as the 

efficient system was not dealt with.  However, Mukherjee (2014) revealed that fuzzy 

is unsuitable because it can deal with the uncertainties that are associated with the 

variation and assigning suitable fuzzy number is completely prejudiced and 

circumstantial. Fuzzification of the multi-parameter indicators is also unable to 

guaranty optimum solution. But instead, it leads to complications of the existing 

algorithm which is evident by prolonging computational time.  Further perceived 

issues with Chen (2011) were that lower discriminatory tendency of the proposed 

model through the method successfully established an evaluation framework for 

supplier integration in supply chain management. This framework was proposed in 

three phases. Phase 1 is the requirement and strategy analysis under which SWOT 

was used as a tool at competitive strategy identification for appraising and 

identifying criteria and indicators for supplier selection. A three-step phase 2 supplier 
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evaluation consist of candidate supplier selection step where DEA was introduced, 

the weight of decision indicators under evaluation step estimated weight using fuzzy 

weight technique and supplier evaluation step where TOPSIS was used as the tool. 

Delphi questionnaire technique was used at phase 3 for assessing suppliers' 

performance. 
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Chapter 3 

MODELS AND METHODS CONSIDERED IN THE 

PROPOSED MODIFIED VRS-ROBUST PARAMETER 

PROCEDURE 

3.1 Phases and Models considered  

In this study a robust intelligent procedure was developed for solving multiple 

response problems in the Taguchi the robust parameter signal-to-noise ratio strategy, 

artificial neural network and modified data envelopment analysis model. This 

modification termed facet analysis resolved the shortcomings of the previous 

applications.  

3.2 Robust parameter design 

Robustness is achieved by posing Signal-to-Noise ratios (SN) as a measure of 

performance such that each process or product will have an anticipated target or 

simply a nominal value. This made SN a veritable tool for evaluating the quality of a 

process or product by measuring the degree of quality performance against the level 

of noise factors. Simply put according to Belavendram 1995, SN which can either be 

positive or negative value, is an evaluation of the stability of the efficiency or 

performance of an output attribute.  As expression as given by Taguchi et al. (2005), 

SN has been defined for various problems as follows;  
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Larger-The-Better (LTB),  

                             SN =  −10log �1
n
∑ 1

y𝑖𝑖𝑖𝑖
2

𝑛𝑛
i=1 � , for 𝑗𝑗 = 1, 2, … ,𝑘𝑘                    (1) 

Smaller-The-Better (STB) 

                  SN =  −10log �1
n
∑ y𝑖𝑖𝑖𝑖2𝑛𝑛
i=1 � , for 𝑗𝑗 = 1, 2, … , 𝑘𝑘                                         (2)    

Nominal-The-Better (NTB);   

                             SN =       10log �
y�𝑖𝑖𝑖𝑖
2

s𝑖𝑖𝑖𝑖
2 � , for 𝑖𝑖 = 1, 2, … , n;  for 𝑗𝑗 = 1, 2, … ,𝑘𝑘                    

(3) Similarly, Normalized Signal-to-Noise-ratio (NSN) is estimated respectively for 

LTB, STB and NTB according to the method of Zulfigar, (2014);  

                                      NSNij =  Y𝑖𝑖𝑖𝑖−min (Y𝑖𝑖𝑖𝑖 𝑖𝑖=𝑖𝑖=1,2,… ,𝑛𝑛)
max(Y𝑖𝑖𝑖𝑖 𝑖𝑖=𝑖𝑖=1,2,… ,𝑛𝑛)−min (Y𝑖𝑖𝑖𝑖 𝑖𝑖=1,2,… ,𝑛𝑛)

     (4) 

                                       NSNij =  min(Y𝑖𝑖𝑖𝑖. 𝑖𝑖=1,2,… ,𝑛𝑛)− Y𝑖𝑖𝑖𝑖
max(Y𝑖𝑖𝑖𝑖, 𝑖𝑖=1,2,… ,𝑛𝑛−min (Y𝑖𝑖𝑖𝑖, 𝑖𝑖=1,2,… ,𝑛𝑛)

     (5) 

                  NSNij =  
�Y𝑖𝑖𝑖𝑖−Target|−min(|Y𝑖𝑖𝑖𝑖−Target�,   𝑖𝑖=1,2,… ,𝑛𝑛)

max(|Y𝑖𝑖𝑖𝑖−Target|,   𝑖𝑖=1,2,… ,𝑛𝑛)−min (|Y𝑖𝑖𝑖𝑖−Target|,   𝑖𝑖=1,2,… ,𝑛𝑛)
                  (6)  

for all 𝑗𝑗 = 1, 2, … ,𝑘𝑘.            

Where 

n is number of observation, 𝑦𝑦𝑖𝑖𝑖𝑖 is observed data, i is the input into the robust 

parameter which is the output anticipated for the experiment,  j is the DMU, 𝑠𝑠𝑖𝑖𝑖𝑖2  is the 

variance, y�𝑖𝑖𝑖𝑖2  is the standard deviation and k is the number of DMU.   

3.3 Artificial Neural Network selections 

However, the selection was based only on the value of the mean square error (MSE) 

of testing and training, while the prediction was done from the normalized signal to 

noise ratio of the experimented data, this present study anticipates a holistic selection 

of the topology through MSE and the coefficient of determination or regression 

coefficient R2 of training and cross-validation, and prediction be done with the real 



37 

 

experimental data. Selection of the adequate topology is based on the determination 

of the appropriate number of neurons at the hidden layer. This determination has 

been thoroughly carried out using different methods which according to Stathalkis 

(2009), includes trial and error, heuristic search, exhaustive search, pruning and 

constructive algorithm, and the newest genetic algorithm (GA) search. The latter 

would have been the most appropriate but it usually overshadows and compromises 

the effectiveness of the neural network. Therefore this study adopted use trial and 

error method for the evaluation and determination of the number of neuron at the 

hidden layer. 

The topology of the BP neural network with a hidden layer-based process model was 

adopted for this study. For the networks, the middle layer uses the activation function 

of tangent hyperbolic and output layers using a sigmoid function. Training algorithm 

in networks was Levenberg- Marquardt supervised learning. The topology with the 

lowest mean squared error (MSE) and root mean square error (RMSE) closest to 1 is 

selected as the adequate BPNN topology.  

3.4 Modified VRS model    

3.4.1 VRS Partitioning of Decision Making Units (DMUs) 

Daneshvar et al., (2014) gave insight into how partitioning of the VRS model can 

result in three distinctive points namely; efficient (EP) or strong efficient point (SEP) 

when 𝜃𝜃 = 1 and 𝜂𝜂 = 1 (or vice versa), weak efficient point (WEP) when 𝜃𝜃 =

1 and 𝜂𝜂 < 1 (or vice versa) and inefficient point when 𝜃𝜃 < 1 and 𝜂𝜂 < 1. It was 

proofed that for the optimal solution of standard VRS model, the global optimal 

solution 𝑢𝑢𝑜𝑜∗  should satisfy the inequality that 𝑢𝑢𝑜𝑜−∗ ≤ 𝑢𝑢𝑜𝑜∗ ≤ 𝑢𝑢𝑜𝑜+∗.  For instance at input 

orientation, if 𝑢𝑢𝑜𝑜+∗ = 1 such that the inequality becomes  𝑢𝑢𝑜𝑜−∗ ≤ 𝑢𝑢𝑜𝑜∗ ≤ 1, and then 
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there exists an intersection between WEP and EP. This connotes that if it is possible 

that the free variable 𝑢𝑢𝑜𝑜∗  can be restricted in such a way that, the free variable can be 

strictly less than 1, then it is possible to completely disperse or partition the frontier 

into EPs and WEPs. This position was also inferred by Daneshvar (2009). Therefore 

finding a restriction for the upper bound denoted as ε for the free variable of the 

standard VRS model can be adequate for removing the weakness of the 

classical/standard VRS model. The study imposed partitioning within the model and 

the model self-evaluated to estimate its own input and output weights.  Graphically, 

partitioning can be explained as represented in the figure in Appendix A. 

To solve the weakness (b) identified in the section1, Data Envelopment Analysis is 

carried out to determine the efficiency scores at both input and output orientations. 

For standard VRS (BCC) at input-orientation, the efficiency score (θ) as applied by 

Daneshvar, et al., (2014) is expressed as; 

𝜃𝜃 =  𝑀𝑀𝑀𝑀𝑀𝑀  �𝑢𝑢𝑟𝑟𝑦𝑦𝑟𝑟𝑜𝑜 + 𝑢𝑢𝑜𝑜

𝑠𝑠

𝑟𝑟=1

 

                                                     𝑆𝑆. 𝑡𝑡.  ∑ 𝑣𝑣𝑖𝑖𝑀𝑀𝑖𝑖𝑜𝑜 = 1𝑚𝑚
𝑖𝑖=1          

                                                    ∑ 𝑢𝑢𝑟𝑟𝑠𝑠
𝑟𝑟=1 𝑦𝑦𝑟𝑟𝑖𝑖 − ∑ 𝑣𝑣𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑜𝑜  ≤ 0               𝑚𝑚

𝑖𝑖=1                 (7) 
       𝑢𝑢𝑟𝑟 ≥ 0     𝑟𝑟 = 1, … 𝑠𝑠 

                                                                             𝑣𝑣𝑖𝑖 ≥ 0    𝑖𝑖 = 1, …𝑚𝑚 
 𝑢𝑢𝑜𝑜  𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓 

Similarly, at output-orientation efficiency score (η) is obtained  by 
                                                     𝜂𝜂 =  𝑀𝑀𝑖𝑖𝑀𝑀  ∑ 𝑣𝑣𝑖𝑖𝑀𝑀𝑖𝑖𝑜𝑜 + 𝑣𝑣𝑜𝑜𝑚𝑚

𝑖𝑖=1        

𝑆𝑆. 𝑡𝑡.  �𝑢𝑢𝑟𝑟𝑦𝑦𝑟𝑟𝑜𝑜 = 1
𝑠𝑠

𝑟𝑟=1

         

                                                    ∑ 𝑢𝑢𝑟𝑟𝑠𝑠
𝑟𝑟=1 𝑦𝑦𝑟𝑟𝑖𝑖 − ∑ 𝑣𝑣𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑜𝑜  ≤ 0               𝑚𝑚

𝑖𝑖=1           (8) 
                         𝑢𝑢𝑟𝑟 ≥ 0     𝑟𝑟 = 1, … 𝑠𝑠 

                                                                             𝑣𝑣𝑖𝑖 ≥ 0    𝑖𝑖 = 1, …𝑚𝑚 
 𝑢𝑢𝑜𝑜  𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓 
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Where; 

 𝑦𝑦𝑟𝑟𝑜𝑜 is the output of the DMU under investigation, 𝑀𝑀𝑖𝑖𝑖𝑖 is the input data DMUj, 

𝑦𝑦𝑟𝑟𝑖𝑖 𝑖𝑖𝑠𝑠 𝑡𝑡ℎ𝑓𝑓 output data to DMUj,  𝑣𝑣𝑖𝑖 is the input weight,  𝑢𝑢𝑟𝑟 is the output weigh,𝑢𝑢𝑜𝑜 is 

the upper bound of free variable of the optimal solution, m is the total number of 

input data, s is the number of output data, r is the output, k (j = 1, …, k) the number 

of the DMU,  𝑢𝑢𝑜𝑜∗  is the global optimal value of the free variable,  𝑢𝑢𝑜𝑜+∗ is the free 

variable optimal value at the output maximization, 𝑢𝑢𝑜𝑜−∗ is the free variable optimal 

value at the output minimization, subscript o denotes the DMU under investigation.  

3.4.2 Modified (Facet) VRS model 

In the modified VRS super efficiency model of Daneshvar et al., (2014), the free 

variables of the standard VRS model is restricted to an upper bound denoted as ε;  

                            𝜀𝜀 = max{𝑢𝑢𝑜𝑜−/𝑢𝑢0+   ≠ 1   𝑓𝑓𝑓𝑓𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑒𝑒𝑖𝑖𝑓𝑓𝑀𝑀𝑡𝑡 𝐷𝐷𝑀𝑀𝐷𝐷𝑠𝑠}                               (9) 

Then  𝑢𝑢𝑜𝑜−, is obtained solving; 

𝑀𝑀𝑖𝑖𝑀𝑀       𝑢𝑢𝑜𝑜 
                                                         S. t.      𝒖𝒖𝒕𝒕𝑦𝑦𝑜𝑜 + 𝑢𝑢𝑜𝑜 = 1     
                                                                          𝒗𝒗𝒕𝒕𝑀𝑀𝑜𝑜 = 1                                                  (10) 

    𝒖𝒖𝒕𝒕 ≥ 0 
    𝒗𝒗𝒕𝒕 ≥ 0 

      𝑢𝑢𝑜𝑜  𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓 
Then  𝑢𝑢𝑜𝑜+, is obtained solving; 

𝑀𝑀𝑀𝑀𝑀𝑀       𝑢𝑢𝑜𝑜 
                                                                S. t.      𝒖𝒖𝒕𝒕𝑦𝑦𝑜𝑜 + 𝑢𝑢𝑜𝑜 = 1     

𝒗𝒗𝒕𝒕𝑀𝑀𝑜𝑜 = 1      
                                                                      𝒖𝒖𝒕𝒕𝑦𝑦𝑜𝑜 − 𝑣𝑣𝑡𝑡𝑀𝑀𝑜𝑜 ≤ 0                                       (11) 

𝒖𝒖𝒕𝒕 ≥ 0 
𝒗𝒗𝒕𝒕 ≥ 0 
𝑢𝑢𝑜𝑜  𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓 

The modified VRS model is now written as; 
𝑀𝑀𝑀𝑀𝑀𝑀      𝒖𝒖𝒕𝒕𝑦𝑦𝑜𝑜 + 𝑢𝑢𝑜𝑜  

𝐒𝐒. 𝐭𝐭.    𝒗𝒗𝒕𝒕𝑀𝑀𝑜𝑜 = 1       
                                                                    𝒖𝒖𝒕𝒕𝑦𝑦𝑜𝑜 − 𝑢𝑢𝑡𝑡𝑀𝑀𝑜𝑜 , 𝑖𝑖 = 1                                      (12) 
                                                                    𝒖𝒖𝒕𝒕 ≥ 0           𝑟𝑟 = 1, … 𝑠𝑠 
                                                                    𝒗𝒗𝒕𝒕 ≥ 0          𝑖𝑖 = 1, …𝑚𝑚 

𝑢𝑢𝑜𝑜 ≤ 𝜀𝜀 



40 

 

Where, 𝑢𝑢𝑡𝑡 is the output weight vector, 𝑣𝑣𝑡𝑡 is the input weight vector determined 

through the self-evaluation of the DMUs and 𝑢𝑢𝑜𝑜 is the optimal value of the free 

variable for the modified VRS model. 

Seiford and Zhu (1999) reported that the super-efficiency DEA method has some 

shortcomings Therefore aside from imposing partitioning, we equally propose that 

the revamped facet VRS model should self-evaluate (DMU appraises itself) to 

estimate their input and output weights thereby no assumption is made in this regard. 

Equation 12 estimates the pure technical efficiency of the industry technology level 

that the production process of a production unit reaches. For this, our study employs 

the output orientation thereby under the condition of the given input of the 

distillation operating parameters; the objective (Equation 12) is the degree of 

maximization of the objective function.   

3.5 VRS Penalization  

For optimum DMU selection from the efficient points obtained by the modified VRS 

model, second VRS DEA model for the estimation of the penalization coefficient 𝑊𝑊𝐽𝐽 

of the weight of the response as given by Gutierrez and Lozano (2010) where 𝑊𝑊𝐽𝐽 the 

penalization coefficient of DMUJ is, J is the index of factor combination to be 

evaluated. The index of factor as used here connotes the particular DMU whose 

penalty is to be derived. Here, only to the input (NSNs) of the particular efficient 

DMU index J is involved. Hence; 

Max W𝐽𝐽 
S.t.   ∑ u𝑖𝑖NSD𝑖𝑖𝑖𝑖 ≥ 1     ∇𝑗𝑗 ≠ 𝐽𝐽𝑞𝑞

𝑖𝑖=1  
                                                                ∑ u𝑖𝑖NSD𝑖𝑖𝐽𝐽

𝑞𝑞
𝑖𝑖=1 = 1                                    (13) 

u𝑖𝑖 ≥ W𝐽𝐽 
W𝐽𝐽 ≥ 0 

Where q is the number of efficient DMU obtained by the modified VRS model such 

that index J = 1, 2,…,q and for 𝑖𝑖 = 1, 2, … ,𝑀𝑀. 
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Chapter 4 

PROPOSED REVAMPED FACET ANALYZED VRS IN 

THE ROBUST PARAMETER DESIGN PROCEDURES 

4.1 Model Conception 

This modified VRS- robust parameter model was achieved in four phases: data 

collection and generation, responses evaluation using experimental data or artificial 

neural network as the case may be, robust parameter procedures, DEA partitioning 

using standard VRS models, evaluation of DMU that compare with WEPs using 

modified VRS, and optimization to determine and select optimum factor level 

combination by VRS penalization coefficient.   

4.2 Model Development 

The proposed framework as presented in Figure 3 illustrates the phases involve in the 

proposed model as thus; 

4.2.1 Phase A  (Data generation and collection) 

The major aim of this phase is to gather data for signal-to-noise ratio estimation 

using the input and output data from obtained experimental data or neural network 

prediction for factor level combination and response prediction as the case may be. 

This phase consists of three steps: 

Step 1 (identifying controllable factors).  In this phase, process operating parameters 

are determined. 
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Figure 3. Proposed modified VRS-BPNN framework for solving multiple response experiment in the robust parameter procedures 
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Step 2 (selecting adequate orthogonal array). An orthogonal array was selected 

according to the levels of control and noise factors. 

Step 3 (Conducting the experiment).  

4.2.2 Phase B (response evaluation using artificial neural network) 

The topology should consist of an input layer with two neurons, one hidden layer and 

output layer with three neurons. Trial and error search is conducted to determine the 

number of neurons that should be in the hidden layer. Neural fitting (nftool) that uses 

feed-forward back propagation training algorithm of Levenberg-Marquart, is selected 

from the Neural Network toolbox 8.2 of Matlab 2014a. The hidden layer is 

transformed by the sigmoid function while the output layer uses a linear fit function 

for its transformation of data. Adequate topology is selected based on MSE and the 

coefficient of determination or regression coefficient R2 values of both training and 

cross-validation outputs. BPNN is included in the model for prediction purposes 

when there are missing or censored data as a result of uncontrollable circumstances 

such as impaired or faulty equipment, time inadequacy or constraint, cost limitation, 

human errors and such that may occur during the experiment. This situation may lead 

to the completion of just some parts of the experiment. Another reason could be that 

the experimenter may want to obtain response values beyond the inputs used during 

the experiment. These situations could result in data with less or incomplete 

information which are usually difficult to analyze. In these circumstances, BPNN is 

proposed to be used to handle the situation and its choice is predicated on its non-

parametric feature and its generalization ability.  

By this BPNN step, the proposed model could be viable and applicable for all 

situations as its redundancy especially when censored or missing data are 

encountered can be avoided. This study presents means of training and validating to 
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select the adequate BPNN topology that can be used to determine the missing data 

when encountered. This steps involves are; 

Step 1 (neural network topology and architecture selection). MATLAB 2016a is used 

for the neural network and neural fitting tool (nftool) was selected since the network 

will be used for prediction.  

Step 2 (training, testing and validating the BP-ANN). An adequate BPNN topology 

and architecture was trained, tested and validated using the actual experimental data. 

The values of the factor levels combinations are set as input at the input layer with 

their corresponding normalized signal-to-noise ratio of each response set as the target 

in the output layer. Step 3 (factor levels and corresponding signal-to-noise ratio 

prediction). A well trained, tested and validated BPNN topology and architecture was 

used to predict the SN ratios for all possible control factor levels combinations.  

4.2.3 Phase C (Robust Parameter Procedures) 

This comprises three steps as 

Step 1: Selecting adequate orthogonal array. An orthogonal array was selected 

according to the levels of control and noise factors.  

Step 2: Estimation of signal-to-noise ratios (SN) of responses from experimental data 

obtained. 

Step 3: Normalized signal-to-noise-ratio estimation NSNs.     

4.2.4 Phase D VRS Partitioning (Determination of the efficiency point, weak 

efficiency point and strong efficiency point (DEA partitioning) using input and 

output orientations of the standard BCC models) 

Step 1: estimation of the weights of the efficient frontier via input oriented, radial 

basis variable return to scale BCC model.  
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Step 2: estimation of the weights of the efficient frontier via using output oriented 

radial basis variable return to scale model. 

Step 3: Evaluation of the EP and SEP DMUs.  

For steps 1-3, MaxDEA 6. 0 was used to for solving the standard VRS DEA models. 

The multiplier model of the software was selected instead of the envelopment model 

as the appropriate model for the VRS since one or more of the output values will be 

zero due to normalization and the output orientation of envelopment model cannot 

process zero value. 

4.2.5 Phase E Modified VRS efficiency determination (Determine the efficient 

frontier that compare with the WEPs using modified DEA) 

Determine the efficient frontier that using the modified VRS model. Step 4: 

Determination of the efficient frontier that compare with the WEPs DMUs by 

modified VRS conditions using weights estimated in steps 1-2 in Section 4.2.4 above 

and the upper bound of the free variables ε. 

4.2.6 Phase F (Optimization to determine and select optimum factor level 

combination by penalization coefficient) 

This phase becomes necessary when efficient frontier EP and efficient DMU 

obtained from modified method comes out to be more than one DMU. To optimize 

and select optimum DMU, VRS penalization coefficient is carried out on the 

efficient DMUs obtained in Phase 5. This is aimed at allowing each efficient factor 

level combination to assign different weight to the NSN of their responses. At this 

juncture, it should be noted that the penalization coefficient step is not indicating the 

efficiency score of those efficient systems but rather it is a check on the efficacy of 

each efficient parameter setting to produce its equivalent maximum lower bound 

which is a kind of penalty that can be imposed on the response variables. This is 
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possible by allowing each efficient system to once again self-evaluate to re-assess 

and assign different weights to the NSN of their input and output weights in order to 

determine an indicator- penalization coefficient. This step replaces setting of any 

trade-off between variables as they can through the VRS penalization interrelate 

within themselves to produce the optimum. For both phases E and F, linear 

programming models were generated and solved using LINDO 6.18 software.  
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Chapter 5 

NUMERICAL ILLUSTRATION OF THE PROPOSED 

MODEL 

5.1 Optimizing hard disk drive case study 

Procedure A (steps 1-3): As reported by Phadke 1989, the quality of hard disk drive 

was investigated with four responses; 50% pulse width (PW), peak shift (PS), 

overwrite (OW), and high-frequency amplitude (HFA). The PW and PS are STB 

type responses, OW and HFA are LTB type responses. Five controllable process 

factors used for the investigation involve (A) disk writability, (B) magnetization 

width, (C) gap length, (D) coercivity of media, and (E) rotational speed. The input 

and response data of hard disc as given by Al-Refaie and Al-Tahat (2011) is 

presented in Table 1.  A total of 18 parameter level combinations were achieved, 

therefore L18 orthogonal array was adopted for the robust parameter procedure and 

hence we have 18 DMUs for this case study.  

Procedure B (steps 1-3): From Fig. 3, this step is not required here since all the data 

have been obtained from the experiment and no further data beyond those obtained 

by the experiment is needed. 
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Table 1. Input and output data for the hard disc case study 

 

Procedure C  

Step 1: estimate the S/N of responses by applying Equation (3) to PW and PS and 

Equation (2) to OW (treated as STB according to Al-Refaie (2012) and HFA. For 

illustration, for DMU 1; 

S
N

, PW =  −10 ∗ LOG(64.75)^2 =  −36.22479 

S
N

, PS =  −10 ∗ LOG(11.45)^2 =  −21.176109 

S
N

, OW =  −10 ∗ LOG(31.15)^2 =  29.86916 

S
N

, HFA =  −10 ∗ LOG(
1

272.15
)^2 =  48.6961 

 

 

DMUs 
Process parameter setting 

(Input Variables)  Responses (Output Variables) 

 
A B C D E PW50 PS OW HFA 

1 1 1 1 1 1 64.75 11.45 31.15 272.15 
2 1 1 2 2 2 65.10 12.30 34.05 326.80 
3 1 1 3 3 3 66.30 14.15 35.75 367.75 
4 1 2 1 1 2 55.55 10.00 32.50 311.75 
5 1 2 2 2 3 57.00 10.70 35.55 350.65 
6 1 2 3 3 1 88.40 18.45 39.20 223.90 
7 1 3 1 2 1 64.85 10.95 30.60 273.60 
8 1 3 2 3 2 65.20 11.40 34.55 320.35 
9 1 3 3 1 3 66.25 14.90 45.10 297.75 
10 2 1 1 3 3 48.60 11.40 18.95 422.40 
11 2 1 2 1 1 75.95 17.10 33.10 277.30 
12 2 1 3 2 2 75.70 17.75 34.45 329.60 
13 2 2 1 2 3 48.60 10.80 24.05 420.85 
14 2 2 2 3 1 76.00 15.55 29.30 296.65 
15 2 2 3 1 2 75.70 18.60 38.65 258.65 
16 2 3 1 3 2 55.55 12.50 18.80 360.95 
17 2 3 2 1 3 57.00 12.75 35.10 360.10 
18 2 3 3 2 1 88.35 20.35 37.75 257.60 
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Step 2: estimate the NSN of the S/Ns by applying Equations (4 and 5) appropriately. 

To illustrate illustrated for DMU 1: as:  

NSN, PW =
−33.73272 − (−36.22479)
−33.73272 − (−38.92413)

= 0.4800 

NSN, PS =
20.00 − (−21.176109)
−20.00 − (−26.17128)

= 0.1906 

NSN, OW =
29.86916 − 25.48315
33.08353 − 25.48315

= 0.5771 

NSN, HFA =
48.6961 − 47.00108

52.51447 − 47.00108
= 0.3074 

The same calculations are repeated for the remaining DMUs. 

Procedure D 

Step 1: Solve the standard VRS model in Equation 7 using MaxDEA 6.0 version 

software.  

Step 2: Solve the standard VRS model in Equation 8 using MaxDEA 6.0 version 

software.  

The input and output weights obtained are shown in Table 2. 

Step 3: Extract the efficiency scores obtained from step 1, (θ) and 2 (η). If a DMU is 

efficient at both orientations, then it is EP/SP otherwise it is a WEP. 

Step 4: From the data in Table 2, solve Equation 10 and 11 to obtain uo+ and  uo− 

respectively; for DMU 1, using LINGO 6.18 (Figure 4). 
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Table 2. Input and output weight obtained from the input orientation of the standard 
VRS models for hard disk  

 
 

 
Figure 4. Lingo window showing the linear programming formulation for the upper bound 

variable restriction. 
 

Weight 
(A) 

Weight 
(B) 

Weight 
(C) 

Weight 
(D) 

Weight 
(E) 

Weight 
(PW50) 

Weight 
(PS) 

Weight 
(OW) 

Weight 
(HFA) 𝑢𝑢𝑜𝑜 

0.0000 0.8237 0.1763 0.0000 0.0000 0.0000 0.0000 1.7330 0.0000 0.0000 
0.5230 0.1033 0.1869 0.0000 0.0000 0.0000 0.0000 1.3100 0.1859 0.0000 
0.2423 0.0089 0.2496 0.0000 0.0000 0.0000 0.8028 0.3774 0.4229 0.0000 
0.1722 0.2383 0.3511 0.0000 0.0000 0.0000 0.0000 0.8263 0.9264 0.0000 
0.5098 0.0832 0.1619 0.0000 0.0000 0.0000 0.0000 1.1350 0.2461 0.0000 
0.1237 0.0000 0.2921 0.0000 0.0000 0.0000 0.6754 0.4975 0.0000 0.0000 
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -1.0000 
0.5989 0.0006 0.1996 0.0000 0.0000 0.4821 0.0000 0.7671 0.4067 0.0000 
0.1907 0.0516 0.2182 0.0000 0.0000 0.0000 0.6320 0.6151 0.3187 0.1129 
0.0000 0.0420 0.0736 0.0000 0.2948 0.0000 0.0000 0.0000 0.8513 -0.1487 
0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.8122 0.5982 0.0000 0.0000 
0.2659 0.0043 0.1255 0.0437 0.0000 0.0000 0.9351 0.0000 0.4413 0.0240 
0.1262 0.2072 0.2736 0.0299 0.0000 0.0000 0.0000 0.6684 0.8166 0.0000 
0.0000 0.0024 0.4976 0.0000 0.0000 1.8640 0.0000 0.0000 0.0035 0.3957 
0.2145 0.0000 0.1554 0.1048 0.0000 0.0000 0.8586 0.3036 0.0000 0.0000 
0.0000 0.0666 0.8002 0.0000 0.0000 0.0000 1.9840 0.0000 0.5009 0.0000 
0.0000 0.0922 0.3617 0.0000 0.0000 0.0000 0.5099 1.2080 0.7628 0.6077 
0.1358 0.0021 0.2407 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 
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The remaining DMUs are calculated in the same manner and the results are presented 

in Table 3. Equation 9 is used to determine the upper bound restriction obtained as ε 

= 0.3957.  

Table 3. The values of  𝑢𝑢𝑜𝑜−, 𝑢𝑢𝑜𝑜+ for efficient DMUs for the hard disc case study 
 

 

 

 

 

 

 

 

 

ε = Max uo+ uo
-⁄   ≠ 1 = 0.3957 

 

Using restriction obtained for the upper bound for the modification of VRS mode, 

the input value and the NSN values in Table 4, we solved Equation 12 for DMU 1 as 

shown in Figure 5. 

Procedure E: Equation 13 is solved for penalization coefficient WJ, for only the 

efficient DMUs obtained in procedure D above. For DMU 1, we estimated WJ to be 

0.5551 by solving the expression shown in Figure 6.  

DMUs 𝒖𝒖𝒐𝒐− 𝒖𝒖𝒐𝒐+ 
1 0.0000 1.0000 
2 0.0000 1.0000 
3 0.0000 1.0000 
4 0.0000 1.0000 
5 0.0000 1.0000 
6 0.0000 1.0000 
7 1.0000 1.0000 
8 0.0000 1.0000 
9 0.1129 1.0000 

10 0.0000 1.0000 
11 0.0000 1.0000 
12 0.0252 1.0000 
13 0.0000 1.0000 
14 0.3957 1.0000 
15 0.0000 1.0000 
16 0.0000 1.0000 
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Table 4.  Efficiency scores for the standard orientations, modified BCC model and penalization coefficient for the hard disc case study 

Design factors 
 (Input Variables) 

 
Robust Parameter   

  

 

Normalized Signal-to-Noise ratio 
(NSN) 

 
Signal-to-Noise ratio (SN) 

 
VRS Modified Model 

DMU A B C D E 

 

PW50 PS OW HFA 

 

PW50 PS OW HFA 

 

Score 
(θ) 

Score 
(η) Partitioning Modified Penalization 

Coefficient 
1 1 1 1 1 1 

 
0.4800 0.1906 0.5771 0.3074 

 
-36.22 -21.18 29.87 48.70 

 
1.0000 1.0000 EP,SEP 1.0000 0.5551 

2 1 1 2 2 2 
 

0.4891 0.2914 0.6788 0.5957 
 

-36.27 -21.80 30.64 50.29 
 

1.0000 1.0000 EP,SEP 1.0000 0.4720 
3 1 1 3 3 3 

 
0.5196 0.4886 0.7345 0.7817 

 
-36.43 -23.02 31.07 51.31 

 
1.0000 1.0000 EP,SEP 1.0000 0.3961 

4 1 2 1 1 2 
 

0.2236 0.0000 0.6256 0.5215 
 

-34.89 -20.00 30.24 49.88 
 

1.0000 1.0000 EP,SEP 1.0000 0.7296 
5 1 2 2 2 3 

 
0.2667 0.0952 0.7281 0.7067 

 
-35.12 -20.59 31.02 50.90 

 
1.0000 1.0000 EP,SEP 1.0000 0.5566 

6 1 2 3 3 1 
 

1.0009 0.8620 0.8398 0.0000 
 

-38.93 -25.32 31.87 47.00 
 

1.0000 1.0000 EP,SEP 1.0000 0.3700 
7 1 3 1 2 1 

 
0.4826 0.1277 0.5567 0.3158 

 
-36.24 -20.79 29.71 48.74 

 
1.0000 1.0000 EP,SEP 1.0000 0.6744 

8 1 3 2 3 2 
 

0.4916 0.1844 0.6955 0.5643 
 

-36.28 -21.14 30.77 50.11 
 

1.0000 1.0000 EP,SEP 0.9902 
 9 1 3 3 1 3 

 
0.5184 0.5613 1.0000 0.4491 

 
-36.42 -23.46 33.08 49.48 

 
1.0000 1.0000 EP,SEP 1.0000 0.3954 

10 2 1 1 3 3 
 

0.0000 0.1844 0.0091 1.0000 
 

-33.73 -21.14 25.55 52.51 
 

1.0000 1.0000 EP,SEP 1.0000 0.8379 
11 2 1 2 1 1 

 
0.7470 0.7551 0.6465 0.3370 

 
-37.61 -24.66 30.40 48.86 

 
1.0000 1.0000 EP,SEP 1.0000 0.4023 

12 2 1 3 2 2 
 

0.7415 0.8076 0.6922 0.6092 
 

-37.58 -24.98 30.74 50.36 
 

1.0000 1.0000 EP,SEP 1.0000 0.3508 
13 2 2 1 2 3 

 
0.0000 0.1083 0.2815 0.9942 

 
-33.73 -20.67 27.62 52.48 

 
1.0000 1.0000 EP,SEP 1.0000 0.7225 

14 2 2 2 3 1 
 

0.7481 0.6214 0.5071 0.4432 
 

-37.62 -23.83 29.34 49.44 
 

1.0000 1.0000 EP,SEP 1.0000 0.4311 
15 2 2 3 1 2 

 
0.7415 0.8734 0.8236 0.2273 

 
-37.58 -25.39 31.74 48.25 

 
1.0000 1.0000 EP,SEP 1.0000 0.3751 

16 2 3 1 3 2 
 

0.2236 0.3141 0.0000 0.7523 
 

-34.89 -21.94 25.48 51.15 
 

1.0000 1.0000 EP,SEP 1.0000 0.7752 
17 2 3 2 1 3 

 
0.2667 0.3419 0.7135 0.7486 

 
-35.12 -22.11 30.91 51.13 

 
1.0000 1.0000 EP,SEP 1.0000 0.4829 

18 2 3 3 2 1 
 

1.0000 1.0000 0.7967 0.2209 
 

-38.92 -26.17 31.54 48.22 
 

1.0000 1.0000 EP,SEP 1.0000 0.3314 
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Figure 5. Lingo window showing the linear programming formulation for the 
modified VRS 

 

Figure 6. Lingo window showing the linear programming formulation for the VRS 
penalization coefficient 
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Table 3 shows the values of  𝑢𝑢𝑜𝑜−, 𝑢𝑢𝑜𝑜+ for efficient DMUs from where the upper bound 

restriction for the free variable 𝜀𝜀, was obtained to be 0.3957. Table 4 contains the 

results of SN, NSN, θ, η, partitioning, modified VRS efficiency score and the 

penalization coefficient obtained for the 18 DMUs. Table 4 gives that at both 

orientations of DEA all the DMUs are efficient; hence all the efficient DMUs fall 

into EP and SEP. The proposed method criticizes and discriminates amongst the 

DMUs by correcting the menace associated with the standard model. With this, it 

was able to reveal those inefficient DMUs that have been returned as efficient by the 

standard VRS model. With this method, the efficiency of DMUs 8 changes indicating 

that it is either a WEP or it compared with the WEP. This DMU was discarded 

because WEPs or its companion cannot yield an optimum output. Furthermore, DMU 

8 is not within the convex combination of the process design factors and did not 

show any possibility that virtual outputs can be formed from the process design 

factors level combination of this particular DMU.  The second VRS DEA 

(Penalization coefficient) estimation yielded the highest score of 0.8379 for DMU 10. 

Figure 7 shows the response values for each factors level; hence using both the 

penalization coefficient and Figure 7 DMU 10 with A2B1C1D3E3 was selected as the 

optimum factor level combination for the hard disc process according to the 

proposed method.  
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Figure 7. Optimal factors setting for hard disc drive using the proposed model (shaded points) 

A1 A2 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3
Input Variables 348,22 383,58 381,52 358,09 358,08 385,11 367,71 344,88 340,35 374,18 383,16 325,38 365,08 407,24
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The same factor level combination was obtained from the benevolent formulation 

method of Al-Refaie and Al-Tahat (2011). To justify the efficacy of the proposed 

method over other methods previously applied, the anticipated improvement of the 

proposed method was obtained and compared with the anticipated improvement of 

BF of Al-Refaie and Al-Tahat (2011) and the PCA method of Su and Tong (1997) 

(see Table 5). This initial condition for hard disc obtained from the significant design 

factors as reported by Su and Tong (1997) was used for the calculation of the 

anticipated improvement. We used anticipated improvement to compare the 

proposed model with the previously used methods where the improvement made by 

each of the method over the initial condition of SN was evaluated. Therefore, we 

employ the similar mode of comparison and estimation that has been widely used 

and reported by Liao and Chen (2002), Al-Refaie and Al-Tahat, (2011), Su and Tong 

(1997); Al-Refaie, (2011 & 2012) where SN values were used to calculate the 

anticipated improvement. Furthermore, we compared the proposed model with the 

methods that have been used previously to analyze each case study. The 

improvement in each response is calculated as follows for optimal DMU; 

PW =  −33.73 − (−36.28) = 2.55 

PS =  −25.14 − (−21.48) = 0.34 

OW =  −25.55 − (−31.51) = 2.96HFA =  52.51 − (50.47) = 2.04 

Total anticipated improvement;  2.55 + 0.34 + 2.96 + 2.04 = 10.890 

In Table 5, the proposed method gave improvement value of 10.890 against BF 

technique which gave a value of 10.681, DEAR of 3.35 (see, e.g., Liao and Chan 

[2002, 825-837] on this important subject), and PCA of 2.61 (see, e.g., Su and Tong 

[1997, 406-416] on this important subject). This clearly attested to the fact that the 

proposed method is not only simple to adopt but it is simply effective, efficient and 
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outperformed other mentioned methods that have been previously applied to solve 

multiple response problems in the robust parameter strategies for the hard disk drive 

studied.  
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Table 5. Summary of the anticipated improvement of previous methods and the proposed method for the hard disc case study 
Response Initial 

condition (1) 
SN of the optimal combination obtained (2)  Anticipated improvement (2) - (1) 

 PCA (SU 
and Tong 

1997) 

DEAR (Liao 
and Chen 

2002) 

Benevolent 
Formulation (Al-
Refaie and Al-
Tahat (2011) 

Proposed method 
(Modified VRS BPNN 

robust parameter) 

 PCA (SU 
and Tong 

1997) 

DEAR (Liao 
and Chen 

2002) 

Benevolent 
Formulation 

(Al-Refaie and 
Al-Tahat (2011) 

Proposed method 
(Modified VRS 
BPNN robust 

parameter) 
PW -36.28 -33.740 -33.740 -33.730 -33.730  2.540 2.540 2.543 2.550 
PS -21.48 -19.370 -19.170 -21.050 -21.140  2.110 2.310 0.435 0.340 
OW* -31.51 27.710 28.970 -25.670 25.550  -3.800 -2.540 5.219 5.960 
HFA 50.47 52.230 51.510 52.949 52.510  1.760 1.040 2.484 2.040 

Total improvement anticipated  2.610 3.350 10.681 10.890 
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5.2 Optimizing gear hobbing operation 

As previously demonstrated by Jeyapaul et al. 2006, the algorithm used to optimized 

gear hobbling operation with four quality responses namely left profile (LP) error, 

right profile (RP) error, left helix (LH) error and right helix (RH) error with six 

controllable factors which include the direction of gear hobbling (A), number of 

passes (B), source of hob (C), feed (D), speed (E) and job run out (F). The input and 

response data of gear hobbling as further analyzed by BF and reported by Al-Refaie 

and Al-Tahat (2011) is presented in Table 6. Factors A, B and C are at two levels 

each, factors D, E and F are at three levels each. Factors B and C are assigned to the 

same column as BC to make up a modified L18 orthogonal (OA) array. The modified 

OA  can, therefore, hold three-level factors in its first three column and three-level 

factors in the next three columns (see, e.g., Jeyapaul et al. [2006, 870-878] on this 

concept of modified OA for this particular case study).  A total of 18 parameter level 

combinations were achieved therefore a modified L18 orthogonal array was also 

adopted for the robust parameter procedure. By using the input and output weight 

evaluated, the upper bound variable 𝜀𝜀 restriction according to the experimental data 

is obtained as 0.8915 (Table 7)  
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Table 6.  Input and output data gear hobbing operation case study 

 

 

 

 

 

 

 

 

 

 

 

DMU 
Process parameter setting 

(Input Variables) Responses (Output Variables) 

 
A BC D E F  LP RP LH RH 

1 1 1 1 1 1  72.53 73.97 47.37 42.90 
2 1 1 2 2 2  75.67 74.23 32.43 39.10 
3 1 1 3 3 3  74.20 73.10 51.93 51.10 
4 1 2 1 1 2  74.80 77.03 61.27 55.03 
5 1 2 2 2 3  75.37 75.93 82.97 59.80 
6 1 2 3 3 1  71.83 73.93 35.83 42.30 
7 1 3 1 2 1  75.10 71.97 54.47 60.07 
8 1 3 2 3 2  77.03 74.80 56.17 44.90 
9 1 3 3 1 3  77.63 72.27 57.87 59.83 
10 2 1 1 3 3  73.67 76.80 42.33 47.10 
11 2 1 2 1 1  74.23 79.03 48.83 34.20 
12 2 1 3 2 2  71.97 75.37 42.03 30.77 
13 2 2 1 2 3  75.10 74.53 34.17 34.73 
14 2 2 2 3 1  76.50 74.50 40.33 37.83 
15 2 2 3 1 2  72.83 74.77 42.33 40.37 
16 2 3 1 3 2  75.63 78.73 45.17 35.27 
17 2 3 2 1 3  75.40 77.07 42.93 39.27 
18 2 3 3 2 1  75.90 72.00 50.90 47.40 
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Table 7. Input and output weight obtained from the input orientation of the standard 
VRS models for gear hobbing operation 

 

Table 8. The values of  𝑢𝑢𝑜𝑜−, 𝑢𝑢 for efficient DMUs for the gear hobbing operation case 
study 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ε = Max uo+ uo
-⁄   ≠ 1 = 0.8915 

 A B C D E F LP RP LH RH 𝑢𝑢𝑜𝑜 

1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 

0.842 0.158 0.000 0.000 0.000 0.000 1.091 0.811 0.000 0.000 0.000 
0.071 0.545 0.128 0.000 0.000 0.000 0.653 0.000 0.552 0.041 -0.419 
1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.377 0.000 0.000 0.000 
0.128 0.035 0.000 0.000 0.267 0.000 0.000 0.164 0.906 0.000 0.000 
1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 
0.000 0.284 0.011 0.000 0.136 0.000 0.000 0.000 0.000 1.129 0.129 
0.283 0.000 0.000 0.116 0.184 0.000 0.935 0.385 0.000 0.000 0.000 
0.047 0.283 0.000 0.103 0.000 0.000 0.800 0.000 0.324 0.000 0.000 
0.279 0.443 0.000 0.000 0.000 0.000 0.000 0.908 0.000 0.581 0.000 
0.425 0.151 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 
0.240 0.216 0.000 0.000 0.000 0.304 0.000 1.199 0.000 0.000 -0.409 
0.010 0.290 0.140 0.008 0.000 0.243 1.213 0.815 0.000 0.000 0.000 
0.251 0.137 0.000 0.000 0.225 0.000 1.040 0.423 0.000 0.000 0.000 
0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 
0.460 0.000 0.080 0.000 0.000 0.000 0.000 1.972 0.000 0.000 0.892 
0.336 0.000 0.000 0.000 0.145 0.183 0.000 1.367 0.000 0.000 0.000 
0.000 0.108 0.000 0.041 0.196 0.101 0.565 0.000 0.175 0.358 -0.127 

DMUs 𝒖𝒖𝒐𝒐− 𝒖𝒖𝒐𝒐+ 
1 0.0000 1.0000 
2 0.0000 1.0000 
3 0.0000 1.0000 
4 0.0000 1.0000 
5 0.0000 1.0000 
6 0.0000 1.0000 
7 0.1292 1.0000 
8 0.0000 1.0000 
9 0.0000 1.0000 

10 0.0000 1.0000 
11 0.0000 1.0000 
12 0.4085 1.0000 
13 0.0000 1.0000 
14 0.0000 1.0000 
15 1.0000 1.0000 
16 0.8915 1.0000 
17 0.0000 1.0000 
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At the input orientation of DEA Table 9, DMUs 1-17 were efficient with DMU 18 as 

inefficient. Similarly, on output orientation, DMU 6, 15 and 18 are inefficient while 

others were on the frontier. From the partitioning, DMUs 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 

12, 13, 14, 16, and 17 are EPs and SEPs while DMUs 6, 15 and 18 are WEPs. On the 

application of the proposed modified VRS model, DMUs 6, 15, and 18 were again 

returned as inefficient. With this, DMUs 6, and 15 are strictly WEP and because 

DMU 18 was inefficient at both orientations and also with the modification then 

DMU 18 is strictly inefficient and cannot be said to be in the same possible 

production set (PPS) or in DMU 18 is not within the convex combination of the 

controllable factors for this gear hobbling operation. 
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Table 9. Efficiency scores for the standard orientations, modified BCC model and the penalization coefficient for gear hobbing case study 
Design factors 

 (Input Variables)  
Robust Parameter   

 VRS Modified Model 
 

Normalized Signal-to-Noise ratio 
 

Signal-to-Noise ratio 
 

DMU A BC D E F  

 

LP RP LH RH 

 
LP RP LH RH 

 

Score 
(θ) 

Score 
(η) Partitioning Modified Penalization 

Coefficient  
1 1 1 1 1 1  

 
0.1249 0.2929 0.4034 0.4968 

 
-37.21 -37.38 -33.51 -32.65 

 
1.0000 1.0000 EP, SEP 1.0000 0.7587 

2 1 1 2 2 2  
 

0.6707 0.3304 0.0000 0.3581 
 

-37.58 -37.41 -30.22 -31.84 
 

1.0000 1.0000 EP, SEP 1.0000 0.7357 
3 1 1 3 3 3  

 
0.4180 0.1665 0.5012 0.7582 

 
-37.41 -37.28 -34.31 -34.17 

 
1.0000 1.0000 EP, SEP 1.0000 0.5423 

4 1 2 1 1 2  
 

0.5218 0.7261 0.6773 0.8690 
 

-37.48 -37.73 -35.74 -34.81 
 

1.0000 1.0000 EP, SEP 1.0000 0.3579 
5 1 2 2 2 3  

 
0.6195 0.5724 1.0000 0.9933 

 
-37.54 -37.61 -38.38 -35.53 

 
1.0000 1.0000 EP, SEP 1.0000 0.3139 

6 1 2 3 3 1  
 

0.0000 0.2871 0.1061 0.4757 
 

-37.13 -37.38 -31.08 -32.53 
 

1.0000 0.9803 WEP 0.9978 
 7 1 3 1 2 1  

 
0.5733 0.0000 0.5520 1.0000 

 
-37.51 -37.14 -34.72 -35.57 

 
1.0000 1.0000 EP, SEP 1.0000 0.4705 

8 1 3 2 3 2  
 

0.9001 0.4122 0.5847 0.5649 
 

-37.73 -37.48 -34.99 -33.04 
 

1.0000 1.0000 EP, SEP 1.0000 0.4062 
9 1 3 3 1 3  

 
1.0000 0.0445 0.6165 0.9940 

 
-37.80 -37.18 -35.25 -35.54 

 
1.0000 1.0000 EP, SEP 1.0000 0.3766 

10 2 1 1 3 3  
 

0.3257 0.6941 0.2836 0.6364 
 

-37.35 -37.71 -32.53 -33.46 
 

1.0000 1.0000 EP, SEP 1.0000 0.5155 
11 2 1 2 1 1  

 
0.4233 1.0000 0.4357 0.1580 

 
-37.41 -37.96 -33.77 -30.68 

 
1.0000 1.0000 EP, SEP 1.0000 0.4957 

12 2 1 3 2 2  
 

0.0251 0.4933 0.2760 0.0000 
 

-37.14 -37.54 -32.47 -29.76 
 

1.0000 1.0000 EP, SEP 1.0000 1.2588 
13 2 2 1 2 3  

 
0.5733 0.3735 0.0556 0.1810 

 
-37.51 -37.45 -30.67 -30.81 

 
1.0000 1.0000 EP, SEP 1.0000 0.845 

14 2 2 2 3 1  
 

0.8112 0.3692 0.2321 0.3088 
 

-37.67 -37.44 -32.11 -31.56 
 

1.0000 1.0000 EP, SEP 1.0000 0.5809 
15 2 2 3 1 2  

 
0.1780 0.4079 0.2836 0.4059 

 
-37.25 -37.47 -32.53 -32.12 

 
1.0000 0.5319 WEP 0.94921 

 16 2 3 1 3 2  
 

0.6639 0.9594 0.3527 0.2040 
 

-37.57 -37.92 -33.10 -30.95 
 

1.0000 1.0000 EP, SEP 1.0000 0.4587 
17 2 3 2 1 3  

 
0.6246 0.7316 0.2986 0.3646 

 
-37.55 -37.74 -32.66 -31.88 

 
1.0000 1.0000 EP, SEP 1.0000 0.4952 

18 2 3 3 2 1  
 

0.7098 0.0045 0.4799 0.6459 
 

-37.60 -37.15 -34.13 -33.52 
 

0.8429 0.8504 Inefficient 0.8429 
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The second DEA, penalization coefficient gave the highest score of 1.2588 for DMU 

12 and couple with Figure 8 the response values for each factors level DMU 12 with 

A2B1C1D3E2F2 is selected as the optimum factor level combination. The same level 

combination was also obtained with benevolent formulation approach. However in 

Table 10, with the initial condition done based on the significance of the factors as 

determined by the engineering judgment the anticipated improvement of the 

proposed method was obtained and compared with GA (see e.g., Jeyapaul et al., 

[2006, 870-878] on this selection) and BF, of Al-Refaie and Al-Tahat (2011) other 

methods with an improvement value of 11.8224 against BF of 11.2506 and GA of 

4.1498. Therefore, the proposed model was concluded more effectually than BF and 

GA for the gear hobbing operation studied. 
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Figure 8. Optimal factors setting for gear hobbing operation using the proposed model (shaded points) 

 
 

A1 A2 B1 B2 C1 C2 D1 D2 D3 E1 E2 E3 F1 F2 F3
Input Variables 232,22 252,97 249,63 234,14 249,63 239,08 239,74 244,75 243,29 238,50 245,63 243,66 237,95 250,85 238,99
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Table 10. Summary of the anticipated improvement of previous methods and the proposed method for the gear hobbing case study 
Response Initial 

condition 
(1) 

SN of the optimal combination obtained (2)  Anticipated improvement (2) - (1) 
 Generic 

Algorithm 
(Jeyapaul 

et al., 
2006) 

Benevolent Formulation  
(Al-Refaie and Al-Tahat 

(2011) 

Proposed method  
( Modified VRS BPNN 

robust parameter) 

 Generic 
Algorithm 

(Jeyapaul et al., 
2006) 

Benevolent Formulation  
(Al-Refaie and Al-Tahat (2011) 

Proposed method 
(Modified VRS 
BPNN robust 

parameter) 

LP error -37.8581 -37.4917 -37.3728 -37.1800 -37.1400  0.3664 0.4853 0.6781 0.7181 
RPerror -37.4952 -37.4045 -37.7724 -37.4984 -37.5400  0.0907 -0.2772 -0.0032 -0.0443 
LHerror -36.6009 -34.4082 -31.9040 -31.4320 -31.4320  2.1927 4.6968 5.1688 5.1689 
RHerror -35.7397 -34.2396 -29.9858 -30.3328 -29.7600  1.5001 5.7539 5.4069 5.9797 

Total improvement anticipated  4.1498 10.6588 11.2506 11.8224 
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5.3 Quality dried apple  

Discala et al., (2013) demonstrated ANN-GA to predict the quality characteristics of 

apple during convective dehydration where hot air flow was at three different 

temperatures of 40 oC, 60 oC and 80 oC and at three air flow-rates of 0.5m/s, 1m/s 

and 1.5m/s. The quality characteristics examined were total phenolic content (TPC), 

surface colour (SC) and water holding capacity (WHC). The uncertainty was given in 

terms of the correlation coefficient r2 of 0.987 for SC, 0.990 for TPC and 0.994 for 

WHC.  A total of 9 parameters level settings existed; therefore L9 orthogonal array 

was adopted for the robust parameter procedure and 9 neurons were used at the 

hidden layer. Signal-to-Noise ratios (SNs) were obtained and normalized (NSNs) 

accordingly. The upper bound variable restriction was estimated from the estimated 

input and output weights presented in Table 11 to be 0.6013 (Table 12).  

Table 11. Input and output weight obtained from the input orientation of the standard 
VRS models for apple dehydration 
 

DMU  Score 

Weight (Air 
drying 

Temperature) 

Weight 
(Air 

drying 
velocity) 

Weight 
(Surface 
colour) 

Weight 
(Total 

Phenol) 

Weight 
(Water 
Holding 
capacity) 𝑢𝑢𝑜𝑜 

1 1.0000 0.0250 0.0000 0.7221 1.5040 0.0000 0.0000 
2 1.0000 0.0250 0.0000 0.0000 0.0000 1.0000 0.0000 
3 1.0000 0.0250 0.0000 1.2870 0.0000 0.0000 0.0000 
4 1.0000 0.0167 0.0000 0.0000 1.2860 0.0000 0.0000 
5 1.0000 0.0167 0.0000 0.0000 1.0540 0.2785 0.0000 
6 0.7426 0.0167 0.0000 0.7763 1.1770 0.0000 0.2700 
7 1.0000 0.0125 0.0000 0.5822 0.8824 0.0000 0.2025 
8 1.0000 0.0125 0.0000 0.0000 1.1230 0.0000 0.1231 
9 1.0000 0.0125 0.0000 0.1033 1.3360 0.0000 0.3356 

 

 
 
 
 



68 

 

Table 12. The values of  𝑢𝑢𝑜𝑜−, 𝑢𝑢𝑜𝑜+ for the efficient DMUs of Apple dehydration case 
study 
 
 
 
 
 
 
 
 
 
 

 
                                  ε = Max uo+ uo

-⁄   ≠ 1 = 0.6013 
 

The partitioning revealed in Table 13, that DMU 6 is strictly inefficient while others 

are efficient. Interestingly, the proposed method revealed contrary results that DMU 

6 is efficient and DUMs 5, 8 and 9 are inefficient. By implication, standard VRS 

models would have discarded DMU 6 and accepted DUMs 5, 8 and 9 hereby 

misleading the quality engineer or production manager to treat them as efficient 

DMUs and include them in the search for the optimum factor level setting. The 

modified VRS model has through enhanced discrimination corrected the problem 

associated with the standard models.  On the application of the penalizing DEA 

model, DMU 8 gave the highest penalization coefficient of 0.8905 and is selected. 

With Figure 9 which presents the response values for each factors level and the 

penalization coefficient obtained, the optimal factor level setting is selected to be at 

the temperature of 80 oC and at air flow rate at 0.5 m/s for the apple dehydration 

process.  

This connotes that at the higher temperature at 80 oC and at lower air flow rate 

0.5m/s will favour all the quality attributes. This assertion corroborated the findings 

of Discala et al., 2013 where (i) lowest surface colour change was noticed at 80 oC at 

DMUs 𝒖𝒖𝒐𝒐− 𝒖𝒖𝒐𝒐+ 
1 0.5547 0.5547 
2 0.0000 0.0000 
3 0.1549 0.1549 
4 0.6013 0.6013 
5 0.2531 0.2531 
7 0.0000 0.0000 
8 0.4412 0.4412 
9 0.0000 0.0000 
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all flow rates (0.5, 1 and 1.5 m/s), (ii) TPC degradation decreased with increasing 

temperature at air flow rates 0.5 and 1 m/s and pointed out specifically that at 80 oC, 

degradation of TPC was the lowest and (iii) WHC changes as air temperature 

increased at constant air flowrate. Considering the values of WHC, 48.28 also show 

that dehydrating apple at this constant air rate would retain a large amount of water. 

The anticipated improvement, Table 14, shows that the proposed model gave the 

higher value of 16.989 over that of GA which is 1.284 obtained according to the 

approach of Discala et al., (2013).  

Figure 9. Optimal factors setting for apple dehydration (drying) using the proposed 
model (shaded points) 

Air
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Temp.
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Air
Drying
Temp.
at 60

oC

Air
Drying
Temp.
at 80

oC

Air
Drying
Vel. at

0.5 m/s

Air
Drying
Vel. at
1.0m/s

Air
Drying
Vel. at

1.5 m/s

Drying Variables 264,41333 279,10667 280,95333 277,14333 271,12 266,72333
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Table 13. Efficiency scores for standard orientations, modified BCC model and penalization coefficient for apple dehydration 

 

 

 

 

 

 

 

Design factors 
(Input Variables) 

 
Robust Parameter 

 
VRS Modified Model 

 

Normalized Signal-
to-Noise ratio 

 
Signal-to-Noise ratio 

  
DMU 

Air drying 
Temperature 

Air drying 
velocity 

 
SC TPC WHC 

 
SC TPC WHC 

 

Score 
(θ) 

Score 
(η) Partitioning Modified Penalization 

1 40.000 0.500 
 

0.731 0.314 0.126 
 

-31.056 30.084 33.160 
 

1.000 1.000 EP,SEP 1.000 0.854 
2 40.000 1.000 

 
0.496 0.004 1.000 

 
-29.278 28.752 35.010 

 
1.000 1.000 EP,SEP 1.000 0.667 

3 40.000 1.500 
 

0.777 0.000 0.590 
 

-31.403 28.736 34.141 
 

1.000 1.000 EP,SEP 1.000 0.732 
4 60.000 0.500 

 
0.458 0.777 0.647 

 
-28.989 32.074 34.263 

 
1.000 1.000 EP,SEP 1.000 0.5314 

5 60.000 1.000 
 

0.488 0.735 0.809 
 

-29.215 31.890 34.606 
 

1.000 1.0000 EP,SEP 0.742 
 6 60.000 1.500 

 
0.670 0.418 0.000 

 
-30.599 30.532 32.893 

 
0.743 0.797 WEP 1.000 0.482 

7 80.000 0.500 
 

1.000 0.703 0.370 
 

-33.093 31.754 33.675 
 

1.000 1.000 EP,SEP 1.000 0.891 
8 80.000 1.000 

 
0.000 1.000 0.123 

 
-25.525 33.029 33.153 

 
1.000 1.000 EP,SEP 0.934 

 9 80.000 1.500 
 

0.412 0.968 0.329 
 

-28.640 32.893 33.589 
 

1.000 1.000 EP,SEP 0.934 
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Table 14. Summary of the anticipated improvement of previous and proposed method for the apple 

Response 

 

Initials 
Condition (1) 

  SN of the optimal combination obtained 
(2) 

 Anticipated improvement (2) - (1) 
 
 

 

Genetic Algorithm 
(Discala et al., 2013) 

Proposed method  
( Modified VRS 

BPNN robust 
parameter) 

 

Genetic Algorithm 
(Discala et al., 2013) 

Proposed method 
( Modified VRS BPNN 

robust parameter) 

SC 38.651 
 

28.422 33.093 
 

-10.229 -5.558 

TPC -43.988 
 

-32.475 -31.754 
 

11.513 12.234 

WHC -34.255 
 

-34.255 -33.675 
 

0.000 10.313 

  

 
Total improvement anticipated 

 
1.284 16.989 
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This case study is used to demonstrate how BPNN can be used in predicting the 

values of the responses beyond the experimented input variables. The experimental 

data was used to train and validate the BPNN using trial and error search technique 

and it revealed that hidden layer containing nine (9) neurons gave the lowest EMS 

and highest regression coefficient r2. The adequacy of the topology adopted was 

shown in Table 15 having the lowest EMS and the highest regression coefficient R-

value of 0.000338 and 0.999 for the training respectively, and this is also supported 

by the cross-validation with the R-value of 0.998 and EMS of 10.306.  

Table 15. Trial and Error for determining the number of neuron in the hidden layer 

 

This well-trained topology can be used to estimate within acceptable error limits, the 

multi-quality response of any process parameter settings beyond those 

experimentally tested. Going by the results obtained, our study suspected that the 

fractional factorial number of the orthogonal array obtained could be used as the 

Number of 
Neuron 

  
Training 

 

 

Cross Validation 

 

  EMS R2  EMS R2  
1   

  
 

  
 

2   81.740 0.790  9.680 0.984  
3   8.020 0.954  5.580 0.987  
4   38.810 0.780  5.180 0.999  
5   87.020 0.486  15.110 0.981  
6   87.670 0.559  10.570 0.964  
7   0.810 0.996  41.570 0.896  
8   221.910 0.341  27.080 0.686  
9   0.0003 0.999  10.310 0.998  
10   2.400 0.985  5.960 0.995  
11   161.110 0.564  523.700 0.043  
12   9.020 0.950  181.380 0.765  
13   154.680 0.679  23.030 0.983  
14   2.440 0.989  138.660 0.726  
15   3.226E-26 1.000  170.830 -0.550  
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number of neurons in the hidden layer for solving this kind of problem in the robust 

parameter strategy. Table 16 presents the demonstration output using the selected 

BPNN to predict response value from the input variables covered in the experiment 

and should response is sought for another set of input variables outside those covered 

by the experiment. 

Table 16. BPNN demonstration of the predicted response  
 

Experimental data 
 

BPNN Predicted response  

Input Variables 
 

Response 
 

Air drying 
Temperature 

 
 

Air 
drying 

velocity 
 

 Surface 
colour 

 
 

Total 
Phenol 

 
 

Water 
Holding 
capacity 

 
  

 Surface 
colour 

 
 

Total Phenol 
 
 
 

Water 
Holding 
capacity 

 

40.00 0.50  35.71 31.93 45.50  35.71±0.0014 31.71±5.7e-4 45.15±3.3e-4 
40.00 1.00  29.10 27.39 56.30  30.012±0.9190 26.87±0.5227 50.84±5.4590 
40.00 1.50  37.17 27.34 50.94  37.16±0.0073 27.34±0.0033 50.94±5.4e-4 
60.00 0.50  28.15 40.15 51.66  28.16±0.0093 40.14±0.0087 51.68±0.0190 
60.00 1.00  28.89 39.31 53.74  28.92±0.0283 39.32±0.0083 53.72±0.0215 
60.00 1.50  33.88 33.62 44.12  33.88±0.0016 33.65±0.029 44.08±0.0414 
80.00 0.50  45.15 38.70 48.28  45.15±0.0034 38.72±0.0174 48.27±0.0096 
80.00 1.00  18.89 44.82 45.46  18.96±0.0450 44.81±0.0100 45.47±0.006 
80.00 1.50  27.04 44.12 47.80  53.448±26.408 50.23±6.108 49.24±1.443 

 

5.4 Integrated data envelopment-thermoexergetic optimization 

framework for multicomponent distillation system  

Case study for this research is an exergy analysis of a multicomponent distillation 

system described by Perry and Green (1997).  An HYSYS simulation was adopted 

and the separation was arranged sequentially according to heuristics of the 

multicomponent mixture as proposed by Adesina and Popoola, 2016. The 

specifications of the first column with 5% propane, 15% iso-butane, 25% n-butane, 

20% iso-pentane and 35% n-pentane (See e.g Perry and Green [1997, 13:37-43] on 

the complete description of these specifications) tagged the base case include feed 
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temperature of -50oC, feed pressure of 1000KPa, and reflux ratio of 4. The model was 

for a total condenser, the simulation was carried out for these initial specifications and 

was used to generate the temperature, pressure, specific enthalpy, and specific entropy 

and flow rates for every stream in and out of each column; the tray by tray 

temperature, pressure and specific enthalpy were equally obtained. Thermodynamic 

data were extracted. The specific enthalpy and entropy for the tray by tray vapour and 

liquid phase at reference (environmental conditions) temperature of 293K and 

pressure of 101.3KPa were obtained. The profiles of the exergetic efficiency and the 

destruction distribution rate are used to determine the thermo-feasible systems. The 

profiles are a plot of each thermo-response against the number of trays in each 

column. For the simulation sensitivity, the temperature range considered was -30 oC 

and -80 oC, pressure 800 kPa and 1200 kPa and reflux ratio and 2 and 6 and 50% split 

feed was considered. Therefore, the main intended contribution of the study is in two-

fold. First, unlike the previous efforts that utilized RSM a parametric technique, we 

employ integrated thermoexergetic-nonparametric data envelopment in the robust SN 

procedures. Secondly, we revamped VRS facet robust parameter framework by 

imposing partitioning within the facet VRS and also ensure self-evaluation in order to 

improve its discriminatory tendency.  

Furthermore, it should be clarified that simulation is only used for this case study to 

determine various data needed for the proposed model – the process responses. It is 

used to replace experimentation as itemized in Phase A of the proposed model. 

Simulation simply means the substitution of physical experimentation to a virtual 

component (software) on the computers to compute the results of some physical 

phenomenon (models). Once the mathematical models that describe all the 

parameters of physical model to represent physical model in virtual form are built, 
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then conditions are applied as if physical experiment is to be done. In this way actual 

experimentation can be avoided. According to NSF (2006),  steadily increase and 

widely acceptance of simulation applications is due to the fact that (i) simulations are 

cheaper, safer and sometimes more ethical than conducting real-world experiments 

(ii) Simulations can even be more realistic than traditional experiments because the 

experimenter is allowed to freely configure the environment parameters found in the 

operational application field of the anticipated process or product (iii) Simulations 

faster than real time. By and large it is technologically correct to simulate.  

The exergy balance for the open system at steady state for was given by equations 

14-15 according to Jean-Francois et al., (2008); 

                         𝐸𝐸𝑀𝑀𝑃𝑃𝑃𝑃 = (𝐻𝐻 − 𝑇𝑇0𝑆𝑆) − (𝐻𝐻0 − 𝑇𝑇0𝑆𝑆0)                                                   (14) 

The exergetic efficiency for a real column is written; 
 

          𝜓𝜓 =
�̇�𝐸𝑥𝑥𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑+ �̇�𝐸𝑥𝑥𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝑏𝑏𝑏𝑏+�1−

𝑇𝑇𝑏𝑏
𝑇𝑇𝑐𝑐𝑏𝑏𝑐𝑐𝑑𝑑

��̇�𝑄𝑐𝑐𝑏𝑏𝑐𝑐𝑑𝑑

 �̇�𝐸𝑥𝑥𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑+�1−
𝑇𝑇𝑏𝑏

𝑇𝑇𝑟𝑟𝑑𝑑𝑏𝑏𝑏𝑏𝑖𝑖𝑑𝑑𝑑𝑑𝑟𝑟
��̇�𝑄𝑟𝑟𝑑𝑑𝑏𝑏𝑏𝑏𝑖𝑖𝑑𝑑𝑑𝑑𝑟𝑟

                     (15) 

Where; 
 
TCond = Tdistillate − TCond diff                                     (16) 
 
TCond diff = Tcooling water in +Tcooling water out

2
                                                              (17) 

 
Treboiler = Tdistillate −  Treboiler diff                                        (18) 
 
Treboiler diff = Tcooling water in+Tcooling water out

2
                                                           (19) 

 
𝑇𝑇𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶  is the condenser temperature, 𝑇𝑇𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶 𝐶𝐶𝑖𝑖𝑑𝑑𝑑𝑑 is the average temperature of both the 

cooling water inlet and outlet at the condenser, 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟  𝐶𝐶𝑖𝑖𝑑𝑑𝑑𝑑 is the average 

temperature of both the cooling water inlet and outlet at the reboiler, and 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 is 

the temperature difference between distillate reboiler temperature difference. The 

exergy loss balance for open systems at steady state can be obtained as 

https://en.wikipedia.org/wiki/Real-time_simulation
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Exlost = Exin
liquid +  ∑Exfeed −  Exout

vapour +  Exout
liquid +  ∑Exside  

 
                                                           + Q �1 −  To

Theat
�                                                    (20) 

The method of solution of Fenske-Underwood-Gillard (FUG) was anticipated. The 

reason is that this combination relates the actual column performance to total and 

minimum reflux conditions for separating between two key components and it is the 

most convenient in setting the reflux ratio-minimum reflux (See e,g Perry and Green, 

[1997, 13:37-43] for detail explanation of this concept). However, the separation of 

the mixture into components is carried out using Hyprotech System Simulator 

(HYSYS) version 3.2. Here, we employed Equation of State (EOS) as the 

thermodynamic model and Peng-Robinson (PR) was selected in the property package 

and filtered accordingly with the property package filter. The choice of PR was due to 

its ability to adequately handle hydrocarbon separation, provide large temperature and 

pressure ranges offer the largest binary interaction parameter database. The adapted 

framework for the proposed integrated model is depicted in Figure 10. 

For the robust SN; the experiment has three control factors: A-temperature (oC), B-

pressure (KPa), C-reflux ratio and one noise factor is the environmental condition of 

(ambient) temperature. The process thermo-responses are the system exergy 

efficiency (%) with the quality attribute of larger-the-better (LTB) and exergy loss 

rate (kJ/hr) with the quality attribute of Smaller-The-Better (STB). Temperature and 

pressure are at three levels each while reflux ratio is at two levels. The exergy 

experiment was conducted for high and low levels of the noise factor.  
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Figure 10. The integrated framework adapted from the proposed model 

 
 
Figure 11 represents the optimum sequence as obtained by a converged HYSYS 

simulation. The Depropanizer consist of 55 trays with feed tray on 19. Debutanizer 

consist of 62 trays with feed tray was on tray 31. Figures 12-13 results show that 

pure separation of the component was obtained. The result also shows that the 

Signal-to-noise ratio (S/N) 
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composition of propane was vaporized at the feed inlet position located on tray 19.  

The problem of the degree of freedom for the separations was solved by varying the 

reflux ratio as 2, 4, 6, we also set the convergence of the HYSYS simulation to the 

recovery of 99% of the pure component at the overhead and we specified the total 

condenser and reboiler so that the number of the variables can be increased by the 

variables and equations for the liquid and vapour delivering rates.  Fig. 13 shows that 

iso-butane and n-butane got vaporized and separated to the top of the column as 

distillate leaving iso-pentane and n-pentane as the liquid to the bottom of the column. 

Iso-butane and n-butane were separated by butane splitter component. Similarly, iso-

pentane and n-pentane were separated by pentane component splitter. The exergetic 

and exergetic destruction profiles for the columns are obtained. For the robust SN; a 

total of 18 thermo-feasible combinations were obtained from exergy analysis. 

Therefore L18 orthogonal array was used for the robust design. Signal-to-Noise ratios 

(SNs) were obtained, normalized (NSNs) accordingly and the presented in Table 17. 
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Table 17. Signal-Noise ratio (SN) and Normalized signal to noise ratio (NSN) for the 
Multicomponent distillation case study 1 
 
DMU Signal-to-Noise ratio  Normalized Signal-to-Noise  ratio 

  
Exergy      

Efficiency (%) 
Exergy Loss Rate 

(kJ/hr) 
Exergy Efficiency Exergy Loss                                       

Rate 
01 35.3772 -1.51E+02 0.094 0.945 

02 39.61824 -1.24E+02 0.958 0.081 

03 35.29398 -1.52E+02 0.077 0.958 

05 38.05963 -1.43E+02 0.640 0.691 

07 37.52667 -1.53E+02 0.532 1.000 

09 37.85969 -1.44E+02 0.600 0.722 

10 39.00535 -1.36E+02 0.833 0.465 

11 39.20751 -1.34E+02 0.874 0.400 

16 38.35851 -1.41E+02 0.701 0.613 

18 39.37806 -1.32E+02 0.909 0.332 

19 35.49034 -1.51E+02 0.117 0.946 

21 35.32826 -1.51E+02 0.084 0.957 

23 38.0618 -1.43E+02 0.641 0.691 

27 38.77039 -1.38E+02 0.785 0.529 

28 35.37572 -1.51E+02 0.093 0.945 

29 39.82364 -1.21E+02 1.000 0.000 

30 38.32697 -1.41E+02 0.695 0.613 

36 34.9171 -1.53E+02 0.000 1.007 

 

Table 18. The values of  uo−, uo+ for efficient DMUs for multicomponent distillation 
case 
 

 

 

 

 

 

 

 

 

𝜀𝜀 = 𝑀𝑀𝑀𝑀𝑀𝑀 𝑢𝑢𝑜𝑜+ 𝑢𝑢𝑜𝑜−⁄   ≠ 1 = 0.972 

DMUs 𝒖𝒖𝒐𝒐− 𝒖𝒖𝒐𝒐+ 
01 1 1 
02 1 1 
03 0.972 1 
07 0.1034 0.1034 
09 4.821 4.821 
10 8.523 8.523 
11 8.381 8.381 
16 0.000 1 
18 7.526 7.526 
19 0.000 1 
21 0.972 1 
23 5.054 5.054 
27 5.058 5.058 
28 1 1 
29 1 1 
30 5.764 5.764 
36 0.806 0.806 
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Figure 11. Process flow diagram of the distillation sequence for the converged HYSYS simulation of the multicomponent distillation system 
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Figure 12. Molar composition profile of the Depropanizer for the converged HYSYS simulation             
 

Figure 13. Molar Composition profile of the Debutanizer for the converged HYSYS simulation             
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Going by the empirical results obtained by exergetic analysis, the profiles are not 

expected to cross or be constricted; see Figure 14-17 for the sample of crossed 

profiles for both exergetic efficiency and exergetic destruction profiles. Crossed 

curves or/and constricted profiles will amount to the somersault of the driving force 

within the column and system. Such a system is thermo-feasibly infeasible. 

Constricted cases though thermo-feasible, might be thermo-exegetically efficient but 

such conditions could render the design inefficient in terms of energy usage thereby 

leading to high avoidable exergy destruction. The complete profiles of all the 18 

systems are included in Appendix B. 

 

 Figure 14. Thermofeasible exergetic profile 
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Figure 15. Crossed exergetic profile 

Figure 16. Thermofeasible exergetic destruction profile 
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However, the results summarized in Table 19 shows that thermo-exergetic rate 

profiles of the single base case -30 oC, -80 oC, -30 oC-Reflux ratio 6, -80 oC-Reflux 

ratio 6 and base case-Reflux ratio 6 were thermo-feasibly efficient. Profiles of the 

base case -30 oC-Reflux ratio 2, -80 oC. Reflux ratio 2, and base case-Reflux ratio 2 

crossed in their depropanizer and thus they are infeasible. Considering thermo-

exergetic efficiency, single feed rate base cases with -30 oC, -80 oC and reflux ratio 

6, gave thermo-exergetic efficiency range of 57.40 – 70% and 65.20% - 54.90% at 

depropanizer and debutanizer respectively. Multiple feed base cases gave same 

thermo-exergetic efficiency range of 81.7% and 62.20% at depropanizer and 

debutanizer respectively compared with that of single feed rate base cases. 800 kPa 

cases gave 82.1% and 62.5% at depropanizer and debutanizer respectively. 1200 kPa 

Figure 17.  Crossed exergetic destruction 
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case gave the lowest exergy efficiency at the depropanizer and debutanizer 

respectively.  

From the empirical results of the exergetic destruction, it could be seen that most of 

exergy destroyed are localised in the stripping section with its constant values 

starting from tray 30 and remain constant afterwards. This shows that operating this 

multicomponent distillation system at the feed pressure of 1200 kPa will be 

unrealistic despite the feasible thermo-exergetic rate and efficiency. Therefore, the 

situations of the overall column and system have been summarized in Fig 18- 19. 

Obviously, a uniform distribution of the heat exchanged within the columns results 

from a uniform distribution of the potential of transfer. These results also complied 

with previous works of Zemp, et al., 1997 and, Rivero and Koeijer, (2003). Overall 

exergy destroyed at the debutanizer is greater than at the depropanizer (see Fig 13). 

Base Cases (-50 oC-1000KPa-reflux ratio 4), (-30 oC-1000KPa-reflux ratio 4), and (-

30 oC-1000KPa-reflux ratio 6) seems to be more thermodynamically feasible. From 

the exergetic analysis of the multicomponent system, rate profiles showed that only 

20 systems were thermodynamically feasible. Systems with reflux ratio 2 were 

thermodynamically infeasible at all conditions except at 193K and 800kPa. The 

thermo-responses of multiple feeds case 34 gave the same responses with its 

corresponding base case 7 which imply that both systems will give the same thermo-

effect under the same condition with its multiple feed rates and feed stage case.  

Therefore the multiple feeds case 7 is not included in the DEA and robust parameter 

design procedure.  
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Figure 18. Columns and overall system exergetic efficiency for the thermo-feasible systems 
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Figure 19. Columns and overall system exergetic destruction rate for the thermo-feasible systems 
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Table 19. Exergy analysis for thermo-feasible system and their thermo-responses 

DMU Control Factor Combination Exergy rate profiles Thermo-feasibility Thermo-responses 
Depropanizer Debutanizer Depropanizer Debutanizer Whole System Exergetic 

efficiency (%) 
Exergtic 
loss rate 
(kJ/hr) 

1 223K, 1000kPa, RR4 did not cross did not cross feasible feasible feasible 58.73 3.58E+7 
2 243K, 1000kPa, RR4 did not cross did not cross feasible feasible feasible 95.70 1.51E+6 
3 193K, 1000kPa, RR4 did not cross did not cross feasible feasible feasible 58.17 3.76E+7 
4 243K, 1000kPa, RR2 constricted did not cross undesired feasible infeasible   
5 243K, 1000kPa, RR6 did not cross did not cross feasible feasible feasible 79.98 1.41E+7 
6 193K, 1000kPa, RR2 crossed constricted infeasible undesired infeasible   
7 193K, 1000kPa, RR6 did not cross did not cross feasible feasible feasible 75.22 4.38E+7 
8 223K, 1000kPa, RR2 crossed did not cross infeasible feasible infeasible   
9 223K, 1000kPa, RR6 did not cross did not cross feasible feasible feasible 78.16 1.58E+7 

10 223K, 1200kPa, RR4 did not cross did not cross feasible feasible feasible 89.18 6.17E+6 
11 243K, 1200kPa, RR4 did not cross did not cross feasible feasible feasible 91.28 4.85E+6 
12 193K, 1200kPa, RR4 crossed did not cross infeasible feasible infeasible   
13 243K, 1200kPa, RR2 constricted did not cross undesired feasible infeasible   
14 243K, 1200kPa, RR6 did not cross crossed feasible infeasible infeasible   
15 193K, 1200kPa, RR2 crossed constricted infeasible undesired infeasible   
16 193K, 1200kPa, RR6 did not cross did not cross feasible feasible feasible 82.78 1.06E+7 
17 223K, 1200kPa, RR2 crossed constricted infeasible undesired infeasible   
18 223K, 1200kPa, RR4 did not cross did not cross feasible feasible feasible 93.09 3.79E+6 
19 223K, 800kPa, RR4 did not cross did not cross feasible feasible feasible 59.50 3.59E+7 
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20 243K, 800kPa, RR4 negative profile did not cross infeasible feasible infeasible   
21 193K, 800kPa, RR4 did not cross did not cross feasible feasible feasible 58.40 3.74E+7 
22 243K, 800kPa, RR2 did not cross did not cross feasible feasible feasible  -1.19E+7 
23 243K, 800kPa, RR6 did not cross did not cross feasible feasible feasible 80.00 1.41E+7 
24 193K, 800kPa, RR2 crossed did not cross infeasible feasible infeasible   
25 193K, 800kPa, RR6 crossed constricted infeasible undesired infeasible   
26 223K, 800kPa, RR2 constricted constricted undesired undesired infeasible   
27 223K, 800kPa, RR6 did not cross did not cross feasible feasible feasible 86.80 7.79E+6 
28 223K, 1000kPa, RR4 Splitted Feed did not cross did not cross feasible feasible feasible 58.72 3.58E+7 
29 243K, 1000kPa, RR4 Splitted Feed did not cross did not cross feasible feasible feasible 97.99 1.12E+6 
30 193K, 1000kPa, RR4 Splitted Feed did not cross did not cross feasible feasible feasible 82.48 1.06E+7 
31 243K, 1000kPa, RR2 Splitted Feed did not cross constricted feasible undesired infeasible   
32 243K, 1000kPa, RR6 Splitted Feed crossed did not cross infeasible feasible infeasible   
33 193K, 1000kPa, RR2 Splitted Feed constricted constricted undesired undesired infeasible   
34 193K, 1000kPa, RR6 Splitted Feed did not cross did not cross feasible feasible feasible 75.22 1.86E+7 
35 223K, 1000kPa, RR2 Splitted Feed did not cross constricted feasible undesired infeasible   
36 223K, 1000kPa, RR6 Splitted Feed did not cross did not cross feasible feasible feasible 55.70 4.50E+7 



90 

 

Integrating the empirical results obtained from the exergetic analysis with the 

partitioning imposed non-parametric revamped VRS model in the robust parameter 

design, efficient DMUs reduced from 17 to 14 EP and SEP thereby reducing the 

computational search for the optimum DMU which is within the EPs and/or SEPs.  

The discriminatory effect shows that the efficiency of DMUs 1, 2, 28 and 36 changes 

on partitioning indicating they are either a WEP or those that compared with the 

WEPs. As given in Table 20, DMUs 1, 2, 5, and 28 turned out to be the weak 

efficient point (WEP) while DMU 5 is strictly inefficient. This connotes that the 

inefficient DMUs is not within the convex combinations of the design factors and did 

not show any possibilities of virtual outputs that can be formed from these design 

factors.  This step is important because it has the tendency of reducing the number of 

possible frontiers amongst whose optimum sequence can be found. This is another 

novelty to the method reported by Gutierrez and Lozano (2010). It is uncommon that 

WEPs will yield optimum output or response of the design factors combination and 

so they can be dropped from the second DEA (penalization coefficient) estimation. 

The upper bound variable restriction ε of the VRS model was obtained to be 0.972 

and its application revealed that 14 DMUs (3, 7, 9, 10, 11, 16, 18, 19, 21, 23, 27, 29 

and 30) are strongly efficient. The optimum DMU can only be found within these 14 

DMUs; application of the VRS penalization model shown in Table 20 and by the 

response graph in Figure 20 revealed that DMU 29 (-30 oC-1000 kPa-reflux ratio 4) 

has the highest penalization coefficient of 1 and it is hereby selected as the optimum 

factor combination to operate the multicomponent distillation system investigated.  
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Table 20. Efficiency score for standard BCC model, DEA partitioning, facet analysis and optimum factor combination for the Multicomponent 
distillation case. 

 

 

DMU Temperature 
(C) 

Pressure 
(kPa) 

Reflux 
ratio 

Exergy 
efficiency 

Exergy loss 
rate  

Score 
(θ) Score (η) Partitioning 

Revamped 
VRS  DEA 

Penalization 
Coefficient 

01 2 2 1 0.094 0.945 1 0.991318 WEP 0.503811  
02 3 2 1 0.958 0.081 1 0.998689 WEP 0.9999525  
03 1 2 1 0.077 0.958 1 1 EP, SEP 1 0.966 
05 3 2 2 0.640 0.691 0.765 0.941744 

 
0.736529  

07 1 2 2 0.532 1.000 1 1 EP, SEP 1 0.653 
09 2 1 2 0.600 0.722 1 1 EP, SEP 1 0.756 
10 2 3 1 0.833 0.465 1 1 EP, SEP 1 0.77 
11 3 3 1 0.874 0.400 1 1 EP, SEP 1 0.785 
16 1 3 2 0.701 0.613 1 1 EP, SEP 1 0.761 
18 2 3 1 0.909 0.332 1 1 EP, SEP 1 0.806 
19 2 1 1 0.117 0.946 1 1 EP, SEP 1 0.941 
21 1 1 1 0.084 0.957 1 1 EP, SEP 1 0.961 
23 3 1 2 0.641 0.691 1 1 EP, SEP 1 0.751 
27 2 1 2 0.785 0.529 1 1 EP, SEP 1 0.761 
28 2 2 1 0.093 0.945 1 0.991214 WEP 0.999744  
29 3 2 1 1.000 0.000 1 1 EP, SEP 1 1 
30 1 2 1 0.695 0.613 1 1 EP, SEP 1 0.765 
36 2 2 2 0.000 1.007 1 1 EP, SEP 0.526123  
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Figure 20. Optimal factors setting for integrated data envelopment-thermoexergetic using the proposed model (shaded points) 
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By implication, exergy analysis would have considered DMUs 2, 5, 7, 9, 10, 11, 16, 

18, 23, 27, 29, 30 to be thermo-feasible systems and offered DMUs 1, 3, 19, 21, 28 

36 for possible improvement for them to be highly thermo-feasible. Conversely, take, 

for instance, DMU 2 with the exergetic efficiency of 95.70% and lowest exergetic 

destruction rate of 1.51E+06 kJ/hr would have been selected as highly efficient 

system exergetically but it was shown to be inefficient by the integrated model. It 

means that for DMU 2 to be efficient at the specified operating condition, an 

improvement is necessary. It is noteworthy that optimum DMU 29 is a multiple feed 

rate system of DMU 2. This confirms that splitting feed systems (DMUs) and 

feeding the column at two stages for DMU 2 can serve as an improvement that will 

make it to be thermo-feasible and efficient.  

5.5 Rhamnolipid production 

Zulfiqar et al. (2014) presented the fermentation process for the production of 

rhamnolipid from previous work how to optimize the best consistent conditions for 

rhamnolipid production by Pseudomonas aeruginosa mutant strain grown on 

molasses using grey relational analysis in Taguchi design. The main factors 

incubation time (IT), total sugar (TS) and carbon source (CN). Eight responses; 

utilized total sugar (UTS), DCBM, ST, and Yx/s are with quality indicator STB while 

RL, Yp/s, Yp/x and Pv are with quality indicator LTB. The table of input and output 

variables is given in Table 21, signal-to-noise ratio with its corresponding 

normalized values are in Table 22. The estimation of the upper bound restriction 

values of𝐷𝐷𝑜𝑜−, 𝐷𝐷𝑜𝑜+ in Table 23 shows for efficient DMUs 1-8 from and  𝜀𝜀 was obtained 

to be 0.548. On the application of the proposed model, Table 24 gives at both 

orientations of DEA, DMU 1-8 are on the frontier and are termed efficient 

fermentation parameter settings, thereby fall within the region of EP and SEP. On the 
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other hand, DMU 9 is inefficient at both orientations hence it is a WEP. With the 

modified BCC, DMU 9 is strictly inefficient.   

With the proposed method, the efficiency of DMUs 9 changes indicating that it is 

either a WEP or its companion and could not have been one of the convex 

combinations for the possible production set (PPS) of the process. The DEA 

(Penalization coefficient) estimation yields the highest score of 0.5402 for DMU 7. 

Therefore by the proposed method, DMU 7 with combination TS3, CN10, IT7 is the 

optimal factor level combination for rhamnolipid production on the orthogonal array 

(OA). From the response graph, Figure 21, the optimal value of DMU 3 is still on the 

OA. Generally, a global optimal solution should be on the OA and the response 

graph in most cases, however, this is not so for this case study. Additionally, the grey 

relational analysis of Zulfiqar et al. (2014) obtained an optimal setting of TS2, CN20, 

IT3. With this situation, we need to determine the global optimal solution among the 

two optimal results by performing a confirmatory test. For this, we employ a 

multivariate multiple dependent general linear model to carry multiple analysis of 

variance (MMGLM). This is used to evaluate and establish the linear relationship 

between the multivariate and multiple dependent variables. This multivariate 

multiple dependent regression is performed in RStudio with the responses captured 

in a cbind() function at 95% confidence interval as follows;  

res.man <- manova(cbind(UT,DCBM,RL,ST,Yp/s,Yp/x,Px/s,Pv) ~ TS+CN+IT, data 

= my_data) 

 

mlm1 <- lm(cbind(UT,DCBM,RL,ST,Yps,Ypx,Pxs,Pv) ~ TS+CN+IT, data = my_dat
a) 
 
mlm1 <- lm(cbind(UT,DCBM,RL,ST,Yps,Ypx,Pxs,Pv) ~ TS+CN+IT, data = my_dat
a) 
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lh.out <- linearHypothesis(mlm1, hypothesis.matrix = c("TS = 0", "CN = 0", "IT = 0
")) 
 
 
This led us to the MMGLM model for the response as; 
 
Response value <- lm(cbind(UT,DCBM,RL,ST,Yp/s,Yp/x,Px/s,Pv) ~ data = 
my_data) 
 
Where TS = Total sugars (%), DCBM = Dry cell biomass, CN=Carbon content, IT 
=Incubation time (days), UT = utilized, RL = Rhamnilipid content produced, Yp/s 
=substrate biomass, Yp/x = Cell biomass, Px/s = Cell-Substrate biomass, Pv = 
volume of the biomass yield. 
 
From Table 25, all the independent variables are positively related with RL and DCB

M. Negative relationship with the TS; CN and IT are negatively related to Yp/x and 

Yp/x; IT and TS showing a negative relationship with Yx/s and Yx/s; Pv negatively r

elated to IT while UT as expected negatively related to TS.  

 

These trends are in tandem with the finding enumerated by Zulfiqar et al. (2014) abo

ut the fermentation dynamics of the process. Next is to verify the relationship of the i

ndependent (predictors) variables using MANOVA function in the multivariate test s

tatistics as reported by Fox and Weisberg, (2011). For Table 26, the Pillai test and ot

her counterpart test statistics of Wilks, Hotelling-Lawley and Roy reveal insignifican

t results suggesting that predictors, as analyzed, already included in the model. The 

MMGLM analysis further shows that the independent variables are necessary for the 

estimation of the dependent (rhamnolipid content). Table 27 the OA response graph 

optimal (DMU 3) of the proposed model is a better predictor of the responses with th

e highest rhamnolipid content of 1.087 and the total response value of 82.270. Theref

ore the optimal value of the response graph OA as DMU 3 TS1, CN30, IT7 is selected 

as the optimum fermentation parameter setting for the production of rhamnolipid. 
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Table 21.  Input and output data Rhamnolipid production case study 
 
 
 
 
 
 
 
 
 
 
 
 
 

TS = Total sugars (%), DCBM = Dry cell biomass, CN=Carbon content, IT =Incubation time (days), UT = utilized, RL = Rhamnolipid content 
produced, Yp/s =substrate biomass, Yp/x = Cell biomass, Px/s = Cell-Substrate biomass, Pv = volume of the biomass yield 
 
 
 
 
 
 
 
 
 
 
 
 

 

Design Factors Combinations (Input 
Variables)  Responses (Output Variables) 

DMUs TS CN IT UT DCBM RL ST Yp/s Yp/x Px/s Pv 
1 1 10 3 24 0.65 0.8 32 3.33 1.23 2.71 0.0111 
2 1 20 5 39 1.11 0.9 31 2.31 0.81 2.85 0.0075 
3 1 30 7 47 1.1 0.88 31 1.87 0.8 2.34 0.0052 
4 2 10 5 19 1.3 1 30 2.63 0.77 3.42 0.0083 
5 2 20 7 26 1.5 1.45 28 2.79 0.97 2.88 0.0086 
6 2 30 3 13 1.2 1.2 29 4.62 1 4.61 0.0167 
7 3 10 7 19 0.85 0.95 31 1.67 1.12 1.49 0.0056 
8 3 20 3 10 1.21 0.9 29.5 3 0.74 4.03 0.0125 
9 3 30 5 15 1 1.04 30 2.31 1.04 2.22 0.0087 
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Table 22. Signal-to-noise-ratio (SN) and Normalized signal to noise ratio (NSN) for the Rhamnolipid production case 

TS = Total sugars (%), DCBM = Dry cell biomass, CN=Carbon content, IT =Incubation time (days), UT = utilized, RL = Rhamnolipid content 
produced, Yp/s =substrate biomass, Yp/x = Cell biomass, Px/s = Cell-Substrate biomass, Pv = volume of the biomass yield 
 

 
 
 
 
 
 
 
 
 
 
 

Signal-to-Noise ratio Normalized Signal-to-Noise  ratio 

UT DCBM RL ST Yp/s Yp/x Px/s Pv Utout DCBMout Rlout Stout Yp/sout Yp/xout Px/sout Pvout 
-27.60 3.74 -1.94 -30.10 10.45 1.80 -8.66 -39.09 0.57 0.00 0.00 1.00 0.68 0.78 0.53 0.65 
-31.82 -0.91 -0.92 -29.83 7.27 -1.83 -9.10 -42.50 0.88 0.64 0.20 0.76 0.32 0.79 0.57 0.31 
-33.44 -0.83 -1.11 -29.83 5.44 -1.94 -7.38 -45.68 1.00 0.63 0.16 0.76 0.11 0.82 0.40 0.00 
-25.58 -2.28 0.00 -29.54 8.40 -2.27 -10.68 -41.62 0.41 0.83 0.38 0.52 0.45 0.92 0.74 0.40 
-28.30 -3.52 3.23 -28.94 8.91 -0.26 -9.19 -41.31 0.62 1.00 1.00 0.00 0.50 0.36 0.58 0.43 
-22.28 -1.58 1.58 -29.25 13.29 0.00 -13.27 -35.55 0.17 0.73 0.68 0.26 1.00 0.27 1.00 1.00 
-25.58 1.41 -0.45 -29.83 4.45 0.98 -3.46 -45.04 0.41 0.32 0.29 0.76 0.00 0.00 0.00 0.06 
-20.00 -1.66 -0.92 -29.40 9.54 -2.62 -12.11 -38.06 0.00 0.74 0.20 0.39 0.58 1.00 0.88 0.75 
-23.52 0.00 0.34 -29.54 7.27 0.34 -6.93 -41.21 0.26 0.52 0.44 0.52 0.32 0.18 0.35 0.44 
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Table 23. The values of 𝑢𝑢𝑜𝑜−, 𝑢𝑢𝑜𝑜+ for efficient DMUs for Rhamnolipid production 
 
 
 
 
 
 
 
 
 

ε = Max  uo+ u⁄   ≠ 1 = 0.548 

 
 

DMUs 𝒖𝒖𝒐𝒐− 𝒖𝒖𝒐𝒐+ 
1 0.518 1 
2 0.397 1 
3 0.277 1 
4 1 1 
5 1 1 
6 0.548 1 
7 1.200 1 
8 1 1 
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Table 24. Efficiency scores for standard orientations, modified BCC model and penalization coefficient for Rhamnolipid production 

TS = Total sugars (%), DCBM = Dry cell biomass, CN=Carbon content, IT =Incubation time (days), UT = utilized, RL = Rhamnolipid content 
produced, Yp/s =substrate biomass, Yp/x = Cell biomass, Px/s = Cell-Substrate biomass, Pv = volume of the biomass yield. 
 

 
 
 
 
 

DMU 
 

TS 
 

CN 
 

IT 
 

UT 
 

DCBM 
 

RL 
 

ST 
 

Yp/s 

 

Yp/x 

 

Px/s 

 

Pv 

 

Score (θ) 
 

Score  (η) 
 

Partitioning 
 

Modified 
 

Penalization 
 

1 1 10 3 0.566 0.000 0.000 1.000 0.678 0.784 0.530 0.650 1 1 EP, SEP 1 0.2376 

2 1 20 5 0.879 0.640 0.198 0.762 0.319 0.788 0.574 0.314 1 1 EP, SEP 1 0.2235 

3 1 30 7 1.000 0.629 0.160 0.762 0.111 0.822 0.400 0.000 1 1 EP, SEP 1 0.2575 

4 2 10 5 0.415 0.829 0.375 0.517 0.446 0.919 0.736 0.401 1 1 EP, SEP 1 0.2156 

5 2 20 7 0.617 1.000 1.000 0.000 0.504 0.356 0.583 0.431 1 1 EP, SEP 1 0.2226 

6 2 30 3 0.170 0.733 0.682 0.263 1.000 0.274 1.000 1.000 1 1 EP, SEP 1 0.195 

7 3 10 7 0.415 0.321 0.289 0.762 0.000 0.000 0.000 0.064 1 1 EP, SEP 1 0.5402 

8 3 20 3 0.000 0.743 0.198 0.391 0.576 1.000 0.881 0.752 1 1 EP, SEP 1 0.2202 

9 3 30 5 0.262 0.515 0.441 0.517 0.319 0.178 0.353 0.441 0.688 0.9629 
 

0.688 
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TS1-3 = Total sugars (%), DCBM = Dry cell biomass, CN (10, 20, 30) =Carbon content, IT ( 3, 5, 7) =Incubation time (days), UT = utilized, RL  
Figure 21.  Response graph showing the optimal Rhamnolipid fermentation process parameter setting using the proposed model (shaded points)  
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Table 25. Multivariate multiple dependent GLM and MANOVA analysis   
Response UT : 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  22.4722     7.4810   3.004  0.02996 *  
TS          -11.0000     1.9370  -5.679  0.00236 ** 
CN            0.2167     0.1937   1.119  0.31416    
IT            3.7500     0.9685   3.872  0.01174 *  
 
Response DCBM : 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.706389   0.458868   1.539    0.184 
TS          0.033333   0.118810   0.281    0.790 
CN          0.008333   0.011881   0.701    0.514 
IT          0.032500   0.059405   0.547    0.608 
 
Response RL : 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.628333   0.357124   1.759    0.139 
TS          0.051667   0.092466   0.559    0.600 
CN          0.006167   0.009247   0.667    0.534 
IT          0.031667   0.046233   0.685    0.524 
 
Response TS : 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 32.54167    2.04572  15.907 1.79e-05 *** 
TS          -0.58333    0.52967  -1.101    0.321     
CN          -0.05000    0.05297  -0.944    0.389     
IT          -0.04167    0.26484  -0.157    0.881     
 
Response Yps :  
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.43722    1.09287   4.060  0.00973 ** 
TS          -0.08833    0.28296  -0.312  0.76751    
CN           0.01950    0.02830   0.689  0.52141    
IT          -0.38500    0.14148  -2.721  0.04172 *  
 
Response Ypx : 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)   
(Intercept)  1.048889   0.331957   3.160   0.0251 * 
TS           0.010000   0.085950   0.116   0.9119   
CN          -0.004667   0.008595  -0.543   0.6105   
IT          -0.006667   0.042975  -0.155   0.8828   
 
Response Pxs : 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)  4.42000    1.27298   3.472   0.0178 * 
TS          -0.02667    0.32960  -0.081   0.9387   
CN           0.02583    0.03296   0.784   0.4687   
IT          -0.38667    0.16480  -2.346   0.0659 . 
 
 
 
Response Pv : 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.520e-02  3.474e-03   4.374  0.00719 ** 
TS           5.000e-04  8.995e-04   0.556  0.60227    
CN           9.333e-05  8.995e-05   1.038  0.34701    
IT          -1.742e-03  4.498e-04  -3.872  0.01173 *  
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Table 26. Multivariate Tests  
                 Df test stat approx F num Df   den Df   Pr(>F)   
Pillai            3  1.227891 0.831478     15 18.00000 0.637305   
Wilks             3  0.133972 0.817278     15 11.44364 0.649181   
Hotelling-Lawley  3  3.848452 0.684169     15  8.00000 0.749470   
Roy               3  3.019796 3.623755      5  6.00000 0.074216  

 
 
 
Table 27. MMR response prediction output of the optimal model for Rhamnolipid 
production 

 

5.6 Bio fermentation of “Burukutu” 

Bio-fermentation experiment for the production of "Burukutu" from four design 

factors and seven product quality responses was conducted. These factors are at two 

levels each as follows; additive A (level 1- groundmalt, level 2- non groundmalt), B 

fermentation process (level 1-innoculum, level 2- non-Innoculum), processing 

method C (level 1- Mashing point, level 2- non-Mashing Point) and preservation 

techniques D (level 1- preserved pasteurized, level 2-unpreserved pasteurized). The 

responses which are the sensory and physicochemical qualities of the product with 

their quality indicator are given as follows; total dissolved solids (TDS), sugar 

content, alcohol content with STB while colour, taste, flavour and acidity as LTB. 

Table 28 shows the values of  𝑢𝑢𝑜𝑜−, 𝑢𝑢𝑜𝑜+ for efficient DMUs 1-6 from and 𝜀𝜀 was 

obtained to be 0.0337 from the input and output (Table 29). The signal to noise and 

its normalized values were presented in Table 30. 

Response 
Prediction 
model 

 Rhamnolipid fermentation parameter 
setting (Response)   

   

 Total 
Anticipated 
Response 

   UT DCBM RL ST Yp/s Yp/x Yx/s Pv 
 

 
DMU 7: (OA 
optimal) 

 17.889 1.117 1.067 30.000 1.672 0.986 1.892 0.005 

 

54.628 

Gray 
Relational 
Analysis 

16.056 1.037 0.950 30.250 3.496 0.956 3.723 0.013 

 

56.481 

DMU 3: 
(Response 
graph optimal) 

 
44.220 1.217 1.087 30.167 2.239 0.872 2.462 0.006 

 

82.270 
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Table 28. The values of 𝑢𝑢𝑜𝑜−, 𝑢𝑢𝑜𝑜+ for efficient DMUs for bio-fermentation of 
"Burukutu" 
 
 
 
 
 
 
 
 

 ε = Max uo+ uo
-⁄   ≠ 1 = 0.0337 

 

Table 31 reveals that at both orientations, all the DMUs are on the frontier, efficient 

and were categorized into EP and SEP. On the application of the proposed method, 

DMU 1-5 were on the frontier, but the efficiency of DMU 6 changes from 1 to 

0.9812 indicating that it is strictly an inefficient DMU and it was discarded. 

Application of standard BCC model assigned misleading efficiency scores by 

promoting DMU 6 which ofcourse possesses an unrealistic weighing scheme as an 

efficient DMU. This case study gives credence to the efficacy of how the proposed 

modified BCC in robust parameter model can correct the anomalies associated with 

the classical and standard BCC model. The DEA (Penalization coefficient) 

estimation yielded the highest score of 0.3565; hence DMU 4 with A2B1C1D2 is 

optimal on the OA, also the response graph of Figure 22, A1B2C2D1 is obtained. We 

perform the multivariate multiple dependent general linear model to confirm and 

select the global optimal solution using the MMGLM R code below. This will 

establish the linear relationship between the multivariate and the multiple dependent 

variables. This multivariate multiple dependent regression is performed in R with the 

responses captured in a cbind() function as follows at 95% confidence interval; 

DMUs 𝒖𝒖𝒐𝒐− 𝒖𝒖𝒐𝒐+ 
1 0 1 
2 0 1 
3 0 1 
4 0 1 
5 0 1 
6 0.0337 1 
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res.man <- manova(cbind(Colour,Taste,Flavour,TDS,Sugar, Acidity, Alcohol) ~ 

A+B+C+D, data = my_data) 

mlm1 <- lm(cbind(Colour,Taste,Flavour,TDS,Sugar,Acidity,Alcohol) ~ A+B+C+D, 

data = my_data) 

lh.out <- linearHypothesis(mlm1, hypothesis.matrix = c("A = 0", "B = 0", "C = 0", 

"D = 0")) 

nd <- data.frame(A = 2, B = 1, C = 1, D = 2) –DMU 4 OA optimal 

p <- predict(mlm1, nd) 

nd <- data.frame(A = 1, B = 2, C = 2, D = 1) – Response graph optimal 

p <- predict(mlm1, nd) 

For Table 32, the Pillai test and other counterpart test statistics of Wilks, Hotelling-

Lawley and Roy reveal insignificant results suggesting that predictors, as analysed, 

already included in the model. The response prediction in Table 33, OA optimal 

value, DMU 4 (A2B1C1D2) gave the better prediction of the response and it is 

selected as the global optimal solution from the production of burukutu.  From this 

result, quality "burukutu" can be produced with no addition of ground malt, inoculum 

fermentation, with adequate mashing process and its shelf-life can be maintained by 

preserving and pasteurizing.  

It is worthy to take note going by the closeness of the penalization coefficient of 

DMU 3 with DMU 4, 0.3161 and 0.3565 that alternatively and rarely, factors setting 

of DMU 3, A2B1C1D1 could be used to produce the product. The only difference 
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between the two combinations is in D which is the method of preservation. This 

preservation technique at times could be swapped without tampering with the 

sensory and other qualities of the product. However, this submission needed to be 

substantiated by further studies.  
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Table 28. Input and output data Bio-fermentation of "Burukutu" production experiment case study 

 

Design Factors Combinations  
(Input Variables) Responses (Output Variables) 

DMUs A B C D Colour Taste Flavour TDS Sugar Acidity Alcohol 
1 1 1 1 1 4.5 4.5 4.3 7.5 10.5 0.41 2.97 
2 1 1 1 2 4.5 4.5 4.3 7.5 10.5 0.38 2.9 
3 2 1 1 1 4.5 4.8 4.8 2.8 9.2 0.37 2.01 
4 2 1 1 2 4.5 4.5 4.6 2.8 9.2 0.34 2.04 
5 2 2 2 1 2.9 2.9 3.2 13.6 10.6 0.57 2.89 
6 2 2 2 2 4.4 4.5 4.5 2.9 10.8 0.52 2.83 
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Table 30. Signal-Noise ratio (SN) and Normalized signal to noise ratio (NSN) for the Bio-fermentation of "burukutu" case 

 

 
 
Table 31. Efficiency scores for standard orientations, modified BCC model and penalization coefficient for bio-fermentation of "burukutu" 

 Signal-to-Noise ratio Normalized Signal-to-Noise  ratio 
DMU Colour Taste Flavour TDS Sugar Acidity Alcohol Colour Taste Flavour TDS Sugar Acidity Alcohol 

1 13.06 13.06 12.67 -17.50 -20.42 -7.74 -9.46 1.00 0.87 0.73 0.62 0.82 0.36 1.00 
2 13.06 13.06 12.67 -17.50 -20.42 -8.40 -9.25 1.00 0.87 0.73 0.62 0.82 0.22 0.94 
3 13.06 13.62 13.62 -8.94 -19.28 -8.64 -6.06 1.00 1.00 1.00 0.00 0.00 0.16 0.00 
4 13.06 13.06 13.26 -8.94 -19.28 -9.37 -6.19 1.00 0.87 0.90 0.00 0.00 0.00 0.04 
5 9.25 9.25 10.10 -22.67 -20.51 -4.88 -9.22 0.00 0.00 0.00 1.00 0.88 1.00 0.93 
6 12.87 13.06 13.06 -9.25 -20.67 -5.68 -9.04 0.95 0.87 0.84 0.02 1.00 0.82 0.88 

DMUs A B C D Colour Taste Flavour TDS Sugar Acidity Alcohol Score 
(θ) 

Score 
(η) Partitioning Modified Penalization 

1 1 1 1 1 1.0000 0.8719 0.7287 0.6234 0.8243 0.3623 1.0000 1 1 EP,SEP 1 0.1848 
2 1 1 1 2 1.0000 0.8719 0.7287 0.6234 0.8243 0.2153 0.9389 1 1 EP,SEP 1 0.1922 
3 2 1 1 1 1.0000 1.0000 1.0000 0.0000 0.0000 0.1637 0.0000 1 1 EP,SEP 1 0.3161 
4 2 1 1 2 1.0000 0.8719 0.8950 0.0000 0.0000 0.0000 0.0379 1 1 EP,SEP 1 0.3565 
5 2 2 2 1 0.0000 0.0000 0.0000 1.0000 0.8834 1.0000 0.9301 1 1 EP,SEP 1 0.2622 
6 2 2 2 2 0.9489 0.8719 0.8408 0.0222 1.0000 0.8223 0.8763 1 1 EP,SEP 0.9812 
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Figure 22. Response graph showing the optimal burukutu fermentation process parameter setting using the proposed model (shaded points) 
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Table 32. Multivariate Tests  
                 Df test stat approx F num Df   den Df   Pr(>F)   
Pillai            3  1.227891 0.831478     15 18.00000 0.637305   
Wilks             3  0.133972 0.817278     15 11.44364 0.649181   
Hotelling-Lawley  3  3.848452 0.684169     15  8.00000 0.749470   
Roy               3  3.019796 3.623755      5  6.00000 0.074216  

 
 

Table 33. MMR response prediction output of the optimal model for Burukutu 
fermentation  

 

5.7 Optimum supplier selection framework  

Ma et al. (2014) proposed an adjustment to the method of Chen (2011) through DEA 

Game cross efficiency approach where all DMUs are seen as competitors thereby 

removing the relationship between input and output. The approach considered each 

DMU as a player in the game with a non-cooperative tendency and through arbitrary 

plans, assigned efficiency score for desired DMU and set an assumed value for its 

free variable upon which other DMUs’ efficiency was determined. 

Unfortunately, none of these previous methods has considered the likely 

interrelationship between criteria and indicators selected. Furthermore, they all 

ignored that fact that these criteria and indicators were selected randomly from 

amongst vast options. Even though their selection was based on the standard concept 

of SWOT yet the effect of other undetectable indicators on the detectable indicators 

was not considered. This study views those previous frameworks as a kind of an on-

Response 
Prediction 
model 

Burukutu fermentation parameter setting 
(Response)   

  

 Total 
Anticipated 
Response   Colour 

 
Taster Flavour TDS Sugar Acidity Alcohol  

DMU 4: 
(OA 
optimal) 

4.75 4.87 4.88 1.02 9.23 0.34 2.01  27.10 

 Response 
graph 
optimal 

3.40 3.33 3.27 14.73 11.97 0.60 3.97  41.09 
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line quality control based solely and primarily on inspecting suppliers as they are 

discharged from the SWOT and rejecting those that did fall short of the specified 

acceptable supplier performance. These previous attempts based their decision on 

trying to achieve a balance between these desirable but incompatible detectable and 

undetectable parameters. With the avoidance of doubt, there exist variations between 

detectable and undetectable parameters. Obviously, those undetected parameters are 

also influencing the decision making process. It is so obvious that no such appraisal 

would optimally improve the supplier selection due to variation orchestrated by 

undetectable factors viewed in this context as undetected supplier performance 

indicators or simply noise level.  Little efforts have been dissipated on how to 

smoothen the influence of these undetectable parameters. This study seeks to 

consider the relationship between input criteria and supplier performance through 

robust signal-to-noise ratio so that supplier performance responses are insensitive to 

the effects of variations due to the undetected noise indicators.  

An optimum framework for supplier appraisal and selection in supply chain co-

ordinated decision making that will lead managers, strategic decision makers into 

optimum appraising, evaluating and selecting the optimum supplier is necessary; 

therefore a four procedural framework is proposed. In the first procedure, the 

requirement and strategy analysis where competitive strategies are discerned and all 

the available supplier selection criteria and performance indicators are evaluated and 

selected from within all the possible suppliers is carried out using SWOT analysis 

(Chen, 2011). The view of this procedure is to determine the plausible suppliers. 

These plausible suppliers are taken further into the second procedure of the robust 

parameter design where the signal-to-noise ratio is used to render the selection 

responses insensitive to the effects of the variations due to the undetectable and 
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uncontrollable supplier selection factors. At the third procedure, revamped facet VRS 

DEA model is employed to determine the weight of each of the performance 

indicators and evaluate the plausible suppliers in terms of the weighted indicators 

and the selected criteria. It is possible that sometimes, the optimum supplier could 

emerge and be selected for this procedure. However, most often probable suppliers 

are always obtained. In the fourth procedure, the selection responses of the probable 

supplier obtained by the third procedure are assessed by the VRS penalization 

coefficient. The view of this is to determine a supplier that will have the highest 

penalization coefficient. These procedures have been depicted in Fig 23.   
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Figure 23. Proposed revamped Facet VRS robust parameter framework for supplier 

selection optimization 
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A case study of the Taiwanese textile industry using the performance indicators of 12 

textile suppliers obtained from the market observation post system of Taiwan stock 

exchange, based on the description explained by Chen (2011) shown in Table 34 and 

which was further analyzed with DEA game cross-efficiency technique of Ma et al. 

(2014) given in Table 35, is adopted to illustrate the proposed supplier selection 

framework as shown in Figure 23. We employ five quality responses for the optimal 

selection of the supplier for the Taiwanian textile. These are R&D rate, productivity, 

gross profit rate, quality discount (%), and inventory turnover ratio. Three input 

variables of return rate, discount rate and operating expenses are used. For the robust 

parameter design, we set the quality attributes of the Larger-The-Better for all the 

responses. However, since the input variables are assumed to be predictor of the 

responses, that is, the controllable supplier selection factors, they are used to form the 

12 design factor combinations, and each combination is tagged a DMU. These input 

variables form the inner array of the orthogonal array (OA) for the robust parameter 

design, so, L12 OA is adopted for the robust parameter design phase. Table 36 

presents the signal-to-noise ratio (S/N) and are normalized accordingly. The 

normalized signal-to-noise ratio (NSN) was used in the revamped Facet VRS phase.  

Table 37 shows the determination of the restriction for the upper bound variable 𝜀𝜀 

obtained to be 0.9656. As shown in Table 38, at both input and output orientations, 

DMUs 2, 4,5,6,7,8,9,10,11 and 12 are all efficient while DMUs 1 and 3 are 

inefficient. From the partitioning, suppliers 1 and 3 are WEP while suppliers 2, 4, 5, 

6, 7, 8, 9, 10, 11, 12, are EPs and SEPs. The application of the facet VRS model, 

DMUs 2, 5, 7, 8 and 10 are on the frontier while DMUs 1, 3, 4, 6, 9, 11 and 12 are 

inefficient. These analyses put suppliers 1 and 3 as strictly inefficient suppliers and 

are the worst cases; Supplier 4, 6, 9, 11 and 12 are inefficient and implies that none of 
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these suppliers could be employed. On the other hand, five suppliers 2, 5, 7, 8 and 10 

are efficient; this implies that the optimum supplier is within 2, 5, 7, 8 and 10. The 

penalization coefficient phase gave the highest score of 0.323 for DMU 2; the optimal 

supplier on the OA based on the framework is Supplier 2. Meanwhile, from the 

response graph shown in Figure 24, the optimal supplier is DMU 8- another point on 

the OA. The global optimal solution should be on the OA and the response graph in 

most cases. Therefore, we need to perform a confirmatory test/response prediction in 

order to arrive at the global optimal solution. More so, different optimal solutions 

have been obtained and published by some researchers for the same Taiwanian textile 

supplier selection problem. The application of the fuzzy base-DEA technique of Chen 

(2011) also obtained 2, 5, 7, 8 and 10 as the efficient supplier and selected supplier 7 

as the optimal.  

Similarly, the method of DEA game cross-efficiency of Ma et al. (2014) ranked 

supplier 10 as the highest supplier but concluded that supplier 12 is the optimum 

supplier after a game cross efficiency convergence test procedure. The multivariate 

multiple dependent general linear model is employed as the confirmatory test. 

MMGLM is adopted to evaluate and establish the linear relationship between more 

than one independent variable and more than one dependent variable. The 

independent variables are the multivariate input while the responses are the multiple 

dependents. 
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Table 34. Description of performance indicators for Taiwanian firms in selecting a 
textile supplier  
Evaluation  criteria Performance indicators Description 
Quality Return rate Return rate = sales return/gross sale; 

(smaller return rate means sales of better 
quality products and higher customer 
acceptance) 

 Discount rate Discount rate = sales discount/gross sales; 
(smaller discount rate means sales of 
better quality products and higher 
customer acceptance) 

Cost Gross profit rate Gross profit rate = (net sales – cost of 
goods sold)/sales; (larger supplier gross 
profit indicates stronger cost control 
ability) 

 Quality discount Suppliers offer the discount based on 
purchase quantity; (bigger quantity 
discount indicate higher cost ability) 

Technology and production R&D rate R&D rate = R&D expense/sales; (higher 
supplier R&D rate denotes a stronger 
technology ability) 

 Productivity Higher supplier productivity  means 
greater supply ability 

Organizational management Inventory turnover ratio Inventory turnover ratio = cost of goods 
sold/average inventory; ( larger supplier 
inventory turnover ratio indicates stronger 
production/marketing control ability) 

 Operating expense rate Operating expense rate = operating 
expense/net sales; (smaller supplier 
operating expenses rate expresses higher 
operating management efficiency) 

 

This multivariate multiple dependent regression is performed in R with the responses 

captured in a cbind() function as follows at 95% confidence interval; 

cbind(R&D rate, Productivity, Gross profit rate, Quantity discount (%), Inventory 

turnover rate) ~ Return rate + Discount rate  + Operating expense rate     

mlm1 <- lm(cbind(R&D rate, Productivity, Gross profit rate, Quantity discount (%), 

Inventory turnover rate) ~ Return rate + Discount rate  + Operating expense rate     

, data = my_data) 

lh.out <- linearHypothesis(mlm1, hypothesis.matrix = c("Return rate = 0", "Discount 

rate = 0", "Operating expense rate = 0")) 

lh.out 
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Table 35. Parameter for the criteria and performance indicators for the 12 suppliers to 
a Taiwanian textile industry 
Supplier Input supplier selection criteria Output supplier performance indicator 

(DMU) Return 
rate 

Discount 
rate 

Operating 
expenses 

rate 
  R&D 

rate Productivity 
Gross 
profit 
rate 

Quantity 
discount 

(%) 

Inventory 
turnover 

ratio 

1 0.06 0.66 5.73  1.11 201.00 0.01 7.00 0.67 

2 0.54 0.22 2.92  1.13 267.00 9.69 7.00 6.02 

3 1.11 0.50 8.38  2.12 311.00 6.36 5.00 5.80 

4 0.15 0.48 5.68  1.57 361.00 6.42 5.00 6.17 

5 0.19 0.41 4.16  1.50 300.00 9.51 10.00 6.76 

6 1.28 0.50 7.01  3.08 310.00 13.81 7.00 7.48 

7 0.01 0.01 5.00  2.00 250.00 5.41 8.00 7.04 

8 0.42 0.13 2.82  1.04 398.00 6.82 7.00 11.16 

9 0.65 1.05 3.83  1.66 375.00 7.51 5.00 5.17 

10 0.25 0.07 2.64  2.62 103.00 1.43 8.00 5.16 

11 0.72 0.18 4.25  2.09 164.00 6.71 6.00 12.45 

12 0.13 1.37 5.55   2.52 200.00 2.98 6.00 6.36 
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Table 36. The signal-to-noise ratio for the supplier selection for the Taiwanian textile 
industry 
 

Signal-To-Noise ratio (S/N) 
0.91 26.02 -40.00 16.90 -3.48 
1.06 48.53 19.73 16.90 15.59 
6.53 49.86 16.07 13.98 15.27 
3.92 51.15 16.15 13.98 15.81 
3.52 49.54 19.56 20.00 16.60 
9.77 49.83 22.80 16.90 17.48 
6.02 47.96 14.66 18.06 16.95 
0.34 52.00 16.68 16.90 20.95 
4.40 51.48 17.51 13.98 14.27 
8.37 40.26 3.11 18.06 14.25 
6.40 44.30 16.53 15.56 21.90 
8.03 46.02 9.48 15.56 16.07 

 
 
 
Table 37. The values of uo−, uo+ for efficient DMUs for the Taiwanian Textile industry 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ε = Max uo+ uo
-⁄   ≠ 1 = 0.9656 

 
 
 
Therefore, we arrived at the MMGLM model for the response as; 
 
Response value <- lm(cbind(R&D rate, Productivity, Gross profit rate, Quantity 
discount (%), Inventory turnover rate) ~ Return rate + Discount rate  + Operating 
expense rate, data = my_data). 

However, the + signs do not necessarily translate to adding-up but it rather means to 

model the dependents (responses) as a function of the independent (input variables). 

Table 39 shows that all the independent variables are positively related with R&D 

DMUs 𝒖𝒖𝒐𝒐− 𝒖𝒖𝒐𝒐+ 
1 0.71865 0.71865 
2 0.2022 0.2022 
3 0.5420 0.5420 
4 0.3676 0.3676 
5 0.4709 0.4709 
6 0.0683 0.0683 
7 1.1049 1.1049 
8 0.6339 0.6339 
9 1.0000 0.9656 

10 0.6378 0.6378 
11 0.0486 0.0486 
12 0.1557 0.1557 
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rate; productivity reveals a negative relationship with the operating expense rate; 

discount rate and operating expense rate are also negatively related to gross profit rate 

and inventory turnover rate; the quantity discount (%) show a negative relationship 

with all the independent variables. We need to check how the independent 

(predictors) variable affect the model, the use of multivariate test statistics including 

MANOVA function is used as described by Fox and Weisberg, (2011). The 

MANOVA analysis, Pillai test statistic reveals insignificant results that suggest that 

predictors, as tested, are already in the mode. Further multivariate test in Table 40 

confirmed through other similar test statistics of Wilks, Hotelling-Lawley and Roy 

gave the same results with Pillai test and could be interpreted in the same manner. 

Affirmatively from MMGLM analysis, independent variables could be necessary for 

the estimation of the dependent (supplier selection performance indicators).  For the 

prediction, the input values of the OA optimal DMU 2, response value graph DMU 8, 

fuzzy based-DEA model (Chen, 2011), DMU 7 DEA game cross-efficiency model 

(Ma et al., 2014) DMU 10 and that of convergence procedure of game cross-

efficiency (Ma et al., 2014) DMU 12 in Table 38 are used to predict the value of the 

responses. The total anticipated response from a model is the sum of the predicted 

responses for that particular model.  

As given in Table 41 the OA optimal of the proposed model is a better predictor of 

the responses except for the R&D rate which DEA game cross efficiency model gave 

a higher value than that of the OA. Similarly for the total anticipated response, OA 

optimal of the proposed model gave the highest predicted value of 303.8877, followed 

by response value also of the proposed model. Therefore the optimal value of the OA 

of the proposed model obtained as DMU 2 (supplier 2) is selected as the global 

optimal solution for the supplier selection problem of the Taiwanian textile industry 
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under the condition of the given input and output factors. Although our proposed 

model is not a raking method per se, however, base of the results obtained, we can 

categorize the efficient suppliers according to their performance as; 

Supplier 2DMU 2 > Supplier 8DMU 8 > Supplier 10DMU 10 > Supplier 12DMU 12

> Supplier 7DMU 7 

It is worthy to note that MMGLM is necessary only whenever the optimal value obta

ined for OA and the average response value graph is not the same.  
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Table 38. Efficiency scores for standard orientations, modified BCC model and penalization coefficient for the supplier selection of Taiwanian 
textile industry 

DMU 

Input variables 
 

Response 
 

Score (θ) Score (η) 
Revamped 

Facet 
VRS 

Penalization 
coefficient Return 

rate 
Discount 

rate 

Operating 
expenses 

rate 

 R&D 
rate Productivity 

Gross 
profit 
rate 

Quantity 
discount 

(%) 

Inventory 
turnover 

ratio 

 

1 0.06 0.66 5.73  0.06 0.00 0.00 0.49 0.00  0.81 0.63 0.81 Inefficient 
2 0.54 0.22 2.92  0.08 0.87 0.95 0.49 0.72  1.00 1.00 1.00 0.32 
3 1.11 0.50 8.38  0.66 0.92 0.89 0.00 0.70  0.65 0.97 0.41 Inefficient 
4 0.15 0.48 5.68  0.38 0.97 0.89 0.00 0.72  1.00 1.00 0.84 Inefficient 
5 0.19 0.41 4.16  0.34 0.91 0.95 1.00 0.76  1.00 1.00 1.00 0.25 
6 1.28 0.50 7.01  1.00 0.92 1.00 0.49 0.80  1.00 1.00 0.55 Inefficient 
7 0.01 0.01 5.00  0.60 0.84 0.87 0.68 0.78  1.00 1.00 1.00 0.27 
8 0.42 0.13 2.82  0.00 1.00 0.90 0.49 0.96  1.00 1.00 1.00 0.30 
9 0.65 1.05 3.83  0.43 0.98 0.92 0.00 0.66  1.00 1.00 0.87 Inefficient 

10 0.25 0.07 2.64  0.85 0.55 0.69 0.68 0.65  1.00 1.00 1.00 0.29 
11 0.72 0.18 4.25  0.64 0.70 0.90 0.26 1.00  1.00 1.00 0.82 Inefficient 
12 0.13 1.37 5.55  0.82 0.77 0.79 0.26 0.74  1.00 1.00 0.88  Inefficient 
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Figure 24. Response graph showing the optimal Supplier selection factors setting using the proposed model (shaded points) 
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Table 39. Multivariate multiple dependent GLM and MANOVA analysis   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Footnote: a = return rate, b = discount rate and c = operating expense rate 
 

Table 40. Multivariate Test 

                 Df test stat approx F num Df   den Df   Pr(>F)   
Pillai            3  1.227891 0.831478     15 18.00000 0.637305   
Wilks             3  0.133972 0.817278     15 11.44364 0.649181   
Hotelling-Lawley  3  3.848452 0.684169     15  8.00000 0.749470   

Roy               3  3.019796 3.623755      5  6.00000 0.074216  

 
 

Response R&D rate 
Coefficients: 
Estimate Std. Error t value Pr(>|t|) 
(Intercept)  1.17774    0.59350   1.984   0.0825 
a            0.48598    0.54630   0.890   0.3996 
b            0.10970    0.53406   0.205   0.8424 
c            0.08655    0.13709   0.631   0.5454 
 
Response Productivity  
Coefficients: 
Estimate Std. Error t value Pr(>|t|) 
(Intercept)   243.91     110.32   2.211    0.058 
a             112.75     101.55   1.110    0.299 
b              23.17      99.27   0.233    0.821 
c             -10.67      25.48  -0.419    0.686 
 
Response Gross profit rate 
Coefficients: 
Estimate Std. Error t value Pr(>|t|) 
(Intercept)   5.4737     2.9056   1.884   0.0963 
a             6.3950     2.6745   2.391   0.0438 * 
b            -0.7417     2.6146  -0.284   0.7839 
c            -0.3471     0.6711  -0.517   0.6190 
 
Response Quantity discount (%)  
Coefficients: 
Estimate Std. Error t value Pr(>|t|) 
(Intercept)   8.4294     1.2568   6.707 0.000152 *** 
a            -1.1166     1.1569  -0.965 0.362742 
b            -1.4476     1.1310  -1.280 0.236432 
c            -0.1022     0.2903  -0.352 0.733972 
 
Response inventory turnover ratio  
Coefficients: 
Estimate Std. Error t value Pr(>|t|) 
(Intercept)   8.8911     2.5232   3.524   0.0078 ** 
a             2.9754     2.3226   1.281   0.2360 
b            -1.8825     2.2705  -0.829   0.4311 
c            -0.5528     0.5828  -0.948   0.3707 
 

Type II MANOVA Tests: Pillai test statistic 
  Df test stat approx F num Df den Df Pr(>F) 
a  1   0.67143  1.63480      5      4 0.3272 
b  1   0.33419  0.40155      5      4 0.8280 
c  1   0.20704  0.20888      5      4 0.9418 
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Table 41. MMR response prediction output of the optimal model 
 

Response 
Prediction model 

 

Supplier selection performance indicators (Response) 

 

 Total 
Anticipated 

Response 

 

R&D 
rate Productivity 

Gross 
profit 
rate 

Quantity 
discount 

(%) 

Inventory 
turnover 

ratio 

 

DMU 2: (OA 
optimal) 

 

1.7170 278.7411 7.7503 7.2096 8.4696 

 

303.8877 

DMU 7: (Fuzzy base 
DEA model) 

 

1.1164 191.9265 3.7946 7.8929 6.1383 

 

210.8687 

DMU 8: (Response 
graph optimal) 

 

1.6402 264.1927 7.0843 7.4841 8.3373 

 

288.7386 

DMU 10: Cross 
efficiency optimal 

 

1.5354 245.5554 6.1042 7.7792 8.0439 

 

269.0181 
DMU 12: 
Convergence 
procedure of DEA 
game cross 
efficiency) 

 

1.8716 231.0971 3.3625 5.7340 3.6311 

 

245.6962 
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Chapter 6 

CONCLUSION AND RECOMMENDATION 

6.1 Conclusions 

This study proposes a modified VRS- robust optimization framework for optimizing 

multi-quality response system. Efficiency determination and optimization to select 

the optimum parameter settings were achieved in the most simplified, adequate and 

effective manner going by the results of its illustration with three real case studies; it 

provided the largest anticipated improvement in the cases illustrated against all other 

previously used approaches of PCA, DEAR, GA and benevolent formulation (cross-

evaluation technique). Furthermore, this proposed method enhanced other multi-

response methods through the following advantages:  

• The suggestion of using the fractional factorial number of the orthogonal 

array achieved in the robust design as the number of neurons in the hidden 

layer of BPNN proved adequate and capable of reducing errors and 

uncertainties over the use of contemporary searches. 

• Estimation of the restriction for the upper bound of the free variable of the 

VRS determined by self-evaluation within the DMUs removes errors due to 

improper setting of the non-Archimedean infinitesimal as proposed by some 

previous works. 

• The partitioning and the modification provide an adequate selection of the 

optimum parameter settings through its enhanced discriminatory tendency of 

efficient DMUs.  
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• In addition to the aforementioned, the approach neither requires any initial 

information nor assumptions or pre-settings about the output (response) 

weights thus; the proposed framework is not based on any cogent 

assumptions like PCA, GA and other previous approaches.  

In overall, the proposed approach computed the adequate (pure) frontier/efficiency of 

the DMUs as many inefficient DMUs that would have been promoted as efficient by 

the standard DEA models were revealed. More interestingly is the discriminative 

tendency that further gives insight to DMUs that are within the convex set of the 

factor level settings and those that should not be considered within the search thereby 

making the computation search easy and simple compared to other reported methods. 

These attributes could fascinate quality/process/product engineers, project managers, 

operational managers, and even top managers that are involved in decision making to 

espouse these proposed procedures in an extensive range and scope of design, 

manufacturing and production applications for optimizing multi-quality response 

processes in the robust parameter design strategy.  

Similarly, the proposed integrated data envelopment analysis and robust parameter 

design procedures can interrelate effectively and efficiently with exergetic analysis 

especially those involving multiexergetic response. The framework gives vivid 

panoramic insight into those systems that actually need improvement. Furthermore, 

the imposed partitioning helped to increase the discrimination among the efficient 

DMUs, reduction in the number of possible frontiers was achieved, and 

computational search for the optimum (OFLC) DMU was thereby simplified. The 

followings can be emphasised about the outcome of this study;  
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• Supporting thermo-exergetic evaluation with the DEA will reduce 

complexities in terms of computations and number assumptions required by 

the engineer to arriving at the optimum operating parameter level setting for 

multicomponent distillation system.  

• Integrating DEA into thermodynamic analysis has the ability to simplify the 

whole process hereby making it simple, easy to understand and apply by any 

practitioner.  

• The approach is more advantageous and could be implemented over a wide 

range, to solve thermo-exegetic problems with multi-response problems in 

manufacturing for strategic decision making by engineers, operators or 

managerial level.  

• These attributes could fascinate quality/process/product engineers, project 

managers, operational managers to imbibe the proposed procedures in an 

extensive range and scope for optimizing energy-intensive systems especially 

those with multi-response processes in the robust parameter design strategy. 

We proposed a facet VRS signal-to-noise robust parameter framework for the 

optimum supplier selection. SWOT is first carried out to determine and select 

various supplier selection criteria that will be used to appraise suppliers’ 

performance. Robust signal-to-noise parameter design is applied to smooth the 

effects of variations of the anticipated supplier selection performance responses. 

By utilizing a partitioning imposed modified VRS model, a revamped facet VRS 

procedure is engaged to estimate the weights of the input and output selection 

factors and VRS penalization is used to determine the optimal on the orthogonal 

array (OA) of the robust procedure. The optimal solution obtained from the 
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response graph of the robust parameter design was different from that of the OA, 

hence a confirmatory test of multivariate multiple dependent general linear model 

(MMGLM) is used to check for the independent that is germane for the 

prediction of the response and to determine the global optimal solution between 

OA and response graph optimal values. The followings can be concluded about 

the study:  

• Adequate selection of the optimum supplier selection indicators setting is 

achieved, through the enhanced discriminatory tendency within and between 

the efficient suppliers as a result of the imposed partitioning.  

• The proposed model self-evaluate within its procedure to estimate the input 

and output weights; therefore, there is no need for prior information and or 

assumptions like fuzzy base DEA, DEA game cross efficiency and other 

DEA based methodologies.  

• Multivariate multiple dependent regression model (MMGLM) could be used 

to determine the independent factors that are important to the estimation of 

the response and to decipher between OA optimal and response value graph 

optimal to arrive at the global optimal suppliers.  

• The framework is simple to implement and could be implemented over a 

wide range, to supplier selection problems in supply chain management for 

strategic decision at all levels.  

Generally, the proposed supplier selection approach could identify within its 

procedures those inefficient suppliers that would have been promoted as efficient by 

the standard DEA models as used in the Fuzzy based DEA and DEA game models. 

Hence it will then become easier and much more simplified to select the optimal 
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supplier that can be adequate enough to deliver the anticipated output in the presence 

of other unforeseen supplier factors (uncontrollable noise factors). With these 

advantages; simplicity, discriminatory tendency, specificity and unambiguity 

features, top logistic managers, operational managers, supply chain stakeholders, 

contracting and consulting firms and other decision makers would find this 

framework appropriated and useful. 

6.2 Recommendations 

However, more studies on the application of the suggested fractional factorial 

number of the orthogonal array as the number of neurons in the hidden layer of 

BPNN and its consistency in predicting the values of the responses beyond the 

experimented input variables are necessary in order to generalize the viability of the 

BPNN in the proposed model. The author would also like to extend its application 

comparatively, to other approaches such as DEA competitive games, Virtual DEA 

and fuzzy multi-response which have not been fully integrated into the robust 

parameter strategy. 

In view of the integrated exergetic analysis with the proposed model, it should be 

bored in mind that majorly PR EOS is applicable to an ideal and non-ideal 

hydrocarbon system due to the enhancement of PR model in HYSYS. However, 

whenever a highly non-ideal system is encountered another model especially the 

Activity Models is recommended. Another way to go is to select all the property 

package filters during the simulation. This could help to deal with any occurrence of 

non-ideality within the system. Moreover, there is the need to carry out the 

sensitivity analysis of the thermo-feasible system with the proposed approach.  The 

effect of the cost elements such as total cost and total profit and a capacity factor 
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since most managers are most likely to critically consider the financial and capacity 

factor of the would-be optimum process. It is also important to see how competitive 

DEA games will shift the results of the proposed framework.  
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Appendix A: Graphical explanation of DMUs as WEP, EP and SEP  

                      

 

 

 

 

 

 

 

      

Points A, B, C are on the frontier (efficient) with DMU 1 as WEP, DMU 2 as EP, 

and DMU 3 as SEP  
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Appendix B: Exergetic rate profiles of the 18 simulated systems 

 

 

Appendix B1. Exergy destruction distribution curve for Depropanizer of the base 
case 

 

 
Appendix B2. Exergy destruction distribution curve for Debutanizer of the base case 
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Appendix B3. Exergy destruction distribution curve for Depropanizer of the base – 30oC  
case 

 

 
Appendix B4. Exergy destruction distribution curve for Debutanizer of the base – 30oC  

case 
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Appendix B5. Exergy destruction distribution curve for Depropanizer of the base – 80oC  
case 

 

 

 

Appendix B6. Exergy destruction distribution curve for Debutanizer of the base – 80oC  
case 
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Appendix B7. Exergy destruction distribution curve for Depropanizer the base – 30oC -

reflux ration 6 case 

 

 

 
Appendix B8. Exergy destruction distribution curve for Debutanizer  the base – 30oC 

-reflux ratio 6 case 
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Appendix B9. Exergy destruction distribution curve for Depropanizer of the base – 80oC 
-reflux 6 case 

 

 

Appendix B10. Exergy destruction distribution curve for Debutanizer of the base 
– 80oC-reflux ratio  case 
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Appendix B11. Exergy destruction distribution curve for Depropanizer of the base 
– reflux ratio 6 case 

 
 
 

  
Appendix B12. Exergy destruction distribution curve for Debutanizer of the base – 

reflux ratio 6 case 
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Appendix B13. Exergy destruction distribution curve for Depropanizer of the base 
– 1200 kPa  case 

 

 

 

Appendix B14. Exergy destruction distribution curve for Debutanizer of the base 
–1200 kPa  case 
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Appendix B15. Exergy destruction distribution curve for Debutanizer of the 
base – 1200 kPa-30oC  case 

 
 
 

  
 

Appendix B16. Exergy destruction distribution curve for Debutanizer of the 
base – 1200 kPa-30oC case 
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Appendix B17. Exergy destruction distribution curve for Depropanizer of the base – 
1200 kPa- 80oC  case 

 

 

 

Appendix B18. Exergy destruction distribution curve for Debutanizer of the base – 
1200kPa-80oC  case 
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Appendix B19. Exergy destruction distribution curve for Depropanizer of the base – 
1200kPa-reflux ratio 6  case 

 

 

 
Appendix B20.  Exergy destruction distribution curve for Debutanizer of the base –1200 

kPa-reflux ratio 6 case 
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Appendix B 21.  Exergy destruction distribution curve for Depropanizer of the 800 kPa  
case 

 

 

 

Appendix B22. Exergy destruction distribution curve for Debutanizer of the 800 kPa  
case 
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Appendix B23. Exergy destruction distribution curve for Depropanizer of the 800 kPa – 
80oC  case 

 

 

 
Appendix B24. Exergy destruction distribution curve for Debutanizer of the 800 kPa – 

80oC  case 
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Appendix B25. Exergy destruction distribution curve for Depropanizer of the 800 kPa- 
30oC-reflux ratio 6  case 

 

 

 

Appendix B26. Exergy destruction distribution curve for Debutanizer of the 800 kPa – 
30oC-reflux ratio 6  case 
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Appendix B27. Exergy destruction distribution curve for Depropanizer of the 800 kPa – 
reflux ratio 6  case 

 

 

Appendix B28. Exergy destruction distribution curve for Debutanizer of the 800 kPa – 
reflux ratio 6  case 



167 

 

 

Appendix B29. Exergy destruction distribution curve for Depropanizer of the splitted 
feed  case 

 

 

 

Appendix B30. Exergy destruction distribution curve for Debutanizer of the splitted  
case 
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Appendix B31. Exergy destruction distribution curve for Depropanizer of the splitted 
feed – 30oC  case 

 

 

 
Appendix B32. Exergy destruction distribution curve for Debutanizer of the splitted feed 

– 30oC  case 
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Appendix B33. Exergy destruction distribution curve for Depropanizer of the splitted 
feed – 80oC  case 

 

 

 

Appendix B34. Exergy destruction distribution curve for Debutanizer of the splitted 
feed– 80oC  case 
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Appendix B35 Exergy destruction distribution curve for Depropanizer of the splitted 
feed – 80oC-Reflux ratio 6  case 

 

 

 
Appendix B36. Exergy destruction distribution curve for Debutanizer of the splitted feed 

–Reflux ratio 6  case 
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Appendix B37. Exergy destruction distribution curve for Depropanizer of the splitted 
feed –Reflux ratio 6  case 

 

 

 

Appendix B38. Exergy destruction distribution curve for Debutanizer of the splitted feed 
–Reflux ratio 6  case 
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