
 
 

Grid Approximation of Derivatives of the Solution of 

Heat Conduction Equation   
 

 

 

 

 

 

 

 

Lawrence Adedayo Farinola 
 

 

 

 

 

 

 

 

Submitted to the 

Institute of Graduate Studies and Research 

in partial fulfillment of the requirements for the degree of 

 

 

 

 

 

 

Doctor of Philosophy 

in 

Mathematics 

 

 

 

 

 

 

 

 

 

Eastern Mediterranean University 

June 2019 

Gazimağusa, North Cyprus 



 
 

Approval of the Institute of Graduate Studies and Research  

 

 
         

            

      Prof. Dr. Ali Hakan Ulusoy 

      Acting Director  

         

 

 

 

I certify that this thesis satisfies the requirements as a thesis for the degree of Doctor 

of Philosophy in Mathematics. 

 

 

 

        

                        Prof. Dr. Nazim Mahmudov       

                                                                         Chair, Department of Mathematics 

 

 

 

We certify that we have read this thesis and that in our opinion it is fully adequate in 

scope and quality as a thesis for the degree of Doctor of Philosophy in Mathematics. 

 

 

           _________________________________

   Assoc. Prof. Dr. Suzan Cival Buranay 

                                                                                               Supervisor   

  

 

 

 

 

                                                                                                   Examining Committee 

1. Prof. Dr. Agamirza Bashirov       

2. Prof. Dr. Tanıl Ergenç       

3. Prof. Dr. Mustafa Türkyılmazoğlu 

4. Assoc. Prof. Dr. Suzan Cival Buranay 

5. Assoc. Prof. Dr. Derviş Subaşı



iii 
 

ABSTRACT 

In this study we propose special difference problems of the four point scheme and six 

point symmetric implicit scheme (Crank and Nicolson) for the approximation of first 

and second partial derivatives of the solution ( , )u x t  of the first type boundary value 

problem for one-dimensional heat conduction equation, with constant coefficients.  

A four point implicit difference problem is proposed for the approximation of 
u

x




 under 

the assumption that the initial function belongs to the Hölder space 5 ,C   0 1,   

the nonhomogeneous function given in the heat equation is from the Hölder space 

3
3 ,

2
, ,x tC







 the boundary functions are from 
5

2C


 also between the initial and boundary 

functions the conjugation conditions up to second order ( 0,1,2)q   are satisfied. 

When the initial function belongs to 7 ,C   the nonhomogeneous term is from 

5
5 ,

2
, ,x tC







 

the boundary functions are from 

7

2 ,C


 also the conjugation conditions up to third order 

( 0,1,2,3)q   are satisfied, a six point implicit difference problem is given. It is proven 

that the solution of the constructed four and six point implicit difference problems 

converge to the exact value of 
u

x




 on the grids of order 

2( )O h   and 
2 2( )O h   

respectively, where, h  is the step size in spatial variable x  and   is the step size in 

time variable t .    

Furthermore, boundary value problems and implicit difference problems are given to 

the first derivative of the solution with respect to time variable t , 
u

t

 
 
 

 and for the 
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pure second derivative with respect to the spatial variable x . Also special implicit 

difference boundary value problem is proposed for the mixed second derivative of the 

solution, 
2u

x t

 
 
  

. When the initial function belongs to 8 ,C   the heat source function 

given in the heat equation is from 

6
6 ,

2
, ,x tC







 the boundary functions are from 
8

2C


 

Hölder spaces and between the initial and boundary function the conjugation 

conditions of orders 0,1,2,3,4q   are satisfied,  it is proven that the solution of the 

proposed implicit difference schemes converge uniformly to the corresponding exact 

derivatives 
u

t




, 

2

2

u

x




 and 

2u

x t



 
 on the grids of the order 

2( )O h  . On the other hand, 

when the initial function belongs to 10 ,C   the heat source function is from 

8
8 ,

2
, ,x tC







 

the boundary functions are from 
10

2C


 Hölder spaces and between the initial and 

boundary functions the conjugation conditions of orders 0,1,2,3,4,5q   are satisfied, 

the constructed six-point symmetric (Crank-Nicolson) implicit difference boundary 

value problems converge with the order 
2 2( )O h   to the corresponding exact 

derivatives 
u

t




, 

2

2

u

x




 and 

2u

x t



 
.  

Finally, in order to justify the theoretical results, several numerical examples are 

constructed and the obtained results are presented through tables and figures. 

Keywords: Finite difference method, Approximation of derivatives, Crank-Nicolson 

scheme, Uniform error, Heat equation.  
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ÖZ 

Bu çalışmada sabit katsayılı tek boyutlu ısı denkleminin birinci çeşit sınır değer 

probleminin ( , )u x t  çözömünün birinci ve ikinci kısmi türevlerinin yaklaşık 

hesaplanması için dört nokta kapali ve altı nokta simetrik kapalı fark şemalı (Crank ve 

Nicolson)  özel fark problemleri öne sürüldü. 

Başlangıç fonksiyonunun 5 ,C   0 1,   ısı denklemindeki homojen olmayan 

terimin 

3
3 ,

2
,x tC







 ve sınır fonksiyonlarının 

5

2C


 Hölder uzaylarından olduğu ayrıca 

başlangıç ve sınır fonksiyonları arasında ikinci dereceye kadar ( 0,1,2)q   bağlayıcı 

koşulların sağladığı kabul edildiğinde 
u

x




 yaklaşımı için dört nokta kapalı fark 

problemi öne sürüldü. Başlangıç fonksiyonunun 
7C 

 olduğu, homojen olmayan 

terimin 

5
5 ,

2
, ,x tC







 sınır fornksiyonlarının ise 

7

2 ,C


 Hölder uzaylarından olduğu ve 

bağlayıcı koşulların üçüncü dereceye kadar ( 0,1,2,3)q   sağlandığı durumda ise altı 

nokta kapalı fark problemi verildi. Oluşturulan dört nokta ve altı nokta kapalı fark 

problemlerinin düğüm noktalarında 
u

x




 fonksiyonunun gerçek değerine 

2( )O h   ve 

2 2( )O h   mertebesinden düzgün yakınsadığı isbat edildi ki h , x  değişkenindeki 

adım uzunluğu,   ise zaman değişkeni t  için adım uzunluğudur. 

İlaveten, çözömün t  değişkenine göre kısmi türevi 
u

t

 
 
 

, x  değişkenine göre ikinci 

türevi için sınır problemleri ve kapalı fark problemleri verildi. Ayrıca çözümün ikinci 
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dereceden karışık türevi 
2u

x t

 
 
  

 için özel bir fark sınır değer problemi önerildi. 

Başlanglç değer fonksiyonun 

8
8 ,

2
,x tC







  ısı denklemindeki ısı kaynağı fonksiyonunun 

6
6 ,

2
,x tC







 ve sınır fonksiyonlarının 

8

2 ,C


 Hölder uzaylarından olduğu, ve başlangıç ile 

sınır forksiyonları arasında bağlama şartlarının 0,1,2,3,4q   dereceden sağlandığı 

zaman öne sürülen kapalı fark şemalarının karşılık gelen 
u

t




, 

2

2

u

x




 ve 

2u

x t



 
.  

türevlerine düzgün 
2( )O h   mertebesinden yakınsadığı gösterildi. Diğer taraftan 

başlangıç değer fonksiyonun 
10

,C


 ısı kaynağı fonksiyonunun 

8
8 ,

2
,x tC







; sınır 

fonksiyonlarının ise 
10

2C


 Hölder uzaylarından ve başlangıç ile sınır fonksiyonları 

arasında 0,1,2,3,4,5q   dereceden bağlayıcı koşulların sağlandığı durumda 

oluşturulan altı nokta simetrik (Crank-Nicolson)  kapalı fark problemleri karşılık gelen 

u

t




, 

2

2

u

x




 ve 

2u

x t



 
 türevlerine 

2 2( )O h   mertebesinden düzgün yakınsar. 

Son olarak teoretik sonuçları desteklemesi amacı ile birçok sayısal örnekler kuruldu 

ve elde edilen sonuçlar tablo ve şekiller ile gösterildi. 

Anahtar Kelimeler: Sonlu fark metodu, türerlerin yaklaşık hesaplanması, Crank-

Nicolson şeması, düzgün hata, ısı denklemi. 
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Chapter 1 

INTRODUCTION 

1.1 Motivation 

Motivation is one of the key elements of learning system and it is the sole factor that 

has a direct impact on the success of academic.  In science, especially in mathematical 

physics, applied thermal engineering in particular, not only the calculation of the 

solution of the differential equation but also the calculation of the derivatives of the 

solution are very important to provide information about some physical phenomena 

[1]. Some examples are listed below: 

1. The first derivatives of the potential function defines the electrostatic field [2]. 

2. In heat conduction problems involving phase changes such as the problem of 

melting of a solid when the liquid is removed immediately on formation [3, 4, 

5], the accurate calculation of the rate of heat flow into the solid 
u

x




, the rate of 

heat absorption by melting 
s

t




 where, ( , )u x t  is the temperature and ( )x s t  

is the distance from the initial position of heated face are considerably 

important.   

3. The phenomena of impact of a moving foot on the transfer of heat from a 

constantly heated warm water into the foot immersed within a footbath [6] and 

the enhancement of performance by increasing the thermal efficiency of a 

direct absorption solar collector based on analimino-water nanofluid [7] of 

which the derivatives of the solution are also essential. 



2 

 

4. In [8], theory of the drying wood adopts the fundamental hypothesis that the 

rate of which transfusion takes place transversely with respect to the wood 

fibers 
t

 
 
 

 is proportional to the slope of the moisture gradient 
2

2x

 
 
 

, where 

  is the moisture content expressed as a percentage of the oven-dry weight of 

the wood. Therefore, accurate approximation of 
x




 is very important to 

provide information about the moisture gradient. 

1.2 Review of literature 

To find highly accurate computations of the derivatives of an unknown solution of a 

differential equation is problematic because the differentiation operation is ill-

conditioned. Also, it is well known that accuracy of the approximate derivatives 

depends on the accuracy of the approximate solution.  

The study of approximate derivatives using finite differences was investigated in [9] 

where, it was proved that the high order difference derivatives uniformly converge to 

the corresponding derivatives of the exact solution for the two-dimensional Laplace 

equation in any strictly interior subdomain with the same order ( )O h  ( h is the grid 

step) of which the difference solution converges on the given domain. 

For the Dirichlet problem of the Laplace equation on a rectangle in [10] 2( )O h  order 

of uniform convergence of the solution of the difference equation and its first and pure 

second difference derivatives to the solution and corresponding derivatives of the exact 

solution for the two-dimensional Laplace equation was proven over the whole grid 

domain. 
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Later, in [11], under the conditions that the boundary functions belong to 6, ,C   

0 1,   on the sides of the rectangle and are continuous on the vertices and second, 

fourth order derivatives satisfy the compatibility conditions on the vertices which 

results from the Laplace equation, difference schemes are constructed for the first and 

pure second order derivatives of the solution. It is proved that the order of convergence 

of the solutions of these difference schemes is 4( ).O h  

For the three dimensional Laplace equation difference schemes for obtaining the 

solution of the Dirichlet problem, its first derivatives and second derivatives on a cubic 

grid with uniform accuracy 2( )O h  are constructed in [12] under the agreement that 

the boundary functions belong to 4, ,C   0 1,  on the faces, are continuous on the 

edges, and their second order derivatives satisfy the compatibility condition. 

In [13] difference schemes for the approximation of the first and pure second 

derivatives of the solution of the Dirichlet problem in a rectangular parallelepiped 

which converge uniformly on the cubic grid of order 4( ).O h  are proposed when the 

boundary functions belong to 6, ,C   0 1,  on the faces, are continuous on the 

edges, and have second and fourth order derivatives satisfying the compatibility 

conditions. 

Most recently, in [14] difference schemes on a cubic grid for obtaining the solution of 

the Dirichlet problem for the 3D Laplace equation on a rectangular parallelepiped, its 

first and pure second derivatives, difference schemes are constructed and the 

approximate values of the first and pure second derivatives converge with orders 

6 | In |( )hO h  and 5( )O h  , 0 1,   respectively. It is assumed that the boundary 
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functions on the faces have seventh derivatives satisfying the Hölder condition and on 

the edges their second, fourth and sixth derivatives satisfy the compatibility condition.  

At the same time in [15], 1( )pO h  , [4,5]p  order of approximation for the first order 

derivatives of the solution of the 3D Laplace equation is proven under a weaker 

assumption on the smoothness of the boundary functions on the faces of the 

parallelepiped than those used in [13].  

1.3 Basic notations and first type boundary value problem  

Based on Section 5, Chapter IV in [16], we give the following definitions. We denote 

by , ,A x t
x t

  
 



 

the linear parabolic differential operator with real coefficients 

2

,

, 1 1

, , ( , ) ( , ) ( , ) .
n n

i j i

i j ii j i

u u u
x t u w x t w x t w x t u

x t t x
A

x x 

    
    

     

 
 
 

              (1.1) 

Let   be a bounded domain in n-dimensional Euclidean space nE . It is assumed that 

the coefficients of the operator of (1.1) are defined in a layer (0, )nD E T  . In the 

cylindrical domain (0, )Q T with lateral surface TS or more precisely the set of 

points ( , )x t  of 1nE  with 1 2( , ,..., ) ,nx x x x S  [0, ]t T  where S is the sufficiently 

smooth boundary of   and that ,S  the first type boundary value problem is 

given as 

, , ( , ),x t u f x t
x t

A
 
 





 


 
                                                       (1.2)                     

0| ( ),tu x                                                            (1.3)                                

| ( , ).
TSu x t                                                         (1.4) 

Let q  be a non-negative integer. We use the notations 
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(0) ( ) ( ), 0,u x x q                                                         (1.5)       

( )

0

( , )
( ) ,

q
q

q

t

u x t
u x

t






       1,2,3,...,q                                  (1.6)  

and the operator 

2

,

, 1 1

, , ( , ) ( , ) ( , .ˆ )
n n

i j i

i j ii j i

u u
x t u w x t w x t w x t u

x x x x 

  
  

   

 
 
 

             (1.7)     

From (1.2), (1.5) and (1.7), Eq. (1.6) can be rewritten as  

(1) ,0, 0)ˆ ( ,( ) ,u x x f x
x

x
 

  



  
 

                                                        (1.8)    

( 1)

0

, , , ,( , ) ( )ˆ
q q

q

q q

t

u x x t f x t
t x

u x t
t





 
  

   
    

    
  1,2,3,...q              (1.9) 

The conjugation (compatibility) conditions up to order m ≥ 0 are  

( ) ( )

0

( , )
( ),

q
q q

x S q

t

x t
u x x

t







    


  0,1,..., .q m                               (1.10) 

Let Q  and TS  be the closure of Q  and TS  respectively, and s > 0 be a non-integer 

number. Let 
1 2

, ,...,x

n

u u u u
u

x x x x

    
   

    
 and Let j

xD  denote any derivative with 

respect to x  of order j . Further, 
,
2

, ( )
s

s

x tC Q  denotes the classical Hölder space of 

functions ( , )u x t that are continuous in Q  together with all derivatives of the form 

0j j

t xD D  for 02 j j s   and have finite norm defined in 
,
2

, ( )
s

s

x tC Q . ( )sC   is the Hölder 

space whose elements are continuous functions g(x) in   having in   continuous 
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derivatives up to order [s] inclusively, and have finite norm defined in ( )sC   (see 

[16]). 

Theorem 1.1: (From Theorem 5.2, Section 5, Chapter IV in [16]) suppose s > 0 is a 

non-integer number, the coefficients of the operator A  belongs to the class
,
2

, ( )
s

s

x tC Q , 

and the boundary S belongs to the class 2sC  . Then, for any 
,
2

, ( )
s

s

x tf C Q , 

2( ) ( ),sx C    and 
2, 1

2
,( , ) ( )

s
s

x t Tx t C S
 

  satisfying the compatibility conditions 

(1.10) up to order 1,
2

s 
 

 
 problem (1.2)-(1.4) has a unique solution from the class 

2, 1
2

, ( ).
s

s

x tC Q
 

  

1.4 Organization of the chapters  

In this thesis, we organize the chapters as follows:  In Chapter 2, we propose special 

difference problems of four point and six point symmetric implicit difference schemes 

for the derivative of the solution ( , )u x t of the first type boundary value problem for 

one dimensional heat conduction equation of constant coefficient with respect to the 

spatial variable x . For the construction of the four point implicit difference problem 

we require that:  

a) the initial function belongs to 
5C 

, the nonhomogeneous term given in the 

heat equation is from 

3
3 ,

2
,x tC




, the boundary functions are from 

5

2C


, and 

the conjugation conditions of orders 0,1,2q   are satisfied at the corners of the 

boundary. For the construction of the six point implicit difference problem it 

is assumed that: 
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b) The initial function belongs to 7C  , the nonhomogeneous term is from 

5
5 ,

2
,x tC




, the boundary functions are from 

7

2C


 and the conjugation 

conditions of orders 0,1,2,3q   are satisfied. 

In Chapter 3, we consider the first type boundary value problem for one dimensional 

heat equation of which the initial function belongs to 8C   0 1,   the heat source 

function is from 

6
6 ,

2
, ,x tC




 the boundary functions are from 

8

2 ,C


 and between the 

initial and the boundary functions the conjugation conditions of orders 0,1,2,3,4q   

are satisfied. Denoting the exact solution of this problem by ( , )u x t , difference 

problems of four point implicit schemes approximating 

2 2

2 2
, , ,

u u u

t x t

  

  
 and 

2u

x t



 
 are 

constructed. It is obtained that the solution of the constructed difference schemes 

converge uniformly to the exact values of 

2 2

2 2
, , ,

u u u

t x t

  

  
 and 

2u

x t



 
 respectively, on the 

grids of order 
2( )O h  .          

In Chapter 4, we continue the extension of the method given in Chapter 2 of this 

research and in [17] to find the first difference derivative of ( , )u x t  with respect to t  

and its second order difference derivatives with 
2 2( )O h   order of convergence to 

the corresponding exact derivatives. Here, the initial function belongs to 
10 ,C 

  the heat 

source function is from 

8
8 ,

2
, ,x tC




 the boundary functions are from 

10

2 ,C


 and between 

the initial and the boundary functions the conjugation conditions of orders 
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0,1,2,3,4,5q   are satisfied. The general idea of this research work is presented as 

an extended abstract in [18]. In Chapter 5, the concluding remarks are given. 
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Chapter 2 

IMPLICIT METHODS FOR THE FIRST DERIVATIVE 

OF THE SOLUTION OF ONE-DIMENSIONAL HEAT 

EQUATION WITH RESPECT TO SPATIAL VARIABLE 

2.1 Chapter overview 

The work of this chapter is organized as follows: In Section 2, for the approximate 

solution of the first type boundary value problem for one dimensional heat conduction 

equation with constant coefficients, we use four point implicit or six point symmetric 

implicit schemes [19] under the assumption that the boundary value problem satisfies 

the conditions (a) or (b) respectively, (Chapter 1, Section 1.4). In both cases for the 

error function we provide a pointwise prior estimation depending on ( , )x t , which 

is the distance from the current grid point in the domain to the boundary. In Section 3, 

we consider the boundary value problem satisfying the conditions (a) and propose a 

special four point implicit difference problem for the approximation of  .
u

x




 We prove 

that the solution of the constructed difference scheme converges uniformly to the exact 

value of 
u

x




on the grids of order 

2h   . In Section 4, we require that the 

boundary value problem satisfies the conditions (b) hence, a special six point implicit 

difference problem for the approximation of 
u

x




 is proposed. Uniform convergence 

of order 
2 2h     for this scheme is shown. Section 5, justifies the theoretical results 
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using numerical examples and the obtained results were presented via tables and 

figures.  

2.2 Implicit difference solution of first type boundary value problem 

for one dimensional heat equation 

Take (0, ),b (0, ),T T  and ,  T  are the closure of these sets respectively, also 

{( , ) : 0 ,0 }TQ x t x b t T     , 1 {(0, ) : },
T

t t    2 {( ,0) : },x x   and 

3 {( , ) : }.
T

b t t    Let 

3

1

i

i

 


  represent the boundary of TQ , and .T TQ Q   We 

use the notations ,
k

k

t kt


 


 

k
k

x kx


 


and ,

k
k

t k

d
D

dt
  

k
k

x k

d
D

dx
  to present the kth 

partial and ordinary derivatives respectively with respect to time variable t, spatial 

variable x. We consider the first type boundary value problem for a one dimensional 

heat equation:  

( , )Lu f x t     on     TQ ,                                                         (2.1)                     

0( ,0) ( )u x u x     on      2 ,                                                           (2.2)                                

1(0, ) ( )u t u t     on      1 ,  2( , ) ( )u b t u t     on      3 ,                (2.3) 

where 

2

2
L a

t x

 
 
 

  and a  is positive constant. The conjugation conditions (1.5), 

(1.8) and (1.9) are  

(0)

0( ) ( ),u x u x                                                                           (2.4)                     

(1) 2

0( ) ( ) ( ,0),xu x aD u x f x                                                       (2.5)                                

( ) 2 ( 1) ( 1)( ) ( ) ( ),q q q

xu x a u x f x    2,3,...,q                               (2.6) 

respectively, where 
(0) ( ) ( ,0)f x f x and 

( )

0( ) ( , ) | .q q

t tf x f x t    Also 
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(0)

1 1 0(0) ( ) | ,tu u t    
(0)

2 2 0(0) ( ) |tu u t                                                     (2.7)                     

( )

1 1 0(0) ( ) | ,q q

t tu D u t     
( )

2 2 0(0) ( ) | ,q q

t tu D u t    1,2,...q                       (2.8)      

Furthermore, the conjugation conditions up to order 0m   in (1.10) for the one 

dimensional heat problem (2.1) – (2.3) are derived as         

( ) ( )

1(0) (0),q qu u   
( ) ( )

2( ) (0),q qu b u   0,1,..., .q m                            (2.9)      

Problem 1: Let (0,1)           

(i) The boundary value problem (2.1) – (2.3) satisfying the conditions       

5

0 ( ) ( ),u x C     

3
3 ,

2
,( , ) ( )x t Tf x t C Q







  and 

5

2( ) ( ),j Tu t C





 1,2.j             (2.10)       

and the conjugation conditions (2.9) up to second order ( 0,1,2).q       

(ii) The boundary value problem (2.1) – (2.3) satisfying the conditions       

7

0 ( ) ( ),u x C     

5
5 ,

2
,( , ) ( )x t Tf x t C Q







  and 

7

2( ) ( ),j Tu t C





 1,2.j             (2.11)       

and the conjugation conditions (2.9) up to third order ( 0,1,2,3).q       

Theorem 2.1: [17] Problem 1(i) has a unique solution ( , )u x t belonging to the class 
5

5 ,
2

, ( ).x t TC Q







 The Problem 1(ii) has a unique solution ( , )u x t belonging to the class 

7
7 ,

2
, ( ).x t TC Q







 

Proof: The proof of Theorem 2.1 follows from Theorem 1.1.    

We define  

, , 0,..., ,h m

b
x mh h m N

N


 
    
 

                                        (2.12)   

, , 0,..., ,j

T
t j j M

M
  

 
    
 

                                          (2.13) 
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and ,h h      where, the set of internal nodes are defined by 

 , ( , ) : 1,..., 1, 1,..., .h h m jx t m N j M                               (2.14) 

The set of nodes on , 1, 2,3i i  are presented by 

0, (0, ) : , , 0,..., ,j j

T
t t j j M

M
  

 
    
 

                                     (2.15)  

,0 ( ,0) : , , 0,..., ,h m m

b
x x mh h m N

N


 
    
 

                                  (2.16)  

, ( , ) : , , 0,..., ,b j j

T
b t t j j M

M
  

 
    
 

                                     (2.17)    

 

Figure 2.1: Six Point Difference Scheme                               

respectively. Assume that 1 2, ,...c c  are positive constants independent from h  and ;  

in each section, those constants are enumerated anew. For the numerical solution of 

the Problem 1(i), we use the four point difference problem ( 3)   and for the 

numerical solution of the Problem 1(ii), we use the six point symmetric difference 

problem ( 6)   [19]. We denote the solution of these difference problems by u  and 
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use the notations 
0 ( ,0)m mu u x  on ,0 ,h  0 (0, )j

ju u t  on 0, , and ( , )j

N ju u b t  on 

, .b   The difference schemes are as follows: 

, , ,

,

h h h

t m mu a u f       on  , ,h    3    or  6,                             (2.18)    

0

0 ( )m mu u x   on  ,0 ,h                                                                    (2.19)       

0 1( )j

ju u t    on    0, ,    2( )j

N ju u t   on   , ,b                            (2.20) 

where, 

1
,

,

j j
h m m
t m

u u
u 



 
 ,                                                                                              (2.21)  

1 1 1
3 , 1 1

2

2j j j
h m m m
m

u u u
u

h


  

  
  ,                                                                                (2.22) 

1 1 1
6 , 1 1 1 1

2 2

2 21
,

2

j j j j j j
h m m m m m m
m

u u u u u u
u

h h


  

   
    

   
 

                                          (2.23)  

 , 1

1

2

, , if 3,

, , if 6,

h m j

m
j

f f x t

f f x t

f










 
 
 
 

 

 

 
                                                                   (2.24) 

The operator 
3 ,h

mu  is the central difference formula and 
6 ,h

mu  is the averaging 

central difference formula with three points and six points respectively, for 

approximating 
2 .xu  Here 1

2

0.5 ,j
j

t t 

  ( , )f x t  is the given function in (2.1) and 

0 ( )u x  given in (2.2), 1 2( ), ( )u t u t  given in (2.3) are the initial and boundary functions, 

respectively. 

 Consider the following systems: 

 
, , ,

,
ˆ ˆ ˆh h h

t m mq a q g   
   on  , ,h    3    or  6,                            (2.25)              

0ˆ 0mq    on  ,0 ,h                                                                               (2.26)               

0
ˆ 0jq     on    0, ,    ˆ 0j

Nq    on   , ,b                                           (2.27) 
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, , ,

,

h h h

t m mq a q g       on  , ,h    3    or  6,                           (2.28)              

0 0mq    on  ,0 ,h                                                                              (2.29)                

0 0jq     on    0, ,    0j

Nq    on   , ,b                                           (2.30) 

where 
,ˆ hg 

, 
,hg 

are given functions and 
,ˆ| |hg 

 
,hg  on ,h    also 

,

,
ˆh

t mq 
, 

,

,

h

t mq 
 

are difference formulae analogous to (2.21) and  
,ˆh

mq  , 
,h

mq  are difference 

formulae analogous to (2.22) or (2.23) for 3    or  6,  respectively. 

Lemma 2.2: [17] The solution q̂  of the system (2.25) – (2.27) and the solution q  of 

the system (2.28) – (2.30) satisfy the inequality     

     ˆ| |q  q   on ,h                                                                (2.31)  

for any r by the four point implicit scheme ( 3)   and for r ≤ 1, by the six point 

symmetric implicit scheme ( 6)   where 
2

.
a

r
h


  

Proof: Taking into consideration that the canonical form of the equation 

, 3 , ,

,
ˆ ˆ ˆh h h

t m mq a q g     is    

                     
1 1

1 ,1 1

2 2

ˆ ˆ1 2 1
ˆ ˆ ˆ

j j
j j hm m

m m

q qa
q a q g

h h



 

 
  

  
      

   
                                                 (2.32) 

in the form 
( )

ˆ ˆ( ) ( ) ( , ) ( ) ( )
Q Patt P

A P q P B P Q q Q F P


   where 1( , )m jP P x t  as a node of 

the grid ,h  and Patt(P) consists of the nodes 1 ( , )m jQ x t , 2 1 1( , )m jQ x t  , 

3 1 1 ,( , ) .m j hQ x t     It can be easily seen that A(P) > 0, B(P, Q) > 0 for every 

( )Q Patt P  and D(P) = 0 where 
( )

( ) ( ) ( , ).
Q Patt P

D P A P B P Q


    Similarly the 

canonical form of the equation 
, 6 , ,

,
ˆ ˆ ˆh h h

t m mq a q g     is  
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1 1

1 ,1 1 1 1

2 2 2 2

ˆ ˆ ˆ ˆ1 1
ˆ ˆ ˆ ,

2 2

j j j j
j j hm m m m

m m

q q q qa a
q a a q g

h h h h



 

 
    

       
           

      
           (2.33)     

where 1( , )m jP P x t   and Patt(P) consists of the nodes 1 ( , )m jQ x t , 2 1 1( , ),m jQ x t 

3 1 1( , ),m jQ x t   4 1( , ),m jQ x t  5 1( , ).m jQ x t  Here A(P) > 0, D(P) = 0 and B(P, Q) 

≥ 0 for every ( )Q Patt P  if 
2

1.
a

r
h


   The proof follows from the Comparison 

Theorem (see Chapter 4 in [19]) because the coefficients of the finite difference 

schemes (2.32) and (2.33) satisfy all conditions of the comparison theorem for any r 

and for r ≤ 1, respectively.       

Lemma 2.3: [17] For the solution of the problem 

, ,

,
ˆ ˆh h

t m mq a q       on  , ,h    3    or  6,                       (2.34)                     

0ˆ 0mq   on  ,0 ,h                                                                      (2.35)                

0
ˆ 0jq   on  0, ,  ˆ 0j

Nq   on , ,b                                         (2.36) 

the following inequality holds true: 

                               q̂ d    on ,h                                                                    (2.37) 

where  

2

2

2

for 3,

for 6.
( , )

h

h
h




  




                                                         (2.38) 

max ,1 ,
2

b
d

a

 
  

 
                                                                                         (2.39) 

for any r by the four point implicit scheme ( 3)   and for r ≤ 1, by the symmetric six 

point implicit scheme ( 6)  . Here, ( , )x t   is the distance from the current point 

( , )x t  ,h  to the boundary γ of .TQ  
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Proof: For the four point implicit scheme ( 3)  , we consider the functions 

2
3 2

1

1
( , ) ( ) 0,

2

bx x
q x t h

a

 

   
 

      
3 2

2 ( , ) ( ) 0q x t h t     on  ,h             (2.40) 

which are the solutions of  
, 3 , 2

,

h h

t m mq a q h       on ,h  . On the basis of Lemma 

2.2 we obtain 

3 2

1,2
ˆ min ( , ) ( )i

i
q q x t d h 


      on    ,h  .                                    (2.41) 

For the six point symmetric implicit scheme ( 6)  , we consider the functions 

2
6 2 2

1

1
( , ) ( ) 0,

2

bx x
q x t h

a


 
   

 
      

6 2 2

2 ( , ) ( ) 0q x t h t     on  ,h  ,         (2.42) 

which are the solutions of 
, 6 , 2 2

,

h h

t m mq a q h       on , .h   Using Lemma 2.2 we 

obtain 

6 2 2

1,2
ˆ min ( , ) ( )i

i
q q x t d h 


      on    ,h                                      (2.43) 

Theorem 2.4: [17] The solution u  of the four point finite difference problem (2.18) – 

(2.20) ( 3)   satisfies the following pointwise estimation:    

                                
2

1| | ( ),u u c h                                                                      (2.44)  

for any value of 
2

0
a

r
h


   where u is the exact solution of Problem 1(i). The solution 

u of the six point finite difference problem (2.18) – (2.20) ( 6)   satisfies the 

following pointwise estimation: 

| |u u  
2 2

2 ( ),c h                                                       (2.45) 

for r ≤ 1 where u is the exact solution of Problem 1(ii). 
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Proof: On the basis of Theorem 2.1, the exact solution u of Problem 1(i) belongs to 

5
5 ,

2
, ( ).x t TC Q







 Therefore, 
4

xu  and 
2

t u  are bounded up to the boundary. Let 

,h

u u u   on ,h  . Obviously the error function 
,h

u

 satisfies 

, 3 ,

, , ,

h h

u t m u m ua       on  , ,h                                                     (2.46)              

0

, 0u m   on ,0 ,h                                                                          (2.47)                

,0 0j

u   on 0, ,    , 0j

u N   on  , ,b                                      (2.48) 

where 
3 ,

, .h

u t ma u u f       Using Taylor’s formula for the function ( , )u x t about 

the node 1( , )m jx t   shows that 
2( )u O h    and applying Lemma 2.2 to the problem 

(2.34) – (2.36) for 3  , (2.46) – (2.48) and on the basis of Lemma 2.3 we obtain 

,

1

2| ( )| .h

u c h    From Theorem 2.1, the exact solution u of Problem 1(ii) belongs 

to 

7
7 ,

2
, ( ).x t TC Q







 Hence, the derivatives 
4

xu , 
3

t u  are bounded up to the boundary. 

The error function 
,h

u

  satisfies the following difference problem: 

, 6 ,

, , ,

h h

u t m u m ua       on  , ,h                                                          (2.49)              

0

, 0u m   on  ,0 ,h                                                                              (2.50)                

,0 0j

u   on  0, ,    , 0j

u N   on , ,b                                                (2.51) 

Using Taylor’s formula for the function ( , )u x t about the node 1

2

( , )m
j

x t


 shows that

2 2( )u O h   . Applying Lemma 2.2 to the six point implicit difference problem 

(2.34) – (2.36) for ( 6)   and (2.49) – (2.51) and on the basis of Lemma 2.3 we obtain 

,

2

2 2| | ( ).h

u c h    

 

 



18 

 

2.3 Implicit four point difference approximation of xu   

Problem 2:          

 (i)    Given the Problem 1(i), we denote i xp u   on ,i 1,2,3i   and set up the 

next boundary value problem for ,xv u    

( , )xLv f x t      on     TQ                                                          (2.52)                     

2( ,0)v x p     on      2                                                                    (2.53)                                

1(0, )v t p     on      1 ,  3( , )v b t p     on      3 ,                            (2.54) 

where ( , )f x t  is the given function in (2.1). We take 

1
1

3 ( ) 4 ( , ) (2 , )

2
h

u t u h t u h t
p

h

  
  on  0, ,                                     (2.55)              

2 0 ( )h xp u x    on  ,0 ,h                                                                  (2.56)                

2
3

3 ( ) 4 ( , ) ( 2 , )

2
h

u t u b h t u b h t
p

h

   
     on   , ,b                        (2.57) 

and 0 ( )u x  given in (2.2), 1( ),u t 2 ( )u t given in (2.3) are the initial and boundary 

functions, respectively, u  is the solution of the four point difference problem (2.18) – 

(2.20) ( 3).   

Lemma 2.5: [17] The following inequality holds: 

| ( ) ( ) |ih ihp u p u 2

1( ),hc     1,3.i                                        (2.58) 

where u is the solution of the differential Problem 1(i) and u is the solution of the four 

point difference problem (2.18) – (2.20) ( 3)  . 
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Proof: Taking into consideration Theorem 2.1, and using (2.55) and (2.57) and 

Theorem 2.4, we have                                 

| ( ) ( ) |ih ihp u p u 2 2 2

2 2 1

1
4( ) ( 2 )

2
( ) ( ) ( ),c h c h ch h

h
h        1,3.i           (2.59) 

Lemma 2.6: [17] The following inequality is true: 

0, ,

max | ( ) |
b

ih ip u p
  

 2

3( ),hc     1,3.i                                        (2.60) 

where, u  is the solution of the four point difference problem (2.18) – (2.20) ( 3)  .  

Proof: On the basis of Theorem 2.1, the exact solution 

5
5 ,

2
, ( ).x t TC Q







 Then at the end 

points 0,(0, )   and ,( , ) bb   of each line segment  ( , ) : 0 ,0x t x b t T     

(2.55) and (2.57) give the second order approximation of ,xu  respectively. From the 

truncation error formula (see [20]) it follows that 

0, ,

max | ( ) |
b

ih ip u p
  



2
3max| |

3 TQ
x

h
u 

2

3 ,c h   1,3.i                               (2.61) 

Using Lemma 2.5 and the estimation (2.56), (2.61) follows.  

We construct the following difference problem for the numerical solution of Problem 

2(i): 

, 3 , ,

,

h h h

t m m xv a v f      on  , ,h                                                   (2.62)              

0

2m hv p   on  ,0 ,h                                                                         (2.63)                

0 1 ( )j

hv p u    on    0, ,    3 ( )j

N hv p u   on   , ,b                           (2.64) 
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where ,

,

h

t mv   is analogue to (2.21) and 3 ,h

mv   is analogue to (2.22) using v  instead of 

u  and the ihp   are defined by (2.55) – (2.57) and 
1

,

( , )|
m j

h

x x x tf f


    and u  is the 

solution of the four point difference problem (2.18) – (2.20) ( 3)  . 

Theorem 2.7: [17] The solution v  of the finite difference problem (2.62) – (2.64) 

satisfies   

                                   
,

2

4max | | ( ),
h

v v c h


                                                      (2.65) 

where xv u   is the exact solution of Problem 2(i). 

Proof: Let  

,h

v v v      on    , ,h                                                       (2.66) 

where .xv u   Denote by 
,

, max .
h

h

v v v





    From (2.62) – (2.64) and (2.66) we 

have  

, 3 ,

, , ,

h h

v t m v m va       on  , ,h                                                                 (2.67)              

0

, 0v m    on  ,0 ,h                                                                                 (2.68)                

,0 1 ( )j

v hp u v      on    0, ,    , 3 ( )j

v N hp u v     on   , ,b                   (2.69) 

where 
3 ,

, .h

v t m xa v v f       We take 

, 1, , 2, , ,h h h

v v v

                                                                           (2.70) 

and 1, , 2, ,,h h

v v

   satisfy the problems 
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1, , 3 1, ,

, , ,

h h

v t m v ma     on  , ,h                                                                        (2.71)              

1,0

, 0v m    on  ,0 ,h                                                                                 (2.72)                

1,

,0 1 ( )j

v hp u v      on    0, ,    
1,

, 3 ( )j

v N hp u v     on   , ,b                   (2.73) 

and 

2, , 3 2, ,

, , ,

h h

v t m v m va       on  , ,h                                                                (2.74)              

2,0

, 0v m    on  ,0 ,h                                                                                  (2.75)                

2,

,0 0j

v     on    0, ,    
2,

, 0j

v N    on   , ,b                                              (2.76) 

respectively.  From Lemma 2.6 and by maximum principle for the solution of the 

problem (2.71) – (2.73) we have        

                              
,

1, ,max
h

h

v





  

,1,3
max max ( )

h

ih
i

p u v


  2

4 ( ).c h                      (2.77) 

The solution 
2, ,h

v

 of the problem (2.74) – (2.76) is the error of the approximate 

solution obtained by the finite difference method for the boundary value Problem 2(i) 

when the boundary values satisfy the conditions    

 
4

2 ( ),p C     

2
2 ,

2
,( , ) ( ),x x t Tf x t C Q







   

4

2 ( ),j Tp C





 1,3.j              (2.78) 


( ) ( )
1
( ) ( )
3

(0) (0),

(0) ( ),

q q

q q

p v

p v b



      0,1,2.q                                                                (2.79) 

Since the function xv u   satisfies Eq. (2.52) with the initial function 2p  on 2  and 

boundary functions 1 3,p p  on 1  and 3 , respectively, and on the basis of Theorem 

1.1 and the maximum principle, we obtain           

                                          
,

2, ,max
h

h

v





  

2

5 ( ),c h                                                                (2.80) 

and using (2.70), (2.77) and (2.80) we obtain (2.65).  
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2.4 Implicit six point symmetric difference approximation of xu  

Problem 2:          

 (ii) Given the Problem 1(ii), we denote i xp u   on ,i 1,2,3i   and set up the 

boundary value problem (2.52) – (2.54) for .xv u    

Lemma 2.8: [17] The following inequality holds: 

| ( ) ( ) |ih ihp u p u 2 2

1( ),hc    1,3.i                                        (2.81) 

where u  is the solution of the differential Problem 1(ii) and u  is the solution of the 

symmetric six point difference problem (2.18) – (2.20) ( 6)   for r ≤ 1 and ihp  are 

defined by (2.55) – (2.57). 

Proof: On the basis of Theorem 2.1, and from (2.55), (2.57) and using Theorem 2.4, 

we have  

| ( ) ( ) |ih ihp u p u
2

2 2 2 2 2 2

2 1

1
4( ) ( 2 )( ) ( ) ( ),

2
c h c h ch h h

h
         1,3.i    (2.82) 

Lemma 2.9: [17] The following inequality is true: 

0, ,

max | ( ) |
b

ih ip u p
  

 2 2

3( ),hc    1,3.i                                        (2.83) 

where u  is the solution of the six point difference problem (2.18) – (2.20) ( 6)   for 

1.r     

Proof: Using Theorem 2.1, the proof is analogous to the proof of Lemma 2.6.  
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 We propose the following six point difference problem for the numerical 

solution of Problem 2(ii): 

, 6 , ,

,

h h h

t m m xv a v f      on  , ,h                                                   (2.84)              

0

2m hv p   on  ,0 ,h                                                                         (2.85)                

0 1 ( )j

hv p u    on    0, ,    3 ( )j

N hv p u   on   , ,b                           (2.86) 

where ihp  are defined by (2.55) – (2.57) and 
1

2

,

( , )|
m

j

h

x x x tf f



    and u  is the 

solution of the six point difference problem (2.18) – (2.20) ( 6)   for   r ≤ 1. 

Theorem 2.10: [17] For r ≤ 1, the solution v  of the finite difference problem (2.84) – 

(2.86) satisfies 

,

max | |
h

v v


  
2 2

4 ( ),c h                                                       (2.87) 

where, xv u   is the exact solution of Problem 2(ii). 

Proof: The proof is analogous to the proof of Theorem 2.7. From (2.84) – (2.86) and 

(2.66) we have 

, 6 ,

, , ,

h h

v t m v m va       on  , ,h                                                                 (2.88)              

0

, 0v m    on  ,0 ,h                                                                                 (2.89)                

,0 1 ( )j

v hp u v      on    0, ,    , 3 ( )j

v N hp u v     on   , ,b                (2.90) 

where 
6 ,

, .h

v t m xa v v f       We take 

, 1, , 2, , ,h h h

v v v

                                                                           (2.91) 

and 1, , 2, ,,h h

v v

   satisfy the problems 
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1, , 6 1, ,

, , ,

h h

v t m v ma     on  , ,h                                                                        (2.92)              

1,0

, 0v m    on  ,0 ,h                                                                                 (2.93)                

1,

,0 1 ( )j

v hp u v      on    0, ,    
1,

, 3 ( )j

v N hp u v     on   , ,b                   (2.94) 

and 

2, , 6 2, ,

, , ,

h h

v t m v m va       on  , ,h                                                                (2.95)              

2,0

, 0v m    on  ,0 ,h                                                                                  (2.96)                

2,

,0 0j

v   on  0, ,    
2,

, 0j

v N   on , ,b                                                     (2.97) 

respectively. From Lemma 2.9 and by maximum principle for the solution of the 

system (2.92) – (2.94) we have  

1, ,

,

max h

v
h



 

  
1,3 ,

max max ( )ih
i h

p u v
 

 
2 2

4 ( ).c h                                 (2.98) 

The solution 
2, ,h

v

 of the problem (2.95) – (2.97) is the error of the approximate 

solution obtained by the finite difference method for the boundary value Problem 2(ii) 

when the boundary values satisfy the conditions 

6

2 ( ),p C     

4
4 ,

2
,( , ) ( ),x x t Tf x t C Q







   

6

2 ( ),i Tp C





 1,3.i              (2.99)     


( ) ( )
1
( ) ( )
3

(0) (0),

(0) ( ),

q q

q q

p v

p v b



      0,1,2,3,...q                               (2.100) 

Since the function xv u   satisfies Eq. (2.52) with the initial function 2p  on 2  and 

boundary functions 1 3,p p  on 1  and 3 , respectively and on the basis of Theorem 1.1 

and the maximum principle in Chapter 4 of [19], we obtain 

,

2, ,max
h

h

v





  

2 2

5 ( )c h                                                     (2.101) 

using (2.70), (2.98) and (2.101) we obtain (2.87).  
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2.5 Numerical aspects 

All the computations in this section and in the numerical aspects sections of the 

proceedings Chapters are carried out in double precision using the FORTRAN 

programming language. For all the constructed examples we take 

{( , ) : 0 1,0 1}TQ x t x t     , 1 {(0, ) : 0 1},t t     2 {( ,0) : 0 1},x x     

3 {(1, ) : 0 1},t t     and the constant a  in the operator 

2

2
L a

t x

 
 
 

 is taken as 

1.a   In all the tables Central Processing Unit (CPU) presents the total solution time 

in seconds. 

Example 1: [17]  

      ( , )Lu f x t  on TQ                                                                          

26

5( ,0) sin
2

u x x x
 

   
 

 on  2                             

13

5(0, )u t t  on 1 ,                                                          

13 13

5 5(1, ) cos( ) 1u t t t    on 3 ,      

where, 

26 8 13 8 16 13 2

5 5 5 5 5 5
13 13 26 21

( , ) sin( ) cos( ) sin .
5 5 5 5 4 2

f x t x t t t x t x
  

      
 

 Using 

the implicit four point difference scheme (2.18) – (2.20) ( 3)   we obtain the 

following matrix form of the system of equations, for time layer ( 1) ,t j  

0,1,2,3,..., 1,j M  as 
1 1j j jAu u f   , where 2

,r
h


  since 1.a   
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1

2

1

1

1

2

1

3

1

3

1

2

1

1

1 2 0 0 0 0 0 0

1 2 0 0

0 1 2 0 0

0 0 1 2 0

0 0 1 2

0 0 0 0 0 0 1 2

jj

j

j

j

N

j

N

j

N

u

u

ur r

ur r r

ur r r

r r r u

r r r u

r r
u





















 

           

        

        

           

 

  
  
  
  
  
  
  
  
  
  
       

3

3

2

1

1

1

1

2

1

3

1

3

1

2

1

1

j

j

j

N

j

N

j

N

j

j

j

j

N

j

N

j

N

u

u

u

u

f

f

f

f

f

f



























  
  
  
  
  
  
  
  
  
  
  
  

   

  

The coefficient matrix is tridiagonal band matrix. Therefore, Gauss – Thomas Method 

is used. The algorithm consists of three steps: decomposition and forward and back 

substitution [21]. In a generalized form we consider the tridiagonal system below: 

1 1

2 2

3 3

3

2

1

1 1

2 2 2

3 3 3

3 3 3

2 2 2

1 1

0 0 0 0 0 0

0 0

0 0 0

0 0 0

0 0

0 0 0 0 0 0

N

N

N

N N N

N N N

N N

ub

u db

u db

b u d

b u

b u

dc

a c

a c

a c

a c

a







  

  

 

        

     

     

        

  
  
  
  
  
     
  
  
  
  

     

3

2

1

N

N

N

d

d







 
 
 
 
 
 
 
 
 
 
 
  
 

      (2.103) 

and present the pseudocode to implement the Thomas algorithm as follows: 

1

1

1

1 1 1

1

( )

2 1

/

( )

2 1

( )

/

2 1 1

( ) /

j j j

j j j j

j j j j

N N N

j j j j j

a decomposition

DOFOR j to N

a a b

b b a c

ENDDO

b forward substitution

DOFOR j to N

d d a d

ENDDO

c back substitution

u d b

DOFOR j N to step

u d c u b

ENDD







  



 



 

 

 



  

 

O
                       

        (2.104) 

(2.102) 
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where N  is the number of intervals along spatial variable x , 
b

N
h

 . The approximate 

solution u  is obtained at each time level with space step size 2h   and time step size 

2   where ,   are positive integers. Next, the boundary value problem for 
u

v
x





 

is constructed using the obtained approximate solution u  and the proposed Problem 

2(i). The structure of the coefficient matrix A is same as in (2.102). Furthermore, the 

approximate solution v  of the difference problem (2.62) – (2.64) is obtained by using 

Gauss-Thomas Algorithm (2.104) at the same grid points. The exact solution is known 

as 

21 13

5 5
26

( , ) cos( ) cos
5 2 2

v x t x t x
  

   
 

 and we denote the maximum errors on the 

grid points by 
,

, max | | .
h

h

v v v





    Table 2.1 demonstrates the maximum errors for 

2r  , 2,3   and the corresponding CPU time for different step sizes with the 

order of convergence ,h

v

 as;  

( 1) ( 2)

2 ,2

,

2 ,2

v
h

v

v

 

 






 

   
                                                    (2.105) 

of v  with respect to h  and  , for Example 1. 

Table 2.1: Maximum errors, corresponding CPU time for different step sizes in space 

and time and 
,h

v

 , for Example 1.   

 

 

( 2 , 2 )

,

h

CPUh

 




 
 

 

( 1) ( 2)( 2 , 2 )

, CPU

h

h

 



    
 

2 ,2
v

 


 

 
( 1) ( 2)2 ,2

v

 


   

 
,h

v
  

5 12

6 14

5 13

6 15

(2 ,2 ) 0.344

(2 ,2 ) 2.109

(2 ,2 ) 0.656

(2 ,2 ) 4.250

 

 

 

 

 

6 14

7 16

6 15

7 17

(2 ,2 )

(2 ,2 )

(2 ,2 )

(2 ,2 )

2.109

15.094

4.250

30.312

 

 

 

 

 

2.438 02

6.383 03

2.439 02

6.385 03

E

E

E

E









 

6.383 03

1.633 03

6.385 03

1.633 03

E

E

E

E









 

3.820

3.910

3.820

3.910
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Table 2.2 presents the maximum errors and the corresponding CPU for 
92 ,h 

2 , 6,7,8,9,10,11r     and the order of convergence v

  as;  

( 1)

,2

,2

h

v

v
h

v












 
  ,                                                  (2.106) 

of v  with respect to  , for Example 1. 

Table 2.2: Maximum errors, corresponding CPU time for different step size in time 

and v

 , for Example 1.    

  

According to the definition of the maximum error the third and fourth columns of 

Table 2.1 and Table 2.2 present the theoretical upper bound errors given in (2.65), for 

Example 1. Note that the 
2( )O h   order of convergence corresponds to 22 of the 

quantities defined by (2.105), and 12  of the quantities defined by (2.106). Figure 2.2 

presents the error function 
7 172 ,2 | |v v v
 

   for 
72 ,h   and 172  . The maximum 

errors 
92 ,

v




 when 
92 ,h  with respect to ,  are shown in Figure 2.3 and the 

maximum errors 
17,2h

v


 when 
172 ,   with respect to ,h  are demonstrated by Figure 

2.4. Figure 2.5 shows the exact solution ( , ) ,xv x t u   and the grid function 
7 172 ,2v
 

 

( 2 , 2 )

, CPU

h

h

 



  
 

( 1)( 2 , 2 )

, CPU

h

h

 



   
 

2 ,2

v

 


 

 
( 1)2 ,2

v

 


  

 v

  

9 6

9 7

9 8

9 9

9 10

(2 ,2 ) 0.125

(2 ,2 ) 0.125

(2 ,2 ) 0.250

(2 ,2 ) 0.438

(2 ,2 ) 0.875

 

 

 

 

 

 

9 7

9 8

9 9

9 10

9 11

(2 ,2 ) 0.125

(2 ,2 ) 0.125

(2 ,2 ) 0.250

(2 ,2 ) 0.875

(2 ,2 ) 1.750

 

 

 

 

 

 

6.087 02

3.058 02

1.531 02

7.634 03

3.791 03

E

E

E

E

E











 

3.058 02

1.531 02

7.634 03

3.791 03

1.867 03

E

E

E

E

E











 

1.991

1.997

2.006

2.014

2.031
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presenting the approximate solution v  of xu  when 
72 ,h   172  is given in Figure 

2.6. 

 

 

 

 

 

 

 

Figure 2.2: The error function 
7 172 ,2 | |v v v
 

   when 
72 ,h   and 

172 ,   for 

Example 1.   

 

Figure 2.3: The maximum errors 
92 ,

v




 when 
92 ,h  with respect to  , for 

Example 1. 
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Figure 2.4: The maximum errors 
17,2h

v


 when 
172 ,   with respect to h , for 

Example 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: The function v  presenting the exact solution xu , for Example 1.   
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Figure 2.6: The grid function 
7 172 ,2v
 

 presenting the approximate solution v  of xu  

when 
72 ,h   

172  , for Example 1.  

 

 

 

Example 2: [17] 
 

      ( , )Lu f x t     on     TQ                                                                          

36

5
5 5

( ,0) sin
36 18 2

u x x x
 

   
 

    on      2                     

18

5
5

(0, )
18

u t t     on      1 ,                                                          

18 18

5 5
5 5 5

(1, ) cos( ) 1
36 36 18

u t t t       on      3 ,      

where 

36 13 18 13 26 18 2

5 5 5 5 5 5
5 31

( , ) sin( ) cos( ) sin .
36 18 4 2

f x t x t t t x t x
  

      
 

 Using the 

implicit six point difference scheme (2.18) – (2.20) ( 6)   we obtain the following 

system of equations in matrix form at each time level, as 

1

1 2
j

j jAu Bu f


   , where 

2
r

h


  for 1a  . 
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1

1

1

2

1

3

1

3

1

2

1

1

1 0.5 0 0 0 0 0 0

0.5 1 0.5 0 0

0 0.5 1 0.5 0 0

0 0 0.5 1 0.5 0

0 0 0.5 1 0.5

0 0 0 0 0 0 0.5 1

j

j

j

j

N

j

N

j

N

ur r

ur r r

ur r r

r r r u

r r r u

r r u



















  
 

       
       
 
 
 
       
          

   













  


 

1

2

3

3

2

1

0.5

11 0.5 0 0 0 0 0 0

0.5 1 0.5 0 0

0 0.5 1 0.5 0 0

0 0 0.5 1 0.5 0

0 0 0.5 1 0.5

0 0 0 0 0 0 0.5 1

j

j

j

j

N

j

N

j

N

j
ur r

ur r r

ur r r

r r r u

r r r u

r r
u

f













         

      

      

         



  
  
  
  
  
     
  
  
  
  
   



0.5

2

0.5

3

0.5

3

0.5

2

0.5

1

j

j

j

N

j

N

j

N

f

f

f

f

f

















 
 
 
 
 
 
 
 
 
 
 
  
 

         (2.107) 

The approximate solution u  is obtained by applying Gauss – Thomas algorithm (2.104) 

for solving the algebraic system of equations (2.107) at each time level for 2  

where   is nonnegative integer. Next the boundary value problem for 
u

v
x





 is 

constructed from the proposed Problem 2(ii) using the obtained approximate solution 

u . The structure of the obtained algebraic linear system is analogues to (2.107). 

Furthermore, the approximate solution v  for 
u

x




 is obtained at the same grid points 

by solving the problem (2.84) – (2.86) using Gauss-Thomas algorithm (2.104), and 

compared on the grids with the known exact solution 

31 18

5 5
5

( , ) cos( ) cos .
18 2 2

v x t x t x
  

   
 

 We use  
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( 1) ( 1)

2 ,2

,

2 ,2

v
h

v

v

 

 






 

   
                                                    (2.108) 

to present the order of convergence of v  with respect to h  and  . Note that the 

2 2( )O h   order of convergence corresponds to 22 of the quantity by (2.108). Table 

2.3 shows the maximum errors for 2 ,h   4,5,6,7,8   and 2 ,   

13,14,15,16,17,   respectively, and the corresponding CPU time for each step sizes 

and the orders 
,h

v

 . The third and fourth columns of this table presents the theoretical 

upper bound errors given in (2.87). Figure 2.7 present the error function 
7 172 ,2

v
 

 for 

72 ,h   and 172  . The maximum errors 
17,2h

v


 when 
172 ,  with respect to ,h  

is demonstrated by Figure 2.8. Figure 2.9 shows the exact solution ( , ) ,xv x t u   and 

the grid function 
7 172 ,2v
 

 presenting the approximate solution v  of xu  when 
72 ,h   

172  . 

Table 2.3: Maximum errors, corresponding CPU time for different step sizes in space 

and time and 
,h

v

 , for Example 2.    

 

 

 

 

 

 

( 2 , 2 )

, CPU

h

h

 



  
 

( 1) ( 1)( 2 , 2 )

, CPU

h

h

 



    
 

2 ,2

v

 


 

 
( 1) ( 1)2 ,2

v

 


   

 
,h

v

  

4 13

5 14

6 15

7 16

(2 ,2 ) 0.453

(2 ,2 ) 1.312

(2 ,2 ) 4.312

(2 ,2 ) 15.328

 

 

 

 

 

5 14

6 15

7 16

8 17

(2 ,2 ) 1.312

(2 ,2 ) 4.312

(2 ,2 ) 15.328

(2 ,2 ) 58.609

 

 

 

 

 

1.0567 02

3.1449 03

8.5353 04

2.2209 04

E

E

E

E









 

3.1449 03

8.5353 04

2.2209 04

5.6628 05

E

E

E

E









 

3.360

3.687

3.842

3.921
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Figure 2.7: The error function 
7 172 ,2

v v v
 

   when 
72 ,h   and 

172  , for 

Example 2.    

 

 

 

 

 

Figure 2.8: The maximum errors 
17,2h

v


 for 
172   with respect to h , of Example 2.    
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Figure 2.9: The exact solution ,xu  and the grid function 
7 172 ,2v
 

 when 
72 ,h   

172  , for Example 2.   

 

 

 

Example 3: [17] 
 

      ( , )Lu f x t     on     TQ ,                                                                         

( ,0) xu x e     on      2 ,                                     

25

7(0, ) 1 0.001u t t      on      1 ,                                                          

25 25

17 7(1, ) 0.0001sin( ) 0.001u t t t e       on      3 ,      

Where,

50 18 25 18 36 25

7 7 7 7 5 7
25 25 50 43

( , ) 0.0001 cos( ) 0.001 0.0001 sin( ) .
7 7 7 7

xf x t x t t t x t e           

The initial function, the boundary functions and the nonhomogeneous term ( , )f x t

satisfy the conditions (2.11) of Problem 1(ii). Using the proposed implicit six point 

difference problem (2.18) – (2.20) ( 6)   we obtain the approximate solution u  at 
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each time level. Next the boundary value problem for 
u

v
x





 is constructed from the 

proposed Problem 2(ii) using the obtained approximate solution ;u  then the 

approximate solution v  of xv u   is obtained at the same grid points by solving the 

system of equations resulting from (2.84) – (2.86). Let 
2 ,2 ( , )v x t

  

  be the 

approximate solution v  at ( , )x t  when 2h   and 2   . The exact solution v  is not 

given. To verify the order of convergence of the computed solution v  to the exact 

solution v  we compute the solution at grid points with successively reduced step sizes 

h  and   by a factor of two and the ratio of the absolute successive errors (see Chapter 

2 of [22]). Table 2.4 presents 
2 ,2 ( , )v x t

  

 at the grid points (0.125, 1), (0.25, 1),  

(0.375, 1), (0.5, 1), (0.625, 1), (0.75, 1) and (0.875, 1) for the pairs ( , )  = (5, 13), 

(6,14), (7, 15), (8, 16) which means that the step sizes h  in x  and   in t  are halved 

successively. 

Table 2.4: The approximate solution v  on 1t  , for Example 3.      

 

Table 2.5 demonstrates the absolute error ratios 

5 13 6 14

6 14 7 15

2 ,2 2 ,2

2 ,1 2 2 ,2

( ,1) ( ,1)

( ,1) ( ,1
,

)

v x v x

v x v
r

x

   

   





 

x  5 132 ,2 ( ,1)v x
 

 
6 142 ,2 ( ,1)v x
 

 
7 152 ,2 ( ,1)v x
 

 
8 162 ,2 ( ,1)v x
 

 

0.125

0.25

0.375

0.5

0.625

0.75

0.875

 

0.88218321

0.77852029

0.68703982

0.60630576

0.53504253

0.47210904

0.41647280















 

0.88241771

0.77872997

0.68722539

0.60646779

0.53518148

0.47222525

0.41656648















 

0.88247701

0.77878291

0.68727216

0.60650853

0.53521631

0.47225424

0.41658968















 

0.88249191

0.77879622

0.68728390

0.60651874

0.53522502

0.47226147

0.41659545
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6 14 7 15

7 15 8 16

2 ,2 2 ,2

2 ,2 2 2 ,2

( ,1) ( ,1)

( ,1) ( ,1
,

)

v x v x

v x v
r

x

   

   





 

and the corresponding orders 

5 13 6 14

6 14 7 15

2 ,2 2 ,2

2 ,2 2 ,1 22

( ,1) ( ,1)

( ,1) ( ,
g

1)
lo ,

v x v x

v x v
p

x

   

   





 

6 14 7 15

7 15 8 16

2 ,2 2 ,2

2 ,2 2 ,2 22

( ,1) ( ,1)

( ,1) ( ,
g

1)
lo ,

v x v x

v x v
p

x

   

   





 

for the considered points at 1t  . By analyzing the values of 1p  and 2p  in the third 

and fifth columns of Table 2.5, respectively, we conclude that the order of convergence 

is quadratic in the two variables x  and t  on 1t  . Figure 2.10 illustrates the grid 

function 
8 162 ,2v

 

presenting the approximate solution v  of xv u   when 
82 ,h   

162 .   

Table 2.5: The absolute error ratios at some grid points on 1t   and the orders 1p , 2p , 

for Example 3.      

 

 

 

 

 

x  
1r  1p  2r  2p  

0.125

0.25

0.375

0.5

0.625

0.75

0.875

 

3.9544688

3.9607102

3.9675005

3.9777172

3.9893770

4.0086237

4.0379310

 

19835

1.9858

1.9882

1.9917

1.9962

2.0031

2.0136

 

3.9798658

3.9774606

3.9838160

3.9902057

3.9988519

4.0096819

4.0207972

 

1.9927

1.9919

1.9942

1.9965

1.9996

2.0035

2.0075
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Figure 2.10: The grid function 
8 162 ,2v

 

presenting the approximate solution v  of 

xv u   when 
82 ,h   162  , for Example 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

Chapter 3 

FOUR POINT IMPLICIT METHODS FOR THE 

APPROXIMATION OF SECOND DERIVATIVES TO 

HEAT EQUATION WITH CONSTANT COEFFICIENTS 

3.1 Chapter overview 

This chapter extends the methods given in Chapter 2 of this dissertation and in [17] for 

finding the first difference derivative of ( , )u x t  with respect to t  and its second order 

difference derivatives with 
2( )O h   order of convergence to the corresponding exact 

derivatives. The general idea of this research work is presented as an extended abstract 

in [23].  

Here, we consider the first type boundary value problem for one dimensional heat 

equation of which the initial function belongs to 8C    the heat source function is 

from 

6
6 ,

2
, ,x tC




 the boundary functions are from 

8

2 ,C


 and between the initial and the 

boundary functions the conjugation conditions of orders 0,1,2,3,4q   are satisfied.  

Difference problems of four point implicit schemes approximating 

2 2

2 2
, , ,

u u u

t x t

  

  
 and 

2u

x t



 
 are constructed, which converge uniformly to the exact values of 

2 2

2 2
, , ,

u u u

t x t

  

  
 

and 

2u

x t



 
 respectively, on the grids of order 

2( )O h  . 
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Under the above assumption, we organized this chapter as follows: In Section 2 

boundary value problems for 
u

t




 and 

2

2

u

x




 are given and difference boundary value 

problems of implicit schemes approximating 
u

t




 and 

2

2

u

x




 are constructed. Moreover, 

for the error function we provide a pointwise prior estimation depending on ( , )x t  

which is the distance from the current grid point in the domain to the boundary. In 

Section 3, we propose a special implicit difference problem for the approximation of 

2

2

u

t




 and prove that the solution of the constructed difference scheme converge 

uniformly to the exact value 

2

2

u

t




 on the grids of order 

2( )O h  . In Section 4, a 

special implicit difference problem for the approximation of 
2u

x t



 
 is given, of which 

the solution converge uniformly to the exact value of 
2u

x t



 
 on the grids of order 

2( )O h  . To justify the theoretical results, a numerical example is constructed and 

obtained results are presented through tables and figures in Section 5.  

3.2 Implicit schemes for the approximation of tu  and 
2

xu  

Let the following problem be given: 

Problem 1:          

(iii) The boundary value problem (2.1) – (2.3) satisfying the conditions       

8

0 ( ) ( ),u x C     

6
6 ,

2
,( , ) ( )x t Tf x t C Q







  and 

8

2( ) ( ),i Tu t C





 1,2.i               (3.1)       

and the conjugation conditions (2.9) of order 0,1,2,3,4.      
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Also, let tw u   and 
2

xu    then w  and   satisfy the following boundary value 

problems respectively, see also [18, 23]. 

Problem 3:   

( , ) ( , )tLw f x t F x t       on     ,TQ                                                    (3.2)                     

(1)

0( ,0) ( ) ( )w x u x w x      on      2 ,                                                         (3.3)                                

1 1(0, ) ( ) ( )tw t D u t w t      on     1,                                                           (3.4)                     

2 2( , ) ( ) ( )tw b t D u t w t      on      3.                                                          (3.5) 

Problem 4:   

2 ( , ) ( , )xL f x t G x t        on     ,TQ                                                    (3.6)                     

2

0 0( ,0) ( ) ( )xx u x x        on      2 ,                                                        (3.7)                                

1 1

1
(0, ) ( ) (0, ) ( )tt D u t f t t

a
        on     1,                                        (3.8)                     

2 2

1
( , ) ( ) ( , ) ( )tb t D u t f b t t

a
        on      3.                                       (3.9) 

where, ( , )f x t  is the heat source function given in (2.1), 0 ( )u x  and  1 2( ), ( )u t u t  are 

the initial and boundary functions given in (2.2), (2.3) respectively, also 
(1) ( )u x  is as 

defined in (2.5). Furthermore, 

4
4 ,

2
,( , ) ( ),x t TF x t C Q







     
6

0 ( ) ( ),w x C     

6

2( ) ( ),i Tw t C





   1,2,i             (3.10)      

4
4 ,

2
,( , ) ( ),x t TG x t C Q







     
6

0 ( ) ( ),x C      

6

2( ) ( ),i Tt C


 


   1,2,i              (3.11)       

both satisfying the conjugation conditions (2.9) of order 0, 1, 2, 3. 
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Lemma 3.1:  The Problem 1(iii) has unique solution 

8
8 ,

2
, ( )x t Tu C Q







  and the 

constructed Problem 3 with (3.10) and Problem 4 with (3.11) have unique solution  w  

and   respectively, belonging to the space 

6
6 ,

2
, ( ).x t TC Q







 

Proof: From Theorem 1.1, Problem 3 has unique solution 

8
8 ,

2
, ( ).x t Tu C Q







  Taking into 

account that Problem 3 with (3.10) and Problem 4 with (3.11) are also first type 

boundary value problems analogous to the problem (2.1) – (2.3) on the basis of 

Theorem 1.1 the proof follows. 

To realize the numerical solution of the Problem 4 with (3.10), we propose the 

following implicit difference problem, of which the solution is ,w  

, 3 ,

, ,

h h

t m m w mw a w      on  , ,h                            (3.12)    

0

0 ( )m mw w x   on  ,0 ,h                                                                    (3.13)       

0 1( )j

jw w t    on    0, ,    2( )j

N jw w t   on   , ,b                             (3.14) 

where, 
0 ( ,0),m mw w x  0 (0, ),j

jw w t  ( , )j

N jw w b t  and 

1
,

,

j j
h m m
t m

w w
w 



 
 ,                                                                                              (3.15)  

1 1 1
3 , 1 1

2

2j j j
h m m m
m

w w w
w

h


  

  
  ,                                                                                (3.16)                                         

   , 1 1, , .w m m j t m jF x t f x t                                                                          (3.17) 

For the numerical solution of Problem 4 with (3.11), we propose 

, 3 ,

, ,

h h

t m m m
a 


      on  , ,h                                      (3.18)    

0

0( )m mx    on  ,0 ,h                                                                     (3.19)       

0 1( )j

jt     on    0, ,    2 ( )j

N jt    on   , ,b                              (3.20) 
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and denote the solution of this difference system by  , where, 
,

,

h

t m

 , and 
3 ,h

m

  are 

formulae analogous to (3.15) and (3.16) respectively, and 
0 ( ,0),m mx   0 (0, ),j

jt   

( , )j

N jb t   also  
 1

2

1, ,
, .

m j
m j xm x t

G x t f





    By the maximum principle the 

difference problems (3.12) – (3.14) and (3.18) – (3.20) have unique solution.  

Theorem 3.2: Let w  be the solution of the Problem 3 with (3.10) and w  be the 

solution of the difference problem (3.12) – (3.14). The following pointwise estimation 

holds true 

| |w w  
2

1 ( )c h                                                       (3.21) 

Proof: On the basis of Lemma 3.1 the exact solution 

6
6 ,

2
, ( ).x t Tw C Q







  Let 

,h

w w w    then the error function 
,h

w

 satisfies the following difference problem 

, 3 ,

, , ,

h h

w t m w m wa       on  , ,h                                                          (3.22)              

0

, 0w m    on  ,0 ,h                                                                          (3.23)                

,0 0j

w     on    0, ,    , 0j

w N    on   , ,b                                      (3.24) 

where 
3

, ,w t m w ma w w      and ,w m is as given in (3.17). Using Taylor’s formula 

for the function ( , )w x t  about the node 1( , )m jx t   gives that 
2( ).w O h   Applying 

Lemma 2.2 to the problem (2.34) – (2.36) for 3   and (3.22) – (3.24) and on the 

basis of Lemma 2.3 we obtain 
,| |h

w

 2

1 ( ).hc      

Theorem 3.3: The following inequality holds 

| |   
2

2 ( )c h                                                       (3.25) 
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where,    is the solution of the Problem 4 with (3.11) and   is the solution of the 

difference problem (3.18) – (3.20).  

Proof: The proof is analogous to the proof of Theorem 3.2. 

3.3 Implicit difference problem for the approximation of 
2

t u  

When the Problem 1(iii) is given we set up the Problem 3 with (3.10) for tw u   and 

use the difference system (3.12) – (3.14) for obtaining the approximate solution .w  

We denote 
2

i tq u   on ,i  1,2,3i   and construct the following boundary value 

problem for 
2 ,tz u   see also [23].  

Problem 5:   

2 ( , )tLz f x t      on     ,TQ                                                    (3.26)                     

2( ,0)z x q     on      2 ,                                                               (3.27)                                

1(0, )z t q     on     1,  3( , )z b t q     on     3 ,                           (3.28)                      

where, ( , )f x t  is the heat source function in (2.1).  

We take 

2

1 1 1( ) ( )t tq D u t D w t    on  0, ,                                                    (3.29)              

 2 0

1
( ) ( , ) ( )q w w x w x 


    on  ,0 ,h                                                 (3.30)                

2

3 2 2( ) ( )t tq D u t D w t       on   , ,b                                                (3.31) 

where, 
(1)

0 ( ) ( )w x u x  is as defined in (2.5) and 1( ),u t  2 ( )u t  are given boundary 

functions in (2.3).  
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Lemma 3.4: The following inequality holds: 

2 2| ( ) ( ) |q w q w  2

1( )hc                                           (2.32) 

where, w is the solution of Problem 3 with (3.10) and w is the solution of the difference 

problem (3.12) – (3.14). 

Proof: From Theorem 3.2, we have 

2 2| ( ) ( ) |q w q w 
1

2

1

2( ) ( )
1

( )c h hc 

                                    (3.33) 

Lemma 3.5: The following inequality is true: 

,0

2 2max | ( ) |
h

q w q



2

2 ( )hc                                                   (3.34) 

where, w  is the solution of the difference problem (3.12) – (3.14). 

Proof: On the basis of Lemma 3.1, 

6
6 ,

2
, ( )x t Tw C Q







  and at the end points ,0( ,0) hmh   

of each line segment  ( , ) : 0 ,0x t x b t T     the equation (3.30) gives the first order 

approximation of .t w  From the truncation error formula (see [20]) it follows that 

,0

2 2max | ( ) |
h

q w q


 2

2max| | ,
2 T

t
Q

w c


                                  (3.35) 

Using Lemma 3.4 and the estimation (3.32), (3.35) follows (3.34)  

We construct the following difference problem for the numerical solution of      

Problem 5 

, 3 ,

, ,

h h

t m m z mz a z      on  , ,h                                                        (3.36)              

0

2 ( )mz q w   on  ,0 ,h                                                                    (3.37)                

0 1

jz q     on    0, ,    3

j

zz q    on   , ,b                                   (3.38) 
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where, ,iq   1,2,3i   are defined by (3.29) – (3.31) and 
1

2

, ( , )| .
m jz m t x tf


    

Theorem 3.6: The solution z  of the finite difference problem (3.36) – (3.38) satisfies 

,

max | |
h

z z


  
2

3( ),c h                                                       (3.39) 

where 
2

tz u   is the exact solution of Problem 5. 

Proof: Let  

,h

z z z      on    , ,h                                                       (3.40) 

where, 
2 .tz u   Denote by 

,

, max .
h

h

z z z





    From (3.36) – (3.38) and (3.40) we 

have  

, 3 ,

, , ,

h h

z t m z m za      on  , ,h                                                                 (3.41)              

0

, 2 ( )z m q w z     on  ,0 ,h                                                                  (3.42)                

,0 0j

z     on    0, ,    , 0j

z N    on   , ,b                                            (3.43) 

where 
3

, , .z t m z ma z z       We take 

, 1, , 2, ,h h h

z z z

                                                                           (3.44) 

and 1, , 2, ,,h h

z z

    satisfy the problems 

1, , 3 1, ,

, , ,

h h

z t m z ma     on  , ,h                                                                        (3.45)              

1,0

, 2 ( )z m q w z     on  ,0 ,h                                                                   (3.46)                  

1,

,0 0j

z     on    0, ,    
1,

, 0j

z N    on   , ,b                                 (3.47) 

and  

2, , 3 2, ,

, , ,

h h

z t m z m za      on  , ,h                                                                (3.48)              

2,0

, 0z m    on  ,0 ,h                                                                                  (3.49)                

2,

,0 0j

z     on    0, ,    
2,

, 0j

z N    on   , .b                                              (3.50) 
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respectively. From Lemma 3.5 and by maximum principle for the solution of the 

problem (3.45) – (3.47) we have  

,

1, ,max
h

h

z





  

,

2max ( )
h

q w z





  2

4 ( ).c h                                 (3.51) 

The solution 
2, ,h

z

 of the problem (3.48) – (3.50) is the error of the approximate 

solution obtained by the finite difference method for the boundary value Problem 5 

when  

4

2 ( ),q C     

2
2 ,

2 2
,( , ) ( ),t x t Tf x t C Q







   

4

2 ( ),i Tq C





 1,3.i              (3.52)     

and 


( ) ( )
1
( ) ( )
3

(0) (0),

(0) ( ),

q q

q q

q z

q z b



      0,1,2.q                                                                (3.53) 

Since the function 
2

tz u   satisfies the equation (3.26) with the initial function 2q  on 

2  and boundary functions  1 3,q q  on 1  and 3  respectively, using (3.52), (3.53) 

and on the basis of Theorem 1.1 and the maximum principle in Chapter 4 of [19] we 

obtain 

,

2, ,max
h

h

z





  

2

5 ( ).c h                                                     (3.54) 

Using (3.44), (3.51) and (3.54) we obtain (3.39).  

3.4 Implicit difference problem for the approximation of x tu   

Given the Problem 1(iii), we setup the Problem 3 with (3.10) for tw u   and use the 

difference system (3.12) – (3.14) for obtaining the approximate solution .w  We denote 

i x tp u    on ,i  1,2,3i   respectively, and give the following boundary value 

problem for x ty u    (see also [23]).  
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Problem 6:   

( , )x tLy f x t       on     TQ                                                          (3.55)                     

2( ,0)y x p     on      2                                                                    (3.56)                                

1(0, )y t p     on      1 ,  3( , )y b t p     on      3 ,                            (3.57) 

where, ( , )f x t  is the given function in (2.1). We take 

1
1

3 ( ) 4 ( , ) (2 , )
( )

2
h

w t w h t w h t
p w

h

  
  on  0, ,                                     (3.58)              

2 0 ( )h xp D w x   on  ,0 ,h                                                                  (3.59)                

2
3

3 ( ) 4 ( , ) ( 2 , )
( )

2
h

w t w b h t w b h t
p w

h

   
     on   , ,b                        (3.60) 

where, 
(1)

0 )  ( ) (w x u x  and 1 1 2 2( ), ( ).t tw D u t w D u t   

We construct the following difference problem for the numerical solution of      

Problem 6 and denote this solution by y  

, 3 ,

, ,

h h

t m m y my a y      on  , ,h                                                    (3.61)              

0

2m hy p   on  ,0 ,h                                                                         (3.62)                

0 1 ( )j

hy p w    on    0, ,    3 ( )j

N hy p w   on   , .b                           (3.63) 

Here, ihp  are defined by (3.58) – (3.60) 
,

,

h

t my 
, 

3 ,h

my  are formulae analogous to (3.15) 

and (3.16) respectively, and  
0 ( ,0),m my y x  0 (0, ),j

jy y t  ( , )j

N jy y b t  and  

 1
, ,

.
m j

y m x t x t
f



     

Lemma 3.7: The following inequality holds 

| ( ) ( ) |ih ihp w p w 2

1( ),hc     1,3.i                                        (3.64) 
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where w is the solution of the Problem 3 with (3.10) and w  is the solution of the 

difference problem (3.12) – (3.14). 

Proof: From (3.58), (3.60) and Theorem 3.2, we have 

| ( ) ( ) |ih ihp w p w 2 2 2

1

1
4( ) ( 2 )( ) ( ) ( ),

2
h h hch c h c

h
          1,3.i       (3.65) 

Lemma 3.8: The following inequality is true 

0, ,

max | ( ) |
b

ih ip w p
  


2

2 ( ),hc     1,3.i                                        (3.66) 

where, w  is the solution of the difference problem (3.12) – (3.14). 

Proof: On the basis of Lemma 3.1, the exact solution of Problem 3 belongs to 

6
6 ,

2
, ( ).x t TC Q







 Then at the end points 0,(0, )   and ,( , ) bb   of each line 

segment  ( , ) : 0 ,0x t x b t T     the equations (3.58) and (3.60) give the second order 

approximation of xw  respectively. From the truncation error formula (see [20]) it 

follows that 

0, ,

max | ( ) |
b

ih ip w p
  



2
3max| |

3 TQ
x

h
w 

2

3 ,c h   1,3.i                               (3.67) 

On the basis of Lemma 3.7 using the estimation (3.64) and (3.67) follows (3.66).  

Theorem 3.9: The solution y  of the finite difference problem (3.61) – (3.63) satisfies 

,

max | |
h

y y


  
2

4 ( ),c h                                                       (3.68) 

where x ty u    is the exact solution of the Problem 6. 

Proof: Let  
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,h

y y y      on    , ,h                                                       (3.69) 

where x ty u   . Denote by 
,

, max .
h

h

y y y





    From (3.61) – (3.63) and (3.69) we 

have  

, 3 ,

, , ,

h h

y t m y m ya       on  , ,h                                                                  (3.70)              

0

, 0y m    on  ,0 ,h                                                                                   (371)                

,0 1 ( )j

y hp w y      on    0, ,    , 3 ( )j

y N hp w y     on   , ,b                 (3.72) 

where 
3

, , .y t m y ma y y      We take 

, 1, , 2, ,h h h

y y y

      ,                                                                     (3.73) 

and 1, , 2, ,,h h

y y

    satisfy the difference problems  

1, , 3 1, ,

, , ,

h h

y t m y ma     on  , ,h                                                                        (3.74)              

1,0

, 0y m    on  ,0 ,h                                                                                 (3.75)                

1,

,0 1 ( )j

y hp w y      on    0, ,    
1,

, 3 ( )j

y N hp w y     on   , ,b                   (3.76) 

and  

2, , 3 2, ,

, , ,

h h

y t m y m ya       on  , ,h                                                                (3.77)              

2,0

, 0y m    on  ,0 ,h                                                                                  (3.78)                

2,

,0 0j

y     on    0, ,    
2,

, 0j

y N    on   , .b                                              (3.79) 

respectively. From Lemma 3.8 and by maximum principle for the solution of the 

system (3.74) – (3.76) we have  

,

1, ,max
h

h

y





  

,1,3
max max ( )

h

ih
i

p w y


  2

4 ( ).c h                                 (3.80) 
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The solution 
2, ,h

y

 of the problem (3.77) – (3.79) is the error of the approximate 

solution obtained by the finite difference method for the Problem 6 when the boundary 

values satisfy the conditions 

5

2 ( ),p C     

3
3 ,

2
,( , ) ( ),x t x t Tf x t C Q







    

5

2 ( ),i Tp C





 1,3.i              (3.81)     


( ) ( )
1
( ) ( )
3

(0) (0),

(0) ( ),

q q

q q

p y

p y b



      0,1,2.q                                                                (3.82) 

Since the function x ty u    satisfies the equation (3.55) with the initial function 2p  

on 2  and boundary functions 1 3,p p  on 1  and 3 , respectively using (3.81) and 

(3.82) and on the basis of Theorem 1.1 and the maximum principle in Chapter 4 of 

[19] we obtain 

,

2, ,max
h

h

y





  

2

5 ( ).c h                                                     (3.83) 

using (3.73), (3.80) and (3.83) we obtain (3.68).  

3.5 Numerical aspects 

Example 4:  we consider the following boundary value problem 

      ( , )Lu f x t     on     TQ ,                                                                         

41

5( ,0) 1u x x      on      2 ,                                                                            

(0, ) cos( )u t t     on      1 ,                                                          

41

10(1, ) sin(1) cos( ) 1u t t t       on      3 ,      

where 

241 31 72 41 31 41 41

5 10 5 10 5 10 5
41 41 41 36

( , ) sin( ) sin( ) 1 cos( ) .
10 5 5 5

f x t x t x t t x t x 
    

        
     

 

3.5.1 Numerical results for tu  and 
2

xu  
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Using the proposed Problem 3 with (3.10) and Problem 4 with (3.11) we construct the 

boundary value problems for tw u   and 
2 ,xu    respectively. Then for the 

approximate solution of the Problem 3 with (3.10) the difference system (3.12) – (3.14) 

and for the Problem 4 with (3.11) the difference system (3.18) – (3.20) are solved 

directly by applying Gauss-Thomas Method. Using the exact solutions, 

31 41

10 5
41

( , ) sin( ) sin( ),
10

w x t t x t  

231 41 41 72 41 41

5 10 5 5 10 5
41 36 41

( , ) cos( ) 1 sin( ),
5 5 5

x t x t x x t x
   

     
  

 

we denote the maximum error on the grid points by 
,

, max | |
h

h

w w w





    and by 

,

, max | | .
h

h








     Table 3.1 demonstrates the maximum errors for 
2

2 ,r
h

    

2,3   and the corresponding process time for different step sizes and the order of 

convergence ,h

w

   

( 1) ( 2)

2 ,2

,

2 ,2

w
h

w

w

 

 






 

   
                                                    (3.84) 

of w  to the exact solution tw u   with respect to h  and  , for Example 4. 

Table 3.1: Maximum errors, corresponding CPU time for different step sizes in space 

and time and 
,h

w

 , for Example 4. 

( 2 , 2 )

, CPU

h

h

 



  
 

( 1) ( 2)( 2 , 2 )

, CPU

h

h

 



    
 

2 ,2

w

 


 

 
( 1) ( 2)2 ,2

w

 


   

 
,h

w

  

5 12

6 14

5 13

6 15

(2 ,2 ) 0.469

(2 ,2 ) 2.938

(2 ,2 ) 0.812

(2 ,2 ) 5.812

 

 

 

 

 

6 14

7 16

6 15

7 17

(2 ,2 ) 2.938

(2 ,2 ) 22.422

(2 ,2 ) 5.812

(2 ,2 ) 44.542

 

 

 

 

 

1.3101 02

3.3328 03

1.3335 02

3.3906 03

E

E

E

E









 

3.3328 03

8.3892 04

3.3906 03

8.5244 04

E

E

E

E









 

3.9309

3.9727

3.9329

3.9775

 



53 

 

 

 

Table 3.2 presents the maximum errors and the corresponding central processing unit 

time for 
92 ,h  2 ,r  7,8,9,10,11   and the order of convergence w

   

( 1)

,2

,2
,

h

w

w
h

w












 
                                                    (3.85) 

of w  in time variable t (with respect to  ). 

Table 3.2: Maximum errors, corresponding CPU time for different step size in time 

and w

 , for Example 4.   

  

 

Note that the 
2( )O h   order of convergence corresponds to 22 of the quantities 

defined by (3.84), and 12  of the quantities defined by (3.85) respectively. Figure 3.1 

shows the exact solution tw u   and the grid functions 
11 142 ,2w
 

 denoting the 

approximate solution w   for 
112h   and 

142   for Example 4. The error function 

11 142 ,2 | |w w w
 

   for 
112h   and 

142   is given in Figure 3.2. The exact solution 

2

xu    and the grid functions 
11 142 ,2
 

 denoting the approximate solution    for 

( 2 , 2 )

, CPU

h

h

 



  
 

( 1)( 2 , 2 )

, CPU

h

h

 



   
 

2 ,2

w

 


 

 
( 1)2 ,2

w

 


  

 w

  

9 7

9 8

9 9

9 10

(2 ,2 ) 0.234

(2 ,2 ) 0.359

(2 ,2 ) 0.672

(2 ,2 ) 1.312

 

 

 

 

 

9 8

9 9

9 10

9 11

(2 ,2 ) 0.359

(2 ,2 ) 0.672

(2 ,2 ) 1.312

(2 ,2 ) 2.609

 

 

 

 

 

2.2916 02

1.1459 02

5.7182 03

2.8450 03

E

E

E

E









 

1.1459 02

5.7182 03

2.8450 03

1.4078 03

E

E

E

E









 

1.9998

2.0040

2.0099

2.0209
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112h   and 
142   are presented in Figure 3.3. Also the error function 

11 142 ,2 | |  
 

   for 
112h   and 

142   is shown in Figure 3.4. 

 

Figure 3.1: The exact solution tw u   and the grid functions 
11 142 ,2w
 

 presenting the 

approximate solution w   when 
112h   and 

142  , for Example 4. 
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Figure 3.2: The error function 
11 142 ,2

w
 

 representing | |w w  when 112h  and 

142 ,   for Example 4. 

 

Figure 3.3: The exact solution 
2

xu    and the grid functions 
11 142 ,2
 

 presenting the 

approximate solution    when 112h   and 142 ,   of Example 4. 
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Figure 3.4: The error function 
11 142 ,2


 

 presenting | |   for 112h   and 
142 ,   

of Example 4. 

 

3.5.2 Numerical results for 
2

t u  

Here, the boundary value problem for 
2

tz u   is constructed using the proposed 

Problem 5 and the approximate solution w . Further, the approximate solution z  of 

the difference problem (3.36) – (3.38) is obtained at the same grid points. Using the 

exact solution  

21 41

210 5
41 31

( , ) sin( ) cos( )
10 10

z x t t x t    

we present the maximum errors by 
,

, max | | .
h

h

z z z





    The order of convergence of 

the approximate solution z  to the exact solution 
2

tz u   in spatial variable x and in 

time variable t is denoted by 
,h

z

  analogous to the formula (3.84). The order of 

convergence of z  to the exact solution z  in time variable t  is represented by z

  

analogous to the formula (3.85). Table 3.3 shows  the maximum errors and the 

corresponding CPU time for  2 ,r   2,3   and the order of convergence 
,h

z

 , 
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while Table 3.4, shows the maximum errors for 92h   and 2 ,   

7,8,9,10,11  , and the corresponding elapsed time with the order of convergence 

z

 , for Example 4. Figure 3.5 demonstrates the exact solution 
2

tz u   and the grid 

functions 
11 142 ,2z
 

 denoting the approximate solution z  for 112h   and 142  , for 

Example 4. The Figure 3.6 illustrates the error function 
11 142 ,2 | |z z z
 

   for 112h   

and 
142  , for the same example. 

Table 3.3: Maximum errors, corresponding CPU time for different step sizes in space 

and time and 
,h

z

 , for Example 4. 

 

Table 3.4: Maximum errors, corresponding CPU time for different step size in time 

and  ,z

  for Example 4. 

 

 

( 2 , 2 )

, CPU

h

h

 




 
 

 

( 1) ( 2)
( 2 , 2 )

, CPU

h

h

 




   
 

 

2 ,2

z

 


 

 
( 1) ( 2)2 ,2

z

 


   

 
,h

z

  

5 12

6 14

5 13

6 15

(2 ,2 ) 0.453

(2 ,2 ) 3.344

(2 ,2 ) 0.922

(2 ,2 ) 6.828

 

 

 

 

 

6 14

7 16

6 15

7 17

(2 ,2 ) 3.344

(2 ,2 ) 26.000

(2 ,2 ) 6.828

(2 ,2 ) 52.375

 

 

 

 

 

4.1795 02

1.0631 02

4.2309 02

1.0758 02

E

E

E

E









 

1.0631 02

2.6706 03

1.0758 02

2.7008 03

E

E

E

E









 

3.9314

3.9808

3.9328

3.9833

 

,

( 2 , 2 )

CPUh

h  



  
 

( 1)

,

( 2 , 2 )

CPUh

h  



   
 

2 ,2

z

 


 

 
( 1)2 ,2

z

 


  

 z

  

9 7

9 8

9 9

9 10

(2 ,2 ) 0.266

(2 ,2 ) 0.406

(2 ,2 ) 0.781

(2 ,2 ) 1.531

 

 

 

 

 

9 8

9 9

9 10

9 11

(2 ,2 ) 0.406

(2 ,2 ) 0.781

(2 ,2 ) 1.531

(2 ,2 ) 3.078

 

 

 

 

 

5.1406 02

2.5678 02

1.2708 02

6.3529 03

E

E

E

E









 

2.5678 02

1.2708 03

6.3529 03

3.1301 03

E

E

E

E









 

2.0019

2.0206

2.0004

2.0296
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Figure 3.5: The exact solution 
2

tz u   and the grid functions 
11 142 ,2z
 

 presenting the 

approximate solution z  for 
2

tz u   when 112h   and 142  , of Example 4. 

 

 

Figure 3.6: The error function 
11 142 ,2

z
 

  presenting | |z z for 112h   and 
142  , 

of Example 4. 

3.5.3 Numerical results for x tu   

We setup the boundary value problems for x ty u    from the proposed Problem 6 

using the approximate solution w . The approximate solution y  of the difference 

system (3.61) – (3.63) is obtained at the same grid points. By virtue of the exact 

solution 

36 31 41

5 10 5
41 41

( , ) cos( )
10 5

y x t x t x  
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We denote the maximum error by 
,

, max | | .
h

h

y y y





    The maximum errors,  

corresponding CPU time for different step sizes in space and   

( 1)

2 ,2

2 ,2

y
h

y

y

 

 





 

  
  ,                                                  (3.86) 

which is the order of convergence of y  to the exact solution x ty u    in the spatial 

variable x (with respect to h ) are given in Table 3.5. Table 3.6 presents the processing 

unit time for different step sizes and the corresponding maximum errors with the order 

of convergence y

  of y  analogous to the formula (3.85) to the exact solution 

x ty u    in time variable t , for Example 4.  Figure 3.7 demonstrates the exact 

solution x ty u    and the grid function 
11 142 ,2y
 

 denoting the approximate solution 

y   for 112h   and 142 .   The error function 
11 142 ,2 | |y y y
 

   for 112h   and 

142   is shown in Figure 3.8. The maximum errors 
14,2h

y


 when 
142  , with 

respect to ,h  and the maximum errors 
92 ,

y




 when 
92 ,h   with respect to  are 

illustrated by Figure 3.9 and Figure 3.10, respectively.  

Table 3.5: Maximum errors, corresponding CPU time for different step sizes in space 

and time and y

  , for Example 4. 

 

,

( 2 , 2 )

CPUh

h  



  
 

( 1)

,

( 2 , 2 )

CPUh

h  



   
 

2 ,2

y

 


 

 
( 1)2 ,2

y

 


  

 
,h

y

  

7 14

8 14

9 14

10 14

(2 ,2 ) 7.203

(2 ,2 ) 13.859

(2 ,2 ) 27.453

(2 ,2 ) 55.016

 

 

 

 

 

8 14

9 14

10 14

11 14

(2 ,2 ) 13.859

(2 ,2 ) 27.453

(2 ,2 ) 55.016

(2 ,2 ) 73.091

 

 

 

 

 

0.1170

3.0533 02

6.9746 03

1.0375 03

E

E

E







 

3.0533 02

6.9746 03

1.0375 03

1.9800 04

E

E

E

E









 

3.832

4.378

6.723

5.240
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Table 3.6: Maximum errors, corresponding CPU time for different step size in time 

and ,y

  for Example 4. 

 

 

Figure 3.7: The exact solution x ty u    and the grid function 
11 142 ,2y
 

 presenting the 

approximate solution y   for 112h   and 142  , of Example 4. 

,

( 2 , 2 )

CPUh

h  



  
 

( 1)

,

( 2 , 2 )

CPUh

h  



   
 

2 ,2

y

 


 

 
( 1)2 ,2

y

 


  

 y

  

9 7

9 8

9 9

9 10

(2 ,2 ) 0.375

(2 ,2 ) 0.438

(2 ,2 ) 0.859

(2 ,2 ) 1.672

 

 

 

 

 

9 8

9 9

9 10

9 11

(2 ,2 ) 0.438

(2 ,2 ) 0.859

(2 ,2 ) 1.672

(2 ,2 ) 3.422

 

 

 

 

 

0.1661

7.9536 02

3.6201 02

1.4559 02

E

E

E







 

7.9536 02

3.6201 02

1.4559 02

4.9560 03

E

E

E

E









 

2.088

2.197

2.487

2.938
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Figure 3.8: The error function 
11 142 ,2

y
 

 presenting | |y y  for 112h   and 142  , 

of Example 4. 

 

 

 

                  

Figure 3.9: The maximum errors 
14,2h

y


 when 142  , with respect to h , for 

Example 4.  
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Figure 3.10: The maximum errors 
92 ,

y




 when 
92 ,h   with respect to  , for 

Example 4. 
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Chapter 4 

SIX POINT IMPLICIT METHODS FOR THE 

APPROXIMATION OF SECOND DERIVATIVES TO 

HEAT EQUATION WITH CONSTANT COEFFICIENTS 

4.1 Chapter overview 

The work in this chapter is organized as follows: In Section 2, the first type boundary 

value problem for one dimensional heat equation is considered requiring that the initial 

function belongs to 
10C 

  the heat source function is from 

8
8 ,

2
, ,x tC




 the boundary 

functions are from 

10

2 ,C


 and between the initial and the boundary functions the 

conjugation conditions of orders 0,1,2,3,4,5q   are satisfied. We give the boundary 

value problems for 
u

t




 and 

2

2

u

x




 based on the assumptions, and difference problems of 

symmetric six point implicit schemes approximating 
u

t




 and 

2

2

u

x




 are constructed. For 

the error function we provide a pointwise prior estimation depending on ( , )x t  

which is the distance from the current grid point in the domain to the boundary. In 

Section 3, and Section 4, special six point implicit difference problem for the 

approximation of 
2

2

u

t




 and 

2u

x t



 
 respectively are proposed and it is proved that the 

solution of the constructed difference schemes converge uniformly to the exact value 

of the respective derivatives on the grids of order 
2 2( )O h  . In Section 5, we 
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constructed a numerical example to justify the theoretical results and the obtained 

results are presented through tables and figures.  

4.2 Crank-Nicolson schemes for the approximation of tu  and 
2

xu  

Let the following problem be given: 

Problem 1:   

(iv) The boundary value problem (2.1) – (2.3) with the assumption   

10

0 ( ) ( ),u x C    

8
8 ,

2
,( , ) ( )x t Tf x t C Q







  and 

10

2( ) ( ),i Tu t C





 1,2.i               (4.1)       

and satisfying the conjugation conditions (2.9) of order 0,1,2,3,4,5.   

Let tw u   and 
2

xu    and further w  satisfies Problem 3 and   satisfies Problem 

4, where, 

6
6 ,

2
,( , ) ( ),x t TF x t C Q







     
8

0 ( ) ( ),w x C     

8

2( ) ( ),i Tw t C





   1,2,i             (4.2)      

6
6 ,

2
,( , ) ( ),x t TG x t C Q







     
8

0 ( ) ( ),x C      

8

2( ) ( ),i Tt C


 


   1,2,i              (4.3)       

both satisfying the conjugation conditions (2.9) of order 0, 1, 2, 3, 4. 

Lemma 4.1:  The Problem 1(iv) has unique solution 

10
10 ,

2
, ( )x t Tu C Q







  and the 

constructed boundary value Problem 3 with (4.2) and Problem 4 with (4.3) have unique 

solution w  and   respectively, belonging to the space 

8
8 ,

2
, ( ).x t TC Q







 

Proof: From Theorem 1.1, Problem 1(iv) has unique solution 

10
10 ,

2
, ( ).x t Tu C Q







  

Taking into account that Problem 3 and Problem 4 with (4.2) and (4.3) respectively 
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are also first type boundary value problems analogous to the problem (2.1) – (2.3) on 

the basis of Theorem 1.1 the proof follows. 

To realize the numerical solution of the Problem 3 satisfying (4.2) and Problem 4 with 

(4.3), we propose the following implicit six point difference problems, of which the 

solution of (4.4) – (4.6) is denoted by ,w  and the solution of (4.10) – (4.12) is presented 

by   see also [18]. 

, 6 ,

, ,

h h

t m m w mw a w      on  , ,h                             (4.4)    

0

0 ( )m mw w x   on  ,0 ,h                                                                    (4.5)       

0 1( )j

jw w t    on    0, ,    2( )j

N jw w t   on   , ,b                             (4.6) 

where, 
0 ( ,0),m mw w x  0 (0, ),j

jw w t  ( , )j

N jw w b t  and 

1
,

,

j j
h m m
t m

w w
w 



 
 ,                                                                                              (4.7)  

1 1 1
6 , 1 1 1 1

2 2

2 21

2

j j j j j j
h m m m m m m
m

w w w w w w
w

h h


  

   
    

   
 

,                                         (4.8)                                         

, 1 1

2 2

, , .w m m t m
j j

F x t f x t
 

   
     

   

                                                                     (4.9) 

, 6 ,

, ,

h h

t m m m
a 


      on  , ,h                                      (4.10)    

0

0( )m mx    on  ,0 ,h                                                                     (4.11)       

0 1( )j

jt     on    0, ,    2 ( )j

N jt    on   , ,b                              (4.12) 

where 
,

,

h

t m

 , 
6 ,h

m

  are formulae analogous to (4.7) and (4.8) respectively, and 

0 ( ,0),m mx   0 (0, ),j

jt   ( , )j

N jb t   also 
1

2

2

1, ,
2

, .
m

j

m xm x tj
G x t f






 
 
 
 

 
   

 

 Here 

1

2

0.5j
j

t t 

  , ( , )f x t  is the given function in (2.1) and 0 ( )u x  given in (2.2), 
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1 2( ), ( )u t u t  given in (2.3) are the initial and boundary functions respectively. Using 

maximum principle the difference problems (4.4) – (4.6) and (4.10) – (4.12) have 

unique solution.  

Theorem 4.2: Let w  be the solution of the differential Problem 3 with (4.2) and w  

be the solution of the difference problem (4.4) – (4.6). The following pointwise 

estimation holds true 

| |w w  
2 2

1 ( )c h                                                       (4.13) 

For 1.r   

Proof: On the basis of Theorem 1.1 the exact solution 

8
8 ,

2
, ( ).x t Tw C Q







  Let 

,h

w w w    then the error function 
,h

w

 satisfies the following difference problem 

, 6 ,

, , ,

h h

w t m w m wa       on  , ,h                                                          (4.14)              

0

, 0w m    on  ,0 ,h                                                                          (4.15)                

,0 0j

w     on    0, ,    , 0j

w N    on   , ,b                                      (4.16) 

where 
6

, ,w t m w ma w w      and ,w m is as given in (4.9). Using Taylor’s formula 

for the function ( , )w x t  about the node 
1

2

,m
j

x t


 
 
 

 gives that 
2 2( ).w O h    

Applying Lemma 2.2 to the problem (4.10) – (4.12) and (4.14) – (4.16) and on the 

basis of Lemma 2.3 we obtain 
,| |h

w

 2 2

1 ( ).hc     

Theorem 4.3: The following inequality holds 

| |   
2 2

2 ( )c h                                                       (4.17) 

For 1r   where,   is the solution of the differential Problem 4 with (4.3) and   is 

the solution of the difference problem (4.10) – (4.12).  
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Proof: The proof is analogous to the proof of Theorem 4.2.  

4.3 Six point implicit scheme for the approximation of 
2

t u  

When Problem 1(iv) is given we setup the boundary value Problem 3 with (4.2) for 

tw u   and use the difference system (4.4) – (4.6) for obtaining the approximate 

solution .w  We denote 
2

i tq u   on ,i  1,2,3i   and construct Problem 5, given in 

Chapter 3, Section 3 for 
2 ,tz u   see also [18].  

We take 1q   as same in (3.29),                                                                                                                                         

                       2 0

1
( ) 3 ( ) 4 ( , ) ( ,2 )

2
q w w x w x w x  


      on  ,0 ,h                   (4.18) 

and 3q   as in (3.31), where, 
(1)

0 ( ) ( )w x u x  as defined in (2.5). 

Lemma 4.4: The following inequality holds: 

2 2| ( ) ( ) |q w q w  2 2

1( )hc                                           (4.19) 

For 1r   where, w is the solution of the differential Problem 3 with (4.2) and w is 

the solution of the difference problem (4.4) – (4.6). 

Proof: From Theorem 4.2, we have 

2 2| ( ) ( ) |q w q w 
1

2 2 2 2 2 21
4( ) ( 2 )( ) ( ) ( )

2
hc h hc c 


                     (4.20) 

Lemma 4.5: The following inequality is true: 

,0

2 2max | ( ) |
h

q w q



2 2

2 ( )hc                                                   (4.21) 

for 1r   where, w  is the solution of the difference problem (4.4) – (4.6). 
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Proof: On the basis of Lemma 4.1, 

8
8 ,

2
, ( )x t Tw C Q







  and at the end points ,0( ,0) hmh   

of each line segment  ( , ) : 0 ,0x t x b t T     the equation (4.18) gives the second 

order approximation of .t w  From the truncation error formula (see [20]) it follows 

that 

                            
,0

2 2max | ( ) |
h

q w q




2
3 2

2max| | ,
3 TQ

t w c


                                  (4.22) 

Using Lemma 4.4 and the estimation (4.19), (4.22) follows (4.21).  

We construct the following difference problem for the second order accurate in space 

and in time for numerical solution of Problem 5. 

, 6 ,

, ,

h h

t m m z mz a z      on  , ,h                                                        (4.23)              

0

2 ( )mz q w   on  ,0 ,h                                                                (4.24)                

0 1

jz q     on    0, ,    3

j

zz q    on   , ,b                                   (4.25) 

where, ,iq   1,2,3i   are defined by (3.29) , (4.18) and (3.31) respectively and 

1

2

2

,
,

| .
m

j

z m t
x t

f



 
 
 
 

    

Theorem 4.6: The solution z  of the finite difference problem (4.23) – (4.25) satisfies 

,

max | |
h

z z


  
2 2

3( ),c h                                                       (4.26) 

for 1r   where, 
2

tz u   is the exact solution of Problem 5. 

Proof: Let  

,h

z z z      on    , ,h                                                       (4.27) 
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where 
2 .tz u   Denote by 

,

, max .
h

h

z z z





    From (4.23) – (4.25) and (4.27) we 

have  

, 6 ,

, , ,

h h

z t m z m za      on  , ,h                                                                 (4.28)              

0

, 2 ( )z m q w z     on  ,0 ,h                                                                  (4.29)                

,0 0j

z     on    0, ,    , 0j

z N    on   , ,b                                            (4.30) 

where 
6

, , .z t m z ma z z       We take 

, 1, , 2, ,h h h

z z z

                                                                           (4.31) 

and 1, , 2, ,,h h

z z

   satisfy the problems 

1, , 6 1, ,

, , ,

h h

z t m z ma     on  , ,h                                                                        (4.32)              

1,0

, 2 ( )z m q w z     on  ,0 ,h                                                                   (4.33)                

1,

,0 0j

z     on    0, ,    
1,

, 0j

z N    on   , ,b                                 (4.34) 

and  

2, , 6 2, ,

, , ,

h h

z t m z m za      on  , ,h                                                                (4.35)              

2,0

, 0z m    on  ,0 ,h                                                                                  (4.36)                

2,

,0 0j

z     on    0, ,    
2,

, 0j

z N    on   , .b                                              (4.37) 

respectively. From Lemma 4.5 and by maximum principle for the solution of the 

system (4.32) – (4.34) we have  

,

1, ,max
h

h

z





  

,

2max ( )
h

q w z





  2 2

4 ( ).c h                                 (4.38) 

The solution 
2, ,h

z

 of problem (4.35) – (4.37) is the error of the approximate solution 

obtained by the finite difference method for the Problem 5 when  

6

2 ( ),q C     

4
4 ,

2 2
,( , ) ( ),t x t Tf x t C Q







   

6

2 ( ),i Tq C





 1,3.i              (4.39)     
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and 


( ) ( )
1
( ) ( )
3

(0) (0),

(0) ( ),

q q

q q

q z

q z b



      0,1,2,3q                                                        (4.40) 

Since the function 
2

tz u   satisfies the equation (3.26) with the initial function 2q  on 

2  and boundary functions 1 3,q q  on 1  and 3  respectively, using (4.39), (4.40) and 

on the basis of maximum principle in Chapter 4 of [19] we obtain 

,

2, ,max
h

h

z





  

2 2

5 ( ).c h                                                     (4.41) 

Using (4.31), (4.38) and (4.41) we obtain (4.26).  

4.4 Six point implicit scheme for the approximation of x tu   

Given the Problem 1(iv), we setup the Boundary Value Problem 3 with (4.2) for 

tw u   and use the difference system (4.4) – (4.6) for obtaining the approximate 

solution .w  We denote i x tp u    on ,i  1,2,3i   respectively and construct    

Problem 6 for .x ty u    

We construct the following difference problem for the numerical solution of      

Problem 6 and denote this solution by y  

, 6 ,

, ,

h h

t m m y my a y      on  , ,h                                                    (4.42)              

0

2m hy p   on  ,0 ,h                                                                         (4.43)                

0 1 ( )j

hy p w    on    0, ,    3 ( )j

N hy p w   on   , .b                           (4.44) 

Here, ihp  are defined by (3.58) – (3.60) 
,

,

h

t my 
, 

6 ,h

my  are formulae analogous to (4.7) 

and (4.8) respectively, and  
0 ( ,0),m my y x  0 (0, ),j

jy y t  ( , )j

N jy y b t  and  

1

2

, ,
.

m
j

y m x t x t
f



 
 
 
 

     



71 

 

Lemma 4.7: The following inequality holds 

| ( ) ( ) |ih ihp w p w 2 2

1( ),hc    1,3.i                                        (4.45) 

for 1r   where w is the solution of the differential Problem 3 with (4.2) and w  is the 

solution of the difference problem (4.4) – (4.6). 

Proof: From (3.58), (3.60) and Theorem 4.2, we have 

| ( ) ( ) |ih ihp w p w 2 2 2 2 2

1

2( ) (
1

4 )( ) ( ),2
2

()h h hch c h c
h

        
  1,3.i    (4.46) 

Lemma 4.8: The following inequality is true 

0, ,

max | ( ) |
b

ih ip w p
  


2 2

2 ( ),hc    1,3.i                                        (4.47) 

for 1r   where, w  is the solution of the difference problem (4.4) – (4.6). 

Proof: On the basis of Lemma 4.1, the exact solution of Problem 3 with (4.2) belongs 

to 

8
8 ,

2
, ( ).x t TC Q







 Then at the end points 0,(0, )   and ,( , ) bb   of each line 

segment  ( , ) : 0 ,0x t x b t T     the equations (3.58) and (3.60) give the second order 

approximation of xw  respectively. From the truncation error formula (see [20]) it 

follows that 

0, ,

max | ( ) |
b

ih ip w p
  



2
3max| |

3 TQ
x

h
w 

2

3 ,c h   1,3.i                               (4.48) 

On the basis of Lemma 4.7 using the estimation (4.45) and (4.48) follows (4.47).  

Theorem 4.9: The solution y  of the finite difference problem (4.42) – (4.44) satisfies 

,

max | |
h

y y


  
2 2

4 ( ),c h                                                       (4.49) 
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for 1r   where, x ty u    is the exact solution of Problem 6. 

Proof: On the basis of maximum principle in Chapter 4 of [19], the proof follows from 

Lemma 4.8 and is analogous to the proof of Theorem 3.9. 

4.5 Numerical aspects 

Example 5: [18] We consider the following boundary value problem 

      ( , )Lu f x t     on     TQ ,                                                                         

( ,0) 0.005 sin(2 )u x x      on      2 ,                                                                            

51

10(0, ) 0.005cos( )u t t     on      1 ,                                                          

51 51

10 10(1, ) 0.0005sin( ) 0.005cos( ) sin(2 )u t t t        on      3 ,      

where,   
51 41 41

10 5 10
51 46 51

( , ) sin( ) 0.0005 0.005
5 5 10

f x t x x t
 

   
 

   

            

51 41 41

25 10 10
51

0.0005 cos( ) 4 sin(2 )
10

x t x x                       (4.50) 

4.5.1 Numerical results for tu   

The boundary value problems for tw u   is constructed using the proposed Problem 

3 with (4.2). Further, the approximate solution w  of the difference system (4.4) – (4.6) 

is obtained by using Gauss-Thomas Algorithm (2.104) since the obtained algebraic 

system of equations at each time level has a structure analogues to (2.107). By the 

known exact solution 

51 41 51 41 51

5 10 10 10 10
51 51

( , ) 0.0005 cos( ) 0.005 sin( )
10 10

w x t x t t t t                       (4.51) 
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we denote the maximum error by 
,

, max | |
h

h

w w w





   . Table 4.1 presents the 

maximum errors and the corresponding CPU time for different step sizes in space and 

the order of convergence of the approximate solution w  to the exact solution tw u   

in spatial variable x  (with respect to h ). 

( 1)

2 ,2

2 ,2

w
h

w

w

 

 





 

  
  .                                                (4.52) 

Table 4.2, shows CPU for different step sizes of the maximum errors and the order of 

convergence 
,h

w

  analogues to (2.108) with respect to x  and t  of w  to the exact 

solution w  in x  and t . 

Table 4.1: Maximum errors, corresponding CPU time for different step size in space 

and 
h

w for Example 5.  

 

Table 4.2: Maximum errors, corresponding CPU time for different step sizes in space 

and time and 
,h

w

 for Example 5. 

 

,

( 2 , 2 )

CPUh

h  



  
 

( 1)

,

( 2 , 2 )

CPUh

h  



   
 

2 ,2

w

 


 

 
( 1)2 ,2

w

 


  

 
h

w  

4 16

5 16

6 16

7 16

(2 ,2 ) 4.375

(2 ,2 ) 6.969

(2 ,2 ) 12.578

(2 ,2 ) 23.672

 

 

 

 

 

5 16

6 16

7 16

8 16

(2 ,2 ) 6.969

(2 ,2 ) 12.578

(2 ,2 ) 23.672

(2 ,2 ) 46.375

 

 

 

 

 

2.6585 05

6.6997 06

1.6794 06

4.2013 07

E

E

E

E









 

6.6997 06

1.6794 06

4.2013 07

1.0505 07

E

E

E

E









 

3.9681

3.9893

3.9973

3.9993

 

,

( 2 , 2 )

CPUh

h  



  
 

( 1) ( 1)

,

( 2 , 2 )

CPUh

h  



    
 

2 ,2

w

 


 

 
( 1) ( 1)2 ,2

w

 


   

 
,h

w

  

4 13

5 14

6 15

7 16

(2 ,2 ) 0.625

(2 ,2 ) 1.719

(2 ,2 ) 6.219

(2 ,2 ) 23.672

 

 

 

 

 

5 14

6 15

7 16

8 17

(2 ,2 ) 1.719

(2 ,2 ) 6.219

(2 ,2 ) 23.672

(2 ,2 ) 92.891

 

 

 

 

 

2.6585 05

6.6996 06

1.6794 06

4.2013 07

E

E

E

E









 

6.6996 06

1.6794 06

4.2013 07

1.0505 07

E

E

E

E









 

3.9682

3.9893

3.9973

3.9993
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Note that the 
2 2( )O h   order of convergence corresponds to 22 of the quantity 

defined by (4.52). The exact solution tw u   and the grid functions 
7 162 ,2w
 

 presenting 

the approximate solution w   when 
72h   and 

162   are shown in Figure 4.1 for 

Example 5, while the error function 
7 162 ,2 | |w w w
 

   for 72h  , and 162   is given 

in Figure 4.2. 

 

Figure 4.1: The exact solution tw u   and the grid functions 
7 162 ,2w
 

 presenting the 

approximate solution w   for 72h   and 162  , of Example 5. 
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Figure 4.2: The error function 
7 162 ,2 | |w w w
 

   when 72h   and 162  , for 

Example 5. 

4.5.2 Numerical results for 
2

xu   

We present the numerical results for the approximate solution of pure second 

derivative of the solution ( , )u x t  with respect to x . The boundary value problems for 

2

xu    is constructed using the proposed Problem 4 satisfying (4.3). Then, the 

approximate solution  of the difference problems (4.10) – (4.12) is obtained at the 

same grid points using the Algorithm (2.104). By the known exact solution. 

41 51

25 10
51 46

( , ) 0.0005 sin( ) 4 sin(2 ),
5 5

x t x t x                         (4.53) 

we denote the maximum errors by 
,

, max | |
h

h








    . Table 4.3 shows the maximum 

errors and the corresponding processing time for different step sizes in space and the 

order of convergence 
h


  of the approximate solution   to the exact solution 

2

xu    
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for Example 5, analogous to the formula (4.52) in spatial variable x  (with respect to 

h ). Table 4.4, shows the maximum errors, the elapsed time and the order of 

convergence 
,h 


 of   to the exact solution   in time variable  t  analogous to the 

formula (2.108). As expected, 
2 2( )O h   order of convergence corresponds to 22

of the quantities was achieved. Figure 4.3 demonstrates the exact solution 
2

xu    and 

the grid functions 
7 162 ,2
 

 presenting the approximate solution   when 72h   and 

162   for Example 5. The error function 
7 162 ,2 | |  
 

   for 72h  , and 162   is 

given in Figure 4.4.  

Table 4.3: Maximum errors, corresponding CPU time for different step size in space 

and ,h


  for Example 5.   

 

Table 4.4: Maximum errors, corresponding CPU time for different step sizes in space 

and time and 
, ,h 


 for Example 5.    

 

,

( 2 , 2 )

CPUh

h  



  
 

( 1)

,

( 2 , 2 )

CPUh

h  



   
 

2 ,2 


 

 
( 1)2 ,2 


  

 
h


  

4 16

5 16

6 16

7 16

(2 ,2 ) 3.344

(2 ,2 ) 4.797

(2 ,2 ) 7.484

(2 ,2 ) 12.703

 

 

 

 

 

5 16

6 16

7 16

8 16

(2 ,2 ) 4.797

(2 ,2 ) 7.484

(2 ,2 ) 12.703

(2 ,2 ) 23.250

 

 

 

 

 

0.5116

0.1272

3.1745 02

7.9334 03

E

E





 

0.1272

3.1745 02

7.9334 03

1.9832 03

E

E

E







 

4.0220

4.0069

4.0014

4.0003

 

,

( 2 , 2 )

CPUh

h  



  
 

( 1) ( 1)

,

( 2 , 2 )

CPUh

h  



    
 

2 ,2 


 

 
( 1) ( 1)2 ,2 


   

 
,h 


  

4 13

5 14

6 15

7 16

(2 ,2 ) 0.516

(2 ,2 ) 1.141

(2 ,2 ) 3.672

(2 ,2 ) 12.703

 

 

 

 

 

5 14

6 15

7 16

8 17

(2 ,2 ) 1.141

(2 ,2 ) 3.672

(2 ,2 ) 12.703

(2 ,2 ) 46.344

 

 

 

 

 

0.5116

0.1272

3.1745 02

7.9334 03

E

E





 

0.1272

3.1745 02

7.9334 03

1.9832 03

E

E

E







 

4.0220

4.0069

4.0014

4.0003
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Figure 4.3: The exact solution 
2

xu    and the grid functions 
7 162 ,2
 

 presenting the 

approximate solution   when 72h   and 162   , for Example 5. 

 

Figure 4.4: The error function 
7 162 ,2 | |  
 

   when 72h  , and 162  , for    

Example 5.   

4.5.3 Numerical results for 
2

t u  

Now we present the numerical results for the approximate solution of pure second 

derivative of the solution ( , )u x t  with respect to t . First we construct the boundary 

value Problem 3 with (4.2) and the approximate solution w  is obtained by solving the 

system (4.4) – (4.6). Then the boundary value problem for 
2

tz u   is constructed using 
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the proposed Problem 5. Further, the approximate solution z  of the difference 

problems (4.23) – (4.25) is obtained at the same grid points. Using the exact solution  

                  

251 51 41 31

10 5 5 10
51 51 41

( , ) sin( ) 0.0005 0.005
10 10 10

z x t t x t t
  

    
   

                                                 

           

251 41 51 31

10 5 5 10
51 51 41

cos( ) 0.005 0.0005
10 10 10

t t x t
  

    
   

                (4.54) 

we denote the maximum errors by 
,

, max | | .
h

h

z z z





    Table 4.5 present the 

maximum errors, CPU time and the order of convergence 
h

z  of the approximate 

solution to the exact solution 
2

tz u   in spatial variable x analogous to the formula 

(4.52). Table 4.6, shows the maximum errors, process time and the order of 

convergence 
,h

z

  of z  to the exact solution z  with respect to h  and   analogous 

to the formula (2.108). The exact solution 
2

tz u   and the grid functions 
7 162 ,2z
 

 

presenting the approximate solution z  when 72h  , 
162   are shown in Figure 

4.5 while the error function 
7 162 ,2 | |z z z

 

   for  72h  , and 162  is presented in 

Figure 4.6. 

Table 4.5: Maximum errors, corresponding CPU time for different step size in space 

and
h

z , for Example 5.    

 

,

( 2 , 2 )

CPUh

h  



  
 

( 1)

,

( 2 , 2 )

CPUh

h  



   
 

2 ,2

z

 


 

 
( 1)2 ,2

z

 


  

 
h

z  

4 16

5 16

6 16

7 16

(2 ,2 ) 6.234

(2 ,2 ) 10.562

(2 ,2 ) 19.922

(2 ,2 ) 38.891

 

 

 

 

 

5 16

6 16

7 16

8 16

(2 ,2 ) 10.562

(2 ,2 ) 19.922

(2 ,2 ) 38.891

(2 ,2 ) 73.516

 

 

 

 

 

7.8539 05

1.9792 05

4.9611 06

1.2411 06

E

E

E

E









 

1.9792 05

4.9611 06

1.2411 06

3.1033 07

E

E

E

E
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3.9894

3.9973

3.9993

 



79 

 

Table 4.6: Maximum errors, corresponding CPU time for different step sizes in space 

and time and 
,h

z

 , for Example 5.   

 

 

Figure 4.5: The exact solution 
2

tz u   and the grid functions 
7 162 ,2z
 

 presenting the 

approximate solution z  when 72h  , 162  , for Example 5.   
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Figure 4.6: The error function 
7 162 ,2 | |z z z

 

   for 72h  , 162  , of Example 5.   

4.5.4 Numerical results for 
x tu   

Finally, we present the numerical results for the approximate solution of mixed second 

derivative of the solution ( , )u x t . First we construct the boundary value Problem 3 

with (4.2) and the approximate solution w  is obtained by solving the problem (4.4) – 

(4.6). Then, we construct the Problem 6 for x ty u    approximate solution .w  

We them, obtain the approximate solution y  of the difference problem (4.42) – (4.44) 

at the same grid points. Using the exact solution 

46 41 51

5 10 10
51 51

( , ) 0.0005 cos( )
5 10

y x t x t x                                        (4.55) 

we denote the maximum error by 
,

, max | | .
h

h

y y y





    Table 4.7 presents the CPU 

time, maximum errors and the order of convergence 
h

y   of the approximate solution 

y  to the exact solution x ty u    in spatial variable x analogous to the formula 
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(4.52). Table 4.8, shows the maximum errors and its processing unit time and the order 

of convergence 
,h

y

  of y  to the exact solution y  in time variable t analogous to the 

formula (2.108). The exact solution x ty u    and the grid function 
7 162 ,2y
 

 

presenting the approximate solution y   when 
72h  , 

162   are given in Figure 

4.7 and the error function 
7 162 ,2 | |y y y
 

   for 
72h  , 

162   is given in Figure 

4.8 for Example 5. Figure 4.9 shows the maximum errors 
16,2h

y


 when 
162 ,   

with respect to h  for y .  

Table 4.7: Maximum errors, corresponding CPU time for different step size in space 

and ,h

y  for Example 5.   

 

 

Table 4.8: Maximum errors, corresponding CPU time for different step sizes in space 

and time and 
,h

y

 , for Example 5.    

  

,

( 2 , 2 )

CPUh

h  



  
 

( 1)

,

( 2 , 2 )

CPUh

h  



   

 

2 ,2

y

 


 

 
( 1)2 ,2

y

 


  

 
h

y  

4 16

5 16

6 16

7 16

(2 ,2 ) 4.906
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Figure 4.7: The exact solution x ty u    and the grid function 
7 162 ,2y
 

 

presenting the approximate solution y   when 72h  , 
162  , for Example 5.   

 

 

Figure 4.8: The error function 
7 162 ,2 | |y y y
 

   for 
72h  , 

162  , of   

Example 5.   



83 

 

 

Figure 4.9: The maximum errors 
16,2h

y


 for 
162 ,   with respect to h , of 

Example 5.   
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Chapter 5 

CONCLUSION AND FINAL REMARKS 

We study the finite difference approximation of ,xu ,tu
2 ,xu 2

t u  and x tu   of 

which, ( , )u x t is the solution of the first type boundary value problem for one 

dimensional heat equation with constant coefficients. Difference boundary value 

problems of four point and six point implicit schemes are constructed. It is assumed 

that the initial function, boundary functions and the nonhomogeneous term in the heat 

equation possess a number of derivatives in the variables x and t  necessary in this 

connection for performing current and subsequent manipulation in approximating the 

considered derivatives. We prove that the solution of the proposed four point and six 

point difference schemes converge uniformly to the exact value of  ,
u

x




,

u

t




 

2

2

u

x




, 

2

2

u

t




, and 

2u

x t



 
 on the grids of order 

2( )O h   and 
2 2( )O h   respectively, where, h 

is the step size in x  and   is the step size in time 

Remark: These results can be used in some domain decomposition methods allowing 

parallel computation [24, 25] and also the methodology may be extended to two-

dimensional heat equation.  
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