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ABSTRACT 

In this thesis, we study the Bezier curves and their properties. Bezier curves are one of 

the most important curves in Computer-Aided Geometric Design (CAGD). Bernstein 

functions are the basis of the Bezier curves. Therefore, we investigate the Lupaş 𝑞-

analogue of Bernstein functions, their properties and corresponding Lupaş 𝑞-Bezier 

curves and their useful properties. Finally, we have studied the de Casteljau algorithms 

of Lupaş 𝑞-Bezier curve and the upgrade procedure. 

Keywords: Bernstein polynomials, Bezier curve, de Casteljau algorithms, degree 

elevation, Lupaş 𝑞-Bezier curve, Lupaş 𝑞-Bezier surface, Lupaş q-analogue of 

Bernstein operator. 
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ÖZ 

Bu tezde Bezier eğrilerilerini ve bu ozellikleri inceliyoruz. Bezier eğrileri, Bilgisayar 

Destekli Geometrik Tasarım'daki (CAGD) en önemli eğrilerden biridir. Bernstein 

fonksiyonları Bezier eğrilerinin temelidir. Bu nedenle, Bernstein fonksiyonlarının 

Lupaş q-analogunu, özelliklerini ve bunlara karşılık gelen Lupaş q-Bezier eğrilerini ve 

yararlı özelliklerini araştırıyoruz. Son olarak, Lupaş q-Bezier eğrisinin de Casteljau 

algoritmalarını ve yükseltme prosedürünü inceledik. 

Anahtar kelimeler: Bernstein polinomları, Bezier egrileri, de Casteljau algoritması, 

derece yükseltme, Lupas 𝑞-Bezier egrileri, Lupaş 𝑞-Bezier yüzeyi, Lupaş 𝑞-analogue 

of Bernstein operatoru. 
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Chapter 1 

INTRODUCTION 

Bernstein Polynomials created by Sergei N. Bernstein [1] in 1912. In this thesis, he 

gave an alternative proof of the Weierstrass Approximation Theorem [13]. He 

introduced the following polynomials. 

                                      
0

; 1k

n h hБ


 



 
  

 





   
    

  
                             (1.1) 

 0,1  , N   and  0,1h C . 

Bernstein polynomials are the basis of the Bézier curves [13]. These are parametric 

curves which are frequently used in computer graphics such as computer aided 

geometric design (CAGD)[18] and related fields.  

Nowadays, Bézier curve is used in countless areas from modelling applications to 

writing type techniques. The foundations of the idea were first laid in 1959 by a French 

automotive engineer named Paul de Faget de Casteljau who were working at Citroen. 

In the same years, another French automotive engineer Pierre Bézier who carried out 

investigations on the parts of cylinder parts in Renault also studied a similar approach. 

Although these two engineers obtain the same results separately from each other, the 

first article published on this subject is written by Pierre Bézier in 1970. Therefore, 

these curves known as Bézier curves.           
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The rapid development of 𝑞-calculus [8] has led to the discovery of new 

generalizations of Bernstein polynomials involving 𝑞-integers [4,10–12,14,16-17]. 

In 1987, Lupas [11] introduced the first q-analogue of Bernstein operators: 
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 0,1  , N   and  0,1h C . 

In 1996, George M. Philips [15] committed the 𝑞-analogue of the Bernstein 

polynomials known as Philips 𝑞-Bernstein polynomials: 
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                           (1.3) 

where    , : 0,1 0,1q ЄB Є  , N  ,  0,1   and arbitrary function. In 2003, 

Oruç and Philips [14] used the basis function of Philips 𝑞-Bernstein operator for 

construction of Philips 𝑞-Bezier curves and they studied the properties of the Lupas 𝑞-

Bezier surfaces as well as the degree elevation, degree reduction, variation diminishing 

property as well as de Casteljau algorithms. 

A new generalization of Bezier curves with one shape parameter which is based on the 

Lupas 𝑞-analogue of Bernstein operators is created by Li-Wen Han et al. in [7]. The 

new curves have some properties similar to classical Bezier curves. Also, they 

demonstrate degree elevation and de Casteljau algorithm for the generalization. 

Besides, they studied the properties of the Lupas 𝑞-Bezier surfaces such as the degree 

elevation and de Casteljau algorithm.  
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This thesis is organized as follows: 

In Chapter 2, the following topics are studied: 

 Some useful definitions and properties associated with 𝑞-integer, 

 basic and fundamental definitions and properties of 𝑞-calculus, Bernstein 

functions, Bézier curves,  Lupas 𝑞-analogue of Bernstein operators and Lupaş 

𝑞- Bézier curves. 

In chapter 3, we investigate: 

 definition of polynomials, 

 definitions of Bernstein basis polynomials, 

 the properties of Bernstein basis polynomials, 

 end-point property, 

 symmetry, 

 recursion formula, 

 non-negativity on  0,1 , 

 partition of unity, 

 degree raising, 

 converting form the Bernstein basis to the power basis, 

 converting form the power basis to the Bernstein basis, 

 the Bernstein polynomials as a basis, 

 derivatives, 

 the matrix representation of Bernstein polynomials. 

 

 In chapter 4, we study;  

 definition of the Bézier curve and Bézier polygon, 



4 

 

 linear Bézier curve, 

 quadratic Bézier curve, 

 cubic Bézier curve, 

 properties of Bézier curves, 

 end-points interpolation, 

 symmetry, 

 end-point tangent property, 

 variation diminishing property, 

 invariance under affine transformation, 

 convex hull property, 

 derivatives, 

 degree raising, 

 de Casteljau algorithms, 

 matrix formulation of Bézier curves. 

In Chapter 5, we study 

 the definition of the Lupaş 𝑞-analogue of the Bernstein function, 

 properties of the Lupaş 𝑞-analogue of the Bernstein function, 

 non-negativity, 

 partition of unity, 

 end-point property, 

 𝑞-inverse symmetry, 

 reducibility, 

 degree elevation and reduction of the Lupaş 𝑞-analogue of the Bernstein 

functions, 



5 

 

 definition of Lupaş 𝑞-Bezier curve, 

 properties of Lupaş 𝑞-Bezier curve, 

 geometric and affine invariant, 

 convex hull, 

 the end-point interpolation property, 

 𝑞-inverse symmetry, 

 reducibility, 

 derivatives of the end-point property, 

 variation diminishing, 

 degree elevation for Lupaş 𝑞-Bezier curve, 

 matrix representation of degree elevation of Lupaş 𝑞-Bezier curve, 

 de Casteljau algorithm for Lupaş 𝑞-Bezier curve, 

 matrix representation of de Casteljau algorithm for Lupaş 𝑞-Bezier 

curves. 
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Chapter 2 

PRELIMINARIES 

In this chapter we define some useful properties related with Quantum Calculus, 

Calculus and my thesis topics. 

Definition 2.1 [3] 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑡ℎ𝑒𝑜𝑟𝑒𝑚  

If r  is any positive integer then, 

0

( )
r

r r g g

g

r
a b a b

g





 
   

 
  

where  

 
!

! !

r r

g r g g

 
 

 
, 0,1, 2,3, ,g r . 

Definition 2.2 [16] Let 𝑣 denote the sequence  iv , which may be finite or infinite. 

Then we denote by  S v  the number of strict sign changes in the sequence 𝑣. 

For instance,  -9,5,-6,7,-2,1 5S  ,  5,6,4,9,-7 1S  , and  4,-4,4,-4,4,-4,...S   

Definition 2.3 [16] Let 

0

, 0,1, , ,
s

i ir r

r

v a u i s


   

where  , ,ir r ia u v R . This linear transformation is said to be variation-diminishing if 

   .S v S u   

Theorem 2.4 [16] If  0 , , n  is totally positive on, then for any numbers 0 , , nk k  

   0 0 , , .n n n nS k k S k k      

Definition 2.5 [14] W is a transform on dR  is any mapping : d dW R R . That is, 

each point 
dx R  is mapped to exactly one point  W x  also in dR . 
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Definition 2.6 [14] Let : d dW R R be a transform. 𝑊 is said to be linear transform 

iff: 

  i For all and all dR m R   , we have    W x W m  . 

  ii For all , dm n R , we have      W m n W m W n   . 

Definition 2.7 [7] (𝐴𝑓𝑓𝑖𝑛𝑒 𝑚𝑎𝑝) A map : A B  is called affine, if it can be 

represented by an n m matrix 𝐴 and a point of 𝐵 such that 

,x Ax v    

where 𝑣 represent the image of the origin of 𝐴. 

Definition 2.8 [14] An affine transform is a transform that can be written as 

    W x T L x  where  .L  is a linear transform and  .T  is a translation. This can 

also be written as    W x L x t   or .tW T L  

Definition 2.9 [14] A curve is said to be affine invariant if the affine transform  .  

applied to the points generated by the curve, i.e    
0

,Б





  


  produces 

precisely the same curve as transforming the control points of the curve, k , and the 

calculating curve, that is: 

     
0 0

Б Б
 

 








    

 

 
 

 
   

This will be satisfied if the basis functions  Б

   of the curve satisfy the property 

   
0

1 0,1Б for







 


  . 

Definition 2.10 [14] Let  1 2, , , my y y  be a set of points in the 𝑑-dimension 

Euclidean space dR  and 1 2, , , ma a a  be real numbers, then: 
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 1  
1 1 2 2

1

m

k k m m

k

a y a y a y a y


     is called a linear combination of 1 2, , , my y y . 

 2  If 
1

1,
m

k

k

a


  then 
1 1 2 2

1

m

k k m m

k

a y a y a y a y


     is called an affine 

combination of  1 2, , , .my y y  

 3  If 
1

1
m

k

k

a


  and 0ka  , then 
1 1 2 2

1

m

k k m m

k

a y a y a y a y


     is called a 

weighted average of 1 2, , , my y y . 

Definition 2.11 [14] Let 𝐴 be a set of points in dR . The set 𝐴 is convex if and only if 

for any two points ,x y A , the line segment joining 𝑥 and 𝑦 is entirely in 𝐴. 

Definition 2.12 [8] For all Z  the 𝑞-integer  
q

  is defined by 

 
 

2 1

/ 11
,

1 : 1

1,
q

f q Rq

q q q q

if q











 


      
 

 

Note that,  0 0
q
 . 

Definition 2.13 [8] For each integer 0  , the 𝑞-factorial   !
q

k  is defined by 

 
     1 1 , 1,2,3,

!:
0.1,

q q q

q

if

if

  




  
 



 

Definition 2.14 [8] For integers 0 r s  , the 𝑞-binomial coefficient is defined by 

 

   

!
: :

! !

q

q qq q

 

    

   
    

   
 

Definition 2.15 [8] The 𝑞-analogue of  
n

y b  is a polynomial of the form 

 
     2 1

1
:

n

nq
y b

y b y qb y q b y q b


  

   

       
0

1

if n

if n
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Proposition 2.16 [8] For any integer 𝑛, 

     
1n n

q q qq
D x a n x a


    

Lemma 2.17 [8] For any integer 0m   and b  be a number. Gauss`s Binomial Formula 

defined as, 

   1 /2

0

m
m r r r m r

q
r q

m
y b q b y

r

 



 
   

 
 . 

Proposition 2.18 [8] There are two 𝑞-Pascal rules, namely; 

                                
1 1

1
q q q

q
  

  

      
      

     
                                   (2.18a)                                                           

and  

                        
1 1

1
q q q

q 
  

  


      

      
     

                     (2.18b) 

where 1 1.     
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Chapter 3 

BERNSTEIN BASIS POLYNOMIALS 

3.1 Polynomials 

Polynomials are useful mathematical tools in Science, computer aided geometric 

designs and engineering. Therefore, firstly we need some definitions which are related 

to polynomials. 

Definition 3.1.1 [11] A real polynomial with degree   is an expression of the form: 

                        1

1 1 0( ) ....n n

n nP t c x c x c x c

                             (3.1) 

where n Z   is an non-negative integer and 0 1, , , nc c c  are the real numbers with

0.nc  . 

The highest power of 𝑥 that occurs is called degree of polynomials and denoted by 

𝑑𝑒𝑔(𝑃). The numbers 'ic s  are called the coefficients. 

In this sections we study Bernstein basis Polynomials and its useful properties. 

3.2 Bernstein Basis Polynomials 

Bernstein polynomials were defined by Sergei Natanovich Bernstein in 1912 as 

follows; 

     
0

; 1k

n nh hБ Б


 




   







  
    

  
  

where    

 0,1h C  and  0,1  . 
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Definition 3.2.1 [11] The Bernstein basis polynomials of degree   are defined as 

                               1Б
  




  



 
  
 

,     0,1   and 0,1,...,             (3.2) 

with binomial coefficient 

!
0 ,

!( )!

0 otherwise


 

  



   

  
  



 

Further, if    or  0  , we set 0Б

  . 

In the following given examples contains graphs of some Bernstein basis polynomials. 

Example 3.2.1: 

 

Figure 3.1: The Bernstein basis polynomials of degree 1.      1

0 1i Б      and 

   1

1ii Б    . 
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Example 3.2.2: 

 

Figure 3.2: The Bernstein basis polynomials of degree 2.      
22

0 1i Б     , 

     2

1 2 1ii Б       and    2 2

2iii Б    . 
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Example 3.2.3: 

 

Figure 3.3: The Bernstein basis polynomials of degree 3.      
33

0 1i Б     , 

     
23

1 3 1ii Б      ,      3 2

2 3 1iii Б       and    3 3

3iv Б    . 
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Example 3.2.4:  

 

Figure 3.4: The Bernstein basis polynomials of degree 4.      
44

0 1i Б     , 

     
34

1 4 1ii Б      ,      
24 2

2 6 1iii Б      ,      4 3

3 4 1iv Б      and 

   4 4

4v Б    . 
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Example 3.2.5: 

 

Figure 3.5: The Bernstein basis polynomials of degree 5.      
55

0 1i Б     , 

     
45

1 5 1ii Б      ,      
35 2

2 10 1iii Б      ,      
25 3

3 10 1iv Б      , 

     5 4

4 5 1v Б       and    5 5

5vi Б    . 

3.3 The Properties of Bernstein Basis Polynomials 

Bernstein basis polynomials satisfies the following properties: 

Property 3.3.1 [11] 𝐸𝑛𝑑 − 𝑝𝑜𝑖𝑛𝑡 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

 
1 0

0
0 1, ,

Б





 


 


 

and 

     
0 0,1, , 1

1
1

Б
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Proof. If we put    into (3.2), we obtain  

   1Б
  




 




 
  
 

 

Then, for 1  , we have  

   1 0 11Б
  







 
  
 

. 

Secondly, if we put 0   into (3.2), we obtain 

   
0

0 1
0

Б
 


 

 
  
 

 

Then, for 0  , we have  

   0 1
0

0 0 1Б
 

 
  
 

. 

  

Property 3.3.2 [11] 𝑇ℎ𝑒𝑦 𝑎𝑟𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 

                   ( ) (1 )Б Б 

              ,         0,1, ,   

Proof. From the definition of Bernstein basis polynomials (3.2), we have;      

 1( )Б
 




 




 
 

 
  

                  1
 


 

 

 
  

 
 

    (1 )Б

    . 

  

Property 3.3.3 [11]  𝑇ℎ𝑒𝑦 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑡ℎ𝑒 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 

                                           1 1

1( ) (1 ) ( ) ( )Б Б Б  

       

                                    (3.3) 

where 
1 1 0nБ Б 

   . 

 



17 

 

Proof. From the definition of Bernstein basis polynomials (3.2), we have 

 
11

1
( ) 1Б

  




  



 
 

  
 

 

and 

 
 1 11 1

1

1
( ) 1

1
Б

  




  



   



 
  

 
 

Then, from RHS of the equation of (3.3) and the binomial identity                           

   
 1 1 11 1 1

1

1 1
(1 ) ( ) ( ) (1 ) 1 1

1
Б Б

      

 

 
         

 

      



    
         

   
                

                                     
1 1

1 1
1

    
 

   
 

     
      

   
 

                                                   =   
1 1

1
1

 
 

 
 

      
     

    

 

                                               1
 


 



 
  
 

 

         ( )Б

  . 

  

Property 3.3.4 [11]  𝑁𝑜𝑛 − 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑜𝑛 [0,1]  

Bernstein basis polynomials are non-negative over the interval [0,1]  and are strictly 

positive on  0,1 .  That is, 

                                 ( ) 0Б

   , [0,1]                                           (3.4) 

and  

0Б

  ,  0,1   
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Proof. To show this property, we use recursive property (3.3) of Bernstein basis 

polynomials and mathematical induction method. 

Base Case :    

1

0( ) 1Б     and 
1

1 ( )Б    

are both non-negative over the interval [0,1] . 

Induction hypothesis : Assume   0jБ    , , j   for some  . 

Then by our recursive definition :  

1 1

1( ) (1 ) ( ) ( )Б Б Б  

       

    

RHS of the above recursive equation are all non-negative for 0 1.  By induction, 

all Bernstein bases polynomials are non-negative for 0 1  . Thus ( ) 0Б

    on 

[0,1] .  

If we change our hypothesis to be open interval  0,1  and if we apply the same steps, 

we can show Bernstein bases polynomials are strictly positive on 0 1  . 

  

Property 3.3.5 [11] 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑈𝑛𝑖𝑡𝑦  

A set of function ( )h   is said to partition unity if they sum to 1 for all values of  . 

The 1  Bernstein bases polynomials for a Bernstein polynomials of degree   form 

a partition of unity. That is; 

              0 1

0

( ) ( ) ( ) ( ) ( ) 1Б Б Б Б Б


  

 






    


       , 0 1  .            (3.5) 
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Proof. To prove this property, we need to prove following property: 

1( ) ( )Б Б    

Then, 

1

0

1

0

( ) ( )Б Б
 

 



 

  




 

   

If we use the recursive formula (3.3) of the Bernstein bases polynomials, we obtain 

the following results:     

   1 1

1

0 0

( ) ( ) 1 ( ) ( )Б Б Б Б   

 
  

 

      

 


        

        1

0

1

11 ( ) ( )Б Б 


 



    





      

        1 1

1

0 0

1 ( ) ( )Б Б
 

 

 
     



 

     

        1 1
1

0

1

1

1

1 11 ( ) ( ) ( ) ( )Б Б Б Б





  

 




     


 







 



   
       

   
   

        1 1

1

1

0 1

1 ( ) ( )Б Б
 

 

 
    





 



     

                                          

  1 1
1 1

0 0

1
1

0

1 ( ) ( )

( )

Б Б

Б

 
 















   



 
 

 







  



 



  

where we have operated 1 1

1( ) ( ) 0Б Б 

   

  . 

Once we have established this equality, it is simple to write 

 1 2
1 2 1

0 0

1

0 0

( ) ( ) ( ) ( ) 1 1Б Б Б Б
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Property 3.3.6 [11] 𝐷𝑒𝑔𝑟𝑒𝑒 𝑅𝑎𝑖𝑠𝑖𝑛𝑔  

Any of the lower-degree Bernstein polynomials of deg   can be expressed as a linear 

combination of   degree Bernstein polynomials. On the other hand, any Bernstein 

polynomial of degree 1   can be written as a linear combination of Bernstein 

polynomials of degree  . 

Proof.  From the property of recursive property and formula (3.2); 

          
1 1

1( ) (1 ) ( ) ( )Б Б Б  

       

    

Then, 

           
   1 11 1( ) 1 1Б

    



 
    






       
  


  

  
  

         1

1
1

1

( )Б Б 

 










 



 
 
 

 
 

 

  

        1

1

1
( ) ( )

1
Б Б 

 


 


 







                                                   (*) 

and 

                                        
1

) 11 (Б
 




 


 

  
 

 
   

                                       1! !( 1 )!
1 ( )

!( )! ( 1)!
Б Б 

 

   
  

   

 
 

 
    

                                       11
1 ( )

1
Б Б 

 

 
  



 
 


                                           (**) 

Hence,  

                             1 1

1

1 1
* (**) ( )

1 1
Б Б Б  
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On the other hand, 

1 ( 1)

1

1 1
( ) ( ) (1 ) (1 )

1

Б Б       

      
 

 

   

    
   
   

   

                   

1

1

1

1

1

1

1 1
( ) ( ) (1 ) ((1 ) ),

1

1 1
( ) ( ) (1 ) ,

1

1 1 1
( ) ( ) ( )

1

1

Б Б

Б Б

Б Б Б

    

 

    

 

  

  

     
 

 

   
 

 

  
  

  

 



 







    
   
   

   

  
   
   

   

 
     

     
     

 

Then, 

               
1

1

1 1 1
( ) ( ) ( ) ,

1

Б Б Б  

  


  

 

 





 
 

           
    

    

 

              

1

1

1

1

( 1)! 1 1
( ) ( ) ( )

! !!( 1)!

!( )! ( 1)!( 1)!

1
( ) ( ) ( )

Б Б Б

Б Б Б

  

  

  

  


  

   

     

  
  

 









 
 

  
   

     

    
    
   

  

Hence, Bernstein polynomials of deg    can be written as a linear combination of 

Bernstein polynomials of degree  .  
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Property 3.3.7 [19] Any Bernstein polynomials of degree   can be written as a linear 

combination of Bernstein polynomials of  r   0r  . 

 ( )
r

r

j

r

j
Б Б

r

j


 

 




 
 








  
  

  
 

 
 

  

Property 3.3.8 [11] 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑛𝑔 𝑓𝑜𝑟𝑚 𝑡ℎ𝑒 𝐵𝑒𝑟𝑛𝑠𝑡𝑒𝑖𝑛 𝐵𝑎𝑠𝑖𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑃𝑜𝑤𝑒𝑟 𝐵𝑎𝑠𝑖𝑠 

Any Bernstein polynomials of degree   can be written in terms of the power basis. 

Proof. To prove this property, we need to Bernstein basis polynomials of degree   

expression and binomial theorem.  

   1Б
  




  



 
  
 

 

 

0

0

0

( )

1

( 1)

j

j

j j

j

n k
j j

j

j

j

j

 


 




  
 



  
 



  

















   
   

   

   
    
   

  
    





 







 

( 1) j j

j j






  


 





  
    

  
  

                       

! ( )!
( 1)

!( )! ( )!( )!

! 1 !
( 1)

! ( )!( )! !

j j

j

j j

j

j j

j

j j j











  


    




  










 

  

 
 





 

                                              ( 1) j j

j

j

j
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Property 3.3.9 [11] 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑛𝑔 𝑓𝑜𝑟𝑚 𝑡ℎ𝑒 𝑃𝑜𝑤𝑒𝑟 𝐵𝑎𝑠𝑖𝑠 𝑡𝑜 𝑡ℎ𝑒 𝐵𝑒𝑟𝑛𝑠𝑡𝑒𝑖𝑛 𝑏𝑎𝑠𝑖𝑠 

Each power basis element can be written as a linear combination of Bernstein basis 

polynomials. 

Proof. Here, we need degree elevation formula and induction hypothesis.  

        
1( )j j     

                                    1

1

1

1

j

j

j

Б














 

 
 

 
 
 

 

         (We use the induction hypothesis.) 

                                    1

1

1

1

1

1

j

j

j

Б






 












 
 

 
 

 
 

  

                                    
1

1

1

1

j

j

j

Б


















 

 
 

 
 
 

 

  

                                   
1

1j

j

j

Б















 

 
 
 
 
 
 

  

  

Property 3.3.10 [11] 𝑇ℎ𝑒 𝐵𝑒𝑟𝑛𝑠𝑡𝑒𝑖𝑛 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠 𝑎𝑠 𝑎 𝐵𝑎𝑠𝑖𝑠 

The Bernstein polynomials of degree   from a basis for the space of polynomials of 

degree less than equal to  .  

Proof. To show this property, we need to prove two following conditions.  

0{ , , }nБ БK    is linearly independent. 

and  
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𝑠𝑝𝑎𝑛     0 0, , , ,n nБ Б Б Б P        

where  

           2

0 1 2 0{ / , , }P a a a a a a R 

           

of degree less than or equal than .  

For the first conditions, if there exists constants 
0 1 2, , , ,a a a a  such that; 

                             0 1 1 2200 Б t Б t Б t Б ta a a a  





      ,  . 

Then, all `a s  must be zero. Then we write, 

       0 1 1 2200 Б t Б t Б t Б ta a a a  





      

1

0 1

0 0 0

0 ( 1) ( 1) ( 1)
0 1

na a a
  

      

  

     
  

   

 

  

        
              

        
    

1 2
1 2

0 1 2

0 0 0

1 2
0

1 1 2 2

n
a a a a





  

  
  

   

             
                 

             
                       (*) 

Since (*) is linearly independent; 

               0 0a   

1

1

0

1
0

1 1
a







  
  

  
  

 

0

0a





 

 

  
  

  
  

which is stand for 
0 1 2 0a a a a     . 

Secondly, from the converting from the Bernstein basis to the Power basis property of 

Bernstein polynomials, we know that each power basis {1, , }  can be written as a 

linear combination of Bernstein basis polynomials. That is, 
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𝑠𝑝𝑎𝑛      2

0 0 1 2, , n P aБ Б a a a
             

  

3.4 Derivatives 

Theorem 3.3.11 [17] Derivative of  -th degree of the Bernstein basis polynomials  (

 Б

  ) are Bernstein basis polynomials of degree 1  . 

                                     1 1

1Б
d

d
Б Б  

    


 

  ,  0                            (3.4) 

Proof. The derivative of Bernstein polynomials  Б

   is obtained as; 

             (1 )
d d

d d
Б

t


  


 






  

   
  

 

   1 1! ( ) !
(1 ) (1 )

!( )! !( )!

        
   

     

   
   

 
 

   
 

 

 

 
1 1

1 ! ( ) 1 !
(1 ) (1 )

1 !( )! !( ) 1 !

          
   

        

   
  

   
    

            

               
 

 

 

 
1 1

1 ! 1 !
(1 ) (1 )

1 !( )! ! 1 !

        
   

     

   
 

   
   

 

           
 

 

 

 
1 1

1 ! 1 !
(1 ) (1 )

1 !( )! ! 1 !

d
Б

d

   



   
     

      

   
  

         
 

Hence, 

      1 1

1Б
d

d
Б Б  

    


 

  . 
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3.5 The Matrix Representation of Bernstein Polynomials 

A matrix representation for the Bernstein polynomials is very useful in many 

applications. The main purposes of matrix representation are fast computation of 

matrices multiplication and generating different Bezier control polygons for the cubic 

curve [2]. 

Any  P   polynomials is expressed as a linear combination of  Б

   as the 

following. 

     0 10 1( ) Б БP c c Бc  

       

              

0

0 1

1

c

c
Б Б

c

Б 





   

 
 
      
 
  

 

Then; 

0,0 0

1,0 1,1 1

2
2,0 2,1 2,2 2

,0 ,1 ,2 ,

0 0 0

0 0

0( ) 1

g c

g g c

g g g cP

g g g g c



     

   

   
   
   
      
   
   
   
   

 

or  

0,0 0,1 0,2 0, 0

1,1 1,2 1, 1

2
2,2 2, 2

,

0

0 0( ) 1

0 0 0

g g g g c

g g g c

g g cP

g c








  

   

   
   
   
      
   
   
   
   

 

where 
, `g s   are the coefficients of the power basis of the Bernstein polynomials.  

In the following examples, we give matrix representation of cubic and quadratic case 

of Bernstein polynomials. 
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Example 3.4.1: In a quadratic case  2  ,  

   

 

 

2

0

2

1

2

2

2 2

2

2

1 1 2

2 (1 ) 2 2

Б

Б

Б





  

   



    

   



 

Then, the matrix representations; 

 
0

2

1

2

1 0 0

1 2 2 0

1 2 1

c

P c

c

  

   
          
      

 

or 

 
0

2

1

2

1 2 1

1 0 2 2

0 0 1

c

P c

c

  

   
          
      

 

Example 3.4.2: If a cubic case  3   

   

   

   

 

3 2 33

0

3

1

2 2 3

2 23 3

2

3

3

3

1 1 3 3

3 1 3 6 3

3 1 3 3

Б

Б

Б

Б

   

  



  

   







     

    

   



 

Then, the matrix representation is; 

 

0

12 3

2

3

1 0 0 0

3 3 0 0
1

3 6 3 0

3 3 3 1

c

c
P

c

c

   

  
  


        
  

    

 

or 

 

0

13 2

2

3

1 3 3 3

0 3 6 3
1

0 0 3 3

0 0 0 1

c

c
P

c

c
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Chapter 4 

BEZIER CURVES 

A Bezier curve is a parametric curve used in computer graphics and related fields. 

Pierre Bezier introduced the Bezier curve in the 1970`s while working for Renault. 

Bezier curves and surface are very useful and play significant role for CAGD.     

Definition [6] Bézier 𝐶𝑢𝑟𝑣𝑒  

Let 0 1, ,.... n    be a sequence of control points, a Bézier curve of degree  is defined 

by;   

                                          
0

Б






   


  ,      0  1                                   (4.1) 

where the basis functions  Б

   are the Bernstein polynomials defined by;   

   
!

1
( )! !

Б
  




  

  


 


 

where 
 

!

! !

 

   

 
 

 
 . 

Definition [6] Bézier 𝑝𝑜𝑙𝑦𝑔𝑜n 

Let 
0 1, ,....     be a set of control points of the Bezier curve, the polygon formed by 

connecting the Bézier points with lines, starting with 0  and finishing with  , is 

called the Bézier polygon. The convex hull of the Bézier polygon contains the Bezier 

curve. 

Let’s investigate some specials cases of Bézier curves. 
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4.1 Linear Bezier Curve 

Linear Bézier curve has 1  . We know from the definition of Bezier curve, if Bézier 

curve of degree   have 1   control points. Let 0  and 1  are two control points, a 

Linear Bezier curve is simply a straight line between those two points, the curve is 

defined by; 

        1
1

0

Б


  


    ,     [0,1]   

     0 11         

 

Figure 4.1: Bezier curve of degree 1. 
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4.2 Quadratic Bezier Curve 

Let 2  , a quadratic Bezier curve     has three control points 0 1,   and 2 ; 

we have; 

               2
2

0

Б


  


   ,         [0,1]   

                   
2 2

0 1 21 2 1              

 

Figure 4.2: Bezier curve of degree 2. 
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4.3 Cubic Bezier Curve 

Four control points 0 1 2 3, , ,     in the plane or in three-dimensional space define a 

cubic Bezier curve, the curve starts at 0  going toward 1  and arrives at 3  coming 

from the direction of 2 , usually it will not pass through 1  or 2 , these points are 

only there to provide directional information, the parametric form of the curve is[6]; 

    3
3

0

Б


  


  ,           [0,1]   

                   
3 2 2 3

0 1 2 31 3 1 3 1                   

 

Figure 4.3: Bezier curve of degree 3. 

To next section we give some properties of Bezier curves. 
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4.4 Properties of Bezier Curves 

Property 4.4.1 [6] 𝐸𝑛𝑑 − 𝑝𝑜𝑖𝑛𝑡𝑠 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛  

Bezier curves     always passes through the first and last control points of 0  and 

 . That is; 

  00     and  1    

Proof. If we put 0   into (4.1), we obtain 

   
0

0 0Б






 


  

From the end-point property of Bernstein basis polynomials (property 3.3.1), we have 

 0 0 1Б  . Therefore; 

  00  . 

In addition, when we put 1   into (4.1);  

   
0

1 1Б





 


  

From the end-point property of Bernstein basis polynomials (property 3.3.1), we have

 1 1Б

  . Therefore; 

 1   . 

  

Property 4.4.2 [6] 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦  

Reversing the order of the control points produce the same curve. 

Proof. Let 

                                 
*

                   0,1, ,   

Then, we have 
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       * *

0 0 0

Б Б Б  

 

  

   

  

     





 

      

Due to the symmetry property of Bernstein polynomials (Property3.3.2), 

   1Б Б 

      . 

     *

0

11Б









    


    

  

Property 4.4.3 [6] 𝐸𝑛𝑑 − 𝑝𝑜𝑖𝑛𝑡 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦  

The end-point tangent vector are parallel to 1 0   and 
1    .  

   '

1 00        

and   

   '

11         

Proof. From the definition of Bezier curve (4.1), we have; 

     
0 0

1Б
 

 

 




 


     






 

 
   

 
   

Then, we take derivatives of Bezier curve with respect to  , we obtain; 

        1' 1

0

1 1


    





        



  



           
  

for 0  , 

   '

1 00      

for 1  , 

   '

11         
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Property 4.4.4 [6] 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝐷𝑖𝑚𝑖𝑛𝑖𝑠ℎ𝑖𝑛𝑔 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦  

Let planar Bezier curves are variation dimension, this means that the number of 

intersections of a straight line is no greater than the number of intersections of a line 

with the control polygon. 

Proof. In this proof 
   0,I

Z g



  

    denote the number of positive roots of any 

polynomials  g   on the interval 𝐼. That is. 

         0 1 0 1 0 1 0 1, , , .Z a a a S a a a S a a a 

       

 
                 (4.2) 

Let 𝐶 denote a planar Bezier curve, 𝑀 is any straight line, and let 𝐼(𝐶, 𝑀) the number 

of times 𝐶 crosses 𝑀. Establish the rectangular coordinate system whose abscissa axis 

is 𝑀. Due to Bezier curves are geometric invariant, we can denote  ,i ix y

 0,1, ,i   the new coordinates of the control points. Let 𝑃 denote the control 

polygon and 𝐼(𝑃, 𝑀) the number of times 𝑃 crosses 𝑀. Then we will prove that 

𝐼(𝐶, 𝑀)  ≤  𝐼(𝑃, 𝑀). 

We make a parameter transformation. Let 
1

u






,  0,1  , so that  0,u  . 

Then 

     0 1 0 1

0

, 1I C M Z y ZБ y


 

   







  





   



   
     

    
  

   

 

   

0 0

0 0

0 1 0 1

1

y , , , , , , ,M
0 1

u uZ y Z y u

S y y S y y y I P
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Figure 4.4: Variation diminishing property of quadratic Bezier curves. 

 

Figure 4.5: Variation diminishing property of cubic Bezier Curves. 
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Property 4.4.5 [6]  𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑈𝑛𝑑𝑒𝑟 𝐴𝑓𝑓𝑖𝑛𝑒 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠  

If   is an affine transform, then 

     
0 0

Б Б
 






  


   
 

 
 

 
   

Proof.  Let    
0

Б





   


  where  0,1  . Since, partition of unity property 

of  Б

  , every point     is an affine combination of control points 0 , n  . 

From that,    is affine invariant. If we assume   is an affine transform in d , 

then 

              
0 0

A vБ Б
 

 


 

 


      
 

 
   

 
   

        
0 0

БAБ v
 



 

 
 

 
 

    

                   
0

A v Б











   

                         
0

Б

 






 


  

Property 4.4.6 [6] 𝐶𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦  

A Bezier curve lies in the convex hull of the control points, that is 

  0 , ),(H       for all  0,1  . 

Proof. Every point in the     has the form; 

 
0 0 1 1a a a         with    a Б



  . 

Since non-negativity (3.4) and partition of unity property (3.5) of Bernstein 

polynomials, we have; 
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  0Б

   and   
0

1Б






 


  

Hence;   0 , ),(H      . 

 

Figure 4.6: The curve lies in the convex hull of the control points. 

4.5 The Derivative of a Bezier Curve 

Theorem 4.5.1 [6] The derivative of    of order   is; 

   1
1

1

0

( )Б
d

d



 







    









   

Proof. From the derivative of  Б

   (3.4); 

       
0 0

d d d

d d d
Б Б
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               1 1

1

0

Б Б






 



    





   

Then; 

     
0 0

1 1

1 Б
d

Б
d

 






 

 

     





 



    

from  1

1 0Б 

   and  1 0Б

   , 

     
1

1

1

1

0

1

d
Б Б

d 
 

 



 

 

   


  

 





    

and 

     
1

1

0 0

1 1
1

Б Б
d

d


 

 



 

 

     



 









    

Hence;  

             
1

1

1

0d
Б

d 

  



    









   

4.6 Degree Raising 

Definition 4.6.1 [18] Any Bezier curve of degree   (with control points  ) can be 

expressed in terms of a new basis of degree 1  .The new control point *

  are given 

by  

*

1 1
1 1

  

 
  

 


 
   

  
     0,1, , 1    

where 
1 1 0    . 

Proof.  From the property of degree raising of  Б

  (3.3.6), we have; 

   11
(1 )

1
Б Б 

 

 
 



 
 


 

and  
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                1

1

1
( )

1

n

iB t
n

Б




  







 

Degree raising, obtained by simply multiplying the equation of the degree 𝑛 of Bezier 

curve by  1 1      : 

     1            

            
0

1     Б


 



   


       

              
0

1    Б Б 









   


      

              
0

1  1 1






 



      
 


 





    
      

   
 


  

            
1

0

11 1



 







  
 







  



  
    
    
   




  

            1 1

1

0 1 1

1

Б Б











 

 

 


 

 









    
    
    

     
    

    

  

            1 1

1

0

!( 1 )! ! ( 1)!( )!

(

!

( )! ! 1)! !( )! ( 1)!
Б Б 

 






     





    


  

 





    
 

  


 
  

            
0

1 1

1

1 1

1 1
Б Б 

 








 









 





   



  

 
  

            1 1

1

0 0

1 1

1 1
Б Б

 
 

 

 


 


 




  



 

  


 
   

            1

0

1

1
1

0

1

1 1
Б Б

 
 

 














 





 

 



 


 
   

            
1 1

1 1

0 0

1

1

1 1
Б Б
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1

1

0

1( 1 )

1
Б 







  












   

  
 

  

   
1

* 1

0

Б




 



  






  

where; 

*

1 (1 )            ,   
1










 

In the next example we give degree raising of a cubic Bezier curve. 

Example 4.6.1: The degree raising of cubic Bezier curve for 3  , the new control 

points *

 are: 

*

0

*

1 1

1 3

4 4

o

o

 

  



 

 

*

2 1 2

*

3 2 3

*

4 3

2 2

4 4

3 1

4 4

  

  

 

 

 



 

We illustrate graphically in next figure. 
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Figure 4.7: Degree elevation of a cubic Bezier curve. 

4.7 The de Casteljau Algorithm 

The principal concept of de Casteljau`s algorithm is to choose a point C on a line 

segment AB such that C divides the line segment AB in the ratio of :1  . 
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Definition 4.7.1 [6] A curve  

       1 0
1 0

0 1

0

0 0 0

Б Б Б
 



  
  

 

         


  

        

where 

       1 1

11r r r

         

         
1, ...,

0, ,

r

r



 




 
 

  0

    . 

Then 
0 ( )   is the point with parameter value on the Bezier curve  . 

Proof. From the recursive formula of Bernstein polynomials (3.3), we obtain; 

       1

0 0

1

11Б Б Б
 

 

 

 



      









      

     1 1

1

1

0 1

1
n

i

Б Б






 




     


 

 

   

     1 1
1 1

1

0 0

1
n

i

Б Б






 




    
 

 



 

           1

1
1

0

1 Б








    





        

     
0

1
1

1Б








   




  

where  

       1 0 0

1 11 1                        for 0, , 1   . 

if we apply the same argument to the above Bezier curve; 

   
0

1
1

1Б








   




  

yields 

   
0

2
2

2Б
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where    2 1 1

11            for 0, , 2.     

In general, 

   
0

r
r

rБ








   




  

where        1 1

11r r r

       

      for 0, , .r    Taking r   yields 

   
0

0

0

.nrБ








   



   

 

Figure 4.8: De Casteljau algorithms of cubic Bezier curves. 

Next section we give matrix formulation of Bezier curve. 
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4.8 Matrix Formulation of Bezier Curve 

A curve of the form    
0

Б





   


  can be interpreted as a dot product; 

 

 

 

0

0

Б

Б













   

 
 

    
 
 

. 

In addition, 

 

 

0

0,0 0 0,

.0 ,

Б

Б

m m

m m





  















    
    

    
    

    

 

where,  

 , 1
j

j

j
m

j









   
    

  
          

0, ,

0, ,j

 






 

In the next examples, we give the matrix representation of Quadratic Bezier curve and 

Cubic Bezier curve. 

Example 4.8.1: 𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝐵𝑒𝑧𝑖𝑒𝑟 𝑐𝑢𝑟𝑣𝑒 

Let 2  ; 

       0 1

2 2 2

0 1 22Б Б Б         

Then, the matrix representation of quadratic Bezier curve is;     

   
 

 

2

0 1 2

2

1 0 0 1

2 2 0 2 1

1 2 1



      



  
  

    
     

 

Example 4.8.2: 𝐶𝑢𝑏𝑖𝑐 𝐵𝑒𝑧𝑖𝑒𝑟 𝑐𝑢𝑟𝑣𝑒 

Let 3  ; 

         0 1 2 3

3 3 3 3

0 1 2 3Б Б Б Б           

               
3 2 2 3

0 1 2 31 3 1 3 1                   
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Then, the matrix representation of cubic Bezier curve is;     

   

 

 

 

3

2

0 1 2 3
2

3

1 0 0 0 1

3 3 0 0 3 1

3 6 3 0 3 1

1 3 3 1
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Chapter 5 

GENERALIZED BEZIER CURVES BASED ON LUPAŞ 

𝒒-ANALOGUES OF THE BERNSTEIN OPERATOR 

5.1 Lupaş 𝒒-Analogues of the Bernstein Function 

The Lupaş 𝑞-analogue of the Bernstein operator introduced by George M. Philips [8] 

in 2010.  

Definition 5.1.1 [7] Let  0,1h C . The linear operator    , 0,1 0,1:qL C C   is 

defined by  

                         

 

 

  

 

 

1

2

,

10

1

1

;

1

q q

q

rk q

r

q

h h

q

 
 



 


 





 








 
    

 
 
  




                           (5.1) 

,n q
 is called the Lupaş 𝑞-analoque of the Bernstein operator.  

Definition 5.1.2 [7] Given a real number 0q  , the Lupaş 𝑞-analogues of the 

Bernstein functions of degree   defined by;  

               

   

 

1 /2

1

1

1

;

1

q

r

r

q

z q

q

   



 


 




 







 
 

 


 
,    0,1, ,  , [0,1]                      (5.2) 
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Example. The Lupas 𝑞-analogues of the Bernstein funtions of degree 3  ; 

 
 

     

3

3

0 2

1
;

1 1
z q

q q




   




   
 

 
   

     

22

3

1 2

1 1
;

1 1

q q
z q

q q

 


   

  


   
 

 
   

     

2 2

3

2 2

1 1
;

1 1

q q
z q

q q

 


   

  


   
 

 
     

3
3

3 2
;

1 1
z q

q q




   


   
 

We illustrate graphically in next figure. 

 

Figure 5.1: Lupas 𝑞-analogues of the Bernstein functions of degree 3 with 𝑞=0.5. 
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Figure 5.2: Lupas 𝑞-analogues of the Bernstein functions of degree 3 with 𝑞=6. 
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Figure 5.3: Lupas 𝑞-analogues of the Bernstein functions of degree 3 with 𝑞=1/6. 

In the next section, we give some general properties of the  ;z q

  . 

5.2 Properties of the Lupaş 𝒒-Analogues of the Bernstein Functions 

Theorem 5.2.1. [7] The Lupaş 𝑞-analogues of the Bernstein functions possess the 

following properties: 

1.Non-negativity [7]:  

 ; 0z q

   , 0,1, , ,  [0,1]  . 
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2. Partition of unit [7]:  

 
0

; 1z q










 , [0,1]  . 

Proof. From the 𝑞-analogue of Newton binomial theorem we have; 

      1 1 2

0

/
1  1   · · · 1   

q

qq q




 
 

  







 
     

 
       

           
       1 /2 1 /2

0 0

1 1
1

q q

q q

 
     

 

  
  

  

 

 

     
       

    
    

                                           11 1 1 1
1 1 1

q q
   


  

    
        

      
 

                   

 

 
   

     

1

1 1

1

1
1 1

1

1 1 1 r

r

q q

q q q











   



     



 




    



       

 

so 

     1 /2 1

0 1

1 1 r

rq

q q


   




   



 

 

 
    

 
   

and 

   

 

1 /2

0

1

1

1

1

1

q

r

r

q

q


   






 



 









 
 

 


 




 

3. End-point property [7]:  

 
1, 0,

0;
0, 0,

z q








 


  and  

1, ,
1;

0, ,
z q
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Proof. From the definition of the Lupaş 𝑞-analogues of the Bernstein functions possess 

the following properties: 

 

   

 

1 /2

1

0 1

0;

1

q

r

q

z q

   



 









 
 
 




    ,      0,1, , ,   

If 0     0; 1z q

  . 

and if  0      0; 0z q

  . 

Secondly from the definition of Lupas 𝑞-analogues of Bernstein function;  

 

   1 /2

1

1

1 0

1;
q

r

r

q

z q

q

   



 











 
 
 




     ,    0,1, , ,   

If      1; 1z q

  . 

and if        1; 0z q

  . 

4. q-inverse symmetry [7]:  

   ; 1 ;1/z q z q 

      , 0,1, ,  . 

Proof. From the definition of Lupas 𝑞-analogues of Bernstein function:                     
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1 /2

1/

1
1

1/ 1

1
1

q

r
r

q

q

   




 







 




 
 

 


 
 

 


 

hence 

 ; (1 ;1/ )z q z q 

      . 

5. Reducibility [7]:  

When 1q  , Lupas 𝑞-analogues of Bernstein function reduces to the classical 

Bernstein bases. 

Proof. If 1q   into the formula (5.2), we obtain 

 

   

 

1 /2

1

1

1 1

;1 ( )

1 1

q

r

r

z z

   

 

 


 


 

 







 
 

 
 

 
 

5.3 Degree Elevation and Reduction for the Lupaş 𝒒-Analogues of 

the Bernstein Functions  

Degree elevation technique for increase the flexibility of a curve. For degree 

elevation and reduction of Lupas 𝑞-analogues of the Bernstein functions, the 

following identities are very useful: 

            
 

 
 

 
 1

1; 1 ;
1 1

q

q

q
z q z q

q


 

 

 
 

  





 
  
   
 

                          (5.3) 

                   
 

 
 

 

 
 1

11
; ;

1 1

q

q

z q z q
q

 

 

 
 

  


  
 
   
 

                           (5.4) 
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Theorem 5.3.1[7] 𝐷𝑒𝑔𝑟𝑒𝑒 𝑟𝑎𝑖𝑠𝑖𝑛𝑔    

Each Lupaş 𝑞-analogue of the corresponding Bernstein function of degree   is a linear 

combination of two Lupaş 𝑞-analogues of the Bernstein functions of degree 1  . 

                     
 

 

 

 
1 1

1

1
; ( ; ) 1 ( ; )

1 1

q q

q q

z q z q z q  

  

   
  

 

 



   
   
  
 

                  (5.5) 

Proof.       

   ; ; 1
1 1

q q
z q z q

t q q

 
 

   

 
 

  

 
   

    
 

   
1

;
1 1 1

q q q
z q

q q q

  


   

   


     

  
   

      
 

              

   

 

   

 

1 /2 1 /2

1 1

1 1

1 1
1

1 1
1 1

q q

r r

r r

q q
q

q q
q q

       



  

 
   

  

   
   

  

 

 

   
    

    
 

   
    

 

Using formula (5.3) and (5.4), we obtain; 

 

 

 

 
1 1

1

1
( ; ) ( ; ) 1 ( ; ).

1 1

q q

q q

z q z q z q  

  

   
  

 

 



   
   
  
 

 

Theorem 5.3.2 [7] 𝐷𝑒𝑔𝑟𝑒𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

Each Lupaş 𝑞-analogue of the Bernstein function of degree   is a linear combination 

of two Lupaş 𝑞-analogues of the Bernstein functions of degree 1  .  

 
 11

1 1

1 1

1( ; ) ( ; ) ( ; ) , 0,1, ,
1

1 1

qq
i z

q
z q zq q

q



  





  


  

   

 

 




 




   
 ,      (5.6) 

  1 1

1

1

1 1
( ; ) ( ; ) ( ;

1
) , 0,

1
,

1
1,z q q

q
ii z z

q q
q


  

   

 
 

   
   





 


 

   
,      (5.7) 
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Proof.  

(𝑖)  If we use the definition of 𝑞-binomial coefficients of the Pascal-type relations  

(2.18) and formula (2.18a), we obtain the following equality: 

   

 

1 /2

1

1

1 1
1

1
( ; )

1

q q

r

r

q q

z q
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1 1

q q

r r

r r

q q q

q q

        

 

 
   

 

   

  

 

 

    
    

   
 

    
 

Hence 

 1 1
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1

1
( ; ) ( ;

1
(

1 1
) ; )

qq t
z

q q
z q q b q  





 



   
  



 

 

 


   
. 

(𝑖𝑖)  If we use the definition of 𝑞-binomial coefficients of the Pascal-type relations  

(2.18) and formula (2.18b), we obtain the following equality: 
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5.4 Lupaş 𝒒-Bezier Curves 

Definition [7] 𝐿𝑢𝑝𝑎ş 𝑞 − 𝐵𝑒𝑧𝑖𝑒𝑟 𝑐𝑢𝑟𝑣𝑒𝑠  

Given a set of control points  0 , ,    where dR   0,1, ,   and 0,q 

the Lupaş 𝑞-Bezier curves of degree   is: 

                                                 
0

; ;q z q




 


   


                                             (5.8) 

where  

      

   

 

1 /2

1

1

1

;

1

q

r

r

q

z q

q

   



 


 




 







 
 

 


 
  and   0,1  . 

 

Figure 5.4: The effect of the shape of cubic 𝑞-Bezier by 0 1q  . 
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Figure 5.5: The effect of the shape of cubic 𝑞-Bezier by 0 1q  . 

 

Figure 5.6: The effect of the shape of cubic 𝑞-Bezier 1q  . 
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In the next section we will discuss some basic properties of Lupaş 𝑞-Bezier curves. 

5.4.1 Properties of Lupaş 𝒒-Bezier Curves 

Property 5.4.1.1 [7] Lupaş 𝑞-Bezier have geometric and affine invariance. 

Proof. Since,  ;z q

   are partition of unity,  ;q  is affine invariant. Let   is an 

affine transform in dR , then 

                             
0 0

; ; ;q z q A z q v
 

 

   
 

       
 

 
   

 
   

                    
0 0

; ;A z q z q v
 

 

  
 

  
 

    

                                            
0

;A v z q




 


 


   

           
0

;z q




  


  


  

Property 5.4.1.2 [7] Lupaş 𝑞-Bezier curves lie inside the convex hull of its control 

polygon. 

Proof. Every point in the  ;q  has the following terms; 

   
0 0 1 1x x x          with       ;x z q

   . 

Furthermore, from the property 3.3.4 (non-negative) and property 3.3.5 (partition of 

unity),  ;q   is convex combination of the 
0 1, , ,    . 

Property 5.4.1.3 [7] 𝑇ℎ𝑒 𝑒𝑛𝑑 − 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦  

  00,q   

 1;q    

 

 

 



58 

 

Proof. From formula (5.8); 

                   0 0 1 1

0

; ; ; ; ;q z q z q z q z q


   

   


         


               (5.9) 

For 0   into (5.9), yields 

   0 00; 0;q z q   

Due to the end-point property of Lupas 𝑞-analogues of the Bernstein functions, we 

obtain the following result; 

  00;q   

Similarly, if we substitute 1   into (5.8), we obtain; 

   
0

1; 1;q z q




 


 


  

From the end-point property of Lupas 𝑞-analogues of the Bernstein functions. Hence, 

 1;q    

Property 5.4.1.4 [7] 𝑞 − 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦  

The Lupaş 𝑞-Bezier curves obtained by reversing the order of the control points are 

the same as the Lupaş 𝑞-Bezier curves with 𝑞 replaced by 1/𝑞. 

Proof.  

   Let  *

      , 0,1, ,  , then 

     * *

0 0

; ; ;q z q z q
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1
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then 
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1 /2

*

10

1

1

;

1

q

r

r

q

q

q

     



 



 

 
  

 

   





 
 

 


 




 

From the definition of the Lupaş 𝑞-analogues of the Bernstein function, we obtain; 

        *

0

; 1 ;1/ 1 ;1/q z q q




 


     


    . 

 

Figure 5.7: The effect of the shape of cubic 𝑞-inverse symmetry of Lupas 𝑞-Bezier 

curve for 𝑞=1/5 by 0 1q  . 
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Figure 5.8: The effect of the shape of cubic 𝑞-inverse symmetry of Lupas 𝑞-Bezier 

curve for q=1/23 by 0 1q  . 

Property 5.4.1.5 [7] 𝑅𝑒𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

It is easily seen that when 1q  , the Lupas 𝑞-Bezier curve (5.8) reduces the classical 

Bezier curves (4.1). 

Theorem 5.4.1.6 [7] 𝑇ℎ𝑒 𝑒𝑛𝑑 − 𝑝𝑜𝑖𝑛𝑡 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑜𝑓 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 

     1 00;`
q

q     ,       
 

 11
1;` q

q
q

 


   

  , 

i.e. Lupaş 𝑞-Bezier curves are tangent to fore-and-aft edges of its control polygon at 

end points. 

Proof. From the definition of Lupas 𝑞-Bezier curve (5.8): 
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q z q
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Then 

     ; ; ;q L q S q    . 
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If we take derivatives of both sides with respect to  , we obtain the following result; 

                               ' ' '; ; ; ; ;q L q q L q S q        .                      (5.10) 

Let      1 /2
; 1

q

d q q
   




  



 
  
 

, then 

       1 /2

0 0

; 1 ;
q

S q q d q
 

    

  
 


     





 

 
   

 
   

From the extension of Newton`s binomial formula, we obtain; 

   
0

; ;L q d q




 


  


 . 

Due to 

          
' 11 /2 1 /21; 1 1

q q

d q q q
        



 
      

 

      
          

   
  (5.11) 

Besides that, we know the following equalities; 

 

 

1

1

q

q qq

 

 

   
   

   
    

 

 

1q

q qq

 

  

   
   

   
 

So (5.11) becomes; 

 
 

 
   

 

 
    

' 11 /2 1 /21
1 1

; 1 1
1

q q

q qq q

d q q q
        



  
      

   

   
    

               
     

            1 1

1 ; ;e d q g d q   

      

   

where 
 

 

 

 
1 ,

q q

q q

e q g  

 

 
 

 

  . 

Then; 

   00; , 0; 1S q L q   
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   ' '

1 1 0 10; , 0;S q e g L q e g   

       

Therefore (5.10) becomes; 

         ' ' '0; 0; 0; 0; 0;q L q q L q S q    

   '

0 1 1 1 00;q e g e g   

         

 '

1 1 0 1 0 00;q e g e g   

          

   '

1 1 00;q e     

where   

 1 q
e   

Secondly we calculation same steps for 1  ; 

       1 /2 1 /2
1; , 1;S q q L q q

   


 

   

             1 2 /2 1 2 /2' '

1 1 11; , 1;S q e g q L q e g q
      

    
   

    . 

Finally again (5.10) becomes; 

         ' ' '1; 1; 1; 1; 1;q L q q L q S q    

             1 /2 1 2 /2 1 2 /2'

1 1 11;q q e g q e g q
        

       
    

     

 
    

 

1 2 /2

1 1 1'

1 /2
1;

e g e g q
q

q

    

     

 

   


 





  
  

   ' 1
11

1;
g

q
q



 
   

  . 

where 

  1 q
g  . 
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Theorem 5.4.1.7 [7] “Planar Lupas 𝑞-Bezier are variation diminishing, which the 

number of intersection points of any straight line with a Lupas 𝑞-Bezier is at most 

the number of intersection points of same straight line with control polygon.” 

Proof. In this proof 
   0,L

Z g



  

    denote the number of roots of any polynomials 

 g  on the interval 𝐿. For vector  0 1, , ,V v v v  and  0 1, , ,S v v v


 to 

demonstrate the exact sign changes number in the or 𝑉. Due to  1, , , m   is totally 

positive on  0,1 , then for any sequence of real numbers 0 1, , , mb b b , 

           0 1 0 1 0 1 0 1, , , .Z b b b S b b b S b b b 

       

 
                   

Let   denote a planar  ;q  , 𝑌 is any straight line, and let  ,L Y the number of 

times  crosses 𝑌. Establish the rectangular coordinate system whose abscissa axis is 

𝑌. Because curves are geometric invariant, we can denote  ,k kr s  0,1, ,k m  the 

new coordinates of the control points. Let 𝑍 denote the control polygon and  ,L Z Y  

the number of times 𝑍 crosses 𝑌. Then, we will prove that    , ,L Y L Z Y  . 

We make a parameter transformation. Let 
1








,  0,1  , so that  0,  . 

Then 
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      0 1 0 1, , , , , , , ,
0 1

m m

q q q

m m m
L Y S y y y S y y y L Z Y

m
  

      
               

 

5.4.2 Degree Elevation for Lupaş 𝒒-Bezier Curves 

Definition 5.4.2.1: [7]  𝐷𝑒𝑔𝑟𝑒𝑒 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 

Any Lupas 𝑞-Bezier curves of degree   with control points   can be expressed of a 

new basis of degree 1  . The new control point *

  are given by 
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1 1
1

1 1

q q

q q

  

   
  

 


    
   
  
 

,    0,1, , 1   ,                   (5.12) 

Note that 
1 1 0    . 

Proof.  From the definition of Lupas 𝑞-Bezier curve (5.8), we have; 
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; ;q z q




 


   


  

From the degree elevation of the Lupas 𝑞-analogues of the Bernstein functions(5.5), 

we obtain; 
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Where; 
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Next section, we give the matrix representation of degree elevation of  ;q  . 

5.4.2.1 Matrix Representation of Degree Elevation of Lupaş 𝒒-Bezier Curves 

Let  0 1, , ,
T

     indicate the vector of control points of the initial Lupas 𝑞-

Bezier curve of degree  , and    1 * * *

0 1 1, , ,      shows that the control points of 

the degree elevated Lupaş 𝑞-Bezier curve  of degree 1  . 

Firstly, we apply the degree elevation algorithm of Lupas 𝑞-Bezier curves (formula 

(5.12), we obtain following results: 
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Then, the degree elevation procedure of for Lupas 𝑞-Bezier curves of degree 1   can 

be represented as the following: 

 1

1T   
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Generally; r N  , the degree elevated of Lupas 𝑞-Bezier curve of control points of 

degree 1   is: 

 
1 2 1

r
T T T P      . 

As r  , the control polygon  r
  converges to a Lupas 𝑞-Bezier curve. 
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5.4.3 De Casteljau Algorithm for Lupaş 𝒒-Bezier Curves 

Lupaş 𝑞-Bezier curves of degree   can be written as two kinds of linear combination 

of two Lupaş 𝑞-Bezier curves of degree 1  . 

Definition 5.4.3.1 [7] 𝐷𝑒 𝐶𝑎𝑠𝑡𝑒𝑙𝑗𝑎𝑢 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠  

A curve 
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Proof. From the degree reduction of  ;z q

  formula (5.7), we have; 

           1 1

1

0 0

; ; 1 ; ;q z q z q z q
 

  

    
 

         



 

             

       
1

1 1

1

0 1

1 ; ;z q z q
 

 

   
 

     


 



 

     

       
1 1

1 1

1

0 0

1 ; ;z q z q
 

 

   
 

     
 

 



 

     

   
1

1

1

0

1 ;z q




  


    








      

 
1

1 1

0

;z q




 


 






  



68 

 

where 

              1 0 0

1 11 1                       for  0,1, , m 1k   . 

If we apply same argument to the above to  ;q  ; 
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Figure 5.9: The de Casteljau algorithms of cubic Lupas 𝑞-Bezier curves for 𝑞=2. 

To next section, we investigate the matrix representation of de Casteljau algorithm for 

Lupas 𝑞-Bezier curves. 

5.4.3.1 Matrix Representation of De Casteljau Algorithm for Lupaş 𝒒-Bezier 

Curve 

Let  0

0 1, , ,
T

    ,  0 1, , ,
T

r r r r

r     , if we apply the de Casteljau 

algorithm of Lupaş 𝑞-Bezier curve(5.13), we get the following result; 
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Secondly, if we apply the de Casteljau algorithm of Lupaş 𝑞-Bezier curve(5.14), we 

get the following result; 
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then the De Casteljau algorithm procedure of Lupas 𝑞-Bezier curves can be expressed 

as; 

        0

2 1; ; ; ;r

rq M q M q M q       

where  ;rM q  is a    1 2r x r      matrix. Then; 
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