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ABSTRACT 

This study focused on three main problems, firstly, a study on the existence of the 

solution for a coupled system of fractional differential equations with integral 

boundary conditions. The solution process for the existence and uniqueness of 

solutions for the proposed problem was obtained by using the contraction mapping 

principle, and then by using Leray–Schauder’s alternative method.  

Secondly, investigation and approximation of solutions of Caputo type fractional 

differential equation with nonlinear boundary conditions has been solved by using an 

appropriate parameterization technique, where nonlinear boundary conditions were 

transformed to linear boundary conditions by using vector parameters. To solve the 

transformed problem, a numerical-analytic scheme was constructed to find the relation 

between different type’s two-point and multipoint linear boundary condition and 

nonlinear boundary conditions. 

Finally, efficient numerical - analytical computational algorithm for solving systems 

of fractional differential equations (SFDEs) Nonlinear Point Boundary-Value Problem 

with Nonlinear Boundary Conditions were considered. The fractional derivative was 

described in the Caputo sense.  

The method is based on numerical approximations of systems of fractional differential 

equations, where the properties of this method were utilized to reduce SFDEs to the 

system of algebraic equations. Special attention is given to study the convergence and 

estimate the error of the presented method. The methods introduce a promising tool 

for solving many systems of non-linear fractional differential equations. Numerical 
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examples were presented to illustrate the validity and the great potential of both 

proposed techniques.  

Keywords: fractional differential equation, sequential, Caputo, nonlocal integral 

boundary conditions 
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ÖZ 

Bu çalışma, üç temel probleme odaklanmış, ilk olarak, integral sınır koşulları olan 

birleştirilmiş kesirli diferansiyel denklem sistemi için çözümün varlığına ilişkin bir 

çalışma. Önerilen problem için çözümlerin varlığı ve tekliği için çözüm süreci, 

büzülen dönüşüm özelliğini kullanarak ve sonra Leray-Schauder’in alternatif 

yöntemini kullanarak elde edildi. 

İkincisi, Caputo tipi kesirli diferansiyel denklemin çözümlerinin doğrusal olmayan 

sınır koşullarıyla araştırılması ve yakınlaştırılması, doğrusal olmayan sınır koşullarının 

vektör parametreleri kullanılarak doğrusal sınır koşullarına dönüştürüldüğü uygun bir 

parametre belirleme tekniği kullanılarak çözülmüştür. Dönüştürülen problemi çözmek 

için, farklı türün iki noktalı ve çok noktalı doğrusal sınır koşulu ile doğrusal olmayan 

sınır şartları arasındaki ilişkiyi bulmak için sayısal-analitik bir şema oluşturulmuştur. 

Son olarak, kesirli diferensiyel denklem sistemlerinin çözümü için etkin sayısal - 

analitik hesaplama algoritması, Lineer Olmayan Sınır Koşulları ile Lineer Olmayan 

Nokta Sınır Değer Problemi ele alınmıştır. 

Yöntem, kesirli diferensiyel denklem sistemleri cebirsel denklem sistemine 

indirgemek için bu yöntemin özelliklerinin kullanıldığı kesirli diferansiyel denklem 

sistemlerinin sayısal yaklaşımlarına dayanmaktadır. Yakınsama çalışmalarına ve 

sunulan yöntemin hatasını tahmin etmeye özel önem verilir. Yöntemler, birçok 

doğrusal olmayan kesirli diferensiyel denklem sistemini çözmek için umut verici bir 

araç sunmaktadır. Her iki önerilen tekniğin geçerliliğini ve yüksek potansiyelini 

göstermek için sayısal örnekler sunulmuştur. 
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Chapter 1 

1 INTRODUCTION 

Fractional calculus is one of the major topics in modern mathematics that has attracted 

many mathematicians and generated a notable body of research literature, mostly due 

to its wide and critical applications in various fields. In essence, fractional calculus is 

a generalization of normal calculus where the concepts of derivation and integration 

are generalized to non-integer orders [1, 2, 3].  

The origins of fractional calculus can be traced back to Leibniz where he first described 

the concept of semi-derivatives in a letter to L’hopital [4, 5]. Since that time, 

contributions of many prominent figures in mathematics including Euler, Fourier, 

Holmgren, Lagrange, Caputo, Riemann, Heaviside, Liouville, and Laplace have laid 

the foundations of fractional calculus by creating the formal mathematical means 

required for dealing with fractional-order type of calculus.  

In fact, the non-integer nature of orders in fractional calculus equips this field with 

great flexibility and efficiency in terms of modeling and explaining highly complex 

phenomena, where normal calculus is practically insufficient. And as such, fractional 

calculus has found numerous applications in various fields of natural and applied 

sciences, from quantum mechanics and computational fluid dynamics to biology, 

engineering, and chemistry [6, 7, 8, 9]. Apart from practical applications, fractional 

calculus has many pivotal theoretical advantageous over normal calculus as well.  For 
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instance, Riemann–Liouville fractional derivative can be employed on a function that 

is not continuous at the origin or differentiable in the normal calculus sense. Caputo 

derivate can directly incorporate the initial and boundary conditions into the problem 

formulation which makes it a strong differential operator for dealing with sophisticated 

systems and phenomena.  

Wide applications of fractional calculus, has brought the topic of initial and boundary 

value problems for coupled systems of fractional differential equations under a sharp 

focus, and is one of the major focuses of the current thesis as well. The first main aim 

of this thesis is to prove the existence and uniqueness of solutions for a coupled system 

of fractional differential equations with four-point boundary conditions as well as 

providing a technique for investigation and approximation of solutions of Caputo type 

fractional differential equations with nonlinear boundary conditions. The second main 

aim of the thesis is to develop a program to utilize the aforementioned technique on 

different practical problems and present the results. The thesis is prepared in five 

chapters that are briefly reviewed in the following section. 

Chapter 2 (Preliminaries and Definitions) this chapter provides the basic definitions, 

properties and terminology from fields of fractional calculus, special functions, and 

functional analysis, that are required for understanding the subsequent chapters. This 

chapter aims at providing the important preliminary concepts that other chapters are 

built upon, and can be skipped if the reader is already familiar with the field of 

fractional calculus. 

Chapter 3 (On a Coupled System of Fractional Differential Equations with Four Point 

Integral Boundary Conditions) motivated by recent researches done on the SFDE’s. 
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This chapter studies the existence and uniqueness of the solution for a coupled system 

of fractional differential equations with integral boundary conditions. The proof 

employs the Banach contraction mapping principle as well as Leray–Schauder’s 

alternative theorem, and in the end, several examples and confirming results are 

provided. 

Chapter 4 (On the Parametrization of Caputo type Fractional Differential Equation 

with two-point nonlinear boundary conditions) In this chapter, we apply a technique 

for investigation and approximation of solutions of Caputo type fractional differential 

equation with nonlinear boundary conditions. By using an appropriate parametrization 

technique, nonlinear boundary conditions are transformed to linear boundary 

conditions by using vector parameters. To study the transformed problem, a numerical 

scheme is developed, which has been successfully used in relation to different type’s 

two-point and multipoint linear boundary condition and nonlinear boundary 

conditions. 

Chapter 5 (Numerical Method and Algorithm for Solving Caputo type Fractional 

Differential Equations with Two Point Nonlinear Boundary Conditions). This chapter 

builds upon the findings of previous chapter and develops a numerical method and 

algorithm for solving Caputo type fractional systems with two-point nonlinear 

boundary conditions. The chapter initially focuses on the major computational 

challenges for solving fractional differential systems, and the complexities involved in 

such computations. One of the major challenges discussed in the chapter is extremely 

heavy computational costs for fractional systems that involve non-analytical integrals 

and the chapter provides a technique from Deep Reinforcement Learning paradigm to 

face this problem. The program and algorithm are explained in details and applied to 
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an example, where numerical results are obtained and presented to illustrate the 

validity and possible applications of the method. Furthermore, the algorithm is also 

applied to a fractional system that involves analytical integrals, as a simpler special 

case, and results are demonstrated.  
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Chapter 2 

2 PRELIMINARIES AND DEFINITIONS 

In this chapter, we mention the most important mathematical tools including 

definitions, properties, propositions, lemmas and theorems. 

2.1 Special Functions  

Definition 2.1.1 Γ(𝜉) = ∫ 𝑒−𝑡
∞

0
𝑡𝜉−1𝑑𝑡, ∀𝜉 > 0, where Γ( . ) is the Gamma Function. 

Property 2.1.2 

i. Γ(1) = 1. 

ii. Γ(𝜉 + 1) = 𝜉Γ(𝜉), 𝜉 > 0.If 𝑟 ∈ ℕ thenΓ(𝜉 + 1) = 𝜉! .  

iii.  The Incomplete Gamma function is given by 

 𝛾∗(𝑢, 𝜉) =
1

𝑢Γ(𝑢)
∫ 𝑥𝑢−1
𝜉

0
𝑒−𝑥𝑑𝑥.  

Definition 2.1.3 𝐵(𝑠, 𝑣) = ∫ 휂𝑠−1
1

0
(1 − 휂)𝑣−1𝑑휂, ∀𝑠, 𝑣 > 0 where 𝐵( . , . ) is called 

the Beta Function. 

Property 2.1.4 ∀𝑠, 𝑣 > 0,  

i. 𝐵(𝑠, 𝑣) = 𝐵(𝑣, 𝑠). 

ii. 𝐵(𝑠, 𝑣) =
Γ(𝑠)Γ(𝑣)

Γ(𝑠+𝑣)
. 

iii. The Incomplete Beta function is given by 𝐵𝜓(𝑠, 𝑣) = ∫ 휂𝑠−1
𝜓

0
(1 −

휂)𝑣−1𝑑휂,            0 < 𝜓 < 1. 
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2.2 Function Spaces  

Given the Banach space 𝐶[𝑎, 𝑏] that contains all continuous functions from 

[𝑎, 𝑏] → ℝ with the norm  ‖𝑔‖ = 𝑀𝑎𝑥
a≤𝑡≤𝑏

|𝑔(𝑡)| , ∀𝑡 ∈ [𝑎, 𝑏], ∀𝜓 ≥ 0. 

Assume 𝑔𝜓(𝑡) = (𝑡 − 𝑎)
𝜓𝑔(𝑡), define the space 𝐶𝜓[𝑎, 𝑏] which is the space that 

contains 𝑔 such that 𝑔𝜓 ∈ 𝐶𝜓[𝑎, 𝑏], where 𝑔 is any continuous function space 𝐶𝜓[𝑎, 𝑏] 

endowed with the norm‖𝑔‖𝜓 = 𝑀𝑎𝑥
a≤𝑡≤𝑏

(𝑡 − 𝑎)𝜓|𝑔(𝑡)|, is a Banach space as well. 

Define 𝐿1([𝑎, 𝑏], ℝ)  the space of measurable functions, which is also a Banach space, 

with the norm ‖𝑔‖𝐿1 = ∫ |𝑔(𝑡)|𝑑𝑡, 𝑔: [𝑎, 𝑏] → ℝ
𝑏

𝑎
   is Lebesgue integrable function. 

Definition 2.2.1 Consider the interval 𝐽 ⊆ ℝ. A function 𝑔: 𝐽 → ℝ is absolutely 

continuous on 𝐽 if  ∀휀 > 0, ∃𝛿(휀) > 0 such that for all finite set of pairwise disjoint 

subintervals (𝑠𝑘 , 𝑣𝑘) ⊂ 𝐽 satisfying ∑𝑣𝑘 − 𝑠𝑘 < 𝛿 then  ∑|𝑔(𝑣𝑘) − 𝑔(𝑠𝑘)| < 휀. 

The collection of all absolutely continuous functions on 𝐽 is denoted by 𝐴𝐶(𝐽 ). 

Remark 2.2.2  If 𝐽 = [𝑎, 𝑏], then the following are equivalent 

i. 𝑔 ∈ 𝐴𝐶[𝑎, 𝑏]. 

ii. 𝑔 has a derivative 𝑔′ almost everywhere, the derivative is Lebesegue integrable 

such that 𝑔(𝜑) − 𝑔(𝑎) = ∫ 𝑔′(𝑡)𝑑𝑡, ∀𝜑 ∈
𝜑

𝑎
[𝑎, 𝑏]. 

iii. There exists a lebesegue integrable  function ℎ on [𝑎, 𝑏] such that 𝑔(𝜑) −

𝑔(𝑎) = ∫ ℎ(𝑡)𝑑𝑡, ∀𝜑 ∈
𝜑

𝑎
[𝑎, 𝑏], so if 𝑔 ∈ 𝐴𝐶[𝑎, 𝑏], then ℎ = 𝑔′ almost 

everywhere. 
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Properties 2.2.3 

i. If 𝑘1 ∈ 𝐴𝐶[𝑎, 𝑏], 𝑘1 ≠ 0 ,then 
1

𝑘1
∈ 𝐴𝐶[𝑎, 𝑏]. 

ii. Absolutely continuous property implies uniformly continuous one. 

iii. If 𝑘1 is Lipschitz continuous function then 𝑘1 is absolutely continuous.  

Definition 2.2.4 Given the function 𝑔: 𝐽 → ℝ then 𝑔 ∈ 𝐴𝐶𝜓(𝐽), 𝜓 = 1,2, … if  

𝑔(𝜓−1) ∈ 𝐴𝐶(𝐽). Particularly, 𝐴𝐶1(𝐽) = 𝐴𝐶(𝐽). 

Definition 2.2.5 Let (𝑋, 𝑑) be a metric space. 𝑄:𝑋 → 𝑋 is said to be Lipschitzian if 

there is 𝑘𝑄 ≥ 0 with 𝑑(𝑄(𝑥1), 𝑄(𝑥2)) ≤ 𝑘𝑄𝑑(𝑥1, 𝑥2), ∀𝑥1, 𝑥2 ∈ 𝑋, 𝑥1 ≠ 𝑥2.  

If 𝑄 is Lipschitzian then it is continuous, when 𝑘𝑄 < 1 then is said to be contraction 

mapping. Whereas, if 𝑘𝑄 = 1 then 𝑄 is said to be nonexpansive. 

Theorem 2.2.6 (Banach’s Contraction mapping principle). 

Let (𝑋, 𝑑) be a complete metric space, 𝑄: 𝑋 → 𝑋 is a contraction, then  

i. 𝑄 has a unique fixed point 𝑣 ∈ 𝑋, that is 𝑄(𝑣) = 𝑣. 

ii. ∀𝑣0 ∈ 𝑋, we have lim
𝑛→∞

𝑄𝑛(𝑣0) = 𝑣 with  

𝑑(𝑄𝑛(𝑣0), 𝑣) ≤
𝑘𝑄

𝑛

1 − 𝑘𝑄
𝑑(𝑣0, 𝑄

𝑛(𝑣0)). 

Theorem 2.2.7 (Local version of Banach’s Contraction mapping principle). 

Give the complete metric space (𝑋, 𝑑), 𝑄: 𝐵(𝑥0, 𝑟) → 𝑋 is a contraction on this ball 

with 𝑑(𝑄(𝑥1), 𝑄(𝑥2)) ≤ 𝑑(𝑥1, 𝑥2), ∀𝑥1, 𝑥2 ∈ 𝐵(𝑥0, 𝑟), 0 ≤ 𝑘𝑄 < 1 such that 

𝑑(𝑄(𝑥0), 𝑥0) < (1 − 𝑘𝑄)𝑟. Then unique fixed point for 𝑄 in 𝐵(𝑥0, 𝑟) holds true. Here 

𝐵(𝑥0, 𝑟) is a closed ball centered at 𝑥0 of radius 𝑟. 
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Theorem 2.2.8 Given the complete metric space (𝑋, 𝑑), 𝑄: 𝑋 → 𝑋 satisfying 

𝑑(𝑄(𝑥1), 𝑄(𝑥2)) < 𝜙(𝑑(𝑥1, 𝑥2)), ∀𝑥1, 𝑥2 ∈ 𝑋, here 𝜙: [0,∞) → [0,∞) is any 

monotonic nondecreasing function with lim
𝑛→∞

𝜙𝑛(𝑡) = 0, for a fixed 𝑡 > 0, then has a 

unique fixed point with lim
𝑛→∞

𝑄𝑛(𝑥0) = 𝑥, ∀𝑥 ∈ 𝑋.  

Theorem 2.2.9 (Nonlinear alternative of Leray-Shauder type) 

Given the open subset 𝑉of a Banach space 𝑆,  0 ∈ 𝑉 and 𝑄: �̅� → 𝑆 be a contraction 

such that 𝑄(�̅�) is bounded and �̅� is the closure of 𝑉 then either 

i. 𝑄 has a fixed point in �̅�, or 

ii. ∃𝜆 ∈ (0,1) and 𝑣 ∈ 𝜕𝑉 such that 𝑣 = 𝜆𝑄(𝑣)  holds. 

Theorem 2.2.10 (Arzela-Ascoli Theorem) 

𝑄 ⊂ 𝐶(𝑆,ℝ) is compact iff it is closed, bounded and equicontinuous. 

Theorem 2.2.11 (Krasnoselskii’s Theorem) 

Give the Banach space (𝐸, ‖ . ‖), closed convex 𝐵 ⊂ 𝐸, 𝐴 is open, where 𝐴 ⊂ 𝐵, and 

𝑝 ∈ 𝐴, assume that 𝑄: �̅� → 𝐵 can be written as 𝑄 = 𝑄1 + 𝑄2.  

In addition, 𝑄(�̅�) is bounded set in 𝐵 satisfying 

i. 𝑄1: �̅� → 𝐵 is continuous and completely continuous. 

ii. 𝑄2: �̅� → 𝐵 is a contraction, ∃𝜏 a continuous nondecreasing function  

𝜏: [0,∞) → [0,∞) with 𝜏(𝑎1) > 𝑎1, 𝑎1 > 0, such that 

|𝑄2(𝑎1) − 𝑄2(𝑎2)| ≤ 𝜏(‖𝑎1−𝑎2‖), for any 𝑎1, 𝑎2 ∈ �̅�. 

Then  

i. 𝑄(𝑎0) = 𝑎0, 𝑎0 ∈ �̅�, 𝑜𝑟 

ii. ∃𝑎 ∈ 𝜕𝐴 and 𝜇 ∈ (0,1) with 𝑎 = 𝜇𝑄(𝑎) + (1 − 𝜇)𝑝. 
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2.3 Caputo Fractional Derivative  

It is turn out that 𝐷(.)𝑅𝐿
   has a weak points in some real models, indeed, a new definition 

of fractional derivatives has to be introduced. The Caputo fractional derivative of order 

Θ proposed by an Italian mathematician is an alternative fractional derivative to the 

RL- fractional derivative which given by 

( 𝐷𝑎
Θ

𝑐
 𝑔)(𝑠) = {

∫
(𝑠 − 𝑢)𝑚−Θ−1ℎ(𝑚)(𝑢)𝑑𝑢

Γ(𝑚 − Θ)

𝑠

𝑎

, 𝑚 − 1 < Θ < 𝑚 ∈ ℕ,

𝑔(𝑚)(𝑠)                               ,                           Θ ∈ ℕ,

 

Caputo 1967, it is important to note that the Caputo derivative is more restrictive than 

the RL-fractional derivative as it requires the nth  derivative of the function g . Which 

leads to assume that it is exist whenever the 𝐷(.)𝑐
  is used, and fortunately in the most 

applications the used functions have the nth  derivative. 

Consider the set of functions 𝑔(𝑡), continuous and integrable in any finite interval  

(0, 𝑦), 𝑦 ∈ ℝ For the 𝐷(.)𝑐
   it is required that the 𝑛𝑡ℎ derivative of the function must 

integrable, Next in this study all functions are already assumed to satisfy this condition. 

The following results are some main properties of the 𝐷(.)𝑐
 :  

i. 𝐷𝑎
Θ

𝑐
 𝑔(휁) = 𝐼𝑎

m−Θ𝐷𝑚𝑅𝐿
 𝑔(휁), where 𝐷𝑚 is the standard differentiation 

operator𝐷𝑚 =
𝑑𝑚

𝑑 𝑚,  

ii. lim
Θ→𝑚

𝐷𝑎
Θ

𝑐
 𝑔(휁) = 𝑔(𝑚)(휁), 

lim
Θ→𝑚−1

𝐷𝑎
Θ

𝑐
 𝑔(휁) = 𝑔(𝑚−1)(휁) − 𝑔(𝑚−1)(0). 

iii. 𝐷𝑎
Θ

𝑐
 (𝛼𝑔(휁) + 𝛽ℎ(휁)) = 𝛼 𝐷𝑎

Θ
𝑐
 𝑔(휁) + 𝛽 𝐷𝑎

Θ
𝑐
 ℎ(휁), 𝛼, 𝛽 ∈ ℝ. 

iv. 𝐷𝑎
Θ𝐷𝑚𝑐

 𝑔(휁) = 𝐷𝑎
Θ+m

𝑐
 𝑔(휁) ≠ 𝐷𝑚 𝐷𝑎

Θ
𝑐
 𝑔(휁), 
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v. 𝐷𝑎
Θ

𝑐
 (𝑔(휁)ℎ(휁)) = ∑ (

Θ
𝑖
) (𝐷Θ−𝑖𝑔(휁))∞

𝑖=0 ℎ(𝑖)(휁) −

∑
𝑖−Θ

Γ(𝑖+1−Θ)
((𝑔(휁)ℎ(휁))

𝑖
(0))𝑚−1

𝑖=0 . 

vi. 𝐷𝑎
Θ

𝑐
 𝑏 = 0, 𝑏 is a constant. 

vii. 𝐷𝑎
Θ

𝑐
 휁𝜔 = {

Γ(𝜔+1)

Γ(𝜔+1−Θ)
휁𝜔−Θ,      𝑚 − 1 < Θ < 𝑚,𝜔 > 𝑚 − 1,𝜔 ∈ ℝ,                  

0,         𝑚 − 1 < Θ < 𝑚,𝜔 ≤ 𝑚 − 1 ,                                                     
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Chapter 3 

3 ON A COUPLED  SYSTEM OF FRACTIONAL 

DIFFERNTIAL  EQUATIONS  WITH FOUR POINT 

INTEGRAL BOUNDARY CONDITIONS 

This chapter is on the existence of the solution for a coupled system of fractional 

differential equations with integral boundary conditions. The first result will address 

the uniqueness of solutions for the proposed problem and it is based on the contraction 

mapping principle. Secondly, by using Leray–Schauder’s alternative we manage to 

prove the existence of solutions. Finally, the conclusion is confirmed and supported 

by examples. 

The following coupled system of fractional differential equations was studied: 

{
 
 

 
 
𝐷𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝐷𝛾𝑦(𝑡)), 𝑡 ∈ [0, 𝑇],

1 < 𝛼 ≤ 2, 0 < 𝛾 < 1,

𝐷𝛽𝑦(𝑡) = 𝑔 (𝑡, 𝑥(𝑡), 𝐷𝛿𝑥(𝑡), 𝑦(𝑡)) , 𝑡 ∈ [0, 𝑇],

1 < 𝛽 ≤ 2, 0 < 𝛿 < 1,

 

Supplemented with the coupled nonlocal and integral boundary conditions of the form 

{
 
 

 
 𝑥(0) = ℎ(𝑦),       ∫ 𝑦

𝑇

0

(𝑠)𝑑𝑠 = 𝜇₁𝑥(휂),

𝑦(0) = 𝜑(𝑥),       ∫ 𝑥
𝑇

0

(𝑠)𝑑𝑠 = 𝜇2𝑦(𝜉),     휂, 𝜉 ∈ (0, 𝑇),

 

where 𝐷𝑖 denotes the Caputo fractional derivatives of order 𝑖 = 𝛼, 𝛽, 𝛾, 𝛿 and  

𝑓, 𝑔: [0, 𝑇] × ℝ × ℝ × ℝ → ℝ, ℎ, 𝜑: 𝐶([0, 𝑇], ℝ) → ℝ are given continuous functions, 

and 𝜇1, 𝜇2 are real constants. 
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In [27], the authors investigated the existence and uniqueness of solutions for the 

coupled system of nonlinear fractional differential equations with three-point 

boundary conditions, given below: 

{

𝐷𝛼𝑢(𝑡) = 𝑓(𝑡, 𝑣(𝑡), 𝐷𝑝𝑣(𝑡)),0 < 𝑡 < 1,

𝐷𝛽𝑣(𝑡) = 𝑔(𝑡, 𝑢(𝑡), 𝐷𝑞𝑢(𝑡)),0 < 𝑡 < 1,

𝑢(0) = 0, 𝑢(1) = 𝛾𝑢(휂), 𝑣(0) = 0, 𝑣(1) = 𝛾𝑣(휂),

 

where 1 < 𝛼, 𝛽 < 2, 𝑝, 𝑞, 𝛾 > 0, 0 < 휂 < 1, 𝛼 − 𝑞 ≥ 1, 𝛽 − 𝑝 ≥ 1, 𝛾휂𝛼−1 < 1,

𝛾휂𝛽−1 < 1, and 𝐷 is the standard Riemann–Liouville fractional derivative and 

𝑓, 𝑔: [0,1] × ℝ × ℝ → ℝ are given continuous functions. It is worth mentioning that 

the nonlinear terms in the coupled system contain the fractional derivatives of the 

unknown functions. 

 Moreover, in a study [28], the following coupled system of nonlinear fractional 

differential equations, with the given boundary conditions was studied:  

{

𝐷𝛼𝑢(𝑡) = 𝑓(𝑡, 𝑣(𝑡), 𝐷𝜇𝑣(𝑡)),0 < 𝑡 < 1,

𝐷𝛽𝑣(𝑡) = 𝑔(𝑡, 𝑢(𝑡), 𝐷𝜐𝑢(𝑡)),0 < 𝑡 < 1,
𝑢(0) = 𝑢(1) = 𝑣(0) = 𝑣(1) = 0,

  

where 1 < 𝛼, 𝛽 < 2, 𝜇, 𝜈 > 0, 𝛼 − 𝜈 ≥ 1,   𝛽 − 𝜇 ≥ 1,   𝑎𝑛𝑑 𝑓, 𝑔: [0,1] × ℝ × ℝ →

ℝ are given functions and 𝐷 is the standard Riemann–Liouville differentiation. 

This chapter is aimed to study a coupled system of nonlinear fractional differential 

equations: 

{
 
 

 
 𝐷

𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝐷𝛾𝑦(𝑡)), 𝑡 ∈ [0, 𝑇],

1 < 𝛼 ≤ 2, 0 < 𝛾 < 1,

𝐷𝛽𝑦(𝑡) = 𝑔(𝑡, 𝑥(𝑡), 𝐷𝜎𝑥(𝑡), 𝑦(𝑡)), 𝑡 ∈ [0, 𝑇],

1 < 𝛽 ≤ 2, 0 < 𝜎 < 1,

                                                 (1) 

supported by integral boundary conditions of the form 
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{
 
 

 
 ∫ 𝑥(𝑠)𝑑𝑠

𝑇

0

= 𝜌1𝑦(휁1),∫ 𝑥′(𝑠)𝑑𝑠
𝑇

0

= 𝜌2𝑦
′(휁2),

∫ 𝑦(𝑠)𝑑𝑠
𝑇

0

= 𝜇𝑥(휂1),∫ 𝑦′(𝑠)𝑑𝑠
𝑇

0

= 𝜇2𝑥
′(휂2),

휂1, 휂2, 휁1, 휁2 ∈ [0, 𝑇],

                                                (2) 

where 𝐷𝑘 denote the Caputo fractional derivatives of order 𝑘, and 𝑓, 𝑔: [0, 𝑇] × ℝ3 →

ℝ,  are given continuous functions, and  𝜌₁, 𝜌₂, 𝜇₁, 𝜇₂are real constants. 

The chapter is organized as follows. In Section 1, we recall some definitions from 

fractional calculus, and state and prove an auxiliary lemma, which gives an explicit 

formula for a solution of nonhomogeneous equation correspond to our problem. The 

main results for the coupled system of Caputo fractional differential equations with 

integral boundary conditions, using the Banach fixed point theorem and Leray-

Schauder alternative, are presented in Section 2. The chapter concludes with concrete 

examples. 

3.1 Preliminaries 

Firstly, we recall definitions of fractional derivative and integral [1]. 

Definition3.1.1 The Riemann-Liouville fractional integral of order 𝛼 for a 

continuous function ℎ is given by 

(𝐼0
𝛼ℎ)(𝑠) =

1

Γ(𝛼)
∫

ℎ(𝑡)

(𝑠 − 𝑡)1−𝛼

𝑠

0

𝑑𝑡, 𝛼 > 0, 

provided that the integral exists on ℝ+. 

We use the following notations. 

𝛥1 = 𝑇2 − 𝜇1𝜌1 ≠ 0, 𝛥2 = 𝑇
2 − 𝜇2𝜌2 ≠ 0, 
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𝛩1(𝑡) : =
2𝑇𝜌1휁1𝜇2𝜌2 − 𝑇

4𝜌2 + 2𝑇𝜌1𝜇1휂1𝜌2 − 𝑇
2𝜇2𝜌1𝜌2

𝛥1𝛥2
+
𝜌2𝑇𝑡

𝛥2
.

𝛩2(𝑡) : =
−2𝑇2𝜌1휁1 + 𝑇

3𝜌2 − 2𝜌1𝜇1휂1𝜌2 + 𝜌1𝑇
3

𝛥1𝛥2
−
𝜌2𝑡

𝛥2
,

𝛩3: =
𝑇𝜌1
𝛥1

, 𝛩4: = −
𝜌1
𝛥1
,

 

𝛯1(𝑡) : =
2𝑇2𝜌1휁1𝜇2 − 𝑇

3𝜌2𝜇2 + 2𝜌1𝜇1휂1𝜌2𝜇2 − 𝜌1𝜇2𝑇
3

𝛥1𝛥2
+
𝑡𝜇2𝜌2
𝛥2

𝛯2(𝑡) : =
−2𝑇𝜌1휁1𝜇2 + 𝑇

4 − 2𝑇𝜌1𝜇1휂1 + 𝑇
2𝜌1𝜇2

𝛥1𝛥2
−
𝑇𝑡

𝛥2
,

𝛯3: =
𝜌1𝜇1
𝛥1

, 𝛯4: = −
𝑇

𝛥1
,

 

�̂�1(𝑡) : =
1

𝛥1
(𝜌2  𝑇 (𝑇 𝜇1  휂1  

1
𝛥2
 −𝜇1

𝑇2

2
 1
𝛥2
) + 𝜇2  𝜌2  (𝜇1  𝜌1  휁1  

1
𝛥2
 − 
𝑇3

2
 1
𝛥2
)) +

1

𝛥2
𝜇2𝜌2𝑡.

�̂�2(𝑡) : =
1

𝛥1
(− 𝜌2  (𝑇 𝜇1  휂1  

1
𝛥2
 −𝜇1

𝑇2

2
 1
𝛥2
) − 𝑇 (𝜇1  𝜌1  휁1  

1
𝛥2
 − 
𝑇3

2
 1
𝛥2
)) −

1

𝛥2
𝑇𝑡,

�̂�3: =
1

𝛥1
𝜌1𝜇1, �̂�4: =

−𝑇

𝛥1
,

 

�̂�1(𝑡) : =
1

𝛥1
(𝜇2𝜌2  (𝑇 𝜇1  휂1  

1
𝛥2
 −𝜇1

𝑇2

2
 1
𝛥2
) + 𝜇2𝑇 (𝜇1  𝜌1  휁1  

1
𝛥2
 − 
𝑇3

2
 1
𝛥2
)) +

1

𝛥2
𝜇2𝑇𝑡

�̂�2(𝑡) : =
1

𝛥1
(−𝑇 (𝑇 𝜇1  휂1  

1
𝛥2
 −𝜇1

𝑇2

2
 1
𝛥2
) − 𝜇2  (𝜇1  𝜌1  휁1  

1
𝛥2
 − 
𝑇3

2
 1
𝛥2
)) −

1

𝛥2
𝜇2𝑡,

�̂�3: =
𝜇1𝑇

𝛥1
, �̂�4: =

−𝜇1
𝛥1

.

 

To show that the problem (1) and (2) is equivalent to the problem of finding solutions 

to the Volterra integral equation, we need the following auxiliary lemma. 

Lemma 3.1.1  Let 𝑤, 𝑧 ∈ 𝐶([0, 𝑇], 𝑅). Then the unique solution for the problem 

{
  
 

  
 
𝐷𝛼𝑥(𝑡) = 𝑤(𝑡), 𝑡 ∈ [0, 𝑇], 1 < 𝛼 ≤ 2,

𝐷𝛽𝑦(𝑡) = 𝑧(𝑡), 𝑡 ∈ [0, 𝑇], 1 < 𝛽 ≤ 2,

∫ 𝑥(𝑠)𝑑𝑠
𝑇

0

= 𝜌1𝑦(휁1),∫ 𝑥′(𝑠)𝑑𝑠
𝑇

0

= 𝜌2𝑦
′(휁2),

∫ 𝑦(𝑠)𝑑𝑠
𝑇

0

= 𝜇𝑥(휂1),∫ 𝑦′(𝑠)𝑑𝑠
𝑇

0

= 𝜇2𝑥
′(휂2),

                                                (3) 

is   
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𝑥(𝑡) = Θ1(𝑡)(𝐼
𝛽−1𝑧)(휁2) + Θ2(𝑡)∫ (𝐼𝛽−1𝑧)(𝑠)𝑑𝑠

𝑇

0

+ Θ3(𝐼
𝛽𝑧)(휁1) − Θ4∫ (𝐼𝛽𝑧)(𝑠)𝑑𝑠

𝑇

0

+ Ξ1(𝑡)(𝐼
𝛼−1𝑤)(휂2) + Ξ2(𝑡)∫ (𝐼𝛼−1𝑤)(𝑠)𝑑𝑠

𝑇

0

+ Ξ3(𝐼
𝛼𝑤)(휂1)

− Ξ4∫ (𝐼𝛼𝑤)(𝑠)𝑑𝑠
𝑇

0

+∫
(𝑡 − 𝑠)𝛼−1

Γ(𝛼)
𝑤(𝑠)𝑑𝑠

𝑡

0

,                                                                           (4) 

and 

𝑦(𝑡)

= Θ̂1(𝑡)(𝐼
𝛽−1𝑧)(휁2) + Θ̂2(𝑡)∫ (𝐼𝛽−1𝑧)(𝑠)𝑑𝑠

𝑇

0

+ Θ̂3(𝐼
𝛽𝑧)(휁1) − Θ̂4∫ (𝐼𝛽𝑧)(𝑠)𝑑𝑠

𝑇

0

+ Ξ̂1(𝑡)(𝐼
𝛼−1𝑤)(휂2) + Ξ̂2(𝑡)∫ (𝐼𝛼−1𝑤)(𝑠)𝑑𝑠

𝑇

0

+ Ξ̂3(𝐼
𝛼𝑤)(휂1) − Ξ̂4∫ (𝐼𝛼𝑤)(𝑠)𝑑𝑠

𝑇

0

+∫
(𝑡 − 𝑠)𝛽−1

Γ(𝛽)
𝑧(𝑠)𝑑𝑠

𝑡

0

.                                                                                                                 (5) 

Proof. We know that, see [1] Lemma 2.12, the general solutions for the FDE in (3) is 

defined as 

                                      
𝑥(𝑡) = 𝑐1𝑡 + 𝑐2 + (𝐼

𝛼  𝑤)(𝑡)

𝑦(𝑡) = 𝑑1𝑡 + 𝑑2 + (𝐼
𝛽  𝑧)(𝑡),

                                                    (6) 

where 𝑐1, 𝑐2, 𝑑1, 𝑑2 ∈ 𝑅 are arbitrary constants. It follows that 

𝑥′(𝑡) = 𝑐1 + (𝐼
𝛼−1  𝑤)(𝑡),

𝑦′(𝑡) = 𝑑1 + (𝐼
𝛽−1  𝑧)(𝑡).

 

Applying the conditions 

∫ 𝑥′(𝑠)𝑑𝑠
𝑇

0

= 𝜌2𝑦
′(휁2),∫ 𝑦′(𝑠)𝑑𝑠

𝑇

0

= 𝜇2𝑥
′(휂2), 

we get 

𝑐1𝑇 +∫ (𝐼𝛼−1  𝑤)(𝑠)𝑑𝑠
𝑇

0

= 𝜌2𝑑1 + 𝜌2(𝐼
𝛽−1  𝑧)(휁2),

𝑑1𝑇 +∫ (𝐼𝛽−1  𝑧)(𝑠)𝑑𝑠
𝑇

0

= 𝜇2𝑐1 + 𝜇2(𝐼
𝛼−1  𝑤)(휂2).
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Solving the above equations together for 𝑐₁ and 𝑑₁ we get 

𝑐1 =
1

𝛥2
(𝜌2  𝑇 (𝐼

𝛽−1  𝑧)(휁2) − 𝜌2  ∫ (𝐼𝛽−1  𝑧)(𝑠)
𝑇

0
 𝑑𝑠 + 𝜇2𝜌2(𝐼

𝛼−1  𝑤)(휂2) − 𝑇 ∫ (𝐼𝛼−1  𝑤)(𝑠)𝑑
𝑇

0
 𝑠), 

𝑑1 =
1

𝛥2
(𝜇2𝑇(𝐼

𝛼−1  𝑤)(휂2) − 𝜇2  ∫ (𝐼𝛼−1  𝑤)(𝑠)𝑑𝑠 +
𝑇

0
 𝜇2  𝜌2  (𝐼

𝛽−1  𝑧)(휁2) − 𝑇 ∫ (𝐼𝛽−1  𝑧)(𝑠)𝑑
𝑇

0
 𝑠). 

Considering the following boundary conditions not involving derivatives 

∫ 𝑥
𝑇

0

(𝑠)𝑑𝑠 = 𝜌1𝑦(휁1),∫ 𝑦
𝑇

0

(𝑠)𝑑𝑠 = 𝜇1𝑥(휂1), 

we get 

𝑐2𝑇 − 𝜌1𝑑2 = 𝜌1𝑑1휁1 + 𝜌1(𝐼
𝛽  𝑧)(휁1) − 𝑐1

𝑇2

2
− ∫ (𝐼𝛼  𝑤)(𝑠)𝑑𝑠

𝑇

0

,

𝑑2𝑇 − 𝜇1𝑐2 = 𝜇1𝑐1휂1 + 𝜇1(𝐼
𝛼  𝑤)(휂1) − 𝑑1

𝑇2

2
− ∫ (𝐼𝛽  𝑧)(𝑠)𝑑𝑠

𝑇

0

.

 

This implies 

𝑐2 =
1

𝛥1
(𝑇 𝜌1  𝑑1  휁1  + 𝜌1  𝑇 (𝐼

𝛽  𝑧)(휁1) − 𝑐1
𝑇3

2 − 𝑇 ∫ (𝐼𝛼  𝑤)(𝑠)𝑑
𝑇

0
 𝑠

+ 𝜌1  𝜇1  𝑐1  휂1  + 𝜌1  𝜇1  (𝐼
𝛼  𝑤)(휂1) − 𝜌1  𝑑1  

𝑇2

2
 − 𝜌1  ∫ (𝐼𝛽  𝑧)(𝑠)𝑑

𝑇

0
 𝑠) ,

 

𝑑2 =
1

𝛥1
(𝑇 𝜇1  𝑐1  휂1  + 𝜇1  𝑇 (𝐼

𝛼  𝑤)(휂1) − 𝑑1  
𝑇3

2
 − 𝑇 ∫ (𝐼𝛽  𝑧)(𝑠)𝑑𝑠

𝑇

0
 + 𝜇1  𝜌1  𝑑1  휁1

+ 𝜌1  𝜇1  (𝐼
𝛽  𝑧)(휁1) − 𝑐1𝜇1

𝑇2

2 − 𝜇1 ∫ (𝐼𝛼  𝑤)(𝑠)𝑑𝑠
𝑇

0
) .

 

Inserting the values of 𝑐1 and 𝑑1we get 

𝑐2 =
2𝑇𝜌1휁1𝜇2𝜌2 − 𝑇

4𝜌2 + 2𝑇𝜌1𝜇1휂1𝜌2 − 𝑇
2𝜇2𝜌1𝜌2

2𝛥1𝛥2
(𝐼𝛽−1  𝑧)(휁2)

+
−2𝑇2𝜌1휁1 + 𝑇

3𝜌2 − 2𝜌1𝜇1휂1𝜌2 + 𝜌1𝑇
3

2𝛥1𝛥2
∫  
𝑇

0

(𝐼𝛽−1  𝑧)(𝑠)𝑑𝑠

+
𝑇𝜌1
𝛥1

(𝐼𝛽  𝑧)(휁1) −
𝜌1
𝛥1
∫  
𝑇

0

(𝐼𝛽  𝑧)(𝑠)𝑑𝑠

+
2𝑇2𝜌1휁1𝜇2 − 𝑇

3𝜌2𝜇2 + 2𝜌1𝜇1휂1𝜌2𝜇2 − 𝜌1𝜇2𝑇
3

2𝛥1𝛥2
(𝐼𝛼−1  𝑤)(휂2)

+
−2𝑇𝜌1휁1𝜇2 + 𝑇

4 − 2𝑇𝜌1𝜇1휂1 + 𝑇
2𝜌1𝜇2

2𝛥1𝛥2
∫ (𝐼𝛼−1  𝑤)
𝑇

0

(𝑠)𝑑𝑠

+
𝜌1𝜇1
𝛥1

(𝐼𝛼  𝑤)(휂1) −
𝑇

𝛥1
∫ (𝐼𝛼  𝑤)
𝑇

0

(𝑠)𝑑𝑠,
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𝑑2 =
2𝜌2𝑇

2𝜇1휂1 − 𝜌2𝜇1𝑇
3 + 2𝜇2𝜌2𝜇1𝜌1휁1 − 𝜇2𝜌2𝑇

3

2𝛥1𝛥2
(𝐼𝛽−1  𝑧)(휁2)

+
−2𝑇𝜌2𝜇1휂1 + 𝜌2𝜇1𝑇

2 − 2𝑇𝜇1𝜌1휁1 − 𝑇
4

2𝛥1𝛥2
∫ (𝐼𝛽−1  𝑧)(𝑠)𝑑𝑠
𝑇

0

+
1

𝛥1
𝜌1𝜇1(𝐼

𝛽  𝑧)(휁1) −
1

𝛥1
𝑇∫ (𝐼𝛽  𝑧)(𝑠)𝑑𝑠

𝑇

0

+
2𝑇𝜇2𝜌2𝜇1휂1 − 𝜇2𝜌2𝜇1𝑇

2 + 2𝜇2𝑇𝜇1𝜌1휁1 − 𝜇2𝑇
4

2𝛥1𝛥2
(𝐼𝛼−1  𝑤)(휂2)

+
−2𝑇2𝜇1휂1 + 𝜇1𝑇

3 − 2𝜇2𝜌2𝜇1𝜌1휁1 + 𝜇2𝑇
3

2𝛥1𝛥2
∫ (𝐼𝛼−1  𝑤)(𝑠)𝑑𝑠
𝑇

0

+𝜇1𝑇
1

𝛥1
(𝐼𝛼  𝑤)(휂1) − 𝜇1

1

𝛥1
∫ (𝐼𝛼  𝑤)(𝑠)𝑑𝑠.
𝑇

0

 

Substituting 𝑐1, 𝑐2, 𝑑1, 𝑑2 in (6) we get (4) and (5).                       ∎ 

Remark 3.1.1 In (4) and (5) 𝑥(𝑡) and 𝑦(𝑡) depend on 휂𝑖 , 휁𝑖 , 𝜇𝑖, 𝜌𝑖 , 𝑖 = 1,2. 

3.2 Existence Results 

Consider the space  

𝐶𝛾([0 , 𝑇] , ℝ) = {𝑥 (𝑡) : 𝑥 (𝑡) ∈ 𝐶 ([0 , 𝑇] , ℝ)   𝑎 𝑛 𝑑   𝐷
𝛾  𝑥 (𝑡) ∈ 𝐶 ([0 , 𝑇] , ℝ)}, 

with the norm 

∥𝑥∥𝛾 = ∥𝑥∥ + ∥𝐷
𝛾  𝑥 ∥ = 𝑚𝑎𝑥

0≤𝑡≤𝑇
|𝑥 (𝑡)| + 𝑚𝑎𝑥

0≤𝑡≤𝑇
|𝐷𝛾  𝑥 (𝑡)|. 

It is clear that(𝐶𝛾  ([0 , 𝑇] , ℝ) , ∥·∥𝛾) is a Banach space. Consequently, the product space 

(𝐶𝜎  ([0 , 𝑇] , ℝ) × 𝐶𝛾  ([0 , 𝑇] , ℝ) , ∥·∥𝜎×𝛾) is a Banach Space with the ∥∥(𝑥 , 𝑦)∥∥𝜎×𝛾 = ∥𝑥∥𝜎 +

∥∥𝑦∥∥𝛾 for (𝑥 , 𝑦) ∈ 𝐶𝜎([0 , 𝑇] , ℝ) × 𝐶𝛾([0 , 𝑇] , ℝ). 

Next, using Lemma 3.1.1, we define the operator 𝐺: 𝐶𝜎([0 , 𝑇] , ℝ) × 𝐶𝛾([0 , 𝑇] , ℝ) →

𝐶𝜎([0 , 𝑇] , ℝ) × 𝐶𝛾([0 , 𝑇] , ℝ) as follows  

𝐺(𝑥 , 𝑦)(𝑡) = (𝐺1  (𝑥 , 𝑦) (𝑡) , 𝐺2  (𝑥 , 𝑦) (𝑡)), 

where 
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    𝐺1(𝑥 , 𝑦)(𝑡) = 𝛩1(𝑡) (𝐼
𝛽−1  𝑔(· , 𝑥 (·) , 𝑦 (·) , 𝐷𝜎  𝑥 (·))) (휁2) + 𝛩2(𝑡)∫  

𝑇

0

(𝐼𝛽−1  𝑔(· , 𝑥 (·) , 𝑦 (·) , 𝐷𝜎  𝑥 (·))) (𝑠)𝑑𝑠

+𝛩3 (𝐼
𝛽  𝑔(· , 𝑥 (·) , 𝑦 (·) , 𝐷𝜎  𝑥 (·))) (휁1) − 𝛩4∫  

𝑇

0

(𝐼𝛽  𝑔(· , 𝑥 (·) , 𝑦 (·) , 𝐷𝜎  𝑥 (·))) (𝑠)𝑑𝑠

+𝛯1(𝑡)(𝐼
𝛼−1  𝑓(· , 𝑥 (·) , 𝑦 (·) , 𝐷𝛾  𝑦 (·)))(휂2) + 𝛯2(𝑡)∫  

𝑇

0

(𝐼𝛼−1  𝑓(· , 𝑥 (·) , 𝑦 (·) , 𝐷𝛾  𝑦 (·)))(𝑠)𝑑𝑠

+𝛯3(𝐼
𝛼  𝑓(· , 𝑥 (·) , 𝑦 (·) , 𝐷𝛾  𝑦 (·)))(휂1) − 𝛯4∫  

𝑇

0

(𝐼𝛼  𝑓(· , 𝑥 (·) , 𝑦 (·) , 𝐷𝛾  𝑦 (·)))(𝑠)𝑑𝑠

+∫  
𝑡

0

(𝑡 − 𝑠)𝛼−1

𝛤(𝛼)
𝑓(𝑠 , 𝑥 (𝑠) , 𝑦 (𝑠) , 𝐷𝛾  𝑦 (𝑠))𝑑𝑠,

 

and  

𝐺2(𝑥 , 𝑦)(𝑡) = �̂�1(𝑡) (𝐼
𝛽−1  𝑔(· , 𝑥 (·) , 𝑦 (·) , 𝐷𝜎  𝑥 (·))) (휁2) + �̂�2(𝑡)∫  

𝑇

0

(𝐼𝛽−1  𝑔(· , 𝑥 (·) , 𝑦 (·) , 𝐷𝜎  𝑥 (·))) (𝑠)𝑑𝑠

+�̂�3 (𝐼
𝛽  𝑔(· , 𝑥 (·) , 𝑦 (·) , 𝐷𝜎  𝑥 (·))) (휁1) − �̂�4∫  

𝑇

0

(𝐼𝛽  𝑔(· , 𝑥 (·) , 𝑦 (·) , 𝐷𝜎  𝑥 (·))) (𝑠)𝑑𝑠

+�̂�1(𝑡)(𝐼
𝛼−1  𝑓(· , 𝑥 (·) , 𝑦 (·) , 𝐷𝛾  𝑦 (·)))(휂2) + �̂�2(𝑡)∫  

𝑇

0

(𝐼𝛼−1  𝑓(· , 𝑥 (·) , 𝑦 (·) , 𝐷𝛾  𝑦 (·)))(𝑠)𝑑𝑠

+�̂�3(𝐼
𝛼  𝑓(· , 𝑥 (·) , 𝑦 (·) , 𝐷𝛾  𝑦 (·)))(휂1) − �̂�4∫  

𝑇

0

(𝐼𝛼  𝑓(· , 𝑥 (·) , 𝑦 (·) , 𝐷𝛾  𝑦 (·)))(𝑠)𝑑𝑠

+∫  
𝑡

0

(𝑡 − 𝑠)𝛽−1

𝛤(𝛽)
𝑔(𝑠 , 𝑥 (𝑠) , 𝑦 (𝑠) , 𝐷𝜎  𝑥 (𝑠))𝑑𝑠.

 

In what follows, we use the following notations. 

𝛩 = ∥∥𝛩1∥∥
휁2
𝛽−1

𝛤(𝛽)
+ ∥∥𝛩2∥∥

𝑇𝛽−1

𝛤(𝛽)
+ |𝛩3|

휁1
𝛽

𝛤(𝛽 + 1)
+ |𝛩4|

𝑇𝛽

𝛤(𝛽 + 1)
+

𝑇1−𝜎

𝛤(2 − 𝜎)
(∥∥𝛩1

′∥∥ 
휁2
𝛽−1

𝛤(𝛽)
 + ∥∥𝛩2

′∥∥ 
𝑇𝛽−1

𝛤(𝛽)
) ,

𝛯 = ∥∥𝛯1∥∥
휂2
𝛼−1

𝛤(𝛼)
+ ∥∥𝛯2∥∥

𝑇𝛼−1

𝛤(𝛼)
+ |𝛯3|

휂1
𝛼

𝛤(𝛼 + 1)
+ |𝛯4|

𝑇𝛼

𝛤(𝛼 + 1)
+

𝑇𝛼

𝛤(𝛼 + 1)

+
𝑇1−𝜎

𝛤(2 − 𝜎)
(∥∥𝛯1

′∥∥ 
휂2
𝛼−1

𝛤(𝛼)
 + ∥∥𝛯2

′∥∥ 
𝑇𝛼−1

𝛤(𝛼)
 + 
𝑇𝛼−1

𝛤(𝛼)
) .

 

�̂� = ∥∥�̂�1∥∥
휁2
𝛽−1

𝛤(𝛽)
+ ∥∥�̂�2∥∥

𝑇𝛽−1

𝛤(𝛽)
+ |�̂�3|

휁1
𝛽

𝛤(𝛽 + 1)
+ |�̂�  4|

𝑇𝛽

𝛤(𝛽 + 1)
+

𝑇1−𝛾

𝛤(2 − 𝛾)
(∥∥�̂�1

′∥∥ 
휁2
𝛽−1

𝛤(𝛽)
 + ∥∥�̂�2

′∥∥ 
𝑇𝛽−1

𝛤(𝛽)
) ,

�̂� = ∥∥�̂�1∥∥
휂2
𝛼−1

𝛤(𝛼)
+ ∥∥�̂�2∥∥

𝑇𝛼−1

𝛤(𝛼)
+ |�̂�  3|

휂1
𝛼

𝛤(𝛼 + 1)
+ |�̂�4|

𝑇𝛼

𝛤(𝛼 + 1)
+

𝑇𝛽

𝛤(𝛽 + 1)

+
𝑇1−𝛾

𝛤(2 − 𝛾)
(∥∥�̂�1

′∥∥ 
휂2
𝛼−1

𝛤(𝛼)
 + ∥∥�̂�2

′∥∥ 
𝑇𝛼−1

𝛤(𝛼)
 + 
𝑇𝛽−1

𝛤(𝛽)
) ,

 

where 𝛩𝑖(𝑡), �̂�𝑖(𝑡), 𝛯𝑖(𝑡), �̂�𝑖(𝑡), 𝑖 = 1,… ,4, are defined before Lemma 3.1.1. 

Now we state and prove our first main result. 
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Theorem 3.2.1 Let 𝑓, 𝑔: [0 , 𝑇] × ℝ3 → ℝ be jointly continuous functions. Assume that  

(i) there exist constants 𝑙𝑓 > 0, 𝑙𝑔 > 0∀𝑡 ∈ [0 , 𝑇], 𝑎𝑛𝑑 𝑥𝑖, 𝑦𝑖 ∈ ℝ, 𝑖 = 1,2,3  

|𝑓 (𝑡 , 𝑥1  , 𝑥2  , 𝑥3) − 𝑓 (𝑡 , 𝑦1  , 𝑦2  , 𝑦3)| ≤ 𝑙𝑓(|𝑥1  − 𝑦1| + |𝑥2  − 𝑦2| + |𝑥3  − 𝑦3|), 

|𝑔 (𝑡 , 𝑥1  , 𝑥2  , 𝑥3) − 𝑔 (𝑡 , 𝑦1  , 𝑦2  , 𝑦3)| ≤ 𝑙𝑔(|𝑥1  − 𝑦1| + |𝑥2  − 𝑦2| + |𝑥3  − 𝑦3|). 

(ii)                           1 − 2(𝛩 𝑙𝑔  + 𝛯 𝑙𝑓) > 0,1 − 2(�̂� 𝑙𝑔  + �̂� 𝑙𝑓) > 0. 

Then the boundary value problem (1), (2) has a unique solution on [0 , 𝑇]. 

Proof. Assume that 휀 > 0 is a real number satisfying  

휀 ≥ 𝑚𝑎𝑥 (
2(𝛩 𝑔0  + 𝛯 𝑓0)

1 − 2(𝛩 𝑙𝑔  + 𝛯 𝑙𝑓)
 , 
2(�̂� 𝑔0  + �̂�  𝑓0)

1 − 2(�̂� 𝑙𝑔  + �̂� 𝑙𝑓)
), 

where 

𝑚𝑎𝑥
0≤𝑡≤𝑇

|𝑓 (𝑡 , 0 , 0 , 0)| = 𝑓0 < ∞, 𝑚𝑎𝑥
0≤𝑡≤𝑇

|𝑔 (𝑡 , 0 , 0 , 0)| = 𝑔0 < ∞. 

Define 

𝛺 = {(𝑥 , 𝑦) ∈ 𝐶𝜎  ([0 , 𝑇] , ℝ) × 𝐶𝛾  ([0 , 𝑇] , ℝ) : ∥∥(𝑥 , 𝑦)∥∥𝜎×𝛾
 ≤ 휀}. 

Step 1: Show that 𝐺𝛺 ⊂ 𝛺 . 

By our assumption, for(𝑥 , 𝑦) ∈ 𝛺 , 𝑡 ∈ [0 , 𝑇], we have 

|𝑓 (𝑡 , 𝑥 (𝑡) , 𝑦 (𝑡) , 𝐷𝛾  𝑦 (𝑡))| ≤ |𝑓 (𝑡 , 𝑥 (𝑡) , 𝑦 (𝑡) , 𝐷𝛾  𝑦 (𝑡)) − 𝑓 (𝑡 , 0 , 0 , 0)| + |𝑓 (𝑡 , 0 , 0 , 0)|

              ≤ 𝑙𝑓(|𝑥 ( 𝑡 )| + |𝑦 ( 𝑡 )| + |𝐷
𝛾  𝑦 (𝑡)|) + 𝑓0

             ≤ 𝑙𝑓 (∥𝑥∥𝜎  + ∥∥𝑦∥∥𝛾) + 𝑓0 ≤ 𝑙𝑓휀 + 𝑓0,

           (7)  

similarly, we have 

|𝑔 (𝑡 , 𝑥 (𝑡) , 𝐷𝜎  𝑥 (𝑡) , 𝑦 (𝑡))| ≤ 𝑙𝑔휀 + 𝑔0.                                                       (8) 

Using these estimates, we get 



 

20 

|𝐺1  (𝑥 , 𝑦) (𝑡)| ≤ |𝛩1  (𝑡)|(𝐼
𝛽−1  |𝑔|)(휁2) + |𝛩2  (𝑡)|∫  

𝑇

0

(𝐼𝛽−1  |𝑔|)(𝑠)𝑑𝑠

+|𝛩3|(𝐼
𝛽  |𝑔|)(휁1) + |𝛩4|∫  

𝑇

0

(𝐼𝛽  |𝑔|)(𝑠)𝑑𝑠

+|𝛯1  (𝑡)|(𝐼
𝛼−1  |𝑓|)(휂2) + |𝛯2  (𝑡)|∫  

𝑇

0

(𝐼𝛼−1  |𝑓|)(𝑠)𝑑𝑠

+|𝛯3|(𝐼
𝛼  |𝑓|)(휂1) + |𝛯4|∫  

𝑇

0

(𝐼𝛼  |𝑓|)(𝑠)𝑑𝑠

+
1

𝛤(𝛼)
∫  
𝑡

0

(𝑡 − 𝑠)𝛼−1|𝑓(𝑠 , 𝑥 (𝑠) , 𝑦 (𝑠) , 𝐷𝛾  𝑦 (𝑠))|𝑑𝑠.

 

We use the following type inequalities 

(𝐼𝛽−1  |𝑔|)(휁2) =
1

𝛤(𝛽 − 1)
∫  

2

0

(𝑡 − 𝑠)𝛽−2|𝑔 (𝑠)|𝑑𝑠,

                                           ≤
1

𝛤(𝛽 − 1)
∫  

2

0

(𝑡 − 𝑠)𝛽−2𝑑𝑠∥∥𝑔∥∥ =
휁2
𝛽−1

𝛤(𝛽)
∥∥𝑔∥∥,

 

to get  

|𝐺1  (𝑥 , 𝑦) (𝑡)|

≤ (|𝛩1  (𝑡)| (𝐼
𝛽−1  1) (휁2) + |𝛩2  (𝑡)| ∫  

𝑇

0
 (𝐼𝛽−1  1) (𝑠) 𝑑𝑠 + |𝛩3| (𝐼

𝛽  1) (휁1) + |𝛩4| ∫  
𝑇

0
(𝐼𝛽  1)(𝑠)𝑑𝑠) ∥∥𝑔∥∥

+ (|𝛯1  (𝑡)| (𝐼
𝛼−1  1) (휂2) + |𝛯2  (𝑡)| ∫  

𝑇

0
 (𝐼𝛼−1  1) (𝑠) 𝑑𝑠 + |𝛯3| (𝐼

𝛼  1)(휂1) + |𝛯4| ∫  
𝑇

0
(𝐼𝛼  1)(𝑠)𝑑𝑠) ∥∥𝑓∥∥

+
1

𝛤(𝛼)
∫  
𝑡

0

(𝑡 − 𝑠)𝛼−1𝑑𝑠∥∥𝑓∥∥

≤ (∥∥𝛩1∥∥ 
휁2
𝛽−1

𝛤(𝛽)
 + ∥∥𝛩2∥∥ 

𝑇𝛽−1

𝛤(𝛽)
 + |𝛩3| 

휁1
𝛽

𝛤(𝛽 + 1)
 + |𝛩4| 

𝑇𝛽

𝛤(𝛽 + 1)
) ∥∥𝑔∥∥

+ (∥∥𝛯1∥∥ 
휂2
𝛼−1

𝛤(𝛼)
 + ∥∥𝛯2∥∥ 

𝑇𝛼−1

𝛤(𝛼)
 + |𝛯3| 

휂1
𝛼

𝛤(𝛼 + 1)
 + |𝛯4| 

𝑇𝛼

𝛤(𝛼 + 1)
) ∥∥𝑓∥∥ +

𝑡𝛼

𝛤(𝛼 + 1)
∥∥𝑓∥∥.                                          (9) 

 

Hence, by (7) and (8) we have 

∥∥ 𝐺1  (𝑥 , 𝑦) ∥∥ ≤ (𝛩 𝑙𝑔  + 𝛯 𝑙𝑓)휀 + (𝛩 𝑔0  + 𝛯 𝑓0). 

On the other hand, 

𝑑

𝑑𝑡
𝐺1(𝑥 , 𝑦)(𝑡) = 𝛩1

′(𝑡)(𝐼𝛽−1  𝑔)(휁2) + 𝛩2
′ (𝑡)∫  

𝑇

0

(𝐼𝛽−1  𝑔)(𝑠)𝑑𝑠

                       +𝛯1
′(𝑡)(𝐼𝛼−1  𝑓)(휂2) + 𝛯2

′(𝑡)∫  
𝑇

0

(𝐼𝛼−1  𝑓)(𝑠)𝑑𝑠

                              +
1

𝛤(𝛼 − 1)
∫  
𝑡

0

(𝑡 − 𝑠)𝛼−2𝑓(𝑠 , 𝑥 (𝑠) , 𝑦 (𝑠) , 𝐷𝛾  𝑦 (𝑠))𝑑𝑠.
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and  

|
𝑑
𝑑𝑡
 𝐺1(𝑥 , 𝑦)(𝑡)| ≤ (∥∥𝛩1

′∥∥ 
휁2
𝛽−1

𝛤(𝛽)
 + ∥∥𝛩2

′∥∥ 
𝑇𝛽−1

𝛤(𝛽)
) ∥∥𝑔∥∥

                                       + (∥∥𝛯1
′∥∥ 
휂2
𝛼−1

𝛤(𝛼)
 + ∥∥𝛯2

′∥∥ 
𝑇𝛼−1

𝛤(𝛼)
 + 
𝑇𝛼−1

𝛤(𝛼)
) ∥∥𝑓∥∥.

 

It follows that 

|𝐷𝜎  𝐺1  (𝑥 , 𝑦) (𝑡)| ≤ ∫  
𝑡

0

(𝑡 − 𝑠)−𝜎

𝛤(1 − 𝜎)
|
𝑑
𝑑𝑠
 𝐺1(𝑥 , 𝑦)(𝑠)| 𝑑𝑠

≤
𝑇1−𝜎

𝛤(2 − 𝜎)
(∥∥𝛩1

′∥∥ 
휁2
𝛽−1

𝛤(𝛽)
 + ∥∥𝛩2

′∥∥ 
𝑇𝛽−1

𝛤(𝛽)
) ∥∥𝑔∥∥

+
𝑇1−𝜎

𝛤(2 − 𝜎)
(∥∥𝛯1

′∥∥ 
휂2
𝛼−1

𝛤(𝛼)
 + ∥∥𝛯2

′∥∥ 
𝑇𝛼−1

𝛤(𝛼)
 + 
𝑇𝛼−1

𝛤(𝛼)
) ∥∥𝑓∥∥.                                          (10) 

Thus by (7)–(10) we obtain 

∥∥ 𝐺1  (𝑥 , 𝑦) ∥∥𝜎    = ∥∥𝐺1
 (𝑥 , 𝑦) ∥∥ + ∥∥𝐷𝜎  𝐺1  (𝑥 , 𝑦) ∥∥

≤ 𝛩∥∥𝑔∥∥ + 𝛯∥∥𝑓∥∥

                                 ≤ (𝛩 𝑙𝑔  + 𝛯 𝑙𝑓)휀 + (𝛩 𝑔0  + 𝛯 𝑓0) ≤
휀

2
.

                                        (11) 

In similar way we get 

∥∥ 𝐺2  (𝑥 , 𝑦) ∥∥𝛾 = ∥∥𝐺2  (𝑥 , 𝑦) ∥∥ + ∥∥𝐷
𝛾  𝐺2  (𝑥 , 𝑦) ∥∥

                               ≤ (�̂� 𝑙𝑔  + �̂� 𝑙𝑓)휀 + (�̂� 𝑔0  + �̂� 𝑓0) ≤
휀

2
.
                                            (12) 

From (11) and (12) we get 

∥∥ 𝐺1  (𝑥 , 𝑦) ∥∥ 𝜎
+ ∥∥𝐺2  (𝑥 , 𝑦) ∥∥𝛾 ≤ 휀. 

Step 2: Show that 𝐺 is a contraction. 

Now for 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝛺 , ∀𝑡 ∈ [0 , 𝑇] we have  

∥∥ 𝐺1  (𝑥1  , 𝑦1) − 𝐺1  (𝑥2  , 𝑦2) ∥∥𝜎                                                                                            

≤ (𝛩 𝑙𝑔  + 𝛯 𝑙𝑓)(∥∥ 𝑥1  − 𝑥2 ∥∥ + ∥∥ 𝑦1  − 𝑦2 ∥∥ + ∥∥ 𝐷
𝛾  𝑦1  − 𝐷

𝛾  𝑦2 ∥∥),

∥∥ 𝐺2  (𝑥1  , 𝑦1) − 𝐺2  (𝑥2  , 𝑦2) ∥∥𝛾                                                                                            

≤ (�̂� 𝑙𝑔  + �̂� 𝑙𝑓)(∥∥ 𝑥1  − 𝑥2 ∥∥ + ∥∥ 𝑦1  − 𝑦2 ∥∥ + ∥∥ 𝐷
𝜎  𝑥1  − 𝐷

𝜎  𝑥2 ∥∥).

 

So we obtain 
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∥∥ (𝐺1  , 𝐺2) (𝑥1  , 𝑦1) − (𝐺1  , 𝐺2) (𝑥2  , 𝑦2) ∥∥𝜎×𝛾                                                                      

≤ ((𝛩 𝑙𝑔  + 𝛯 𝑙𝑓) + (�̂� 𝑙𝑔  + �̂� 𝑙𝑓)) ∥∥ (𝑥1  , 𝑦1) − (𝑥2  , 𝑦2) ∥∥𝜎×𝛾,
 

which shows that 𝐺 is a contraction. So, by the Banach fixed point theorem, the 

operator ((𝐺1  , 𝐺2) has a unique fixed point in 𝛺 . 

The second result is based on the Leray-Schauder alternative. Now we formulate and 

prove the second existence result. 

Theorem 3.2.2 Let  𝑓, 𝑔: [0, 𝑇] × ℝ³ → ℝ be continuous functions. Assume that 

(i) there exist a positive real constants 휃𝑖 , 𝜆𝑖(𝑖 = 0 , 1 , 2 , 3) such that ∀𝑥𝑖 ∈ ℝ, (𝑖 = 1 , 2 , 3) 

|𝑓 (𝑡 , 𝑥1  , 𝑥2  , 𝑥3)| ≤ 휃0 + 휃1|𝑥1| + 휃2|𝑥2| + 휃3|𝑥3|, 

|𝑔 (𝑡 , 𝑥1  , 𝑥2  , 𝑥3)| ≤ 𝜆0 + 𝜆1|𝑥1| + 𝜆2|𝑥2| + 𝜆3|𝑥3|. 

(ii) 𝑚𝑎𝑥{𝐴, 𝐵} < 1 where 

𝐴 = (𝛩 + �̂�)𝜆1 + (𝛯 + �̂�)𝑚𝑎𝑥(휃1  , 휃3),

𝐵 = (𝛩 + �̂�)𝑚𝑎𝑥(𝜆2  , 𝜆3) + (𝛯 + �̂�)휃2.
 

Then there exists at least one solution for the problem (1), (2) on [0, 𝑇]. 

Proof. The proof will be divided into several steps.  

Step1: We show that 𝐺: 𝐶𝜎([0 , 𝑇] , ℝ) × 𝐶𝛾([0 , 𝑇] , ℝ) → 𝐶𝜎([0 , 𝑇] , ℝ) × 𝐶𝛾([0 , 𝑇] , ℝ) is 

completely continuous. The continuity of the operator holds true because of 

continuity of the function  𝑓, 𝑔. Let𝛺 ⊂ 𝐶𝜎([0 , 𝑇] , ℝ) × 𝐶𝛾([0 , 𝑇] , ℝ)  be bounded. 

Then there exist 𝑘𝑓 , 𝑘𝑔 > 0  such that  

|𝑓 (𝑡 , 𝑥 (𝑡) , 𝑦 (𝑡) , 𝐷𝛾  𝑦 (𝑡))| ≤ 𝑘𝑓 , |𝑔 (𝑡 , 𝑥 (𝑡) , 𝐷
𝜎  𝑥 (𝑡) , 𝑦 (𝑡))| ≤ 𝑘𝑔, ∀(𝑥 , 𝑦) ∈ 𝛺, 

also, from (11) it follows that 

∥∥ 𝐺1  (𝑥 , 𝑦) ∥∥𝜎 = ∥∥𝐺1  (𝑥 , 𝑦) ∥∥ + ∥∥𝐷
𝜎  𝐺1  (𝑥 , 𝑦) ∥∥

≤ 𝛩∥∥𝑔∥∥ + 𝛯∥∥𝑓∥∥   

≤ 𝛩𝑘𝑔 + 𝛯𝑘𝑓 .       

                                      (13) 

Similarly, we obtain that 
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∥∥ 𝐺2  (𝑥 , 𝑦) ∥∥𝛾 = ∥∥ 𝐺2
 (𝑥 , 𝑦) ∥∥ + ∥∥𝐷𝛾  𝐺2  (𝑥 , 𝑦) ∥∥

≤ �̂�∥∥𝑔∥∥ + �̂�∥∥𝑓∥∥   

≤ �̂�𝑘𝑔 + �̂�𝑘𝑓 .       

                                      (14) 

So, from (13) and (14) we conclude that our operator G is uniformly bounded. 

Now, let us show that 𝐺 is equicontinuous. Consider𝑡1, 𝑡2 ∈ [0 , 𝑇] with  𝑡1 < 𝑡2. Then 

we have: 

|𝐺1  (𝑥 , 𝑦) (𝑡2) − 𝐺1  (𝑥 , 𝑦) (𝑡1)| ≤ |𝛩1  (𝑡1) − 𝛩1  (𝑡2)|(𝐼
𝛽−1  |𝑔|)(휁2)

                                                            +|𝛩2  (𝑡1) − 𝛩2  (𝑡2)|∫  
𝑇

0

(𝐼𝛽−1  |𝑔|)(𝑠)𝑑𝑠

                                               +|𝛯1  (𝑡1) − 𝛯1  (𝑡2)|(𝐼
𝛼−1  |𝑓|)(휂2)

                                                         +|𝛯2  (𝑡1) − 𝛯2  (𝑡1)|∫  
𝑇

0

(𝐼𝛼−1  |𝑓|)(𝑠)𝑑𝑠

                                                                 +
1

𝛤(𝛼)
∫  
𝑡1

0

|(𝑡2  − 𝑠)
𝛼−1  − (𝑡1  − 𝑠)

𝛼−1||𝑓|𝑑𝑠

                                      +
1

𝛤(𝛼)
∫  
𝑡2

𝑡1

|𝑡2  − 𝑠|
𝛼−1|𝑓|𝑑𝑠,

 

and  

|𝐺1  (𝑥 , 𝑦)
′  (𝑡2) − 𝐺1  (𝑥 , 𝑦)

′  (𝑡1)| ≤
𝑘𝑓

𝛤(𝛼)
[(𝑡2  − 𝑡1)

𝛼−1  + |𝑡2   
𝛼−1  − 𝑡1   

𝛼−1|]. 

Thus 

|𝐷𝛾  𝐺1  (𝑥 , 𝑦) (𝑡2) − 𝐷
𝛾  𝐺1  (𝑥 , 𝑦) (𝑡1)| = ∫  

𝑡

0

(𝑡 − 𝑠)−𝛾

𝛤(1 − 𝛾)
|𝐺1  (𝑥 , 𝑦)

′  𝑡2  ) − 𝐺1  (𝑥 , 𝑦)
′  (𝑡1)|𝑑𝑠

≤
𝑇1−𝛾

𝛤(2 − 𝛾)

𝑘𝑓

𝛤(𝛼)
[(𝑡2  − 𝑡1)

𝛼−1  + |  𝑡2
𝛼−1  −   𝑡1

𝛼−1|],

 

which implies that∥∥ 𝐺1  (𝑥 , 𝑦) (𝑡2) − 𝐺1  (𝑥 , 𝑦) (𝑡1) ∥∥ → 0, independent of  (𝑥, 𝑦)𝑎𝑠 𝑡2 →

𝑡1. Similarly ∥∥ 𝐺2  (𝑥 , 𝑦) (𝑡2) − 𝐺2  (𝑥 , 𝑦) (𝑡1) ∥∥ → 0, ,independent of (𝑥, 𝑦)𝑡2 → 𝑡1.Thus, 

𝐺(𝑥, 𝑦)is equicontinuous, so by Arzela-Ascoli theorem 𝐺 (𝑥, 𝑦) is completely 

continuous.  

Step 2: Boundedness of   

𝑅 = {(𝑥 , 𝑦) ∈ 𝐶𝜎  ([0 , 𝑇] , ℝ) × 𝐶𝛾  ([0 , 𝑇] , ℝ) : (𝑥 , 𝑦) = 𝑟 𝐺 (𝑥 , 𝑦) , 𝑟 ∈ [0 , 1]}. 
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Let  

𝑥(𝑡) = 𝑟𝐺1(𝑥 , 𝑦)(𝑡), 𝑦(𝑡) = 𝑟𝐺2(𝑥 , 𝑦)(𝑡), 

then  

|𝑥 ( 𝑡 )| = 𝑟|𝐺1  (𝑥 , 𝑦) (𝑡)|. 

By using our assumption we can easily get 

∥𝑥∥𝜎 = 𝑟∥∥𝐺1  (𝑥 , 𝑦) ∥∥𝜎 = ∥∥𝐺1
 (𝑥 , 𝑦) ∥∥ + ∥∥𝐷𝜎  𝐺1  (𝑥 , 𝑦) ∥∥

≤ 𝛩∥∥𝑔∥∥ + 𝛯∥∥𝑓∥∥                                               

≤ 𝛩 (𝜆0  + 𝜆1  ∥𝑥∥ + 𝜆2  ∥∥𝑦∥∥ + 𝜆3  ∥∥𝑦∥∥𝛾)              

+𝛯(휃0  + 휃1  ∥𝑥∥ + 휃2  ∥∥𝑦∥∥ + 휃3  ∥𝑥∥𝜎),                 

 

and in similar way, we can have 

∥∥𝑦∥∥𝛾 = 𝑟∥∥𝐺2
 (𝑥 , 𝑦) ∥∥𝛾 = ∥∥𝐺2

 (𝑥 , 𝑦) ∥∥ + ∥∥𝐷𝛾  𝐺2  (𝑥 , 𝑦) ∥∥

 ≤ �̂�∥∥𝑔∥∥ + �̂�∥∥𝑓∥∥                                                 

≤ �̂� (𝜆0  + 𝜆1  ∥𝑥∥ + 𝜆2  ∥∥𝑦∥∥ + 𝜆3  ∥∥𝑦∥∥𝛾)               

+�̂�(휃0  + 휃1  ∥𝑥∥ + 휃2  ∥∥𝑦∥∥ + 휃3  ∥𝑥∥𝜎).                 

 

So 

∥𝑥∥𝜎 + ∥∥𝑦∥∥𝛾 ≤ (𝛩 + �̂�)𝜆0 + (𝛯 + �̂�)휃0 +𝑚𝑎𝑥{𝐴 , 𝐵}∥∥(𝑥 , 𝑦)∥∥𝜎×𝛾   , 

where 

∥∥(𝑥 , 𝑦)∥∥𝜎×𝛾 ≤
(𝛩 + �̂�)𝜆0 + (𝛯 + �̂�)휃0

1 −𝑚𝑎𝑥{𝐴 , 𝐵}
. 

As a result the set R is bounded. So, by Leray-Schauder alternative the operator 𝐺 has 

at least one fixed point, which is the solution for the problem (1) with the boundary 

conditions (2) on [0 , 𝑇].        ∎ 

3.3 Examples 

Example 3.3.1 Consider the following coupled system of fractional differential 

equation: 
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{
 
 

 
  𝑐𝐷6 5⁄ 𝑥(𝑡) =

𝑒−3𝑡

12√6400 + 𝑡4
(𝑠𝑖𝑛 (𝑥 (𝑡)) + 𝑐𝑜𝑠 (𝑦 (𝑡)) + 𝑠𝑖𝑛 (𝐷1 5⁄  𝑦 (𝑡)))                  

 𝑐𝐷6 5⁄ 𝑦(𝑡) =
1

12√3600 + 𝑡2
(𝑐𝑜𝑠 (𝑥 (𝑡)) + 

|𝑦 (𝑡)|
2 + |𝑦 (𝑡)|

 + 
|𝐷1 3⁄  𝑥 (𝑡)|

4 + |𝐷1 3⁄  𝑥 (𝑡)|
) , 𝑡 ∈ [0 , 1]

 

With the integral boundary conditions: 

∫  
1

0

𝑥(𝑠)𝑑𝑠 = 3𝑦(1 / 3),∫  
1

0

𝑥′(𝑠)𝑑𝑠 = −2𝑦′(1 / 4),

∫  
1

0

𝑦(𝑠)𝑑𝑠 = 𝑥(1),∫  
1

0

𝑦′(𝑠)𝑑𝑠 = 2𝑥′(1 / 2).

 

It is clear that 

𝑓(𝑡 , 𝑥 , 𝑦 , 𝑧) =
𝑒−3𝑡

12√6400 + 𝑡4
(𝑠𝑖𝑛 𝑥 + 𝑐𝑜𝑠 𝑦 + 𝑠𝑖𝑛 𝑧),

𝑔(𝑡 , 𝑥 , 𝑦 , 𝑧) =
1

12√3600 + 𝑡2
(𝑐𝑜𝑠 𝑥 + 

|𝑦|
2 + |𝑦|

 + 
|𝑧|

4 + |𝑧|
) ,

 

are jointly continuous and satisfy the Lipschitz condition with 𝑙𝑓 = 1/320, 𝑙𝑔 =

1/240. 

𝑇 = 1, 𝜌1 = 3, 휁1 = 1/3, 𝜌2 = −2, 휁2 = 1/4, 𝜇1 = 1, 휂1 = 1, 𝜇2 = 2, 휂2 = 1/2, 𝛾

= 1/5, 𝜎 = 1/3, 

and 𝛩, 𝛯, �̂�, �̂� can be chosen as follows:  

𝛩 = 3.4959, 𝛯 = 6.4324, �̂� = 5.1602, �̂� = 4.6058. 

Then we obtain: 

1 − 2(𝛩 𝑙𝑔  + 𝛯 𝑙𝑓) = 1 − 0.0693 = 0.9307 > 0,

1 − 2(�̂� 𝑙𝑔  + �̂� 𝑙𝑓) = 1 − 0.0718 = 0.9282 > 0.
 

Obviously, all the condition of Theorem 3.2.1 are satisfied so there exists unique 

solution for this problem. 

Example 3.3.2 Consider the following system: 
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{
 
 

 
  𝑐𝐷6 5⁄ 𝑥(𝑡) =

1

40 + 𝑡3
+

𝑦(𝑡)

115(1 + 𝑥2  (𝑡))
+

1

3(100 + 𝑡2)
𝑠𝑖𝑛 (𝐷1 5⁄  𝑦 (𝑡)) +

1

3√3600 + 𝑡
𝑒−3𝑡𝑠𝑖𝑛(𝑥 (𝑡))

 𝑐𝐷6 5⁄ 𝑦(𝑡) =
1

√9 + 𝑡2
𝑠𝑖𝑛𝑡 +

1

180
𝑒−2𝑡𝑠𝑖𝑛(𝑦 (𝑡)) +

1

150
𝑥(𝑡) +

1

3(180 + 𝑡)
𝐷1 3⁄ 𝑥(𝑡), 𝑡 ∈ [0 , 1],          

 

with the following boundary conditions: 

∫ 𝑥
1

0

(𝑠)𝑑𝑠 = 3𝑦(1 / 3), ∫ 𝑥′
1

0

(𝑠)𝑑𝑠 = −2𝑦′(1 / 4),

∫ 𝑦
1

0

(𝑠)𝑑𝑠 = 𝑥(1),∫ 𝑦′
1

0

(𝑠)𝑑𝑠 = 2𝑥′(1 / 2),

 

𝑇 = 1, 𝜌1 = 3, 휁1 = 1/3, 𝜌2 = −2, 휁2 = 1/4, 𝜇1 = 1, 휂1 = 1, 𝜇2 = 2, 휂2 = 1/2, 𝛾 = 1/5, 𝜎 = 1/3,

𝛩 = 3.4959, 𝛯 = 6.4324, �̂� = 5.1602, �̂� = 4.6058.
 

It is clear that: 

|𝑓 (𝑡 , 𝑥1  , 𝑥2  , 𝑥3)| ≤
1

40
+

1

180
|𝑥1| +

1

115
|𝑥2| +

1

300
|𝑥3|,

|𝑔 (𝑡 , 𝑥1  , 𝑥2  , 𝑥3)| ≤
1

3
+

1

150
|𝑥1| +

1

180
|𝑥2| +

1

540
|𝑥3|.

 

Thus  

휃0 = 1/40, 휃1 = 1/180, 휃2 = 1/115, 휃3 = 1/300,
𝜆0 = 1/3, 𝜆1 = 1/150, 𝜆2 = 1/180, 𝜆3 = 1/540.

 

We found A and B such that: 𝐴 = 0.1190, 𝐵 = 0.1444and that 𝑚𝑎𝑥{𝐴 , 𝐵} =

0.1444 < 1. Since the conditions of Theorem 3.2.2 is achieved. So, there exists a 

solution for this problem. 

3.4 Conclusion 

We studied the existence of solutions for a coupled system of fractional differential 

equations with integral boundary conditions. The first result was based on the 

Banach fixed point theorem. Secondly, by using Leray–Schauder’s alternative, we 

proved the existence of solutions for Caputo fractional equations with integral 

boundary conditions. Finally, our results are supported by examples. 
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Chapter 4 

4 ON THE PARAMETRIZATION OF CAPUTO TYPE 

FRACTIONAL DIFFERENTIAL EQUATION WITH 

TWO POINT NONLINEAR BOUNDARY CONDITIONS 

In this chapter, we apply the technique proposed in [2] for investigation and 

approximation of solutions of Caputo type fractional differential equation with 

nonlinear boundary conditions. By using an appropriate parametrization technique, 

nonlinear boundary conditions are transformed to linear boundary conditions by using 

vector parameters.  

To study the transformed problem, we construct a numerical-analytic scheme which is 

successful in relation to different types two-point and multipoint linear boundary 

condition and nonlinear boundary conditions. According to the main idea of the 

numerical analytic technique, certain type of successive approximations constructed 

analytically. We give sufficient conditions or the uniform convergence of the 

successive approximations. Also, it is indicated that these successive approximations 

uniformly converge to a parametrized limit function and state the relationship of this 

limit function and exact solution. Finally, some results are illustrated by using defined 

conditions and techniques. 
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4.1 Identification and Parametrization of the Problem 

Let us consider Caputo type fractional differential equation with nonlinear boundary 

conditions: 

𝐷𝛼 
𝑐 𝑥(𝑡) = ℎ(𝑡, 𝑥(𝑡)), 𝑡 ∈ [0, 𝑇],                                                             (1) 

𝐴𝑥(0) + 𝐵𝑥(𝑇) + 𝑔(𝑥(0), 𝑥(𝑇)) = 𝑑, 𝑑 ∈ ℝⁿ,                                              (2) 

Where 𝐷𝛼 
𝑐  is the Caputo derivative of order 𝛼 ∈ (0,1],  the functions  ℎ: [0, 𝑇] × 𝐷 →

ℝⁿ, 𝑎𝑛𝑑 𝑔: 𝐷 × 𝐷 → ℝⁿ are continuous and the set 𝐷 ⊂ ℝⁿ is closed and bounded 

domain.  𝐴  and 𝐵 are 𝑛 × 𝑛 matrices, 𝑑𝑒𝑡 𝐵 ≠ 0  and 𝑑 is a 𝑛 −dimensional vector. 

By using appropriate parametrization technique [38], the given problem (1), (2) is 

reduced to certain parametrized two-point boundary conditions. To see that, we apply 

"freezing" technique which is similar to [38]: That means, we introduce the vectors of 

parameters 

𝜔:= 𝑥(0) = (𝜔₁,𝜔₂. . . 𝜔𝑛)
𝑇 ,        

𝜑:= 𝑥(𝑇) = (𝜑₁, 𝜑₂, . . . , 𝜑𝑛)
𝑇 ,                                              (3) 

𝑑(𝜔, 𝜑):= 𝑑 − 𝑔(𝜔, 𝜑).                                                         (4) 

and by using (4) , the problem (1) ;(2) can be rewritten as follows: 

𝐷𝛼 
𝑐 𝑥(𝑡) = ℎ(𝑡, 𝑥(𝑡)) 

𝐴𝑥(0) + 𝐵𝑥(𝑇) = 𝑑(𝜔, 𝜑).                                              (5) 

Parametrized boundary value problem (5) will be studied under the following 

condition: 

A) The function  ℎ: [0, 𝑇] × ℝⁿ →  ℝⁿ satisfies the Lipschitz condition:  

‖ℎ(𝑡, 𝑢) − ℎ(𝑡, 𝑣)‖ ≤ 𝐿‖𝑢 − 𝑣‖                                               (6) 

For all 𝑡 ∈ [0, 𝑇], 𝑢, 𝑣 ∈ 𝐷,where 𝐿 is a positive constant. 

B) Let  
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𝑘(𝑡) = ((2𝑡𝛼)/(𝛤(𝛼 + 1)))(1 − (𝑡/𝑇))𝛼. 

Then , 𝑘(𝑡) takes its maximum value at 𝑡 = (
𝑇

2
) and  

‖𝑘‖∞ = ((𝑇𝛼)/(22𝛼−1𝛤(𝛼 + 1))). 

Define, 

‖ℎ‖∞ = 𝑚𝑎𝑥(𝑡,𝑥)∈[0,𝑇]×𝐷‖ℎ(𝑡, 𝑥)‖ 

and a vector function 𝛿: 𝐷 × 𝐷 → ℝⁿ is  

𝛿(𝜔, 𝜑):= ‖𝜅‖∞‖ℎ‖∞ + ‖[𝐵⁻¹𝑑(𝜔, 𝜑) − (𝐵⁻¹𝐴 + 𝐼𝑛)𝜔]‖, 

where 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix and 𝜔,𝜑 ∈ 𝐷 of the form (3).  

𝛿 is the radius of a neighborhood 𝐶 of the point 𝜔 ∈ 𝐷 is defined as follows: 

𝐵(𝜔, 𝛿(𝜔, 𝜑)): = {𝑥 ∈ ℝⁿ: ‖𝑥 − 𝜔‖ ≤ 𝛿(𝜔, 𝜑) for all 𝜑 ∈ 𝐷 ⊂ ℝⁿ}  

the set 

𝐷𝛿: = {𝜔 ∈ 𝐷:𝐵(𝜔, 𝛿(𝜔, 𝜑)) ⊂ 𝐷 for all 𝜑 ∈ 𝐷} 

 is nonempty 

C)    𝐿‖𝑘‖∞ < 1,where  𝐿 is a positive constant and satisfies the inequality (6) . 

For studying of the solution of the parametrized boundary value problem (5), 

we consider the sequence of functions {𝑥𝑚} which is defined by the iterative formula 

as follows: 

𝑥𝑚(𝑡, 𝜔, 𝜑) = 𝜔 +
1

𝛤(𝛼)
[∫ (𝑡 − 𝑠)𝛼−1

𝑡

0

ℎ(𝑠, 𝑥𝑚−1(𝑠, 𝜔, 𝜑))𝑑𝑠

− (
𝑡

𝑇
)
𝛼

∫ (𝑇 − 𝑠)𝛼−1
𝑇

0

ℎ(𝑠, 𝑥𝑚−1(𝑠, 𝜔, 𝜑))𝑑𝑠] + (
𝑡

𝑇
)
𝛼

[𝐵⁻¹𝑑(𝜔, 𝜑)

− (𝐵⁻¹𝐴 + 𝐼𝑛)𝜔]                                                                                          (7) 

for 𝑡 ∈ [0, 𝑇],𝑚 = 1,2,3. ..  

where 

𝑥₀(𝑡, 𝜔, 𝜑) = (𝑥₀₁, 𝑥₀₂, . . , 𝑥0𝑛)
𝑇 = 𝜔 ∈ 𝐷𝛿  
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𝑥𝑚(𝑡, 𝜔, 𝜑) = (𝑥𝑚,1(𝑡, 𝑧, 𝜑), 𝑥𝑚,2(𝑡, 𝑧, 𝜑). . . , 𝑥𝑚,𝑛(𝑡, 𝑧, 𝜑))
𝑇 

and 𝜔,𝜑 are considered as parameters. 

In addition, it is easily to see that the sequence of functions 𝑥𝑚 are satisfied linear 

parmetrized boundary conditions (5) for all 𝑚 ≥ 1, 𝜔 ∈ 𝐷𝛿 , 𝜑 ∈ 𝐷.  

Now, we prove that the sequence of the functions (7) is uniformly convergent and 

show the relationship between this sequence of the functions and the limit function. 

Theorem 4.1.1 Assume that the parametrized boundary value problem (5) satisfy the 

conditions (A) ,(B) and (C) . 

Then for all  𝜑 ∈ 𝐷 and 𝜔 ∈ 𝐷𝛿, the following assertions are true: 

1. All functions of sequence (7) are continuous and satisfy the parametrized boundary 

conditions (5) 

𝐴𝑥𝑚(0, 𝜔, 𝜑) + 𝐵𝑥𝑚(𝑇, 𝜔, 𝜑) = 𝑑(𝜔, 𝜑),𝑚 = 1,2,3. . .              (8) 

2. The sequence of functions (7) converges uniformly in 𝑡 ∈ [0, 𝑇] 𝑎𝑠 𝑚 → ∞ to the 

limit function. 

𝑥∗(𝑡, 𝜔, 𝜑) = 𝑙𝑖𝑚𝑚→∞𝑥𝑚(𝑡, 𝜔, 𝜑).                                          (9) 

3. The limit function 𝑥∗satisfies the initial condition 

𝑥∗(0, 𝜔, 𝜑) = 𝜔 

and  

𝐴𝑥∗(0, 𝜔, 𝜑) + 𝐵𝑥∗(𝑇, 𝜔, 𝜑) = 𝑑(𝜔, 𝜑) 

4. The limit function (9) is the unique continuous solution of the integral equation  
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𝑥(𝑡): = 𝜔 +
1

𝛤(𝛼)
[∫ (𝑡 − 𝑠)𝛼−1

𝑡

0

ℎ(𝑠, 𝑥(𝑠))𝑑𝑠 − (
𝑡

𝑇
)
𝛼

∫ (𝑇 − 𝑠)𝛼−1
𝑇

0

ℎ(𝑠, 𝑥(𝑠))𝑑𝑠]

+ (
𝑡

𝑇
)
𝛼

[𝐵−1𝑑(𝜔, 𝜑) − (𝐵⁻¹𝐴

+ 𝐼𝑛)𝜔] ,                                                                                                      (10) 

or 𝑥(𝑡) is the unique solution on [0, 𝑇]  of the Cauchy problem: 

𝐷𝛼 
𝑐 𝑥(𝑡) = ℎ(𝑡, 𝑥(𝑡))+𝛼𝛺(𝜔, 𝜑),      𝑥(0) = 𝜔,                                   (11) 

where 

𝛺 
𝛼 (𝜔, 𝜑) =

−𝛼

𝑇𝛼
[∫ (𝑇 − 𝑠)𝛼−1

𝑇

0

ℎ(𝑠, 𝑥∗(𝑡, 𝜔, 𝜑))𝑑𝑠 − 𝛤(𝛼)[𝐵−1𝑑(𝜔, 𝜑)

− (𝐵⁻¹𝐴+𝐼𝑛)𝜔]] ,                                                                                      (12) 

5. Error estimation: 

‖𝑥∗(𝑡, 𝜔, 𝜑) − 𝑥𝑚(𝑡, 𝜔, 𝜑)‖

≤ (𝐿‖𝜅‖∞)
𝑚(‖ℎ‖∞‖𝜅‖∞ + [𝐵⁻¹𝑑(𝜔, 𝜑) − (𝐵⁻¹𝐴

+ 𝐼𝑛)𝜔])
1

1 − 𝐿‖𝜅‖∞
. 

Proof. 

1. Continuity of the sequence { 𝑥𝑚} defined by (7) follows directly from the 

construction of sequence and by direct computation, it is easy to show that the 

sequence 𝑥𝑚satisfies the parametrized boundary conditions (5) . 

2. We prove that the sequence of functions is a Cauchy sequence in the Banach space 

𝐶([𝑎, 𝑏], ℝⁿ). 

At first, we show that 𝑥𝑚(𝑡, 𝜔, 𝜑) ∈ 𝐷.for all (𝑡, 𝜔, 𝜑) ∈ [0, 𝑇] × 𝐷𝛿 × 𝐷,𝑚 ∈ ℕ.   

We get the following equation from (7) for 𝑚 = 1: 
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𝑥₁(𝑡, 𝜔, 𝜑) = 𝜔 +
1

𝛤(𝛼)
[∫ (𝑡 − 𝑠)𝛼−1

𝑡

0

ℎ(𝑠, 𝑥₀(𝑠, 𝜔, 𝜑))𝑑𝑠

− (
𝑡

𝑇
)
𝛼

∫ (𝑇 − 𝑠)𝛼−1
𝑇

0

ℎ(𝑠, 𝑥₀(𝑠, 𝜔, 𝜑))𝑑𝑠] + (
𝑡

𝑇
)
𝛼

[𝐵−1𝑑(𝜔, 𝜑)

− (𝐵⁻¹𝐴 + 𝐼𝑛)𝜔] ,                                                                                     (13) 

Moreover, it can be written as follows: 

‖𝑥1(𝑡, 𝜔, 𝜑) − 𝜔‖

≤
1

𝛤(𝛼)
[∫ |(𝑡 − 𝑠)𝛼−1 − (

𝑡

𝑇
)
𝛼

(𝑇 − 𝑠)𝛼−1||ℎ(𝑠, 𝜔)|
𝑡

0

𝑑𝑠

− (
𝑡

𝑇
)
𝛼

∫ |(
𝑡

𝑇
)
𝛼

(𝑇 − 𝑠)𝛼−1|
𝑇

𝑡

|ℎ(𝑠, 𝜔)|𝑑𝑠]

+ ‖(
𝑡

𝑇
)
𝛼

[𝐵−1𝑑(𝜔, 𝜑) − (𝐵⁻¹𝐴 + 𝐼𝑛)𝜔]‖ :

= 𝐼₁ + 𝐼₂ + 𝐼₃                                                                                             (14) 

1. we estimate 𝐼1 : 

𝐼1 ≤
1

𝛤(𝛼)
[∫ |(𝑡 − 𝑠)𝛼−1 − (

𝑡

𝑇
)
𝛼

(𝑇 − 𝑠)𝛼−1|‖ℎ‖∞

𝑡

0

𝑑𝑠 

                             = (
𝑡

𝑇
)
𝛼 (𝑇 − 𝑡)𝛼

𝛤(𝛼 + 1)
‖ℎ‖∞,                                                                        (15) 

where the expression under the absolute value is nonnegative 

1

(𝑡 − 𝑠)1−𝛼
≥ (

𝑡

𝑇
)
𝛼 1

(𝑡 − 𝑠)1−𝛼
≥ (

𝑡

𝑇
)
𝛼 1

(𝑇 − 𝑠)1−𝛼
. 

Then, we estimate 𝐼2 and 𝐼3: 

𝐼2 ≤
1

𝛤(𝛼)
[∫ |(

𝑡

𝑇
)
𝛼

(𝑇 − 𝑠)𝛼−1| ‖ℎ(𝑠, 𝜔)‖
𝑇

𝑡

𝑑𝑠 

                                      = (
𝑡

𝑇
)
𝛼 (𝑇 − 𝑡)𝛼

𝛤(𝛼 + 1)
‖ℎ‖∞,                                                               (16) 

and  
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𝐼3 = (
𝑡

𝑇
)
𝛼

‖𝐵−1𝑑(𝜔, 𝜑) − (𝐵⁻¹𝐴 + 𝐼𝑛)𝜔‖                                                        (17) 

Substituting (15) ,(16) and (17) into the relation (14) and we obtain the following 

result: 

‖𝑥1(𝑡, 𝜔, 𝜑) − 𝜔‖

≤
2𝑡𝛼

𝛤(𝛼 + 1)
(1 −

𝑡

𝑇
)
𝛼

‖ℎ‖∞ + (
𝑡

𝑇
)
𝛼

‖𝐵−1𝑑(𝜔, 𝜑) − (𝐵−1𝐴 + 𝐼𝑛)𝜔‖

≤
𝑇𝛼

22𝛼−1𝛤(𝛼 + 1)
‖ℎ‖∞ + ‖𝐵

−1𝑑(𝜔, 𝜑) − (𝐵−1𝐴 + 𝐼𝑛)𝜔‖

= ‖𝜅‖∞‖ℎ‖∞ + |‖𝐵
−1𝑑(𝜔, 𝜑) − (𝐵−1𝐴 + 𝐼𝑛)𝜔‖|

= 𝛿(𝜔, 𝜑).                                                                                           (18) 

Thus  

𝑥₁(𝑡, 𝜔, 𝜑) ∈ 𝐷  

For  

(𝑡, 𝜔, 𝜑) ∈ [0, 𝑇] × 𝐷𝛿 × 𝐷. 

By induction, it can be shown that all functions 𝑥𝑚(𝑡, 𝜔, 𝜑) defined by (7) 

also belong to the set 𝐷  for all  𝑚 = 1,2,3, . . . 𝑡 ∈ [0, 𝑇], 𝜔 ∈ 𝐷𝛿 , 𝜑 ∈ 𝐷. 

2. we consider the difference 

𝑥𝑚+1(𝑡, 𝜔, 𝜑) − 𝑥𝑚(𝑡, 𝜔, 𝜑)

=
1

𝛤(𝛼)
(∫ (𝑡 − 𝑠)𝛼−1[ℎ(𝑠, 𝑥𝑚(𝑠, 𝜔, 𝜑) − ℎ(𝑠, 𝑥𝑚−1(𝑠, 𝜔, 𝜑)]𝑑𝑠

𝑡

0

−∫ (
𝑡

𝑇
)
𝛼

(𝑇 − 𝑠)𝛼−1
𝑇

0

× [ℎ(𝑠, 𝑥𝑚(𝑠, 𝜔, 𝜑) − ℎ(𝑠, 𝑥𝑚−1(𝑠, 𝜔, 𝜑)]𝑑𝑠)                                  (19) 

for 𝑚 = 1,2,3, . .. 

Then the difference (19) is denoted by 𝑟𝑚(𝑡, 𝜔, 𝜑) as follows: 
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𝑟𝑚(𝑡, 𝜔, 𝜑):= ‖𝑥𝑚(𝑡, 𝜔, 𝜑) − 𝑥𝑚−1(𝑡, 𝜔, 𝜑)‖, for all 𝑚 = ,2,3, . . .                         (20) 

and the inequality (18) can be rewritten in the following form  

𝑟1(𝑡, 𝜔, 𝜑) = ‖𝑥1(𝑡, 𝜔, 𝜑) − 𝜔‖

≤ ‖𝜅‖∞‖ℎ‖∞

+ ‖[𝐵−1𝑑(𝜔, 𝜑) − (𝐵−1𝐴 + 𝐼𝑛)𝜔]‖.                                                  (21) 

Taking into account the Lipshitz condition (𝐴) and the relation (21) for 𝑚 = 2,we get 

𝑟2(𝑡, 𝜔, 𝜑) ≤
𝐿

𝛤(𝛼)
(∫ [(𝑡 − 𝑠)𝛼−1 − (

𝑡

𝑇
)
𝛼

(𝑇 − 𝑠)𝛼−1]
𝑡

0

+∫ (
𝑡

𝑇
)
𝛼

(𝑇 − 𝑠)𝛼−1
𝑇

𝑡

) |𝑥1(𝑡, 𝜔, 𝜑) − 𝜔|

=
𝐿

𝛤(𝛼)
(∫ [(𝑡 − 𝑠)𝛼−1 − (

𝑡

𝑇
)
𝛼

(𝑇 − 𝑠)𝛼−1]
𝑡

0

+∫ (
𝑡

𝑇
)
𝛼

(𝑇 − 𝑠)𝛼−1
𝑇

𝑡

) 𝑟1(𝑡, 𝜔, 𝜑)

≤
2𝐿𝑡𝛼

𝛤(𝛼 + 1)
(1 −

𝑡

𝑇
)
𝛼

[‖𝜅‖∞‖ℎ‖∞

+ ‖[𝐵−1𝑑(𝜔, 𝜑) − (𝐵−1𝐴 + 𝐼𝑛)𝜔]‖]

≤ L‖𝜅‖∞
2 ‖ℎ‖∞ + L‖𝜅‖∞|[𝐵

−1𝑑(𝜔, 𝜑) − (𝐵−1𝐴 + 𝐼𝑛)𝜔]| 

Hence 

𝑟₂(𝑡, 𝜔, 𝜑) ≤ 𝐿‖𝜅‖∞[‖𝜅‖∞‖ℎ‖∞

+ ‖[𝐵−1𝑑(𝜔, 𝜑) − (𝐵−1𝐴 + 𝐼𝑛)𝜔]‖].                (22) 

Therefore, by using the mathematical induction we obtain the following equation:  

𝑟𝑚+1(𝑡, 𝜔, 𝜑) ≤ (𝐿‖𝜅‖∞)
𝑚[‖𝜅‖∞‖ℎ‖∞ + ‖[𝐵

−1𝑑(𝜔, 𝜑) − (𝐵−1𝐴 + 𝐼𝑛)𝜔]‖], 

𝑚 = 0,1,2..                                                                                                      (23) 

In view of (23) and by using triangular inequality we get 

‖𝑥𝑚+𝑗(𝑡, 𝜔, 𝜑) − 𝑥𝑚(𝑡, 𝜔, 𝜑)‖    

≤ ‖𝑥𝑚+𝑗(𝑡, 𝜔, 𝜑) − 𝑥𝑚+𝑗−1(𝑡, 𝜔, 𝜑)‖ + ‖(𝑥𝑚+𝑗−1(𝑡, 𝜔, 𝜑) − 𝑥𝑚+𝑗−2𝑡, 𝜔, 𝜑)‖ 
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+. . . +‖𝑥𝑚+1(𝑡, 𝜔, 𝜑) − 𝑥𝑚(𝑡, 𝜔, 𝜑)‖                               

= 𝑟𝑚+𝑗(𝑡, 𝜔, 𝜑) + 𝑟𝑚+𝑗−1(𝑡, 𝜔, 𝜑)+. . . +𝑟𝑚+1(𝑡, 𝜔, 𝜑) 

=∑  
𝑗

𝑖=1
𝑟𝑚+𝑖(𝑡, 𝜔, 𝜑)                                                                                                                   

≤ (𝐿‖𝜅‖∞)
𝑚(‖ℎ‖∞‖𝜅‖∞

+ ‖[𝐵⁻¹𝑑(𝜔, 𝜑) − (𝐵⁻¹𝐴

+ 𝐼𝑛)𝜔]‖)∑  
∞

𝑖=1
𝐿𝑖−1‖𝜅‖∞

𝑖−1                                                                  (24) 

From the assumption (𝐶), it follows that 

𝑙𝑖𝑚𝑚→0(𝐿‖𝜅‖)
𝑚 = 0. 

Hence, by  (24), { 𝑥𝑚} is Cauchy sequence and uniformly converges on [0, 𝑇] ×

𝐷𝛿 × 𝐷 to a certain limit 𝑥∗. 

3. Taking limit in (8) as 𝑚 → ∞,we see that 𝑥∗satisfies the boundary conditions 

directly. 

4. By using contradiction, the uniqueness of solution is shown. So, assume that there 

is two limit functions such as 𝑥₁∗(𝑡, 𝜔, 𝜑) and  𝑥₂∗(𝑡, 𝜔, 𝜑) .Then, estimating the 

difference between 𝑥₁∗and 𝑥₂∗ 

‖𝑥₁∗(𝑡, 𝜔, 𝜑) − 𝑥₂∗(𝑡, 𝜔, 𝜑)‖

≤
𝐿

𝛤(𝛼)
[∫ (𝑡 − 𝑠)𝛼−1|𝑥₁∗(𝑠, 𝜔, 𝜑) − 𝑥₂∗(𝑠, 𝜔, 𝜑)|𝑑𝑠

𝑡

0

+∫ (𝑇 − 𝑠)𝛼−1|𝑥₁∗(𝑠, 𝜔, 𝜑) − 𝑥₂∗(𝑠, 𝜔, 𝜑)|𝑑𝑠
𝑇

0

]

≤ 𝐿‖𝜅‖∞‖𝑥₁
∗ − 𝑥₂∗‖∞. 

Thus  

‖𝑥₁∗ − 𝑥₂∗‖∞ ≤ 𝐿‖𝜅‖∞‖𝑥₁
∗ − 𝑥₂∗‖∞ 

It can be written  

(1 − 𝐿‖𝜅‖∞)‖𝑥₁
∗ − 𝑥₂∗‖∞ ≤ 0 
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So,  

‖𝑥₁∗ − 𝑥₂∗‖ = 0 ⇒ 𝑥₁∗ − 𝑥₂∗ = 0 ⇒ 𝑥₁∗ = 𝑥₂∗. 

5. Passing to 𝑗 → ∞ in (24) we get 

‖𝑥1
∗(𝑡, 𝜔, 𝜑) − 𝑥2

∗(𝑡, 𝜔, 𝜑)‖

≤ (𝐿‖𝜅‖∞)
𝑚(‖ℎ‖∞‖𝜅‖∞

+ ‖[𝐵⁻¹𝑑(𝜔, 𝜑) − (𝐵⁻¹𝐴 + 𝐼𝑛)𝜔]‖)∑  
∞

𝑖=1
𝐿𝑖−1𝐿𝑖−1‖𝜅‖∞

𝑖−1

= (𝐿‖𝜅‖∞)
𝑚(‖ℎ‖∞‖𝜅‖∞

+ ‖[𝐵⁻¹𝑑(𝜔, 𝜑) − (𝐵⁻¹𝐴 + 𝐼𝑛)𝜔]‖)
1

1 − 𝐿‖𝜅‖∞
 

Remark 4.1.1 If 𝐴 = 𝐼𝑛, 𝐵 = −𝐼𝑛, 𝑔(𝑥(0), 𝑥(𝑇)) = 0, 𝑑 = 0,boundary condition (2) 

becomes 𝑥(0) = 𝑥(𝑇). Note that, this problem was studied in [2]. 

4.2 Relationship between Limit Function and the Solution of the 

Nonlinear Boundary-Value Problem 

We consider the following equation 

𝐷𝛼 
𝑐 𝑥(𝑡) = ℎ(𝑡, 𝑥) + 𝜓, 𝑡 ∈ [0, 𝑇]                                    (25) 

and  

𝑥(0) = 𝜔,                                                                    (26) 

where 𝜓 = 𝑐𝑜𝑙(𝜓₁. . . 𝜓𝑛)is the parameter of control. 

Theorem 4.2.1 Let 𝜔 ∈ 𝐷𝛿 , 𝜑 ∈ 𝐷 be arbitrarily defined vectors. Suppose that all 

conditions of theorem 4.1.1 are satisfied. The solution 𝑥 = 𝑥(𝑡, 𝜔, 𝜑, 𝜓)of the initial-

value problem (25),(26) satisfies the boundary conditions (5) if and only if 𝑥 =

(𝑡, 𝜔, 𝜑, 𝜓) coincides with the limit function 𝑥∗ = 𝑥∗(𝑡, 𝜔, 𝜑, 𝜓) of sequence (7). 

Moreover, 
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𝜓 = 𝜓𝜔,𝜑 =
−𝛼

𝑇𝛼
[∫ (𝑇 − 𝑠)𝛼−1ℎ(𝑠, 𝑥∗(𝑡, 𝜔, 𝜑))𝑑𝑠 − 𝛤(𝛼)[𝐵⁻¹𝑑(𝜔, 𝜑) − (𝐵⁻¹𝐴

𝑇

0

+ 𝐼𝑛)𝜔]].                                                                                                     (27) 

Proof. Sufficiency: The proof is similar to the proof of theorem in [7]. 

 Necessity: Fixed an arbitrary value  �̅� ∈ ℝⁿand assume that the problem  

𝐷𝛼 
𝑐 𝑥(𝑡) = ℎ(𝑡, 𝑥) + �̅�, 𝑡 ∈ [0, 𝑇] 

with initial condition 𝑥(0) = 𝜔 (26) has the solution  �̅� = �̅�(𝑡) satisfying the two-

point boundary conditions (5) : 

𝐴�̅�(0) + 𝐵�̅�(𝑇) = 𝑑(𝜔, 𝜑). 

Then �̅� is a solution of the integral equation 

�̅�(𝑡) = 𝜔 +
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1ℎ(𝑠, �̅�(𝑠))𝑑𝑠 +

𝑡𝛼  �̅�

𝛤(𝛼 + 1)

𝑡

0

.                    (28) 

When 𝑡 = 𝑇 in (28) we get the following equation 

�̅�(𝑇) = 𝜔 +
1

𝛤(𝛼)
∫ (𝑇 − 𝑠)𝛼−1ℎ(𝑠, �̅�(𝑠))𝑑𝑠 +

𝑇𝛼 �̅�

𝛤(𝛼 + 1)

𝑇

0

.                           (29) 

Moreover, 

                                 �̅�(0) = 𝜔 

and 

�̅�(𝑇) = 𝐵−1[𝑑(𝜔, 𝜑) − 𝐴𝜔].                                                                         (30) 

By using (29) and (30) we obtain 

�̅� =
−𝛼

𝑇𝛼
[∫ (𝑇 − 𝑠)𝛼−1ℎ(𝑠, �̅�(𝑠))𝑑𝑠 + 𝛤(𝛼)[𝐵⁻¹𝑑(𝜔, 𝜑) − (𝐵⁻¹𝐴

𝑇

0

+ 𝐼𝑛)𝜔]].                                                                                                     (31) 

Then, substituting (31) into the (28) 
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�̅�(𝑇):= 𝜔 +
1

𝛤(𝛼)
[∫ (𝑡 − 𝑠)𝛼−1ℎ(𝑠, �̅�(𝑠))𝑑𝑠 −

𝑡

0

(
𝑡

𝑇
)
𝛼

∫ (𝑇 − 𝑠)𝛼−1ℎ(𝑠, �̅�(𝑠))𝑑𝑠
𝑇

0

]

+ (
𝑡

𝑇
)
𝛼

[𝐵⁻¹𝑑(𝜔, 𝜑) − (𝐵⁻¹𝐴 + 𝐼𝑛)𝜔],                           

Moreover, the limit function 𝑥∗ is a solution of the (25), (26) for 𝜓 = 𝜓𝜔,𝜑of the form 

(27) and satisfies the boundary conditions (5). 

𝑥∗(𝑡, 𝜔, 𝜑, 𝜓) = 𝜔 +
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1ℎ(𝑠, 𝑥∗(𝑡, 𝜔, 𝜑, 𝜓))𝑑𝑠 +

𝑡𝛼𝜓

𝛤(𝛼 + 1)

𝑡

0

.     (32) 

By using the same steps before, we get 

𝑥∗(𝑇, 𝜔, 𝜑, 𝜓) = 𝜔 +
1

𝛤(𝛼)
∫ (𝑇 − 𝑠)𝛼−1ℎ(𝑠, 𝑥∗(𝑇, 𝜔, 𝜑, 𝜓))𝑑𝑠
𝑇

0

+
𝑇𝛼𝜓

𝛤(𝛼 + 1)
.   (33) 

The limit function 𝑥∗ satisfies the following boundary conditions. 

𝐴𝑥∗(0, 𝜔, 𝜑, 𝜓) + 𝐵𝑥∗(𝑇, 𝜔, 𝜑, 𝜓) = 𝑑(𝜔, 𝜑) 

with the boundary conditions 

𝑥∗(0, 𝜔, 𝜑, 𝜓) = 𝜔 

and  

𝑥∗(𝑇, 𝜔, 𝜑, 𝜓) = 𝐵−1[𝑑(𝜔, 𝜑) − 𝐴𝜔].                                     (34) 

By using relations (33) and (34) we get 

𝜓𝜔,𝜑 =
−𝛼

𝑇𝛼
[∫ (𝑇 − 𝑠)𝛼−1)𝛼−1ℎ(𝑠, 𝑥∗(𝑠, 𝜔, 𝜑, 𝜓))𝑑𝑠 + 𝛤(𝛼)[𝐵⁻¹𝑑(𝜔, 𝜑) − (𝐵⁻¹𝐴

𝑇

0

+ 𝐼𝑛)𝜔]].                                                                                                     (35) 

After substituting relation (35) into (32) ,we have 
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𝑥∗(𝑡, 𝜔, 𝜑, 𝜓):= 𝜔

+
1

𝛤(𝛼)
[∫ (𝑡 − 𝑠)𝛼−1ℎ(𝑠, 𝑥∗(𝑠, 𝜔, 𝜑, 𝜓)𝑑𝑠 −

𝑡

0

(
𝑡

𝑇
)
𝛼

∫ (𝑇
𝑇

0

− 𝑠)𝛼−1ℎ(𝑠, 𝑥∗(𝑠, 𝜔, 𝜑, 𝜓)𝑑𝑠] + (
𝑡

𝑇
)
𝛼

[𝐵⁻¹𝑑(𝜔, 𝜑) − (𝐵⁻¹𝐴

+ 𝐼𝑛)𝜔].                          

Taking the difference between �̅� and 𝑥∗ , we get 

𝑥∗(𝑡, 𝜔, 𝜑, 𝜓) − �̅�(𝑡)

=
1

𝛤(𝛼)
[∫ (𝑡 − 𝑠)𝛼−1[ℎ(𝑠, 𝑥∗(𝑠, 𝜔, 𝜑, 𝜓)) − ℎ(𝑠, �̅�(𝑠))]ds

𝑡

0

− (
𝑡

𝑇
)
𝛼

∫ (𝑇 − 𝑠)𝛼−1[ℎ(𝑠, 𝑥∗(𝑠, 𝜔, 𝜑, 𝜓)) − ℎ(𝑠, �̅�(𝑠))]𝑑𝑠
𝑇

0

], 

then, by using Lipshitz condition the difference between 𝑥∗ and �̅� will be the following 

integral inequalities 

‖𝑥∗(𝑠, 𝜔, 𝜑, 𝜓) − �̅�(𝑡)‖

≤
𝐿

𝛤(𝛼)
[∫ (𝑡 − 𝑠)𝛼−1‖𝑥∗(𝑠, 𝜔, 𝜑, 𝜓) − �̅�(𝑠)‖ds

𝑡

0

+∫ (𝑇 − 𝑠)𝛼−1‖𝑥∗(𝑠, 𝜔, 𝜑, 𝜓) − �̅�(𝑠)‖𝑑𝑠
𝑇

0

] ≤ 𝐿‖𝜅‖∞‖𝑥
∗ − �̅�‖∞ 

Thus, 

‖𝑥∗ − �̅�‖∞ ≤ 𝐿‖𝜅‖∞‖𝑥
∗ − �̅�‖∞ 

It can be written 

(1 − 𝐿‖𝜅‖∞)‖𝑥
∗ − �̅�‖∞ ≤ 0 

So, 

‖𝑥∗ − �̅�‖∞ = 0 ⇒ 𝑥∗ − �̅� = 0 ⇒ 𝑥∗ = �̅� 

The theorem is proved. 
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Theorem 4.2.2 Assume that the conditions (𝐴) and (𝐵) are satisfied for the Caputo 

type fractional differential equation (1) with nonlinear boundary conditions (2).Then, 

(𝑥∗(⋅, 𝜔∗, 𝜑∗), 𝜑∗) is a solution of the parametrized boundary-value problem (1) ,(5) if 

and only if 𝜔∗ = (𝜔1
∗, 𝜔2

∗ , . . . . , 𝜔𝑛
∗)and 𝜑∗ = (𝜑₁∗, 𝜑₂∗, . . . . , 𝜑𝑛

∗) satisfy the system of 

determining algebraic or transcendental equations 

𝛺(𝜔, 𝜑) =
−𝛼

𝑇𝛼
[∫ (𝑇 − 𝑠)𝛼−1ℎ(𝑠, 𝑥∗(𝑠, 𝜔, 𝜑))𝑑𝑠 − 𝛤(𝛼)[𝐵⁻¹𝑑(𝜔, 𝜑) − (𝐵⁻¹𝐴

𝑇

0

+ 𝐼𝑛)𝜔]] = 0,                                                                                             (36) 

𝑥∗(𝑇, 𝜔, 𝜑) = 𝜑.                                                                  (37) 

Proof. The result is obtained from theorem 4.1.1 and by observing that the differential 

equation  coincides with (1) if and only if the couple (𝜔∗, 𝜑∗) satisfies the equation  

(𝜔∗, 𝜑∗) = 0. 

The following assertion indicates the determining system of equation (36) ,37)shows 

all possible solution of the Caputo type differential equation (1) with nonlinear 

boundary conditions (2). 

Remark 4.2.1 Assume that all conditions of Theorem 4.1.1 are satisfied and there exist 

vectors 𝜔 ∈ 𝐷𝛿  and 𝜑 ∈ 𝐷satisfying the system of determining equations (36), (37). 

Then the Caputo type differential equation (1) with nonlinear boundary conditions (2) 

have the solution 𝑥(⋅) such that 

𝑥(0) = 𝜔, 

 𝑥(𝑇)  = 𝜑. 

Also, this solution has the following form 

𝑥(𝑡) = 𝑥∗(𝑡, 𝜔, 𝜑), 𝑡 ∈ [0, 𝑇],                                           (38) 
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where 𝑥∗ is the limit function of sequence (7) .Conversely, if the Caputo type 

differential equation (1) with nonlinear boundary conditions (2) has a solution 

𝑥(. ),then this solution necessarily has the form (38) and the system of determining 

equations (36) ,(37) is satisfied for 

𝜔 = 𝑥(0), 

 𝜑 = 𝑥(𝑇). 

Remark 4.2.2 For some 𝑚 ≥ 1,a function 𝛺𝑚: 𝐷 × 𝐷 → ℝⁿis defined by the formula 

𝛺𝑚(𝜔, 𝜑):=
−𝛼

𝑇𝛼
[∫ (𝑇 − 𝑠)𝛼−1ℎ(𝑠, 𝑥𝑚(𝑡, 𝜔, 𝜑))𝑑𝑠 − 𝛤(𝛼)[𝐵⁻¹𝑑(𝜔, 𝜑) − (𝐵⁻¹𝐴

𝑇

0

+ 𝐼𝑛)𝜔]], 

where 𝜔 and 𝜑 are given by (3) .To study the solvability of the parametrized boundary-

value problem (5) ,we consider the approximate determining system of algebraic 

equations of the form  

𝛺𝑚(𝜔, 𝜑):=
−𝛼

𝑇𝛼
[∫ (𝑇 − 𝑠)𝛼−1)𝛼−1ℎ(𝑠, 𝑥𝑚(𝑡, 𝜔, 𝜑))𝑑𝑠 − 𝛤(𝛼)[𝐵⁻¹𝑑(𝜔, 𝜑)

𝑇

0

− (𝐵⁻¹𝐴 + 𝐼𝑛)𝜔]] = 0,                                                                            (39) 

𝑥𝑚(𝑇, 𝜔, 𝜑) = 𝜑,                                                                        (40) 

where 𝑥𝑚 is the vector function specified by the recurrence relation (7). 

4.3 Example 

 Considering a system of Caputo type fractional differential equation 

𝐷𝛼 
𝑐 𝑥₁ = 𝑥₂ = 𝑓₁(𝑡, 𝑥₁, 𝑥₂) 

𝐷𝛼 
𝑐 𝑥2 = −(

1

2
) 𝑥2

2 − (
1

2
) 𝑥1 + (

𝑡

8
) 𝑥2 + (

𝑡1−𝛼

4𝛤(2 − 𝛼)
) + (

2𝑡𝛼+1 + 1

16𝛤(2 + 𝛼)
)

= 𝑓2(𝑡, 𝑥1, 𝑥2)                                                                                             (41) 
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with nonlinear boundary conditions 

𝑥₁(0) + 𝑥₁ ((
1

2
)) − [𝑥₂ ((

1

2
))]

2

= (
2𝛼+1 + 1

2𝛼8𝛤(𝛼 + 2)
) − (

1

64
), 

𝑥2(0) + 𝑥1 ((
1

2
)) − 𝑥2 ((

1

2
)) = (

2𝛼 + 1

2𝛼8𝛤(𝛼 + 2)
) − (

1

8
)                     (42) 

The exact solution of the Caputo type fractional differential equation (41) with 

nonlinear boundary conditions (42) is  

𝑥₁∗ =
2t𝛼+1 + 1

8𝛤(𝛼 + 2)
, 

𝑥₂∗ =
t

4
.                 

Then, the nonlinear boundary conditions can be represented in the matrix-vector form 

as follows 

𝐴𝑥(0) + 𝐵𝑥 (
1

2
) + 𝑔(𝑥(0), 𝑥 (

1

2
)) = 𝑑,                                             (43) 

where 

𝐴 = (
1 0
0 1

) , 𝐵 = (
1 0
1 −1

), 

𝑑 =

(

 
 

2𝛼+1 + 1

2𝛼8𝛤(𝛼 + 2)
−
1

64
2𝛼 + 1

2𝛼8𝛤(𝛼 + 2)
−
1

8 )

 
 
, 𝑔 = (𝑥(0), 𝑥 (

1

2
))

𝑇

= (− [𝑥2 (
1

2
)]
2

0

). 

Then, new parameters are introduced as follows 

𝑥(0) = 𝜔 ≔ (
𝜔1
𝜔2
),  

𝑥 (
1

2
) = 𝜑 ≔ (

𝜑1
𝜑2
)                                                   (44) 

In view of parametrization (44), the boundary conditions (42) can be rewritten in the 

form of linear two-point parametrized boundary conditions 



 

43 

𝐴𝑥(0) + 𝐵𝑥 (
1

2
) = 𝑑 − 𝑔(𝜔, 𝜑). 

Moreover, 

𝑑(𝜔, 𝜑) = 𝑑 − 𝑔(𝜔, 𝜑) =

(

 
 

2𝛼+1 + 1

2𝛼8𝛤(𝛼 + 2)
−
1

64
+ 𝜑2

2

2𝛼 + 1

2𝛼8𝛤(𝛼 + 2)
−
1

8 )

 
 
.                     (45) 

At last, by using (45), the boundary conditions (42) can be rewritten in the form 

𝐴𝑥(0) + 𝐵𝑥 (
1

2
) = 𝑑(𝜔, 𝜑).                                                 (46) 

Now, we check the conditions of convergence of successive approximations such as 

(𝐴) and (𝐵). At first, the domain 𝐷is defined as 

𝐷 = {(𝑥₁, 𝑥₂): |𝑥₁| ≤ 1, |𝑥₂| ≤
3

4
} , 𝑡 ∈ [0,1]. 

Then, the first condition 𝐴 which is about the Lipschitz condition is satisfied as 

follows: 

𝐿 = 𝑚𝑎𝑥(0,1,1/2,7/8) 

Therefore, 

𝐿 = 1. 

For the second condition, at first, we find 

‖𝜅‖ = 0.7979 

      ‖ℎ‖ = (
0.7500
2.1731

). 

Then 

𝛿(𝜔, 𝜑):= ‖𝜅‖‖ℎ‖ + |[𝐵⁻¹𝑑(𝜔, 𝜑) − (𝐵⁻¹𝐴 + 𝐼𝑛)𝜔]| 

≤ (
1.1599 + 𝜑2

2 − 2𝜔1
0.2815 + 𝜑2

2 − 𝜔1
). 

So, the condition of nonemptiness of the set 𝐷𝛿  is satisfied. 
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For the problem of Caputo type fractional differential equation (41) with nonlinear 

boundary conditions (46) ,the successive approximations (7) have the form 

𝑥𝑚,1(𝑡, 𝜔, 𝜑):= 𝜔1

+
1

𝛤(𝛼)
[∫ (𝑡 − 𝑠)𝛼−1𝑓₁(𝑠, 𝑥𝑚−1,1(𝑠, 𝜔, 𝜑), 𝑥𝑚−1,1(𝑠, 𝜔, 𝜑))𝑑𝑠

𝑡

0

−(
𝑡

𝑇
)
𝛼

∫ (𝑇 − 𝑠)𝛼−1𝑓₁(𝑠, 𝑥𝑚−1,1(𝑠, 𝜔, 𝜑), 𝑥𝑚−1,1(𝑠, 𝜔, 𝜑))𝑑𝑠
𝑇

0

]

+ (
𝑡

𝑇
)
𝛼

[
2𝛼+1 + 1

2𝛼8𝛤(𝛼 + 2)
−
1

64
+ 𝜑2

2 − 2𝜔1],                           

𝑥𝑚,2(𝑡, 𝜔, 𝜑):= 𝜔2

+
1

𝛤(𝛼)
[∫ (𝑡 − 𝑠)𝛼−1𝑓₂(𝑠, 𝑥𝑚−1,1(𝑠, 𝜔, 𝜑), 𝑥𝑚−1,1(𝑠, 𝜔, 𝜑))𝑑𝑠

𝑡

0

−(
𝑡

𝑇
)
𝛼

∫ (𝑇 − 𝑠)𝛼−1𝑓₂(𝑠, 𝑥𝑚−1,1(𝑠, 𝜔, 𝜑), 𝑥𝑚−1,1(𝑠, 𝜔, 𝜑))𝑑𝑠
𝑇

0

]

+ (
𝑡

𝑇
)
𝛼

[
1

8𝛤(𝛼 + 2)
+
7

64
+ 𝜑2

2 − 𝜔1],                           

Then, we choose randomly 𝛼 = 0.9 and next chapter will discuss the algorithm and 

result by using Mathematica. 
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Chapter 5 

5 ALGHORITHM AND RESULT FOR COUPLED 

NONLINEAR FRACTIONAL DIFFERENTIAL SYSTEM 

WITH INTEGRAL BOUNDARY CONDITIONS  

In this chapter, we will apply the theoretical method that was developed in the previous 

sections and solve a coupled nonlinear fractional differential system with integral 

boundary conditions. Here we must state that in general solving nonlinear fractional-

order differential equations involves extremely heavy computations and hence 

optimization and efficiency of employed numerical methods are of critical importance.  

Besides that, numerical root approximations that are used in this chapter require 

solving highly complex non-analytical integrals that are recursively determined, which 

drastically increases the computational costs of the method. As such, we have 

employed Deep Reinforcement Learning (DRL) techniques to optimize and boost the 

computational efficiency of our numerical method. Note that the employed DRL 

technique does not influence the stability, convergence, or accuracy of the method, but 

solely increases the computational efficiency by optimizing intermediary numerical 

approximations involved in the solution. All numerical calculations in this chapter 

have been done in Mathematica and the DRL optimization algorithm has been 

separately coded in C++ and used with Mathematica program conjunctively.  
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As mentioned above, root approximations play a critical role in our numerical method 

and a key focus of our DRL optimization algorithm, since they involve recursive non-

analytical integrals that are extremely costly. The root approximation algorithm 

employs the Newton-Raphson method. 

5.1 Deep Reinforcement Learning Paradigm 

As discussed earlier solving nonlinear fractional differential systems involves 

extensive computational resources and hence employing high-level Artificial 

Intelligence ( AI ) optimizations are of great importance as the obstacle of extensive 

computational costs in such numerical approximations that be effectively reduced by 

using AI methods such as deep learning and reinforcement learning.   

In the past decade, applications of DLR for dealing with numerical solution of partial 

differential equations have been comprehensively studied and three major approaches 

have been developed:  

1) In this approach the network is trained by using the sampled data that is randomly 

selected from the solution domain together with the boundary and initial conditions. 

The efficiency of the solution is enhanced through each training session over the 

solution domain. In this approach the solution directly and continuously drives from 

the outputs of the DRL algorithm.  

2) In this approach the trained network produces intermediary results. Solution of the 

differential system are then numerically computed from the outputs of the DRL 

algorithm.  

3) In the last approach internal states and values of the network are indirectly used to 

numerically compute the solution of the fractional differential system, and as such the 
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computed solution solely depends on the internal parameters of the DRL algorithm 

and not on its final outputs. 

Here we will adopt the last approach as it’s more suitable for optimizing recursive root 

approximations for nonlinear systems. As a matter of fact, the main advantage of using 

a DRL technique is its flexibility it terms of representing nonlinear computations. As 

we will see later, the solution algorithm starts with an initial guessed-value for the 

roots. Subsequently in each iteration real roots are approximated and the fractional 

differential system is numerically solved and the outputs are fed to the next iteration, 

where numerical errors are reduced after each run of the loop. 

 A major point here is despite the nonlinear nature of the studied fractional system, a 

notable proportion of recursive calculations at each iteration are mathematically 

redundant and can be cut-off by employing a suitable adaptive update policy. Here the 

DRL technique comes into play as it can be trained to identify repetitive operations 

(operations on parameters with insignificant changes over iterations) and update 

approximate them directly to reduce the computational load of each iteration. Although 

this technique will reduce the accuracy of the numerical method in the short run, it 

dramatically increases the efficiency of the method in high iterations. 

 Deep reinforcement learning is an effective technique for dealing with this problem, 

since a solution of the fractional differential system might not be known beforehand, 

but the error of approximated solution can be calculated numerically. This is 

essentially a weak-label learning task by trail-error, that can also be considered a 

control problem. In this sense, the approximated solution at each iteration is the current 

state of the DRL algorithm, the action is cutting-off parameters with minimal changes 
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over iterations, and the goal is to keep the cut-off error less than a specified threshold. 

Here the action policy can be calculated based on the approximated solution at each 

iteration and the critic (governing equation) by using a deterministic deep policy 

network. 

In the next section we will review some of the important terminology used in 

Reinforcement Learning and explain the method that have been employed in our 

calculations in details. 

To proceed with the details of our numerical method and algorithm, we will first 

introduce an example, explore our numerical method and algorithm based on the 

example, and finally present the obtained approximated solution, approximation 

errors, and other results.  

5.2 Numerical Example of a Nonlinear Two-Point Boundary-Value 

Problem with Nonlinear Boundary Conditions 

Consider the formulas for 𝑥𝑚,1   and  𝑥𝑚,2 from previous chapter and let: 

𝑥𝑚,1 = 𝑍 +
1

𝛤(𝛼)
[∫ (𝑡 − 𝑠)𝛼−1𝑓1(𝑠, 𝑥𝑚−1,1, 𝑥𝑚−1,2)𝑑𝑠

𝑡

0

−(
𝑡

𝑇
)
𝛼

∫ (𝑇 − 𝑠)𝛼−1𝑓1(𝑠, 𝑥𝑚−1,1, 𝑥𝑚−1,2)𝑑𝑠
𝑇

0

]

+ (
𝑡

𝑇
)
𝛼

[
(2𝛼+1 + 1)

2𝛼8𝛤(𝛼 + 2)
−
1

64
+ 𝐿2 − 2𝑍] 
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𝑥𝑚,2 = 𝑊 +
1

Γ(𝛼)
[∫ (𝑡 − 𝑠)𝛼−1𝑓2(𝑠, 𝑥𝑚−1,1, 𝑥𝑚−1,2)𝑑𝑠

𝑡

0

−(
𝑡

𝑇
)
𝛼

∫ (𝑇 − 𝑠)𝛼−1𝑓2(𝑠, 𝑥𝑚−1,1, 𝑥𝑚−1,2)𝑑𝑠
𝑇

0

]

+ (
𝑡

𝑇
)
𝛼

[
1

8Γ(𝛼 + 2)
+
7

64
+ 𝐿2 − 𝑍] 

𝑓1(𝑡, 𝑥𝑚,1, 𝑥𝑚,2) = 𝑥𝑚,2 

𝑓2(𝑡, 𝑥𝑚,1, 𝑥𝑚,2) = −
1

2
(𝑥𝑚,2)

2
−
1

2
(𝑥𝑚,1) +

𝑡

8
(𝑥𝑚,2) +

𝑡1−𝛼

4Γ(2 − 𝛼)
+
(2𝑡𝛼+1 + 1)

16Γ(𝛼 + 2)
 . 

It is worth mentioning that here we are defining 𝑥𝑚,1   and  𝑥𝑚,2 as iterative function, 

where m is the index of iteration, and (𝑊, 𝑍, 𝐿,𝑀) is the approximated root 

of 𝐸1 , 𝐸2, 𝐸3 𝑎𝑛𝑑 𝐸4. In addition, considering the following differential system, we 

can write: 

𝐸1 = −
𝛼

𝑇𝛼
[∫ (𝑇 − 𝑠)𝛼−1𝑓1(𝑠, 𝑥1,1, 𝑥1,2)𝑑𝑠 − Γ(𝛼)

𝑇

0

(
2𝛼+1 + 1

2𝛼8Γ(𝛼 + 2)
−
1

64
+ 𝐿2

− 2𝑍)] = 0 

𝐸2 = −
𝛼

𝑇𝛼
[∫ (𝑇 − 𝑠)𝛼−1𝑓2(𝑠, 𝑥1,1, 𝑥1,2)𝑑𝑠 − Γ(𝛼)

𝑇

0

(
1

8Γ(𝛼 + 2)
+
7

64
+ 𝐿2 − 𝑍)]

= 0 

𝐸3 = 𝑀 + 𝑍 − 𝐿2 +
1

64
−

(2𝛼+1 + 1)

2𝛼8Γ(𝛼 + 2)
= 0. 

𝐸4 = 𝐿 + 𝑍 −𝑊 − 𝐿2 −
7

64
−

1

8Γ(𝛼 + 2)
= 0. 

From the above nonlinear differential equations and boundary conditions, the exact 

solution is as follows: 

𝑥1
∗ =

(2𝑡𝛼+1 + 1)

8Γ(𝛼 + 2)
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𝑥2
∗ =

𝑡

4
. 

As we can see in the above calculations, are required conditions are met and so we can 

apply our previously developed numerical method to this parametrized boundary-

value problem, by using the recursively defined 𝑥𝑚,1   and  𝑥𝑚,2 functions. In the next 

section we will explain and discuss the application of our numerical method and 

algorithm to this problem. Please note that the method and its related algorithms are 

presented in terms of the notations used in the example, however the overall method 

and algorithm can be applied to any problem of a similar nature. 

 

Figure 1: Initial Solution of 𝑥𝑚,1   and  𝑥𝑚,2 functions with guessed initial roots 
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To solve the fractional differential system in the example, initial values for the roots 

W, Z, L, and M are required. This algorithm starts the first iteration by using zero 

initial values as guessed roots and then refines the approximations at each iteration. 

Note that initial values for recursive functions 𝑥𝑚,1   and  𝑥𝑚,2 at point t = 0 are given 

by the problem and directly inserted in the first iteration.  

As was mentioned earlier, the major computational challenge in this family of 

problems, is to recursively finding the roots of the system that involves highly complex 

non-analytical integrals. As can be seen in the example, to compute the roots for m 

iterations, 2^ (m+1) non-analytical integrals must be solved numerically. The 

following table shows the non-analytical integral operations and CPU time involved 

in solving the system based on the iteration index. 

Table 1: Non-analytical integral operations and their CPU (INTEL i7-8700K 3.7GHZ) 

time 

m Number of integral operations CPU time (min) 

1 4.00 1.25 

4 32.00 6.31 

9 1,024.00 1643.41 

19 1,048,576.00 54958.29 

 

In fact, besides the computational challenge that will be dealt with DRL, this method 

poses a programming challenge as well. Since the integrals involved in finding 𝑥𝑚,1   

and  𝑥𝑚,2functions at each iteration are non-analytical, only a numerical solution can 

be obtained. In this sense, at each step m, 𝑥𝑚,1   and  𝑥𝑚,2 can be numerically calculated 
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at each given point t, but would not be obtained as functions. However, to calculate 

𝑥𝑚+1,1   and  𝑥𝑚+1,2, the values of 𝑥𝑚,1   and  𝑥𝑚,2 must be inserted back to the 

equations as functions of t.  

To overcome this problem, we have used an algorithmic definition for 𝑥𝑚,1   and  

𝑥𝑚,2 functions. In this sense, the whole algorithmic operations involved in computing 

values of 𝑥𝑚,1 and  𝑥𝑚,2 based on t inputs, are treated as the definition of these 

functions for plotting the graphs, calculating approximations errors and most 

importantly calculating 𝑥𝑚,1 and 𝑥𝑚,2 for next iteration. To create these functional 

definitions a temporary numerical variable (register) is used that keeps a record of 

algorithmic operations used for 𝑥𝑚,1  and  𝑥𝑚,2 in each iteration and inserts them back 

into equations E1 and E2. In other words, at iteration m, equations E1 and E2 would 

contain algorithms that retrieves back to all previous iterations.  

 

 

 

 

 

Figure 2: Using a temporary numerical variable to store the algorithmic definitions of 

𝑥𝑚,1 and  𝑥𝑚,2 and recursively solve the system 
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Upon inserting algorithmic definitions of 𝑥𝑚,1   and  𝑥𝑚,2 into our system of nonlinear 

equations, the multivariate Newton-Raphson method (as was examined earlier) is 

applied and approximated roots (𝑊, 𝑍, 𝐿,𝑀) are updated and inserted back to the 

algorithm for next iteration. The complete flowchart of the algorithm can be seen in 

the next figure.  

Note that the most computationally expensive part of the above algorithm is indeed 

the algorithmic definition of 𝑥1 and 𝑥2, since at each iteration all previously employed 

operations on 𝑥𝑚,1 and  𝑥𝑚,2  must be recursively recalculated and updated. Here the 

DRL technique comes to play as it is applied to the variable that stores the algorithmic 

definitions of our functions.  

The algorithmic definitions are updated through a separate DRL algorithm, where the 

algorithm updated only a proportion of the definitions over iterations, based on the 

error discrepancies of previous iterations. The goal of the DRL algorithm is to learn 

which operational updates can be cut-off without introducing significant errors to the 

approximation. As of the above example, after 50 iterations, the number of updated 

operations in 𝑥𝑚,1 and 𝑥𝑚,2 definitions only retrieved back to 15 last iterations (on 

average) which is a dramatic improvement over the original algorithm where all 

operations had to retrieve all way down to the first iteration.   
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Figure 3: Complete algorithm which outputs the results of specified iterations 

The results of the above algorithm, as was run in Mathematica are presented in the 

next section. 

5.3 Results 

In this section the output of programming algorithm will be discussed at some 

iterations, starting at the first iteration. The solution of the approximate system of 
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determining equations on iteration number (1), is given by the following value of 

parameters.  

𝑍 =  0.0656973365195  

𝑊 = −0.00219529679272 

𝑀 =  0.179133148137 

𝐿 =  0.239437851344 

The error of the approximation is given below: 

𝑚𝑎𝑥
0≤𝑡≤1

|𝑥1(𝑡) − 𝑥11(𝑡)| ≤ 0.02893  

𝑚𝑎𝑥
0≤𝑡≤1

|𝑥2(𝑡) − 𝑥12(𝑡)| ≤ 0.01547 

 

Figure 4: Graphs of 𝑥1(𝑡) and 𝑥1,1(𝑡) and their difference on the [0,1] at the first 

iteration of the numerical solution 
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Figure 5: Graphs of 𝑥2(𝑡) and 𝑥1,2(𝑡) and their difference on the [0,1] at the first 

iteration of the numerical solution 

The following tables show the difference between exact and approximated solutions 

(max norm approximation error) for the first iteration. 

Table 2: Comparing 𝑥1(𝑡) and 𝑥1,1(𝑡) and their difference at certain points on the [0,1] 

interval. 

t Exact Solution Approximated Solution Error 

0.1 0.06375 0.07704 0.01329 

0.2 0.0675 0.08838 0.02088 

0.3 0.07375 0.09973 0.02598 

0.4 0.0825 0.1111 0.02857 

0.5 0.09375 0.1224 0.02867 

0.6 0.1075 0.1338 0.02626 

0.7 0.1238 0.1451 0.02135 

0.8 0.1425 0.1564 0.01395 

0.9 0.1638 0.1678 0.00404 

1 0.1875 0.1791 0.008367 
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Table 3: Comparing 𝑥2(𝑡) and 𝑥1,2(𝑡) and their difference at certain points on the [0,1] 

interval. 

t Exact Solution Approximated Solution Error 

0.1 0.025 0.01992 0.005082 

0.2 0.05 0.04215 0.007847 

0.3 0.075 0.06464 0.01036 

0.4 0.1 0.08749 0.01251 

0.5 0.125 0.1108 0.01416 

0.6 0.15 0.1348 0.01518 

0.7 0.175 0.1595 0.01546 

0.8 0.2 0.1851 0.01487 

0.9 0.225 0.2117 0.01328 

1 0.25 0.2394 0.01056 

 

The solution of the approximate system on iteration number 50, is given by the 

following value of parameters.  

𝑍 =  0.0656973365195  

𝑊 = −0.00219529679272 

𝑀 =  0.179133148137 

𝐿 =  0.239437851344 

The error of approximation for 50th iteration is given below: 

 
𝑚𝑎𝑥
0≤𝑡≤1

𝑥1(𝑡) − 𝑥50,1(𝑡)  ≤ 0.02096   

𝑚𝑎𝑥
0≤𝑡≤1

𝑥2(𝑡) − 𝑥50,2(𝑡)  ≤ 0.01744 
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Figure 6: Graphs of 𝑥1(𝑡) and 𝑥50,1(𝑡) and their difference on the [0,1] at the 

iteration number 50 of the numerical solution 

 

Figure 7: Graphs of 𝑥2(𝑡) and 𝑥50,2(𝑡) and their difference on the [0,1] at the 

iteration number 50 of the numerical solution 

The solution of the approximate system on iteration number 100, is given by the 

following value of parameters.  

𝑍 =  0.0656973365195  

𝑊 = −0.00219529679272 

𝑀 =  0.179133148137 

𝐿 =  0.239437851344 
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The error approximation at 100th iteration is as follows: 

𝑚𝑎𝑥
0≤𝑡≤1

|𝑥1(𝑡) − 𝑥100,1(𝑡)| ≤ 0.01311 

𝑚𝑎𝑥
0≤𝑡≤1

|𝑥2(𝑡) − 𝑥100,2(𝑡)| ≤ 0.01471 

 

Figure 8: Graphs of 𝑥1(𝑡) and 𝑥100,1(𝑡) and their difference on the [0,1] at the 

iteration number 100 of the numerical solution 

 

Figure 9: Graphs of 𝑥2(𝑡) and 𝑥100,2(𝑡) and their difference on the [0,1] at the 

iteration number 100 of the numerical solution 

The solution of the approximate system on iteration number 150, is given by the 

following value of parameters.  

𝑍 =  0.0656973365195  
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𝑊 = −0.00219529679272 

𝑀 =  0.179133148137 

𝐿 =  0.239437851344 

The error approximation for the 150th iteration is: 

𝑚𝑎𝑥
0≤𝑡≤1

|𝑥1(𝑡) − 𝑥150,1(𝑡)| ≤ 0.008333 

𝑚𝑎𝑥
0≤𝑡≤1

|𝑥2(𝑡) − 𝑥150,2(𝑡)| ≤ 0.01077 

 

Figure 10: Graphs of 𝑥1(𝑡) and 𝑥150,1(𝑡) and their difference on the [0,1] at the 

iteration number 150 of the numerical solution 
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Figure 11: Graphs of 𝑥2(𝑡) and 𝑥150,2(𝑡) and their difference on the [0,1] at the 

iteration number 150 of the numerical solution 

The solution of the approximate system on iteration number 200, is given by the 

following value of parameters.  

𝑍 =  0.0656973365195  

𝑊 = −0.00219529679272 

𝑀 =  0.179133148137 

𝐿 =  0.239437851344 

The error of approximation for the 200th iteration is:    

𝑚𝑎𝑥
0≤𝑡≤1

|𝑥1(𝑡) − 𝑥200,1(𝑡) | ≤ 0.00487 

𝑚𝑎𝑥
0≤𝑡≤1

|𝑥2(𝑡) − 𝑥200,2(𝑡) | ≤ 0.006097 
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Figure 12: Graphs of 𝑥1(𝑡) and 𝑥200,1(𝑡) and their difference on the [0,1] at the 

iteration number 200 of the numerical solution 

 

Figure 13: Graphs of 𝑥2(𝑡) and 𝑥200,2(𝑡) and their difference on the [0,1] at the 

iteration number 200 of the numerical solution 

The solution of the approximate system on iteration number 250, is given by the 

following value of parameters.  

𝑍 =  0.0656973365195  

𝑊 = −0.00219529679272 

𝑀 =  0.179133148137 

𝐿 =  0.239437851344 
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The error of approximation for the 250th iteration is:    

𝑚𝑎𝑥
0≤𝑡≤1

|𝑥1(𝑡) − 𝑥250,1(𝑡)| ≤ 0.0004704 

𝑚𝑎𝑥
0≤𝑡≤1

|𝑥2(𝑡) − 𝑥250,2(𝑡)| ≤ 0.0006233 

 

Figure 14: Graphs of 𝑥1(𝑡) and 𝑥250,1(𝑡) and their difference on the [0,1] at the 

iteration number 250 of the numerical solution 

 

Figure 15: Graphs of 𝑥2(𝑡) and 𝑥250,2(𝑡) and their difference on the [0,1] at the 

iteration number 250 of the numerical solution 

The solution of the approximate system on iteration number 300, is given by the 

following value of parameters.  
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𝑍 =  0.0656973365195  

𝑊 = −0.00219529679272 

𝑀 =  0.179133148137 

𝐿 =  0.239437851344 

The error of approximation for the 300th iteration is:   

𝑚𝑎𝑥
0≤𝑡≤1

|𝑥1(𝑡) − 𝑥300,1(𝑡) | ≤ 0.00007809 

𝑚𝑎𝑥
0≤𝑡≤1

|𝑥2(𝑡) − 𝑥300,2(𝑡) | ≤ 0.00006241 

 

Figure 16: Graphs of 𝑥1(𝑡) and 𝑥300,1(𝑡) and their difference on the [0,1] at the 

iteration number 300 of the numerical solution 
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Figure 17: Graphs of 𝑥2(𝑡) and 𝑥300,2(𝑡) and their difference on the [0, 1] at the 

iteration number 300 of the numerical solution 

The following tables show the difference between exact and approximated solutions 

(max norm approximation error) for the last iteration. 

Table 4: Comparing 𝑥1(𝑡) and 𝑥300,1(𝑡) and their difference at certain points on the 

[0,1] interval 

t Exact Solution Approximated Solution Error 

0.1 0.06375 0.06375 7.817E-07 

0.2 0.0675 0.0675 0.000003127 

0.3 0.07375 0.07376 7.036E-07 

0.4 0.0825 0.08251 0.00001251 

0.5 0.09375 0.09377 0.00001954 

0.6 0.1075 0.1075 0.00002814 

0.7 0.1238 0.1238 0.00003831 

0.8 0.1425 0.1426 0.00005003 

0.9 0.1638 0.1638 0.00006332 

1 0.1875 0.1876 0.00007817 
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Table 5: Comparing 𝑥2(𝑡) and 𝑥300,2(𝑡) and their difference at certain points on the 

[0,1] interval 

t Exact Solution Approximated Solution Error 

0.1 0.025 0.02499 0.000006248 

0.2 0.05 0.04999 0.0000125 

0.3 0.075 0.07498 0.00001875 

0.4 0.1 0.09998 0.00002499 

0.5 0.125 0.125 0.00003124 

0.6 0.15 0.15 0.00003749 

0.7 0.175 0.175 0.00004374 

0.8 0.2 0.2 0.00004999 

0.9 0.225 0.2249 0.00005624 

1 0.25 0.2499 0.00006248 

 

The algorithm stopped on the 364th iteration as the error of approximation for both 

𝑥1(𝑡) and 𝑥2(𝑡) fell below the acceptable threshold of 10^-5, and the following final 

results were obtained: 

𝑍 =  0.0656973365195  

𝑊 = −0.00219529679272 

𝑀 =  0.179133148137 

𝐿 =  0.239437851344 

The error of approximation for the 364th iteration is:    

𝑚𝑎𝑥
0≤𝑡≤1

|𝑥1(𝑡) − 𝑥364,1(𝑡)| ≤ 1.209×10^-6 

𝑚𝑎𝑥
0≤𝑡≤1

|𝑥2(𝑡) − 𝑥364,2(𝑡)| ≤ 5.813×10^-6 
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Figure 18: Graphs of 𝑥1(𝑡) and 𝑥364,1(𝑡) and their difference on the [0,1] at the 

iteration number 364 of the numerical solution 

 

Figure 19: Graphs of 𝑥2(𝑡) and 𝑥364,2(𝑡) and their difference on the [0,1] at the 

iteration number 364 of the numerical solution 

The following tables show the difference between exact and approximated solutions 

(max norm approximation error) for the last iteration. 

Table 6: Comparing 𝑥1(𝑡) and 𝑥364,1(𝑡)  and their difference at certain points on the 

[0,1] interval 

t Exact Solution Approximated Solution Error 

0.1 0.06375 0.06375 1.563E-08 
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0.2 0.0675 0.0675 6.25E-08 

0.3 0.07375 0.07375 1.406E-07 

0.4 0.0825 0.0825 0.00000025 

0.5 0.09375 0.09375 3.906E-07 

0.6 0.1075 0.1075 5.625E-07 

0.7 0.1238 0.1238 7.656E-07 

0.8 0.1425 0.1425 0.000001 

0.9 0.1638 0.1638 0.000001266 

1 0.1875 0.1875 0.000001563 

 

Table 7: Comparing 𝑥2(𝑡) and 𝑥364,2(𝑡)  and their difference at certain points on the 

[0,1] interval 

t Exact Solution Approximated Solution Error 

0.1 0.025 0.025 0.000000625 

0.2 0.05 0.05 0.00000125 

0.3 0.075 0.075 0.000001875 

0.4 0.1 0.1 0.0000025 

0.5 0.125 0.125 0.000003125 

0.6 0.15 0.15 0.00000375 

0.7 0.175 0.175 0.000004375 

0.8 0.2 0.2 0.000005 

0.9 0.225 0.225 0.000005625 

1 0.25 0.25 0.00000625 
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Here we also present an application of our algorithm to solve an example from [38]. , 

where the integrals involved in root approximation and solving the system have 

analytical solution. In this case, since all integrals are analytically computable, no 

algorithmic definitions for X1 and X2 are required, and hence the DRL algorithm is 

not being applied as well.   

Consider a system of nonlinear differential equations: 

𝑓1(𝑡, 𝑥1, 𝑥2) = 𝑥2 

𝑓2(𝑡, 𝑥1, 𝑥2) = −
1

2
𝑥2
2 −

1

2
𝑥1 +

𝑡

8
𝑥2 +

𝑡2

16
+
9

32
 . 

with nonlinear two-point boundary conditions of the form: 

𝑥1(0) + 𝑥1(1) − [𝑥2(1)]
2 =

3

16
 

𝑥2(0) + 𝑥1(1) − 𝑥2(1) = −
1

16
 

Moreover, we consider the following nonlinear system of equations: 

𝐸1 = −
1

𝑇
∫ 𝑓1(𝑠, 𝑥𝑚,1, 𝑥𝑚,2)𝑑𝑠 +
𝑇

0

1

𝑇
[
3

16
+ 𝐿2 − 2𝑍] = 0. 

𝐸2 = −
1

𝑇
∫ 𝑓2(𝑠, 𝑥𝑚,1, 𝑥𝑚,2)𝑑𝑠 +
𝑇

0

1

𝑇
[
1

4
+ 𝐿2 − 𝑍] = 0. 

𝐸3 = 𝑀 + 𝑍 − 𝐿2 −
3

16
= 0. 

𝐸4 = 𝐿 + 𝑍 −𝑊 − 𝐿2 −
1

4
= 0. 

From the above nonlinear differential equations and boundary conditions, possesses 

the exact solution 

𝑥1
∗ =

𝑡2

8
+
1

16
 

𝑥2
∗ =

𝑡

4
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As we can see in the above calculations, are required conditions are met and so we can 

apply our previously developed numerical method to this parametrized boundary-

value problem, by using the recursively defined 𝑥𝑚,1   and  𝑥𝑚,2 functions. 

𝑥𝑚,1 = 𝑍 +∫ 𝑓1(𝑠, 𝑥𝑚−1,1, 𝑥𝑚−1,2)𝑑𝑠 −
𝑡

0

𝑡

𝑇
∫ 𝑓1(𝑠, 𝑥𝑚−1,1, 𝑥𝑚−1,2)𝑑𝑠 +
𝑇

0

𝑡

𝑇
(
3

16
+ 𝐿2

− 2𝑍) ,𝑚 = 1,2, … 

𝑥𝑚,2 = 𝑍 +∫ 𝑓2(𝑠, 𝑥𝑚−1,1, 𝑥𝑚−1,2)𝑑𝑠 −
𝑡

0

𝑡

𝑇
∫ 𝑓2(𝑠, 𝑥𝑚−1,1, 𝑥𝑚−1,2)𝑑𝑠 +
𝑇

0

𝑡

𝑇
(
1

4
+ 𝐿2

− 𝑍) ,𝑚 = 1,2, … 

By using the computational algorithm, we obtain the following value of the 

components of the approximate solution as a result of the first iteration below are the 

analytically approximated functions:  

𝑥11 = 𝑍 + 𝑡(0.1875 + 𝐿
2 − 2𝑍), 

𝑥12 = 𝑊 + 0.28125𝑡 + 0.02083333333𝑡3 + 0.0625𝑊𝑡2 − 0.5𝑊2𝑡 − 0.5𝑍𝑡

− 𝑡(0.3020833333 + 0.0625𝑊 − 0.5𝑊2 − 0.5𝑍)

+ 𝑡(0.25 + 𝐿2 − 𝑍) 

where approximated roots are: 

𝑍 = 0.0656973365195 

𝑊 = −0.00219529679272 

𝑀 = 0.179133148136 

𝐿 = 0.239437851344𝑍  

approximation error for 𝑥1 = 0.02893270323401729    

approximation error for 𝑥2 = 0.015471619752078059 
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Figure 20: Graphs of 𝑥1(𝑡) and 𝑥1,1(𝑡) and their difference on the [0, 1] at the first 

iteration of the analytical solution 

 

Figure 21: Graphs of 𝑥2(𝑡) and 𝑥1,2(𝑡) and their difference on the [0, 1] at the first 

iteration of the analytical solution 

At the second iteration we obtained the following analytical approximation functions:  

𝑥21 = 0.1134358116𝑡 + 0.06569733651, 

𝑥22 = 0.02083333333𝑡3 − 0.0001372060504𝑡2 + 0.2209370209𝑡

− 0.002195296806, 

where approximated roots are: 

𝑍 = 0.0625247065424 

𝑊 = −0.00000568825062154 
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𝑀 = 0.187444906053 

𝐿 = 0.249939217802𝑍  

Approximation error for 𝑥1  = 0.0004205763744    

Approximation error for 𝑥2  = 0.001065024056 

 

Figure 22: Graphs of 𝑥1(𝑡) and 𝑥2,1(𝑡) and their difference on the [0, 1] at the 

second iteration of the analytical solution 

 

Figure 23: Graphs of 𝑥2(𝑡) and 𝑥2,2(𝑡) and their difference on the [0, 1] at the 

second iteration of the analytical solution  
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Finally, at the last iteration (third iteration) we obtained the following analytically 

approximated functions:  

𝑥31(𝑡) = 0.00208333332𝑡4 − 0.1185042241. 10−6𝑡3 + 0.1145559641𝑡2

+ 0.0051560206𝑡 + 0.06252470657, 

𝑥32(𝑡) = −0.0003100198412𝑡7 + 0.1234419001. 10−8𝑡6

− 0.0004337997010𝑡5 + 0.3887933345. 10−7𝑡4

+ 0.02163095107𝑡3 − 0.03122975378𝑡2 + 0.2600084702𝑡

− 0.5688202756. 10−5, 

where approximated roots are: 

𝑍 = 0.0629636511074 

𝑊 = −0.00141062814755 

𝑀 = "0.185189759366 

𝐿 = 0.246279131219 

Approximation error for 𝑥1 = 0.002310136254657064, 

Approximation error for 𝑥2  = 0.0037207779674591625 

 

Figure 24: Graphs of 𝑥1(𝑡) and 𝑥3,1(𝑡) and their difference on the [0, 1] at the 

iteration third of the analytical solution 
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Figure 25: Graphs of 𝑥2(𝑡) and 𝑥3,2(𝑡) and their difference on the [0, 1] at the third 

iteration of the analytical solution 

5.4 Stability Simulation of Three-Point Non-linear Boundary-Value 

Problems 

We obtain some results concerning the solutions of certain types of three–point non– 

linear BVP, subject to non–linear boundary conditions. We make the stability 

simulation of three-point non-linear BVP. By the study, we justify our method, which 

is based upon a special type of approximations constructed in analytic form.  

As an example of our algorithm, we chose solved example from Ref [53] to test our 

computational algorithm result. 

Consider a system of nonlinear differential equations: 

{

𝑑𝑥1
𝑑𝑡

= 0.05𝑥2 − 0.005𝑡
2 + 0.1 = 𝑓1(𝑡, 𝑥1, 𝑥2),

𝑑𝑥2
𝑑𝑡

= −𝑥2
2 + 0.5𝑥1 + 0.01𝑡

4 + 0.15𝑡 = 𝑓2(𝑡, 𝑥1, 𝑥2),

 

where 𝑡 ∈ [0,
1

2
]  with nonlinear two-point boundary conditions of the form: 
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{
 
 

 
 𝑔1 (𝑥(0), 𝑥 (

1

4
) , 𝑥(1)) ≔ 𝑥1 (

1

2
) + 𝑥2

2(0) − 𝑥1 (
1

4
) − 0.025 = 0,

𝑔2 (𝑥(0), 𝑥 (
1

4
) , 𝑥(1)) ≔ 𝑥1(0) + 𝑥2 (

1

2
) − 𝑥2(0) − 0.025 = 0.

 

Moreover, we consider the following nonlinear system of equations: 

Δ𝑚,1(𝑧, 휂, 𝐿) = −2∫ 𝑓1 (𝑠, 𝑥𝑚−1,1(𝑠, 𝑧, 휂, 𝐿), 𝑥𝑚−1,2(𝑠, 𝑧, 휂, 𝐿)) 𝑑𝑠

1
2

0

+ 2(𝑧2
2 + 휂1 + 0.025 − 𝑧1) = 0, 

Δ𝑚,2(𝑧, 휂, 𝐿) = −2∫ 𝑓2 (𝑠, 𝑥𝑚−1,1(𝑠, 𝑧, 휂, 𝐿), 𝑥𝑚−1,2(𝑠, 𝑧, 휂, 𝐿))𝑑𝑠

1
2

0

+ 2(0.025 − 𝑧1) = 0, 

𝑥𝑚,1 (
1

4
, 𝑧, 휂, 𝐿) = 휂1,                𝑥𝑚,2 (

1

4
, 𝑧, 휂, 𝐿) = 휂2, 

𝑥𝑚,1 (
1

2
, 𝑧, 휂, 𝐿) = 𝐿1,                𝑥𝑚,2 (

1

2
, 𝑧, 휂, 𝐿) = 𝐿2. 

From the above nonlinear differential equations and boundary conditions, possesses 

the exact solution 

                                            {
𝑥1
∗ = 0.1𝑡,

𝑥2
∗ = 0.1𝑡2.

 

Thus, all conditions are satisfied for the analyzed problem. Hence, it is possible to 

apply the procedure of analytic algorithm.  To study the solutions of the parametrized 

boundary-value problem, we introduce a sequence of functions 𝑥𝑚 defined by the 

recurrence relation 

𝑥𝑚,1(𝑡, 𝑧, 휂, 𝜆) ≔ 𝑧1

+∫ 𝑓1 (𝑠, 𝑥𝑚−1,1(𝑠, 𝑧, 휂, 𝜆), 𝑥𝑚−1,2(𝑠, 𝑧, 휂, 𝜆)) 𝑑𝑠
𝑡

0

−2𝑡∫ 𝑓1 (𝑠, 𝑥𝑚−1,1(𝑠, 𝑧, 휂, 𝜆), 𝑥𝑚−1,2(𝑠, 𝑧, 휂, 𝜆)) 𝑑𝑠

1
2

0

+ 2𝑡(𝑧2
2 + 휂1 + 0.025 − 𝑧1), 
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𝑥𝑚,2(𝑡, 𝑧, 휂, 𝜆) ≔ 𝑧2

+∫ 𝑓2 (𝑠, 𝑥𝑚−1,1(𝑠, 𝑧, 휂, 𝜆), 𝑥𝑚−1,2(𝑠, 𝑧, 휂, 𝜆)) 𝑑𝑠
𝑡

0

−2𝑡∫ 𝑓2 (𝑠, 𝑥𝑚−1,1(𝑠, 𝑧, 휂, 𝜆), 𝑥𝑚−1,2(𝑠, 𝑧, 휂, 𝜆)) 𝑑𝑠

1
2

0

+ 2𝑡(0.025 − 𝑧1), 

where 𝑚 = 1,2,3, …, 

𝑥0,1(𝑡, 𝑧, 휂, 𝜆) = 𝑧1 + (
𝑡

𝑇
) (𝑧2

2 + 휂1 + 0.025 − 𝑧1), 

𝑥0,2(𝑡, 𝑧, 휂, 𝜆) = 𝑧2 + (
𝑡

𝑇
) (0.025 − 𝑧1). 

By using the computational algorithm, we obtain the following value of the 

components of the approximate solution as a result of the first iteration for different 

non-linear two point boundary condition. 

{
 
 

 
 𝑔1 (𝑥(0), 𝑥 (

1

4
) , 𝑥(1)) ≔ 𝑥1 (

1

2
) + 𝑥2

2(0) − 𝑥1 (
1

4
) − 0.025 = 0,

𝑔2 (𝑥(0), 𝑥 (
1

4
) , 𝑥(1)) ≔ 𝑥1(0) + 𝑥2 (

1

2
) − 𝑥2(0) − 0.025 = 0.

 

We obtain below result 

Approximated Functions: 

𝑥1  =  2.53276 × 10−6 +  0.0998352 𝑡 +  0.00124987 𝑡2 −  0.00166667 𝑡3 

𝑥2  =  −0.00329579 −  9.59585 × 10
−6 𝑡 +  0.100176  𝑡2 −  0.000833164  𝑡3  

+  0.002  𝑡5 

Approximated roots: 

𝑧1  =  2.53276 × 10−6, 𝑧2   =  −0.00329579, 

𝑛1  =  0.0250134, 𝑛2   =  0.00295172 

𝑙1  =  0.0500243,  𝑙2  =  0.0217017 
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The error for the first approximation is  

𝑚𝑎𝑥

t ∈ [0,
1
2]
|𝑥1
∗(𝑡) − 𝑥11(𝑡)| ≤ 0.0000303213 

𝑚𝑎𝑥

t ∈ [0,
1
2]
|𝑥2
∗(𝑡) − 𝑥12(𝑡)| ≤ 0.00330445 

 

 

Figure 26: Graphs of 𝑥1(𝑡) and 𝑥1,1(𝑡) and their difference on the [0, 1/2] at the first 

iteration 

 

Figure 27: Graphs of 𝑥2(𝑡) and 𝑥1,2(𝑡) and their difference on the [0, 1/2] at the first 

iteration 

1st Iteration result where 𝑆 =  0.026 . 
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Checking the stability on the first iteration where  𝑡 ∈ [0,
1

2
] , with below non–linear 

two–point boundary conditions 

{
 
 

 
 𝑔1 (𝑥(0), 𝑥 (

1

4
) , 𝑥(1)) ≔ 𝑥1 (

1

2
) + 𝑥2

2(0) − 𝑥1 (
1

4
) − 0.025 = 0.001,

𝑔2 (𝑥(0), 𝑥 (
1

4
) , 𝑥(1)) ≔ 𝑥1(0) + 𝑥2 (

1

2
) − 𝑥2(0) − 0.025 = 0.001.

 

We obtain below result 

Approximated Functions: 

𝑋1  =  0.000531149 +  0.102118 𝑡 +  0.00127344 𝑡
2  −  0.00166667 𝑡3 

𝑋2  =  0.00619122 +  0.000894289 𝑡 +  0.100269 𝑡
2  −  0.000864883 𝑡3  

+  0.002 𝑡5 

Approximated roots: 

𝑧1  =  0.000531149, 𝑧2  =  0.00619122  

𝑛1 = 0.0256621, 𝑛2 =  0.0126997 

𝑙1  =  0.050796,  𝑙2  =  0.0316601 

The error for the first approximation is  

𝑚𝑎𝑥

t ∈ [0,
1
2]
|𝑥1
∗(𝑡) − 𝑥11(𝑡)| ≤ 0.00170032 

𝑚𝑎𝑥

t ∈ [0,
1
2]
|𝑥2
∗(𝑡) − 𝑥12(𝑡)| ≤ 0.00665998 
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Figure 28: Graphs of 𝑥1(𝑡) and 𝑥1,1(𝑡) and their difference on the [0, 1/2] at the first 

iteration 

 

Figure 29: Graphs of 𝑥2(𝑡) and 𝑥1,2(𝑡) and their difference on the [0, 1/2] at the first 

iteration 

1st Iteration result where 𝑆 =  0.028 . 

Checking the stability on the first iteration where  𝑡 ∈ [0,
1

2
] , with below non–linear 

two–point boundary conditions 

{
 
 

 
 𝑔1 (𝑥(0), 𝑥 (

1

4
) , 𝑥(1)) ≔ 𝑥1 (

1

2
) + 𝑥2

2(0) − 𝑥1 (
1

4
) − 0.025 = 0.003,

𝑔2 (𝑥(0), 𝑥 (
1

4
) , 𝑥(1)) ≔ 𝑥1(0) + 𝑥2 (

1

2
) − 𝑥2(0) − 0.025 = 0.003.

 

We obtain below result 
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Approximated Functions: 

𝑋1 =  0.00133871 +  0.106096 𝑡 +  0.00133306 𝑡
2  −  0.00166667 𝑡3 

𝑋2   =  0.00618905 +  0.00280629 𝑡 +  0.101256𝑡2  −  0.000947766𝑡3  

+  0.002𝑡5 

Approximated roots: 

𝑧1 =  0.00133871, 𝑧2  =  0.00618905, 

𝑛1  =  0.0264734, 𝑛2  =  0.013296 

𝑙1  =  0.0516184, 𝑙2  =  0.0328503 

The error for the first approximation is  

𝑚𝑎𝑥

t ∈ [0,
1
2]
|𝑥1
∗(𝑡) − 𝑥11(𝑡)| ≤ 0.00451156 

𝑚𝑎𝑥

t ∈ [0,
1
2]
|𝑥2
∗(𝑡) − 𝑥12(𝑡)| ≤  0.00785025 

 

 

Figure 30: Graphs of 𝑥1(𝑡) and 𝑥1,1(𝑡) and their difference on the [0, 1/2] at the first 

iteration 
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Figure 31: Graphs of 𝑥2(𝑡) and 𝑥1,2(𝑡) and their difference on the [0, 1/2] at the first 

iteration 

1st Iteration result where  𝑆 =  0.030 . 

Checking the stability on the first iteration where  𝑡 ∈ [0,
1

2
] , with below non–linear 

two–point boundary conditions 

{
 
 

 
 𝑔1 (𝑥(0), 𝑥 (

1

4
) , 𝑥(1)) ≔ 𝑥1 (

1

2
) + 𝑥2

2(0) − 𝑥1 (
1

4
) − 0.025 = 0.005,

𝑔2 (𝑥(0), 𝑥 (
1

4
) , 𝑥(1)) ≔ 𝑥1(0) + 𝑥2 (

1

2
) − 𝑥2(0) − 0.025 = 0.005.

 

We obtain below result 

Approximated Functions: 

𝑋1  =  0.00218281 +  0.110074 𝑡 +  0.00139086𝑡
2  −  0.00166667 𝑡3 

𝑋2  =  0.00618693 +  0.00464529 𝑡 +  0.102244𝑡2  −  0.00103173 𝑡3  

+  0.002 𝑡5 

Approximated roots: 

𝑧1  =  0.00218281, 𝑧2  =  0.00618693, 

𝑛1  =  0.027321, 𝑛2  =  0.0138856 

𝑙1   =  0.0524769, 𝑙2  =  0.0340041 
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The error for the first approximation is  

𝑚𝑎𝑥

t ∈ [0,
1
2]
|𝑥1
∗(𝑡) − 𝑥11(𝑡)| ≤ 0.00735921 

𝑚𝑎𝑥

t ∈ [0,
1
2]
|𝑥2
∗(𝑡) − 𝑥12(𝑡)| ≤ 0.00900403 

 

 

Figure 32: Graphs of 𝑥1(𝑡) and 𝑥1,1(𝑡) and their difference on the [0, 1/2] at the first 

iteration 

 

Figure 33: Graphs of 𝑥2(𝑡) and 𝑥1,2(𝑡) and their difference on the [0, 1/2] at the first 

iteration 
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1st Iteration result where  𝑆 =  0.032 . 

Checking the stability on the first iteration where  𝑡 ∈ [0,
1

2
] , with below non–linear 

two–point boundary conditions 

{
 
 

 
 𝑔1 (𝑥(0), 𝑥 (

1

4
) , 𝑥(1)) ≔ 𝑥1 (

1

2
) + 𝑥2

2(0) − 𝑥1 (
1

4
) − 0.025 = 0.007,

𝑔2 (𝑥(0), 𝑥 (
1

4
) , 𝑥(1)) ≔ 𝑥1(0) + 𝑥2 (

1

2
) − 𝑥2(0) − 0.025 = 0.007.

 

We obtain below result 

Approximated Functions: 

𝑋1  =  0.00295727 +  0.114051 𝑡 +  0.00145214 𝑡
2  −  0.00166667 𝑡3 

𝑋2 =  0.0061847 +  0.00662617 𝑡 +  0.103231  𝑡2  −  0.00112464𝑡3  

+  0.002𝑡5 

Approximated roots: 

𝑧1  =  0.00295727,  𝑧2  =  0.0061847 

𝑛1  =   0.0280993, 𝑛2 =  0.0144882 

𝑙1  =  0.0532666,  𝑙2 =  0.0352274 

The error for the first approximation is  

𝑚𝑎𝑥

t ∈ [0,
1
2]
|𝑥1
∗(𝑡) − 𝑥11(𝑡)| ≤  0.0101375 

𝑚𝑎𝑥

t ∈ [0,
1
2]
|𝑥2
∗(𝑡) − 𝑥12(𝑡)| ≤ 0.0102273 
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Figure 34: Graphs of 𝑥1(𝑡) and 𝑥1,1(𝑡) and their difference on the [0, 1/2] at the first 

iteration 

 

Figure 35: Graphs of 𝑥2(𝑡) and 𝑥1,2(𝑡) and their difference on the [0, 1/2] at the first 

iteration 

1st Iteration result where  𝑆 =  0.040 . 

Checking the stability on the first iteration where  𝑡 ∈ [0,
1

2
] , with below non–linear 

two–point boundary conditions 

{
 
 

 
 𝑔1 (𝑥(0), 𝑥 (

1

4
) , 𝑥(1)) ≔ 𝑥1 (

1

2
) + 𝑥2

2(0) − 𝑥1 (
1

4
) − 0.025 = 0.015,

𝑔2 (𝑥(0), 𝑥 (
1

4
) , 𝑥(1)) ≔ 𝑥1(0) + 𝑥2 (

1

2
) − 𝑥2(0) − 0.025 = 0.015.

 

We obtain the below result:  
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Approximated Functions: 

𝑋1  =  0.00634268 +  0.129964 𝑡 +  0.00168287 𝑡
2  −  0.00166667 𝑡3 

𝑋2  =  0.00617609 +  0.0139765 𝑡 +  0.107181 𝑡
2  −  0.00151042 𝑡3  

+  0.002  𝑡5 

Approximated roots: 

𝑧1  =  0.00634268, 𝑧2  =  0.00617609, 

𝑛1  =  0.031499,  𝑛2 =  0.0168454 

𝑙1  =  0.0567095,  𝑙2  =  0.0398334 

The error for the first approximation is  

𝑚𝑎𝑥

t ∈ [0,
1
2]
|𝑥1
∗(𝑡) − 𝑥11(𝑡)| ≤ 0.0215371 

𝑚𝑎𝑥

t ∈ [0,
1
2]
|𝑥2
∗(𝑡) − 𝑥12(𝑡)| ≤ 0.0148333 

 

 

Figure 36: Graphs of 𝑥1(𝑡) and 𝑥1,1(𝑡) and their difference on the [0, 1/2] at the first 

iteration 
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Figure 37: Graphs of 𝑥2(𝑡) and 𝑥1,2(𝑡) and their difference on the [0, 1/2] at the first 

iteration 

5.5 Conclusion 

Over the past decade, coupled systems of non-linear fractional differential equations 

has found numerous critical applications in many fields of applied science, and hence 

constitute a pivotal part of the modern mathematics. The current thesis has focused on 

proving the uniqueness and existence of solutions for a class of coupled nonlinear 

fractional differential equations with integral boundary conditions. Consequently, we 

also developed a parametrized two-point numerical scheme and its algorithm for 

solving such fractional systems.  

However, in most applied problems, solving non-linear fractional differential systems 

poses a great computational challenge, due to the recursive nature of the solution and 

the non-analytical integrals involved. To over this problem, we applied a Deep 

Learning Reinforcement (DRL) technique to our parametrized numerical method, to 

identify and cut-off the recursive operations that had minimal contributions to reducing 

approximation error over iterations. This technique essentially used an algorithmic 

definition for the approximated function instead of a mathematical definition and kept 
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a record of the mathematical operations involved in finding these functions at each 

iteration. 

 These operations were repetitively updated for each iteration based on the solution of 

the recursive system of equations obtained from the numerical scheme. 

 The DRL method was applied to these algorithmic definitions at each iteration to learn 

the contributions of each specific operation to error reduction and stop insignificant 

operations from being updated and hence reduce the computational load. The obtained 

numerical method and algorithm was applied to problem and obtained results were 

successful. The algorithm reached an approximation error below 10^-5 after 364 

iterations.  

Clearly the number of iterations required for reaching the acceptable error threshold 

was increased due to the use of DRL, since cutting-off a proportion of operations at 

each iteration and not updating them increases the approximation error. However, the 

applied DRL technique substantially increased the computational efficiency of the 

algorithm and reduced the calculation time.  

It's worth mentioning that the Mathematica program that was used to solved the 

example problem, was specifically written for that problem, but the overall algorithm 

can be applied to any problem of a similar nature. Regarding the fact that solving most 

nonlinear fractional differential systems face a similar type of computational 

challenge, the current study can have important contributions to the field by 

introducing a parametrized numerical method that employs deep reinforcement 

learning to reduce the computational costs of finding approximated solutions. 

Moreover, future studies can improve and extend the findings of this study, by 
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generalizing the numerical method to solve a wider class of nonlinear fractional 

differential systems with different initial and boundary conditions. Note that the 

overall technique of using DRL for reducing computational costs, applies to more 

general cases and is not specific to the initial or boundary conditions defined in this 

study.  
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