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ABSTRACT

Emotions play an important role in human communication. People express their

emotions in daily life and understanding emotions enrich interactions.

Understanding emotions has been a topic of physiological studies for decades. In

recent years, emotions in interactions of humans with computers have become an

active topic of research as they can affect users’ concentration and decision making

skills. Except trivial ways of expressing emotions such as language skills, changes in

tone of voice, and body or facial gestures, other ways such as writing short texts has

become more prevalent due to the increasing influence of social media. Affect

computing is the science of studying people and their emotions at the time of

interaction with computers with the ultimate goal of producing systems that are able

to detect and understand human emotions and their intensity.

Many studies in detection of emotions from a textual context such as novels and

newspaper headlines have been conducted. However, due to the increasing interests

toward social media in recent years, Twitter as the fastest growing social networking

system, has received more attention as a valuable free source of texts.

In this thesis, the aim is to generate an automated system that classifies tweets based

on the experienced intensity level of emotions for four different emotions: anger,

joy, fear, and sadness. A linear SVM model is chosen as the classification algorithm.

Different sources of feature sets are introduced and used such as affect lexicons,

word2vec models, query terms, and tf-idf scoring. Furthermore, in an attempt to

increase classification performance, wrapper based feature subset selection
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algorithms including Forward Selection (FS), Simplified Forward Selection (SFS),

Random Forward Selection (RFS), and Backward Selection (BS) are applied on the

feature sets. Similar approaches have also been applied for classifier selection. In

classifier combination, majority voting method is used to combine scores from

different classifiers. Both simple and weighted voting schemes utilized and the

results are compared. Results of this study suggest that recommended subsets of

feature sets or classifiers give slightly better performances. However, it is shown that

different subsets work better for classifying emotion intensities for different

emotions.

Keywords: Tweet Classification, Emotions, Support Vector Machines, Lexicons,

Feature Selection, Classifier Selection, Machine Learning, Text Mining.
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ÖZ

Duygular insan iletişiminde önemli bir rol oynamaktadır. İnsanlar günlük yaşamda

duygularını ifade eder ve duyguları anlamak etkileşimleri zenginleştirir. Duyguların

anlaşılması on yıllardır fizyolojik çalışmaların bir konusu olmuştur. Son yıllarda,

insanların bilgisayarlarla etkileşimlerindeki duygular, kullanıcıların konsantrasyon

ve karar alma becerilerini etkileyebilecekleri için aktif bir araştırma konusu haline

gelmiştir. Dil becerileri, ses tonundaki değişiklikler ve vücut veya yüz hareketleri

gibi duyguları ifade etmenin basit yolları dışında, kısa metinler yazmak gibi diğer

yollar sosyal medyanın artan etkisine bağlı olarak daha yaygın hale gelmiştir. Etki

hesaplama, insan duygularını ve yoğunluğunu tespit edebilen ve anlayabilen

sistemler üretmek amacıyla bilgisayarlarla etkileşim sırasında insanları ve

duygularını inceleyen bir bilim dalıdır.

Romanlar ve gazete manşetleri gibi metinlerden duygularının tespiti konusunda

birçok çalışma yapılmıştır. Ancak, son yıllarda sosyal medyaya olan ilginin artması

nedeniyle, en hızlı büyüyen sosyal ağ sistemi olan Twitter, değerli bir serbest metin

kaynağı olarak daha fazla dikkat çekmiştir.

Bu tezde, dört farklı duygu için, öfke, sevinç, korku ve üzüntü, deneyimlerin duygu

yoğunluğu seviyesine göre tweetleri sınıflandıran otomatik bir sistem geliştirilmiştir.

Sınıflandırma algoritması olarak doğrusal Destek Vektör Makineleri (SVM)

seçilmiştir. Öznitelik kümesi olarak word2vec modelleri, sorgu terimleri ve tf-idf

gibi farklı öznitelikler seti tanıtılmış ve kullanılmıştır. Ayrıca, sınıflandırma

performansını arttırmak için, İleri Seçim (FS), Basitleştirilmiş İleri Seçimi (SFS),
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Rastgele İleri Seçimi (RFS) ve Geri Seçimi (BS) yöntemlerini içeren sarmalayıcı

tabanlı öznitelik alt kümesi seçim algoritmaları uygulanmıştır. Buna ek olarak,

sınıflandırıcı seçimi için de benzer yaklaşımlar uygulanmıştır. Sınıflandırıcı

birleştirme yöntemi olarak, farklı sınıflandırıcılardan alınan puanları birleştirmek

için çoğunluk oylama yöntemi kullanmıştır. Çoğunluk oylama yönteminde hem basit

hem de ağırlıklı oylama düzenleri kullanılmış ve sonuçlar karşılaştırılmıştır. Bu

çalışmanın sonuçları, önerilen öznitelik alt kümelerinin veya sınıflandırıcı alt

kümelerinin biraz daha iyi performans verdiğini göstermektedir. Bununla birlikte,

farklı alt kümelerin, farklı duygular için duygu yoğunluğunu sınıflandırmak için

daha iyi çalıştığı gösterilmiştir.

Anahtar Kelimeler: Tweet Sınıflandırma, Duygular, Destek Vektör Makineleri,

Sözlükler, Öznitelik Seçimi, Sınıflandırıcı Seçimi, Makine Öğrenmesi, Metin

Madenciliği.
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Chapter 1

INTRODUCTION

1.1 Background

Emotions undoubtedly play an important role in human life and affect decisions and

relations among people more or less. Emotions as a psychology and neural science

have been subject of studies through decades. However, in recent years their

automatic detection has been a topic of research in areas such as artificial

intelligence since recognition of emotions and their influence can enhance

productivity and effectiveness of working with computers. Education systems,

website customization and games are just a few samples of intelligent systems wide

range of usage.

Study of emotions and computations in this domain was firstly introduced in 1995 as

“Affective Computing” [1]. Scientists and in some cases businesses benefit from

various automatic classification techniques to correctly detect emotions. These

techniques are mainly similar in core and have developed in three main phases of

gathering train data, extracting characteristics (preferably discriminative ones) and

constructing a model that will be tested later on a new set of data [2]. The developed

model is supposed to be able to correctly classify previously unseen data.

In reality due to the various ways that emotions are expressed such as changes in

breathing rhythm and heart rate, changes in facial form or the ways of uttering words,
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extracting features and developing models is not simple [3]. Therefore, selecting

appropriate technique for model construction is directly related to the type of data. As

an example, deciding on the emotion inferred from a photo needs image processing

techniques for feature collection. Among different means of communication used to

express emotions (i.e. speaking, facial expressions, etc.), writing has received more

attention in recent years as telecommunication systems are getting more prevalent.

Every day the number of people conveying emotions and feelings by writing and

sharing through internet increases. However, detecting emotions from texts is not

similar and has some unique challenges which may be different then detecting them

from images or voice. Texts usually contain miss-spelled terms, slangs, abbreviations,

emoticons, and might be in different languages. Expressed emotion can also differ

by changes in voice, body gestures, or facial expressions [4]. As a result, steps of

preprocessing (e.g. tokenization, lemmatization, parsing and part-of-speech tagging)

are needed [3].

Nevertheless, valuable sources of texts are freely available. Different studies have

already focused on newspapers and novels. However, Twitter as the fastest growing

social networking service in comparison with other platforms has received more

attention [5]. Furthermore, posts on Twitter, so called tweets, have limited length

and due to this limitation users have to briefly express their thoughts. Researchers

also revealed that tweets often state emotions of their authors [6]. Thus Twitter has

become a noteworthy data source for emotion detection studies. Development of

intelligent machines regarding human language was introduced first in 1950 as

Natural Language Processing (NLP). NLP was formed with the idea of combining
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computer science and artificial intelligence (AI) as a mean of interaction between

machines and humans language [7]. In detection of emotions from texts, essentially

two methods of sentiment analysis and emotion analysis are used. Sentiment

analysis as a sub topic of Natural Language Processing (NLP), detects positivity or

negativity of feelings regarding an input text, while emotion analysis decides on the

emotion type (e.g. joy) [4].

After the data is preprocessed, the next step is to change data into some concepts and

relations. Concepts or so called features and attributes in machine learning context,

translate data into usable information for learning algorithms and based on the type

of data different feature extraction techniques can be applied [2].

Term Frequency (TF), Inverse Document Frequency (IDF), and their combination are

examples of extracted features from a textual corpus. Lexicons, i.e. dictionaries of

terms-scores, are also commonly practiced in converting texts to vectors of

scores [8, 9, 10, 11].

Constructed feature sets are then fed into machine learning algorithms. Machine

learning algorithms are a set of data analyzing techniques based on the assumption

that machines can learn as humans do and the final purpose is to automate analytical

model building [12]. The very basic form of learning is memorization when machines

memorize a set of rules. Yet, memorization cannot help since the important third step

of developing an automated classifier system, i.e. ability to classify unseen data,

is missed. Developed models should be able of generalizing their learning to new

instances [13].
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Machine learning algorithms are divided into four categories of supervised,

unsupervised, semi-supervised, and reinforcement learning. Deciding on a proper

algorithm is based on the task and the type of data used. Support Vector Machines

(SVM), applied classifier in this study, is one of the well-known supervised

classification algorithms. This algorithm classifies input data by looking at attributes

and decides on a decision boundary that separates classes in the feature space with

the largest margin from other classes.

1.2 Scope of Study

This thesis is inspired by the SemEval 2017 international workshop on semantic

evaluation (a competition on automatic emotion detection) [9]. However, in contrast

with the competition task which reports levels of emotions in real-valued scores,

here classification of tweets into four discrete levels of emotion intensity is

discussed.

Throughout this study, a corpus of tweets is used that was released and is publicly

accessible on the competition web-page [14]. The data set is basically divided into

three sets: First two sets, train and development sets, are employed for model

development and the third part, test set, is saved for later model evaluation.

The data is first preprocessed by tokenization and afterwards feature extraction

techniques such as lexicon and tf-idf scoring and word2vec algorithm is applied to

convert textual data into a set of characteristics (vector of features) for model

learning. Support Vector Machines (SVM) as the learning algorithm is applied to

construct classification models. The trained models are validated on the
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development data set. Models validation helps to optimize parameters and since this

is a classification task, precision, recall, and micro and macro F-scores are observed

and efforts are carried out to increase them. In total 19 feature sets are considered in

this study and their effectiveness in emotion detection is checked. In addition as a

novel work, wrapper based feature and classifier selection techniques are employed

to investigate the effectiveness of the subsets of features and classifiers, respectively.

In particular forward (random, simplified, and greedy) and backward selection

methods are applied and their performances are compared to the single best and

combination of all features and classifiers.

1.3 Outline

This thesis starts with a very brief review of basic concepts, ideas, and techniques to

form a general overview of automated emotion detection techniques in mind. The

rest of this thesis is organized as follows. In Chapter 2, basic concepts and

definitions such as emotions, sentiments, their differences and lexicons are discussed

and a wide variety of available lexicons are introduced. Reasons of tweets’

popularity and extraction methods for data set construction is explained in detail.

Machine learning and classification algorithms along with feature selection

techniques are also discussed. Chapter 3 starts with a quick introduction to the

SemEval 2017 shared task and continues with the novel study in this thesis.

Techniques used, preprocessing, developed models, and all basic systems are

introduced through this chapter. Chapter 4 discusses the results obtained and efforts

are focused on improving performance. Finally, Chapter 5 summarizes the results

and presents a conclusion of all results obtained.
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Chapter 2

BASICS AND CONCEPTS

2.1 Literature Survey

Holzman and Pottenger in 2003 studied chat messages and annotated 1201 samples

according to Ekman’s six emotions plus two additional classes, irony and neutral

[15]. Alm, Roth, and Sproat (2005) focused on annotation of 22 Grim fairy tales

based on Ekman‘s set [16]. Brooks et al. worked on annotation of 27344 chat

messages according to 40 affect classes inferred from Plutchik’s emotion set [17].

Mohammad used Twitter API to retrieve tweets including hashtag terms

corresponding to Plutchik’s emotion set [18]. His work revealed that hashtag terms

can work as good as labels for tweets and are in a comparable level with explicitly

annotated emotions [19].

Many other works were carried out on different smaller sets of emotions.

The ISEAR project focused on supervised machine learning techniques using

developed dataset from participation of 3000 students that were asked to report

situations of experiencin joy, fear, anger, sadness, disgust, shame, and guilt [19].

Pearl and Steyvers (2010) worked on detection of politeness, rudeness,

embarrassment, formality, persuasion, deception, and disbelief by developing online

Games with a Purpose (GWAP) [20]. There were studies too, on emotion detection

in other languages except English. Wang’s studies (2014) were focused on

annotation of Chinese news and blog posts according to Ekman’s emotions [21].
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Sun, Quan, Kang, Zhang, and Ren (2014) worked on detection of emotions in

Japanese customers’ reviews [22].

In addition to studies on different emotions and data sets, many works are engaged

in better automatic emotion detection systems. Shivhare, Shiv Naresh, and Saritha

Khethawat (2012) developed an automated system that was based on keyword

spotting technique, learning-based, and hybrid methods [23]. Studies of Shaheen,

Shadi, Wassim El-Hajj, Hazem Hajj, and Shady Elbassuoni (2014) orientated toward

deployment of semantic and syntactic analyses in training model [24]. They also

used WordNet and ConceptNet (i.e. a lexicon) for rule setting. Their study proved

that between-terms’ relation consideration results in higher accuracy than simple

score assignments. Tilakraj et al. developed a system to handle negative sentences

with positive words [25]. Agrawal, Ameeta, and Aijun (2012) made a comparitive

study on context-based unsupervised approach against context-free technique in

emotion detection from text. They found that context-based methods always

outperform context-free methods [26].

2.2 SemEval Workshops

Since 1998 a series of evaluation competitions named as SemEval (Semantic

Evaluation) started to explore the nature of meanings in language and assess

computational semantic analysis systems. These competitions, which were initially

held under the name of SensEval, focused on the evaluation of the quality of Word

SenseDisambiguation (WSD) algorithms.However, since 2006 with a change in the

primary goal, organizers looked for replication of human cognitive processing by the

use of computer systems.
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Semantic analysis commonly refers to the task of automated detection of valence or

polarity of a text, where valence shows positive, negative, or neutral inferred

emotion [19]. More specifically, the task tries to determine one’s attitude towards a

topic. Since attitude is categorized by some authors under a wider class, called

feeling, sentiment analysis can be considered as the task of automatic feeling

detection. Nonetheless, automatic feeling detection is considered as a challenging

task for different reasons.

One of the challenges is due to the variety of emotions a word can convey in

different contexts. For example, the word “close” can convey senses of “shutting”,

“blocking”, or “ending”. The next challenge is tone of reading texts. Emotions are

generally conveyed through the way the text is uttered by changes in tone, pitch, or

emphasis. Furthermore, texts can express feelings of the speaker without implicitly

or explicitly stating them. Questions that are informally asked in declarative forms

are examples of this issue. Challenges can even go further to the body language and

facial expression that are commonly used to convey emotions, though, are not

present in written texts. The other remarkable subject in automatic detection of

feelings is written texts rich in irony, sarcasm, misspellings, and creatively-spelled

words. Such texts convey emotions indirectly and detection of emotions in them

requires high level of intelligence and understanding of the context. “The teacher

fails the test”, or “lov u mom” are examples of sentences with irony and

creatively-spelled words. In addition to the discussed points, studies have revealed

that detection of emotions even for humans is a difficult task. Annotators, when they

are asked to decide on the inferred emotion from a tweet, show low levels of

8



agreement. This is considered as inconsistency and is addressed in MaxDiff scoring

technique. Desire for larger data sets is another issue when it comes to developing

models and training systems. Besides the challenges mentioned, different reactions

to same utterances is an area of research which is not explored much1.

In respect to sentiment analysis and emotion detection competition, in 2017 for the

first time a shared task on emotion intensity detection was held under the title of

“WASSA-2017 Shared Task on Emotion Intensity”, with the aim of determining felt

level of emotion by speaker [9]. Intensities are expected to be real values in the range

of 0 to 1, while 1 shows the highest level of experienced emotion and 0 the lowest.

Four common emotions such as anger, joy, fear, and sadness were proposed in the

competition. The best team among the twenty-two participant teams was Prayas and

achieved the best performance with Pearson correlation 0.747 on the Gold (test)

set [11]. The competition is accessible on the CodeLab website.

2.3 Emotions

There is a wide range of definitions for emotion. Kleinginna and Kleinginna in 1981

listed 92 different definitions of emotion plus their own [27, 28]. “Sudden trouble,

transient agitation caused by an acute experience of fear, surprise, joy, etc.”

(Larousse Dictionary, 1990) or “mental feeling or affection (e.g., pain, desire, hope,

etc.) as distinct from cognitions or volitions” (Oxford English Dictionary, 1987) are

two of many definitions for emotion. Emotions can be defined on the basis of time as

well [29]. In this sense it is “a reaction to stimuli that lasts for seconds or minutes”

[29]. Accordingly, mood and personality are defined as an emotional state that lasts

1 People on the opposite sides, for example of a match, can have different feeling on same sentences.
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for hours, and an inclination to feel certain emotions, respectively. Therefore,

emotional state is known as current state of a person irrespective of its origin

(stimuli, mood, or personality) [29].

In spite of the beliefs in relations of emotions to physiological processes, there is not

agreement on a basic set of emotions. Ekman considered joy, sadness, fear, anger,

disgust, and surprise as six basic emotions [30] while Plutchik considered trust and

anticipation in addition to Ekman’s six basic emotions (Figure 2.1) [31, 32].

Parrot [33], Frijda [34] and others introduced different sets of basic emotions.

Although in detection of emotions from texts, as will be discussed later, labeled sets

of training data are needed for model construction, developing data sets with

thousands of terms which are manually annotated is both expensive in time and cost.

Consequently, consideration of a small set of emotions keeps expenses low as a

positive aspect while, unfavorably, there will be fewer resources for non-basic

emotions. Hence, there are many studies on different data sets with different

sets of emotions.

2.4 Sentiment

Emotion, which is roughly defined as a mental feeling, along with opinion describes

a private state known as sentiment [35]. Pang and Lee [36] define sentiment as an

opinion which reflects ones feelings, and loosely it is considered as a positive or

negative opinion [36, 37, 38, 39]. Sentiment is extremely context dependent and is

appertaining to an individual [35]. Sentiment analyses which is alternatively called

subjectivity analysis, opinion mining or affective computing, studies “linguistic

expressions of private states in context” [40].
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Figure 2.1: Plutchik’s wheel of emotions

In sentiment analysis the effective issues are [41]:

• the way opinions are expressed, i.e. either explicit or implicit,

• the target of discussion (e.g. fear interprets differently when the target is a

movie unlike an event),

• effect of the author on the context.

Sentiment analysis and automatic detection of emotions take place at different levels

of textual chunks such as words, phrases, sentences, documents, tweets, comments,

and reviews on different data sets. In its finest level, the word level, some terms

convey valence as a part of their meaning (e.g. good, bad, nice), while others have

strong associations with positive or negative valences (e.g. death or party). There are

some words as well that are not attached to any of the positive or negative emotions

and are considered as neutral. However, the boundary between positive and neutral or
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negative and neutral valences is sometimes fuzzy. Similar to valence, words convey

emotions directly (e.g. anger) or belong to an emotion (e.g. fight shows anger).

2.5 Lexicons

Inferring emotions and senses through verbal communication is almost certain and

explicit. However, in the absence of voice, writing is one of human’s alternative

communication means and understanding of emotions through text is not as explicit.

Prior researches demonstrated that readers activate mental representations of a

character’s emotional state while reading [42, 43]. This effect has been shown by

inquiring participants to infer the emotional state of a character based on the

description of the text (i.e. emotion inferences). Studies have also revealed that if

readers are provided with longer texts that convey sufficient information (e.g.

stories), make more specific emotional inferences [44]. However, in short contexts

readers infer a more general feeling composed of different emotional components

shared by several emotional terms. Therefore, a list of term-sentiment pairs is

needed to be developed manually for later use by sentiment analysis systems as prior

knowledge. Undoubtedly, these lists in comparison with the number of words and

phrases in a language are limited and small. Hence, development of an automatic

annotation system is of interest. Before continuing into details of automatic systems,

developing such a list (known as a lexicon) requires a brief overview on what

lexicons are and how they are manually constructed.

Lexicons, similar to dictionaries, are collection of words of a language [45], with

scores or labels instead of meanings. Lexicons provide us with a list of words and

their associated emotions or valences. Valence association lexicons are dictionary-

12



liked collections with word-valence pairs (e.g. shout-negative), on the other hand,

affect association lexicons hold term-emotion pairs that are usually developed for a

predefined emotion (e.g. shout-anger). Furthermore, in affect lexicons a term might

be associated to more than one emotion and can have more than one entry.

Creation of lexicons can be done manually in a limited size or automatically with

hundreds of thousands of records. Often automatically developed lexicons include

real-valued scores for term-sentiment pairs. Developed lexicons in the word-level

are used in sentence-level valence classification. In this level, sentences, a collection

of words, are labeled with positive, negative, or neutral tags. However, valence of

a sentence is not simply the summation of its terms valences. Thus, machines use

learning techniques to decide on the valence based on a set of extracted features.

Same techniques are used to detect emotions in sentences and label them as joy, fear,

anger, or sadness; although, fewer attempts are done in this area.

Osgood, Suci, and Tannenbaum (1957) in their book, Measurement of Meaning, made

the first study in this area and their developed lexicon determined the position of

each term within several semantic dimension [46]. The General Inquirer (GI) [47]

and Multi-Perspective Question Answering (MPQA) subjectivity lexicon [48] are two

more examples of early lexicons. GI, a list of 3600 words, covers 1500 entries from

Osgood list. MPQA similarly contains more than 8000 words from both GI and other

resources in which terms are labeled with valences. Affective Norms for English

Words (ANEW) by Bradley and Lang is another lexicon covering 1034 English

words along with their corresponding valence, arousal and dominance [49].
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Nielsen [50] introduced AFINN lexicon including 2477 English words with their

valence rating from -5 (most negative) to 5 (most positive) in discrete values.

In a conducted comparative study on customer reviews in 2006, ordering relation

between two sets of entities with respect to some shared featured were studied [51].

The main tasks of study were identification of comparative sentences from texts (e.g.

reviews and forums) and extraction of comparative relation from identified

comparative sentences [52]. In the study, authors used an opinion lexicon that

contained two lists of negative and positive opinion words (or sentiment words)

separately and in total covered around 6800 words [53].

WordNet [54, 55, 56] is another lexicon developed at Princeton University and is used

for sentiment analysis with terms that are grouped based on their roles (i.e. verbs,

nouns, adjectives and adverbs). In 2006 Esuli and Sebastiani, enriched WordNet by

labeling terms according to their polarity [57]. WordNet-Affect is another version of

this lexicon developed from Strapparava and Vlitutti (2004) works [58].

One of the largest lexicons in the sense of number of included words and emotions is

NRC Emotion Lexicon [59, 60]. This lexicon, that covers eight Plutchiks’ emotions

in addition to the sentiment (i.e. positivity or negativity) of each word includes

approximately 25000 word-senses and in its word-level version (i.e. union of all the

senses of a word token) contains 14000 terms. NRC lexicon is created by use of the

crowdsourcing technique [61]. In this technique a large task is broken into smaller

and independent sub tasks, and distributed over internet or through other mass

mediums. This technique benefits from variation in participants since annotators can
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have different levels of education or familiarity with the target language. Another

example of a lexicon formed over the crowdsourcing technique is the one developed

by Warriner, Kuperman and Brysbaert which contains valence, arousal, and

dominance of 13915 words [62].

All of the reviewed dictionaries until now demonstrate levels of emotions using

discrete scores since assigning real numbers is not easy for humans and results might

be inconsistent, i.e. different people have different levels of feelings toward terms.

However, in the real world, words convey different continuous and comparative

levels of an emotion. Therefore, with emphasize on this relativeness, it can be easy

for individuals to compare a set of terms and order them according to the level of an

emotion they convey. For example it is easier for people to say that “worse” is more

negative than “bad”. This idea is used in maximum difference (MaxDiff) or

best-worst scaling method. In this technique participants are given a set of terms

with size four and are asked to decide on the most positive, and the most negative

ones. These two questions determine 4 out of 6 possible comparative relations of

terms in the set. By assigning each set to a number of annotators and ranking terms

from the most positive to the most negative, outcome is a list of terms with assigned

real values. Clearly, if a term receives votes as the most negative by majority of

annotators will fall far apart from another term that is mainly considered as the most

positive. Also, if two terms voted equally the most positive (negative), in the ranking

they will appear close to each other and associated scores would be close in value.

Lexicons developed using the MaxDiff technique were used in the SemEval 2012

and 2015 shared tasks which are discussed later in this chapter. Kiritchenko et al.
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used the same technique as well to develop a 1500 Twitter terms data set with real

valued scored words and showed that calculated scores using this technique are

reliable [63].

Automatic generation of lexicons benefits from the use of statistical and

mathematical techniques for model development. Models learn from context or a set

of already annotated samples and assign sentiment scores to unseen terms.

Hatzivassioglou and McKeown [64], Turney and Littman [65] and Esuli and

Sebastiani [57] studied over automatic generation of lexicons. Mohammad, Dunne

and Dorr [66] generated a sentiment lexicon with 60000 terms from a thesaurus.

Mohammad, Kiritichenki and Zhu [67] develop a new lexicon using tweets. Their

developed lexicon had advantage of covering creatively spelled words, slangs,

abbreviations, hashtags, and other informal forms of terms. These lexicons are

covering both unigrams and bigrams.

2.6 Why Twitter and Tweets?

Many studies are conducted on different kinds of documents such as novels, reviews,

emails, blogs, newspaper headlines and tweets. Among these resources, tweets are

of high interest. In recent years, social media services are playing more important

and active role in individuals’ life. People use these services to freely share their

thoughts, beliefs, emotions, feelings, and even their daily experiences with millions

of people around the world. To have a better understanding, by January 2019, 500

million tweets are posted every day and monthly more than 326 million people use

Twitter. Such a huge repository filled with emotions and thoughts is a valuable

source for researchers. A group of studies revealed the correlation between changes
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in number of tweets and stock market fluctuations since number of tweets is a sign

for an important event [68]. In prediction of election results, Jahanbakhsh and Moon

(2014) used tweets and with help of sentiment analysis, along with other techniques,

truly determined that Obama will lead the 2012 election [69]. Shi et al.(2012)

applied tweets sentiment analysis in combination with number of tweets for the

republican primary election and perfectly predicted public opinion regarding two out

of four candidates [70]. Customer satisfaction, election prediction, e-commerce,

public health, social welfare, and intelligence gathering are just few examples of

fields interested in tweets.

Such studies support the great predictive power behind tweets. They have found that

Twitter is becoming more important than Facebook [71] since connections in

Facebook are based on the levels of friendship, while in Twitter connections are

focused on getting informed about events and news [72]. Nevertheless, working with

tweets unfolds new set of challenges. Tweets are short messages with limited

number of terms and unique characteristics that make them different from formal

texts. Tweets are basically limited to 280 characters (140 before 2017) and due to

this limitation people try to express their emotions completely in different way as do

in long texts. Though, this limitation has not avoided tweets with mixture of

emotions. Moreover, tweets are filled with informal terms such as abbreviations,

emoticons, slangs, misspelling words, hashtags, and emoji. Some of these

challenges are addressed in the following section.
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2.7 Tokenization

In this section the represention of a document as a vector of features is discussed

briefly. Documents, specifically tweets in our case, can be assumed as a set of

consecutive terms or words. Terms can be either in their correct lingual form or

written informally (e.g. character flooding or punctuation flooding) [82]. To convert

a document to a set of features and consequently a vector of scores, it should be split

into its components. Act of breaking a string into pieces of words, phrases, symbols,

or any other substrings is called tokenization. According to the given definition in

[75], token is defined as: “An instance of a sequence of characters in some

particular document that are grouped together as a useful semantic unit for

processing.”

Tokenization and splitting conditions are generally an issue of language and may

be problem dependent. One of the common techniques is white space tokenization

where documents are split on white spaces. Consider a document (tweet) “Not sure if

thats an accomplishment or something to worry about”. By passing it through white-

space tokenization, the tokens returned are: “Not”, “sure”, “if”, “thats”, “an”,

“accomplishment”, “or”, “something”, “to”, “worry”, “about”.

As the example shows, “thats” is considered as a single term. Therefore, due to

inconsistencies in the way of writing terms (e.g. hyperplane vs. hyper plane vs.

hyper-plane) tokenization should be done with care. Finally, the developed vector of

tokens after tokenization is the feature vector for that document and it can be

converted to a vector of score by applying different scoring techniques such as using

lexicons, word2vec method, tf-idf scoring, etc.
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2.8 Preprocessing

Data preprocessings are applied transformations on data before using them to

develop models and generally includes data cleaning, normalization, transformation,

and feature extraction and selection [73].

Data cleaning deals with outliers, illegal (e.g. out of range), and missing values

(i.e. NAs) that can result in different inferred statistics. Differences in data types

and ranges are also other important real-life challenges and obviously deciding on

the correct algorithm to map them from one type or space to another can affect the

developed model’s performance. Two different frequently used techniques in data

cleaning are discretization and normalization. By discretizing, continuous features

are converted into discrete ones with a finite number of values. However, deciding

on the best splitting value is yet an important issue. Supervised and unsupervised

approaches are two common sub-branches of discretization technique [73].

Normalization as a preprocessing step is employed to map data into smaller or

similar range of values. Two common techniques for normalization are Min-Max

scaling and z-score normalization [73]. In this study the later method according to

Eq. 2.1 is applied and data are mapped in a range with mean 0 and

standard deviation 1.

x′ =
x− x̄
σx

(Eq. 2.1)

In Eq. 2.1, x and x′ are respectively values of an instance before and after

normalization, x̄ represents the average value, and σx is the standard deviation of

instances [73].
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Feature selection and extraction is one of the fundamental subfields of data

preprocessing. Data sets in real world contain large number of samples with

hundreds of thousands of features while a few of them may actually be related to the

target. Features mainly are grouped into three categories as relevant, irrelevant and

redundant [73]. Therefore, feature selection algorithms have two basic parts;

selection, that generates a subset of attributes and evaluation, that determines how

well the generated subset is [73]. Basically these two steps are performed in a

recursive way until a stopping criteria meets. Deciding on the most discriminative

features is also a topic of data preprocessing that will be discussed in this chapter.

Number of instances and imbalanced data sets are two more remarkable issues

concerned in data preprocessing. Large data sets, although are of interest, can result

in infeasibility of learning [73]. Thus, for data reduction, sampling techniques such

as random, clustered, and stratified sampling are among well known and commonly

practiced methods. Regarding imbalanced data sets, removing samples from over

presented classes or duplicating train samples are two solutions [73].

Required preprocessing techniques in working with tweets such as outlier detection

and normalization are discussed further in the next chapters when they are applied on

real data set. Two techniques for feature extraction are discussed next.

2.9 Tf-idf scoring

Tf-idf, which stands for term frequency-inverse document frequency, is a statistical

measure to define how important a word is to a document in a corpus [74]. The term’s

weight increases as it occurs more in a document and drops as it appears frequently
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in different documents. Tf-idf score is composed of two parts. The first part, Term

Frequency (TF), is defined as the number of times a term appears in a document. A

normalized version of TF is given by Eq. 2.2 where ntd is divided by the total number

of terms in document d, (nd) [75]. The second part is inverse document frequency

(idf, Eq. 2.3), that is defined as the natural logarithm of number of documents in a

corpus (N) divided by the total number of documents where a specific term appears

in (i.e. document frequency (d ft)) [75].

t ft,d =
ntd

nd
(Eq. 2.2)

id ft = ln(
N

d ft
) (Eq. 2.3)

If a term appears occasionally in a few documents, it is conveying some information

regarding those specific documents. However, if it happens often in the entire corpus,

it cannot be discriminative. For example in a corpus with combination of economics

and medical science documents, the term “exchange stock” receives higher weight

since it appears less frequently, and hopefully it is more discriminative in comparison

to stopwords (commonly used terms) such as “the” and “is” which usually receive

low scores or are basically ignored. According to Eq. 2.2 and Eq. 2.3, tf-idf score is

defined as the product of tf and idf [76].

t f − id ft = t ft,d× ln(
N

d ft
) (Eq. 2.4)

2.10 Word2vec

Word2vec model has received extensive attention in machine learning and especially

in text mining due to its ability in sentiment detection. Indeed, it is used to find

similar words which are used in the same context within a sentence (tweet).

21



Sentence completion, selecting irrelevant term from a list of given terms, and

synonyms detection are examples of word2vec model application, without which

extensive programming would be needed [77]. Starting with a typical example,

consider following statement.

“Woman is to queen as man is to king”.

Word2vec vision is to represent “man”, “king”, “woman” and “queen” in form of

vectors and discover a relation such as Eq. 2.5. Hence, it can offer valuable sentiment

information if words can be presented in form of vectors [78].

v(king)− v(man)+ v(woman) = v(queen) (Eq. 2.5)

Word2vec is similar to a neural network structure with a single hidden layer (also

named projection layer [77]) and is of two models, Continuous Bag of Words (CBoW)

and Skip-Gram. These two models work in opposite directions. CBoW predicts

a word based on a provided context (e.g. a sentence) while Skip-Gram predicts a

context given a word [78]. Skip-gram, introduced by Mikolov et al., is an efficient

model to represent large amounts of unstructured text data in form of vector that can

be used for machine learning [79, 80]. The next section discusses CBoW as it is

applied later in this study.

2.11 Continuous Bag of Words (CBoW)

CBoW model, as the name conveys, develops over a bag of words in which orders are

not taken into account. The input of the model is a binary vector of size V (vocabulary

size) with elements corresponding to each word. Consequently, vector elements are

all zero except for the given terms to the model. In the simplest form, single-word-

context, the target word is predicted by a single given word. Thus, both input (x)

and output (y) are one-hot encoded vectors in which all elements are zero except for
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xk and yk, where k is the index of the input and output single term in the vector of

words. In CBoW model there are two weight matrices; one of size V ×N from input

to hidden layer (W , Eq. 2.6) and an N×V from hidden to output layer (W ′) where

V is the vocabulary size and N is the number of parameters in the hidden layer. In

Eq. 2.6 each row is an N dimensional vector of weights that represents its associated

word. By passing the one-hot vector of input word (x, Eq. 2.7) to the system we

obtain:

W =



w11 w12 . . . w1N

w21 w22 . . . w2N

...
... . . . ...

wV 1 wV 2 . . . wV N


(Eq. 2.6)

xT =

[
x1 x2 . . . xk . . . xV

]
(Eq. 2.7)

hIW = xTW =

[
x1 x2 . . . xk . . . xV

]


w11 w12 . . . w1N

w21 w22 . . . w2N

...
... . . . ...

wV 1 wV 2 . . . wV N


(Eq. 2.8)

hIW = xTW =

[
xkwk1 xkwk2 . . . xkwkN

]
xk = 1 and xk′ = 0 ∀k 6= k′

(Eq. 2.9)

=

[
wk1 wk2 . . . wkN

]
kth row of W (Eq. 2.10)

The result, hIW , at the hidden layer is a vector of scores of size N representing the

input word. From the hidden layer a new matrix of weights (W ′) is applied to hIW
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and multiplication yields a vector with scores of each term in the vocabulary. u j is

the score of term j that is equal to v′ T
w j

h where v′w j
is the jth column of matrix W ′.

The scores obtained measure the level of match between context (input word) and the

next (predicted) word. Now posterior probability of each term is computable using

softmax (log-linear) classification model.

p(w j | wI) = y j =
exp(u j)

∑
V
j′=1 exp(u j′)

(Eq. 2.11)

CBoW model is similar to other models which have a training phase. In this phase the

conditional probability of observing the actual output ( jth element) of a given word

is maximized by getting the derivative with respect to u j. Maximization first finds

the best values of weights between hidden layer and output. Then, by computing

the derivative of hidden layer parameters with respect to W ’s components, weights

between input and hidden layer are optimized. Nevertheless, initial weights can be

set empirically [78, 77].

Although word2vec performances well in sentiment detection, it has weaknesses such

as ambiguity in selection of correct word in case of having more than one choice (e.g.

having many cities named London), difficulty in parameter setting, and difficulty in

performance evaluation since it is an intellectual task [77].

2.12 Machine Learning and Model Development

Automatic detection of sensed emotion intensity by a speaker or in general

determination of emotion requires developing a system with the ability of learning

from provided samples and making decisions on new and not already annotated

instances. Generally, there are two ways of training a model. The classification

system should either be taught beforehand with already labeled data or learn a series
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of rules by itself to make decisions accordingly. Machine Learning (ML), a

sub-discipline of Artificial Intelligence (AI), is the science of machines facilitation

by algorithms and experiencing new samples to automatically learn and improve

answers accuracy.

2.12.1 Supervised and Unsupervised Learning

Machine learning based classification techniques are categorized into two major

branches as supervised and unsupervised learning. In supervised learning, the

machine is provided with a set of already labeled instances and with sufficient

number of samples, the algorithm learns to predict the labels (classes) for new

inputs. In supervised learning algorithms it is also possible to compare the true

labels of train instances with the predicted ones and optimize the model parameters

before testing it on real data. Accuracy, precision, recall, and F-score are some major

evaluation measures which show the success of a model.

Unsupervised learning algorithms, in contrast to supervised ones, do not provide the

system with labeled samples. Thus, the system tries to infer and model a function

to describe the hidden patterns among data. Moreover, in unsupervised learning the

system cannot measure how close the predicted labels are to the true ones.

Although using a supervised or unsupervised technique is often problem dependent,

both of these techniques are formed over a set of derived characteristics. In the

machine learning context, a set of measurable characteristics of an instance (e.g.

tweet length) is known as the feature set. Hence, learning is the process of

understanding how a set of features represent a label (supervised) or how features

form a pattern among themselves (unsupervised). In the first case the machine tries
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to find a pattern between feature and given labels. In the later case, the algorithm

attempts to discover hidden patterns among the features. Learning algorithms

usually develop tens of hundreds of features and terms. Their combination is a

known feature which is used in inferring the emotions. “n-gram” (e.g. unigram,

bigram, or pair-gram) is one of the widely used feature generator techniques that

partitions a document into a set of n consecutive or paired tokens.

In the supervised learning approach, each instance of training data is encoded as a

vector of features ( f ) with length l (Eq. 2.12), and a class label (L). This vector is

passed to the machine for analysis and developing a prediction function (model) that

can be applied to unseen test data for label prediction.

f = [ f1, f2, . . . , fl]l (Eq. 2.12)

In the field of automatic emotion classification, the unsupervised learning approach

is referred as the affect lexicon-based approach [81]. As the name expresses affect

lexicons are used for voting or scoring each term in a tweet. Finally, majority of

votes or summation of scores determines the dominant emotion. Affect lexicon, as

described earlier, is a list of terms with assigned emotions or scores. For example,

“celebrating” is a term under “joy” category and depending on the lexicon type,

comes with a real-value or categorized score as an indication to its intensity level.

Thus, if a tweet contains the term “celebrating”, it receives one vote or a score for

emotion “joy”.

Using affect lexicons for model development is usually simple and memory efficient,

although training is greatly influenced by the lexicon’s quality and can be less accurate
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since it is mainly a look up process [82]. For instance, consider the term “kill” with

primarily negative sentiment, which in case of a detergent advertisement conveys

positive sense. Similarly, sentences commonly convey emotions indirectly through

meaning. Nevertheless, unsupervised methods have been used widely for sentiment

analysis in commercial needs by many researches [57, 82, 83, 84, 85, 86]. Supervised

learning, in contrary, results in more accurate predictions as it considers the sentence’s

arrangement and terms’ combination. Studies of Mohammad (2012) on newspaper

headlines and blog post demonstrated that the combination of supervised techniques

with affect lexicons can improve accuracy in predictions too [81].

2.13 Model Evaluation

Performance evaluation is a critical step in model development. Consider the care of

developing a supervised classification model on a data set with two classes: positive

and negative. By testing the model on a test set, the results obtained belong to one of

the following categories:

• True Positive (TP): model correctly predicts the positive class.

• True Negative (TN): model correctly predicts the negative class.

• False Positive (FP): model incorrectly predicts a negative class as positive

• False Negative (FN): model incorrectly predicts a positive class as negative

Above outcomes can be tabulated as in Table 2.1. Based upon Table 2.1, the fraction

of correctly labeled instances defines the accuracy of the model as given in Eq. 2.13.

Table 2.1: Confusion matrix

True class
positive negative

Predicted class positive TP FP
negative FN TN
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accuracy =
T P+T N

T P+T N +FP+FN
(Eq. 2.13)

Although, models with higher accuracy are preferred, this can be misleading as well.

Assume an unbalanced two-class classification problem. If all the samples of the

larger class are labeled correctly, the accuracy will be a reasonably high value, while

the model indeed failed to classify samples from the smaller class. Therefore,

precision, the fraction of relevant samples among labeled instances, and recall, the

fraction of correctly labeled relevant samples over all relevant samples, are two other

measures used for model evaluation.

Using Table 2.1, precision and recall are defined as,

precision =
T P

T P+FP
(Eq. 2.14)

recall =
T P

T P+FN
(Eq. 2.15)

Usually, an increase in precision results in a decrease in recall and vice versa.

Therefore, a single metric for better comparison of models, known as the Fβ -score,

is defined as the weighted average of precision and recall (Eq. 2.16).

Fβ − score = (1+β
2)× precision× recall

(β 2× precision)+ recall
(Eq. 2.16)

For the special case of β = 1, F1-score is defined as:

F1− score = 2× precision× recall
precision+ recall

(Eq. 2.17)

Through this thesis F-score refers to F1-score. Generalization of the two class case to

a data set with more than two classes results in achieving different precision, recall,

and F-score values for each class. To summarize these measures into a single value,
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micro or macro averaging methods are used. Micro average adds up individual

values from Table 2.1 for each class and calculates an F-score value. However,

macro average is an arithmetic average of precision, recall, or F-score on all classes

[87]. The micro precision, micro recall, and micro F-score can be calculated using

Equations 2.18, 2.19, and 2.20 below:

micro precision =
T P1 +T P2 + . . .+T Pc

T P1 +T P2 + . . .+T Pc +FP1 +FP2 + . . .+FPc
(Eq. 2.18)

micro recall =
T P1 +T P2 + . . .+T Pc

T P1 +T P2 + . . .+T Pc +FN1 +FN2 + . . .+FNc
(Eq. 2.19)

micro F− score = 2× micro precision×micro recall
micro precision+micro recall

(Eq. 2.20)

2.14 Regression, Pearson and Spearman Correlation

Classification is concerned with predicting labels that are either from a set of discrete

numbers or some textual values. However, if the predicted values are quantities with

real numbers then regression techniques are applied. Regression is a statistical

method for developing mathematical functions to represent a relation between a set

of features and target variables. Given that target values are continuous, performance

in regression is reported as error, by measuring the distance of predicted values with

their true ones. As we know the most common scale used is Mean Squared Error

(MSE). Mean squared error is defined as the average squared difference between

true and estimated values. In addition to MSE, Pearson and Spearman correlations

are other simple performance measures. Pearson correlation computes the degree of

strength and linear relation between estimated (Y ) and real values (X) and reports a

result in range of -1 to 1 (Eq. 2.21). Value 1 is an indication for complete positive

correlation and -1 shows variables are perfectly correlated but in reverse direction.
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In Eq. 2.21, cov(X ,Y ) is the covariance of true (X) and predicted (Y) values, and

µX , µY , σX , and σY are respectively average and standard deviations of

variables X and Y .

ρX ,Y =
cov(X ,Y )

σX σY
=

E [(X−µX)(Y −µY )]

σX σY
(Eq. 2.21)

Spearman correlation, similar to Pearson correlation, is a metric which measures how

predictions are correlated to the true values. However, here correlations are measured

between ranks of actual and predicted target (Eq. 2.22).

ρrX ,rY =
cov(rX ,rY )

σX σY
(Eq. 2.22)

2.15 Feature Selection

With prevalent collecting and storing devices in recent years, we are facing with

massive amounts of high dimensional data in our daily life. Data collected from

wide ranges of resources such as social media, bioinformatics, e-commerce, etc.

contains useful information and there is a growing need for effective and efficient

data management. Although typically more data suggests more information and with

sufficient resources using redundant features is not a major concern, studies have

revealed in practice that applying machine learning and data mining techniques on

high dimensional data sets may be subject of curse of dimensionality, which results

in higher computational cost and model complexity, lower training speed, and

over-fitting [88]. Over-fitting is defined as the condition of having a well fitted

model on training data with low error rate but low performance and high error rate

on test set. Curse of dimensionality may negatively affect algorithms that are

designed for low dimensional data. Consequently, dimension reduction is considered

as a crucial step. In text mining problems, documents are represented by vectors that
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store a value for each occurrence of terms. Size of these vectors normally reaches to

hundreds of thousands of terms. However, by dropping very common or very rare

terms, the vector size is reduced to thousands of more representative terms [89].

There are different means of feature reduction. One possible way is checking the

performance of all possible combinations of features and deciding on the well

performing ones. This method, so called the brute-force approach, is very inefficient.

Consider the case of having 10 features. Number of all possible combinations equals

1023 and undoubtedly, examining all feature subsets and developing a model for

each is waste of resources. In real life with hundreds of features, conditions can

worsen. Therefore, using some pruning and selection techniques is unavoidable.

These techniques, although may ignore parts of the solution space and may result in

obtaining a sub-optimal solution, nevertheless increases speed and saves time.

Feature selection techniques similar to learning techniques are categorized into two

main categories: supervised and unsupervised approaches [90].

2.15.1 Supervised Feature Selection

This method is generally developed for classification or regression problems and uses

labels to choose the most correlated and discriminative features. Wrapper method is

the selection approach that benefits from the learning algorithm’s performance as a

clue of feature relevancy. However, if selection method is independent of learning

phase, it is known as filter method [90].

2.15.2 Unsupervised Feature Selection

Unsupervised feature selection similar to unsupervised learning algorithm does not

have access to classes and is mainly used for clustering problems. Hence, the feature

selection algorithm tries to find measures of relevancy. Unsupervised feature selection
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is also of two types; wrapper based approach which benefits from learning algorithm,

and filter method, which is independent of learning [90].

2.15.3 Wrapper Based Methods

Wrapper based methods evaluate the quality of features by relying on the performance

of the learning algorithm and decide on the best ones. This method is generally

composed of two main steps: searching for subsets of features and selecting the best

ones. The procedure starts with an initial set of attributes, which are passed into an

already defined learning algorithm and their performances are measured. According

to the performances, the combination of attributes is revised and the whole process

iterates until reaching a stopping criteria. The stopping criteria might be consideration

of all possible attributes, consistency in the performance, or achieving the highest

performance [90].

In wrapper based techniques, the selection of an initial attribute set and later deciding

on the surviving features are critical issues. Since the wrapper method searches the

feature space for the best solution, it can get into an exhaustive task in large spaces.

Therefore, different search strategies are introduced to ease subset selection. Greedy

search strategy is an intuitive approach that follows local optimal answers in hope of

attaining the global one. Greedy algorithm saves time, increases speed and is robust

against over fitting. However, it has two main drawbacks. First, there is no assurance

that the global best solution will be achieved and the algorithm might get stuck in a

local sub-optimal solution. Second, features after being selected and combined

are not evaluated again [91]. Three different types of greedy search strategies are

discussed next.
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Forward Selection (FS)

In this strategy, all features are evaluated individually and the best performing one is

selected as the initial set. In each of the succeeding iterations randomly chosen

attributes expand the feature set from the previous step until the combination formed

cannot improve the performance anymore. Forward selection can be performed in a

non-random way as a greedy searching algorithm. In greedy search, algorithm tries

to find the best (global) solution by following local optimums. However, there is

always chance of getting stuck in local optimums. Here after selection of the best

feature in the first iteration, following repetitions continue with evaluation of

performance of each feature in combination with the attributes survived from the

previous steps. The feature, that improves the performance of the combination, is

kept for the next iteration. In this study, the former technique with random nature is

referred as Random Forward Selection (RFS) while latter is named as Forward

Selection (FS).

Simplified Forward Selection (SFS)

This approach begins with calculating the performance of all single attributes and

sorts them in descending order. In the first iteration the best performing feature is

combined with the second best one. If performance improves the combination is kept

and the third top attribute is added and so forth. Otherwise, iteration stops and the

last best combination is chosen as the best attribute set.

Backward Selection (BS)

Backward selection is similar to forward selection, though in reverse direction. In

this strategy iterations begin by using the combination of all features and computing

the performance. At each of the following iterations, one of the randomly selected
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features is eliminated from the combination and the performance is checked again.

If elimination improves the performance, the remained set is passed on to the next

iteration; otherwise, the procedure terminates and the feature set before last removal

is chosen as the best set. The procedure also terminates if only one feature remains.

Single Best (SB) and Combination of All Features

Single best strategy selects the best individually performing feature. In contrast

combination of all features measures the performance when all features are used

together. Both of these techniques are commonly practiced in order to form a

baseline that results of other techniques can be compared to.

2.16 Classifier Selection

Classifiers (i.e. SVM in this case) that are trained with extracted features (e.g. tf-

idf scores) are indeed mapping input data into specific classes (i.e. four intensity

levels). Assume of having a combination of classifiers that are trained over a set of

single or combination of well-chosen feature sets. This combination may improve

performance by removing or adding classifiers, almost in the same way as feature

selection techniques. In fact some classifiers might perform better on some subspaces

of the input domain, but may not perform well on the whole data space. In other

words, classifiers might have “domain of expertise” that is typically not the entire

data space [92]. Thus, the aim is to take advantage of expertise domains and improve

the results.

According to experimental studies, classifier selection and combination is an

effective effort if the selected classifiers are diverse (i.e. making different errors) and

accurate individually (i.e. having low error rate) [93, 94, 95]. Moreover, studies
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suggest that better results are achieved with negatively dependent classifiers, a

criterion that is hardly met since classifiers often make identical mistakes on difficult

patterns [96]. Microarray data classification is one of such areas that classifier

selection can dramatically improve results. Microarray data sets have few numbers

of instances with high dimensionality that prevent classifiers to develop accurate

models [97].

There are different techniques for classifier (combination) fusion such as Majority

Voting and Dynamic Classifier Selection. Majority Voting, the method that is

applied in this study, gives one positive vote for the correctly predicted class of each

sample per classifier. Ultimate label of each sample is the class with the highest vote.

Classifiers combination performance is then evaluated by comparing predicted labels

with true labels using different metrics.

2.17 Linear Support Vector Machines (SVM)

There are different classification algorithms such as Naı̈ve Bayes, logistic regression,

and Support Vector Machines (SVM) just to name a few. Deciding on an appropriate

technique depends on the data set and the problem in hand. In this study a linear

SVM as a classification algorithm is used. Note that the majority of contents for this

section are coming from [98, 99, 100, 101].

SVM is an intuitive, well founded technique with successful performance in digit

recognition, computer vision, and text categorization [100]. It was first introduced by

Vladimir Vapnik in 1995 with the aim of binary data classification in a D-dimensional

space [102]. Assume of having N training samples xi, i = 1, · · · ,N, where each point
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(sample) is of dimensionality D (i.e. each sample has D features). In the simplest

case, data are from two classes −1 and +1. Hence, each sample as shown in set 2.12

can be represented as:

{xi,yi} where i = 1, . . . ,D yi ∈ {−1,+1}, x ∈ RD (Eq. 2.23)

Moreover, assuming that the classes are linearly separable, a hyperplane in the D

dimensional space of samples can be defined to split data into two classes as all

points belonging to the same class fall into the same side of Eq. 2.24. Nevertheless,

in real world data is not always linearly separable. Depending on the problem since

mathematically simpler boundaries are preferred, data can be mapped into a new

feature space using kernels where linear boundaries can be defined in a higher

dimensional space (Figure 2.2) [99]. The hyperplane or the decision boundary, as is

named in classification terminology, is defined by:

w · x+b = 0 (Eq. 2.24)

where w is orthogonal vector to the hyperplane and b
‖w‖ is the perpendicular distance

Figure 2.2: Map of data from non-linearly separable space into linearly separable
space
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Figure 2.3: Many decision boundaries exist

from the origin to the hyperplane. Therefore, with a linear equation, w and b are

found using train data satisfying following inequalities:

xi ·w+b≥+1 f or y =+1 (Eq. 2.25)

xi ·w+b≤−1 f or y =−1 (Eq. 2.26)

These two conditions can be merged into:

yi(xi ·w+b)−1≥ 0 ∀i (Eq. 2.27)

As illustrated in Figure 2.3, the special case of D = 2, many candidate decision

boundaries exist. Here the question is how to select the best one. To choose the best

decision boundary among all possible ones, SVM decides on the basis of margins

and selects the one with maximum distance from the closest samples. The closest

samples to the decision boundary are known as support vectors (Figure 2.4).

By considering the hyperplanes passing through the support vectors, two planes v1

and v2 are defined as:

xi ·w+b =+1 f or v1 (Eq. 2.28)

xi ·w+b =−1 f or v2 (Eq. 2.29)
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Figure 2.4: Support vectors (marked samples), margins and decision boundaries

The SVM margin (m1 and m2) is defined as the distance between the decision

boundary and the imaginary lines passing through the support vectors. Hence the

best solution is the one which maximizes the margin while m1 = m2. Support

vectors are very important since can be misclassified easily and change the

classification boundaries. Furthermore, as will be proved later, the decision

boundary is merely specified by these points. Now consider a given hyperplane,

where all pairs of (λw,λb) define the same planes except for different distances to a

given sample. Hence, to obtain the geometric distance between the samples and the

boundary, the hyperplane is normalized by the length of the orthogonal vector to the

hyperplane (w). From the inequality Eq. 2.27 we have

yi(xi ·w+b)
‖w‖

≥ 1
‖w‖

(Eq. 2.30)

Here, we are interested in maximizing 1
‖w‖ or minimizing ‖w‖ subject to

yi(xi ·w+ b)− 1 ≥ 0, ∀i. Also minimizing ‖w‖ is equivalent to minimizing 1
2‖w

2‖

which makes it possible to solve the problem using Quadratic Programming (QP)

optimization algorithms.
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min 1
2‖w

2‖

s.t. yi(xi ·w+b)−1≥ 0 ∀i

To solve this problem, we use Lagrange multiplier α,αi ≥ 0 ∀i, and have:

min LP ≡ 1
2‖w

2‖−α [yi(xi ·w+b)−1] , ∀i

s.t. ≡ 1
2‖w

2‖−∑
L
i=1 αi [yi(xi ·w+b)−1]

≡ 1
2‖w

2‖−∑
L
i=1 αiyi(xi ·w+b)+∑

L
i=1 αi

(Eq. 2.31)

In order to minimize LP on w and b, its derivative with respect to w and b is set to

zero:

∂LP

∂w
= 0 ⇒ w =

L

∑
i=0

αiyixi (Eq. 2.32)

∂LP

∂b
= 0 ⇒ w =

L

∑
i=0

αiyi = 0 (Eq. 2.33)

The result obtained from equation 2.32 reveals this fact that w is in fact a linear

combination of training samples [99]. However solving the model in Eq. 2.31 and

minimizing it, is not trivial. A simpler task is solving its dual form. Thus, by

substituting equations 2.32 and 2.33 in Eq. 2.31, instead of minimizing with respect

to w and b subject to α,αi ≥ 0 ∀i, the outcome depends only on α which should be

maximized accordingly subject to w and b (Eq. 2.34).

min LD ≡ ∑
L
i=1 αi− 1

2 ∑i, j αiα jyiy jxi · x j

s.t. ∑
L
i=1 αiyi = 0

αi ≥ 0 ∀i

(Eq. 2.34)

In Eq. 2.34, the second constraint ensures that optimal condition for b is satisfied. By

replacing yiy jxi · x j with Hi j and rewriting Eq. 2.34:
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(a) Case one, xi and x j are
dissimilar.

(b) Case two, xi and x j are
similar and predicting same

class.

(c) Case three, xi and x j are
similar but predicting

different classes.

Figure 2.5: Different cases regarding position of xi, x j in the feature space and their
predictions

maxα ∑
L
i=1 αi− 1

2αT Hα

s.t. ∑
L
i=1 αiyi = 0

αi ≥ 0 ∀i

(Eq. 2.35)

Interestingly, the dual form only requires the dot product of each input vector xi. This

characteristic helps to map data from one space to another using kernel functions. By

maximizing model 2.35, three cases are possible (Figure 2.5). In the first case features

xi and x j are completely dissimilar and their inner product equals to zero (Figure 2.5a).

Consequently, they do not have any effect on LD. In the second possible case, xi and

x j are similar hence xi · x j is not zero and two subcases can arise. In subcase one

(Figure 2.5b), xi and x j predict same classes; thus, value of αiα jyiy jxi · x j will be

positive and decreases L. While in subcase two (Figure 2.5c), xi and x j result in

opposite predictions and product of αiα jyiy jxi · x j will be negative and L increases.

These cases clearly prove that important features are the most discriminative ones

[101]. So far optimal vector of α and accordingly optimal value of w is found. To

find b, we already knew that any support vector point (xs) is in form of:
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ys(xs ·w+b) = 1 (Eq. 2.36)

By substituting w into Eq. 2.36:

ys(∑
S

αmymxm · xs +b) = 1 (Eq. 2.37)

where S is the set of indices of all support vectors (SV). Since SV are expected to have

maximum distances, by multiplying ys in Eq. 2.37 and setting y2
s = 1 (normalization):

y2
s (∑S αmymxm · xs +b) = ys

b = ys−∑S αmymxm · xs

(Eq. 2.38)

Eq. 2.38 computes b for each support vector m. To have a single value, average over

all values of support vectors in S is found:

b =
1
Ns

∑
s∈S

(ys− ∑
m∈S

αmymxm · xs) (Eq. 2.39)

Here optimal values for b and w are already computed and the separation boundary

(hyperplane) is defined accordingly. Thus, a support vector machine is formed. Test

data in the next step is fed into the developed model and with optimal values of b and

w, and using inequality in Eq. 2.27, predicted classes are determined.
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Chapter 3

SYSTEM OVERVIEW

3.1 Introduction

WASSA-2017 competition was the first shared task in emotion intensity level

detection felt by the speaker of a tweet. The competition was held with twenty-two

teams who were asked to develop regression models over already annotated data to

decide on the level of experienced emotion by a tweeter (i.e. who posts a tweet) on a

new unseen sample. The competition was narrowed into four emotions including

anger, joy, fear, and sadness and teams had to report performances individually on

each emotion, although final ranking was on the basis of average performance on

four emotions. Pearson and Spearman correlation measures were applied for

performance evaluation between predicted and actual intensities. Moreover,

participants were allowed to use any set of features, regression models, and tools for

model construction of their choice. Among various used tools and libraries in the

competition the most popular ones were TensorFlow [103] and Sci-kit learn [104]

that both use Python libraries [9, 105].

Based on the announced results, the best team, the Prayas system [9, 11], achieved

Pearson correlation of 0.747 on average with highest 0.765 on anger and lowest

0.732 on fear and sadness. This team used word embeddings, word2vec, sentences

embeddings and affect lexicons such as AFINN [50], Bing Liu [53], NRC lexicon

set [63, 67, 106], MPQA [48], WordNet [56], and In-house lexicon as features. The
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IMS system [9, 10] ranked second with average correlation of 0.722. Its best

performance was on anger emotion similar to Prayas. However, its lowest

performance for emotion sadness was around 4% less than the Prayas system.

Regarding the features applied, Prayas and IMS worked on almost similar feature

sets except some differences in the lexicons used. SeerNet system [8, 9] with

average of 0.708 ranked as the third best system. It used same features similar to the

Prayas system, except sentence embeddings and applied five different regression

models including AdaBoost, Gradient Boosting, random forest, Support Vector

Regression (SVR), and an ensemble. A detailed list of used features extraction

techniques and applied regression models can be found in the competition paper [9].

Nevertheless, word embeddings and affect lexicons along with Neural Networks

(NN) and SVRs were among the most practiced feature selection and regression

techniques, respectively.

As stated earlier, the competition was a regression task in nature. However, this study

attempts to classify tweets according to their emotion intensities instead. The same

data set as the WASSA-2017 competition set is used and a wide variety of available

feature set resources such as word embeddings, namely word2vec, tf-idf scoring and

affect lexicons are used. Moreover, Scikit-learn [104], gensim [107], Pandas [108],

and NumPy [109] are tools used and libraries for model development and system

learning, that all run over Python [105].

Figure 3.1 depicts the architecture and path that is followed in development of an

emotion detection system. The process uses a train data set and continues with a

series of modifications and feature extractions at each step. Finally, extracted features
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Figure 3.1: Porposed approach for emotion intensity detection

are used by an SVM classifier to train a model. The constructed model is then tested

on the test data. Data set construction from gathering to manual tweets annotation

is discussed in details in the next two sections. Section 3.4 discusses pre-processing

techniques such as tokenization and data preparation for model training. Section 3.5

reviews feature extraction methods and finally model construction is discussed in the

last section.

3.2 Data Set

The data set used in this study is the same announced data set for the WASSA-2017

shared task on emotion intensity detection [9]. The data set is a collection of tweets

consisting of four emotions: anger, fear, joy, and sadness and as clarified in the

competition paper, created using Twitter API. To decide on the most relevant tweets

firstly a set of 50 to 100 query terms of each emotion is selected. Query terms are

indeed the most relevant words to differentiate between levels of an emotion that are

chosen from Roget’s Thesaurus. This thesaurus provides around 1000 categories of

words each containing an average of 100 closely related terms. Every category is
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represented with a headword. Query terms are chosen from the candidate category

with the closest headword in meaning to a target emotion. Eventually, the selected

query terms represent high levels of association with different intensity levels of an

emotion [9].

Data collection process using Twitter API for the data set used in this study started

in November 22, 2016 and continued for three weeks. During this period tweets with

query terms in them were collected and then refined by discarding retweets and tweets

with URLs. Furthermore, for a uniformly distributed data set regarding query terms

and tweeters, at most 50 tweets for each query term and at most one tweet for every

tweeter-query term combination were kept [9]. After refining master set or the final

data set, that covers 7097 tweets, it was passed on to manual annotation by applying

best-worst scaling technique. In this technique, as briefly discussed in section 2.5,

each participant is given four tweets (4-tuple) at a time, and is asked to determine

tweets that the speaker experienced highest and lowest emotion intensities. In total

2×N distinct random 4-tuple tweet sets, where N is the total number of samples under

an emotion, were generated in a way that each tweet appears in 8 different tuples and

no pair of tweets occurs more than once. Each 4-tuple set was annotated by three

independent persons using a questioner formed over CrowdFlower, a crowdsourcing

platform. Furthermore, around 5% of samples were annotated manually by authors

to avoid malicious annotations and also for later use as gold set. Finally, tweets,

based on the percentage of times voted as the most and least intense, are assigned a

real-value score using following formula.

intensity(t) = %most(t)−%least(t) (Eq. 3.1)
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3.3 Train, Development and Test Data Sets

The master data set is partitioned into three subsets for model training and testing.

Half of the tweets were assigned for training, 5% for development (validation), and

45% was reserved as test set. The details of the data sets is given in Table 3.1.

Table 3.1: Number of instances per data set

Train Dev. Test All
Anger 857 84 760 1701
Fear 1147 110 995 2252
Joy 823 74 714 1611
Sadness 786 74 673 1533
All 3613 342 3142 7097

Table 3.2 shows sample tweets from the joy data set. Each entry of the table contains

an ID that uniquely identifies a tweet, an affect dimension to determine the emotion

and an intensity class to indicate the level of inferred emotion.

Table 3.2: Sample tweets from joy data set

ID Intensity Tweet* Emotion Note
31108 2 #happiness #recipe: an open mind,#laughter ... joy 2: moderate level of joy can be inferred
30827 3 I love my family so much#lucky #grateful ... joy 3: high level of joy can be inferred
30621 0 Pinterest one dessert... Next thing you know ... joy 0: no joy can be inferred
31475 1 Accept the challenges so that you can feel ... joy 1: low level of joy can be inferred
31129 3 i just spent $40 on big little sis tomorrow ... joy 3: high level of joy can be inferred
*part of tweets are given.

In this study 19 feature sets are considered where 14 of them are lexicon based and

the rest are tf-idf scoring, word2vec, dictionary of terms, query terms, and symbols’

count. Each of these feature sets is discussed in detail in the following sections.

Normalization as a technique of mapping data into equal ranges is discussed next.

Finally, developed SVM model is briefly reviewed.
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3.4 Pre-processing

The most basic pre-processing step in dealing with tweets is tokenization in order to

split them into terms that can be scored later. Even though today different

tokenization tools are available that benefit from a variety of techniques, white-space

tokenization with some modifications is applied in this study. Using this technique

on tweets, which often contain informal ways of writing and are inadvertently

spaced, can result in meaningless tokens. However, ignoring them can result in

missing important concepts. For example, consider the following tweet from the joy

emotion data set:

“I WANNA GET UP AND DANCE!!!! (but everyone is in bed) this suks! Everyone

wake up!! ???? #hyper #letsdance #dirtydancinginthemoonlight????”

In this tweet “wanna” is a careless way of writing “want to”, although as long as it is a

common practice, conveys the concept. Same issue also holds regarding miss spelled

words such as “suks” instead of “sucks”. Nevertheless, white space tokenization

does not always work properly regarding combination of symbols and words. In a

given tweet, white space tokenization returns “DANCE!!!!” as a single token that

is not desirable for this study. Hence, the tokenization technique is modified using

regular expressions (regex) to break a token into sub tokens properly. A collection of

regular expression symbols such as [, (, ), \n, ”, , -, ., !, ?, &, ], +, ), ?, and \s can

return the desired outcome. For example in the above mentioned tweet, white space

tokenization returns “DANCE!!!!” as a single token, while tokenizing with given

regular expressions will split it into two tokens of “DANCE” and “!!!!”, that can be

used to study the effect of combination of symbols.
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The decision to use white space tokenization is mainly due to two reasons.

Section 2.5 introduced lexicons as a main feature source and one of the largest

lexicons, NRC Affect Lexicon, is indeed developed over extracted terms from tweets

and covers informal presentations. Thus, white space tokenization fits to this work

better than other complex techniques. Punctuation marks and their combination are

another reasons to prefer white space tokenization. As we will see later, number of

exclamation or question marks is helpful in determining the level of emotion

inferred from a tweet.

3.4.1 Setting Tweet Length

One of the challenges of working with tweets is deciding on a fixed tweet size.

Although in practice tweet length cannot be more than a 280 characters, there are

many tweets with shorter lengths. Moreover, tokenization results in different number

of tokens regardless of number of characters. Hence the important issue is deciding

on a fixed tweet length as passed data to SVM classifier should have equal number

of features. Deciding on the best length is not a trivial task. Setting the length to a

small value causes neglection of many terms, while large values are not preferable as

zeros should be added to increase shorter tweets’ length. Therefore, both of these

actions can result in performance deterioration.

Model evaluation on a development data set before testing on the real test set is used

to find the optimal tweet length. In the next chapter the optimal tweet length is

determined by evaluating the performance of model on the development set with

different tweets’ lengths.
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3.5 Feature Extraction

3.5.1 Affect Lexicons

Lexicon based scoring is basically a look up process that assigns a score to each

token of a tweet that exists in a considered lexicon. Nevertheless, if a token does not

exist in the lexicon its score sets to zero. List of considered feature sets for this study

is given in Table 3.3. Each of the given lexicons is considered as a single feature set.

The first nine feature sets ( f1, · · · , f9) are from the NRC affect lexicons set. Lexicons

eight and nine are bi-gram and pair-gram versions of the sixth lexicon ( f6),

respectively. In bi-gram lexicons the co-occurrence of two adjacent tokens is scored.

However, pair-gram lexicons take into account the co-occurrence of two tokens in a

tweet irrespective of their distance. Feature set ten ( f10) is WordNet lexicon [56] that

was introduced earlier. Feature sets eleven through thirteen ( f11, f12, f13) are from

Warriner et.al. lexicon set [62] that covers three domains of valence, arousal, and

dominance. Last two lexicons used are from Bing Lui lexicon [53] that are originally

composed of two sets: lexicon of words with positive opinion and lexicon of

negative opinion words. However, in order to fit the data into a scoring structure, we

split them into two versions of uni-grams and bi-grams, both covering positive and

negative opinion words. Generally, the first three lexicons provide emotional based

scores and the rest are sentiment based.

Tweet length in scoring with affect lexicons is a deterministic issue as it directly

affects the feature vector size. Assuming l as the best tweet size, each lexicon

extends the feature vector of tweets by length l. Moreover, recall that for tweets with

less than l terms after tokenization, zeros are appended to increase the length.
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Table 3.3: List of feature sets

Feature set ID Description
f1 NRC Affect Intensity Lexicon (4 emotions)
f2 NRC Hashtag Emotion Lexicon-v0.2 (4 emotions)
f3 NRC Emotion Lexicon Wordlevel-v0.92 (4 emotions)
f4 NRC Hashtag Sentiment Lexicon-v1.0
f5 NRC Hashtag-Sentiment-AffLexNegLex-v1.0
f6 NRC Emoticon Lexicon-v1.0
f7 Emoticon AFFLEX NEGLEX (uni-grams)
f8 NRC Emoticon Lexicon-v1.0 (bi-gram)
f9 NRC Emoticon Lexicon-v1.0 (pair-gram)
f10 SentiWordNet 3.0
f11 Warriner et al. Lexicon (valence)
f12 Warriner et al. Lexicon (arousal)
f13 Warriner et al. Lexicon (dominance)
f14 Bing Liu Opinion Lexicon
f15 Self-Dictionary (context based)
f16 Query Terms
f17 Symbols Effect
f18 Tf-idf Scoring
f19 Word2Vec

However, for a tweet with more than l terms, l randomly selected tokens form

feature vector. Hence, by considering all lexicons, the length of the feature vector for

each tweet equals 15× l. For instance, considering again tweet given in section 3.4.

By setting l = 10, feature set f7 will generate vector

[0, 0, 0, 0, 0, 0, 0.161, 0.323, −0.503, 0.677], where 10 tokens are randomly

chosen out of 26 tokens. If tweet had less than 10 tokens, trailing zeros would be

attached to increase length to 10.

3.5.2 Tf-idf Score

Tf-idf feature set ( f18) evaluates whether the terms combination between different

levels of an emotion is significantly different. By tokenization of the entire corpus,

each tweet forms a vector of tokens. After aggregation of vectors on each level of

emotion, four larger vectors of terms along with the number of tokens’ occurrence is

developed. Elements of these vectors as introduced in section 2.9 are referred as Term
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Frequency (TF), and the number of tweets each term appears in shows the Document

Frequency (DF). Combination of normalized Term Frequency (Eq. 2.2) and inverse

Document Frequency (Eq. 2.3) into tf-idf, as given in Eq. 2.4, assigns a score to each

term per class such that the summation of scores presents each tweet with a feature

set of size 4, where summations determine the tweets class-wise score.

Considering the tweet given in section 3.4, after tokenization using regular

expressions results in:

[’I’, ’WANNA’, ’GET’, ’UP’, ’AND’, ’DANCE’, ’!!!!’, ’(’, ’but’, ’everyone’, ’is’,

’in’, ’bed’, ’)’, ’this’, ’suks’, ’!’, ’Everyone’, ’wake’, ’up’, ’!!’, ’????’, ’#hyper’,

’#letsdance’, ’#dirtydancinginthemoonlight’, ’????’]

where each term is represented by a vector with four tf-idf scores (one for each class).

By adding assigned the scores, the feature vector for this tweet is:

[613.861, 397.982, 393.568, 537.379]1 (Eq. 3.2)

where the feature vector size equals (15× l)+4.

3.5.3 Word2vec

Another feature set used is word2vec, a Python library that is used for constructing

the model in this study. Gensim word2vec initially receives a list of training texts and

generates a Continuous Bag of Words (CBoW) to learn a model over co-occurrence of

terms and scores them on their similarity. Although there are already trained models

available online that can be simply applied to score test samples, in this study we

developed our own models (one for each level of emotion) using the train data. In

model construction the size of the representative vector (i.e. size of the surrounding

1 Values are rounded to 3 digits.
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Figure 3.2: Presentation of word2vec window size

context) and the window size are set to 400 and 2, respectively (same settings as

applied by participant teams in the competition). Window size defines the maximum

distance between the target term and its neighboring words. Thus, with a window size

of 2, for each term two terms to the right and to the left are considered (Figure 3.2).

After model construction, a list of the most similar terms to the target term along

with their similarity measures can be retrieved. Summation of tokens’ similarity

scores with terms in their window is taken into account as the tweet’s feature.

Hence, by having one model per class, each tweet has a vector with four elements

that is appended to the feature vector from tf-idf and affect lexicon scoring and

increases vector size to (15× l)+4+4.

3.5.4 Context Based Dictionary

One of the possible determinative features in detecting levels of an emotion is

variation in the distribution of specific tokens for different levels of that emotion. To

evaluate the effectiveness of terms distribution, four dictionaries per emotion are

developed using train data set (one for each level) and all of the terms appeared in a

level are added into their corresponding dictionary along with the total number of

their occurrence. We call this set a “self-dictionary”. Table 3.4 shows part of the

developed dictionary for anger emotion. Self-dictionary utilization is similar to
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using lexicons. Scores of tokens or zeros2 form a vector. Hence, each tweet has a

feature vector of size 4× l. With respect to a self-dictionary, the percentage that is

looked up for a token is a deterministic parameter. Basically, a self-dictionary

contains all the terms that exist during training. However, some terms exist rarely

and ignoring them can promote more effective terms. Therefore, top p% of terms

after sorting them from the most common to the rarest ones, is kept. Deciding on the

optimal percentage (p) is similar to the best tweet length determination. Common

practice is to check the dictionary performance for different percentages using the

development data set or applying cross-validation technique. Finally, the

self-dictionary feature set vector similar to other feature sets appends to the previous

feature vector which increases the feature dimension to (15× l)+4+4+(4× l).

3.5.5 Query Terms

Earlier in section 3.2, query terms were discussed as a list of related terms to an

emotion and were used to retrieve tweets using twitter API. Here the idea is to use

these terms to test whether a query term can discriminate between different levels of

Table 3.4: Part of developed self-dictionary for different levels of anger

Level 0 Level 1 Level 2 Level 3
term score term score term score term score
the 177 the 157 the 207 the 159
a 136 to 111 to 179 to 159
I 128 and 100 a 158 I 149
to 127 a 98 I 153 and 131

and 102 I 83 and 136 a 127
is 81 of 67 is 109 you 95

you 78 is 64 of 109 is 95
? 73 you 59 ? 84 me 89
of 72 in 56 you 78 my 74
in 70 it 49 78 that 73
my 60 that 47 my 74 of 70

2 Depends on the existence of a token in the corresponding dictionary.
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inferred emotion from a tweet since it was effective in selecting the set of relevant

tweets. To examine this phenomenon during the training phase, tweets are checked

after tokenization for appearance of query terms. If a query term appears in it, the

emotional level of that tweet appends to the corresponding vector of that query term.

Thus, each query term has a vector of levels that it showed up in. This vector is then

put into a vector with four elements where each element shows the percentage of

times the query term belongs to each level. The following example shows the level-

wise occurrence vector of term “sparkling”, a query term from emotion joy (Eq. 3.3).

Based on this vector term “sparkling” appeared in two tweets with level ‘2’ of joy, or

in nine tweets with level ‘1’. The percentage of its occurrence in each level is equal

to the vector on the right side of equation.

Sparkling: [ ‘2’, ‘0’, ‘3’, ‘0’, ‘0’, ‘1’, ‘0’, ‘1’, ‘1’, ‘1’,

‘1’, ‘3’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘2’, ‘1’,

‘1’, ‘0’, ‘0’, ‘1’, ‘0’, ‘0’, ‘1’, ‘0’, ‘0’, ‘0’]

≡ [0.567, 0.3, 0.067, 0.067]

(Eq. 3.3)

In model development and model testing, each tweet is assigned a four-element

vector (one element per class) as a feature set where each element keeps the highest

score in corresponding level among all occurred query terms in that tweet.

Aggregation of query terms feature set with already extracted features, increases

vector dimensionality by 4 which equals (15× l)+4+4+(4× l)+4.

3.5.6 Symbol Effect

It is expected that the usage of certain symbols such as “!” or “?” has association

with the intensity of emotion the speaker is experiencing. Table 3.5 shows entries of

the sixth feature set (NRC Emoticon Lexicon-v1.0). Comparing entries and their
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Table 3.5: Sample entries from lexicon NRC Emoticon Lexicon-v1.0.

Term Score N.Pos N.Neg
??? -0.826 5 12
???! -0.056 9 10
???!! 0.86 9 4
???!!! -0.521 13 23
???!!!! -0.356 4 6
.!! 0.392 31 22
.!!! -0.151 18 22
??!! -0.188 56 71
??!!! -0.526 9 16
??!? 0.742 6 3
!!!? -1.491 3 14

scores recommends symbols combination and their count as a determinative factor.

Although such differences may not seen relevant, lexicons that are built over

collected data from Twitter reveals various combinations of such symbols practiced

by individuals to convey different levels of emotions. For instance, “!!!?” has

negative emotion since 14 out 17 times, it has been observed in tweets with negative

sentiments (N.Pos). Hence, combination and number of question and exclamation

marks (i.e. two widely used symbols) are considered as a new feature set. This

feature set assigns each tweet a vector with four elements, where the first and third

elements represent the number of tokens with exclamation and question marks,

respectively. The second and fourth elements of the vector keep respectively the total

number of exclamation and question marks in the entire tweet. For the given tweet in

section 3.4, the feature set vector equals to [3.0, 2.0, 7.0, 8.0]. By appending this

features set to already extracted features, the new dimension will be

(15× l)+4+4+(4× l)+4+4.

3.6 Normalization

Standardization is one of the normalization techniques used in data preprocessing,

which is briefly discussed in section 2.8. Although generally there is no guarantee
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that normalization improves performance, it can reduce both training time and

estimation error. Regarding SVM classifier, considering that it uses combination of

features and creates a hyperplane to separate classes, data should not be skewed too

much. For this reason, the extracted train feature set is standardized and mapped into

a new range with mean 0 and standard deviation 1 before being used to train the

model. Normalization is the last step before model construction. Following

normalization, a model which uses every single feature set is developed to test

feature set performance independently in classification. Besides, separate models for

combination of lexicons and combination of all feature sets are constructed. For

model construction, LinearSVC, from SVM library of Scikit-learn software [104] is

used in the “one vs. rest” mode. Most of the parameters of this function are kept as

default values except for tolerance, random-state and maximum iterations. Tolerance

which defines the stopping criteria (tol) is set to 10−6. Random state (random state)

used to determine the seed of the pseudo random number generator is set to “None”

which means that the system selects seeds randomly; and, finally maximum iteration

(max iter) set to 105 to make sure that the training model converges. The remaining

of model parameters are set as follows:

LinearSVC(penalty=‘l2’, loss=‘squared hinge’, dual=True, tol=0.000001, C=1.0,

multi class=‘ovr’, fit intercept=True, intercept scaling=1, class weight=None,

verbose=0, random state=None, max iter=100000)

We use training data to develop the models for classification. However, achieving the

best performance requires optimizing the parameters such as tweet length and using

an effective size of self-dictionary. The trained models are validated then with the

development data for parameters optimization as well as evaluating the effectiveness
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of feature sets before testing the models on actual test data. Thus, the models’

performances are checked over extracted features out of the development samples

and by modifying parameters in each iteration, the optimal values are determined.
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Chapter 4

RESULTS AND DISCUSSIONS

4.1 Introduction

The fundamentals of an automatic emotion detection system were discussed

extensively in Chapter 3. In this chapter for each of anger, joy, fear, and sadness

emotions construction of models using every feature set in Table 3.3 is discussed.

This means development of four sets of 19 classifiers. The levels or classes of

emotion intensities also ranges between 0 and 3 where 0 stands for the lowest and 3

for the highest level of inferred emotion.

Model construction is done using the train and development (validation) sets, first to

determine the best percentage of self-dictionaries to be used for different emotions,

and then to determine the optimal tweet length by using the combination of all

feature sets. Throughout the study, precision, recall, and F-score are the metrics used

and to compare the performance of classifiers micro and macro averages over all

intensity levels are calculated. Section 4.3 considers model development with

optimal parameters on different feature sets where combinations and performances

are compared. Finally, to improve results, feature and classifier selection techniques

are applied. Throughout this work, train and development data sets are used to train,

optimize, and validate the models and the test data set is used to compare the

performance of classifiers and their combinations.
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4.2 Choosing Self-Dictionary Size and Optimal Tweet Length

The idea of developing dictionaries is to test whether terms and their frequencies

can effectively help in deciding on the intensity level of the inferred emotion in a

tweet. Table 4.1 shows the total number of entries for every emotion. Remember that

we have seen in Table 3.4 that majority of the terms occur rarely and are common

among different intensity levels. Therefore, pruning the dictionary and trying to keep

discriminative entries may increase performance.

As discussed in Section 3.5, each tweet is assigned four vectors of scores of size l. It

was also mentioned that the optimal tweet length (l) is not known and performance

of feature sets such as lexicons is directly affected by the tweet length. Therefore,

the best tweet length has to be set in accordance with the performance of

combination of all feature sets for which optimal percentage of self-dictionary is

needed. To choose the optimal dictionary size the initial value of l for each emotion

is set as the average length of tweets. After calculation of best dictionary size, the

optimal lengths are found by training and validating the classifiers on combination of

all feature sets. Table 4.1 provides basic statistics on the tweets length for train and

development data sets. By setting l to 19 (the average length), series of SVM models

are trained using the train data set with different percentages of dictionaries, ranging

Table 4.1: Dictionary sizes and tweet lengths

Dictionary size Tweet length
intensity level train validation

0 1 2 3 max. min. avg. max. min. avg.
Anger 2619 2340 3281 2368 61 1 18.51 41 2 18.89
Joy 3327 2285 2151 1973 41 2 18.59 37 2 18.56
Fear 6696 2337 1717 1223 43 2 18.67 41 1 18.83
Sadness 3819 2054 2595 1772 159 2 19.26 41 2 18.64
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from 5 to 95 percent. Models are then tested using the development data set to check

classifiers performance for each percentage. Figure 4.1 shows fluctuations of micro

F-scores for each emotion. Comparing plots, reveals that same ratios do not work

well for all emotions. Therefore, a different dictionary size should be decided for

each emotion. Deciding on the best fraction is merely based on the F-score of

trained models on f15. For the anger emotion, the developed classifier by

considering 70% of dictionary and F-score of 0.343 outperforms other models.

Classifiers for joy, fear, and sadness emotions achieve their best performance on

35%, 20%, and 35% of their corresponding dictionary respectively with F-scores

equal 0.276, 0.648, and 0.418 (Table 4.2).

Figure 4.1 also shows variations in micro F-scores when all features are used in

combination. It can be seen that similar fluctuations occur when the classifier is

trained only with the self-dictionary feature set ( f15). Unlike self-dictionary,

performance of nearly all feature sets (15 out of 19) is under effect of tweet length.

Therefore, the best tweet length is computed based on the performance of the

classifiers using all feature sets combination. Since the performance of the SVM

classifier may slightly change with the use of new seeds as a part of the random

number generator used, model training and validating are repeated 10 times and

average of results is considered.

Table 4.2: Models’ optimal parameters

Anger Joy Fear Sadness
opt. percentage 70 35 20 35
opt. length 33 33 36 27
micro F-score 0.343 0.276 0.648 0.418
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Figure 4.2 shows averaged micro F-scores of the trained SVM classifiers using

different tweet lengths ranging from 3 to 40 terms. Since the lengths considered

should be reasonable for majority of the tweets, generality and inclusiveness are

reasons for minimum and maximum values of length, respectively. For example the

longest tweet for sadness emotion has 159 terms while the second longest one has

only 43 terms which makes the former an outlier. 95th percentile of tweets length,

the point that indicates 95 percent of tweets have fewer terms than, is shown in

Figure 4.2 with dashed red (R) and green (S) lines respectively for train and

development sets.

Comparing plots and micro F-score curves reveal that the best length varies through

emotions. Therefore, similar to the best percentage of self-dictionaries, each emotion

has its optimal tweet length. For anger emotion, the highest F-score of trained model

on combination of all features occurs at length 33. For joy, fear, and sadness

emotions optimal lengths are respectively 33, 36, and 27 which are marked with blue

rectangles. Furthermore, micro F-scores on the optimal lengths for anger, joy, fear,

and sadness emotions are 0.373, 0.281, 0.648, and 0.443 (Table 4.2). Closeness of

the optimal lengths to 95th percentile shows that consideration of almost full tweet

length in training good classifiers is more preferable than dropping terms.

In Figure 4.2, variations in the average micro F-score of combination of all lexicons

(i.e. first 14 feature sets) are displayed. For almost all emotions there is a gap between

all lexicons curve and the curve for all features. This gap suggests that subset of

feature sets can work better than the combination of all feature sets as discussed later

in this chapter.

62



(a
)

(b
)

(c
)

(d
)

Fi
gu

re
4.

2:
Pe

rf
or

m
an

ce
of

m
od

el
s

us
in

g
di

ff
er

en
tt

w
ee

tl
en

gt
hs



4.3 Classifier Construction

The 19 feature sets used in this study were introduced in Chapter 3. A classifier is

trained for each feature set to measure the success in classifying tweets into four

different intensity levels. Table 4.3 shows micro F-score of trained models that are

validated on the development set. Scores under the first column of each emotion are

performance of classifiers with the optimal tweet length, while the next two columns

show scores when models are trained on average and maximum tweet lengths.

Maximum and average lengths are studied as benchmarks for later comparisons.

Figure 4.3 confirms that deciding to continue with the optimal length, in comparison

with the average and maximum lengths, is a valid decision for majority of trained

classifiers.

Comparing scores under three different lengths shows that classifiers that are

developed using feature sets such as f17 and f18 have micro F-scores independent of

tweet length. For the rest of feature sets, comparing micro F-scores for different

tweet sizes reveals that neither of the lengths used improve performance for all

classifiers. Nevertheless, when all feature sets are used in combination, the best

performance is achieved for optimal length, l.

Feature sets 11 to 13 in Table 4.3, as introduced in Table 3.3, belong to the same

lexicon set that covers three different dimensions of emotions i.e. valance, arousal,

and dominance. It is expected that their combination performance will be better than

their individual result. However, classifiers generated using their combination in

comparison to individual ones show improvement only in classification for joy

emotion with F-score 0.255. For anger, fear, and sadness emotion the performances
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Figure 4.3: Average of micro F-scores of trained classifiers over all emotions

are either the same or worse. Combination of all lexicons, a subset of all feature sets

combination, is judged as a single classifier as well and for an emotion such as joy,

outperforms the combination of all feature sets with 14% lager F-score.

Table 4.4 reports macro F-scores for classifiers developed. By comparing results, it

is clear that the trained classifiers have better performance with optimum tweet

lengths on all emotions (except for fear which is almost negligible). Moreover,

macro F-scores are significantly smaller than micro F-scores. This is due to the fact

that in micro average contribution of all classes is considered. Hence, when a

classifier performs very well for a particular class, the micro F-score is important.

Macro average F-score, in contrast, gives a better understanding of a classifier’s

performance on average by considering equal contribution for all classes. Therefore,

if the classifier performs poorly for a particular class, this reduces the average

considerably. For example, majority of the trained classifiers for fear emotion failed

to predict samples from levels 1 and 2 (Table 4.5). However, they were widely
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successful in detection of class 0 entities. Therefore, macro average, by giving equal

share to all classes has smaller value than micro average, which highlights the

performance of the classifier model for class 0. Table 4.5 shows detailed information

for the trained classifiers performance using individual feature sets and the optimal

parameters. Considering the first 14 feature sets, for the anger emotion, classifier of

f6 achieves the highest precision score on average for detection of classes when

macro precision value equals 0.379. However, classifier of f5 performs the best in

terms of recall with macro recall value equals 0.314. Regarding F-score, classifier

trained using f3 has the best performance with micro F-score equals 0.433. On the

other hand, classifier of f2 performs the highest average of F-scores over different

classes.

Among the rest of single feature sets, classifier of f16 has the highest macro precision

and classifier using f18 has the highest macro recall and F-score. The last rows of the

table give dictionary sizes and effective percentages in number of terms as well as the

number of training and development samples for each intensity level.

Overview of results show that classification of emotions under the second and the

third levels of intensity is not as easy as the first and the fourth levels since majority

of zeros belong to these two levels . For the anger emotion, scores show that almost

all of the considered feature sets, when they are used individually, fail in training

classifiers that can predict the first level of intensity. Furthermore, none of the feature

sets can train classifiers to classify correctly levels 1, 2, and 3 for the fear emotion.

Through the rest of the emotions, classifier of f5 for joy and classifier of f16 for fear

and sadness surpass other single feature sets’ classifiers with highest micro F-scores.
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In summary, results in Tables 4.3 and 4.5 state that, there is not any single feature set

classifier that performs well for all emotions or intensity levels. For a more detailed

analysis of feature sets for each level of emotions, the performance of feature sets are

sorted and tabulated in Tables 4.6 through 4.10. In these tables feature sets are sorted

in ascending order on the basis of micro F-scores achieved by their corresponding

classifier.

As stated before and as can be seen from Table 4.6, f3 is the best feature set with the

highest micro F-score for the anger emotion classification. However, it does not rank

amongst the top ten well performing feature sets for the rest of the emotions. As

another sample consider f16 that its classifier achieves the worst performance for

anger and joy emotions. The classifier performance dominates other feature sets in

classifying fear and sadness emotions intensity levels. Moreover, rankings under fear

emotion indicate that majority of feature sets perform almost the same, even though

this performance is very different for other emotions. Such inconsistencies in

performance of feature sets and their trained classifiers for different emotions proves

that feature sets, similar to parameters, should be selected based on emotions. Tables

4.7 through 4.10 give ranked feature sets per emotion on a class based performance

respectively for anger, joy, fear, and sadness emotions.

Comparing ranks within tables makes it evident that similar attributes do not perform

well for all classes similar to the case of emotions. For instance, classifier of f3 that

ranked first in overall intensity classification for the anger emotion (Table 4.6), ranks

first only in predicting samples with the lowest intensity level and its performance

places it at the bottom of the list as the last feature set for other levels (Table 4.7).
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Table 4.6: Sorted and ranked feature sets according to their performance on
development data

Anger Joy Fear Sadness Micro F-scores
attr. rank attr. rank attr. rank attr. rank anger joy fear sadness
f3 1 f5 1 f16 1 f16 1 0.433 0.307 0.650 0.461
f1 2 f4 2 f7 2 f18 2 0.415 0.290 0.648 0.443
f2 3 f7 3 f4 3 f10 3 0.389 0.272 0.645 0.438
f4 4 f8 3 f5 3 f4 4 0.376 0.272 0.645 0.436
f10 4 f15 3 f8 3 f1 5 0.376 0.272 0.645 0.433
f9 6 f18 6 f9 3 f7 6 0.374 0.266 0.645 0.431
f19 6 f19 6 f10 3 f2 7 0.374 0.266 0.645 0.428
f5 8 f6 8 f11 3 f5 7 0.366 0.252 0.645 0.428
f18 9 f2 9 f12 3 f17 7 0.363 0.241 0.645 0.428
f14 10 f9 9 f13 3 f14 10 0.356 0.241 0.645 0.426
f6 11 f10 11 f15 3 f3 11 0.348 0.238 0.645 0.416
f7 11 f14 12 f17 3 f11 12 0.348 0.231 0.645 0.411
f8 11 f1 13 f18 3 f13 13 0.348 0.224 0.645 0.408
f15 14 f12 13 f19 3 f8 14 0.335 0.224 0.645 0.406
f12 15 f11 15 f2 15 f15 15 0.320 0.214 0.643 0.403
f13 16 f13 16 f6 15 f9 16 0.309 0.210 0.643 0.398
f11 17 f3 17 f14 15 f12 17 0.307 0.207 0.643 0.393
f17 17 f17 17 f1 18 f6 18 0.307 0.207 0.640 0.380
f16 19 f16 19 f3 18 f19 19 0.222 0.186 0.640 0.355

f11, f12, f13 0.320 0.255 0.640 0.378
f1 to f14 (all lexicons) 0.371 0.324 0.638 0.446
all features 0.379 0.283 0.648 0.446

Moreover, this feature set is totally ineffective in detection of samples with the first

level of intensity. In fact there are disagreements about the feature set that works

better for recognition of intensity level for every emotion. Unlike emotions,

choosing a subset of feature sets which work well for each intensity level dose not

seem feasible. Hence, results on performance of feature sets and selection of features

are based on micro F-score, which takes into account contribution for all classes.

Last three rows of Tables 4.7 through 4.10 show micro F-scores for combination of

features. Comparison of scores shows that all feature sets and all lexicons

alternatively have the best performance on different levels of emotions. However,

combination of feature sets 11 through 13 mostly performs the worse and rarely

shows better performance.
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Table 4.7: Level-wise sorted and ranked feature sets for anger emotion

Level 0 Level 1 Level 2 Level 3 Micro F-scores
attr. rank attr. rank attr. rank attr. rank level 0 level 1 level 2 level 3
f3 1 f19 1 f10 1 f18 1 0.590 0.100 0.425 0.384
f1 2 f15 2 f17 2 f8 2 0.588 0.087 0.407 0.289
f4 3 f18 3 f5 3 f16 3 0.552 0.079 0.382 0.273
f19 4 f6 4 f15 4 f15 4 0.546 0.069 0.374 0.272
f2 5 f7 5 f2 5 f6 5 0.528 0.067 0.366 0.242
f9 6 f8 6 f9 6 f13 6 0.520 0.036 0.348 0.233
f14 7 f4 7 f3 7 f5 7 0.514 0.034 0.347 0.229
f7 8 f16 8 f19 8 f2 8 0.513 0.033 0.343 0.228
f6 9 f2 9 f12 9 f4 9 0.502 0.030 0.338 0.219
f5 10 f1 10 f18 10 f9 10 0.494 0 0.332 0.218
f8 11 f3 10 f11 11 f12 11 0.477 0 0.331 0.217
f10 12 f5 10 f4 12 f14 12 0.465 0 0.324 0.216
f18 13 f9 10 f13 13 f7 13 0.447 0 0.315 0.214
f11 14 f10 10 f1 14 f1 14 0.405 0 0.302 0.213
f12 15 f11 10 f6 15 f17 15 0.404 0 0.282 0.188
f13 16 f12 10 f7 16 f19 16 0.394 0 0.278 0.174
f15 17 f13 10 f8 16 f11 17 0.389 0 0.278 0.172
f17 18 f14 10 f14 16 f10 18 0.261 0 0.278 0.171
f16 19 f17 10 f16 19 f3 19 0.173 0 0.239 0.138

f11, f12, f13 0.438 0.058 0.300 0.203
f1 to f14 (all lexicons) 0.528 0.083 0.330 0.238
all features 0.447 0.113 0.363 0.395

Table 4.8: Level-wise sorted and ranked feature sets for joy emotion

Level 0 Level 1 Level 2 Level 3 Micro F-scores
attr. rank attr. rank attr. rank attr. rank level 0 level 1 level 2 level 3
f5 1 f13 1 f5 1 f4 1 0.406 0.200 0.264 0.390
f4 2 f12 2 f7 2 f18 2 0.396 0.196 0.226 0.382
f8 3 f11 3 f6 3 f15 3 0.389 0.190 0.220 0.376
f15 4 f8 4 f1 4 f19 4 0.373 0.164 0.203 0.356
f7 5 f10 5 f9 5 f5 5 0.371 0.156 0.192 0.353
f6 6 f1 6 f10 6 f16 6 0.357 0.154 0.185 0.305
f18 6 f7 7 f19 7 f2 7 0.357 0.142 0.176 0.296
f14 8 f5 8 f8 8 f17 8 0.353 0.136 0.171 0.295
f19 9 f6 9 f4 9 f8 9 0.344 0.125 0.154 0.283
f2 10 f19 10 f18 10 f14 10 0.333 0.120 0.134 0.265
f9 10 f4 11 f2 11 f3 11 0.333 0.107 0.119 0.258
f12 12 f9 12 f15 12 f7 12 0.332 0.106 0.113 0.252
f10 13 f2 13 f3 13 f9 13 0.322 0.101 0.103 0.229
f13 14 f18 14 f11 14 f10 14 0.321 0.088 0.079 0.214
f11 15 f15 15 f12 15 f12 15 0.317 0.076 0.077 0.190
f17 16 f14 16 f14 16 f6 16 0.310 0.067 0.063 0.189
f1 17 f3 17 f16 17 f1 17 0.286 0.039 0.040 0.184
f3 18 f16 18 f13 18 f13 18 0.285 0 0.020 0.171
f16 19 f17 19 f17 19 f11 19 0.113 0 0 0.167

f11, f12, f13 0.400 0.154 0.093 0.266
f1 to f14 (all lexicons) 0.396 0.173 0.354 0.333
all features 0.365 0.109 0.179 0.387
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Table 4.9: Level-wise sorted and ranked feature sets for fear emotion

Level 0 Level 1 Level 2 Level 3 Micro F-scores
attr. rank attr. rank attr. rank attr. rank level 0 level 1 level 2 level 3
f16 1 f14 1 f1 1 f16 1 0.792 0.034 0 0.267
f7 2 f16 2 f2 2 f7 2 0.786 0.031 0 0.080
f10 2 f1 3 f3 3 f18 3 0.786 0 0 0.074
f15 2 f2 3 f4 4 f1 4 0.786 0 0 0
f18 2 f3 3 f5 5 f2 4 0.786 0 0 0
f3 6 f4 3 f6 6 f3 4 0.785 0 0 0
f1 7 f5 3 f7 7 f4 4 0.784 0 0 0
f4 7 f6 3 f8 8 f5 4 0.784 0 0 0
f5 7 f7 3 f9 9 f6 4 0.784 0 0 0
f8 7 f8 3 f10 10 f8 4 0.784 0 0 0
f9 7 f9 3 f11 11 f9 4 0.784 0 0 0
f11 7 f10 3 f12 12 f10 4 0.784 0 0 0
f12 7 f11 3 f13 13 f11 4 0.784 0 0 0
f13 7 f12 3 f14 14 f12 4 0.784 0 0 0
f17 7 f13 3 f15 15 f13 4 0.784 0 0 0
f19 7 f15 3 f16 16 f14 4 0.784 0 0 0
f14 17 f17 3 f17 17 f15 4 0.783 0 0 0
f2 18 f18 3 f18 18 f17 4 0.782 0 0 0
f6 18 f19 3 f19 19 f19 4 0.782 0 0 0

f11, f12, f13 0.783 0 0 0
f1 to f14 (all lexicons) 0.791 0.054 0.095 0.069
all features 0.786 0.034 0 0.077

Table 4.10: Level-wise sorted and ranked feature sets for sadness emotion

Level 0 Level 1 Level 2 Level 3 Micro F-scores
attr. rank attr. rank attr. rank attr. rank level 0 level 1 level 2 level 3
f10 1 f14 1 f4 1 f18 1 0.629 0.118 0.331 0.384
f2 2 f15 2 f7 2 f16 2 0.624 0.084 0.300 0.296
f18 3 f3 3 f5 3 f7 3 0.623 0.079 0.299 0.248
f7 4 f19 4 f18 4 f15 3 0.621 0.077 0.253 0.248
f16 4 f11 5 f1 5 f8 5 0.621 0.065 0.248 0.229
f1 6 f1 6 f19 6 f4 6 0.619 0.063 0.244 0.228
f8 7 f9 6 f14 7 f2 7 0.610 0.063 0.242 0.222
f14 8 f18 8 f13 8 f6 8 0.609 0.062 0.231 0.205
f17 9 f5 9 f11 9 f9 9 0.600 0.043 0.207 0.172
f3 10 f13 10 f10 10 f19 10 0.598 0.022 0.204 0.171
f5 10 f12 11 f8 11 f1 11 0.598 0.021 0.188 0.126
f9 12 f2 12 f12 11 f14 12 0.590 0 0.188 0.120
f4 13 f4 12 f2 13 f5 13 0.587 0 0.187 0.114
f13 14 f6 12 f6 14 f10 14 0.586 0 0.186 0.061
f11 15 f7 12 f16 15 f3 15 0.585 0 0.175 0.050
f15 16 f8 12 f3 16 f12 15 0.583 0 0.162 0.050
f6 17 f10 12 f15 17 f11 17 0.582 0 0.138 0.029
f12 18 f16 12 f9 18 f13 18 0.573 0 0.131 0
f19 19 f17 12 f17 19 f17 18 0.518 0 0 0

f11, f12, f13 0.555 0.092 0.216 0.121
f1 to f14 (all lexicons) 0.638 0.191 0.314 0.208
all features 0.639 0.059 0.263 0.339
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Results discussed provide a general overview for the performance of features

generated using the development set and accordingly feature sets with the highest

precision, recall, and F-score values were determined based on different emotions

and levels of intensity. In order to check the validity of the conclusions, the

classifiers developed using train data are tested with the test set, that are not seen

before by the classifiers. The expectation is that the performances be similar to those

of the development data.

Micro F-scores of classifiers tested using test data are given in Table 4.11. In

general, except for joy emotion, F-scores have slightly decreased, which was already

expected. Regarding the best feature sets for every emotion, similar to the results for

development set, f3 and f16 have the highest performances for anger and fear

emotions respectively. However, the best feature set for joy and sadness emotions

has changed to f18. By sorting feature sets in ascending order according to the micro

Table 4.11: Micro and macro F-scores of classifiers on test data

Micro F-score Macro F-score Average
micro F.anger joy fear sadness anger joy fear sadness

f1 0.393 0.245 0.636 0.374 0.261 0.224 0.201 0.226 0.412
f2 0.366 0.249 0.640 0.395 0.302 0.220 0.195 0.249 0.413
f3 0.400 0.198 0.635 0.392 0.249 0.150 0.201 0.234 0.406
f4 0.372 0.305 0.642 0.409 0.287 0.280 0.195 0.257 0.432
f5 0.379 0.304 0.642 0.407 0.296 0.282 0.195 0.259 0.433
f6 0.358 0.281 0.643 0.405 0.273 0.265 0.200 0.273 0.422
f7 0.346 0.264 0.643 0.412 0.266 0.244 0.200 0.285 0.416
f8 0.326 0.271 0.641 0.401 0.254 0.255 0.206 0.274 0.410
f9 0.342 0.239 0.641 0.402 0.259 0.213 0.195 0.264 0.406
f10 0.311 0.239 0.643 0.388 0.219 0.217 0.203 0.212 0.395
f11 0.291 0.209 0.642 0.374 0.226 0.187 0.195 0.217 0.379
f12 0.298 0.211 0.642 0.385 0.231 0.190 0.195 0.212 0.384
f13 0.298 0.211 0.642 0.385 0.234 0.190 0.195 0.222 0.384
f14 0.366 0.234 0.640 0.413 0.270 0.206 0.206 0.263 0.413
f15 0.320 0.277 0.641 0.391 0.263 0.252 0.202 0.255 0.407
f16 0.256 0.220 0.645 0.412 0.221 0.151 0.254 0.218 0.383
f17 0.240 0.240 0.642 0.408 0.150 0.180 0.195 0.145 0.383
f18 0.368 0.328 0.642 0.439 0.323 0.308 0.219 0.333 0.444
f19 0.391 0.283 0.642 0.371 0.320 0.266 0.195 0.278 0.422

f11, f12, f13 0.340 0.232 0.639 0.376 0.272 0.215 0.199 0.243 0.397
f1 to f14 (all lexicons) 0.375 0.322 0.638 0.405 0.301 0.310 0.256 0.317 0.435

all features 0.344 0.323 0.642 0.412 0.296 0.305 0.216 0.314 0.430
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Table 4.12: Sorted and ranked feature sets according to their performance on test
data

Anger Joy Fear Sadness Micro average
attr. rank attr. rank attr. rank attr. rank anger joy fear sadness

f3 1 f18 1 f16 1 f18 1 0.400 0.328 0.645 0.439
f1 2 f4 2 f6 2 f14 2 0.393 0.305 0.643 0.413
f19 3 f5 3 f7 2 f7 3 0.391 0.304 0.643 0.412
f5 4 f19 4 f10 2 f16 3 0.379 0.283 0.643 0.412
f4 5 f6 5 f4 5 f4 5 0.372 0.281 0.642 0.409
f18 6 f15 6 f5 5 f17 6 0.368 0.277 0.642 0.408
f2 7 f8 7 f11 5 f5 7 0.366 0.271 0.642 0.407
f14 7 f7 8 f12 5 f6 8 0.366 0.264 0.642 0.405
f6 9 f2 9 f13 5 f9 9 0.358 0.249 0.642 0.402
f7 10 f1 10 f17 5 f8 10 0.346 0.245 0.642 0.401
f9 11 f17 11 f18 5 f2 11 0.342 0.240 0.642 0.395
f8 12 f9 12 f19 5 f3 12 0.326 0.239 0.642 0.392
f15 13 f10 12 f8 13 f15 13 0.320 0.239 0.641 0.391
f10 14 f14 14 f9 13 f10 14 0.311 0.234 0.641 0.388
f12 15 f16 15 f15 13 f12 15 0.298 0.220 0.641 0.385
f13 15 f12 16 f2 16 f13 15 0.298 0.211 0.640 0.385
f11 17 f13 16 f14 16 f1 17 0.291 0.211 0.640 0.374
f16 18 f11 18 f1 18 f11 17 0.256 0.209 0.636 0.374
f17 19 f3 19 f3 19 f19 19 0.240 0.198 0.635 0.371
f11, f12, f13 0.340 0.232 0.639 0.376
f1 to f14 (all lexicons) 0.375 0.322 0.638 0.405
all features 0.344 0.323 0.642 0.412

F-score of their corresponding classifiers (Table 4.12), changes in ranking of feature

sets can be seen more clearly. Considering joy emotion, f5 that trained the best

performing classifier with F-score 0.307 in validation experiments, ranks third in the

test phase with F-score 0.304. Indeed, the performance of f5 has not changed

significantly, but micro F-score of f18 has increased by 23% from 0.266 in validation

to 0.328 in test. Therefore, f5 is still not the best performing feature set during

testing stage. Analogous to joy emotion, for sadness emotion, f18 with F-score 0.443

trained the second best classifier in validation and its performance has not decreased

dramatically during testing. However, performance of f16, the best feature set in

validation has reduced around 11% from 0.461 to 0.412 and resulted in a change of

rankings. Even though slight decreases in performance during the test phase can be

tolerated and performance improvements as signs of well-trained classifiers are

desirable, changes in rankings and top performing feature sets are not preferred. In
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fact in real world cases, all features are not evaluated again on the test set and only

the best features from validation stage are kept. Dramatic fluctuations in

performance of selected features using the validation data set may result in missing

the best performance when the model is used. Therefore, it is aimed to select and

retrieve the best and the most reliable features using a representative development

set.

Last column of Table 4.11 gives average of micro F-scores for every trained

classifier using feature sets for all emotions. Comparing these scores with the ones

from validation stage (last column of Table 4.3) shows that except for f18, the

average performance of other feature sets has decreased. Improvement to result for

f18 may mean that train data set has similar characteristics to test data set and

training has helped the model to learn more about data. Besides, as the variance of

averages is low, increase in them indicates better performance. Among individual

feature sets, lexicons f11, f12, and f13 achieve the lowest average score, while other

feature sets obtain almost similar performances. Regarding combination of features,

the performance of the combination f11 through f13 on the test data has not changed

in comparison with validation. Unfortunately, this combination achieves the lowest

performance. Average performance of the combination of all features and all

lexicons has also decreased by 2% using test data. However, the combination of all

lexicons is still the best after f18.

In table 4.13 precision, recall, and F-score values of trained classifiers using the test

data are provided. For anger emotion, f18 is still performs as the best feature set with

the highest macro recall and F-score. However, the performance of f2 surpasses
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that of f6 by achieving higher macro precision score in detection of correct labels

of samples. Moreover, the feature sets considered do not show any improvement in

classification of samples for fear emotion in comparison with validation results and

class 0 is yet the best predicted label among all emotions. In addition, macro F-scores

are given as well in Table 4.11. Comparison of validation and test results reveals that

despite of minor changes in macro scores, best feature sets with the highest average

performance have not changed.

4.4 Feature selection

Reported micro F-scores for combinations of feature sets in Table 4.3 suggest that

subsets of feature sets may improve classification performance. Basically, there are

different methods to select the best combinations. Brute force search is one of the

techniques that assesses performance of all possible combinations. However, it is

not practical on large collections of features and consequently intelligent and faster

approaches are required. Wrapper methods (section 2.15) are the applied methods

in this study that start with the single best or combination of all features and in a

recursive manner tries to expand or decrease the set of features in the combination

until no more improvement in performance is attained. In the next subsections, four

already discussed wrapper based techniques are used in an effort to select the best

subset of feature sets to improve the classification performance.

Random Forward Selection (RFS), one of the variations of forward feature

selection technique, starts with the best performing single feature and continues by

appending randomly selected single feature to the previously chosen ones at every

iteration. Repetition and extending the feature combination continue as long as the
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Table 4.14: Results of RFS method on validation set

Anger Joy Fear Sadness
feature

set
micro

F-score
feature

set
micro

F-score
feature

set
micro

F-score
feature

set
micro

F-score

in
iti

al
st

ep
f1 0.415 f1 0.224 f1 0.640 f1 0.433
f2 0.389 f2 0.241 f2 0.643 f2 0.428
f3 0.433 f3 0.207 f3 0.640 f3 0.416
f4 0.376 f4 0.290 f4 0.645 f4 0.436
f5 0.366 f5 0.307 f5 0.645 f5 0.428
f6 0.348 f6 0.252 f6 0.643 f6 0.380
f7 0.348 f7 0.272 f7 0.648 f7 0.431
f8 0.348 f8 0.272 f8 0.645 f8 0.406
f9 0.374 f9 0.241 f9 0.645 f9 0.398
f10 0.376 f10 0.238 f10 0.645 f10 0.438
f11 0.307 f11 0.214 f11 0.645 f11 0.411
f12 0.320 f12 0.224 f12 0.645 f12 0.393
f13 0.309 f13 0.210 f13 0.645 f13 0.408
f14 0.356 f14 0.231 f14 0.643 f14 0.426
f15 0.335 f15 0.272 f15 0.645 f15 0.403
f16 0.222 f16 0.186 f16 0.650 f16 0.461
f17 0.307 f17 0.207 f17 0.645 f17 0.428
f18 0.363 f18 0.266 f18 0.645 f18 0.443
f19 0.374 f19 0.266 f19 0.645 f19 0.355

1st iter. f3, f1 0.430 f5, f10 0.245 f9, f16 0.648 f4, f16 0.476
2nd iter. f12, f4, f16 0.466

performance of the new combination is better than the previous one. Table 4.14

reports the results of RFS technique on the four emotions. Considering the sadness

emotion as an example, f16 with the highest micro F-score is selected in the initial

step and is passed on to the next iteration.

In the first iteration a randomly selected feature set from the remaining feature sets is

selected (i.e. f4) and is appended to f16. The combination of f16 and f4 is used to

train a new classifier and its performance is compared to that of f16. The micro

F-score of this new combination (0.476) outperforms that of f16. Thus, the iteration

continues and a new random feature set (i.e. f12) from the remaining ones is

combined to f16 and f4. The micro F-score of the developed classifier using the

combination of f16, f4, and f12 equals 0.466 which is less than the performance of

the combination before adding f12. Hence, repetition stops and the best subset of

feature sets is determined as the combination of f16 and f4. Using this method, the
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generated subset in comparison to the best single feature set and the combination of

all features has improved performance by respectively 3% and 6%. The same

method is applied to all emotions and f3, f5, and f16 were selected for anger, joy,

and fear emotions respectively.

Forward Selection (FS) works almost similar to RFS method. However, after initial

selection of the best feature set, iterations continue by measuring the performance of

the combination with each feature set. The best combination is selected and passed

on to the next iteration. Table 4.15 shows FS iterations for the sadness emotion. f16

is the feature set passed on to the first iteration from the initial step with the highest

micro F-score that is equal to 0.460. In the first iteration, the performance of the

developed classifiers, that are combination of f16 with each of the remaining feature

sets, is measured and the best performing pair is selected. ( f16, f4) is the best set

that is passed on to the next iteration with micro F-score 0.469. Since in the second

iteration there is no combination surpasses the performance of ( f4, f16), repetition

terminates. Results of FS technique for all emotions are summarized in Table 4.16.

The FS method in comparison with the RFS method achieved better results for all

emotions. However, improvements are not very significant except for the joy

emotion. It is worth mentioning that, since the FS method is a greedy algorithm, in

every iteration combinations with equal F-scores to that of last selected subset are all

considered as possible candidates for the next repetition. However, the smallest

subset with similar performance is considered as the best set if no improvement is

achieved in the next iterations.
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Table 4.15: FS technique iterations for sadness emotion

Initial step 1st iter. 2nd iter.
feature

set
micro

F-scores
feature

set
micro

F-scores
feature

set
micro

F-scores
f1 0.433 f1, f16 0.418 f1, f16, f4 0.456
f2 0.428 f2, f16 0.423 f2, f16, f4 0.456
f3 0.416 f3, f16 0.426 f3, f16, f4 0.453
f4 0.436 f4, f16 0.469 −−−− −−−
f5 0.428 f5, f16 0.463 f5, f16, f4 0.461
f6 0.380 f6, f16 0.411 f6, f16, f4 0.428
f7 0.431 f7, f16 0.413 f7, f16, f4 0.433
f8 0.406 f8, f16 0.413 f8, f16, f4 0.446
f9 0.398 f9, f16 0.418 f9, f16, f4 0.438
f10 0.438 f10, f16 0.423 f10, f16, f4 0.458
f11 0.411 f11, f16 0.388 f11, f16, f4 0.431
f12 0.393 f12, f16 0.390 f12, f16, f4 0.448
f13 0.408 f13, f16 0.385 f13, f16, f4 0.428
f14 0.426 f14, f16 0.443 f14, f16, f4 0.436
f15 0.403 f15, f16 0.403 f15, f16, f4 0.403
f16 0.461 −−− −−− −−−− −−−
f17 0.428 f17, f16 0.453 f17, f16, f4 0.453
f18 0.443 f18, f16 0.443 f18, f16, f4 0.443
f19 0.355 f19, f16 0.358 f19, f16, f4 0.416

Simplified Forward feature Selection (SFS), similar to the FS method, begins with

the single best feature and in every iteration appends the next best single feature from

the initial step to the combination set. Table 4.17 gives results for the SFS technique

for all emotions. As an example, for sadness emotion the initial step starts with f16

i.e. the best trained classifier. In the first iteration f18, the second best feature, is

appended to f16. Since performance of the generated set decreases, no more selection

is required and the best subset is f16.

Backward Selection (BS) unlike different versions of forward feature selection

method, starts with the combination of all features and a feature is randomly

Table 4.16: Feature sets selected by FS technique

Feature set Micro F-score
Anger f3 0.433
Joy f2, f5, f8, f9, f11, f12, f19 0.379
Fear f4, f11, f13, f14, f16 0.656
Sadness f4, f16 0.469
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Table 4.17: Iterations and results for SFS technique

Anger Joy Fear Sadness
feature

set
micro

F-score
feature

set
micro

F-score
feature

set
micro

F-score
feature

set
micro

F-score

in
iti

al
st

ep
f1 0.415 f1 0.224 f1 0.640 f1 0.433
f2 0.389 f2 0.241 f2 0.643 f2 0.428
f3 0.433 f3 0.207 f3 0.640 f3 0.416
f4 0.376 f4 0.290 f4 0.645 f4 0.436
f5 0.366 f5 0.307 f5 0.645 f5 0.428
f6 0.348 f6 0.252 f6 0.643 f6 0.380
f7 0.348 f7 0.272 f7 0.648 f7 0.431
f8 0.348 f8 0.272 f8 0.645 f8 0.406
f9 0.374 f9 0.241 f9 0.645 f9 0.398
f10 0.376 f10 0.238 f10 0.645 f10 0.438
f11 0.307 f11 0.214 f11 0.645 f11 0.411
f12 0.320 f12 0.224 f12 0.645 f12 0.393
f13 0.309 f13 0.210 f13 0.645 f13 0.408
f14 0.356 f14 0.231 f14 0.643 f14 0.426
f15 0.335 f15 0.272 f15 0.645 f15 0.403
f16 0.222 f16 0.186 f16 0.650 f16 0.461
f17 0.307 f17 0.207 f17 0.645 f17 0.428
f18 0.363 f18 0.266 f18 0.645 f18 0.443
f19 0.374 f19 0.266 f19 0.645 f19 0.355

1st iter. f3, f1 0.430 f5, f4 0.307 f7, f16 0.650 f16, f18 0.443
2nd iter. f5, f4, f7 0.314 f7, f11, f16 0.648
3rd iter. f5, f4, f7, f15 0.272

removed at every iteration until no more improvement in performance is achieved or

a single feature remains. Table 4.18 summarizes the results of the BS technique for

anger, joy, fear, and sadness emotions. All emotions start with classifiers trained

using the combination of 19 feature sets. However, for an emotion such as sadness 5

feature sets remain at the end. Indeed, elimination of 14 randomly selected feature

sets does not worsen the performance of the developed classifiers. Nevertheless by

removing them and hence reducing the feature dimension, training and testing times

decrease.

Table 4.18: Feature sets selected by BS method

Anger Joy Fear Sadness
micro F-score 0.379 0.283 0.648 0.446

selected features
all except

f11

all except
f1, f3, f4, f9, f10,

f12, f13

all except
f3, f6, f10, f13, f16,

f17

f3, f5, f9, f15, f18
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Table 4.19: Summary of feature subsets performance on development data set

Anger Joy Fear Sadness
feature

set
micro

F-score
feature

set
micro

F-score
feature

set
micro

F-score
feature

set
micro

F-score

RFS f3 0.433 f5 0.307 f16 0.650 f4, f16 0.476

FS f3 0.433
f2, f5, f8,

f9, f11, f12,
f19

0.379
f4, f11, f13,

f14, f16
0.656 f4, f16 0.476

SFS f3 0.433 f4, f5, f7 0.314 f16 0.650 f16 0.461

BS
all except

f11
0.379

all except
f1, f3, f4,

f9, f10, f12,
f13

0.283
all except
f3, f6, f10,

f13, f16, f17

0.648
f3, f5, f9,
f15, f18

0.446

single best f3 0.433 f5 0.307 f16 0.650 f16 0.461

f11, f12, f13 - 0.320 - 0.255 - 0.640 - 0.378

all lexicons f1 to f14 0.371 f1 to f14 0.324 f1 to f14 0.638 f1 to f14 0.446

all features − 0.379 − 0.283 − 0.648 − 0.446

Figure 4.4: Comparison of feature subsets performance on development data set

A summary of the discussed feature selection techniques is given in Table 4.19 and

Figure 4.4. For anger emotion, RFS, FS, and SFS approaches give similar result and

select f3 as the best performing subset with micro F-score 0.433. In fact the selected
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subset is a single feature set that its combination with any other feature set reduces

classification performance. For joy emotion, ( f2, f5, f8, f9, f11, f12, f19) is the

selected subset by the FS technique that forms the best combination with micro

F-score 0.379 which is around 34% more than the micro F-score of the combination

of all features. Moreover, by using the BS method since feature elimination is

random-based, the removed features did not improve the performance similar to the

case of FS and the performance is still far below that of FS. For fear emotion, similar

to joy, the FS technique outperforms other methods and selects ( f4, f11, f13, f14, f16)

as the best feature subset which is working slightly better than the result of the rest

of discussed selection methods. Indeed in the case of fear emotion, since none of the

combinations of feature sets similar to the single feature sets are successful in

classification of samples for classes 1 through 3, they demonstrates a similar

performance. ( f4, f16) is the best selected combination by RFS and FS techniques

for sadness emotion with micro F-score of 0.476 which is around 6% higher than the

performance of the combination of all features.

In general the selected best subset in comparison to the single best feature set,

combination of all lexicons, and combination of all features shows improvement in

performance for all emotions. In fact, except for anger emotion, where the best

subset is a single feature set, selection techniques help by detecting subsets of

feature sets that perform better than the combination of all feature sets with a lower

feature dimensionality.

By comparing different feature selection methods for four studied emotions, the

forward selection and its variations outperform other selection techniques. These
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two observations prove that any similarity among the best selected subsets for

different emotions cannot be found, and the combination of a large number of

features does not always guarantee better predictions.

Feature selection techniques try to choose the best subset of attributes that perform

the best classification. Bearing in mind that test labels are not available in practice

and decisions are merely made on the basis of train and development data, this study

continues to focus on the selected subsets of feature sets from earlier feature selection

discussions and checks whether the results can be generalized to the test sets.

Table 4.20 and Figure 4.5 show micro F-scores of classifiers of the selected feature

subsets using the test data. The expectation is that the recommended subsets by the

selection techniques perform well with the test data as well. During validation all

variations of forward feature selection method recommended f3, individually, as the

best subset for anger emotion. Comparing F-score of generated classifier for f3 on the

test data proves that it generally performs better in comparison to classifier from BS

technique. Indeed trained classifier using f3 with F-score 0.401 is more successful

on average in classification of samples than the combination of features from BS

method with F-score 0.383. Same holds for joy emotion and the best subset from FS

method with F-score 0.379 on validation achieves the best F-score on the test data

as well. Moreover, the recommended subset by BS method works better on the test

data and achieves almost equal performance to that of the FS subset. For fear and

sadness emotions, unlike the other two emotions, the recommended subsets do not

work well on the test data. The feature subset given by the FS technique for fear

emotion is not the best for the test data and the recommended combination by FS or
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Table 4.20: Summary of feature subsets performance on test data using different
feature selection methods

Anger Joy Fear Sadness
feature

set
micro

F-score
feature

set
micro

F-score
feature

set
micro

F-score
feature

set
micro

F-score

RFS f3 0.401 f5 0.304 f16 0.645 f4, f16 0.410

FS f3 0.401
f2, f5, f8,

f9, f11, f12,
f19

0.329
f4, f11, f13,

f14, f16
0.644 f4, f16 0.410

SFS f3 0.401 f4, f5, f7 0.319 f16 0.645 f16 0.412

BS
all except

f11
0.383

all except
f1, f3, f4,

f9, f10, f12,
f13

0.328
all except
f3, f6, f10,
f13, f16, f17

0.642
f3, f5, f9,
f15, f18

0.417

signle best f3 0.401 f18 0.328 f16 0.645 f18 0.439

f11, f12, f13 - 0.340 - 0.232 - 0.639 - 0.376

all lexicons f1 to f14 0.375 f1 to f14 0.322 f1 to f14 0.638 f1 to f14 0.405

all features − 0.344 − 0.323 − 0.642 − 0.412

Figure 4.5: Comparison of feature subsets performance on test data

SFS technique ranks first with the highest micro average of F-scores. However, the

difference is insignificant. For sadness emotion, the given subset by RFS technique,

despite of being the best using validation data with F-score 0.476, shows the lowest
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performance using the test set with F-score 0.410 and the subset for BS performs

better with F-score equals 0.417.

Single best feature sets for all emotions have equal or better performances in

comparison to the recommended subsets by selection techniques. Generally

speaking limited differences in performance of any classifier on the test data is

expected due to small overfitting by parameters tuning. For joy emotion the

difference in performance of the single best and the selected subset is insignificant

and can be ignored. For fear and sadness emotions F-scores of the best subsets from

validation phase are respectively 1% and 1.7% less than the F-scores of the best

subsets in the test phase. Moreover, as mentioned in the study for ordered feature

sets (Tables 4.6 and 4.12), changes in rank of single feature sets is unavoidable.

Therefore, by ignoring such differences almost same acceptable levels of

performances can be obtained with suggested subsets during the validation phase.

4.5 Classifier selection

The discussions on performance of individual feature sets and their combinations

has indeed focused on finding out how well single classifiers can perform. An

alternative technique to achieve better classification performance is to focus on the

outputs of classifiers (predictions) instead of the inputs. That is combining

classifiers’ predictions with the aim of achieving better results. In Section 2.16 better

performance of some classifiers on some subspaces of input domain was addressed

as the main intention of applying classifier selection methods. Moreover, majority

voting was introduced as the used selection technique in this study. In its simplest

form, majority voting which is applied on the predictions of each trained classifier,
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gives a positive 1 mark (vote) to the predicted class of a sample and finally votes for

each class are summed up over classifiers and the label with majority of the votes

determines the predicted class for that sample. Predicted classes in comparison to

real labels, define precision, recall, and F-score metrics. In other variations of this

technique, positive votes are weighted. In this study both the classifier subset

selection method and its variations are investigated to check if better results than

subset of feature sets can be attained. It is worth mentioning that since random

numbers are used in SVM classifiers, predictions and accordingly precision, recall,

and F-score values between trials may change. Therefore, rank of close classifiers

can be different for similar selection techniques. In this thesis we apply classifier

selection among the 19 base classifiers generated using the 19 feature sets discussed

earlier and combine them using majority voting.

Table 4.21 summarizes results for unweighted and weighted combination of all

classifiers for different emotions. First four rows show precision, recall, micro, and

macro F-scores of combination of classifiers’ votes without weighting. Next rows

show results of voting with six different weighting schemes. In the second, third,

and fourth rows, micro, macro and level-wise F-scores of each trained classifier is

used, respectively, as weights. Last three rows use the same weights as rows two

through four. However, they are normalized before being applied. As an example, in

the normalized macro F-score weighting, macro F-scores for each classifier is

divided by the summation of macro F-scores over 19 classifiers. In normalized

level-wise weights, the denominator in normalization is the summation of F-scores

over classes within each classifier.
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Comparing different weighting schemes reveals that normalized level-wise

weighting of votes works best for anger emotion and improves classification micro

F-score to 0.485 (12% more in comparison to the best subset from feature selection).

For joy emotion, micro and macro F-scores regardless of being normalized or not,

have similar performances as the best weighting strategies. However, micro F-score

of combination of classifiers equals 0.248, that is far below (around 47%) the best

subset from feature selection method with micro F-score 0.379. Regarding fear

emotion, different weighting strategies are almost alike and micro F-scores are equal

to 0.645. This is slightly less than the performance of the best feature selection

subset. Normalized and un-normalized macro F-scores are the best weighting

schemes for sadness emotion. However, with micro F-score 0.443, it does not

perform better than the subset generated by the RFS technique for feature selection.

In general, macro F-score in its normalized or un-normalized form, seems to be the

best weighting strategy for joy, fear, and sadness emotions. Here this study continues

with the un-normalized form for these emotions. For anger emotion since the

combination of classifiers perform better with the normalized level-wise weighting,

it is used in continue.

Similar to feature selection techniques, subsets of classifiers may outperform

individual classifiers or combination of all classifiers. Using the best weighting

scheme for each emotion, the same selection approaches to the used ones for feature

selection are applied on classifiers to test whether any subset of classifiers exists that

performs better than the combination of all classifiers.
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Table 4.22: Results for RFS technique for classifier subset selection

Anger Joy Fear Sadness
classifier

set
micro

F-score
classifier

set
micro

F-score
classifier

set
micro

F-score
classifier

set
micro

F-score
in

iti
al

st
ep

c1 0.420 c1 0.224 c1 0.640 c1 0.433
c2 0.389 c2 0.241 c2 0.643 c2 0.428
c3 0.436 c3 0.207 c3 0.640 c3 0.416
c4 0.376 c4 0.290 c4 0.645 c4 0.436
c5 0.369 c5 0.307 c5 0.645 c5 0.428
c6 0.348 c6 0.252 c6 0.643 c6 0.380
c7 0.348 c7 0.272 c7 0.648 c7 0.431
c8 0.348 c8 0.272 c8 0.645 c8 0.406
c9 0.374 c9 0.241 c9 0.645 c9 0.398
c10 0.379 c10 0.238 c10 0.645 c10 0.438
c11 0.314 c11 0.214 c11 0.645 c11 0.411
c12 0.325 c12 0.224 c12 0.645 c12 0.393
c13 0.317 c13 0.210 c13 0.645 c13 0.408
c14 0.358 c14 0.231 c14 0.643 c14 0.426
c15 0.335 c15 0.272 c15 0.645 c15 0.403
c16 0.222 c16 0.186 c16 0.650 c16 0.461
c17 0.307 c17 0.207 c17 0.645 c17 0.428
c18 0.363 c18 0.266 c18 0.645 c18 0.443
c19 0.374 c19 0.266 c19 0.645 c19 0.355

1st iter. c3,c17 0.461 c5,c3 0.307 c16,c18 0.650 c16,c5 0.461
2nd iter. c3,c17,c14 0.428 c5,c3,c16 0.307 c16,c18,c9 0.648 c16,c5,c10 0.456
3rd iter. c5,c3,c16,c10 0.286

Table 4.22 gives result of the RFS method using classifiers for four emotions. Note

that classifiers have the same index as the feature sets they are trained with. For anger

emotion, combination of (c3, c17) achieves the highest micro F-score which is 5%

less than the combination of all classifiers and equals 0.461. Classifier 5 outperforms

for joy emotion with a micro F-score of 0.307 which is better than the combination

of all classifiers. Finally, c16, individually, achieves the highest micro F-score for

both fear and sadness emotions with performance better than the combination of all

classifiers. Analysis of the FS technique, shows that combination of c1 and c3 for

anger emotion is the best subset (Table 4.23). However, for other emotions, there may

Table 4.23: Subset of classifiers using FS technique

Classifier sets Micro F-score
anger c1,c3 0.482
joy c5 0.307
fear c16 0.650
sadness c2,c10,c16,c19 0.471
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be other scenarios. Assume that a combination of classifiers from a previous iteration

has dominant votes in the current iteration since the weights and consequently votes

are all in favor of the old set. Thus, new combination will have similar predictions

and equal scores. For example, if cx’s votes dominate in combination with other

classifiers, combinations will achieve micro F-scores equal to that of cx.

This condition happens for joy, fear, and sadness emotions which use macro

F-scores as a weight. For sadness emotion combination of c16 (the best single

classifier) with the rest of the classifiers results in a micro F-score of 0.460.

Continuing the selection with a randomly chosen pair (c16 and c19), all triple

combinations achieve a micro F-score of 0.460 in the third repetition.

Selecting another combination randomly as the best set

(c10, c16, c19), and combining all remained classifiers improves micro F-score to

0.471. In the end, a random subset of four classifiers such as (c2, c10, c16, c19) is

considered as the best subset, since there is no more improvement if iterations

continue (Table 4.23).

Results of using SFS method for classifier selection is given in Table 4.24. The results

suggest that c3 for anger emotion works as the best subset and achieves a micro F-

score of 0.441. For joy emotion the combination (c4, c5, c7) achieves a higher score

than any other combination and c16, individually, improves micro F-score for fear

emotion insignificantly. For sadness emotion similar result to that of RFS approach is

attained. Recall that inconsistency in the recommended combinations by FS and SFS

techniques is due to the effect of randomness in SVM classifiers that results in slight

variations in performance of classifiers.
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Table 4.24: Simplified forward selection(SFS) iterations for classifier selection

Anger Joy Fear Sadness
classifier

set
micro

F-score
classifier

set
micro

F-score
classifier

set
micro

F-score
classifier

set
micro

F-score
in

iti
al

st
ep

c1 0.418 c1 0.224 c1 0.640 c1 0.433
c2 0.389 c2 0.241 c2 0.643 c2 0.428
c3 0.441 c3 0.207 c3 0.640 c3 0.416
c4 0.376 c4 0.290 c4 0.645 c4 0.436
c5 0.371 c5 0.307 c5 0.645 c5 0.428
c6 0.348 c6 0.252 c6 0.643 c6 0.380
c7 0.348 c7 0.272 c7 0.648 c7 0.431
c8 0.348 c8 0.272 c8 0.645 c8 0.406
c9 0.374 c9 0.241 c9 0.645 c9 0.398
c10 0.381 c10 0.238 c10 0.645 c10 0.438
c11 0.312 c11 0.214 c11 0.645 c11 0.411
c12 0.325 c12 0.224 c12 0.645 c12 0.393
c13 0.314 c13 0.210 c13 0.645 c13 0.408
c14 0.358 c14 0.231 c14 0.643 c14 0.426
c15 0.335 c15 0.272 c15 0.645 c15 0.403
c16 0.222 c16 0.186 c16 0.650 c16 0.461
c17 0.307 c17 0.207 c17 0.645 c17 0.428
c18 0.363 c18 0.266 c18 0.645 c18 0.443
c19 0.374 c19 0.266 c19 0.645 c19 0.355

1st iter. c1,c3 0.438 c4,c5 0.307 c7,c16 0.650 c16,c18 0.443
2nd iter. c4,c5,c7 0.310 c4,c7,c16 0.648
3rd iter. c4,c5,c7,c8 0.293

Table 4.25 presents results of using BS method for different emotions. Comparing

micro F-scores of classifiers combination shows that except for anger emotion,

performance for others emotions decreases or remains unchanged. Moreover, for

fear emotion c2 individually has similar performance to combination of all

classifiers.

Table 4.26 provides a comparison of results using feature and classifier selection

combinations. Results reveal that except for anger emotion, combinations of features

achieve better performances, and results from feature selection are generally more

Table 4.25: Subset of classifiers selected using BS technique

Feature set Micro F-score
anger all classifiers except c7 0.487
joy all classifiers except c7,c13,c14 0.262
fear c2 0.645
sadness all classifier 0.443
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Table 4.26: Summary of feature and classifier selection methods on development
data

Anger Joy Fear Sadness

Feature
selection

micro F-score 0.433 0.379 0.656 0.476
selection technique RFS / FS / SFS FS FS RFS
feature set f3 f2, f5, f8, f9,

f11, f12, f19

f4, f11, f13, f14 f4, f16

Classifier
selection

micro F-score 0.487 0.310 0.650 0.471
selection technique BS SFS SFS / FS / RFS FS
feature set all except c7 c4,c5,c7 c16 c2,c10,c16,c19

All
classifiers

micro F-score 0.485 0.248 0.645 0.443
weighting method N. level-wise macro F-score macro F-score macro F-score

satisfactory than classifiers combination. However, for anger emotion, subset of

classifiers selected using the BS technique increases micro F-score obtained using

the best subset of feature sets by 10%.

Generally, it maybe concluded that, subsets of classifiers work better than

combination of all classifiers. Among different selection techniques used for

classifier selection BS, SFS, and FS methods respectively, give the best subsets for

anger, joy, and sadness emotions and both FS and SFS methods are equal regarding

fear emotion where c16, individually, is selected as the best subset. In order to test

whether results obtained using validation data sets can be generalized, similar

experiments are conducted using the test data. The results are provided in Table

4.27. For anger emotion, standard level-wise weighting scheme is applied with

different selection techniques. Based on the validation results, BS method is

expected to have the best performance. Results prove that, as expected, BS

technique achieves the highest micro F-score on the test data that is equal to 0.437.

For the remaining emotions, validation outcomes recommended macro F-scores as

the best weighting strategy. Therefore, macro F-score weighting along with four

different selection techniques are experimented on the joy emotion data set and the
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combination obtained using SFS, (c4, c5, c7), outperforms with F-score of 0.309.

Regarding fear emotion, evaluation is indeed a comparison between recommended

subset by various forward selection techniques with the BS method’s subset that are

c16 and c2, respectively. Results show that c16 performs better on the test data in

comparison to c2. Thus, the subset recommended by validation experiment is valid.

For sadness emotion, unlike other emotions, combination of

(c2, c10, c16, c19) that had performed well in the validation experiment, does not

achieve the best result on the test data and combination of classifiers obtained using

BS method achieves higher micro F-score.

Table 4.28 and Figure 4.6 give a summary of feature and classifier selection obtained

using the test data. The subset of classifier for anger emotion improves performance

in comparison to the feature selection from 0.401 to 0.437 as it was expected

according to the validation results. For joy emotion, the performance of the selected

subset of classifiers from validation and test phases is almost similar, and classifier

selection does not improve performance. Thus, subset of feature sets with around

5% higher micro F-score is preferred. For fear emotion, performances are not much

different for feature and classifier subsets and no improvement is achieved. For

sadness emotion in contrast to other emotions, although the selected subset of

classifiers does not result in higher micro F-scores than the subset of feature sets

Table 4.27: Micro F-score of best subset of classifiers using test data

Anger Joy Fear Sadness
RFS 0.247 0.304 0.645 0.407
FS 0.404 0.304 0.645 0.403
SFS 0.403 0.309 0.645 0.412
BS 0.437 0.267 0.642 0.423
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Table 4.28: Summary of feature and classifier selection methods on test data

Anger Joy Fear Sadness

Feature
selection

micro F-score 0.401 0.329 0.645 0.417
selection technique FS / RFS / SFS FS RFS / SFS BS
feature set f3 f2, f5, f8, f9,

f11, f12, f19

f16 f3, f5, f9, f15, f18

Classifier
selection

micro F-score 0.437 0.309 0.645 0.423
selection technique BS SFS FS / SFS / RFS BS
feature set all exceptc7 c4,c5,c7 c16 c2,c10,c16,c19

All
classifiers

micro F-score 0.437 0.267 0.642 0.424
weighting meth. N. level-wise macro F-score macro F-score macro F-score

Figure 4.6: Comparison of feature and classifier selection methods on test data

during validation phase, combination of classifiers by BS method improves F-score

about 1% from 0.417 to 0.423 during testing which is a minor improvement.
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Chapter 5

SUMMARY AND CONCLUSION

In this thesis, a brief discussion on review of psychological studies in field of human

emotions and remarking importance of emotions in people interactions was given.

Fundamental concepts such as emotions and sentiments were explained extensively

and SemEval competition as an effort to explore the nature of meanings and

replication of human cognitive processing was introduced with main focus being on

textual resources. Among textual resources, Twitter has received extensive attention

in recent years due to its characteristics such as briefness of tweets.

Analyzing tweets or generally text data requires techniques of conversion to

represent terms and sentences by scores or vector of scores. For this purpose in

Chapter 2, different techniques, including word2vec as a measure of terms similarity,

tf-idf scoring as a measure of terms importance in a document or corpus, and affect

lexicons as a measure of terms relevancy were explained. In the same chapter, linear

SVM classifier for model development using extracted features, refinement of sets of

features and classifiers, and metrics to measure the performance of classifiers were

reviewed. Chapter 3 gave a comprehensive discussion to the data sets used, and all

used feature sets such as affect lexicons, tf-idf scoring, word2vec models, query

terms, self-dictionary, and symbols. Finally, in Chapter 4 a detailed study on results

of the developed classifiers and models for feature and classifier selection was

discussed.

104



For feature extraction and model development, total of 19 feature sets including 14

lexicons from 4 lexicon sets were considered. It was observed that effective use of

lexicon scores is only possible by considering tweet lengths. To find the optimal

tweet length, performance of models on different tweet lengths was compared and

the length with the highest micro F-score was selected. Results revealed that there

exists a different optimal length for different emotions. Similar procedure was

applied to determine the size of a self-dictionary, as an additional feature source for

each emotion. Among individual lexicons the best performing one was “Affirmative

Context and Negated Context” lexicon ( f5) from NRC set which achieved the best

averaged micro F-score over emotions. Remaining lexicons had similar

performances except for Warriner et al. lexicon set that had the lowest average micro

F-scores. Regarding performance of lexicons for each emotion word-level NRC

hashtag sentiment ( f3), NRC hashtag sentiment v1.0 ( f4), NRC emotion lexicon

v1.0 ( f6), and Bing Liu Opinion lexicon ( f14) were the most effective ones for anger,

joy, fear, and sadness emotions respectively. Among the single feature sets

considered, tf-idf scoring showed the best average performance. However, when the

performance achieved by combination of all features was compared to the

performance achieved by the combination of all lexicons, the latter one performed

better.

In order to investigate the effect of feature selection for classification of tweets, we

tried wrapper based feature selection techniques. In total four selection strategies

including Simplified Forward Selection (SFS), Forward Selection (FS), Randomized

Forward Selection (RFS), and Backward Selection (BS) were explained.
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Combination of features recommended by these techniques showed improvement in

micro F-scores for all emotions. However, the best feature subsets turned out to be

different for each emotion. Therefore, it can be concluded that a set of fixed feature

subset does not perform well for all emotions and similar to other parameters,

specialization in the set of attributes is needed. Due to the possible variations in

performance of classifiers on subspaces of input domain and for further

improvement in results, wrapper based classifier selection methods were also

investigated. Majority voting was applied to combine scores of classifiers in an

ensemble. However, to increase accuracy, a weighted voting technique was applied,

by considering micro, macro, and level-wise F-scores as weights. Results revealed

that subsets of classifiers unlike subsets of feature sets only show better performance

for anger and sadness emotions. Moreover, best subset of classifiers differ among

emotions.

In conclusion, although selected feature sets were not successful in predicting

samples from all levels of emotions, performance of feature sets in terms of average

performance was acceptable. One drawback of this study may be the fact that it was

modeled as a classical classification problem while a model based on regression may

improve the results as showed in the SemEval workshop. Another point may be

using of one versus one classification method instead of the one versus rest used in

this thesis. These efforts may improve the classification performance when the micro

F-score is very low or even zero for some levels of emotions for some emotions.

This study, by considering tf-idf scoring as a source of feature, emphasized the

importance of terms appearance frequency and tokenization, as they can directly
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affect scoring by lexicons and consequently performance of classifiers. Since tweets

are combination of formal and informal ways of writing, development of more

intelligent and accurate tokenization systems along with stemming and

lemmatization methods can be a topic of future studies. Feature and classifier

selection in this area was a novel attempt to reach better combinations. However, as

a research area for future studies, more intelligent subset selection algorithms such

as neural networks or genetic algorithms may be considered.
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(2014). Emotion recognition and its applications. Advances in Intelligent

Systems and Computing, 300, pp. 51–62.

[30] Ekman, P., Levenson, R., & Friesen, W. (1983). Autonomic

nervous system activity distinguishes among emotions. American

Association for the Advancement of Science, 221(4616), pp.

1208–1210. ISSN 0036-8075. doi:10.1126/science.6612338.

http://science.sciencemag.org/content/221/4616/1208.full.pdf.

[31] Plutchik, R. (1984). Emotions: A general psychoevolutionary theory.

Approaches to emotion, pp. 197–219.

112



[32] Bann, E. Y. (2012). Discovering basic emotion sets via semantic clustering on

a twitter corpus. arXiv preprint arXiv:1212.6527.

[33] Parrott, W. G. (2001). Emotions in social psychology: Essential readings.

Psychology Press.

[34] Frijda, N. H. (1988). The laws of emotion. American psychologist, 43(5), p.

349.

[35] Mejova, Y. (2009). Sentiment analysis: An overview. University of Iowa,

Computer Science Department.

[36] Pang, B., Lee, L., et al. (2008). Opinion mining and sentiment analysis.

Foundations and Trends R© in Information Retrieval, 2(1–2), pp. 1–135.

[37] Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: sentiment

classification using machine learning techniques. Proceedings of the ACL-02

conference on Empirical methods in natural language processing-Volume 10,

pp. 79–86.

[38] Liu, B., Hu, M., & Cheng, J. (2005). Opinion observer: analyzing and

comparing opinions on the web. Proceedings of the 14th international

conference on World Wide Web, pp. 342–351.

113



[39] Melville, P., Gryc, W., & Lawrence, R. D. (2009). Sentiment analysis of

blogs by combining lexical knowledge with text classification. Proceedings

of the 15th ACM SIGKDD international conference on Knowledge discovery

and data mining, pp. 1275–1284.

[40] Wiebe, J., Wilson, T., Bruce, R., Bell, M., & Martin, M. (2004). Learning

subjective language. Computational linguistics, 30(3), pp. 277–308.

[41] Liu, B. (2006). Web data mining: exploring hyperlinks, contents, and usage

data. Springer Science & Business Media.

[42] Gernsbacher, M. A., Goldsmith, H. H., & Robertson, R. R. (1992). Do readers

mentally represent characters’ emotional states? Cognition & Emotion, 6(2),

pp. 89–111.

[43] Gernsbacher, M. A., & Robertson, R. R. (1992). Knowledge activation versus

sentence mapping when representing fictional characters’ emotional states.

Language and Cognitive Processes, 7(3-4), pp. 353–371.

[44] Gygax, P., Garnham, A., & Oakhill, J. (2004). Inferring characters’

emotional states: Can readers infer specific emotions? Language and

Cognitive Processes - LANG COGNITIVE PROCESS, 19. doi:10.1080/

01690960444000016.

[45] Merriam-Webster.com. lexicon. https://www.merriam-webster.com.

114



[46] Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of

meaning. University of Illinois press, (47).

[47] General inquirer (GI) lexicon. http://www.wjh.harvard.edu/ inquirer/.

Accessed: 2019-02-28.

[48] Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing contextual

polarity in phrase-level sentiment analysis. Proceedings of Human Language

Technology Conference and Conference on Empirical Methods in Natural

Language Processing.

[49] Bradley, M. M., & Lang, P. J. (1999). Affective norms for english words

(ANEW): Instruction manual and affective ratings. Tech. rep., Citeseer.
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