
Submitted to the
Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

Analysis and Implementation of a Method Resistant
to Functional Dependency Attacks on Databases with

Sensitive Records

Gnokam Fotso Flavien

Eastern Mediterranean University
January 2020

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy
Director

Prof. Dr. Işık Aybay
 Chair, Department of Computer

Engineering

Assoc. Prof. Dr. Alexander Chefranov
Supervisor

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science in Computer Engineering.

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

Examining Committee

1. Assoc. Prof. Dr. Zeki Bayram

2. Assoc. Prof. Dr. Alexander Chefranov

3. Asst. Prof. Dr. Öykü Akaydın

iii

ABSTRACT

The technology evolution has helped to develop large database management systems.

Certain information due to its importance is qualified as sensitive with the help of

security constraints (SC). Basic encryption method (BEM) encrypts sensitive cells in

respective sensitive records. But It does not guarantee security because of possible

data dependencies between attributes that may be used for functional dependency

attack (FDA) with the help of evidence records having the same values of left-hand

side attributes of functional dependencies defining right-hand side sensitive cells.

Partial encryption method (PEM) in addition to sensitive cells encrypts also some

attributes of functional dependences to resist FDA. These methods are investigated in

the thesis, and some problems of PEM are revealed (double encryption, absence of

ordering of FDs after finding minimal attribute cover (MAC)). Its modification,

PEM-M, eliminating double encryption and ordering FDs according to MAC is

proposed. Methods PEM and PEM-M are implemented using Windev 17 platform,

where a user can load a database with any scheme automatically recognized, define

its security constraints and functional dependencies. Then, the methods transform the

database to a form resistant to FDA. Implementation was tested on a number of

examples. Efficiency of the methods was studied on a benchmark Adults database

used originally for testing PEM by their authors. PEM-M was tested in the same way

but using Test database. Some experiments were done using 100 and 32K records of

Test database in PEM and PEM-M in order to compare efficiency and accuracy to

see which method performs better. It appear that in term of execution time, PEM can

performs better with scores of 0.311 and 859.13 seconds for 100 and 32K records

respectively comparing to 0,345 and 952.55 seconds for PEM-M. But, in term of

iv

accuracy, PEM-M performs better with 0% of risk of double encryption which is not

the case for PEM.

Keywords: Database management system, Security constraint, Sensitive cell,

Sensitive record, Basic encryption method, Functional dependency, Functional

dependency attack, Evidence record, Partial encryption method.

iv

ÖZ

Teknoloji geliştirme, büyük veritabanı yönetim sistemlerinin geliştirilmesine

yardımcı olmuştur. Önemi nedeniyle, bazı bilgiler güvenlik kısıtlamaları (SC)

yardımıyla hassas kabul edilmektedir. Temel şifreleme yöntemi (BEM), hassas

hücreleri ilgili hassas kayıtlarda şifreler. Bununla birlikte, sağ tarafa duyarlı hücreleri

tanımlayan fonksiyonel bağımlılıkların sol taraf özelliklerinin aynı değerlerine sahip

bazı kanıt kayıtlarının yardımıyla, fonksiyonel bağımlılık için mevcut özellikler

arasındaki olası veri bağımlılıkları nedeniyle güvenliği garanti etmez saldırı (FDA).

Kısmi şifreleme yöntemi (PEM), hassas hücrelere ek olarak, FDA'ya karşı koymak

için fonksiyonel bağımlılıkların bazı özelliklerini de şifreler. Bu yöntemler tezde

incelenir ve bazı PEM problemleri ortaya çıkar (çift şifreleme, minimal bir öznitelik

kapağı (MAC) bulduktan sonra FD'ler sıralanmaz). Modifikasyonu olan PEM-M, çift

şifrelemeyi ortadan kaldırır ve FD'leri MAC ile sıralar. Yöntemler PEM ve PEM-M,

kullanıcının otomatik olarak tanınan herhangi bir şema ile bir veritabanı

yükleyebileceği, güvenlik kısıtlarını ve işlevsel bağımlılıkları tanımlayabileceği

Windev 17 platformu kullanılarak uygulanır. Yöntemler daha sonra veritabanını

FDA'ya dayanıklı bir forma dönüştürür. Uygulama birkaç örnek üzerinde test

edilmiştir. Yöntemlerin etkinliği, başlangıçta PEM'yi yazarları tarafından test etmek

için kullanılan bir karşılaştırmalı Yetişkin veritabanında incelenmiştir. PEM-M de

Test veritabanı kullanılarak test edilmiştir. Hangi yöntemin daha iyi performans

gösterdiğini görmek için verimliliği ve doğruluğu karşılaştırmak amacıyla Test

veritabanının 100 ve 32K kayıtları kullanılarak PEM ve PEM-M'de bazı deneyler

yapıldı. Yürütme süresi açısından, PEM, 100 ve 32K kayıtları için sırasıyla 0.311 ve

859.13 saniye puanlarıyla PEM-M için 0.345 ve 952.55 saniyeden daha iyi

v

performans gösterebilir. Bununla birlikte, doğruluk açısından, PEM-M, PEM için

uygulanamayan% 0 çift şifreleme riski ile daha iyi performans gösterir.

Anahtar Kelimeler: Veritabanı yönetim sistemi, Güvenlik kısıtı, Hassas hücre,

Hassas kayıt, Temel şifreleme yöntemi, Fonksiyonel bağımlılık, Fonksiyonel

bağımlılık saldırısı, Kanıt kaydı, Kısmi şifreleme yöntemi.

.

vi

DEDICATION

Dedicated this report to my family for their support

vii

ACKNOWLEDGMENT

I would first like to thank God for his benefits in my life, and to have accompanied

me throughout this training.

I would also like to thank all the EMU’s staff and in particular Assoc. Prof.

Alexander Chefranov; for guiding and helping me to drive this project to completion.

Finally, I would like to thank my family who has given me unconditional support so

that I can live these unforgettable moments.

viii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ.. iv

DEDICATION .. vi

ACKNOWLEDGMENT .. vii

LIST OF TABLES ... xii

LIST OF FIGURES ... xiv

LIST OF ABBREVIATIONS ... xvi

1 INTRODUCTION ... 1

1.1 General Overview .. 1

1.2 Database Security Concerns .. 3

2 RELATED WORK AND PROBLEM DEFINITION .. 4

2.1 Database Concepts ... 5

2.1.1 Definition ... 5

2.1.2 Brief History of Databases ... 5

2.1.3 Structure of Database ... 5

2.2 Encryption ... 7

2.2.1 Definition ... 7

2.2.2 Vigenere Encryption Method ... 7

2.3 Multi-Level Security ... 8

2.4 Basic Encryption Method .. 9

2.4.1 Security Constraints ... 9

2.4.2 Basic Encryption, Sensitive Cells and Sensitive Records 10

2.5 Functional dependency .. 10

ix

2.6 Evidence Records .. 11

2.7 Functional Dependency Attacks .. 12

2.8 Partial Encryption Method (PEM) ... 12

2.8.1 Flowchart of PEM .. 13

2.8.2 Robustness Checking ... 15

2.8.3 Defending Against Functional Dependency Attacks 16

 2.8.3.1 Case of One Security Constraint ... 17

 2.8.3.2 Case of Multiple Security Constraints (MSCs 20

2.9 Problem Definition .. 28

3 PROBLEMS OF PEM .. 29

3.1 Problem 1: GMM can result in double encryption .. 29

3.2 Problem 2: Basic encryption scheme and ML security are two different models

 ... 30

3.3 Problem 3: Lemma 4.1 [1] for ML security is not true for the use of basic

encryption scheme ... 32

3.4 Problem 4: Algorithm_2 outputs minimum attribute cover instead of

functional dependency with a new order ... 33

4 PARTIAL ENCRYPTION METHOD MODIFIED (PEM-M) 34

4.1 Flowchart of PEM-M .. 34

4.2 Modification 1: Contribution to solve problem of double encryption............. 36

4.3 Modification 2: Contribution to solve problem of Algorithm_2 37

5 IMPLEMENTATION ENVIRONMENT ... 39

5.1 WIndev17 Description ... 39

5.2 Database in Windev ... 39

6 IMPLEMENTATION OF PEM AND PEM-M .. 41

x

6.1 Flowchart of PEM and PEM-M .. 42

6.2 Open the system .. 43

6.3 Selection of Method PEM or PEM-M ... 43

6.4 Dataset Loading of PEM or PEM .. 44

6.5 Enter Functional Dependency ... 45

6.6 Get MAC set of PEM or PEM-M .. 46

6.7 Enter Security Constraints ... 48

6.8 Basic Encryption Scheme, Robustness Checking and Generation of Buckets

(H) .. 48

6.8.1 Basic encryption for PEM .. 48

6.8.2 Basic Encryption of PEM-M ... 49

6.9 Robustness Checking and Generation of Buckets for PEM or PEM-M 50

6.10 Partial Encryption .. 51

6.10.1 Partial Encryption for PEM ... 51

6.10.2 Partial Encryption for PEM-M... 51

7 EXPERIMENTS ON PEM AND PEM-M ... 53

7.1 Experimental Environment used ... 53

7.1.1 Adult Database ... 53

7.1.2 TEST database ... 53

 7.1.2.1 Description of TEST Dataset……………………………………......53

 7.1.2.2 Structure of TEST Dataset…………………………………………..54

7.2 Materials .. 54

7.3 Experiments Description ... 54

7.4 Experimental Results using PEM-M ... 55

7.5 Results Obtained using PEM ... 58

xi

Appendix D: Execution Time for PEM or PEM-M .. 88

Appendix C: Partial Encryption .. 84

Appendix B: First part GMM .. 81

Appendix A: Load input, Vigenere Encryption and MAC 67

APPENDICES .. 66

REFERENCES ... 62

8 CONCLUSION AND FUTURE WORK .. 61

7.6 Results Comparison ... 60

xii

LIST OF TABLES

Table 1: Original Table...2

Table 2: Basic Encryption...2

Table 3: Obtained Results in PEM [1]..4

Table 4: Basic Encryption 𝑫 of D..9

Table 5: Original Table of D...9

Table 6: Basic Encryption of 𝑫 of D...11

Table 7: Original Table of D...11

Table 8: Basic Encryption𝑫 of D...15

Table 9: Original Table of D...15

Table 10: Basic Encryption 𝑫 of D..18

Table 11: Original Table D...18

Table 12: Result after Applying Local Solution (Robust)..19

Table 13: Result after Applying Global Solution (Robust)..20

Table 14: Basic Encryption 𝑫 of D..21

Table 15: Original Table of D...21

Table 16: Result Using Local Solution (Robust with Overhead=3).............................22

Table 17: Result Using Global Solution (Robust with overhead=2)............................22

Table 18: Basic Encryption 𝑫 of D..24

Table 19: Original Table of D...24

Table 20: Result after 1st Encryptions Using H1 [1]...25

Table 21: Result After 2nd Encryptions Using H2 [1]..25

Table 22: Original Table of D...29

Table 23: Basic Encryption 𝑫 of D...29

xiii

Table 24: Structure of TEST Dataset..54

Table 25: Basic Encryption of D...36

Table 26: Original Table D ̅ of D...36

Table 27: Results Comparison..60

xiv

LIST OF FIGURES

Figure 1: Various techniques for database security [4] ... 3

Figure 2: Structure of a Relational Database: ”Modeling of voluntary saccadic eye

movement during Decision Making” (Mvsemdm) [8] .. 6

Figure 3: Flowchart of PEM.. 14

Figure 4: Flowchart of PEM.. 14

Figure 5: Example of Multilevel Security [12] ... 30

Figure 6: Illustration of Encryption Model [12].. 31

Figure 7: Flowchart of PEM-M ... 35

Figure 8: Figure of table Alphabet .. 40

Figure 9: Figure Showing Values Inside Table Alphabet ... 40

Figure 10: Flowchart of PEM and PEM-M ... 42

Figure 11: Selection of Method PEM or PEM-M ... 43

Figure 12: Loading of Dataset of PEM or PEM-M ... 44

Figure 13: Enter FDs ... 45

Figure 14: Implementation of MAC for PEM or PEM-M (part 1) 46

Figure 15: Get Attributes Weight for PEM or PEM-M .. 46

Figure 16: Get MAC and Reordered FDs for PEM or PEM-M (part 2) 47

Figure 17: Enter SCs for PEM or PEM-M .. 48

Figure 18: Basic Encryption of PEM .. 49

Figure 19: Basic Encryption of PEM-M Robustness Checking and Buckets (H) 50

Figure 20: Partial Encryption for PEM ... 51

Figure 21: Partial Encryption for PEM-M .. 52

Figure 22: Obtained Result with 1 FD and 1 SC using PEM-M 55

xv

Figure 23: Execution Time for 100, 1000, and 5000 Records using PEM-M 56

Figure 24: Execution Time for 10000, 15000 and 20000 Records using PEM-M 56

Figure 25: Execution Time for 20000, 25000 and 32000 Records using PEM-M 57

Figure 26: Parameters used for 100 Records for PEM.. 58

Figure 27: Execution time using 100 Records 4 FDs and 4 SCs for PEM 59

Figure 28: Execution Time for 100 and 32K Records using PEM 59

xvi

LIST OF ABBREVIATIONS

FD Functional Dependency

FDA Functional Dependency Attacks

MAC Minimum Attribute Cover

MLS Multi-level Security

PEM Partial Encryption Method

PEM-M Partial Encryption Method Modified

SC Security Constraint

1

Chapter 1

INTRODUCTION

1.1 General Overview

One of the most important aspects of technological advances is the secure

management of databases Cryptographic techniques tries preventing potential attacks

on databases [1] [2]. Partial encryption method is developed to allow different users

to have access according to the rights they have [1].

Access to information in databases is usually regulated by different levels of security

[2] [3]. Thus, for a user A who has higher security level than user B, it can get access

to information present in the level of B but the inverse is not possible [4]. However,

functional dependency (FD), showing relationship between attributes, in the form of

AB (where A and B are subsets of a database attributes, meaning that if any two

tuples in the database have the same values of attribute from A, they also have the

same values of their attributes B), can lead to inferring from the level of B, the

information contained in the level of A. It is therefore said that database can be

attacked [1] using functional dependency. A general solution to solve that issue was

to encrypt all data in the database but, in the case of Data Base as A Service (DAS)

where there is a large volume of data [1]; it's a pretty heavy process. The appropriate

solution is therefore a partial encryption based on security constraints (SC).

2

Example 1: Original database is shown in Table 1 and basic encryption in Table 2 [1]

Example 1 shows a database with three patients who are registered with their name

(NM), sex (SEX), age(AGE), disease code (DC), and disease (DS) in the original

database, Table 1. Alice, Carole and Ela all have illnessуі. Since all patients have

access to this database, some of them would not want their disease to be publicly

available; this request for confidentiality is represented by a security constraint (SC).

As it is shown, after encrypting DS attribute for Carol in Table 2 (Breast Cancer is

encrypted by 𝜶) which represents here a sensitive cell [1], it is still possible to infer

her DS based on the FD between DC and DS (DCDS), since evidence record for

Ela has the same DC as Carol has, and thus, basic encryption of the database does not

resist FD attack (FDA). In fact, FD existence can represent a way by which

confidential information can be attacked throughout evidence record [1] which is the

record that shows the same disease code but non encrypted disease label (DS). Thus,

somebody who knows FD: DCDS can easily infer that Carol’s disease is Breast

Cancer because Carol and Ela tuples have the same DC values (VP18) and by virtue

of the FD their DS attributes shall be also equal.

The idea here is to develop a system that can transform an input database to an output

database resistant against FDAs with a minimal number of encrypted information.

Table 1: Original Table
NM SEX AGE DC DS

Alice F 53 CPD5 HIV
Carol F 30 VPI8 Breast Cancer
Ela F 24 VPI8 Breast Cancer

 Table 2: Basic Encryption
NM SEX AGE DC DS

Alice F 53 CPD5 HIV

Carol F 30 VPI8 α

Ela F 24 VPI8 Breast Cancer

3

1.2 Database Security Concerns

Database security has become one of the most important issues in database

management. With the creation of Client/Server techniques, it is now possible to

detect vulnerabilities in a system and attack its databases [4] [2].Various database

protection techniques have been developed.

Figure 1: Various techniques for database security [4]

From the techniques shown in Figure 1, Database encryption and integrity constraints

first of all will be described, and will be used to build a partial encryption system

with the purpose of making database resistant to FD attacks [1].

4

Chapter 2

RELATED WORK AND PROBLEM DEFINITION

In this part, will be defined and explained the key concepts of the work done and

discuss about existing problem.

The partial encryption method (PEM) is used in [1] with the goal of resisting

functional dependency attacks. It aims reducing the number of encryptions. PEM

uses concepts of database, functional dependency, security constraint, and some

other. Experiments were conducted with PEM [1] implemented in Java using two

datasets (Adults [5] and Order) and obtained results show estimates of execution time

with different number of records. GMM algorithm created for attacks problems and

optimal solution were used in the implementation approach and it appears that using

both datasets, different number of functional dependencies and different number of

security constraints, results presented in Table 3 were obtained.

wtfmnData
1.0163877.4781532,000Adult_32K
2.033989.7781564,000Adult_64K
4.0593990.47815128,000Adult_128K
8.1293988.97815256,000Adult_256K

Orders_0.3M 126.82125.8109300,000
Orders_0.6M 306.51191.1109600,000
Orders_0.9M 383.12229.7109900,000
Orders_1.2M 459.99259.61091,200,000
Orders_1.5M 508.37288.71091,500,000

Table 3: Obtained Results in PEM [1]

5

To understand how this method works, concepts used will be described and analyzed

in the following sections.

2.1 Database Concepts

2.1.1 Definition

Nowadays, database can be defined as an organized collection of data, generally

stored and accessed electronically from a computer system [6] but, before the

creation of computers, data storage facilities already existed.

2.1.2 Brief History of Databases

The main idea about a database system is to store data. In early computer era,

information storage was already observed in hospitals, administrative offices and

some enterprises. In 1960s, with the technological improvement the first electronic

database was developed [7]. This technology evolved and in the 1970s the first

relational databases were created, and many improvements made have resulted in the

existence of several types of databases to date.

2.1.3 Structure of Database

The goal of a database is to allow users to manipulate data quickly and reliably. A

database must therefore be well structured for this purpose. There are several types of

database, but relational databases will be used for this work. A relational database is

defined as follows:

6

Figure 2: Structure of a Relational Database: ” Modeling of voluntary saccadic eye

movement during Decision Making” (Mvsemdm) [8]

Figure 2 shows the Mvsemdem relational database where tables can be easily seen,

represented by boxes with names shown in their headers, attributes shown in the

boxes, and relationship among tables shown as links between the boxes. Consider for

example table Participants, where it is shown five attributes (PKParticipant, Initials,

Age, Sex, Information). PKParticipant is a primary key (specific choice of

a minimal set of attributes that uniquely specify a tuple in a table [8] (it is shown in

bold and underlined). Thus, using PKParticipant, other tuple having a particular

value of the attribute in the table can be uniquely determined. A primary key is also

used for creating relationship between two tables [8] [9]. In that case, cardinality (In

the context of databases, cardinality refers to the uniqueness of data values contained

in a column. High cardinality means that column contains a large percentage of

totally unique values. Low cardinality means that column contains a lot of “repeats”

in its data range.), will allow one of the two primary keys to move to the second table

and be a foreign key there. Consider for example a relationship between table Stimuli

(PKStimulus, Lifetime, Scolor, Direction, Delay, Coherence, Velocity, Number) and

7

table Frame (PKFrame, FKStimulus*, Frameindex). It is noticed that PKStimulus

moved to table Frame, and there, instead of PKStimulus, FKStimulus is used but as a

foreign key.

2.2 Encryption

2.2.1 Definition

Encryption can be defined as a process of hiding information so that to access it, a

user needs special knowledge [10]. In fact, there are two techniques used to hide

information using encryption, symmetric and asymmetric techniques. In this paper a

symmetric technique named Vigenere will be used for encryption.

2.2.2 Vigenere Encryption Method

Vigenere method is defined as an alphabet encrypting method which uses a series of

interwoven Caesar cipher [11][12]. Algebraically, going from A to 9 in the alphabet,

a number will be attribute for each character starting from 0 to 35, for example A=0,

B=1,...,9=35, and since numbers go up to 35, addition will be perform with this.

Then, if Tex considered as plaintext and K as key, Vigenere of Tex names cipher text

Ct will be Ct=Texk(Nt)=(Nt+Kt)Mod37, where Nt is the number attributed to the

character in the plaintext and Kt the number attributed to the character in the key.

Example 2: Let consider Tex=SAME and key=KEY, if starting from A to 9, S=18,

A=0, M=12, and E=4. For the key, K=10, E=4 and Y=24. Thus,

C(S) = (18+10) mod 36 = 28 => 2

C(A) = (0+4) mod 36 = 4 => E

C(M) = (12+24) mod 36 = 0 => A

C(E) = (4+10) mod 36 = 14 => O

So Vigenere cipher encryption of “SAME” is “2EAO” using key=”KEY”

8

2.3 Multi-Level Security

A system with multi-level security is a system with different levels of access

[10].Thus, if A and B are two attributes, SL(A) security level of A and SL(B)

security level of B, SL(A) > SL(B) means security level of A is higher than security

level of B and consequently a user in a level of B cannot get access to information to

the level of A. Therefore due the fact that databases are relational, and FDs among

attributes interact, it could be attacked by FDA [12]. To prevent potential FD attacks,

the approach is to avoid presence of compromise FDs. It has been shown that a FD

can yield derivatives, and it is important to make sure that the derived FDs are also

safe. So, Lemma 3.1 has shown that when FD set is safe, its derivatives, FD set

closure, is also safe [13], If F is a set of functional dependencies FD, F+ denotes the

set of derivatives called a closure. Lemma 3.1 is as follows:

Lemma 3.1: For the set of functional dependencies, F= {FD1, FD2,..., FDn}, defined

on the database scheme R, if all FD=AB ∈ F, if SL is a security level and

SL(Ai)≥ SL(Bi) with Ai ∈ A and Bi ∈ B then, there does not exist an 𝑭𝑫 ∈

𝑭 compromissing the database scheme R [13].

Technically, for ML security, two rules, “No-read up” and “No-write down”, shall be

provided, meaning that a subject with the lower security level (SL) cannot read a

document with the higher SL and a subject with the higher SL cannot write into a

document with the lower SL respectively. Therefore, data inference can be

responsible of FD compromise. To clearly understand what is FD compromise and

how to fix it, let us consider Example 3.

9

Example 3: Compromise relationship and fixing method

Let the set of attributes R = {A, B, C, D}, SL is a security level, and

SL(A) > SL(B) > SL(C) > SL(D). A FD compromises the database with the scheme

R, when attribute with the bigger security level represents the right hand side of the

relation. So, DA is a compromising FD, but AB is not. To fix the compromising

issue, security level of D should be increased to be at the same level with A.

That was the idea about Multi-level security and how it works.

2.4 Basic Encryption Method

 Basic encryption method (BEM) [1] is used for encryption of sensitive cells. Its goal

is to hide sensitive information defined by security constraints.

2.4.1 Security Constraints

The security constraints represent conditions used to restrict the level of access to the

data. It is then said constraints make it possible to further restrict a domain of an

attribute [8]. To be clearer and show the rule of constraint in the process of basic

encryption, consider Table 4 and Table 5.

Table 4: Original Table of D
TID A B C

1 a1 b1 c1
.
.
.

.

.

.
.
.
.

.

.

.
999 a1 b1 c2

1000 a1 b1 c2
1001 a1 b1 c3
1002 a2 b2 c3

.

.

.
.
.
.

.

.

.
.
.
.

2000 a2 b2 c3

FD: AB, SC1: IIBσC=c1,

SC2: IIBσC=c2

Table 5: Basic Encryption 𝐷 of D
TID A B C

1 a1 β1 c1
.
.
.

.

.

.
.
.
.

.

.

.
999 a1 β1 c2

1000 a1 β1 c2
1001 a1 b1 c3
1002 a2 b2 c3

.

.

.
.
.
.

.

.

.
.
.
.

2000 a2 b2 c3

10

Given database with a scheme having a set of three attributes {A, B, C}where B is

functionally depending on A (FD: AB), Table 4 is the original table and there are

two thousand rows conditioned by two security constraints (SCs). The first one

SC1: IIBσC=c1 is a projection on attribute B and selection of attribute C with value

c1requests, which means necessity of encryption of attribute B in the tuples where

C=c1, and the second one SC2:IIBσC=c2 is the same meaning but the tuples shall be

with C=c2.

2.4.2 Basic Encryption, Sensitive Cells and Sensitive Records

If Table 4 and Table 5 are considered again, it is noticed in Table 5 that values of

r[B] are encrypted in the rows where C=c1 and C=c2 respectively. To be clearer, it is

easily seen that 𝑫 is obtained after applying security constrains SC1 and SC2, and in

which values of B are encrypted in rows 1, 999 and 1000. The process is called basic

encryption and respective cells to be encrypted are called sensitive cells. Sensitive

records are then all the rows containing sensitive cells [1]. So in general, given a set

of data D with attributes A, B and C, security constraint IIBσC=c, sensitive cells are

all cells r[B] where r[C]=c and sensitive records are all records where r[C]=c.

2.5 Functional dependency

Functional dependency (FD) denotes constraint between attributes. As explained in

Section 2.2.3, relationship can exist between attributes and in the context of

functional dependency, if given functional dependency FD: AB with A and B two

sets of attributes, B is functionally depending on A, which means A can uniquely

determine B [1]. A is left hand side (LHS) attribute and B is right hand side attribute

(RHS). Sensitive data defined by security constraints can be disclosed using FD: if

LHS are the same then it can be inferred that RHS are also equal [12].

11

2.6 Evidence Records

Evidence here represents the flaw by which system can be attacked [1]. For a dataset

D with attributes A and B, FD: A B, L = {SC1, SC2...SCn} list of constraints and 𝑫

dataset with basic encryption, it appears that 𝑫 has an evidence record if for a row r

with r[B] cipher text and r[A] plaintext, there is any record r’ ∈ 𝑫 where r’[A] = r[A]

and r’[B] is not encrypted [1]. To be more explicit, take into account tables in

Example 4.

Example 4: Example of detection of evidence record [1] (Table 6, 7)

As evidence record was described in the definition, Example 4 show Table 6 and

Table 7 which are respectively original table and basic encryption. In Table 7, it is

noticed that r1[B] is encrypted after applying security constraint SC=IIBσC=c1.

Now, in application of what was described before, considering 𝑫, functional

dependency FD: AB, and r1[B]=β1 which is an encrypted value. It appears that

r1[A]=a1 is not encrypted. By checking into others rows, it is also noticed in rows r2

and r3 that r2[A]=r3[A]=r1[A]=a1 (Not encrypted value), and r2[B]=r3[B]=b1 (Not

encrypted value) thus, based on r2, r3 and FD β1=b1 can be easily inferred and

consequently r2 and r3 are called evidence records.

Table 6: Original Table of D
TID A B C
r1 a1 b1 c1

r2 a1 b1 c2
r3 a1 b1 c3
r4 a2 b2 c3

Table 7: Basic Encryption of 𝐷 of D
TID A B C
r1 a1 β1 c1

r2 a1 b1 c2
r3 a1 b1 c3
r4 a2 b2 c3

12

2.7 Functional Dependency Attacks

Since sensitive and evidence records were defined, it’s easy to understand the

principle of FD attack. In fact, a system that leaves the gaps is not robust and can be

attacked. Attacks are made in a dataset which from one or more properties can reveal

certain secret information. It means for a dataset D and his basic encryption𝑫, D can

be attacked if it exists any evidence record in 𝑫. Then, some steps should be

followed to check if a system can be attack or not:

 Check if it exists any sensitive record: As sensitive record was defined, this

step aims to detect in 𝑫, if it exists any record r’1 where r’1[A] is a plaintext

and r’1[B] is a cipher text.

 Check if it exists any evidence record: since sensitive record is detected, the

next step is to verify if it exists any other record r’2 where r’2[A] and r’2[B]

are plaintext, and r’1[A]=r’2[A]

If these situations are found, conclusion is that 𝑫 is not robust and can be attacked.

There is a way to fight against functional dependency attacks by making system

robust to potential attacks.

2.8 Partial Encryption Method (PEM)

The idea here is to check existence of gaps in the system and prevent it for being

attacked. As discussed before, a dataset which has evidence records in basic

encryption is not robust and needs to be secure in order to be robust for attacks. To

perform it, some steps need to be followed as shown in the flowchart.

13

2.8.1 Flowchart of PEM

The flowchart will represent steps to perform PEM. It means he shall start after basic

encryption and the whole process of the method combining basic encryption and

partial encryption will be represent in Section 4.

14

Figure 3: Flowchart of PEM

Figure 4: Flowchart of PEM

Legend

1- Minimum attribute cover
(MAC)

2- Robustness checking (RC)

3- Defending against FD
attacks (DFD)

Start

Dataset Encrypted
by BEM

FDs
SCs

FD>1?

MAC

Yes

Calculate
attributes weight

Generate set of
MAC

No

GMM (Input1, Dataset
Encrypted by PEM)

Set of
MAC

Input1 MAC (FDs, Set
of MAC)

Find sensitive (Sv) and evidence records (Ev) of
basic encryption set and generate buckets

Input2=Output1

H=∅

Dataset Encrypted by PEM

Yes

Hi=∅? Or
Sij=∅?, Eij=∅?

No

Yes

Ev≥Sv?

Remove Hi

Encrypt r[A] or
r[B] No

Yes

Remove
encrypted
value in Hi

Encrypt r[A] and remove it in Hi

Stop

RC (Input1, (Set of Buckets H, Dataset, FDs) =Output1)

DFD (Input2, Dataset Encrypted by PEM)

2

3

1

15

2.8.2 Robustness Checking

In the easier way, robustness checking means check if there does not exist any

evidence record when sensitive records exist like précised in (2) in the flowchart.

Thus, for a dataset D and its basic encryption 𝑫, one security constraint such that B

is sensitive, and one FD: AB, to verify whether the system is robust, two

conditions related to Lemma 4.1 [1] should be considered, that shall hold for each

record r where r[B] is sensitive.

 Lemma 4.1 conditions:

- Condition 1: There exists at least one attribute 𝒁 ∈ 𝑨 such that 𝒓[𝒁] is

encrypted.

- Condition 2: If r[A] is not encrypted, and there does not exist a record r’

where r’[A] =r[A] and r’[B] is not encrypted.

If those conditions are respected, consequently system is robust. Consider the

following example to prove the previous conditions of Lemma 4.1 [1].

Example 5: Example of robustness checking after basic encryption [1].

 Table 8: Original Table of D
TID A B C D
r1 a1 b1 c1 d1

r2 a1 b1 c1 d2
r3 a1 b2 c2 d2
r4 a2 b1 c1 d3

r5 a2 b1 c1 d1

Table 9: Basic Encryption𝐷 of D
TID A B C D
r1 a1 b1 γ1 d1
r2 a1 b1 γ1 d2
r3 a1 b2 c2 d2

r4 a2 b1 γ1 d3
r5 a2 b1 γ1 d1

16

 This example is used to illustrate the conditions mentioned above., For a dataset D

represented by Tables 8, which contains four attributes {A, B, C, D}, one functional

dependency FD: {A, B} C and one security constraint SC: IICσB=b1. The result

after basic encryption, based on security constraint is represents in Table 9. It appears

that rows r1, r2, r4 and r5 were selected where b=b1, and projection on cells r1[C],

r2[C], r3[C] and r5[C] was done in order to get them encrypted as it is seen in

Table 9. Since 𝑫 is table of basic encryption and represents by Table 9, those

conditions of Lemma 4.1 should be applied on it to verify if system is robust or not.

For the first condition, it exists at least one row in 𝑫 where r[X] is not encrypted and

r[Y] is encrypted. They can be verified in rows r1, r2, r4 and r5 where none of r[A] or

r[B] is encrypted but r[C] is encrypted. For the second condition, if rows r[C]s with

encrypted values are considered, the next step is to check if there exist any other row

r[X] represents by r[A] and r[B] is not encrypted, and r[Y] represents by r[C] is also

not encrypted. Going through Table 9, there is not such kind of row which means 𝑫

is robust.

2.8.3 Defending Against Functional Dependency Attacks

A system can defend itself against FD attacks when he is robust. Thus, the idea

behind defending against FD attacks is to make the system robust by encrypting the

non-sensitive cells which can represent the way throughout the system can be attack

[1] [2]. The process to make a system robust depends on some parameters such as

number of functional dependency, and number of security constraints. The process

with one security constraint will be the first case of the description.

17

2.8.3.1 Case of One Security Constraint

As it was said before, it is not possible to talk about sensitive records if it does not

exist security constraint, and don’t talk about attacks if there is no evidence records.

Thus, the process on how to check the existence of evidence records and fix the gaps

for a case of single security constraint will be explained. Since security constraint is a

selection query, consider SC: IIBσc where B is the right hand side (RHS) of the

functional dependency FD: AB. The idea here is to get based on FD and SC all the

attributes which are concerning in the process of encryption. Then, security

constraint will be transformed so that left hand side (LHS) and (RHS) will be getting

in the same selection, by applying security constraint. Then, SC=II(A,B)σc which

means select (A,B) where condition C is respected will be the transformation result

and after that, the next step is to divide it in bucket in order to get a unique sensitive

cell for each bucket and it matching A value. The process is then followed by

applying two selections. One selection Ss: IITIDσ(A=a,B=b)∪C with C as selection

condition to get sensitive records, and another selection Se: IITIDσ(A=a,B=b) to get

all the records which have the same attribute A with the ones considering as sensitive

records. As soon as sensitive records are obtained after basic encryption, there are

two cases:

 First case : There are no evidence records

In this case, conclusion is that dataset is robust and cannot be attacked.

 Second case : There is at least one evidence record

18

In this case, the problem should be fixed by encryption, and to do that, two

possibilities (Local and Global solutions) are envisaged [1].

-1st Possibility (Local Solution): For each sensitive record r, pick A ∈ LHS and

encrypt r[A] in the case that there is only one attribute in the LHS, or randomly pick

A ∈ LHS and encrypt r[A] in the case of many attributes in LHS.

-2nd Possibility (Global Solution): For each evidence records r’, which is representing

by Se(D)-Ss(D) and means the attributes which are present in Se(D) but not in Ss(D),

select A or B and encrypt r’[A] or r’[B]. Take into account Example 6 to be clearer.

Example 6: Example of solving the problem of evidence records with one constraint.

Let FD: AB, and SC: IIBσC=c1. Table 10 is representing original table and

Table 11 Basic encryption. As explained before, the first thing to do is to check if

Table 11 with basic encryption is robust or not. Based on the result, it is shown that

𝑫 is not robust due to the fact that sensitive record r1 has an evidence record r3 and

need to be fixed. To fix it, those steps need to be followed:

Table 10: Original Table D
TID A B C

r1 a1 b1 c1
r2 a2 b2 c2
r3 a1 b1 c3

r4 a3 b3 c4
r5 a4 b4 c5

Table 11: Basic Encryption 𝐷 of D
TID A B C

r1 a1 β1 c1
r2 a2 b2 c2
r3 a1 b1 c3

r4 a3 b3 c4
r5 a4 b4 c5

19

- Transformation of IIBσC=c1: Rewrite the query so that all attributes

concerning by the FD during the selection. Then rewriting result is

II(A,B)σC=c1.

- The next step is to get our buckets, for the first one, apply the following query

IITIDσ(A=a,B=b)Uc1 to have bucket B1(a1,b1,c1) which will generate

sensitive record Ss(D)={r1}. For the second query IITIDσ(A, B), bucket

B2(a1, b1) is obtained and it contains Se(D)={r1, r3}. Solving possibilities can

now be applying to fix the problem.

- Solving with first possibility (Local Solution) : If r[A] in Ss(D) is encrypted,

the obtained result is like in Table 12.

Table 12: Result after Applying Local Solution (Robust)
TID A B C

r1 α1 β1 c1

r2 a2 b2 c2
r3 a1 b1 c3
r4 a3 b3 c4

r5 a4 b4 c5

- Solving with the second possibility (Global Solution): If Se(D)-Ss(D) is

applied, {r3} is obtained so, r[A] or r[B] will be encrypted in r3 to get result in

Table 13.

20

Table 13: Result after Applying Global solution (Robust)

It is noticed in Table 12 and Table 13 after applying both cases that tables are robust,

and in this example Ss(D) and Se(D)-Ss(D) have the same number of encryption

overhead which is one. Note that encryption overhead means total number of

encryption after basic encryption. Therefore, it might happen than one of the two

solutions needs more encryptions than other, therefore the best solution is the one

which has a minimum number of encryption. To decide on which solution has a less

number of encryption, the number of records where cell has to be encrypted should

be considered thus, if Nev is a number of evidence records in the first solution and

Ns=Se(D)-Ss(D) the number of records to encrypt in the second solution, to select

the best solution to apply, Nev and Ns should be compared in order to apply the

solution with the minimal number of record to encrypt after basic encryption. In

other words, it means, get Min (Ns, Nev) and apply the result corresponding to the

minimal value.

After getting how to fix the problem of robustness with one security constraint, let

see how to solve with multiple security constraints (MSCs)

2.8.3.2 Case of Multiple Security Constraints (MSCs)

MSCs mean existence of more than one security constraint [3]. In such kind of case,

the solving process that is used for one security constraint can be used in each

security constraint [1] to solve the problem. In others words, if

TID A B C

r1 a1 β1 c1
r2 a2 b2 c2

r3 a1 β1 c3
r4 a3 b3 c4
r5 a4 b4 c5

21

L = {SC1, SC2,...SCn}is the set of security constraints, for each security constraint

from 1 to n, the same solving process used to get solution with one security

constraint will be followed. Therefore, to optimize the solution, the less number of

overhead encryption should be considered.

Example 7: Solution with MSCs (Proposed example).

Let D a set of data and 𝑫 basic encryption representing by the following tables

With one FD: AB, two security constraints SC1=IIBσC=c1 and SC2=IIBσC=c2,

Table 14 as original table and Table 15 as basic encryption, for SC1, r1 and r2 are

sensitive records because of r1[B] and r2[B] which are encrypted, and for SC2 r4 is

sensitive record because of r4[B] which is encrypted also. If local optimal solution is

applied, for SC1, r3 and r5 are evidence records, and total of sensitive record=total of

evidence records=2, so r[A] can be encrypted to fix the problem, which will give a

total of 2 encryptions r1[A] and r2[A] as it is seen in Table 13 below. For SC2, r3 and

r5 are also evidence records, but since total sensitive record<total evidence record

which is 1<2, r[A] will also be encrypted to fix the problem, which will give one

Table 14: Original Table of D
TID A B C
r1 a1 b1 c1
r2 a1 b1 c1
r3 a1 b1 c3
r4 a1 b1 c2
r5 a1 b1 c4

Table 15: Basic Encryption 𝐷 of D
TID A B C
r1 a1 β1 c1
r2 a1 β1 c1
r3 a1 b1 c3
r4 a1 β1 c2
r5 a1 b1 c4

22

encryption. So, for optimal encryption, a total of 3 encryptions are obtained. If

consider global solution now, total of sensitive records is 3 (r1, r2, r4) and total of

evidence records is 2 (r3, r5) then, to fix the problem, r[B] will be encrypted for each

evidence record and system will get robust. Total encryption overhead is 2

(r3[B], r5[B]) as in Table 17.

In conclusion, global encryption is the best solution to solve the problem because

solution is obtained (Table 17) with a minimal number of encryption. Based on what

was described till now, a process of fixing FD attacks can be summarized by

algorithm [1].

This algorithm is called GMM [1] and is used to go through security constraints and

functional dependencies to detect and fix a database attacks problems. Its uses:

- L ={SC1,SC2,..., SCn}as a list of SCs

- FD: XY represents functional dependency

- Vij as a sensitive cell

- Sv as a sensitive record

- Ev as an evidence record

- Hi as a bucket which contains a set in the form of (Vij, Sv, Ev) for each SC

Table 17: Result Using Global Solution
(Robust with overhead=2)

TID A B C
r1 a1 β1 c1
r2 a1 β1 c1
r3 a1 β1 c3
r4 a1 β1 c2
r5 a1 β1 c4

Table 16: Result Using Local Solution
(Robust with overhead=3)

TID A B C
r1 α1 β1 c1
r2 α1 β1 c1
r3 a1 b1 c3
r4 α1 β1 c2
r5 a1 b1 c4

23

Algorithm 1 of fixing FDs attacks: GMM (L = {S1, S2,...,Sn}, XY) [1]

1. For all SCi € L do

2. Checking of sensitive cell { Vij} set
3. For all Vij do
4. Find Sij and Eij, sensitive and evidence records respectively
5. end for//Vij
6. Let Hi={(Vij, Sij, Eij)}
7. End for
8. While Hi≠Φ for all i € 1,…,k do
9. Let Minc = MinforallVij€HiMin(|Sij|, |Vij|)
10. Let Minv be the sensitive cell that deliver Minc
11. Let Sv and Ev, sensitive and evidence records of Minv
12. If |Sv|<= |Ev| then
13. Minse= Sv
14. Pick randomly an attribute A € X, and encrypt A in all records ∈ Sv
15. Else
16. Minse = Ev
17. Pick randomly attribute A € X U Y , and encrypt A in all records ∈ ev
18. End if
19. For all Hi do
20. For all (Vij, Sij, Eij) € Hi do
21. If Vij = Minv then
22. Sij = Sij-Minse
23. eij = Eij-Minse
24. If Sij = Φ or Eij = Φ then

25. Remove(Vij, Sij, Eij) from Hi

26. End if
27. End if
28. End for
29. End for//Hi
30. End while

Consider Example 8 to see exactly how Algorithm1 works.

24

Example 8: Example of application of Algorithm1 [1]

For this example, consider original Table 18, FD: DCDS and two security

constraints SC1: IIDSσAge<30 and SC2: IIDSσSex=”F”. After applying SC1 and

SC2, basic encryption is represented by Table 19. Since at least on sensitive record

exists, GMM can be applied in order to make system robust.

For SC1, there are two sensitive records r1 and r2 and four evidence records r4, r5, r6

and r7, thus H1 will be:

H1 (Sc1, DCDS) = ({{r1[DS], r2[DS]},{r1, r2},{r4, r5, r6, r7}}). In the same logic,

For SC2, H2 (Sc2, DCDS) = ({{r2[DS], r3[DS]},{r2, r3},{r4, r5, r6, r7}}). So, H

= {H1, H2} is set of H evoked in step 8 of Algorithm1.

For H1, Min (|Sv|, |Ev|) =2 which is the number of sensitive records then, based on

FD, r1[DC] and r2[DC] should be encrypted to get the results presented in Table 20.

Table 18: Original Table of D
TID Name Sex Age DC DS

r1 Joe M 28 CPD5 HIV

r2 Alice F 24 CPD5 HIV

r3 Maggy F 33 CPD5 HIV

r4 Phil M 43 CPD5 HIV

r5 Peter M 39 CPD5 HIV

r6 Rey M 52 CPD5 HIV

r7 Steve M 31 CPD5 HIV

Table 19: Basic Encryption 𝐷 of D
TID Name Sex Age DC DS

r1 Joe M 28 CPD5 α

r2 Alice F 24 CPD5 α

r3 Maggy F 33 CPD5 α

r4 Phil M 43 CPD5 HIV

r5 Peter M 39 CPD5 HIV

r6 Rey M 52 CPD5 HIV

r7 Steve M 31 CPD5 HIV

25

H1=ϕ and due to the fact that r2 is already encrypted, it will be removed in H2 and

the new value will be H2 (Sc2, DSDC) = ({{r2[DC], r3[DC]},{r3},{r4, r5, r6, r7}}).

For H2, Min (|Sv|, |Ev|) =1 which is the number of sensitive record, and r3[DC] has to

be encrypted. The next table will be:

As shown in Table 21, system is robust after 2 iterations and cannot be attacked.

It was shown how to process to get solution with more than one security constraint

let see now how to process when more than one functional dependency are given.

2.8.3.3 Multiple Functional Dependencies

Multiple functional dependencies mean existence of more than one functional

dependency. As the goal is to prevent FD for attacks, each FD must be checked to

Table 21: Result After 2nd Encryptions Using H2 [1]
TID Name Sex Age DC DS

r1 Joe M 28 β α

r2 Alice F 24 β α

r3 Maggy F 33 β α

r4 Phil M 43 CPD5 HIV

r5 Peter M 39 CPD5 HIV

r6 Rey M 52 CPD5 HIV

r7 Steve M 31 CPD5 HIV

Table 20: Result after 1st Encryptions Using H1 [1]
TID Name Sex Age DC DS

r1 Joe M 28 β α

r2 Alice F 24 β α

r3 Maggy F 33 CPD5 α

r4 Phil M 43 CPD5 HIV

r5 Peter M 39 CPD5 HIV

r6 Rey M 52 CPD5 HIV

r7 Steve M 31 CPD5 HIV

26

verify if the security is guaranty [1] [12]. Before explaining how the robustness can

be achieved, let talk about security level with encryption which is totally different

from security level with multi level security. In fact, in multi level security, all

attribute in the same line have the same level security [12] but in the case of

encryption, only encryption can put to attributes in the same level. Therefore, when a

system has to be prevented from FD attacks, as previously sensitive and evidence

information must be encrypted by going through each FD dependency. The only

problem now is how to manage those FD to easily get the minimal encryption during

solving the problem. To solve this, Minimal Attribute cover (MAC) is used to

classify FD in order to encrypt the most frequent attributes first, and the rest after.

One second algorithm is then proposed for minimum attribute cover [1]. This

algorithm takes as input set of functional dependencies and outputs set of minimum

attributes cover. Consider:

- F ={F1, F2,..., Fn}as set of functional dependencies

- A as set of Minimal Attribute Cover

- RHS as right hand side attribute in the FD

- LHS as left hand side attribute in the FD

- R as set of attributes

- W as weight

For this algorithm, input is F = {F1, F2,..., Fn} and output is A.

Algorithm 2 [1]: Find Minimum Attributes Cover (F)

1. A = ∅
2. For all A ∈ R do
3. A.w = 0
4. End For
5. For all F ∈ F’ do

27

6. For all A ∈ LHS(F) do
7. A.w++
8. End For
9. RHS(F).w++
10. End For
11. While F’≠ ∅ do

12. Select A with the largest W in R
13. For all F ∈ F’ with A ∈ LHS(F) OR A ∈ RHS(F) do

14. For all A’ ∈ F do
15. A’.w - -
16. End For//A
17. F’ = F’-F

18. A.Add(A)

19. End For//F
20. End While
21. Return

For well understanding, consider Example 9 to see how this algorithm works.

Example 9: Application of Algorithm 2 for MAC (Proposed example).

Let F1= A, BC; F2=AD; F3=CD, F= {F1, F2, F3}, R= {A, B, C, D}, A =∅,

A.weight=0; B.weight=0; C.weight=0 and D.weight=0. After applying loop on F,

A.weight=2; B.weight=1; C.weight=2, D.weight=2.

Let A.weight=2 be the bigger weight because of the rank in the set, we are now in

line 11 of our Algorithm and for the second loop, we have F’= {F1, F2, F3}.

For F1:A.weingt=1; B.weight=0; C.weight=1 and D.weight=2, F’= {F2, F3}, and

A = {A}.

28

For F2, the bigger weight is for D and A.weight=0, B.weight=0; C.weight=1;

D.weight=1, A= {A, D} and F’= {F3}.

For F3 the bigger weight is for C and A.weight=0, B.weight=0, C.weight=0,

D.weight=0, F’= {∅} and A= {A, D, C}.

So minimal cover is A= {A, D, C}.

Previous sections presented what have been done to prevent and secure dataset for

functional dependency attacks and method used can now be analyzed to highlight the

shortcomings in order to improve the way to secure a system by partial encryption.

2.9 Problem Definition

Since the beginning of this work, key concepts were defined and analyzed in order to

understand how PEM works. For more understanding and especially the concern to

improve what have been done, the next work will focus first on analyzing PEM

problems, secondly will focus on proposition of modification of PEM for fixing

problems and get PEM-M, will thirdly focus on implementation of PEM and PEM-M

so that in the fourth point both methods will be tested and forward in the last point on

conduction of experiments on PEM and PEM-M similar to those conducted on PEM,

and compare their efficiency.

29

Chapter 3

 PROBLEMS OF PEM

The goal of this section is to analyze and describe PEM in order to detect existing

problems. In fact, as mentioned previously, the purpose is to secure efficiently the set

of data with the smallest number of encryption. Therefore, the method proposed in

[1] is showing some problems that have to be solved to improve the way of securing

dataset. This part of work will first consist in analyzing PEM problems; secondly

consist in proposition of modification of PEM to get PEM-M for fixing attacks

problems.

3.1 Problem 1: GMM can result in double encryption

As said before, GMM is an algorithm to fix FD attacks problems. There are some

cases where it is not satisfied because of double encryption. Example 10 will clearly

show one case when double encryption is possible.

Example 10: Illustration of a case of double encryption using algorithm GMM with

multiple FDs (Proposed example)

Table 23: Basic Encryption 𝐷 of D
TID A B C D E
r1 a1 β1 α1 d1 e1

r2 a2 b2 c2 d2 e2
r3 a3 β1 c1 d1 e1
r4 a4 b3 c3 d3 e3

r5 a1 β2 α2 d2 e1
r6 a6 β1 c1 d1 e1
r7 a7 b2 c2 d2 e2

Table 22: Original Table of D
TID A B C D E
r1 a1 b1 c1 d1 e1
r2 a2 b2 c2 d2 e2

r3 a3 b1 c1 d1 e1
r4 a4 b3 c3 d3 e3
r5 a1 b2 c2 d2 e1

r6 a6 b1 c1 d1 e1
r7 a7 b2 c2 d2 e2

30

FD1: DC, FD2: DB, FD3: BC

𝓛 − {SC1: IIBσE=e1; SC2: IICσA=a1}, Table 22 original table and Table 23 Basic

encryption. In Table 23, it is noticed in r1 (BC) that attributes B and C are both

already encrypted. Thus, to determine evidence record, β1 should be consider as LHS

attribute. In that way, the next step will show one sensitive record (sv) and two

evidence records (ev) and {|sv|=1<=|ev|=2 =>Minse=sv= {r1} which means the total

number of sensitive record is less than the total number of evidence records and

sensitive records should be kept for encryption. B will then have to be encrypted

twice in r1 which will give two encryptions in the same attribute. In conclusion it can

be say that GMM applying with MFD is not always satisfied.

3.2 Problem 2: Basic encryption scheme and ML security are two

different models

 Multi-Level security is defined as the application of a computer system to process

information with incompatible classifications (i.e., at different security levels),

permitting access for users with different security clearances, and prevent users from

obtaining access to information for which they lack authorization [3].

Figure 5: Example of Multilevel Security [12]

31

Figure 5 is showing many levels of security represented by each line. It can be

noticed that four levels of security are representing in descending order. In that

order, the level above can get access to the ones below. So, TS>S>C>U which

means TS has the highest security level and can access to the information to the

level below, and U has the lowest security level and can be accessed by the others

level. In the Basic encryption scheme, such levels are not considered, it is just

expected that sensitive cells are encrypted whereas non-sensitive cells are not

encrypted. As said in section 2.1.3 ML security works with two rules, “No-read

up” and “No-write down” with different level of security but basic encryption

scheme effectively has just two security levels: encrypted and not encrypted. A

holder of a secret key can access the both, a subject not having the key can access

just non-encrypted data. Thus, “no-read up” is supported, but a holder of the key

can write to non-encrypted data as well, and so, “no-write down” rule is not

supported. Thus, Basic encryption scheme differs from ML security model.

Figure 6: Illustration of Encryption Model [12]

With Figure 6, it is noticed that the only condition to get access of information is to

have key then, you can be in the same level of security but if you don’t have key you

will not read the encrypted information.

32

 That was prove that Multilevel Security model is not the same as Basic encryption

scheme model.

3.3 Problem 3: Lemma 4.1 [1] for ML security is not true for the use

of basic encryption scheme

Lemma 4.1 is used to check if a system is robust or not. Section 2.1.9.1 showed that

there are two conditions in Lemma 4.1. It refers to Lemma 3.1 [12] to prove that a

system is robust. However, Lemma 3.1 [12] is used to avoid FD attack on databases

with ML security [16] [6]. In others words, for a set of data D with A, B and C as

attributes, let SL denotes security level. If SL(A) > SL(B) > SL(C) >SL(D), it is says

that FD= B, CA compromises A because SL(A) is greater than SL of B and C and

consequently they can determine A. to solve the problem, attributes should be

classified so that the left-hand side (LHS) of an FD has SL not less than SL of the

right-hand side of the FD. This is totally different from Lemma 4.1 which uses

encryption of sensitive cells to protect them instead of SL.

Proof:

Condition 1 of Lemma 4.1 states that if some attribute 𝐴 ∈ 𝑋 is encrypted then the

sensitive cell, 𝑟[𝑌], cannot be compromised with 𝑋 → 𝑌. Assume that 𝑟[𝑋]is

encrypted. If there exists other record, 𝑟′ ≠ 𝑟, such that 𝑟 ′[𝑋] is encrypted and

𝑟[𝑋] = 𝑟 ′[𝑋], but 𝑟 ′[𝑌] is not encrypted then original content of 𝑟[𝑌] can be

revealed as 𝑟 ′[𝑌] from the functional dependency 𝑋 → 𝑌, this assumption on

existence of 𝑟′ does not contradict Condition 2 of Lemma 4.1 since Condition 2

concerns not existence of the records with 𝑟 ′[𝑋] being a plaintext. Thus, Lemma 4.1

is not true for the case of using basic encryption scheme.

33

3.4 Problem 4: Algorithm_2 outputs minimum attribute cover

instead of functional dependency with a new order

As explained before, Algorithm 2 is used when there is more than one functional

dependency in order to reorder them so that in Algorithm 1, system will start working

with functional dependencies which have the most frequent attributes. Therefore,

Algorithm 2 just output a set of minimum attribute cover instead of set of set of

functional dependencies with new order while in Algorithm_1 system goes through

each functional dependency to fix attacks problems.

That was the problems retained by analyzing the method proposed in [1].

34

Chapter 4

PARTIAL ENCRYPTION METHOD MODIFIED

(PEM-M)

This Chapter aims to take into account problems detected in PEM and proposes

solutions for the ones which affect accuracy of fixing attacks problems. Based on

problems that were detected in the previous section, some solutions are proposed in

order to improve accuracy of the method. . To evaluate performance and accuracy of

PEM-M, implementation of PEM and PEM-M will be done in Section 4 and some

experiments will be done in Section 5 using a TEST database, PEM and PEM-M and

it will be shown that it works with 0% risk of double encryption but can perform less

better than PEM in the term of execution time.

Section 4.1 will show a flowchart diagram to present a general idea of PEM-M,

Section 4.2 will propose encryption of the concatenation of TID value and

concerning cell to encrypt for fixing double encryption problem and section 4.3 will

propose a modification of Algoritm_1 for MAC so that output will be a set of

reordered functional dependencies.

4.1 Flowchart of PEM-M

Let precise that PEM-M flowchart is almost similar to PEM flowchart due to the fact

that PEM was adjusted to get PEM-M. So, the part described in Section 2 will not be

described in this section.

35

Figure 7: Flowchart of PEM-M

Legend

1- Minimum attributes
cover (MAC)

2- Robustness checking
(RC)

3- Defending against FD
attacks (DFDs)

RDFs: Reordered FDs

ReoFDs: Reorder FDS

SMAC: Set of MAC

Start

Dataset Encrypted
by BEM

FDs
SCs

FD>1?

MAC

Yes

Calculate
attributes weight

Generate set of
MAC

No

GMM (Input1, Dataset
Encrypted by PEM)

Set of
MAC

Input1 MAC (FDs, Set
of RFDs)

Find sensitive (Sv) and evidence records (Ev) of
basic encryption set and generate buckets

Input2=Output1

H=∅

Dataset Encrypted by PEM

Yes

Hi=∅? Or
Sij=∅?, Eij=∅?

No

Yes

Ev≥Sv?

Remove Hi

Encrypt ri+
r[A] or r[B] No

Yes

Remove
encrypted
value in Hi

Encrypt (ri+ r[A]) and remove it in Hi

Stop

RC (Input1, (Set of Buckets H, Dataset, FDs) =Output1)

DFD (Input2, Dataset Encrypted by PEM)

2

3

1

ReoFDs (SMAC, RDFs))

RFDs

36

4.2 Modification 1: Contribution to solve problem of double

encryption

As explained in Problem 1 Section 3.1, there is a risk of double encryption in the

same attribute when existing more than one functional dependency. To solve this

problem and get 0% of risk of double encryption, a concatenation of TID value and

concerning cell before encryption is proposed so that for the same value, cipher text

can be different. It can be noticed in part 2 in the flowchart of PEM-M where row

number ri is concatenated with concerning value before encryption. If consider again

Example 10 Section 3.1, to solve the risk of double encryption before encrypting

each r[B], the corresponding value is concatenated with the value corresponding to

the row number. That will allow each value to have a unique encrypted value and

prevent a system for double encryption in the same value.

Demonstration:

FD1: DC, FD2: DB, FD3: BC and 𝓛 − {SC1: IIBσE=e1; SC2: IICσA=a1} are

given. If r1 and b1 are concatenated before encryption, r3 and b1 are also concatenated

before encryption, it means for the same value of b a unique cipher text is obtained.

Table 25: Original Table 𝐷 of D
TID A B C D E
r1 a1 β1 α1 d1 e1

r2 a2 b2 c2 d2 e2
r3 a3 ¥1 c1 d1 e1
r4 a4 b3 c3 d3 e3

r5 a1 β2 α2 d2 e1
r6 a6 ẍ1 c1 d1 e1
r7 a7 b2 c2 d2 e2

Table 24: Basic Encryption of D
TID A B C D E
r1 a1 b1 c1 d1 e1
r2 a2 b2 c2 d2 e2

r3 a3 b1 c1 d1 e1

r4 a4 b3 c3 d3 e3

r5 a1 b2 c2 d2 e1

r6 a6 b1 c1 d1 e1

r7 a7 b2 c2 d2 e2

37

As shown in Table 25, with different encrypted value α1 cannot be inferred using r3

and r6 and following algorithm_1 they cannot be encrypted twice as shown before in

Example 10.

4.3 Modification 2: Contribution to solve problem of Algorithm_2

Algorithm 2 takes set of functional dependencies like input and output set of

minimum attribute cover which is not used in Algorithm 1. In fact, Algorithm_2

should output set of functional dependencies reordered. In Part 3 of flowchart of

PEM-M, it is noticeable that comparing to PEM, output is a set of reordered FDs. So

this part will be added in Algorithm 2 so that output will be a set of functional

dependencies reordered.

Algorithm 2-Modified: Finding reordered set of FDs using MAC (F)

1. A = ∅
2. For all A ∈ R do
3. A.w = 0
4. End For
5. For all F ∈ F’ do

6. For all A ∈ LHS(F) do
7. A.w++
8. End For
9. RHS(F).w++
10. End For
11. While F’≠ ∅ do

12. Select A with the largest W in R
13. For all F ∈ F’ with A ∈ LHS(F) OR A ∈ RHS(F) do

14. For all A’ ∈ F do
15. A’.w - -
16. End For//A
17. F’ = F’-F

18. A.Add(A)

19. End For//F
20. End While
21. For all A ∈ A.

38

22. For all F ∈ F

23. If (A ∈ F) And (F ∄ F’)
24. F’.ADD (F)

25. End If
26. End For
27. End For
28. Return (F’)

If Example 9 in Section 2.1.8.3.3 is considered again, minimal cover is

A= {A, D, C} and FD order is F= {F1, F2, F3}. Contrary to Algorithm_2,

Algorithm_2-Modified outputs reordered set of FD due to modifications done from

line 21 to line 28 in Algorithm 2.

39

Chapter 5

IMPLEMENTATION ENVIRONMENT

This section will described materials used for implementation.

5.1 WIndev17 Description

Windev can be defined as software of engineering workshop developed in France in

1993 by PC soft Company [18]. In addition to languages like Java, SQl, Visual Basic

and others, this platform has his own language called WD language [19]. It is also

possible to import a database from others sources or create directly a database in the

platform. Started from version 1 to version 25 nowadays, the software is able to work

on windows and Linux system. This platform mainly allows development of data

oriented software, which can also work in windows and Linux. This software also

offers a possibility to develop web application throughout Webdev and Mobil

application throughout Windev Mobil. For this implementation, a database which

helps to apply Vigenere encryption method is created. Before showing the

implementation of the database, let see briefly how Vigenere encryption method

works.

5.2 Database in Windev

For implantation, a database was created with one table which is going to contain

alphabet characters and their representative numerical value. Two attributes Letter

and Number were created, with Letter as primary key. Letter is going to store an

alphabet character and Number is going to store a numerical corresponding value.

Alphabet is going from A to 9 and will use modulo 36 for Vigenere encryption

40

described in section 2.2.2. Database is called Pencrypt and contains table Alphabet

(Number, Letter). Let see how the database looks in Windev:

Figure 8: Figure of table Alphabet

Since database and table are created, different occurrences of data like in Figure 7

can be seen.

Figure 9: Figure Showing Values Inside Table Alphabet

Those values were introduced directly in the database without any writing code.

41

Chapter 6

IMPLEMENTATION OF PEM AND PEM-M

This chapter describes implementation environment and gives details about PEM and

PEM-M implementation based on scheme described in Chapters 2 and 3. Problems

detected in PEM will also be considered in implementation of PEM-M in order to

improve performance of functional dependency resisting attacks. Section 5.1 will

start giving flowchart of PEM and PEM-M as a whole, and the remaining sections of

the chapter will present PEM and PEM-M implementation figures.

First of all, let’s mention that PEM and PEM-M have the same flowchart but some

different part of algorithm due to modifications.

42

6.1 Flowchart of PEM and PEM-M

Figure 10: Flowchart of PEM and PEM-M

Figure 10 shows all steps that should be followed for fixing FDA using PEM or

PEM-M. Both methods are almost similar. The difference between them was clearly

described in the previous section and it was said that PEM-M will concatenate row

1

2

3

4

5

6

7

8

9

10

11

Open the system

Select method to use (PEM
or PEM-M)

Choose the data file

Load data in the system

Inter FDs

Get attributes weight

Get MAC set

Reorder FDs

Inter SCs

FD>1

Basic encryption

Robustness checking

Generate buckets H

Partial encryption

43

value with main value before encryption unlike of PEM which encrypts only the

main value. For others steps, process is same.

When user will open proposed software, he will have to choose the use of PEM or

PEM-M like précised in 2 in Figure 10. After selecting what to use, the process of

loading dataset, entering FDs and SCs, MAC and sensitive cells encryption are the

same in both methods. Those steps represented from 2 to 9 were described in

Section 2 including robustness checking described in Flowchart of PEM in the same

section.

6.2 Open the system

The software has an executable file to run it. The file is called Pencrypt.exe and is in

the software package.

6.3 Selection of Method PEM or PEM-M

Figure 11: Selection of Method PEM or PEM-M

Open
PEM-M

Open
PEM

44

6.4 Dataset Loading of PEM or PEM

Figure 12: Loading of Dataset of PEM or PEM-M

Figure 12, shows that application allows user to select file (1). After selection he can

click on OPEN to see in the small table below, number of leaf, number of line, and

number of columns in the dataset. Since it is done, he clicks on READ (2) to load the

data in the big table below as shown in Figure 12. For this figure related to Example

8, 1 leaf, 5 columns and 8 lines are shown. When data are loaded, user can now go to

the next step. Those are the results obtained using codes described in Appendix A1

for opening the selected file from line 1 to line 17, and Appendix A2 for reading and

display file content from line 18 to line.

1- Selection of file

2- Read the file

45

6.5 Enter Functional Dependency

Since data are loaded, select attributes which are going to represent functional

dependency and submit them to the set of functional dependency as in the figure

bellow.

 Figure 13: Enter FDs

Figure 13 shows two FDs, FD1=AB and FD2=DE. representing in the table

which is considered as set of functional dependencies. The code used to implement

this is described in Appendix A.4 where FDs are inserted into the table from line 84

to line 89.

LHS Attributes RHS Attributes

Set of FD

46

6.6 Get MAC set of PEM or PEM-M

For implementation of MAC, set of FDs was keep for both methods since it was not

possible to get result using set on minimum attributes. When there is more than one

functional dependency, MAC can be applied in order to use the best FDs order to

make implementation fast and efficient [1]. This function was implemented in the

basis of Algorithm_1 [1], and using Example 9 to see how it works in the application.

Figure 14: Implementation of MAC for PEM or PEM-M (part 1)

In Figure 14, FD1, FD2 and FD3 are shown exactly like in Example 9. After getting

set of FDs, if number of FDs is greater than one you can click on MAC to apply

Algorithm 1. Let see the result in Figure 15.

Figure 15: Get Attributes Weight for PEM or PEM-M

Click on MAC to get
form

Get Weight

47

The code using to get this example of result is described in Appendix A.5.1 where

from line 90 to 142, system goes through each functional dependency and generates

weight of each attribute.

 Figure 16: Get MAC and Reordered FDs for PEM or PEM-M (part 2)

In Figure 16, each attribute is weighted by clicking on button Weight. After getting

weight, just click on Cover to get MAC as shown in Figure 16. As in example 9,

 A= {A, D, C} and F= {FD1, FD2, FD3} which means function is working perfectly.

To get this result, the code used is described in Appendix A.5.2 where, from line 143

to line 170, using previous result set of minimum attribute A is obtained. To get now

the new order of FDs, the code used is Appendix A.5.3 and from line 171 to 214,

loop FOR is used to go through set of attributes to generate the new order.

Click on cover to
get MAC

Get FDs order

48

6.7 Enter Security Constraints

Security constraint is the last element to enter before getting Basic encryption. As

FDs were entered, same process is used for security constraints but with different

box. Let see the result in Figure 17.

Figure 17: Enter SCs for PEM or PEM-M

Figure 17, shows in the table of security constraints two security constraints. This

result was obtained applying some codes used in Appendix A.6.2, especially lines

256, 282, 306 and 331 where for each case SCs are inserted in the table. The next

step is to get basic encryption, check if the system is robust, and generate Buckets H

in the case that the system is not robust.

6.8 Basic Encryption Scheme, Robustness Checking and Generation

of Buckets (H)

6.8.1 Basic encryption for PEM

As said before, for PEM only main value is concerns by encryption. Implementation

result is like follow.

49

Figure 18: Basic Encryption of PEM

It is noticeable in the first table of Figure 18 that sensitive cells are encrypted using

PEM method. The code used to get that result is in Appendix A.6.2 from line 352 to

line 468. And in line 252 it is show how only the main cell is encrypted.

6.8.2 Basic Encryption of PEM-M

The process is the same but as said before PEM-M used concatenation of row and

main value during encryption.

50

Figure 19: Basic Encryption of PEM-M Robustness Checking and Buckets (H)

 Figure 19 shows basic encryption of PEM-M, and it is noticeable that the values are

different from the ones getting in PEM.

6.9 Robustness Checking and Generation of Buckets for PEM or

PEM-M

For this implementation, Figure 18 or Figure 19 can be used since the process is

similar in both methods. Consider SCs in the first table of Figure 19, Robustness

checking in the second one, and set of Bucket H in the third table. Those results were

obtained after applying codes used in Appendix A.6.2 or A.6.3 for PEM and PEM-M

respectively and Basic encryption, Appendix B.1 from line 469 to line 505 for

robustness checking and Appendix B.2 from line 505 to line 573. After getting all

those results, step about fixing attacks problems can be implemented.

51

6.10 Partial Encryption

6.10.1 Partial Encryption for PEM

Figure 20: Partial Encryption for PEM

In Appendix C.1 partial encryption for PEM is applying from line 574 to line 633

and it is noticeable that only main value is encrypted.

6.10.2 Partial Encryption for PEM-M

The process is almost the same with the one used in PEM, only encryption makes

difference. Figure 21 shows result with PEM-M and different encryption values can

be noticed.

Click on Iteration

52

 Figure 21: Partial Encryption for PEM-M

As shown in Figure 21, in this step, after clicking on Iteration and obtaining a robust

system exactly as it was obtained in Example 10. This was made possible using code

described in Appendix C from line 634 to line 693 where, it is shows how program

goes through each record, check existence of evidence record, and solve the problem.

Let mention that to prevent the system to encrypt the same attribute twice as

mentioned in the previous chapter, concatenation value of TID and concerning value

attribute is done in order to get a unique result of each encryption.

Click on Iteration

53

Chapter 7

EXPERIMENTS ON PEM AND PEM-M

In this chapter, some experiments are made in order to evaluate the performance and

compare the results with the ones getting in [1]. Let describe experiment environment

first.

7.1 Experimental Environment used

Experiment will be done using result obtained with Adult database in [1] and

comparison will be done between PEM and PEM-M using TEST database which will

be described in the following sections.

7.1.1 Adult Database

As introduced in Chapter 2, Adult database was used in the experiment done in [1].

Based on the difficulty to get 78 FDs as they said during their experiment, a TEST

database will be created to perform experiment with PEM and PEM-M. Adult

database has 15 attributes and can be downloaded in [5]. TEST database will have

exactly 15 attributes in order to get something similar to Adult database.

7.1.2 TEST database

As said in the previous section, TEST database was created to perform experiments

in this work.

7.1.2.1 Description of TEST Dataset

TEST is a dataset with 15 alphabet letters considered as attributes. From A to O 5

FDs were considered FD1: AB, FD2: EF, FD3: BD, FD4: GH, FD5: AB

54

and FD5: KL. TEST was created in Excel 2007 and will be used with 100 rows up

to 32K rows.

7.1.2.2 Structure of TEST Dataset

Since caption is not clear to present TEST structure, following table will be used to

show how TEST dataset looks like.

7.2 Materials

Those experiments will be done in a Windows 7 system 64 bits, with processor Intel

(R) Core (TM) i5 CPU 2.6GHz and 4GB RAM.

7.3 Experiments Description

For the experiments, database TEST will be used with 100, 1000, 5000, 10000,

20000, 25000, and 32000 records. Execution time will be estimated using PEM-M

combinations numbers of FDs and SCs from 1 to 4. After getting execution time in

each case with PEM-M, the same experiment will be perform using PEM with 100

and 32K records applying with 4 FDs (FD1=AB, FD2: FE, FD3: GH and FD4:

KL) and 4SCs (SC1: IIBσC=c1, SC2: IIEσI=i1, SC3: IIHσJ=j1,

Table 26: Structure of TEST Dataset
A B C D E F G H I J K L M N O
a1 b1 c1 d1 e1 f1 g1 h1 i1 j1 k1 l1 m1 n1 o1

a2 b2 c2 d2 e2 f2 g2 h2 i2 j2 k2 l2 m2 n2 o2
a3 b3 c3 d3 e3 f3 g1 h1 i3 j3 k2 l2 m3 n3 o3

a4 b4 c4 d4 e2 f2 g3 h3 i4 j3 k3 l3 m4 n4 o4

a5 b5 c1 d5 e4 f4 g4 h4 i5 j1 k4 l4 m4 n5 o5
a6 b6 c5 d6 e5 f5 f5 h5 i4 j4 k5 l5 m5 n1 o5

a1 b1 c6 d1 e6 f6 g3 h3 i2 j5 k6 l6 m1 n6 o6
a7 b7 c2 d7 e7 f7 g6 h6 i3 j1 k7 l7 m2 n7 o4

a2 b2 c7 d2 e8 f8 g7 h7 i6 j6 k1 l1 m6 n1 o7

55

SC4: IILσO=o1). A performance comparison will be done and obtained results will

be commented.

7.4 Experimental Results using PEM-M

This experiment will summarize in different tables all what was described before and

analyze time execution based on each parameter using PEM-M. The following

figures are showing results obtained during experiments and different execution

times depending on different parameters. Result is shown in Table ITERATION and

for the first case with FD= AB and SC= IIBσC=c1, Figure 23 will show example

of result.

Figure 22: Obtained Result with 1 FD and 1 SC using PEM-M

Execution
Time

56

The same process will be used to evaluate the others performances. Time is evaluated

with the function Chrono described in Appendix D

Figure 23: Execution Time for 100, 1000, and 5000 Records using PEM-M

Figure 24: Execution Time for 10000, 15000 and 20000 Records using PEM-M

57

Figure 25: Execution Time for 20000, 25000 and 32000 Records using PEM-M

Based on the obtained results, it is noticeable that performance is better with less

number of records. In Figure 25 with 100 records, execution time is 0.062s like

minimum time and 0.345s like maximum time depending on different parameter. It is

also noticed that when number of record increases, execution time also increases and

the system can take a lot of time to fix functional dependency attacks problems.

Comparing to what have been done in [1], the first thing to noticed is that

experiments in [1] were done using Adult and Orders databases as explained in

section 2.1, and Figure 3 shows performance evaluation results. But, these results

could not be used for comparison with the results obtained in the experiments done in

PEM-M since different databases and parameters were used. Therefore, to obtain a

reliable comparison results, Algorithm_1 used in PEM was run with TEST dataset

using 100 records and 32k records, with 4 FDs and 4 SCs. Obtained results are as

follow:

58

7.5 Results Obtained using PEM

The same process is used to evaluate execution time for PEM. For 100 records, FDs

and SCs described in Section 3 were used as shown in Figure 26.

 Figure 26: Parameters used for 100 Records for PEM

59

Figure 27: Execution time using 100 Records 4 FDs and 4 SCs for PEM

The same parameters were used for 32K Records and the results obtained are

summarized in Table 28.

Figure 28: Execution Time for 100 and 32K Records using PEM

From Figure 28, it is shown that using TEST dataset with parameters described

above, PEM performs 0.311 with 100 records and 859.13 with 32K records.

Execution
Time

60

7.6 Results Comparison

During experiments, PEM-M performs 0.345s using 100 records and 952.55s using

32K records. Table 27 can be used to compare PEM and PEM-M in the term of

performance.

Table 27: Results Comparison
PEM PEM-M
SCs FDs Time(s) SCs FDs Time(s)
4 4 0.311 4 4 0.345
4 4 859,13 4 4 952.55

Based on obtained results as presented in Table 27, it is shown in the term of

execution time that PEM is better performing than PEM-M using 100 records and

32K records which are the minimum and the maximum number of records used for

experiments. This can be explained by the fact that for encryption, concatenation was

used to prevent double encryption as explained in Problem 1 Section 2. Therefore,

that concatenation of value of column TID with the main value to encrypt contributed

to improve accuracy and make the risk of double encryption equal to 0%.

61

Chapter 8

CONCLUSION AND FUTURE WORK

Based on what have been done in the main article and in this report, PEM is a good

method to adopt if there is a need of defending system against FDs attacks. From

chapter 2 to chapter 5, PEM was analyzed in order to better understand its technique

and its functioning. Therefore, some problems were detected in PEM method

proposed in [1], and to improve accuracy, problem_1 was adjusted so that

Algorithm_1 [1] will consider the case when |Sv|=|Ev|. The way of encryption was

also changed in order to prevent the case when system will face double encryption.

And finally software which can fix functional dependency attacks problems by taking

a dataset as input and generate a secure dataset in output was proposed. About

experiments some tests were made in Test dataset and the comparison result was

made between PEM proposed in [1] and PEM-M proposed in this paper using 100

records and 32k records. The proposed technique (PEM-M) improved the one

proposed in [1] (PEM) in the term of accuracy because, as said before, the risk of

double encryption is 0%, but in term of performance PEM-M still have to be

improved because it was noticed that method proposed in [1] (PEM) is faster. About

those problems which did not affect implementation of the technique on partial

encryption, the future works will be done in order to optimize the way of preventing

and fixing functional dependencies attacks.

62

[2] Mamalis, T.Patel, “Database Security-Attacks and Control Methods”. (2016)

International Journal of Information Science and Techniques, Vol. 6, No 1/2,

pp.175-183

[3] P.D. Stachour, B.Thuraisingham. (1990) “Design of LVD: multilevel Secure

Relational Database Management System”. Transactions on Knowledge and

Data Engineering, Vol 2, No 2, pp.1-21

[4] A.H.Almutari, A.H.Airuwaili. (2012). “Security in Database System”, Global

journal of Computer Sciences and Technology, Vol. 12, No 17, pp.1-7.

[5] R.Kohavi, B,Becker. (1996). “Scaling Up the Accuracy of Naive-Bayes

Classifiers: a Decision-Tree Hybrid”, Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining [Online] available

https://datahub.io/machine-learning/adult [Accessed 17-02-2020]

[6] Wikipedia contributors. (2019). Database. In Wikipedia, The Free Encyclopedia.

From https://en.wikipedia.org/w/index.php?title=Database&oldid=938672211,

[Accessed 22-12-2019]

Knowledge Engineering,, Vol. 116, pp.1-20

functional dependency constraints in the database-as-a-service model”, Data and

[1] B.Dong, H.W. Wang. (2018) “Secure partial encryption with adversarial

REFERENCES

63

[7] J.V.Loon. (2008). “Data Security Concept and Approach”, Seminar in database

System, vol. 9, No 265, pp.1-22

[8] R.StankovaKraleva, V.Kralev. (2018). “Design and Analysis of a Relational

Database for Behavioral Experiments Data”, International Journal of Online

Engineering, Vol. 14, No 2, pp.1-17

[9] A.Brodsky,C.Farkas, S.Jajodia. (2000). “Secure Database: Constraints, Inference

Channels, and Monitoring Disclosures”, IEEE Transaction on Knowledge and

Data Engineering, 2000, Vol12, No 6, pp.1-20

[10] Encryption. (2019). Wikipedia, The Free Encyclopedia.

From https://simple.wikipedia.org/w/index.php?title=Encryption&oldid=6628

741. [Accessed 13-02-2019]

 [11] Q.-A.Kester. (2012) “A crypto system Based on Vigenere Cipher with Varying

Key”, Information Technology and Advanced Computing, Vol. 1, No 10,

pp.108-113

 [12] Wikipedia contributors. (2019). “Vigenère cipher”. In Wikipedia, The Free

Encyclopedia,

From https://en.wikipedia.org/w/index.php?title=Vigen%C3%A8re_cipher&o

ldid=942750659, [Accessed: 28-12-2019]

64

[13] T.-A.Su, G.Ozsoyoglu. (1991). “Controlling FD and MVD Inferences in

Multilevel Relational Database Systems", IEEE Transaction on Knowledge and

Data Engineering, Vol 3, No 4, pp.474-485

[14] K.J. Singh, R.Manimegalai. (2015). “Evolution of Encryption Techniques and

Data Security Mechanism”, World Apply Science journal, Vol. 33, No 10,

pp.1597-1613

[15] M.Morgenstern. (1988) “Controlling Logical Inference in Multilevel Database

Systems”, Computer science, Vol.5, pp.245-255

[16] B.Dong, W.Wang, J.Yang. (2016) “Secure Data Outsourcing with Adversarial

Data Dependency Constraints”, IEEE International Conference on Intelligent

Data and Security, Vol. 2, pp.73-78

[17] M.B Thuraisingham. (1987) “Security Checking in Relational Database

Management Systems Augmented with Inferences Engines”, Computer and

Security, Vol.6, pp.479-492

[18] Wikipedia contributors. (2019). “Windev”. In Wikipedia, The Free

Encyclopedia libre,

From https://en.wikipedia.org/w/index.php?title=Vigen%C3%A8re_cipher&o

ldid=942750659, [Accessed 24-12-2019]

65

 [19] PCsoft. (2019). ”Windev platform” [Online], Available:

https://www.windev.com/windev/index.html, [Accessed 24-12-2019]

66

APPENDICES

67

Appendix A: Load input, Vigenere Encryption and MAC

Appendix A.1: Load database file

This code was used for uploading of file in the system by clicking on button OPEN

in the main form

1. IF TableOccurrence(Table_descript)<>0Then
2. TableDeleteAll(Table_descript)
3. END
4. I is an integer

5. sFichier= SAI_FIC//allow the file link to the variable
6. fich=xlsOuvre(sFichier,xlsEcriture)//Open file and allow

content to variable fich

7. IF ErrorDetected=False Then
8. nbfeuille is an integer=xlsNblift(fich)
9. FOR i=1 TO nblift PAS 1
10. xlsFeuilleEnCours(fich,i)

11. nbcolumn is an integer=xlsNbColumn(fich,False)
12. nbline is an integer=xlsNbLine(fich,False)
13. TableADDLine(Table_descript,nblift,nbcolumn,nbline)

14. END

15. ELSE

16. Info("Error")
17. END

Appendix A.2: Load file content in the table

This code was used to load file content in the main table by clicking on button

READ in the main form

18. i,j,nb,k,f are integer

19. xlsCurrentLift(fich,Table_descript.Line)
20. nblineis an integer=xlsNbLigne(fich,Faux)
21. nbcol is an integer=xlsNbColumn(fich,Faux)
22. IF (nbcol+1<TableTID..NumberColumn) Then
23. nb=TableTID..NumberColumn
24. FORi=nb TO (nbcol+1) PAS -1
25. ChampSupprime(TableEnumèreColonne(TableTID, i))
26. ChampSupprime(TableEnumèreColonne(Tablecopietid, i

))

27. END
28. END

68

29. IF (nbcol+1>TableTID..NombreColonne) Then//Adjust

column number
30. nb=TableTID..NumberColumn
31. WHILEnbcol+1<>nb

32. TableADDColumn(TableTID)
33. TableADDColumn(Tablecopietid)
34. END
35. END
36. TableDeleteAll(TableTID)
37. TableDeleteAll(Tablecopietid)

38. {TableTID..Nom + "." + TableEnumèreColonne(TableTID,

1), indChamp}..Titre ="TID"// change column title and put TID in the
first column

39. {Tablecopietid..Nom + "." +
TableEnumèreColonne(Tablecopietid, 1), indChamp}..Titre
="TID"

40. k=2
41. FORi=1 A nbcol PAS 1// For i=1 to nbcol change

others titles
42. {TableTID..Nom + "." + TableEnumèreColonne(TableTID,

k), indChamp}..Titre =xlsDonnée(fich,1,i)
 {Tablecopietid..Nom + "." +
TableEnumèreColonne(Tablecopietid, k), indChamp}..Titre
=xlsDonnée(fich,1,i)

43. k=k+1
44. END
45. TableADjust(TableTID)
46. TableADjust(Tablecopietid)

47. // Upload attribute name in the application boxes

48. FORi=2 A TableTID..NombreColonne
49. ListeAjoute(Combo_X,{TableTID..Nom + "." +

TableEnumèreColonne(TableTID, i), indChamp}..Titre)
50. END
51. FORi=2 A TableTID..NombreColonne
52. ListeAjoute(Combo_Y,{TableTID..Nom + "." +

TableEnumèreColonne(TableTID, i), indChamp}..Titre)
53. END
54. FORi=2 A TableTID..NombreColonne

 ListeAjoute(Combo_X1,{TableTID..Nom + "." +
TableEnumèreColonne(TableTID, i), indChamp}..Titre)

55. END
56. FOR i=2 A TableTID..NombreColonne
57. ListeAjoute(Combo_X2,{TableTID..Nom + "." +

TableEnumèreColonne(TableTID, i), indChamp}..Titre)
58. END

59. k=1

69

60. FOR i=2A nbligne PAS 1
61. TableAjoute(TableTID,("r"+(TableOccurrence(Tablecopi

etid)+1)))
62. f=1;
63. TableAjoute(Tablecopietid,("r"+(TableOccurrence(Tabl

ecopietid)+1)))
64. FOR j=2 A nbcol+1 PAS 1

65. TableTID[k,j]=xlsDonnée(fich,i,f,Faux)
66. Tablecopietid[k,j]=xlsDonnée(fich,i,f,Faux)
67. f=f+1
68. END
69. k=k+1

70. END

Appendix A.3: Vigenere Encryption

This code represents procedure used for Vigenere encryption

71. PROCEDURE Vigenere_Crypt(ch is a string)
72. i is an integer
73. ch1 is a string

74. ch1=""

75. FOR i=1 A Length(ch) PAS 1
76. IF

HLitRecherchePremier(Alpahabet,Alpahabet.letter,ch[[i]],
hIdentique)=True Then//Check letter in the data base

 IF ch1="" Then
77. ch1=(Alpahabet.Number+10)modulo(37)
78. ELSE

79. ch1=ch1+"*"+(Alpahabet.Number+10)modulo(37)
80. END

81. END
82. END
83. RETURN ch1

Appendix A.4: Enter Functional Dependencies

This code is used to insert Functional Dependencies in the system. An example of

result is shown in Figure 11 after selecting FD and clicking on button SUBMIT.

84. i est un entier
85. i=TableOccurrence(Table_fd)

70

86. TableAjouteLigne(Table_fd,"FD"+(i+1),Saisie_X,Saisi
e_Y)

87. TableAffiche(Table_fd)

88. Saisie_X=""
89. Saisie_Y=""

Appendix A.5: Minimum Attribute Cover (MAC)

This code is used for Minimum Attribute Cover, which helps of reordering of FDs.

For better understanding, three parts are used

Appendix A.5.1: Weighted Attribute

In this part, the goal is to calculate the weight of each attribute. An example of result

is shown in second table in Figure 13. Getting after clicking on button WEIGHT

90. i,j,t are integer
91. wrd, rep are string
92. wrd="";rep="no";

93. FOR i=1 A TableFD..Occurrence PAS 1//Extract

attribute name
94. IF ChaîneOccurrence(TableFD[i].LHS,",")=0 Then
95. IF TableW..Occurrence>0 Then
96. rep="no";
97. FOR t=1 A TableW..Occurrence
98. IF (TableFD[i].LHS=TableW[t].R) Then

99. rep="yes"
100. END
101. END
102. IFrep="no" Then
103. TableADDLine(TableW,TableFD[i].LHS)
104. END
105. ELSE
106. TableADDLine(TableW,TableFD[i].LHS)
107. END
108. ELSE

109. FOR j=1 A Length(TableFD[i].LHS) PAS 1
110. IFTableFD[i].LHS[[j]]<>"," Then
111. wrd=wrd+TableFD[i].LHS[[j]]
112. END
113. IF (TableFD[i].LHS[[j]]=",") OR

(j=Length(TableFD[i].LHS)) Then

114. rep="no"

71

115. FOR t=1 A TableW..Occurrence PAS 1
116. IF (wrd=TableW[t].R) Then
117. rep="yes"
118. END
119. END
120. IFrep="non" Then
121. TableADDLine(TableW,wrd)

122. wrd=""
123. END

124. END

125. END
126. END

127. rep="no"
128. FOR t=1 A TableW..Occurrence PAS 1
129. IF TableFD[i].RHS=TableW[t].R ALORS

130. rep="yes"
131. END
132. END
133. IF rep="no" Then
134. TableADDLine(TableW,TableFD[i].RHS)

135. END

136. wrd=""
137. END

138. FOR j=1 A TableW..Occurrence PAS 1

139. IF ChaîneOccurrence(Saisie1,TableW[j,1])>0 Then
140. TableW[j,2]=ChaîneOccurrence(Saisie1,TableW[j,1])
141. END

142. END

Appendix A.5.2: Minimum cover

In this second part of MAC, the following code is used to generate the set of

minimum attribute cover. A result illustration can be seen in the box A in Figure 14,

after clicking on button MAC

72

143. i,j,maxi are integer
144. mac,maxi1 are string

145. mac="";
146. FOR i=1 A TableFD..Occurrence PAS 1

147. maxi=0; maxi1=""
148. FOR j=1 A TableW..Occurrence PAS 1
149. IF TableW[j].W1>maxi Then
150. maxi=TableW[j].W1
151. maxi1=TableW[j].R
152. END
153. END

154. IF ChaîneOccurrence(TableFD[i].xy,maxi1)>0 Then
155. FOR j=1 A TableW..Occurrence PAS 1
156. IF ChaîneOccurrence(TableFD[i].xy,TableW[j].R)>0

Then
157. TableW[j].W1=TableW[j].W1-1
158. END
159. END
160. TableDisplay(TableW)
161. END
162. IF mac="" Then
163. mac=maxi1
164. ELSE
165. IF ChaîneOccurrence(mac,maxi1)=0 Then
166. mac=mac+","+maxi1
167. END
168. END
169. END

170. Saisie2=mac//Display MAC in the form

Appendix A.5.3: Change FDs order

 In this last part of MAC, the following code is used to the reordering of FDs using

minimum cover obtained in the previous part. An example of result is shown in third

table in Figure 14 after clicking on button NEW ORDER

171. i,j,k are integer
172. ch,rep are string

173. ch="";i=1 ; rep="no"
174. FOR i=1 A Length(Saisie2) PAS 1//Go through MAC

175. rep="no"
176. IF (Saisie2[[i]]<>",") Then
177. ch=ch+Saisie2[[i]]

73

178. END
179. IF (Saisie2[[i]]=",") OU (i=Length(Saisie2))Then
180. FOR j=1 A TableFD..Occurrence PAS 1
181. IF ChaîneOccurrence(TableFD[j].xy,ch)>0 Then
182. IF TableFD1..Occurrence=0 Then
183. TableADDLine(TableFD1,TableFD[j].FD,TableFD[j].LHS,

TableFD[j].RHS,TableFD[j].xy)
184. ELSE
185. FOR k=1 A TableFD1..Occurrence PAS 1
186. IF TableFD[j].FD=TableFD1[k].FD Then

187. rep="yes"
188. END
189. END
190. IF rep="no" Then
191. TableADDLine(TableFD1,TableFD[j].FD,TableFD[j].LHS,

TableFD[j].RHS,TableFD[j].xy)
192. END
193. END
194. END

195. END

196. ch=""
197. END

198. END
199. FOR i=1 A TableFD..Occurrence PAS 1

200. rep="no"
201. FOR j=1 A TableFD1..Occurrence PAS 1
202. IF TableFD[i].FD=TableFD1[j].FD Then

203. rep="yes"
204. END
205. END
206. IF rep="non" END
207. TableADDLine(TableFD1,TableFD[i].FD,TableFD[i].LHS,

TableFD[i].RHS,TableFD[j].xy)
208. END
209. END
210. TableDisplay(TableFD1)

211. TableDeleteAll(Main.Table_fd)//Delete FDs to add FDs with

new order
212. FOR i=1 A TableFD1..Occurrence PAS 1
213. TableADDLine(Main.Table_fd,TableFD1[i].FD,TableFD1[

i].LHS,TableFD1[i].RHS)//Add FDs with new order
214. END

74

Appendix A.6: Enter SCs and Basic encryption

These codes are used to get SCs and basic encryption table using FDs and security

constraints. An example of obtained result is shows in the first table in Figure 18 for

PEM and Figure 19 for PEM-M

Appendix A.6.1: Enter SCs for PEM of PEM-M

This process is includes in the code using for basic encryption so following

Appendices will be referred for this part.

Appendix A.6.2: Basic Encryption for PEM

215. i,j,k are integer
216. colA,colB,sr are string

217. FOR i=1 A Tablecopietid..NumberColumn PAS 1

218. IF ({Tablecopietid..Nom + "." +

TableEnumèreColonne(Tablecopietid, i), indChamp}..Titre
=Combo_X1) Then

219. colA={Tablecopietid..Nom + "." +
TableEnumèreColonne(Tablecopietid, i), indChamp}..Titre

220. j=i
221. END
222. IF ({Tablecopietid..Nom + "." +

TableEnumèreColonne(Tablecopietid, i),
indChamp}..Titre=Combo_X2..ValeurAffichée) Then

223. colB={Tablecopietid..Nom + "." +
TableEnumèreColonne(Tablecopietid, i), indChamp}..Titre

224. k=i
225. END
226. END
227. IF (sai_j="") Then
228. sai_j=j
229. ELSE
230. IF (sai_j<>"") ET (ChaîneOccurrence(sai_j,j)=0)

ALORS
231. sai_j=sai_j+","+j
232. END
233. END
234. IF sai_k="" Then
235. sai_k=k
236. ELSE
237. IF (sai_k<>"") ET (ChaîneOccurrence(sai_k,k)=0) Then
238. sai_k=sai_k+","+k
239. END

75

240. END

241. i=TableOccurrence(Table_fd1)

242. IF (Combo_X3="Equal to") Then
243. sr=""
244. FOR t=1 ATableOccurrence(Tablecopietid) PAS 1

245. IF (Tablecopietid[t,k]=Saisie1) Then
246. IF sr="" Then
247. sr="r"+t
248. ELSE
249. sr=sr+",r"+t
250. END
251. IF (ChaîneOccurrence(Tablecopietid[t,j],"*")=0) Then
252. Tablecopietid[t,j]=Vigenere_Crypt(Tablecopietid[t,j

])

253. END

254. END
255. END

256. TableADDLine(Table_fd1,"SC"+(i+1),Combo_X1,Combo_X2

+" = "+Saisie1,sr)
257. TableDisplay(Table_fd1)
258. TableDisplay(Tablecopietid)

259. Combo_X1=""
260. Combo_X2=""
261. Combo_X3=""
262. Saisie1=""
263. Combo_X2..Visible=Faux
264. Combo_X3..Visible=Faux
265. Saisie1..Visible=Faux
266. BtnADD..Visible=Faux
267. END
268. IF (Combo_X3..ValeurAffichée="Less than") Then
269. sr=""
270. FOR t=1 ATableOccurrence(Tablecopietid) PAS 1

271. IF (Tablecopietid[t,k]..ValeurAffichée<Saisie1)

Then
272. IF sr="" Then
273. sr="r"+t
274. ELSE
275. sr=sr+",r"+t
276. END
277. IF (ChaîneOccurrence(Tablecopietid[t,j],"*")=0) Then
278. Tablecopietid[t,j]=Vigenere_Crypt(Tablecopietid[t,j

])

76

279. END

280. END
281. END
282. TableADDLine(Table_fd1,"SC"+(i+1),Combo_X1,Combo_X2

+" < "+Saisie1,sr)
 TableDisplay(Table_fd1)

283. Combo_X1=""
284. Combo_X2=""
285. Combo_X3=""
286. Saisie1=""
287. Combo_X2..Visible=False
288. Combo_X3..Visible=False
289. Saisie1..Visible=False
290. BtnADD..Visible=False
291. END
292. IF (Combo_X3..ValeurAffichée="More than") Then
293. sr=""
294. FORt=1 ATableOccurrence(Tablecopietid) PAS 1

295. IF (Tablecopietid[t,k]..ValeurAffichée>Saisie1)

Then
296. IF sr="" Then
297. sr="r"+t
298. ELSE
299. sr=sr+",r"+t
300. END

301. IF (ChaîneOccurrence(Tablecopietid[t,j],"*")=0) Then
302. Tablecopietid[t,j]=Vigenere_Crypt(Tablecopietid[t,j

])

303. END

304. END
305. END
306. TableADDLine(Table_fd1,"SC"+(i+1),Combo_X1..ValeurA

ffichée,Combo_X2+" > "+Saisie1,sr)
307. TableDisplay(Table_fd1)

308. Combo_X1=""
309. Combo_X2=""
310. Combo_X3=""
311. Saisie1=""
312. Combo_X2..Visible=False
313. Combo_X3..Visible=False
314. Saisie1..Visible=False
315. BntADD..Visible=False
316. END
317. IF (Combo_X3..ValeurAffichée="Different from") Then
318. sr=""
319. FOR t=1 ATableOccurrence(Tablecopietid) PAS 1

77

320. IF (Tablecopietid[t,k]<>Saisie1) Then

321. IF sr="" Then
322. sr="r"+t
323. ELSE
324. sr=sr+",r"+t
325. END
326. IF (ChaîneOccurrence(Tablecopietid[t,j],"*")=0) Then

327. Tablecopietid[t,j]=Vigenere_Crypt(Tablecopietid[t,j
])

328. END

329. END
330. END
331. TableADDLine(Table_fd1,"SC"+(i+1),Combo_X1,Combo_

X2+"<> "+Saisie1,sr)
332. TableDisplay(Table_fd1)

333. Combo_X1=""
334. Combo_X2=""
335. Combo_X3=""
336. Saisie1=""
337. Combo_X2..Visible=False
338. Combo_X3..Visible=False
339. Saisie1..Visible=False
340. BtnADD..Visible=False
341. END

Appendix A.6.3: Basic Encryption for PEM-M

342. i,j,k are integer
343. colA,colB,sr are string

344. FOR i=1 A Tablecopietid..NumberColumn PAS 1

345. IF ({Tablecopietid..Nom + "." +

TableEnumèreColonne(Tablecopietid, i), indChamp}..Titre
=Combo_X1) Then

346. colA={Tablecopietid..Nom + "." +
TableEnumèreColonne(Tablecopietid, i), indChamp}..Titre

347. j=i
348. END
349. IF ({Tablecopietid..Nom + "." +

TableEnumèreColonne(Tablecopietid, i),
indChamp}..Titre=Combo_X2..ValeurAffichée) Then

350. colB={Tablecopietid..Nom + "." +
TableEnumèreColonne(Tablecopietid, i), indChamp}..Titre

351. k=i
352. END

78

353. END
354. IF (sai_j="") Then
355. sai_j=j
356. ELSE
357. IF (sai_j<>"") ET (ChaîneOccurrence(sai_j,j)=0)

ALORS
358. sai_j=sai_j+","+j
359. END
360. END
361. IF sai_k="" Then
362. sai_k=k
363. ELSE
364. IF (sai_k<>"") ET (ChaîneOccurrence(sai_k,k)=0) Then
365. sai_k=sai_k+","+k
366. END

367. END

368. i=TableOccurrence(Table_fd1)

369. IF (Combo_X3="Equal to") Then
370. sr=""
371. FOR t=1 ATableOccurrence(Tablecopietid) PAS 1

372. IF (Tablecopietid[t,k]=Saisie1) Then
373. IF sr="" Then
374. sr="r"+t
375. ELSE
376. sr=sr+",r"+t
377. END
378. IF (ChaîneOccurrence(Tablecopietid[t,j],"*")=0) Then
379. Tablecopietid[t,j]=Vigenere_Crypt(Tablecopietid[t,1

]+Tablecopietid[t,j])

380. END

381. END
382. END

383. TableADDLine(Table_fd1,"SC"+(i+1),Combo_X1,Combo_X2

+" = "+Saisie1,sr)
384. TableDisplay(Table_fd1)
385. TableDisplay(Tablecopietid)

386. Combo_X1=""
387. Combo_X2=""
388. Combo_X3=""
389. Saisie1=""
390. Combo_X2..Visible=Faux
391. Combo_X3..Visible=Faux
392. Saisie1..Visible=Faux
393. BtnADD..Visible=Faux
394. END

79

395. IF (Combo_X3..ValeurAffichée="Less than") Then
396. sr=""
397. FOR t=1 ATableOccurrence(Tablecopietid) PAS 1

398. IF (Tablecopietid[t,k]..ValeurAffichée<Saisie1)

Then
399. IF sr="" Then
400. sr="r"+t
401. ELSE
402. sr=sr+",r"+t
403. END
404. IF (ChaîneOccurrence(Tablecopietid[t,j],"*")=0) Then
405. Tablecopietid[t,j]=Vigenere_Crypt(Tablecopietid[t,1

]+Tablecopietid[t,j])

406. END

407. END
408. END
409. TableADDLine(Table_fd1,"SC"+(i+1),Combo_X1,Combo_X2

+" < "+Saisie1,sr)
 TableDisplay(Table_fd1)

410. Combo_X1=""
411. Combo_X2=""
412. Combo_X3=""
413. Saisie1=""
414. Combo_X2..Visible=False
415. Combo_X3..Visible=False
416. Saisie1..Visible=False
417. BtnADD..Visible=False
418. END
419. IF (Combo_X3..ValeurAffichée="More than") Then
420. sr=""
421. FORt=1 ATableOccurrence(Tablecopietid) PAS 1

422. IF (Tablecopietid[t,k]..ValeurAffichée>Saisie1)

Then
423. IF sr="" Then
424. sr="r"+t
425. ELSE
426. sr=sr+",r"+t
427. END

428. IF (ChaîneOccurrence(Tablecopietid[t,j],"*")=0) Then
429. Tablecopietid[t,j]=Vigenere_Crypt(Tablecopietid[t,1

]+Tablecopietid[t,j])

430. END

431. END
432. END

80

433. TableADDLine(Table_fd1,"SC"+(i+1),Combo_X1..ValeurA
ffichée,Combo_X2+" > "+Saisie1,sr)

434. TableDisplay(Table_fd1)

435. Combo_X1=""
436. Combo_X2=""
437. Combo_X3=""
438. Saisie1=""
439. Combo_X2..Visible=False
440. Combo_X3..Visible=False
441. Saisie1..Visible=False
442. BntADD..Visible=False
443. END
444. IF (Combo_X3..ValeurAffichée="Different from") Then
445. sr=""
446. FOR t=1 ATableOccurrence(Tablecopietid) PAS 1

447. IF (Tablecopietid[t,k]<>Saisie1) Then

448. IF sr="" Then
449. sr="r"+t
450. ELSE
451. sr=sr+",r"+t
452. END
453. IF (ChaîneOccurrence(Tablecopietid[t,j],"*")=0) Then

454. Tablecopietid[t,j]=Vigenere_Crypt(Tablecopietid[t,1
]+Tablecopietid[t,j])

455. END

456. END
457. END
458. TableADDLine(Table_fd1,"SC"+(i+1),Combo_X1,Combo_

X2+"<> "+Saisie1,sr)
459. TableDisplay(Table_fd1)

460. Combo_X1=""
461. Combo_X2=""
462. Combo_X3=""
463. Saisie1=""
464. Combo_X2..Visible=False
465. Combo_X3..Visible=False
466. Saisie1..Visible=False
467. BtnADD..Visible=False
468. END

81

Appendix B: First part GMM

Appendix B.1: Robustness Checking

This code is used to check if there exists any evidence record in order to conclude

whether system is robust or not. The result is obtaining by clicking on button

CHECK in Figure 19. An example of result is shown in the second table.

469. i,j,k,numcol1,numcol2,f are integer
470. rec is a string
471. j=1;
472. FOR i=1 TOMain.Table_fd..Occurrence PAS 1

473. FOR j=1 TOTableTID..NombreColonne PAS 1
474. IF (Main.Table_fd[i].x={TableTID..Nom + "." +

TableEnumèreColonne(TableTID, j), indChamp}..Titre) Then
475. numcol1=j;
476. END
477. IF (Main.Table_fd[i].y={TableTID..Nom + "." +

TableEnumèreColonne(TableTID, j), indChamp}..Titre) Then
478. numcol2=j;
479. END
480. END
481. TableAjouteLigne(Tabledep,Main.Table_fd[i].fd,numco

l1,numcol2)

482. Saisie1=numcol1; Saisie2=numcol2
483. FOR k=1 A TableTID..Occurrence PAS 1
484. rec="";
485. IF ChaîneOccurrence(TableTID[k,numcol2],"*")>0 Then
486. FOR f=1 TOTableOccurrence(TableTID) PAS 1
487. IF TableTID[f,numcol1]=TableTID[k,numcol1] Then
488. IF ChaîneOccurrence(TableTID[f,numcol2],"*")=0 ALORS
489. IF rec="" Then
490. rec= "r"+f;
491. ELSE
492. rec=rec+",r"+f
493. END
494. END
495. END
496. END

497. END
498. IF (ChaîneOccurrence(TableTID[k,numcol2],"*")>0) AND

(rec<>"") THEN
499. TableADDLine(Table_check,"FD"+i+"=("+Main.Table_fd[i]

.x+"-->"+Main.Table_fd[i].y+")","r"+k,rec,"No
robust","FD"+i,numcol1,numcol2)

82

500. END
501. IF (ChaîneOccurrence(TableTID[k,numcol2],"-")>0) AND

(rec="") THEN
502. TableADDLine(Table_check,"FD"+i+"=("+Main.Table_fd[i]

.x+"-->"+Main.Table_fd[i].y+")","r"+k,rec,"
Robust","FD"+i,numcol1,numcol2)

503. END
504. END

505. END

Appendix B.2: Generation of Buckets H

This code is used for implementation of set of Bucket H based on what have been

done previously. An example of result is shown in the third table in Figure 16 after

clicking on button GENERATE H.

506. i,j,k,i1,t are integer
507. h,sr,er,tev,i2,ev1 are string

508. FOR i=1 A Main.Table_fd1..Occurrence PAS 1

509. h=""; er=""; tev="";i2=""
510. FOR j=1 A Length(Main.Table_fd1[i].sr) PAS 1
511. sr="";
512. IF Main.Table_fd1[i].sr[[j]]="r" Then
513. i1=j+1;
514. WHILE (i1<=Length(Main.Table_fd1[i].sr)) AND

(Main.Table_fd1[i].sr[[i1]]<>",")
515. i2=i2+Main.Table_fd1[i].sr[[i1]]
516. i1=i1+1
517. END

518. sr="r"+i2
519. i2=""

520. IF h=""Then
521. h="(({"+sr+"} "
522. FOR k=1 TOTable_check..Occurrence PAS 1
523. IF Table_check[k].sr= sr Then
524. er=Table_check[k].er

525. h=h+"{"+Table_check[k].er+"})"
526. IF tev="" Then
527. tev=Table_check[k].er
528. ELSE
529. ev1="";
530. FOR t=1 TOLength(Table_check[k].er)
531. IF (Table_check[k].er[[t]]<>";") Then

83

532. ev1= Table_check[k].er[[t]]
533. END
534. IF (Table_check[k].er[[t]]=";") OR

(t=Length(Table_check[k].er)) Then
535. IF ChaîneOccurrence(tev,ev1)=0 Then//StringCount
536. tev=tev+","+ev1
537. ev1=""

538. END
539. END
540. END

541. END
542. END
543. END

544. ELSE

545. h=h+" , ({"+sr+"} "
546. FOR k=1 TOTable_check..Occurrence PAS 1
547. IF Table_check[k].sr= srThEn
548. er=Table_check[k].er

549. h=h+"{"+Table_check[k].er+"})"
550. IF tev="" Then
551. tev=Table_check[k].er
552. ELSE
553. ev1="";
554. FOR t=1 TOLength(Table_check[k].er)
555. IF (Table_check[k].er[[t]]<>";") Then
556. ev1= Table_check[k].er[[t]]
557. END
558. IF (Table_check[k].er[[t]]=";") OR

(t=Length(Table_check[k].er)) Then
559. IF ChaîneOccurrence(tev,ev1)=0 Then//StringCount
560. tev=tev+","+ev1
561. ev1=""

562. END
563. END
564. END
565. END
566. END
567. END

568. END

569. END
570. END
571. h=h+")"

 TableADDLine(TableH_H,Main.Table_fd1[i].fd,"H"+(Tab
leH_H..Occurrence+1),h)

572. TableADDLine(Table_h,Main.Table_fd1[i].sr,tev

573. END

84

Appendix C: Partial Encryption

These blocs of code are used for solving problem of FDs attacks. It will then goes

through each Bucket and encrypt cells in sensitive or evidence record based of

minimum encryption overhead. An example of result is obtained in second table in

Figure 20 or Figure 21 based on the method used after clicking on button

ITERATION

Appendix C.1: Partial Encryption for PEM

574. sr,i2 Are string
575. i,j,k,i1,tsont des entiers
576. ChronoStart()//Start counting execution time
577. FOR i=1 TOExpress_d1_PEM.Table_h..Occurrence PAS 1

578. i2=""
579. IF

ChaîneOccurrence(Express_d1_PEM.Table_h[i].sr,"r")<=Chaîn
eOccurrence(Express_d1.Table_h[i].er,"r") Then// Occurrence
of r

580. Saisie1=(Length(Express_d1.Table_h[i].sr))
581. FORj=1 TO (Length(Express_d1_PEM.Table_h[i].sr))

PAS 1

582. sr=""
583. IF Express_d1_PEM.Table_h[i].sr[[j]]="r" Then
584. i1=j+1;
585. WHILE (i1<=Length(Express_d1_PEM.Table_h[i].sr))

AND (Express_d1_PEM.Table_h[i].sr[[i1]]<>",")
586. i2=i2+Express_d1_PEM.Table_h[i].sr[[i1]]
587. i1=i1+1
588. END
589. sr="r"+i2
590. i2=""
591. Saisie1=sr
592. FOR k=1 TOExpress_d1_PEM.Table_check..Occurrence
593. IF sr=Express_d1_PEM.Table_check[k].sr Then
594. FOR t=1 TOTableTID..Occurrence
595. IF TableTID[t,1]=srThEn
596. IF

ChaîneOccurrence(TableTID[t,Express_d1_PEM.Table_check[k
].numcol1],"*")=0AThen

597. TableTID[t,Express_d1_PEM.Table_check[k].numcol1]=V
igenere_Crypt(TableTID[t,Express_d1_PEM.Table_check[k].n
umcol1])

598. END

85

599. END

600. END

601. sr=""
602. END
603. END
604. END
605. END
606. ELSE

607. FOR j=1 TO (Length(Express_d1_PEM.Table_h[i].er))

PAS 1

608. sr=""
609. IF Express_d1_PEM.Table_h[i].er[[j]]="r" Then
610. i1=j+1;
611. WHILE (i1<=Length(Express_d1_PEM.Table_h[i].er))

AND (Express_d1_PEM.Table_h[i].er[[i1]]<>",")
612. i2=i2+Express_d1_PEM.Table_h[i].er[[i1]]

 i1=i1+1
613. END
614. sr="r"+i2
615. i2=""
616. FOR k=1 TO Express_d1_PEM.Table_check..Occurrence
617. IF

ChaîneOccurrence(Express_d1_PEM.Table_check[k].er,sr)<>0
Then

618. FOR t=1 TO TableTID..Occurrence
619. IF TableTID[t,1]=srTHen
620. IF

ChaîneOccurrence(TableTID[t,Express_d1_PEM.Table_check[k
].numcol2],"*")=0 Then

621. TableTID[t,Express_d1_PEM.Table_check[k].numcol2]=V
igenere_Crypt(TableTID[t,Express_d1_PEM.Table_check[k].n
umcol2])

622. END
623. END

624. END
625. END
626. END
627. END

628. sr=""
629. END
630. END
631. END

632. t=(ChronoStop())//Stop counting time
633. Execution_time=t/1000

TableDisplay(TableTID)

86

Appendix C.2 Partial Encryption for PEM-M

634. sr,i2 Are string
635. i,j,k,i1,tsont des entiers
636. ChronoStart()//Start counting execution time
637. FOR i=1 TOExpress_d1.Table_h..Occurrence PAS 1

638. i2=""
639. IF

ChaîneOccurrence(Express_d1.Table_h[i].sr,"r")<=ChaîneOcc
urrence(Express_d1.Table_h[i].er,"r") Then// Occurrence of r

640. Saisie1=(Length(Express_d1.Table_h[i].sr))
641. FORj=1 TO (Length(Express_d1.Table_h[i].sr)) PAS 1

642. sr=""
643. IF Express_d1.Table_h[i].sr[[j]]="r" Then
644. i1=j+1;
645. WHILE (i1<=Length(Express_d1.Table_h[i].sr)) AND

(Express_d1.Table_h[i].sr[[i1]]<>",")
646. i2=i2+Express_d1.Table_h[i].sr[[i1]]
647. i1=i1+1
648. END
649. sr="r"+i2
650. i2=""
651. Saisie1=sr
652. FOR k=1 TOExpress_d1.Table_check..Occurrence
653. IF sr=Express_d1.Table_check[k].sr Then
654. FOR t=1 TOTableTID..Occurrence
655. IF TableTID[t,1]=srThEn
656. IF

ChaîneOccurrence(TableTID[t,Express_d1.Table_check[k].nu
mcol1],"*")=0AThen

657. TableTID[t,Express_d1.Table_check[k].numcol1]=Vigen
ere_Crypt(TableTID[t,1]+TableTID[t,Express_d1.Table_chec
k[k].numcol1])

658. END
659. END

660. END

661. sr=""
662. END
663. END
664. END
665. END
666. ELSE

667. FOR j=1 TO (Length(Express_d1.Table_h[i].er)) PAS 1

668. sr=""
669. IF Express_d1.Table_h[i].er[[j]]="r" Then
670. i1=j+1;
671. WHILE (i1<=Length(Express_d1.Table_h[i].er)) AND

(Express_d1.Table_h[i].er[[i1]]<>",")

87

672. i2=i2+Express_d1.Table_h[i].er[[i1]]
 i1=i1+1

673. END
674. sr="r"+i2
675. i2=""
676. FOR k=1 TO Express_d1.Table_check..Occurrence
677. IF

ChaîneOccurrence(Express_d1.Table_check[k].er,sr)<>0
Then

678. FOR t=1 TO TableTID..Occurrence
679. IF TableTID[t,1]=srTHen
680. IF

ChaîneOccurrence(TableTID[t,Express_d1.Table_check[k].nu
mcol2],"*")=0 Then

681. TableTID[t,Express_d1.Table_check[k].numcol2]=Vigen
ere_Crypt(TableTID[t,1]+TableTID[t,Express_d1.Table_chec
k[k].numcol2])

682. END
683. END

684. END
685. END
686. END
687. END

688. sr=""
689. END
690. END
691. END

692. t=(ChronoStop())//Stop counting time
693. Execution_time=t/1000

TableDisplay(TableTID)

88

Appendix D: Execution Time for PEM or PEM-M

Evaluation time is performed by CHRONO used in WD language. The structure is

ChronoStart() // To start counting

ChronoStop() // To stop counting.

It is noticeable in Appendix C.1 il Line 576 that execution time start and stop in Line
632

