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ABSTRACT 

Fingerprint detection in biometrics is an important field of study in our new modern 

world, many forensic departments around the world use fingerprints as the key to 

detect criminals and bring them justice. To improve the accuracy of fingerprint 

detection system we implemented a Real Fingerprint Detection System (RFDS) that 

has high performance level of detecting real and fake fingerprint images. In this thesis, 

we present an RFDS system based on image quality measures (IQM’s) to detect real 

fingerprint images and fake fingerprint images. We performed different RFDS 

experiments with 25, 10, 15, and 5 IQM’s; they showed sufficient quality of real and 

fake fingerprint images detection. We compared our RFDS using 25, 15, 10, and 5 

IQM’s with RFDS that has used 25 IQMs. Based on the comparison in this thesis we 

can conclude that the best result from all these RFDS is the one with 25 IQMs, because 

it’s HTER score is the minimum one with 0.3%, and the worst RFDS is the one with 

the 15 IQMs which has the maximum HTER score with 14.8%.  

Keywords: Biometrics, Image Quality Measure, Real and Fake Fingerprint Image, 

Classifier. 
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ÖZ 

Biyometride parmak izi tespiti, yeni modern dünyamızda önemli bir çalışma alanıdır, 

dünyadaki birçok adli departman, suçluları tespit etmek ve adalet getirmek için parmak 

izi kullanmaktadır. Parmak izi algılama sisteminin doğruluğunu artırmak için, gerçek 

ve sahte parmak izi görüntülerini algılamada yüksek performans seviyesine sahip bir 

Gerçek Parmak İzi Algılama sistemi (RFDS) uyguladık. Bu tezde, gerçek parmak izi 

görüntülerini ve sahte parmak izi görüntülerini tespit etmek için görüntü kalitesi 

ölçümlerine (IQM'ler) dayanan bir RFDS sistemi sunuyoruz. 25, 15, 10 ve 5 IQM'lerle 

farklı RFDS deneyleri gerçekleştirdik; yeterli kalitede gerçek ve sahte parmak izi 

görüntüleri algılama özelliği gösterdiler. 25, 15, 10 ve 5 IQM kullanarak RFDS'imizi 

25 IQM kullanan RFDS ile karşılaştırdık. Bu tezdeki karşılaştırmaya dayanarak, tüm 

bu RFDS'lerden en iyi sonucun 25 IQM'ye sahip olduğu sonucuna varabiliriz, çünkü 

HTER puanı % 0.3 ile en düşük olanıdır ve en kötü RFDS ise %14.8 HTER puanı ile 

15 IQM'ye sahip olanıdır. 

Anahtar Kelimeler: Biyometri, Görüntü Kalitesi Ölçüsü, Gerçek Ve Sahte Parmak 

Izi Görüntüsü, Sınıflandırıcı. 
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1. Chapter 1 

INTRODUCTION 

Biometric recognition system is a mixture of hardware and software means used to 

differentiate and identify individuals [1]. Biometric recognition system obtains data 

such as fingerprint image of an individual, and then applies comparison to the image 

against the stored fingerprint images in the database. If the input fingerprint image 

matches one of the available images in the database, the system will accept it as Real 

image, otherwise it will be considered as Fake and will be rejected by the system. A 

biometric recognition system offers a natural and consistent solution to the problems 

of individual identification [1]. 

We can categorize the biometric methods used by biometric systems into two classes 

[2]: 

1.  Physiological-based methods use face, fingerprint, voice, retinal, DNA analysis, and 

measure the physiological characteristics of a person.   

2.  Behavior-based methods use signature, key stroke analysis and measure behavioral 

characteristics. 

Biometric recognition systems can work in two modes: 

§  Identification Mode: The system recognizes a person searching a large database of 

registered ones for a match. 



 

 2 

§  Verification Mode: The system confirms a person's claimed identity from his 

previous registered pattern. 

1.1 Definition of Common Biometric Terms [3] 

§  Enrollment or Registration: The individual’s biometric data are obtained, 

processed and saved as a template for ongoing usage in a biometric system; this is 

known as enrollment, or registration process. The template will be used for 

identification or verification in further stages. 

§  Biometric Data: Any data related to the physiological and behavioral characteristics 

of an individual is known as biometric data, which can also be referred as raw 

biometric data. 

§  Presentation: In this procedure, the individual presents his or her biometric data to 

the hardware that is used to gather data. For example, placing your finger on a 

biometrical sensor. 

§  Feature Extraction: The procedure of finding and encoding unique characteristics 

from biometric data in order to produce a template is known as feature extraction. 

Feature extraction takes place during enrollment and verification stage. 

§  Image Quality Measures (IQM’s): Mathematical measures applied to identify the 

quality of the image such as its color accuracy, noise, and sharpness, the results we get 

from the iqms assist us to identify or verify if the image is real or fake [4].  
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§  Classification: A saved template will be compared with other templates during 

identification or verification stage. Based on the comparison we can classify if the 

individual is verified or not. 

1.2 Fingerprint Detection Systems 

Fingerprint is unique for every individual; they are mainly used for identifying 

individuals. Real fingerprint detection systems (RFDS) are one of the most known 

biometric systems used in many applications such as border control and forensic 

department. RFDS are systems that identify or verify any fingerprint image fed to the 

system as real or fake image. Rfds systems are described in [6], [18], [19], [20], and 

[21]. RFDS performance is very critical, any failure can cause harm to individuals and 

governments. For example, detecting the innocent individual’s fingerprint as the 

criminal, or passing the border control of a country with another individual’s 

fingerprint, and system will detect it as true and make you pass the border control. 

These kinds of problems shouldn’t occur as they will cause injustice and security 

problems to individuals and the governments. Based on this major problem, we chose 

RFDS as our main area of study in this thesis. We will show different RFDS algorithms 

and implement the best of them, in which we will try to reduce the amount of wrong 

fingerprint detection as minimum as possible.   

1.3 Key Terms Used in Fingerprint Images Analysis 

1.  Ridge ending: the point, at which the ridge terminates, shown in figure 1, a. 

2.  Ridge bifurcation: when one ridge splits in-to two or more ridges, shown in figure 

1, b.  

3.  Minutiae: major features of a fingerprint like ridge endings and ridge bifurcations.  
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Figure 1: Fingerprints ridge ending (a) and ridge bifurcation (b) [5]. 

1.4 Summary  

In this thesis, we implement a real fingerprint detection system (RFDS) using feature 

extraction and classification algorithm to classify the registered or enrolled fingerprint 

image. In Chapter 2, we review known fingerprint detection systems and define the 

problems. In Chapter 3, we show the general diagram of the RFDS, its implementation, 

classification algorithm used, and defining the best 10 and 5 IQMs. In chapter 4, we 

describe the experiments conducted on RFDS, steps taken for applying these 

experiments, and the results obtained. Chapter 5 contains the conclusion of the thesis 

and future work.  
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2. Chapter 2 

ANALYSIS F KNOWN RFDS AND PROBLEM 

DEFINITION 

In this chapter, we analyze some known rfds and list their experimental results. We 

also list the problems to be analyzed and tested in this thesis. 

2.1 Analysis of Known RFDS 

2.1.1 Image Quality Assessment for Fake Biometric Detection: Application to 

Iris, Fingerprint, And Face Recognition [6] 

In RFDS, they input images and extract their features using 25 IQMs; then, these 

images will be classified on Real/ Fake. The details of how RFDS works are as follows 

[6]: 

1.  Training model should be created by feeding in to the system with good amount of 

real and fake biometric images of users. The images fed to system for creating the 

training model are known as the training data. The explaniation of how the training 

model is created is in Chapter 3, section 3.2.3. Once the training model is created, it is 

exported to the system making the system ready to predict between real and fake 

images based on the training model.  

2.  Image enrolment, input some (Real or Fake) gray scale image to the system for 

identification. 

3.  Features of the input image will be extracted by the system using the IQM’s. 
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Classification of the input image, the system will classify if the fingerprint image is 

real or fake image based on the training model exported to it. Steps of the classification 

implementation are in 3.2.4. Image quality measures in [6]. 

In RFDS [6], 25 image quality measures have been used split into two parts: 21 of the 

measures are full reference image quality measurements (image quality measure that 

requires  a reference of similar biometric image type to determine the quality level of 

the image fed to the system), and 4 are no reference image quality measures (they don’t 

require a reference of similar biometric image type to determine the quality level of an 

image). Full reference image quality measures to extract the quality features of the 

original image and enhanced image (original image with adjusted noise is known as 

enhanced image); no reference image quality measures evaluate the state of the 

original image inputted to the system. Next we describe the 25 image quality measures 

used. 

2.1.2 Full Reference (FR) Image Quality Measures Used In [6] 

1.  Mean Squared Error (MSE): It calculates the sum of squared difference (error) 

between the original image (I) and the enhanced image (Ῑ). The mean squared error 

formula (2.1) [7]. 

MSE (I. Ῑ) = !
"#

∑ ∑ (𝐼$,& − Ῑ$,&)'#
&(!

"
$(! .                                                                          (2.1) 

Where m, n is the number of columns and rows original image has. 

2.  Peak Signal-To-Noise Ratio (PSNR): It calculates the ratio between the signal 

power and distortion noise. The peak signal to noise ratio formula (2.2) [8,9]. 

PSNR (I, Ῑ) =10 𝑙𝑜𝑔!)(*+,	(/
!)

#12(/,Ῑ)
).                                                                                   (2.2) 
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3.  Signal-To-Noise Ratio (SNR): Calculates the ratio of power in the input signal to 

the ration of the noise power, SNR can be defined as the ratio of wanted information 

to unwanted. Signal-To-Noise Ratio formula (2.3) [10]. 

SNR (I, Ῑ) = 10	𝑙𝑜𝑔!) (
∑ ∑ (5",$)!%

$&'
(
"&'

"∙#.#12(5,Ῑ)
).                                                                         (2.3) 

4.  Structural Content (SC): Calculates the sum of the original image (I) pixel values 

squared divided by the sum of the enhanced image pixel values (Ῑ) squared. Structural 

content formula (2.4) [11]. 

SC (I,Ῑ) = 
∑ ∑ (5",$)!%

$&'
(
"&'

∑ ∑ (Ῑ",$)!%
$&'

(
"&'

 .                                                                                             (2.4) 

5.  Maximum Difference (MD): Calculates absolute maximum difference of the 

original image (I) pixel values subtracted with enhanced image (Ῑ) pixel values. 

Maximum difference formula (2.5) [11]. 

MD (I,Ῑ) = Max |𝐈$,& − Ῑ$,& |.                                                                                        (2.5)  

6.  Average Difference (AD): Calculates sum of difference of original image (I) 

subtracted with enhanced image (Ῑ) divided with total pixels amount the image has. 

The average difference formula (2.6) [11]. 

AD (I,	Ῑ) = !
"#

∑ ∑ (𝐼$,& − Ῑ$,&)#
&(!

"
$(! .                                                                        (2.6) 

7.  Normalized Absolute Error (NAE): Calculates sum of absolute difference of the 

original image (I) subtracted with the enhanced image (Ῑ) and divided with sum of 

absolute pixel values of the original. The normalized absolute error formula (2.7) [11]. 

NAE (I,	Ῑ) = 
∑ ∑ |/",$9Ῑ",$|%

$&'
(
"&'
∑ ∑ |/",$|%

$&'
(
"&'

 .                                                                                     (2.7) 

8.  R-Averaged Maximum Difference (RAMD): Calculates the maximum difference 

summation of R between the between the original image (I) and the enhanced image 

(Ῑ) averaged by R value. The R-averaged maximum difference formula [7] (2.8). 
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RAMD (I,	Ῑ,r)= !
:
∑ 𝑚𝑎𝑥;|𝐼$,& − Ῑ$,&:
;(! |.                                                                    (2.8) 

Where the value of R is the number of times we iterate and select the maximum 

difference between the pixel of the original and enhanced images. 

9.  Normalized Cross Correlation (NCC): Calculates the sum of multiplying the 

original image (I) and the enhanced image (Ῑ), divided by the sum squared of the 

original image (I). the normalized cross correlation formula (2.9) [11]. 

NCC (I,	Ῑ) = 
∑ ∑ (/",$.Ῑ",$)%

$&'
(
"&'
∑ ∑ (/",$%

$&'
(
"&' )!

 .                                                                                        (2.9) 

10.  Total Edge Difference (TED): Calculates the total sum of absolute value of edge 

difference between the original image (I) pixel values and the enhanced image (Ῑ) pixel 

values, averaged by total number of pixels in the image. Total edge difference formula 

(2.10) [12]. 

TED (I,	Ῑ) = !
"#

∑ ∑ |𝐼2$,& − Ῑ2$,&|#
&(!

"
$(!  .                                                                    (2.10) 

Where 𝐈𝐄𝐢,𝐣	 is total number of corners in the original image (I), Ῑ?@,A is total number of 

corners in the enhanced image (Ῑ). 

11.  Total Corner Difference (TCD): Calculates the total sum of absolute value of 

corner difference between the original image (I) pixel values and the enhanced image 

(Ῑ) pixel values, and then averaged by the maximum number of corners in the image. 

The total corner difference formula (2.11) [12] 

TCD (I,	Ῑ) = |")*9	"B)*|
*+,	(")*,"B)*)

 .                                                                     (2.11) 

Where NCR is total number of corners in the original image (I), 𝑁1C; is total number 

of corners in the enhanced image (Ῑ).  
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12.  Spectral Phase Error (SPE): Calculates the sum of phase error between the 

original image (I) and the enhanced image (Ῑ) squared in the fourier transform and 

divided by the total number of pixels in the image. Fourier transform transforms 

original/enhanced image to the fourier domain, where each point represents a 

particular frequency contained in the image [13]. The spectral phase error formula 

(2.12) [14]. 

SPE (I,	Ῑ) = !
"#

∑ ∑ |Arg5𝐹$,&7 − arg	(𝐹9$,&)|'#
&(!

"
$(! .                                                 (2.12) 

Where 𝑎𝑟𝑔(f5,A) is the phase of the original image, and 𝑎𝑟𝑔(𝐹9$,&) is the phase of the 

enhanced image. 

13.  Spectral Magnitude Error (SME): Calculates the total sum of absolute value of 

the difference between the original image (I) and the enhanced image (𝐼)̅ in the fourier 

transform averaged by the total number of pixels in the image. The spectral magnitude 

error formula (2.13) [14]. 

SME (I,	ı)̅ = !
"#

∑ ∑ (|𝐹$,&| − |F1$,&|#
&(!

"
$(! )'.                                                               (2.13) 

Where (|fi, j|-|fi̅, j|) is the absolute value of difference between two vectors of the 

original image (I) and enhanced image(Ῑ) in the fourier transform. 

14.  Gradient Phase Error (GPE): Calculates the sum of phase error between the 

original image (I) subtracted from the original image (Ῑ) squared in the gradient 

transform and divided by the total number of pixels in the image. Gradient phase error 

formula (2.14) [15]. 

GPE (I, Ῑ) = !
"#

∑ ∑ |Arg5𝐺$,&7 − Arg5𝐺̅$,&7 |'#
&(!

"
$(! .                                                 (2.14) 
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Where 𝑎𝑟𝑔(g5,A) is the gradient phase of the original image (i), 𝑎𝑟𝑔(G15,A) is the gradient 

phase of the enhanced image (Ῑ). 

15.  Gradient Magnitude Error (GME): Calculates the total sum of absolute value 

of the difference between the gradient of the original image (I) and the gradient of the 

enhanced image (Ῑ) averaged by the total number of pixels in the image. Gradient 

magnitude error formula (2.15) [15]: 

GME (I, Ῑ) = !
"#

∑ ∑ (|𝐺$,&| − |𝐺̅$,&|)'#
&(!

"
$(! .                                                         (2.15) 

Where gi, j is the gradient of the original image, and ’gi, j is the gradient of the 

enhanced image. 

16.  Mean Angle Similarity (MAS): The mean angle that calculates the similarity 

between the original image (I) and the enhanced image (I). The mean angle similarity 

formula (2.16) [7]: 

MAS (I,	Ῑ) = 1 − !
"#

∑ ∑ (𝛼$,&)#
&(!

"
$(! .                                                                     (2.16) 

Where 𝜶𝒊,𝒋	 the angle of  the original/enhanced image. 

17.  Mean Angle Magnitude Similarity (MAMS): The mean angle calculates the 

magnitude similarity between the original image (I) and the enhanced image (I). The 

mean angle magnitude similarity formula (2.17) [7]: 

MAMS (I,	Ῑ) =	 !
"#

∑ ∑ (1 − [1	 − 𝛼$,&][1 −
||5",$9Ῑ",$||

'FF
])#

&(!
"
$(! .                                (2.17) 

18.  Laplacian Mean Squared Error (LMSE): Calculates the sum of ratio between 

the original image(I) and the enhanced image (I) to the original image squared, 

h(ii, j) = 	ii + 1, j	 + ii − 1, j	 + ii, j + 1	 + 	ii, j − 1	– 	4ii. The laplacian mean squared 

error formula (2.18) [11]: 
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LMSE (I,	Ῑ) = 
∑ ∑ (G(5",$)	9%+'

$&!
(+'
"&' G(Ῑ",$))!

∑ ∑ G(5",$%+'
$&!

(+'
"&' )!

 .                                                                      (2.18) 

19.  Structural Similarity Measures (SSIM): It’s a quality measure when one single 

image is contrasted and the other image is still with its original quality, SSIM is an 

upgrade widespread index.  

(Available in [16] and implemented in [17]). 

20.  Visual Information Fidelity (VIF): Considers that the real images are on scenes 

defined as natural and according to this the type of properties should be the same. 

(Available in [18] and implemented in [17]). 

21.  Reduced Reference Entropy Difference (RRED): It’s a quality measure that 

extracts some local information of a given sample by processing as a wavelet. 

Speculation of the sample can’t be seen in samples in nature.  

(Available in [19] and implemented in [17]). 

22.  High Low Frequency Index (HLFI): Concerned with sharpness and functions by 

the estimation of the power between the low and up frequency actions of a fourier 

spectrum.  

(Available in [20] and implemented in [17]). 

23.  Jpeg Quality Index (JQI): Evaluation of the distorted image qualities by a known 

closed artificial initiated comparing algorithm at a decreased number of bit rate like 

jpeg.  

(Available in [21] and implemented in [17]). 
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24.  Blind Image Quality Index Measures (BIQI): The basic idea of this measure is 

that clear original images present some common properties if calculated accurately, 

divergence of the uniformity in the given statistics in nature is able to estimate the 

given image quality. BIQI is used for the train image in the past.  

(Available in [22] and implemented in [17]). 

25.  Natural Image Quality Evaluator (NIQE): This quality measure evaluates the 

blind image quality feature when extracting the features of statistics associated to many 

alterations producing quality information.  

(Available in [23] and implemented in [17]). 

2.1.3 Classifiers Used in [6] and Our RFDS 

Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) are 

used in [6] to classify fingerprint images if they real or fake. 

§  Linear Discriminant Analysis (LDA): a method used in statistics, pattern 

recognition and machine learning to find a linear combination of features that 

characterizes or separates two or more classes of objects or events. The resulting 

combination may be used as a linear classifier or, more commonly, for dimensionality 

reduction before later classification [24]. 

§  Quadratic Discriminant Analysis (QDA): QDA is closely related to linear 

Discriminant Analysis (LDA), where it is assumed that the measurements are normally 

distributed. Unlike LDA however, in QDA there is no assumption that the covariance 

(the measure of how much two or more random variables differ) of each of the classes 

is identical. To estimate the parameters required in quadratic discrimination more 

computation and data is required than in the case of linear discrimination [25]. 
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§  Linear Support Vector Machine (LSVM): use 3 or 4 support vectors to obtain the 

optimum boundary between features. For example, we will use 3 support vectors s1, 

s2, and s3. 

Ŝ1=M
2
1
1
O, Ŝ2=M

2
−1
1
O, And Ŝ3 = M

4
0
1
O. 

Find 3 parameters α1, α2, and α3 based on the following 3 linear equations: 

Α!Ŝ!. Ŝ! + Α'Ŝ'. Ŝ! + ΑHŜH. Ŝ! =	−1	(−𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑐𝑙𝑎𝑠𝑠) 

Α!Ŝ!. Ŝ' + Α'Ŝ'. Ŝ' + ΑHŜH. Ŝ' =	−1	(−𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑐𝑙𝑎𝑠𝑠) 

Α!Ŝ!. ŜH + Α'Ŝ'. ŜH + ΑHŜH. ŜH =	+1	(+𝑝𝑜𝑠𝑡𝑖𝑣𝑒	𝑐𝑙𝑎𝑠𝑠) 

Substitute the values for ŝ1, ŝ2, and ŝ3 in the above equations, after simplification of 

the quations above we get: 

6α!+ 4α'+ 9αH =	−1 

4α!+ 6α'+ 9αH =	−1 

9α!+ 9α'+ 17αH = +1 

Simplifying the above 3 simultaneous equations we get: 

 α! =	Α' =	−3.25	𝑎𝑛𝑑	αH = 3.5. 

Now we will get the boundary using these three parameters. The boundary between 

two classes is called hyper plane(ŵ), it discriminates the positive class form the 

negative class. 

 ŵ = ∑ 	α$$ Ŝ$ . 

Ŵ = (-3.25).M
2
1
1
O + (-3.25).M

2
−1
1
O + (3.5).M

4
0
1
O = M

1
0
−3
O . 

The vectors are augmented with a bias; we can equate the entry in ŵ as the hyper plane 

with an offset b, therefore the separating hyper plane equation, x and y points on co-

ordinate axis (x1, y1) (x2, y2). 
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Y= wx + b.                                                                                                                (2.19) 

W = `10a  and offset b = -3. This is the expected decision boundary for the linear svm. 

  
Figure 2: The boundary between two classes (Hyper Plane(Ŵ)). 

§  Logistic Regression: Logistic regression predicts whether something is True or 

False, instead of predicting something continuous like size. Logistic regression 

doesn’t fit a line to the data, instead it fits an “s” shaped “logistic function”, where the 

“s” curve goes from 0 to 1, which means the curve tells us the probability that a 

fingerprint is Fake or not based on its IQM result. 

  
Figure 3: 'S' shaped logistic function. 
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If the probability a fingerprint is fake is above 50% then we classify it as fake, 

otherwise we will classify it as real.  

§  Fine KNN (K-Nearest Neighbors): Fine KNN is a simple way to classify data, if 

you already had a lot of data that classify the fingerprint, we could use fine KNN to 

decide which type of class the new fingerprint image(New Cell) belongs to, to be more 

clear here is an example:  

  
Figure 4: A new cell (fingerprint image) with unknown category to classify.  

In figure 4, we added a new cell with unknown category, and we want to classify this 

new cell. We want to figure out what cell it’s most similar to it, then we are going to 

call it that type of cell. In fine KNN, the new cell will be classified by looking at its 

nearest neighbors. If “k” in “K-Nearest Neighbors” is equal to 1, then we only use the 

nearest neighbor to define the category, and in our example the category is red for the 

new cell because the nearest neighbor is also red. 

2.1.3.1 RFDS Experiments In [6] 

Experiment was implemented on a system with 64-bit operating system, Windows 7 

PC, 3.4 GHz processor, RAM of 16GB, and MATLAB r2012b. LivDet09 [26] was the 
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database used in the fingerprint detection experiment. LivDet09 [26] has above 18,000 

samples obtained from more than 100 different fingers.  

Three sensors used in [6] are Biometrika, Crossmatch, and Identix. The overall error 

rate using biometrika sensor was 12.8%, crossmatch 10.7 %, and identix 1.2%, all 

shown in Table 1. 

Table 1: RFDS [6] results using three different type of fingerprint sensors. 
 Comparative Results: Fingerprints-LivDet09 

Biometrika Crossmatch Identix 

FFR FGR HTER FFR FGR HTER FFR FGR HTER 

IQA-Based 14.0 11.6 12.8 8.6 12.8 10.7 1.1 1.4 1.2 

 

Description of the measures used in Table 1: 

False Fake Rate (FFR) refers to the number of real images that were considered as fake 

in the system.  

FFR= IIJ	
KLKMN	OP*QRJ	LI	JRMN	5*MSRT

 .                                                                     (2.20) 

False genuine rate (FGR) refers to number of fake images that were considered as real 

in the system: 

FGR = ISJ	
KLKMN	OP*QRJ	LI	IMUR	5*MSRT

		.                                                                           (2.21) 

Half Total Error (HTER) refers to the number of real images that were considered as 

fake in the system summed with the number of fake images that were considered as 

real in the system divided by 2, 

HTER = ISJVIIJ
'

 .                                                                                                  (2.22) 
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2.1.4 Fingerprint Liveness Detection Based on Quality Measures [27] 

In [27], the RFDS uses image quality measures for a Software-Based solution in 

fingerprint image detection. The main purpose of [27] is to counter the direct attacks 

implemented against the fingerprint recognition systems. 

Direct attacking methods present artificial fingerprints to the sensors so that the sensor 

will identify them as real fingerprints inserted to the system, and thus access is granted. 

To prevent direct attacking occurrence, a new live detection system was proposed in 

this paper with 3 types of image quality measures, ridge strength, ridge continuity, and 

ridge clarity. The new live detection system proposed in [27] includes the steps that 

are explained below: 

Input: Once the fingerprint image gets inserted into the system, it will be immediately 

segmented (Image is Easier to Analyze) in the background. 

Feature Extraction: Image quality measures will be extracted, the image quality 

measures with the best performance only will be selected from the all the available 

ones. After selecting the best image quality measures, we reach the final stage, 

cclassification of the fingerprint image. Linear discriminant analysis (LDA) (described 

in subsection 2.1.1) is used in [27] to classify whether the inserted fingerprint image 

is Real or Fake. 

2.1.4.1 RFDS Experiments In [27]  

Database used in [27] is provided in the fingerprint liveness detection competition, 

livdet 2009, containing over 18,000 real and fake samples of fingerprint images 

generated with different materials and captured with different sensors. Three sensors 

were used in [27]: biometrika, crossmatch, and identix. 
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The proposed new liveness detection system result was on average (7.58% hter) in 

identifying real or fake sample of fingerprint images. The results of [27] for each 

sensor are shown in Table 2. 

Table 2: The results for each sensor [27]. 
 Fgr(%) Ffr(%) Hter(%) 

Bionetrika 2.12 1.54 1.83 

Crossmatch 12.48 12.32 12.40 

Identix 6.40 10.67 8.53 

Average 7.00 8.17 7.58 

 

2.1.5 A High-Performance Fingerprint Liveness Detection Method Based on 

Quality Related Features [28] 

A software-based fingerprint liveness detection approach using image quality 

measures is proposed in [28]. The system was tested by using two different databases 

and five different sensors. 

The proposed system starts with inserting a fingerprint image and, the type of sensor 

used for getting the fingerprint image. After inserting the sensor type and the 

fingerprint image, segmentation will be applied to the fingerprint image, and then three 

different types of image quality measures will be extracted from the fingerprint image: 

ridge strength, ridge continuity, and ridge clarity. 

After applying extraction to the fingerprint image and obtaining the results of every 

single image quality measurement, selection of the ones with the best results from the 

image quality measures will be done, and the rest will be excluded for the classification 
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of the image stage. Classification is done using LDA (defined in 2.1.1) to classify if 

the fingerprint image is real or fake. 

2.1.5.1 RFDS Experiments In [28] 

In [28], two databases were used: LivDet DB and ATVS DB. ATVS database contains 

three different datasets of real and fake fingerprints captured each by three different 

sensors: Biometrika, Precise, and thermal Yubee. LivDet database contains also three 

different datasets of real and fake fingerprints captured each captured by three different 

sensors, Namely, Biometrika, Crossmatch, and Identix.  

Experiments results in [28] with both ATVS DB and LivDet show overall around 10% 

of error in identifying real and fake fingerprint images in the liveness detection system. 

The results for both databases with five different sensors are listed in Table 3, FGR!, 

FFR!, and HTER! REFER to the ATVS db, and FGR', FFR', and HTER' refer to the 

LivDet. 

Table 3: Performance result of the two databases used in [28]. 
 Performance Results In % 

𝐅𝐆𝐑𝟏/𝐅𝐆𝐑𝟐 𝐅𝐅𝐑𝟏/𝐅𝐅𝐑𝟐 𝐇𝐓𝐄𝐑𝟏/𝐇𝐓𝐄𝐑𝟐 Hter 

Biomet.Ld 3.1/9.8 71.8/21.5 37.4/15.6 26.5 
Crossmatch 8.8/16.7 20.8/6.8 14.8/11.7 13.2 

Identix 4.8/8.0 5.0/9.1 4.9/8.5 6.7 

Biomet.Atvs 9.4/0.4 1.5/11.8 5.5/6.1 5.8 

Precise 3.1/0.4 13.7/0.4 8.4/0.4 4.4 

Yubee 2.7/1.6 6.3/13.0 4.5/7.3 5.9 

Average 5.3/6.1 19.8/10.4 12.5/8.2 10.4 
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2.1.6 Fingerprint Identification in Biometric Security Systems. International 

Journal of Computer and Electrical Engineering [29] 

In [29], two software based matching algorithms (algorithms that match fingerprints 

against a database of known and unknown fingerprint) are discussed. The first 

algorithm is developed at the Hong Kong Baptist University; the second matching 

algorithm is developed at the michigan state university in usa. Two of the algorithms 

were downloaded and tested with a common database.  

The Hong Kong Baptist University fingerprint identification system uses a traditional 

minutia matching algorithm, while the Michigan State University uses filter-based 

algorithm in their system. 

The Hong Kong baptist university fingerprint identification system is based on three 

steps: 

1.  Preprocessing: The inserted fingerprint image is enhanced using fourier transform 

(conversion of the image from space domain to frequency domain) and histogram 

equalization (modify the intensity and contrast of the fingerprint image), after that 

binarization is applied to the image which will change it from pixel image to a binary 

image using threshold for each block in the image. 

2.  Minutiae Extraction: The extraction is done by thinning the inserted fingerprint 

image and marking any minutiae that exists in the image. 

3.  Post-Processing: In this stage, all false minutiae (major features of a fingerprint 

such as ridge ending and bifurcation) are removed. 

Michigan State University method uses filter-bank based matcher: the proposed filter-

bank based algorithm uses more than one filter to capture details in a fingerprint as a 
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compact fixed length feature vector. The fingerprint matching is based on the 

euclidean distance between the two corresponding vectors. 

2.1.6.1 RFDS Experiments In [29] 

The database used in [29] is NIST special database 4 which is publicly available; it 

contains 8-bit gray scale image fingerprints distributed for development and testing of 

fingerprint identification systems. 

For 25 pairs of fingerprints with high quality inserted into the software using filter-

based algorithm, the results are as follows: 8% FAR and 4% FFR. 

In [29], they concluded that both of the algorithms are equal in performance and none 

of them can be considered as better than the other in general sense. 

2.1.7 Fingerprint Spoof Detection Using Quality Features [30]  

In [30], three stages are considered for fake fingerprint detection: 

1.  Feature Extraction: The inserted fingerprint image is divided into blocks and the 

features are extracted from each block. There is a total of 7 features which will be get 

extracted from the input fingerprints image. 

2.  Features Selection: The features with optimal performance will be selected; the 

ones that are not effective, will be excluded. 

3.  Classification: After feature extraction and selecting the best extracted features, 

classification of the fingerprint image is implemented to identify if the inserted 

fingerprint image is real or fake. 

2.1.7.1 RFDS Experiments In [30] 

The database used in [30] is provided in the fingerprint liveness detection competition 

LivDet 2009 [26] with three data sets of real and fake fingerprint images all captured 

with different kind of optical sensors: Biometrika, Identix, and Crossmatch. 
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Experiment results in [30] are considered overall as a good RFDS to use, the results in 

Figure 5 show that if all features are used at once without excluding any one of them, 

better results will be obtained. 

 
 Figure 5: Average classification error (ACE) results in [30]. 

2.2 Problem Definition 

We have observed [6], [18], [19], [20], and [30], but we will mainly compare our 

RFDS to be developed with RFDS [6]. The list of problems considered in this thesis 

is: 

  Implement and test a real fingerprint detection system (RFDS) similar to [6]. 

  Repeat experiments on RFDS implemented as in [6]. 

  Compare our RFDS with [6]. 

  Find the best 5, 10, and 15 iqms in our RFDS. 

  Modifying thesis [31] the distinction from our RFDS and thesis [31] is that we used 

10 more IQMs and 6 classifiers. Thesis [31] was implemented for face detection while 

ours is for fingerprints.  
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2.3 Summary 

In this chapter, we have done a literature review from the reading and analysis of [6], 

[27], [28], [29], and [30]. We conclude that some of the presented RFDS use similar 

image quality features and classification algorithms and some use different. The 

experiment results on these systems were gathered using different databases, all these 

results obtained still didn’t reach 100% accuracy of detecting fingerprint spoof attacks. 

The features to be built in our RFDS is to find the best 5, 10 and 15 IQM’s 

automatically calculating the FFR, FAR, and HTER of the RFDS. We define our thesis 

problem as: implementation and testing of real fingerprint image detection system 

(RFDS). 
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3. Chapter 3 

DESIGN AND IMPLEMENTATION OF RFDS 

In this chapter, we show the design of our RFDS, implementation of the feature 

extraction in our system as well as the classification process. We implemented the 

Gaussian filter as explaned in subsection 3.2.1, feature extraction stage for the 

fingerprint images as explaned in subsection 3.2.2 using 25 image quality measures. 

The training structure was implemented and explaned in subsection 3.2.3, 

classification process in subsection 3.2.4, method of defining the best IQMs in 

subsection 3.2.5, and the method of defining the best IQMs was implemented and 

tested as described in subsection 3.2. 

3.1 Design of RFDS 

Figure 6 shows the design of our RFDS. Basically, our system contains two structures: 

  Training Structure (as shown at the top of figure 6) 

  Detection Structure (as shown at the top of figure 6). 

The top of Figure 6 shows our RFDS training structure where (I) refers to the original 

fingerprint image and (‘I) refers to the enhanced image. Images will be input in our 

RFDS training structure. In block 1, each single image will be filtered using gaussian 

filter (see subsection 3.2.1) with 3*3 kernel to reduce the noise of the image. By 

filtering the input images (I), we get the enhanced fingerprint image (I’). In block 2, 

we will apply feature extraction process to both of the fingerprint images by extracting 

image quality measures (see subsection 3.2.2), we then create a table and list the results 
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of the fingerprint images and their IQM. In block 3, we import the table with all the 

results to classification learner application, which is a user-friendly application that we 

use in MATLAB software to create our training model (block number 4) and classify 

images (see subsection 3.2.3). From this we move to the classification stage where all 

the fingerprint images will be classified as either real or fake images. 

The bottom of Figure 6 shows our RFDS detection structure. All input images will be 

classified on real or fake depending on the trained model created in the “training 

structure” shown in figure 6. 

 
Figure 6: RFDS training and detection structure. 

3.2 Implementation of RFDS 

3.2.1 Implementation and Testing of Gaussian Filter 

Gaussian filter is a filter whose impulse response is a Gaussian function (or an 

approximation to it). Gaussian filters have the properties of no overshoot to a step 
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function input while minimizing the rise and fall time [32]. For our RFDS 

implementation and testing, we used MATLAB 2015 in this thesis. For 

implementation of Gaussian filter, we used a ready MATLAB function “Gaussian” to 

enhance and reduce the noise of the image. All we had to do was to call the function 

by typing “Gaussian” which is shown below in Figure 7, and highlighted with number 

1. Then, we set the value of the Gaussian kernel as “3x3” highlighted and numbered 2 

in the screenshot, and set the standard deviation as “0.6” (0.6 was selected just as an 

example) highlieghted and numbered 3 in Figure 7. By these three values, we set our 

RFDS system that gives us a Gaussian filter with the values shown in number 4 of the 

screenshot below. 

  
Figure 7: Gaussian filter code and the Gaussian filter obtained from it. 

Example of how Gaussian filter is implemented using a 4*4 matrix image: 
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Original Image 

0 
 

1 
 

7 
 

3 

4 2 8 10 

0 2 

 

1 6 

6 3 

 

5 4 

 

3x3 Gaussian Kernel 

0.0277 0.1110 0.0277 

0.1110 0.4452 0.1110 

0.277 

 

0.1110 

 

0.0277 

 

Let’s select the pixel in 2nd row 3rd column of the original image and apply Gaussian 

filter to it: 

0 1 7 3  0.0277 0.111 0.0277  0.0277 0.777 0.0831 

4 2 8 10 * 

* 

 

0.1110 0.4452 0.111 = 0.222 3.5616 1.11 

0 

 

2 

 

1 

 

6  0.0277 

 

0.111 

 

0.0277 

 

 0.0554 0.111 0.1662 

6 3 5 4         

 

Add the values in the vector: 0.0277 + 0.777 + 0.0831 + 0.222 + 3.5616 + 1.11 +  

0.0554 + 0.111 + 0.1662 = 6.114  
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Final result of the original image after Gaussian filter as. 

0.610 1.776 4.780 3.444 

2.085 2.777 6.114 6.560 

1.470 2.193 3.302 4.696 

3.059 2.806 3.335 3.029 

                                                                               

To check if our manual calculation of the Gaussian filter applied to the original image 

is correct or not, we ran our MATLAB code and took a screenshot of the result shown 

below in figure 8, the result of the original image with Gaussian filter applied to it is 

the same as (3.1). 

  
Figure 8: Result of the original image with Gaussian filter applied to it. 

3.2.2 Implementation and Testing of Feature Extraction 

To test the implementation of our RFDS, we use 4x4-sized (for ease of  calculation) 

two gray scale images, one named original image (I) with matrix elements: (0, 1, 7, 3), 
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(4, 2, 8, 10), (0, 2, 1, 6), (6, 3, 5, 4) and the second one named enhanced image (‘I) 

(original image with Gaussian filter applied to it) with matrix elements: (2, 5, 10, 4),  

(0, 1, 5, 1), (3, 6, 2, 3), (1, 3, 10, 0). 

Original Image (I)  Enhanced Image (‘I) 

0 1 7 3  2 5 10 4 

4 2 8 10  0 1 5 1 

0 2 1 6  3 6 2 3 

6 3 5 4  1 3 10 0 

 

For each of the 25 IQMs we will do the following (our MATLAB code is provided in 

Appendix A and the IQM function in Appendix B). 

For 4x4-sized of the enhanced and original image, we will take screenshots of every 

IQM result in MATLAB. 

3.2.2.1 Implementation and Testing of MSE (2.1)  

Explanation of MSE code given in (Appendix A-1): 

Line 1: MSE function has two inputs: rel_img refers to the real image, and enhcd_img 

to the enhanced image. Line 4: [m n] is defined where m is the number of rows and n 

is the number of columns the real image has. Line 5:  difference between real and 

enhanced images is calculated. Line 6: using (2.1), MSE is calculated. 

Testing example of MSE calculation for I and ‘I: 
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MSE = 1/16 *( (0-2) ^2 + (1-5) ^2 + (7-10) ^2 + (3-4) ^2 + (4-0) ^2 + (2-1) ^2 + (8-

5) ^2 + (10-1) ^2 + (0-3) ^2 + (2-6) ^2 + (1-2) ^2 + (6-3) ^2 + (6-1) ^2 + (3-3) ^2 + 

(5-10) ^2 + (4-0) ^2 ) = 1/16*(238) = 14.875                                                               (3.2) 

The result of MSE calculation shown in Figure 9 is equal to our manually calculated 

result (3.2). 

  
Figure 9: MATLAB result of MSE calculation. 

3.2.2.2 Implementation and Testing of PSNR (2.2) 

Explanation of the PSNR code (Appendix A-2): 

Line 1: PSNR function with two inputs rel_img and enhcd_img refers to the real and 

enhanced image, respectively. Line 4: [m n] is defined, where m and is the number of 

rows and columns the real image has. Line 5: difference between real image and 

enhanced image will be calculated. Line 6: using (2.1), MSE is calculated. Line 7: 

using (2.2), PSNR is calculated. Line 8: we set PSNR value as 99 if MSE is zero. 

MSE = 14.875 (Obtained from Figure 9). 

Max _I = 255 (max pixel value in grayscale image). 

PSNR= 20𝑙𝑜𝑔!)255 −	10𝑙𝑜𝑔!)𝑀𝑆𝐸  

=	20𝑙𝑜𝑔!)255 −	10𝑙𝑜𝑔!)14.875 = 48.13 – 11.72= 36.40                                       (3.3) 
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The result of PSNR calculation shown in Figure 10 is equal to our manually calculated 

result (3.3). 

  
Figure 10: MATLAB result of PSNR calculation. 

3.2.2.3 Implementation and Testing of SNR (2.3) 

Explanation of the SNR code (Appendix A-3): 

Line 1: SNR function with two inputs: rel_img and enhcd_img refer to the real and 

enhanced image, respectively. Line 4: [m n] is defined, where m and n are the number 

of rows and columns of the real image. Line 5:  difference between real image and 

enhanced image is calculated. Line 6: using (2.1), MSE is calculated., Line 7: using 

(2.3), SNR (2.3) is calculated. Line 8: we set SNR to 99 if MSE is zero. 

MSE = 14.875 (obtained from Figure 9) 

SNR Calculation:  

SNR = 10 Log10 (0^2 + 1^2 + 7^2 + 3^2+4^2 + 2^2 + 8^2 + 10^2 + 0^2 + 2^2 + 1^2 

+ 6^2 + 6^2 + 3^2 + 5^2 + 4^2) / 4 * 4 * 14.875  

SNR = 10 Log10 370/238 = 10 Log10 1.55 = 1.91                                                  (3.4) 
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The result of SNR calculation shown in Figure 11, is equal to our manually calculated 

result (3.4). 

  
Figure 11: MATLAB result of SNR calculation. 

3.2.2.4 Implementation and Testing of SC (2.4)  

Explanation of the SC code (Appendix A-4): 

Line 1: SC function with two inputs rel_img and enhcd_img refers to the real and 

enhanced image. Line 4: using (2.4), SC is calculated. 

SC = (0^2 + 1^2 + 7^2 + 3^2+4^2 + 2^2 + 8^2 + 10^2 + 0^2 + 2^2 + 1^2 + 6^2 + 6^2 

+ 3^2 + 5^2 + 4^2)  /  (2^2 + 5^2 + 10^2 + 4^2 + 0^2 + 1^2 + 5^2 + 1^2 + 3^2 + 6^2 

+ 2^2 + 3^2 + 1^2 + 3^2 + 10^2 + 0^2) = 370/340 = 1.0882.                                  (3.5) 

The result of SC calculation shown in Figure 12, is equal to our manually calculated 

result (3.5). 
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Figure 12: MATLAB result of SC calculation. 

3.2.2.5 Implementation and Testing of MD (2.5)  

Explanation of MD code (Appendix A-5): 

Line 1: MD function with two inputs: rel_img and enhcd_img refer to the real and 

enhanced image. Line 4: the difference between the real image and the enhanced image 

will be calculated. Line 5: using (2.5), MD will be calculated. 

P1= 0 – 2 = -2 P9 = 0 – 3 = -3   

P2 = 1 – 5 = -4 P10 = 2 – 6 = -4  

P3 = 7 – 10 = -3 P11 = 1 – 2 = -1  

P4 = 3 – 4 = -1 P12 = 6 – 3 = 3   

P5 = 4 – 0 = 4 P13 = 6 – 1 = 5               (3.6) 

 P6 = 2 – 1 = 1 P14 = 3 – 3 = 0  

P7 = 8 – 5 = 3 P15 = 5 – 10 = -5  

P8 = 10 – 1 = 9 P16= 4 – 0 = 4  

             Md = 9                                                                                                             
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The result of MD calculation shown in Figure 13 is equal to our manually calculated 

result (3.6). 

  
Figure 13: MATLAB result of MD calculation. 

3.2.2.6 Implementation and Testing of AD (2.6)  

Explanation of the AD code (Appendix A-6): 

Line 1: AD function with two inputs: rel_img and enhcd_img refer to the real and 

enhanced image, line 4: [m n] is defined, where m and n is the number of rows and 

columns of the real image. 5:  difference between real image and enhanced image will 

be calculated. Line 6: using (2.6), ad will be calculated. 

AD = 1/16((0-2) + (1-5) + (7-10) + (3-4) + (4-0) + (2-1) + (8-5) + (10-1) + (0-3) + (2-

6) + (1-2) + (6-3) + (6-1) + (3-3) + (5-10) + (4-0))=1/16(-2-4-3-1+4+1+3+9-3-4-

1+3+5+0-5+4) =  6/16 =  0.375                                                                                                 (3.7) 

The result of ad calculation shown in Figure 14 is equal to our manually 

calculatedresult (3.7). 
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Figure 14: MATLAB result of AD calculation. 

3.2.2.7 Implementation and Testing of NAE (2.7) 

Explanation of NAE code (Appendix A7): 

Line 1: NAE function with two inputs: rel_img and enhcd_img refer to the real and 

enhanced image. Line 4: the difference between the real and enhanced image will be 

calculated. Line 5: using (2.7), NAE will be calculated. 

NAE = [ (0-2) + (1-5) + (7-10) + (3-4) + (4-0) + (2-1) + (8-5) + (10-1) + (0-3) + (2-6) 

+ (1-2) + (6-3) + (6-1) + (3-3) + (5-10) + (4-0) ] 

Nae = [2+4+3+1+4+1+3+9+3+4+1+3+5+0+5+4] = 52/62 = 0.8387                     (3.8) 

The result of NAE calculation shown in figure 15 is equal to our manually calculated 

result (3.8). 



 

 36 

  
Figure 15: MATLAB result of NAE calculation. 

3.2.2.8 Implementation and Testing of RAMD (2.8) 

Explanation of the RAMD code (Appendix A-8): 

Line 1: RAMD function with two inputs: rel_img and enhcd_img refer to the real and 

enhanced image. Line 4: the difference between the real and enhanced image is 

calculated. Line 5: the variable ‘eror’ will have the absolute value of error. Line 6: we 

convert matrix to vector, then we order the numbers by descending order (using flipud 

a ready MATALAB function) without having repeated numbers, all numbers should 

be unique. Line 7: select top ten from the vector. Line 8: using (2.8), RAMD is 

calculated.  

R = 7 (we select the maximum 7 differences between the image I and ‘I and divide 

over 7, in the main code r=10, but for the testing case we set R=7 because if we set 

R=10 the 8th, 9th, and 10th values will be equal to zero). 
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P1= 0 – 2 = -2 P9 = 0 – 3 = -3    

P2 = 1 – 5 = -4 P10 = 2 – 6 = -4  

P3 = 7 – 10 = -3 P11 = 1 – 2 = -1  

P4 = 3 – 4 = -1 P12 = 6 – 3 = 3   (3.9) 

P5 = 4 – 0 = 4 P13 = 6 – 1 = 5  

P6 = 2 – 1 = 1 P14 = 3 – 3 = 0  

P7 = 8 – 5 = 3 P15 = 5 – 10 = -5  

P8 = 10 – 1 = 9 P16= 4 – 0 = 4  

RAMD = 1/7 | 9 + 5 + 4 + 3 + 2 + 1 | = 24/7 = 3.428  

 

 

 

 

 

The result of RAMD calculation shown in Figure 16 is equal to our manually 

calculated result (3.9). 

 
Figure 16: MATLAB result of RAMD calculation with R=7. 

3.2.2.9 Implementation and Testing of NCC (2.9) 

Explanation of NCC code (Appendix A-9): 

Line 1: NCC function with two inputs: rel_img and enhcd_img refer to the real and 

enhanced image. Line 4: using (2.9) NCC will be calculated. 



 

 38 

NCC = ( (0*2) + (1*5) + (7*10) + (3*4) + (4*0) + (2*1) + (8*5) + (10*1) + (0*3) + 

(2*6) + (1*2) + (6*3) + (6*1) + (3*3) + (5*10) + (4*0)  / (0^2 + 1^2 + 7^2 + 3^2+4^2 

+ 2^2 + 8^2 + 10^2 + 0^2 + 2^2 + 1^2 + 6^2 + 6^2 + 3^2 + 5^2 + 4^2)  =  

NCC = 236 / 370 = 0.637                                                                                                   (3.10) 

The result of NCC calculation shown in Figure 17 is equal to our manually calculated 

result (3.10). 

  
Figure 17: MATLAB result of NCC calculation. 

3.2.2.10  Implementation and Testing of TED (2.10) 

Explanation of TED code (Appendix A10): 

Line 1: TED function with two inputs: rel_img and enhcd_img refer to the real and 

enhanced image. In Line 2, ready MATLAB function (edge) is used to detect the edges 

of the real image. In Line 3, all edges that were detected by the MATLAB function 

will be displayed. In Line 5 and 6 the same process is done as in lines 2 and 3 but this 

time for the enhanced image. Line 8: [m n] is defined, where m is the number of rows 

and n is the number of columns the real image has. Line 9: difference between real 
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image and enhanced image will be calculated and saved in ‘eror’ variable. Line 10: 

using the formula provided in (2.10) TED will be obtained. 

We didn’t apply manual calculation to test TED because in our code we use ready 

MATLAB function “edge (image)” to automatically find the image total edge 

difference of any image inserted to the RFDS, so we feed a fingerprint image to our 

system and took a screenshot of the result shown below in figure 18.  

 
Figure 18: Matlab result for calculating TED of fingerprint image. 

3.2.2.11  Implementation and Testing of TCD (2.11) 

Explanation of the TCD code (each line number corresponds to its code in Appendix 

A-15): 

Line 1: TCD function with two inputs rel_img which refers to the real image and 

enhcd_img refers to the enhanced image, line 4 we use a ready MATLAB function 

called “detectharrisfeatures” to detect corners of the real image, Line 5: we plot the 

corners in the real image using a MATLAB function called “plot”, Line 6: we will get 

the sum of corners of the real image using ready MATLAB function called “length”, 
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Line 7 we will detect corners of the enhanced image, Line 8: we plot the corners of the 

enhanced image same as we did to the real image, Line 9: we will get the sum of 

corners in of the enhanced image using the same function we applied to the real image, 

Line 10: we will set the value of variable “max1”  either as the number of corners of 

the real or enhanced image depending on which one has th maximum number of 

corners detected, Line11: using the formula provided in (2.11) TCD will be calculated. 

Ncr = Number of Corners in The Original Image.  

‘Ncr = Number of Corners in The Enhanced Image. 

Ncr= 2496 

‘Ncr= 2400  

Tcd = |2496-2400| / 2496 = 0.0385                                                                       (3.11) 

The result of TCD calculation shown in Figure 19 is equal to (3.11). 

 
Figure 19: MATLAB result of TCD calculation. 

 



 

 41 

3.2.2.12  Implementation and Testing of Spectral Phase Error (SPE) 

 

Original Image 

0 1 7 3 
4 2 8 10 

0 2 1 6 

6 3 5 4 

 

Explanation of the SPE code (each line number corresponds to its code in Appendix 

B-14): 

Line 1: SPE function with two inputs rel_img which refers to the original image and 

enhcd_img refers to the enhanced image, Line 4: we use a ready MATLAB function 

“fft”  to transform the original and enhanced image to the frequency domain, Line 5: 

[m n] where m is amount of row the real image has and n is amount of columns the 

real image has; Line 6:  difference between real image and enhanced image will be 

calculated, Line 7: using the formula provided in (2.12) spe will be calculated. 

FFT Original Image 

62 +0i 

1
5
i 

-11+15i 

 

0+0i 

 

-11- 

 
2-6i 1+3i 10+4 -13+7i 

-22+0i -5-3i -8+0i -5+3i 

2+6i -13-7i 10-4i 1-3i 
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Distorted Image 

2 5 10 4 

0 1 5 1 

3 6 2 3 

1 3 10 0 

 

FFT Distorted Image 

56+0i -21-7i 10+0i -
21+
7i 7+7i -6-2i 7+5i -12-
6i 

14+0i 7-1i -12+0i 7+
1i 

7-7i -12+6i 7-5i -
6+2

i    

Argument (Original Image) 

0 2.2035 0 - 2.2035 

-1.2490 1.2490 0.3805 2.6477 

3.1416 -2.6012 3.1416 2.6012 

1.2490 

 

-2.6477 

 

- 0.3805 

 

-1.2490 

  

Argument (Enhanced Image) 

0 -2.8198 0 2.8198 

0.7854 -2.8198 0.6202 -2.6779 

0 -0.1419 3.1416 0.1419 

-0.7854 2.6779 -0.6202 2.8198 
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Original – Enhanced 

0 -0.6163? 0 -0.6163 

0.4636 -1.5708 -0.2397 -0.0303 

3.1416 2.4593 0 2.4593 

0.4636 -0.0303 -0.2397 -1.5708 

 

SPE = 1/16 (0^2 + 0.6163^2 + 0^2 + 0.6163^2 + 0.4636 ^2 + 1.5708 ^2 + 0.2397^2 + 

0.0303^2 + 3.1416^2 + 2.4593^2 + 0^2 + 2.4593^2 + 0.4636^2 + 0.0303^2 + 0.2397^2 

+ 1.5708^2) = 

SPE = 28.20703848/16 = 1.7629                                                                            (3.12) 

The SPE result calculation shown in Figure 20 is equal to (3.14). 

  
Figure 20: MATLAB result of SPE calculation. 

3.2.2.13  Implementation and Testing of SME (2.13)  

Explanation of the SME code (each line number corresponds to its code in Appendix 

A13): 
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Line 1: SME function has two inputs rel_img which refers to the original image and 

enhcd_img refers to the enhanced image, Line 4: we use a ready matlab function “fft”  

to transform the real image to the frequency domain, Line 5: shows the real part  of 

the original image Line 6: shows the imaginary part of the original image Line 7: we 

take the SQRT of the real part summed with imaginary part of the original image, Line 

8: shows the real part of the enhanced image, Line 9: shows the imaginary part of the 

enhanced image Line 10: we take the sqrt of the real part summed with imaginary part 

of the enhanced image Line 11: using the formula provided in (2.13) SME will be 

calculated. 

Fourier Transform [13]: 

Original Image 

0 1 7 3 

4 2 8 10 

0 2 1 6 

6 3 5 4 

 

FFT Original Image 

62 +0i -11+15i 0+0i -11-15i 

2-6i 1+3i 10+4 -13+7i 

-22+0i -5-3i -8+0i -5+3i 

2+6i -13-7i 10-4i 1-3i 
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Distorted Image 

2 5 10 4 

0 1 5 1 

3 6 2 3 

1 3 10 0 

 

FFT Distorted Image 

56+0i -21-7i 10+0i -21+7i 

7+7i -6-2i 7+5i -12-6i 

14+0i 7-1i -12+0i 7+1i 

7-7i -12+6i 7-5i -6+2i 

 

FFT (Original Image) Gradient: 

Sqrt 62^2 + 0^2 = 62. 

Sqrt -11^2 + 15^2 = Sqrt 121+225 = Sqrt 346 = 18.6011. 

Gradient (Original Image) 

62 18.6011 0 18.6011 

6.3246 3.1623 10.7703 14.764
8 

22 5.8310 8 5.8310 

6.3246 14.7648 10.7703 3.1623 

 



 

 46 

Gradient (Distorted Image) 

56 22.1359 10 22.1359 

9.8 6.3246 8.6 13.4164 

14 7.0711 12 7.0711 

9.8 13.4164 8.6 6.3246 

 

Original – Distorted 

6 -3.534 -10 -3.534 

-3.574 -3.162 2.168 1.348 

8 -1.24 -4 -1.24 

 -3.574 1.348 2.168 -3.162 

 

SME= (6^2 - 3.534^2 - 10^2 - 3.534^2 - 3.574^2 - 3.162^2 + 2.168^2 + 1.348^2 + 

8^2 - 1.24^2 - 4^2 - 1.24^2 - 3.574^2 + 1.348^2 + 2.168^2 - 3.162^2) /16 

SME = 295.795364/16 = 18.9                                                                                     (3.13) 

The result of SME calculation shown in Figure 21 is equal to our manual calculation 

result (3.13). 
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Figure 21: MATLAB result of SME calculation. 

3.2.2.14  Implementation and Testing of Gradient Phase Error (GPE)  

Explanation of the GPE code (each line number corresponds to its code in Appendix 

A-14): 

Line 1: GPE function has two inputs rel_img which refers to the real image and 

enhcd_img refers to the enhanced image, Line 4: the gradient 2 of the original image 

will be calculated, Line 5: transfer gradient values of the original image to complex 

number, Line 6: angle of complex of the original image will be calculated, Line 7: the 

gradient of the enhanced image will be calculated, Line 8: transfer gradient values of 

the enhanced image to complex, Line 9: angle of complex of the enhanced image will 

be calculated Line 10: [m n] where m is amount of row the real image has and n is 

amount of columns the real image has; Line 11: difference between real image and 

enhanced image will be calculated and saved in ‘eror’ variable, Line 12: using the 

formula provided in (2.14) GPE will be calculated. 
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Gradient of The Original Image: 

Fx1  Fy1 

1 3.5 1 -4  4 1 1 7 
-2 2 4 2  0 0.5 -3 1.5 

2 0.5 2 5  1 0.5 -1.5 -3 

-3 -0.5 0.5 -1  6 1 4 -2 

 

Z =  F = 

1+4i 3.5+1i 1+1i -4+7i  3-2i 4-4i -0.5-5i -6-3i 

-2+0i 2+0.5i 4-3i 2+1.5i  1+0.5i 2.5+0.5i 0-4i -4-0.5i 

2+1i 0.5+0.5i 2-1.5i 5-3i  3+0.5i -0.5+1 -
1.5+2.5i 

1-0.5i 

-3+6i -0.5+1i 0.5+4i -1-2i  2-2i 4-3i -1.5+8i -10-3i 

 

Arg Original (Angle(Z)) 

1.3258 0.2783 0.7854 2.0899 

3.1416 0.2450 -0.6435 0.6435 

0.4636 0.7854 -0.6435 -0.5404 

2.0344 2.0344 1.4464 -2.0344 

 

Arg Distorted (Angle(F)) 

-0.5880 -0.7854 -1.6705 -2.6779 

0.4636 0.1974 -1.5708 -3.0172 

0.1651 2.0344 2.1112 -0.4636 

-0.7854 -0.5880 1.7561    -2.8501 
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Arg Original – Arg Distorted 

0.7378 -0.5071 -0.8851 -0.5880 

 2.6779 0.0476 -0.9273 -2.3737 

 0.2985 -1.2490 -1.4677 0.0768 

 1.2490 1.4464 -0.3097 -0.8157 

 

GPE = 1/16 (0.7378 ^2 -0.5071^2 -0.8851 ^2 -0.5880 ^2 + 2.6779 ^2 +0.0476 ^2 -

0.9273 ^2 -2.3737 ^2 + 0.2985^2 - 1.2490 ^2 -1.4677 ^2 +0.0768 ^2 +1.2490 ^2 

+1.4464 ^2 -0.3097 ^2 -0.8157^2) =  

GPE = (11.46483746+12.50639178)/16 = 1.48                                                                (3.14) 

The result of GPE calculation shown in figure 22 is equal to our manual calculation 

result (3.14). 

 
Figure 22: MATLAB result of GPE calculation. 
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3.2.2.15  Implementation and Testing of Gradient Magnitude Error (GME)  

Explanation of the GME code (each line number corresponds to its code in Appendix 

A-15): 

Line 1: GME function with two inputs rel_img which refers to the real image and 

enhcd_img refers to the enhanced image, line 4: using a ready MATLAB function the 

gradient (shows directional change in the intensity or color in an image) of the real 

image will be calculated, then the gradient magnitude is calulcated and saved in 

“gamgorg” variable, same steps will be applied for the enhanced image, Line 5: [m n] 

where m is amount of row the real image has and n is amount of columns the real 

image has; Line 6:  difference between real image and enhanced image will be 

calculated and saved in “eror” variable, Line 7: using the formula provided in (2.15) 

GME will be calculated. 

For testing our gme function used in our RFDS we will calculate manually the GME 

of one pixel only, which is the matrix element with value equal to (2). 

Original Image (I)  

0 1 7 3 

4 2 8 10 

0 2 1 6 

6 3 5 4 
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Gradient of Pixel (2,2)  

Fx1 = (Df/Dx) = (8 – 4)/ 2  Fy1 = (Df/Dx) = (2 – 1) /2 

4 / 2 = 2  1 / 2 = 0.5 

Sqrt 2^2 + 0.5^2 = Sqrt 4.25 = 2.061 

Fx1  Fy1 

1 3.5 1 -4  4 1 1 7 
-2 2 4 2 0 0.5 -3 1.5 

2 0.5 2 5 1 0.5 -1.5 -3 

-3 

 

-0.5 

 

0.5 

 

-1 

 

6 

 

1 

 

4 

 

-2 

 
 

Orignal Image I 

 

 Distorted Image ‘I 

4.123 3.640 1.414 8.062  3.605 5.656 5.024 6.708 

2 2.061 5 2.5  1.118 2.549 4 4.031 

2.236 0.707 2.5 5.831  3.041 1.118 2.915 1.118 

6.708 1.118 4.031 2.236  2.828 5.408 8.139 10.440 

 

Original – Distorted 

0.517 -2.016 -3 

 

 

 

.610 

1.354 

0.882 -0.488 1 -1.531 

-0.805 -0.41 -0.415 4.712 

3.879 -4.29 -4.1 -8.2 

 

1/16 (0.517^2 + -2.016^2 + -3.610^2 + 1.354^2 + 0.882^2 + -0.488^2 + 1^2 + -1.531^2 

+ -0.805^2 + -0.41^2 + -0.415^2 + 4.712^2 + 3.879^2 + -4.29^2 + -4.1^2 + -8.2^2) 
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GME = 1/16 (0.2673 - 4.0643 -13.0321+ 1.8333 + 0.7779 - 0.2381 + 1 - 2.3440 - 

0.6480 - 0.1681 -0.1722 + 22.2029 + 15.0466 -18.4041 -16.8100 + -67.2400) 

GME = 164.2489/16 = 10.27                                                                                           (3.15) 

The result of GME calculation shown in figure 23 is equal to our manual calculation 

result (3.15). 

  
Figure 23: MATLAB result of GME calculation. 

3.2.2.16  Implementation and Testing of Mean Angle Similarity (MAS) 

Explanation of the MAS code (each line number corresponds to its code in Appendix 

B-16): 

Line 1: MAS function with two inputs rel_img which refers to the original image and 

enhcd_img refers to the enhanced image, line 4: we use a ready MATLAB function 

“dot” to get the scalar dot of the real image and enhanced image, we also use another 

ready MATLAB function “acosd” which returns the inverse cosine of the element of  

the real; Line 5 : we take the sum of the variable “alfa2” ; Line 6: using the formula 

provided in (2.16) MAS will be calculated. 
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Original Image  Distorted Image  

 

0 1 7 3  2 5 10 4 

4 2 8 10  0 1 5 1 

0 2 1 6  3 6 2 3 

6 3 5 4  1 3 10 0 

 

Alfa2 (Original Image, Distorted Image) = 0.9877, 0.9425, 0.6506, 0.9178 

Angel2= Sum (Alfa2) = 3.4985 

MAS= 1-(3.4985/16) = 0.7813                                                                                            (3.16) 

The result of MAS calculation shown in Figure 24 is equal to (3.16). 

  
Figure 24: MATLAB result of MAS calculation. 

3.2.2.17  Implementation and Testing of Mean Angle Similarity (MAMS) 

Explanation of the MAMS code (each line number corresponds to its code in Appendix 

A-17): 

Line 1: MAMS function with two inputs rel_img which refers to the original image 

and enhcd_img refers to the enhanced image, Line 4: we use a ready MATLAB 
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function “dot” to get the scalar dot of the real image and enhanced image, we also use 

another ready MATLAB function “acosd” which returns the inverse cosine of the 

element of  the real; Line 5 :” ; Line 6 :  using the formula provided in (2.17) MAMS 

will be calculated and assigned to variable “x”; Line 7:  we take the sum of the variable 

“x; Line 8: we divide the sum and assign the result to variable ”MAMS”. 

Alfa (Original Image, Distorted Image) = 0.9877, 0.9425, 0.6506, 0.9178 

X= 1-(1-Alfa) *(1-(Original Image-Distorted Image/255)) = 0.9883, 0.9452, 0.6667, 

0.9215 

SUM = Sum(X) = 3.5216 

MAMS = (3.5216/16) = 0.2201                                                                             (3.17) 

The result of MAMS calculation shown in Figure 25 is equal to (3.17). 

  
Figure 25: MATLAB result of MAMS calculation. 

3.2.2.18  Implementation and testing of Laplacian Mean Squared Error (LMSE)  

Explanation of the LMSE code (each line number corresponds to its code in Appendix 

A-18): 
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Line 1: LMSE function with two inputs: rel_img which refers to the real image, and 

enhcd_img refers to the enhanced image;, line 4: [m n] where m is amount of row the 

real image has and n is amount of columns the real image has; Line 5& Line 6:  we 

use a ready MATLAB function “del2”  to calculate the second derivavtive of the real 

image and distorted image; Line 7: using the formula provided in (2.18) LMSE will 

be calculate. 

Original Image  Del2 Original Image 

0 1 7 3  -6 2 -37 -49 
4 2 8 10  12 7 -12 -27 

0 2 1 6  -2 -2 17 17 

6 3 5 4  41 8 27 4 

 

Original Image  Del2 Original Image 

0 1 7 3  -6 2 -37 -49 
4 2 8 10  12 7 -12 -27 

0 2 1 6  -2 -2 17 17 

6 3 5 4  41 8 27 4 

 

Distorted Image  Del2 Distorted Image 

2 5 10 4  30 28 -18 -9 

0 1 5 1  19 12 -6 -14 

3 6 2 3  -24 -15 16 12 

1 3 10 0  12 -20 3 -54 
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Del2 Original Image - Del2 Distorted 

Image -36 -26 -19 -40 

-7 -5 -6 -13 

22 13 1 5 

29 28 24 58 

 

sum(sum(op-op2).^2)= 10456 

sum(sum(op.^2))= 7952 

LMSE = 10456/7952 = 1.3149.                                                                                                 (3.18) 

The Result of LMSE calculation shown in Figure 26 is equal to (3.18). 

  
Figure 26: Matlab result of LMSE calculation. 

For the rest of the IQMs (SSIM, VIF, RRED, HLFI, JQI, BIQI, AND NIQE) we 

implemented the following: 

  Downloaded  ready  implemented  code from: 

“live.ece.utexas.edu/research/quality/index_algorithms.htm” Texas University [17].   
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We added the function files of every IQM to our thesis code folder. Then in our main.m 

file we call all the IQM functions. Input and output we get from these functions: 

  VIF 

Input: (1) Img1: the reference image as a matrix. (2) Img2: the distorted image (Order 

Is Important). 

Output: (1) VIF the visual information fidelity measure between the two images. 

  NIQE 

Input: A test image loaded in an array. 

Output: A quality score of the image. higher value represents a lower quality. 

  JPEG 

Input: A test 8bits/pixel grayscale image loaded in a 2-d array. 

Output: A quality score of the image. the score typically has a value. between 1 and 

10 (10 represents the best quality, 1 the worst). 

  BIQI 

Input: A test 8bits/pixel grayscale image loaded in A 2-D array. 

Output: A quality score of the image. the score typically has a value. between 1 and 

10 (10 represents the best quality, 1 the worst). 

  RRED 

Input: A test 8bits/pixel grayscale image loaded in a 2-d array. 
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Output: Estimated entropy at different locations and the local spatial/temporal 

('spatial' and 'temporal' refer to the spatial and temporal scaled entropy information for 

different blocks in the subband). 

3.2.3 Implementation of Training Structure 

MATLAB 2015 provides a classification learner application that can be used to import 

tables from the work space. The application is very simple to use. It automatically 

extracts predictors (our IQM’s) and observations (real or fake image), also has more 

than one classification algorithm such as LDA and QDA which are used for classifying 

the extracted samples of an image. 

In order to use classification learner application, the results have to be arranged in a 

table and displayed in the workspace. The results displayed in workspace will be all 

imported to the classification learner application, then we select the table which has 

all the fingerprint image results of IQM’s, after that we select the response (Real/Fake) 

and predictors (Quality Measures). The steps of implementing our classifier using the 

classification learner application are shown in Figures 27-31. 
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Figure 27: Table which has all the fingerprint image results of IQMS we used. 

Figure 27 shows the table created in the workspace with 100 fingerprint images, 50 

fake and 50 real images. To create table to display our RFDS results we had to set a 

variable for every single IQM, each variable contains results calculated for one single 

IQM, then we used a ready MATLAB function called “table” for creating tables with 

our IQM variables in it. The table is imported to the classification learner application. 

Table is not completely shown in figure 27 due to screenshot limitation. 



 

 60 

  
Figure 28: The arrow shows a button used to call the classification learner app in 

MATLAB. 

Figure 28 shows all the apps provided in MATLAB 2015; to access the classification 

learner app in MATLAB click on apps, select classification learner app. 

  
Figure 29: Start new session to import results. 
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Figure 29 shows classification learner first page, click new session to import all 

datasets from the recent work space. 

 
 Figure 30: Selection of our dataset, predictors and response in MATLAB. 

Figure 30 shows the imported datasets from the works space which includes table t, 

the one we created, response (Real/Fake), and the predictors which is the image quality 

measures. 
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Figure 31: Selection of the classifier for our table imported and training result. 

Figure 31 shows the classifiers that can be selected on the left-side of the screenshot, 

in our case we selected LDA classifier shown on the left corner of the figure, we then 

clicked train button to start the classification process for the fingerprint images which 

were selected for training. The right-side of Figure 29 shows the result of training 50 

real and 50 fake fingerprint images, the training result had classified them all correctly. 

This training result obtained is considered as our training model, Figure 30 shows how 

to use and export the training model. 

3.2.4 Implementation of The Classification Process 

The training model we got from training on 100 fingerprint images is required for 

classification process. We input 1000 images from the fingerprint database for RFDS 

to classify the images on real and fake. There are four stages to implement 

classification process. 

1.  Export model of the classifier to the workspace to classify fingerprint images. Figure 

30 shows how to use and export the training model 
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2.  To classify the fingerprint images using the training model obtained from the 

classification learner app, we need to call a ready MATLAB function ”yfit = 

trainedclassifier.predictfcn(t)” and insert it after the table creation code, because this 

function will predict the fingerprint images if they are real or fake using a table with 

all the IQM results listed in it, in our case the function will predict table ‘T’ results real 

or fake based on the training model we obtained.  

3.  1000 fingerprint images were used for classification. (Appendix C2) shows results 

of the 1000 images classification. 

4.  Run and classify. 

The steps that show how the classification process works are shown in Figures 32-35: 

Click on the rectangle highlighted on the top right corner of Figure 32 to export the 

training model of 100 real and fake fingerprint training images, we export this model 

to our work space for the classification process. We enter then random images of 

fingerprints from different users and let our training model classify if the images FED 

to the RFDS are real or fake. For exporting the model click on the top right button 

“export model” and select the first option export model”, by this, the training model 

will be exported to the workspace. 
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 Figure 32: Exporting training model of 100 real and fake fingerprint images. 

  
Figure 33: After exporting the training model, we can use it to make prediction by 

the code provided in the command window highlighted with a rectangle. 

Figure 33, shows that our training model has been exported to the works space, as it 

can be seen clearly in the command window. If this highlighted rectangle message 
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doesn’t appear in the command window, it means, the training model wasn’t exported 

successfully.  

  
Figure 34: The highlighted rectangle shows the code used to classify images 

according to our exported training model. 

Figure 34, Shows the code used for classifiying the images “yfit = 

trainedclassifier.predictfcn(t)”. As we mentioned before this code has to be added after 

creating a table with all the results of the IQMS listed in it, so that we can classify the 

fingerprint images as real or fake. In our case we created a table named ‘T’ with all the 

results saved, then we added the function “yfit = trainedclassifier.predictfcn(t)” in our 

code to classify images results from the table ‘T’ according to our exported training 

model. 
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Figure 35: Results of 10 real and fake images classified correctly using the 

classification code. 

Figure 35 shows the results obtained from fingerprint images after running the 

classification code (Appendix A). In this run we had 10 real images and 10 fake all 

were classified correctly. The fingerprint images used were obtained from fingerprint 

database atvs-ffp db [33]. Figure 36 shows a screenshot of one real and fake fingerprint 

image sample we used in our experiments. Real and fake finger print images were read 

from directory” c:\users\lenovo-pc\desktop\hp_new folder (2)\abdu code\finger 

database\abdu\1biometrika\tm real”. Appendix A. Line 3. Shows the code we used for 

reading the directory of the fingerprint images. 
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 Figure 36: Fingerprint images used in our expirments, (A) fake fingerprint image 
from the file” U01_F_Fc_Li_01.Bmp”, (B) real fingerprint image form the file” 

U01_O_Fc_Li_01.Bmp”. 

3.3 Development of A Method of Defining the Best IQMs 

 

  
Figure 37: Numerical axis for MSE (A) And MD (B), showing MSE of fake (real) 
fingerprint images. And the respective averages calculated by (3.16) and (3.17). 
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Figure 37, shows a drawing that will help you to understand our basic idea behind 

finding the best 5 and 10 IQMs ,as you can see in Figure 34 there are two graphs (A) 

for MSE and (B) for MD, both of the graphs have red dots which represent the values 

of MSE and MD in real fingerprint images, the blue dots which represent the fake 

fingerprint image values of MSE and MD, and the green dots represent the average of 

MSE and MD in real fingerprint images (red dots) and fake fingerprint images (blue 

dots) calculated by (3.16) and (3.17) . Figure 34 has two scenarios: let’s start with (A), 

the MSE red points are close to the blue points  which means that the real and fake 

points in MSE are very close to each other and makes it difficult for us to distinguish 

between both of the points, in (A) the average point of the real points of MSE and the 

average point of the fake points of MSE are very close, in other words, it means that 

the real and fake points are very near to each other and it’s hard to differentiate between 

them. In (B) the MD red and blue points are well separated from each other, so that 

means the real points and fake points can be well distinguished from each other, we 

can also see that in (B) the average points for the real and fake images are far away 

from each other, so (B) is far better than (A) in distinguishing real and fake fingerprint 

images, from these two cases we can say that MD is a better IQM than MSE. The IQM 

which will have the highest absolute value of the difference between the green dots 

representing averages will be set as the best in the list of the IQM sorted by the 

difference (3.18) in the descending order. 

  To find the best 5 and 10 IQM of our RFDS we need to apply the following steps 

for every measurement.  

Find the IQM average of real fingerprint images (x̅r). 

𝑥̅𝑟 = ∑ Y"
*(

"&'
		";

                                                                                                                     (3.16) 
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Where 𝑥$; is the value of IQM in one single real fingerprint image, NR is number of 

real fingerprint images FED to the system. 

  Find the IQM average of fake fingerprint images (x̅f). 

𝑥̅𝑓 =
∑ Y$

,(
$&'

		"Z
                                                                                                                        (3.17) 

Where 𝑥$; is the value of iqm in one single fake fingerprint image, nf is number of fake 

fingerprint images fed to the system. 

  Find the difference between real (𝑥̅𝑟) and fake fingerprint images (𝑥̅𝑓). 

𝛥𝑋 = |𝑥̅𝑟 − 𝑥̅𝑓|                                                                                  (3.18) 

Apply these three steps for every single IQM, then sort them from maximum to 

minimum difference value which is found in step 3. The best IQM will be the one with 

the maximum distance value.	𝑥̅𝑟. 

𝑺𝒐𝒓𝒕 = 𝑚𝑎𝑥(𝛥𝑋𝑟… .𝛥𝑋𝑛)  

Where n is the number of iqm used in the system  

3.3.1 Implementation and Testing of The Method of Defining the Best IQMs 

The code for the defining the best IQMs was implemented using MATLAB. The 

complete code is shown in Appendix B. 

Explanation of defining the best IQMS code (Appendix B-1): 

Line 1: We set the results of the IQM from 1-500 as real values. Line 2: we set the 

results of the IQM from 501-1000 as fake values. Line 3: we take the average of the 

real values of the IQM. Lines 4 and 5: display the average of the real values of the 

IQMs. Line 6: we take the average of the fake values of the IQM. Lines 7 and 8: display 

the average of the fake values of the IQM; line 9: displays the difference of the 
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averages of real values and fake values of the IQMs. Line 10: we take the absolute 

value of the difference calculated. Line 11: we display the result.  

Explanation of ranking the best IQMs code (Appendix B-2): 

Line 1: We list the names of all IQMs in one array. Line 2: we list the difference of 

the averages of real and fake values of every IQM in one array. Line 3: we create a 

table with “title” and “best 15” as its fields. Line 4: we sort the table rows in descending 

order.  

3.3.1.1 Calculation of Defining the Best 5 IQMs 

1. For MSE  

Real fingerprint image values of the MSE: 0.0017764, 0.0016535, 0.0016386, 

0.00163, 0.0016254 

Fake fingerprint image values of the MSE: 0.0015887, 0.0015395, 0.0015314, 

0.0014846, 0.0014052 

Average of the real fingerprint image values of MSE: (0.0017764 + 0.0016535 + 

0.0016386 + 0.00163 + 0.0016254)/ 5 = 0.0017 

Average of the fake fingerprint image values of MSE: (0.0015887 + 0.0015395 + 

0.0015314 + 0.0014846 + 0.0014052)/ 5 = 0.0015 

Difference between the average of real fingerprint image values of MSE and average 

of the fake fingerprint image values of MSE: |0.0017 - 0.0015| = 0.0001549 

2. For SNR 

Real fingerprint image values of the SNR: 32.608, 31.179, 30.719, 30.149, 30.149 

Fake fingerprint image values of the SNR: 29.958, 29.674, 29.664, 29.584, 29.674 

Average of the real fingerprint image values of SNR: (32.608 + 31.179 + 30.719 + 

30.149 + 30.149) / 5 = 30.9608 
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Average of the fake fingerprint image values of SNR: (29.958 + 29.674 + 29.664 + 

29.584 + 29.674) / 5 = 29.7108 

Difference between the average of real fingerprint image values of SNR and average 

of the fake fingerprint image values of SNR: |30.9608 - 29.7108| = 1.2500 

3. For PSNR 

Real fingerprint image values of the PSNR: 81.171, 81.106, 80.41, 79.938, 79.541 

Fake fingerprint image values of the PSNR: 79.142, 79.142, 78.689, 78.668, 78.522 

Average of the real fingerprint image values of PSNR: (81.171 + 81.106 + 80.41 + 

79.938 + 79.541) / 5 = 80.4332 

Average of the fake fingerprint image values of PSNR: (79.142 + 79.142 + 78.689 + 

78.668 + 78.522) / 5 = 78.8326 

Difference between the average of real fingerprint image values of psnr and average 

of the fake fingerprint image values of PSNR: |80.4332-78.8326| =1.6006 

4.  For NK 

Real fingerprint image values of the NK: 0.99731, 0.99604, 0.99542, 0.99542, 0.9948 

Fake fingerprint image values of the NK: 0.99453, 0.99447, 0.99417, 0.99409, 0.994 

Average of the real fingerprint image values of NK: (0.99731 + 0.99604 + 0.99542 + 

0.99542 + 0.9948) / 5 = 0.9958 

Average of the fake values of NK: (0.99453 + 0.99447 + 0.99417 + 0.99409 + 0.994) 

/ 5 = 0.9943 

Difference between the average of real fingerprint image values of NK and average of 

the fake fingerprint image values of NK: |0.9958 - 0.9943| = 0.0015 

5.  For AD 
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Real fingerprint image values of the AD: 0.00097608, 0.00097608, 0.00097608, 

0.00097608, 0.197608 

Fake fingerprint image values of the AD: 0.297608, 0.07608, 0.208, 0.1608, 0.397608 

Average of the real fingerprint image values of AD: (0.00097608 + 0.00097608 + 

0.00097608 + 0.00097608 + 0.197608) / 5 = 0.0403 

Average of the fake fingerprint image values of AD: (0.297608 + 0.07608 + 0.208 + 

0.1608 + 0.397608) / 5 = 0.2280 

Difference between the average of real fingerprint image values of ad and average of 

the fake fingerprint image values of AD: |0.0403 - 0.2280| = 0.1877 

The best IQM is the one with the fake fingerprint image values. The rank of the best 5 

IQMs will be: 

SNR       1.6006 

SNR       1.25 

AD         0.18772 

NK         0.001546 

MSE       0.0001549 
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 Figure 38: The list of the best IQMs (in the red rectangle). 

Figure 38 shows a screenshot with the list of the best IQMs. Using MATLAB, we 

inserted the same values used for every IQM in the manual calculation above and 

applied the same steps of calculation, which generated expected results at the end. For 

our RFDS expirment we used the same method explained above to define our best 15, 

10, and 5 IQMs. Figure 38 shows a screenshot of our best 15, 10, and 5 IQMs generated 

by our code which is available in Appendix B. The MATLAB screenshot in Figure 39 

shows our IQMs listed as follows: for best 10 IQMs: SME, PSNR, SNR, GPE, 

RAMD, MD, TCD, NAE, SPE, and SC, and the first five of them are the Best 5 IQMs. 
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Figure 39: List of our best 15,10,5 IQMs used in our RFDS expirments. 

3.4 Summary  

In this chapter we have presented the implementation of our RFGS, including Gaussian 

Filter, Feature Extraction, Measurnment of Traning Strcture, Classification Process 

and the best IQMs using MATLAB r2015b as showen in (Appendices A- C). 
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4. Chapter 4 

EXPERIMENTS ON RFDS 

4.1 Experimental Setup 

The experiment was implemented on a PC with Windows 10 pro, 64-bit operating 

system, CPU Intel Core I7 2.50 Ghz, 8 Gb Ram, and MATLAB r2015b. 

4.2 Database Used 

ATVS fingerprint database [33] contains two datasets of fingerprint images with bmp 

file format:  

1.  Dataset 1: fake samples were captured from gummy fingers generated with the 

cooperation of the user. It contains fingerprint samples of the middle and index finger 

of both hands of 17 users, which means in total 68 (17x4=68) different fingers. Four 

samples of each fingerprint (Fake and Real) were captured in one acquisition session 

with the use of three sensors, so the dataset consists of 68 x 4 x 3 =816 real image 

samples and as many fake images. 

The three types of sensors are used in the dataset: 

§  Biometrika Sensor.  

§  Thermal Sensor.  

§  Flat Capacitive Sensor.  

2.  Dataset 2: ds_withoutcooperation fake samples were captured from gummy fingers 

generated with the cooperation of the user. It contains fingerprint samples of the 
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middle and index fingers of both hands of 16 users, which means in total 64 (16x4) 

different fingers. Four samples of each fingerprint (Fake and Real) were captured in 

one acquisition session with the use of three sensors, this way the dataset comprises 

768 (64 x 4 x 3 =816) real image samples and as many fake images. 

In all the experiments we ran on the RFDS we used 50 real and 50 fake images for 

training stage, while in the classification stage we used 500 original fingerprint images 

and 500 fake fingerprint images a total of 1000 fingerprint images. Three different 

types of experiments on the RFDS were conducted: RFDS training and classification 

with 25 IQMs, RFDS training and classification with best 15 IQMs, RFDS training 

and classification with the best 10 IQMs, RFDS training and classification with the 

best 5 IQMs.  

4.3 Classification Methods Used  

§  LDA (Linear Discriminant Analysis) 

§  QDA (Quadratic Discriminant Analysis) 

§  Linear SVM, Quadratic SVM 

§  Logistic Regression, and fine KNN. 

4.4 Code Parts for Experiments Conducting 

The experiment code is divided into three parts: 

§  Input the Fingerprint Image and Filtering Code. 

§  Feature Extraction Code. 

§  Classification Process. 

In the first part of the code (Appendix A, lines 1-29), we input the fingerprint images 

and convert them from RGB to grayscale image. Then, we convert the image to double, 
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and apply a 3*3 Gaussian filter to it; we resize both the original and fake fingerprint 

image to an equal size. 

In the second part of the code (Appendix A, Lines 30-80), 25 image quality measures 

are implemented and each of them has a function for calculation, using the two inputs, 

real and enhanced fingerprint image. Each image quality measure function provided 

in the code was successfully tested. For training, 50 real fingerprint images and 50 fake 

fingerprint images with their 25 image quality measures calculated will be gathered all 

in a vector and arranged in a table to be able to import them to the classification learner 

application for training process. 

In the third part which is the classification process, we use a user-friendly MATLAB 

application called “Classification Learner Application” to classify fingerprint images 

to real and fake images using six classifiers.  

4.5 Experimental Results 

4.5.1 Experiments on the RFDS Training and Classification with 15 IQMs 

 

Table 4: Training results with 15 IQMs. 
15 IQMs 

SME, PSNR, SNR, GPE, RAMD, MD, TCD, NAE, SPE, SC, TED, NK, MSE, 
GME, AND AD; ATV Database, 50 Real And 50 Fake Fingerprints. 

Classifier/Sample No. FFR FGR HTER 

Lda/1000 Images 4% 30% 17% 
Qda/100 Images 4% 24% 14% 

Linear Svm/100 Images 2% 2% 2% 

Quadratic Svm/100 Images 0% 0% 0% 

Logistic Regression/100 Images 0% 0% 0% 

Fine Knn/100 Images 0% 0% 0% 
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The results listed in Table 4, are generated from ATV database. There were 50 real 

and 50 fake fingerprint images input to the system to train, the detailed results of the 

100 samples of fingerprints using 15 IQMs and 6 classifiers are shown in Appendix 

C-1, Figures 38-43.  

Table 5: Classification results with 15 IQMs. 
15 IQMs 

SME, PSNR, SNR, GPE, RAMD, MD, TCD, NAE, SPE, SC, TED, NK, MSE, 
GME, AND AD; ATV Database, 500 Real And 500 Fake Fingerprints 

Classifier/Sample No. FFR FGR HTER 

LDA/1000 Images 5.4% 21.6% 13.5% 

QDA/1000 Images 12.4% 17.2% 14.8% 

Linear SVM/1000 Images 8.4% 7.6% 8% 

Quadratic SVM/1000 Images 1.6% 10% 5.8% 

Logistic Regression/1000 Images 8% 9% 8.5% 

Fine KNN/1000 Images 2.6% 13.6% 8.1% 

 

Table 5, shows the classification results with 15 IQMs for 500 real and 500 fake 

fingerprint images inputted to the system to classify, the detailed results of the 1000 

samples of fingerprints for classification are shown in Appendix C-2, Figures 44–49. 

4.5.2 Experiments on The Rfds Training and Classification with Best 10 IQMs 
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Table 6: Training results with best 10 IQMs. 
Best 10 IQMs 

SME, PSNR, SNR, GPE, RAMD, MD, TCD, NAE, SPE, AND SC 

Classifier/Sample No. FFR FGR HTER 

LDA/100 Images 4% 24% 14% 

QDA/100 Images 4% 12% 8% 

Linear SVM/100 Images 2% 0% 1% 

Quadratic SVM/100 Images 0% 0% 0% 

Logistic Regression/100 Images 0% 0% 0% 

Fine KNN/100 Images 0% 0% 0% 

 

The results listed in Table 6, are generated with the use of 10 IQMs, there were 50 real 

and 50 fake fingerprint images inputted to the system to train, the detailed results of 

the 100 samples of fingerprints using 6 classifiers are shown in Appendix C-3, Figures 

50-55. 

Table 7: Classification results with best 10 IQMs. 
Best 10 IQMs: 

SME, PSNR, SNR, GPE, RAMD, MD, TCD, NAE, SPE, AND SC 

Classifier/Sample No. FFR FGR HTER 

LDA/1000 Images 9% 18.8% 13.9% 

QDA/1000 Images 13.4% 13.6% 13.5% 

Linear SVM/1000 Images 8.8% 7.4% 8.1% 

Quadratic SVM/1000 Images 3% 9.4% 6.2% 

Logistic Regression/1000 Images 14.6% 12.2% 13.4% 

Fine KNN/1000 Images 3.8% 13.2% 8.5% 
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Table 7, shows the classification results with 10 IQMs for 500 real and 500 fake 

fingerprint images inputted to the system to classify. The results of the 1000 samples 

of fingerprint classification are shown in Appendix C-4, Figures 56–61. 

4.5.3 Experiments on The RFDS Training and Classification with Best 5 IQMs 

 

Table 8: Training results with best 5 IQMs. 
Best 5 IQMs: 

SME, PSNR, SNR, GPE, AND RAMD 

Classifier/Sample No. FFR FGR HTER 

LDA/100 Images 4% 16% 10% 
QDA/100 Images 4% 6% 5% 

Linear SVM/100 Images 2% 0% 1% 

Quadratic SVM/100 Images 2% 0% 1% 

Logistic Regression/100 Images 0% 0% 0% 

Fine KNN/100 Images 0% 0% 0% 

 

The results listed in Table 8, are obtained with the use of 5 IQMs, there were 50 real 

and 50 fake fingerprint images inputted to the system to train, the detailed results of 

the 100 samples of fingerprint using 6 classifiers are shown in Appendix C-5, Figures 

62-67.  
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Table 9: Classification results with best 5 IQMs. 
Best 5 Iqms: 

SME, PSNR, SNR, GPE, AND RAMD 

Classifier/Sample No. FFR FGR HTER 

LDA/1000 Tested Fingerprint Images 10.4% 14.6% 12.5% 
QDA/1000 Images 13.8% 9.2% 11.5% 

Linear SVM/1000 Images 8.8% 6.4% 7.6% 

Quadratic SVM1000 Images 7.8% 6.2% 7% 

Logistic Regression/1000 Ima+Ges 6.2% 6.8% 6.5% 

Fine KNN/1000 Images 6.4% 8.6% 7.5% 

 

Table 9, shows the classification results with 5 IQMs for 500 real and 500 fake 

fingerprint images inputted to the system to classify, the detailed results of the 1000 

samples of fingerprints tested for classification are shown in Appendix C-6, Figures 

68-73. 4.3.4.  

4.5.4 Experiments on The RFDS Training and Classification With 25 IQMs 

 

Table 10: Training results with 25 IQMs. 
25 IQMs 

SME, PSNR, SNR, GPE, RAMD, MD, TCD, NAE, SPE, SC, TED, NK, MSE, 
GME, AD, LMSE, MAS, MAMS, HLFREQIQ, BIQI, SSIM, RRED, JPEG, VIF, 

AND NIQE  

Classifier/Sample No. FFR FGR HTER 

LDA/100 Images 4% 20% 12% 
QDA/100 Images 2% 0% 1% 

Linear SVM/100 Images 0% 2% 1% 

Quadratic SVM/100 Images 0% 0% 0% 

Logistic Regression/100 Images 0% 0% 0% 

Fine KNN/100 Images 0% 0% 0% 
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The results listed in Table 10 are generated from ATV database for 50 real and 50 fake 

fingerprint images inputted to the system to train. The detailed results of the 100 

samples of fingerprints using 25 IQMs using 6 classifiers are shown in Appendix C-7, 

Figures 74 -78. 

Table 11: Classification results with 25 IQM’s. 
25 IQMs 

SME, PSNR, SNR, GPE, RAMD, MD, TCD, NAE, SPE, SC, TED, NK, MSE, 
GME, AD, LMSE, MAS, MAMS, HLFREQIQ, BIQI, SSIM, RRED, JPEG, VIF, 

AND NIQE 

Classifier/Sample No. FFR FGR HTER 

LDA/1000 Images 5.4% 0% 2.7% 
QDA/1000 Images 19% 0% 9.5% 

Linear SVM/1000 Images 2.6% 0% 1.3% 

Quadratic SVM/1000 Images 0.6% 0% 0.3% 

Logistic Regression/1000 Images 1% 0% 0.5% 

Fine KNN/1000 Images 1.2% 0% 0.6% 

 

Table 11, shows the classification results with 25 IQM’s for 500 real and 500 fake 

fingerprint images inputted to the system to classify. The detailed results of the 1000 

samples of fingerprints for classification are shown in Appendix C-8, Figures 79-84.  

4.5.5 Comparsion of the RFDS Performance With 5, 10, 15, And 25 Iqms Used 
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Table 12: Result of comparison HTER (%) between our RFDS and RFDS [6]. 
                   Result of Comparison For 5, 10, 15 And 25 IQMs  

Classifiers 

RFDS FINEKNN QDA LDA QSVM LSVM LOGREG 

25 

Iqms[6] 

N/A 12.8% N/A N/A N/A N/A 
25 IQMs 0.6% 9.5% 2.7% 0.3% 1.3% 0.5% 

15 IQMs 8.1% 14.8% 13.5% 5.8% 8% 8.5% 

10 IQMs 8.5% 13.5% 13.9% 6.2% 8.1% 13.4% 

5 IQMs 7.5% 11.5% 12.5% 7% 7.6% 6.5% 

 

Table 11, shows the comparison between RFDS performances with the usage of 25, 

15, 10, 5 IQMs. We can clearly see that performance of our RFDS with 25 IQMs has 

better performance than the rest of the RFDS. Table 11, also shows that 10 and 15 

IQMs RFDS are very similar to each other, their hter results are very close not like the 

RFDS with 5 IQMs where the result of its HTER has minmum 12% gap from the other 

RFDS. From Table 11, we can say that the best performance from the RFDS in the list 

is the one with 25 IQMs, because it’s HTER score is the minimum one with 0.3%, and 

the worst RFDS is the one with the 5 IQMs which has the maximum HTER score with 

29.7%. 

4.6 Summary 

We show the experiment setup of our RFDS, we also compared four of our RFDS 

using 5, 10, 15, and 25 IQMs with RFDS [6] which has used 25 IQMS. Our RFDS 

experiment was implemented using atv database [33], 100 fingerprint images were 

used for training process, and 1000 fingerprints were used for detection process. With 

the exclusion of our RFDS that used 5 IQMs, we can summarize that with less IQMs 

than RFDS [6], our system still managed to give us better results, listed all in table 11. 
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5. Chapter 5 

CONCLUSION 

In our thesis we analyzed similar to the “State-of-The-Art” RFDS systems; some of 

them used different image quality measures (IQMs), and also different types of 

classification process. The results of these RFDS systems in detecting fake fingerprint 

images still had errors and were not 100% accurate. These existing errors of detecting 

fingerprint image made us interested in implementing a RFDS system with high 

performance and fewer errors. In our studies we explained step by step procedure of 

how to implement our RFDS, implementation of Gaussian filter to the input image, 

implementation of the IQMs, implementation of the classification process, and 

implementation of the method of defining the best IQMs. All these implementations 

were done using MATLAB r2015b. We also show our experimental setup used for 

investigation of our RFDS. We compared our RFDS (using 5,10, 15, and 25 IQMs) 

with state of the art RFDS (using 25 IQMs). Our best RFDS hter result is 0.3% using 

25 IQMs, and state oft he art RFDS hter was 12.8% using also the same 25 IQMs, 

which indicates that our RFDS performance is overall much better than the state of the 

art” RFDS even though in some experiments we used a smaller number of IQMs in 

our system compared to the state of the art RFDS. 
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Appendix A: Feature Extraction Code:  

1.  MSE Function 

Function Iqm_Mse = Mean_Sqr_Error(Rel_Img, Enhcd_Img)  

Rel_Img = Double(Rel_Img);  

Enhcd_Img = Double(Enhcd_Img);  

[M N] = Size(Rel_Img);  

Eror = Rel_Img - Enhcd_Img;  

Iqm_Mse = Sum(Sum(Eror .* Eror)) / (M * N);  

 

2.  PSNR Function 

Function Iqm_Psnr = Pk_Signalt_Nse_Ratio(Rel_Img, Enhcd_Img)  

Rel_Img = Double(Rel_Img);  

Enhcd_Img = Double(Enhcd_Img);  

[M N] = Size(Rel_Img);  

Eror = Rel_Img - Enhcd_Img;  

Iqm_Mse = Sum(Sum(Eror .* Eror)) / (M * N);  

If(Iqm_Mse > 0)  

 Iqm_Psnr = 10*Log10((255.*255)/Iqm_Mse);  

Else  

 End  
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3.  SNR Function 

Function Iqm_Snr = Signal_Nse_Ratio(Rel_Img, Enhcd_Img)  

Rel_Img = Double(Rel_Img);  

Enhcd_Img = Double(Enhcd_Img);  

[M, N] = Size(Rel_Img);  

Eror = Rel_Img - Enhcd_Img;  

Iqm_Mse = Sum(Sum(Eror .* Eror)) / (M * N);  If(Iqm_Mse > 0)  

Iqm_Snr = 10*Log10((Sum(Sum(Rel_Img.*Rel_Img)))./(M .* N .* Iqm_Mse)); Else     

Iqm_Snr = 99; End  

 

4.  SC Function 

 Function Iqm_Sc = Struct_Cntnt(Rel_Img, Enhcd_Img)  

Rel_Img = Double(Rel_Img);  

Enhcd_Img = Double(Enhcd_Img);  

Iqm_Sc = Sum(Sum(Rel_Img .* Rel_Img)) ./ Sum(Sum(Enhcd_Img .* Enhcd_Img));  

 

5.  MD Function 

Function Iqm_Md = Max_Diff(Rel_Img, Enhcd_Img)  

Rel_Img = Double(Rel_Img);  

Enhcd_Img = Double(Enhcd_Img);  

Eror = Rel_Img - Enhcd_Img;  

Iqm_Md = Max(Max(Abs(Eror)));   
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6. AD Function 

Function Ad = Avrge_Diff(Rel_Img, Enhcd_Img)  

Rel_Img = Double(Rel_Img);  

Enhcd_Img = Double(Enhcd_Img);  

[M N] = Size(Rel_Img);  

Eror = Rel_Img - Enhcd_Img; 

Iqm_Ad = Sum(Sum(Eror)) / (M * N);  

 

7.  NAE Function 

Function Iqm_Nae = Normalized_Abs_Error(Rel_Img, Enhcd_Img)  

Rel_Img = Double(Rel_Img);  

Enhcd_Img = Double(Enhcd_Img);  

Eror = Rel_Img - Enhcd_Img;  

Iqm_Nae = Sum(Sum(Abs(Eror))) / Sum(Sum(Abs(Rel_Img))); 

 

8.  RAMD Function 

Function Iqm_Ramd = Ravg_Md(Rel_Img, Enhcd_Img)  

Rel_Img = Double(Rel_Img);  

Enhcd_Img = Double(Enhcd_Img);  

Eror = Rel_Img - Enhcd_Img;  

Eror=Abs(Eror);  

A1=Eror(:); 
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B=Flipud(Unique(Sort(A1)));      

Resultatt=B(1:10);          

Resultat_1=Resultatt(1:10,:)  

R  = 10; 

Iqm_Ramd = Sum((Abs(Resultat_1)))/R;  

 

9.  NCC Function 

Function Iqm_Ncc = Normalized_Crs_Correlation(Rel_Img, Enhcd_Img)  

Rel_Img = Double(Rel_Img);  

Enhcd_Img = Double(Enhcd_Img);  

Iqm_Ncc = Sum(Sum(Rel_Img .* Enhcd_Img)) ./ Sum(Sum(Rel_Img .* Rel_Img));  

 

10.  TED Function 

Function Iqm_Ted = Total_Edg_Dif(Rel_Img, Enhcd_Img)  

Rel_Img=Edge(Rel_Img,'Sobel');  

Figure, Imshow(Rel_Img)  

Rel_Img = Double(Rel_Img);  

Enhcd_Img=Edge(Enhcd_Img,'Sobel');  

Figure, Imshow(Rel_Img)  

Enhcd_Img = Double(Enhcd_Img);  

[M, N] = Size(Rel_Img);  

Eror = Rel_Img - Enhcd_Img;  

Iqm_Ted = Sum(Sum(Abs(Eror))) / (M * N); 
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11. TCD Function 

Function Iqm_Tcd = Total_Crner_Diff(Rel_Img, Enhcd_Img)   

Rel_Img = Double(Rel_Img);  

Enhcd_Img = Double(Enhcd_Img);  

Ncr_Orig = Detectharrisfeatures(Rel_Img);  

Imshow(Rel_Img);   

Hold On;  

Plot(Ncr_Orig);  

Ncr_Orig = Length(Ncr_Orig);  

Ncr_Dist = Detectharrisfeatures(Enhcd_Img); Imshow(Enhcd_Img);  Hold On;  

Plot(Ncr_Dist);  

Ncr_Dist = Length(Ncr_Dist);  

Max_1= Max(Ncr_Orig,Ncr_Dist);  

Iqm_Tcd =(Abs(Ncr_Orig-Ncr_Dist))/Max_1;  

 

12.  SPE Function 

Function Iqm_Spe = Spectral_Ph_Error(Rel_Img, Enhcd_Img)  

Rel_Img = Double(Rel_Img);  

Enhcd_Img = Double(Enhcd_Img);  

Fft_A = Fft2(Double(Rel_Img));  

Argfft_A =Angle(Fft_A);  

Fft_B = Fft2(Double(Enhcd_Img));  

Argfft_B =Angle(Fft_B); 
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 [M , N] = Size(Rel_Img);  

Eror=Abs(Argfft_A)-Abs(Argfft_B);  

Iqm_Spe =Sum(Sum( Eror.*Eror)) / (M * N);  

 

13.  SME Function 

Function Iqm_Sme = Spectral_Mg_Error(Rel_Img, Enhcd_Img)  

Rel_Img = Double(Rel_Img);  

Enhcd_Img = Double(Enhcd_Img);  

Fft_A = Fft2(Double(Rel_Img));  

Z1rr=Real(Fft_A);  

Z1ii=Imag(Fft_A);  

Fft_A1=Sqrt((Z1rr.*Z1rr)+(Z1ii.*Z1ii)); 

 Fft_B = Fft2(Double(Enhcd_Img));  

Z2rr=Real(Fft_B);  

Z2ii=Imag(Fft_B);  

Fft_B1=Sqrt((Z2rr.*Z2rr)+(Z2ii.*Z2ii)); 

 [M , N] = Size(Rel_Img); Eror=Abs(Fft_A1)-Abs(Fft_B1);  

Iqm_Sme =Sum(Sum( Eror.*Eror)) / (M * N);  

 

14.  GPE Function 

Function Iqm_Gpe = Gradient_Ph_Eror(Rel_Img, Enhcd_Img)  

Rel_Img = Double(Rel_Img);  

Enhcd_Img = Double(Enhcd_Img);  
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 [Fx1,Fy1] = Gradient(Rel_Img);  

Zz=Complex(Fx1,Fy1); 

Arggmagorig = Angle(Zz);  

[Fx1,Fy1] = Gradient(Enhcd_Img);  

Yy=Complex(Fx1,Fy1);  

Arggma_Dist = Angle(Yy);  

[M , N] = Size(Rel_Img);  

Eror=Abs(Arggmagorig)-Abs(Arggma_Dist);  

Iqm_Gpe =Sum(Sum( Eror.*Eror)) / (M * N) 

 

15.  GME Function 

Function Iqm_Gme = Gradient_Mg_Error(Rel_Img, Enhcd_Img)  

Rel_Img = Double(Rel_Img);  

Enhcd_Img = Double(Enhcd_Img);  

 [Fx1,Fy1] = Gradient(Rel_Img);  

Gmgorig=Sqrt((Fx1.*Fx1)+(Fy1.*Fy1)); [Fx1,Fy1] = Gradient(Enhcd_Img);  

Gmgdis=Sqrt((Fx1.*Fx1)+(Fy1.*Fy1));  

[M , N] = Size(Rel_Img);  

Eror=Abs(Gmgorig)-Abs(Gmgdis);  

Eror=Eror.*Eror;  

Iqm_Gme =Sum(Sum( Eror)) / (M * N) 
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16.  MAS Function 

Function Mas= Meananglesimilarity(Realimg, Enhimg)%Mas 

[M N]= Size(Realimg); 

Alfa2= 2/180 .* (Acosd(Dot(Realimg,Enhimg)/(Norm(Realimg).* Norm(Enhimg)))); 

Angle2 = Sum( Alfa2 ); 

Mas = 1-Angle2/(M*N); 

End 

 

17.  MAMS Function 

Function Mams= Meananglemagnitudesimilarity(Realimg, Enhimg) 

[M N]= Size(Realimg); 

Alfa= 2/Pi .* (Acos(Dot(Realimg, Enhimg)/(Norm(Realimg).* Norm(Enhimg))));              

X= 1 - ((1-Alfa)*(1 - (Norm(Realimg-Enhimg)/255))); 

Sum = Sum(X); 

Mams = Sum / (M*N); 

End 

 

18.  LMSE Function 

Function Lmse=  Laplacianmeansquarederror(Realimg, Enhimg)%Lmse 

[M N]= Size(Realimg); 

Op=4*Del2(Realimg); 

Op2=4*Del2(Enhimg); 
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Lmse=Sum(Sum((Op-Op2).^2))/Sum(Sum(Op.^2)); 

End 

 

19.  SSIM Function 

Function Ssim= Structuralsimilarityindex(Realimg, Ehnimg) 

Img1=Double(Realimg); 

Img2=Double(Ehnimg); 

K = [0.01 0.03]; 

Window = Fspecial('Gaussian', 11, 1.5); 

L = 255;  

Ssim = Ssim_Index(Img1, Img2, K, Window, L); 

 

20.  VIF Function  

Function Vif=Vifvec(Imorg,Imdist); 

% -----------Copyright Notice Starts With This Line------------ 

% Copyright (C) 2005 The University Of Texas At Austin 

% All Rights Reserved. 

% Permission Is Hereby Granted, Without Written Agreement And Without License 

Or Royalty Fees, To Use, Copy,  

% Modify, And Distribute This Code (The Source Files) And Its Documentation For 

% Any Purpose, Provided That The Copyright Notice In Its Entirety Appear In All 

Copies Of This Code, And The  
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% Original Source Of This Code, Laboratory For Image And Video Engineering (Live, 

Http://Live.Ece.Utexas.Edu) 

% At The University Of Texas At Austin (Ut Austin,  

% Http://Www.Utexas.Edu), Is Acknowledged In Any Publication That Reports 

Research Using This Code. The Research 

% Is To Be Cited In The Bibliography As: 

% H. R. Sheikh And A. C. Bovik, "Image Information And Visual Quality", Ieee 

Transactions On  

% Image Processing, (To Appear). 

% In No Event Shall The University Of Texas At Austin Be Liable To Any Party For 

Direct, Indirect, Special, Incidental,  

% Or Consequential Damages Arising Out Of The Use Of This Database And Its 

Documentation, Even If The University Of Texas 

% At Austin Has Been Advised Of The Possibility Of Such Damage. 

% The University Of Texas At Austin Specifically Disclaims Any Warranties, 

Including, But Not Limited To, The Implied  

% Warranties Of Merchantability And Fitness For A Particular Purpose. The Database 

Provided Hereunder Is On An "As Is" Basis, 

% And The University Of Texas At Austin Has No Obligation To Provide 

Maintenance, Support, Updates, Enhancements, Or Modifications. 

% -----------Copyright Notice Ends With This Line------------ 

%This Is An Implementation Of The Algorithm For Calculating The 

%Visual Information Fidelity (Vif) Measure (May Also Be Known As The Sheikh 

%-Bovik Index) Between Two Images. Please Refer 

%To The Following Paper: 
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%H. R. Sheikh And A. C. Bovik "Image Information And Visual Quality" 

%Ieee Transactios On Image Processing, In Publication, May 2005. 

%Download Manuscript Draft From Http://Live.Ece.Utexas.Edu In The 

%Publications Link 

%This Implementation Is Slightly Differnet From The One Used To Report 

%Results In The Paper Above. The Modification Have To Do With Using More 

%Subands Than Those Used In The Paper, Better Handling Of Image Boundaries, 

%And A Window That Automatically Resizes Itself Based On The Scale. 

%Report Bugfixes And Comments To Hamid.Sheikh@Ieee.Org 

%---------------------------------------------------------------------- 

% Prerequisites: The Steerable Pyramid Toolbox. Available At 

% Http://Www.Cns.Nyu.Edu/~Lcv/Software.Html 

%Input : (1) Img1: The Reference Image 

%        (2) Img2: The Distorted Image (Order Is Important) 

%Output: (1) Vif Te Visual Information Fidelity Measure Between The Two Images 

%Default Usage: 

%   Given 2 Test Images Img1 And Img2, Whose Dynamic Range Is 0-255 

%   Vif = Vifvec(Img1, Img2); 

%Advanced Usage: 

%   Users May Want To Modify The Parameters In The Code.  

%   (1) Modify Sigma_Nsq To Find Tune For Your Image Dataset. 

%   (2) Mxm Is The Block Size That Denotes The Size Of A Vector Used In The 

%   Gsm Model. 

%   (3) Subbands Included In The Computation 

%================================================= 



 

 102 

M=3; 

Subbands=[4 7 10 13 16 19 22 25]; 

Sigma_Nsq=0.4; 

% Do Wavelet Decomposition. This Requires The Steerable Pyramid. You Can 

% Use Your Own Wavelet As Long As The Cell Arrays Org And Dist Contain 

% Corresponding Subbands From The Reference And The Distorted Images 

% Respectively. 

[Pyr,Pind] = Buildspyr(Imorg, 4, 'Sp5filters', 'Reflect1'); % Compute Transform 

Org=Ind2wtree(Pyr,Pind); % Convert To Cell Array 

[Pyr,Pind] = Buildspyr(Imdist, 4, 'Sp5filters', 'Reflect1'); 

Dist=Ind2wtree(Pyr,Pind); 

% Calculate The Parameters Of The Distortion Channel 

[G_All,Vv_All]=Vifsub_Est_M(Org,Dist,Subbands,M); 

% Calculate The Parameters Of The Reference Image 

[Ssarr, Larr, Cuarr]=Refparams_Vecgsm(Org,Subbands,M); 

% Reorder Subbands. This Is Needed Since The Outputs Of The Above Functions 

% Are Not In The Same Order 

Vvtemp=Cell(1,Max(Subbands)); 

Ggtemp=Vvtemp; 

For(Kk=1:Length(Subbands)) 

Vvtemp{Subbands(Kk)}=Vv_All{Kk}; 

Ggtemp{Subbands(Kk)}=G_All{Kk}; 

End 

% Compute Reference And Distorted Image Information From Each Subband 

For I=1:Length(Subbands) 
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Sub=Subbands(I); 

G=Ggtemp{Sub}; 

Vv=Vvtemp{Sub}; 

Ss=Ssarr{Sub}; 

Lambda = Larr(Sub,:);,  

Cu=Cuarr{Sub}; 

% How Many Eigenvalues To Sum Over. Default Is All. 

Neigvals=Length(Lambda); 

% Compute The Size Of The Window Used In The Distortion Channel Estimation, 

And Use It To Calculate The Offset From Subband Borders 

% We Do This To Avoid All Coefficients That May Suffer From Boundary 

% Effects 

Lev=Ceil((Sub-1)/6); 

Winsize=2^Lev+1; Offset=(Winsize-1)/2; 

Offset=Ceil(Offset/M); 

% Select Only Valid Portion Of The Output. 

G=G(Offset+1:End-Offset,Offset+1:End-Offset); 

Vv=Vv(Offset+1:End-Offset,Offset+1:End-Offset); 

Ss=Ss(Offset+1:End-Offset,Offset+1:End-Offset); 

%Vif 

Temp1=0; Temp2=0; 

For J=1:Length(Lambda) 

Temp1=Temp1+Sum(Sum((Log2(1+G.*G.*Ss.*Lambda(J)./(Vv+Sigma_Nsq))))); % 

Distorted Image Information For The I'th Subband 
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Temp2=Temp2+Sum(Sum((Log2(1+Ss.*Lambda(J)./(Sigma_Nsq))))); % Reference 

Image Information 

End 

Num(I)=Temp1; 

Den(I)=Temp2; 

End 

% Compuate Vif 

Vif=Sum(Num)./Sum(Den); 

 

21.  RRED Function 

Function Rred=Rred_Out(Realimg, Enhimg) 

% Total = 5; 

Original=Realimg; 

Fake= Enhimg; 

Rredoutput= Extract_Info(Original, Fake); 

[X Y] = Size(Rredoutput); 

Sumoutput=0; 

For I=1 :X 

For J=1:Y 

Sumoutput = Sumoutput + Rredoutput(I,J); 

End 

End 

Rred=Norm(Sumoutput); 

% End 
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22. HLFI Function 

Function Hlfreqiq=  High_Low_Freq_Index(Realimg) 

[R,C]=Size(Realimg); 

N = C; 

Imgfft =Fft(Fft2(Realimg)); 

Colhalf = (Round(N / 2));   

Freqsel = 0.15; 

Freqcol = Round(Freqsel * N); 

Lowfreqcolhalf = (Round(Freqcol / 2.0)); 

Fftres = Imgfft;  %R# Np.Fft.Fft2(Image) 

Fftmag = Abs(Fftres); 

Totalenergy = Sum(Sum(Fftmag)); 

%# Print(Totalenergy) 

Lowidx = Colhalf - Lowfreqcolhalf; 

Hiidx = Colhalf + Lowfreqcolhalf; 

Lowfreqmag = Fftmag(:, Lowidx:Hiidx); 

Lowfreqmagtotal = Sum(Sum(Lowfreqmag)); 

Fftmag(:, Lowidx:Hiidx) = 0; 

Highfreqmagtotal =Sum( Sum(Fftmag)); 

Hlfreqiq = Abs(Lowfreqmagtotal - Highfreqmagtotal) /(Totalenergy); 

End 
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23.  JQI Function 

Function [Score B A Z] = Jpeg_Quality_Score(Img) 

%================================================ 

%Copyright (C) 2002 The University Of Texas At Austin 

%All Rights Reserved. 

%This Program Is Free Software; You Can Redistribute It And/Or Modify 

%It Under The Terms Of The Gnu General Public License As Published By 

RFDS training and detection structure %(At Your Option) Any Later Version. 

%This Program Is Distributed In The Hope That It Will Be Useful, 

%But Without Any Warranty; Without Even The Implied Warranty Of 

%Merchantability Or Fitness For A Particular Purpose.  See The 

%Gnu General Public License For More Details. 

%The Gnu Public License Is Available In The File License, Or You 

%Can Write To The Free Software Foundation, Inc., 59 Temple Place - 

%Suite 330, Boston, Ma 02111-1307, Usa, Or You Can Find It On The 

%World Wide Web At Http://Www.Fsf.Org. 

% Author  : Zhou Wang  

% Version : 1.0 

% Modified: Anush Krishna Moorthy 

% Version: 1.Buqi 

%The Authors Are With The Laboratory For Image And Video Engineering 

%(Live), Department Of Electrical And Computer Engineering, The 

%University Of Texas At Austin, Austin, Tx. 

% 
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%Kindly Report Any Suggestions Or Corrections To Zhouwang@Ieee.Org 

%============================ 

%This Is An Implementation Of The Algorithm For Calculating The Quality 

%Score Of Jpeg Compressed Images Proposed By Zhou Wang, Hamid R. Sheikh 

%And Alan C. Bovik. Please Refer To The Paper: Zhou Wang, Hamid R. Sheikh 

%And Alan C. Bovik, "No-Reference Perceptual Quality Assessment Of Jpeg 

%Compressed Images," Submitted To Ieee International Conference On Image 

%Processing, Sept. 2002. 

%You Can Change This Program As You Like And Use It Anywhere, But Please 

%Refer To Its Original Source (Cite Our Paper And Our Web Page At 

%Http://Anchovy.Ece.Utexas.Edu/~Zwang/Research/Nr_Jpeg_Quality/Index.Html) 

% 

%Input : A Test 8bits/Pixel Grayscale Image Loaded In A 2-D Array 

%Output: A Quality Score Of The Image. The Score Typically Has A Value 

%        Between 1 And 10 (10 Represents The Best Quality, 1 The Worst). 

%Usage: 

%1. Load The Image, For Example 

%   Image = Imread('Testimage.Jpg');  

%2. Call This Function To Calculate The Quality Score: 

%   Quality_Score = Jpeg_Quality_Score(Image) 

%==================================== 

If (Nargin > 1) 

Score = -1; 

Return; 

End 
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[M N] = Size(Img); 

If (M < 16 | N < 16) 

Score = -2; 

Return; 

End 

X = Double(Img); 

% Feature Extraction: 

% 1. Horizontal Features 

D_H = X(:, 2:N) - X(:, 1:(N-1)); 

B_H = Mean2(Abs(D_H(:, 8:8:8*(Floor(N/8)-1)))); 

A_H = (8*Mean2(Abs(D_H)) - B_H)/7; 

Sig_H = Sign(D_H); 

Left_Sig = Sig_H(:, 1:(N-2)); 

Right_Sig = Sig_H(:, 2:(N-1)); 

Z_H = Mean2((Left_Sig.*Right_Sig)<0); 

% 2. Vertical Features 

D_V = X(2:M, :) - X(1:(M-1), :); 

B_V = Mean2(Abs(D_V(8:8:8*(Floor(M/8)-1), :))); 

A_V = (8*Mean2(Abs(D_V)) - B_V)/7; 

Sig_V = Sign(D_V); 

Up_Sig = Sig_V(1:(M-2), :); 

Down_Sig = Sig_V(2:(M-1), :); 

Z_V = Mean2((Up_Sig.*Down_Sig)<0); 

% 3. Combined Features 

B = (B_H + B_V)/2; 
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A = (A_H + A_V)/2; 

Z = (Z_H + Z_V)/2; 

% Quality Prediction 

Alpha = -927.4240; Beta =  850.8986;Gamma1 =235.4451 ;Gamma2 = 

128.7548;Gamma3 =-341.4790; 

Score = Abs(Alpha + 

Beta*(B.^(Gamma1/10000))*(A.^(Gamma2/10000))*(Z.^(Gamma3/10000))); 

 

24.  BIQI Function 

Function [Score B A Z] = Blinimagequalityindex(Rimg) 

%==================================== 

%Copyright (C) 2002 The University Of Texas At Austin 

%All Rights Reserved. 

%This Program Is Free Software; You Can Redistribute It And/Or Modify 

%It Under The Terms Of The Gnu General Public License As Published By 

%The Free Software Foundation; Either Version 2 Of The License, Or 

%(At Your Option) Any Later Version. 

%  

%This Program Is Distributed In The Hope That It Will Be Useful, 

%But Without Any Warranty; Without Even The Implied Warranty Of 

%Merchantability Or Fitness For A Particular Purpose.  See The 

%Gnu General Public License For More Details. 

%  

%The Gnu Public License Is Available In The File License, Or You 
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%Can Write To The Free Software Foundation, Inc., 59 Temple Place - 

%Suite 330, Boston, Ma 02111-1307, Usa, Or You Can Find It On The 

%World Wide Web At Http://Www.Fsf.Org. 

% 

% Author  : Zhou Wang  

% Version : 1.0 

% Modified: Anush Krishna Moorthy 

% Version: 1.Buqi 

%  

%The Authors Are With The Laboratory For Image And Video Engineering 

%(Live), Department Of Electrical And Computer Engineering, The 

%University Of Texas At Austin, Austin, Tx. 

% 

%Kindly Report Any Suggestions Or Corrections To Zhouwang@Ieee.Org 

% 

%=============================================== 

%This Is An Implementation Of The Algorithm For Calculating The Quality 

%Score Of Jpeg Compressed Images Proposed By Zhou Wang, Hamid R. Sheikh 

%And Alan C. Bovik. Please Refer To The Paper: Zhou Wang, Hamid R. Sheikh 

%And Alan C. Bovik, "No-Reference Perceptual Quality Assessment Of Jpeg 

%Compressed Images," Submitted To Ieee International Conference On Image 

%Processing, Sept. 2002. 

% 

%You Can Change This Program As You Like And Use It Anywhere, But Please 

%Refer To Its Original Source (Cite Our Paper And Our Web Page At 
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%Http://Anchovy.Ece.Utexas.Edu/~Zwang/Research/Nr_Jpeg_Quality/Index.Html) 

%Input : A Test 8bits/Pixel Grayscale Image Loaded In A 2-D Array 

%Output: A Quality Score Of The Image. The Score Typically Has A Value 

%        Between 1 And 10 (10 Represents The Best Quality, 1 The Worst). 

%Usage: 

%1. Load The Image, For Example 

%   Image = Imread('Testimage.Jpg');  

%2. Call This Function To Calculate The Quality Score: 

%   Quality_Score = Blinimagequalityindex(Image) 

%=========================================== 

If (Nargin > 1) 

Score = -1; 

Return; 

End 

[M N] = Size(Rimg); 

If (M < 16 | N < 16) 

Score = -2; 

Return; 

End 

X = Double(Rimg); 

% Feature Extraction: 

% 1. Horizontal Features 

D_H = X(:, 2:N) - X(:, 1:(N-1)); 

B_H = Mean2(Abs(D_H(:, 8:8:8*(Floor(N/8)-1)))); 

A_H = (8*Mean2(Abs(D_H)) - B_H)/7; 
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Sig_H = Sign(D_H); 

Left_Sig = Sig_H(:, 1:(N-2)); 

Right_Sig = Sig_H(:, 2:(N-1)); 

Z_H = Mean2((Left_Sig.*Right_Sig)<0); 

% 2. Vertical Features 

D_V = X(2:M, :) - X(1:(M-1), :); 

B_V = Mean2(Abs(D_V(8:8:8*(Floor(M/8)-1), :))); 

A_V = (8*Mean2(Abs(D_V)) - B_V)/7; 

Sig_V = Sign(D_V); 

Up_Sig = Sig_V(1:(M-2), :); 

Down_Sig = Sig_V(2:(M-1), :); 

Z_V = Mean2((Up_Sig.*Down_Sig)<0); 

% 3. Combined Features 

B = (B_H + B_V)/2; 

A = (A_H + A_V)/2; 

Z = (Z_H + Z_V)/2; 

% Quality Prediction 

Alpha = -927.4240; Beta =  850.8986;Gamma1 =235.4451 ;Gamma2 = 

128.7548;Gamma3 =-341.4790; 

Score = Abs(Alpha + 

Beta*(B.^(Gamma1/10000))*(A.^(Gamma2/10000))*(Z.^(Gamma3/ 

10000))); 

 NIQE Function 

Function  Quality = Computequality(Im,Blocksizerow,Blocksizecol,... 

Blockrowoverlap,Blockcoloverlap,Mu_Prisparam,Cov_Prisparam) 
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% Input 

% Im - Image Whose Quality Needs To Be Computed 

% Blocksizerow - Height Of The Blocks In To Which Image Is Divided 

% Blocksizecol - Width Of The Blocks In To Which Image Is Divided 

% Blockrowoverlap - Amount Of Vertical Overlap Between Blocks 

% Blockcoloverlap - Amount Of Horizontal Overlap Between Blocks 

% Mu_Prisparam - Mean Of Multivariate Gaussian Model 

% Cov_Prisparam - Covariance Of Multivariate Gaussian Model 

% For Good Performance, It Is Advisable To Use Make The Multivariate Gaussian 

Model 

% Using Same Size Patches As The Distorted Image Is Divided In To 

% Output 

%Quality      - Quality Of The Input Distorted Image 

% Example Call 

%Quality = Computequality(Im,96,96,0,0,Mu_Prisparam,Cov_Prisparam) 

% --------------------------------------------------------------- 

%Number Of Features 

% 18 Features At Each Scale 

Featnum      = 18; 

%---------------------------------------------------------------- 

%Compute Features 

If(Size(Im,3)==3) 

Im               = Rgb2gray(Im); 

End 

Im               = Double(Im);                 



 

 114 

[Row Col]        = Size(Im); 

Block_Rownum     = Floor(Row/Blocksizerow); 

Block_Colnum     = Floor(Col/Blocksizecol); 

Im               = Im(1:Block_Rownum*Blocksizerow,1:Block_Colnum*Blocksizecol);               

[Row Col]        = Size(Im); 

Block_Rownum     = Floor(Row/Blocksizerow); 

Block_Colnum     = Floor(Col/Blocksizecol); 

Im  = Im(1:Block_Rownum*Blocksizerow, . 

1:Block_Colnum*Blocksizecol);                

Window           = Fspecial('Gaussian',7,7/6); 

Window           = Window/Sum(Sum(Window)); 

Scalenum         = 2; 

Warning('Off') 

Feat = []; 

For Itr_Scale = 1:Scalenum 

Mu = Imfilter(Im,Window,'Replicate'); 

Mu_Sq = Mu.*Mu; 

Sigma  = Sqrt(Abs(Imfilter(Im.*Im,Window,'Replicate') - Mu_Sq)); 

Structdis                = (Im-Mu)./(Sigma+1); 

Feat_Scale = Blkproc(Structdis,[Blocksizerow/Itr_Scale Blocksizecol/Itr_Scale],  

[Blockrowoverlap/Itr_Scale Blockcoloverlap/Itr_Scale], ... 

@Computefeature); 

Feat_Scale               = Reshape(Feat_Scale,[Featnum .... 

Size(Feat_Scale,1)*Size(Feat_Scale,2)/Featnum]); 

Feat_Scale               = Feat_Scale'; 
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If(Itr_Scale == 1) 

Sharpness = Blkproc(Sigma,[Blocksizerow Blocksizecol], ... 

[Blockrowoverlap Blockcoloverlap],@Computemean); 

Sharpness = Sharpness(:); 

End 

Feat = [Feat Feat_Scale]; 

Im =Imresize(Im,0.5); 

End 

% Fit A Mvg Model To Distorted Patch Features 

Distparam = Feat; 

Mu_Distparam = Nanmean(Distparam); 

Cov_Distparam = Nancov(Distparam); 

% Compute Quality 

Invcov_Param = Pinv((Cov_Prisparam+Cov_Distparam)/2); 

Quality = Sqrt((Mu_Prisparam-Mu_Distparam)* ... 

Invcov_Param*(Mu_Prisparam-Mu_Distparam)'); 
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Appendix B: Code for Ranking IQM’s 

  Mean Squared Eror 

R_Mse = Mse(1:500); 

F_Mse = Mse(501:1000); 

Avg_R_Mse = Mean(R_Mse); 

Disp('Average Of  R_Mse :'); 

Disp(Avg_R_Mse); 

Avg_F_Mse = Mean(F_Mse); 

Disp('Average Of  F_Mse :'); 

Disp(Avg_F_Mse); 

Disp('Average Of R_Mse - Average Of F_Mse :'); 

Dif_Btwn_Mse_Fmse= Abs(Avg_R_Mse-Avg_F_Mse); 

Disp(Dif_Btwn_Mse_Fmse); 

Disp('-----------------------------------------------'); 

Note: Apply The Same Code For Every Iqm 

 

  Ranking the Best 15 IQMs 

Title={'Mse.'; 'Snr.'; 'Psnr.'; 'Nk.'; 'Ad.'; 'Sc.'; 'Md.'; 'Ramd.'; 'Nae.'; 'Ted.'; 'Spe.'; 'Sme.'; 

'Gme.'; 'Gpe.' ;'Tcd.'}; 

Best15=[Dif_Btwn_Mse_Fmse;Dif_Btwn_Snr_Fsnr;Dif_Btwn_Psnr_Fpsnr;Dif_Btw

n_Nk_Fnk;Dif_Btwn_Ad_Fad;Dif_Btwn_Sc_Fsc;Dif_Btwn_Md_Fmd;Dif_Btwn_R

amd_Framd;Dif_Btwn_Nae_Fnae;Dif_Btwn_Ted_Fted;Dif_Btwn_Spe_Fspe;Dif_Bt

wn_Sme_Fsme;Dif_Btwn_Gme_Fgme;Dif_Btwn_Gpe_Fgpe;Dif_Btwn_Tcd_Ftcd]; 

Tbla = Table(Title,Best15) 
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Disp('------------------Best 15 Iqm Rank (Classification)---------------------'); 

Tblb = Sortrows(Tbla,{'Best15'},{'Descend'}) 

 

  Calculating FGR, FFR, And HTER Of The RFDS 

Yfit = Trainedclassifier1.Predictfcn(T) 

Truecount=0; 

Fakecount=0; 

Truecount1=0; 

Fakecount1=0; 

%Real Images Count 

Z=500; 

For B=1:Z; 

If Isequal(Yfit{B},'Real')  

Truecount=Truecount+1; 

Else Isequal(Yfit{B},'Fake') 

Fakecount=Fakecount+1; 

End 

End 

%500 Fake Images Count 

M=1000; 

For Q=501:M; 

If Isequal(Yfit{Q},'Real')  

Truecount1=Truecount1+1; 

Else Isequal(Yfit{Q},'Fake') 

Fakecount1=Fakecount1+1; 



 

 118 

End 

End 

Disp('500 Real Fingerprint Images Result :'); 

Rr= ['Number Of Real Images Predict As Real  =   ',Num2str(Truecount)]; 

Rf= ['Number Of Real Images Predict As Fake  =   ',Num2str(Fakecount)]; 

Disp(Rr); 

Disp(Rf); 

Disp('500 Fake Fingerprint Images Result :'); 

Rr1= ['Number Of Fake Images Predict As Fake  =   ',Num2str(Fakecount1)]; 

Rf1= ['Number Of Fake Images Predict As Real  =   ',Num2str(Truecount1)]; 

Disp(Rr1); 

Disp(Rf1); 

Fgr=['Fals Genuine Rate(Fgr) = ',Num2str(Truecount1/500)]; 

Ffr=['Fals Fake Rate(Ffr) = ',Num2str(Fakecount/500)]; 

Hter=['Half Total Error Rate (Hter) = 

',Num2str(((Truecount1/500)+(Fakecount/500))/2)]; 

Disp(Fgr); 

Disp(Ffr); 

Disp(Hter); 
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Appendix C: Screenshots and Tables of Our Rfds Results 

1.  Table and Screenshot of Training Results For 100 Fingerprint 

Images Using 15 IQMs 

The following are the screenshots providing results of a dataset with 50 real and fake 

fingerprint images, with 15 image quality measures calculated for each fingerprint 

image. Table d.1 shows he result of 15 image quality measures of 50 real fingerprint 

images and 50 fake fingerprint images used for training. 100 fingerprint images with 

15 IQMs results using 6 classifiers. 

  LDA 

 
Figure 38: LDA training result of 100 fingerprint images using 15 IQMs. 
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  QDA 

 
Figure 40: QDA training result of 100 fingerprint images using 15 IQMs. 

  Linear SVM 

 
Figure 41: Linear SVM training result of 100 fingerprint images using 15 IQMs. 
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  Quadratic  SVM 

 
Figure 42: Quadratic SVM training result of 100 fingerprint images using 15 IQMs. 

  Fine KNN 

 
Figure 43: Fine KNN training result of 100 fingerprint images using 15 IQMs. 
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  Logistic Regression 

 
Figure 44: Logistic Regression training result of 100 fingerprint images using 15 

IQMs. 
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2.  Table and Screenshot of Classification Results For 1000 

Fingerprint Images Using 15 IQMs 

1000 fingerpint images with 15 IQMs results using 6 clasifiers. 

  LDA 

 
Figure 45: LDA classification result of 1000 fingerprint images using 15 IQMs. 

  QDA 

 
Figure 46: QDA classification result of 1000 fingerprint images using 15 IQMs. 
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  Linear SVM  

 
Figure 47: Linear SVM classification result of 1000 fingerprint images using 15 

IQMs. 

  Quadratic SVM 

  
Figure 48: Quadratic SVM classification result of 1000 fingerprint images using 15 

IQMs. 
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  Fine KNN 

  
Figure 49: Fine KNN classification result of 1000 fingerprint images using 15 IQMs. 

  Logistic Regression 

  
Figure 50: Logistic Regression classification of 1000 fingerprint images using 15 

IQMs. 
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3.  Table and Screenshot of Training Results For 100 Fingerprint 

Images Using 10 IQMs 

100 fingerprint images with 10 IQMs result using 6 classifiers. 

  LDA 

  
Figure 51: LDA training result of 100 fingerprint images using 10 IQMs. 

  QDA 

  
Figure 52: QDA training result of 100 fingerprint images using 10 IQMs. 



 

 127 

  Linear SVM 

 
Figure 53: Linear SVM training result of 100 fingerprint images using 10 IQMs. 

  Quadratic SVM  

 
Figure 54: Quadratic SVM training result of 100 fingerprint images using 10 IQMs. 
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  Fine KNN 

 
Figure 55: Fine KNN training result of 100 fingerprint images using 10 IQMs. 

  Logistic Regression  

 
Figure 56: Logistic Regression training result of 100 fingerprint images using 10 

IQMs. 
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4.  Table and Screenshot of Classification Results For 1000 

Fingerprint Images Using 10 IQMs 

1000 Fingerprint images with 10 IQMs result using 6 classifiers: 

  LDA 

 
Figure 57: LDA Classification result of 1000 fingerprint images using 10 IQMs. 

  QDA 

 
Figure 58: QDA Classification Result of 1000 Fingerprint Images Using 10 IQMs. 
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  Linear SVM 

 
Figure 59: Linear SVM classification result of 1000 fingerprint images using 10 

IQMs. 

  Quadratic SVM  

 
Figure 60: Quadratic SVM classification result of 1000 fingerprint images using 10 

IQMs. 
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  Finee KNN 

 
Figure 61: Fine KNN classification result of 1000 fingerprint images using 10 IQMs. 

  Logistic Regression 

 
Figure 62: Logistic Regression classification result of 1000 fingerprint images using 

10 IQMs. 
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5.  Table and Screenshot of Training Results For 100 Fingerprint 

Images Using 5 IQMs 

100 fingerprint images with 5 IQMs result using 6 classifiers: 

  LDA 

 
Figure 63: LDA training result of 100 fingerprint images using 5 IQMs. 

  QDA  

 
Figure 64: QDA training result of 100 fingerprint images using 5 IQMs. 
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  Linear SVM  

 
Figure 65: Linear SVM training result of 100 fingerprint images using 5 IQMs. 

  Quadratic SVM 

 
Figure 66: Quadratic SVM training result of 100 fingerprint images using 5 IQMs. 
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  Fine KNN 

 
Figure 67: Fine KNN training result of 100 fingerprint images using 5 IQMs. 

  Logisitc Regression 

 
Figure 68: Logistic Regression training result displayed for 100 fingerprint images 

using 5 IQMs. 
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6.  Screenshot of Classification Results For 1000 Fingerprint Images 

Using 5 IQMs: 

1000 fingerprint images with 5 IQMs result using 6 classifiers: 

  LDA 

 
Figure 69: LDA classification result of 1000 fingerprint images using 5 IQMs. 

  QDA 

 
Figure 70: QDA Classification of 1000 Fingerprint Images Using 5 IQMs. 
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  Linear SVM 

 
Figure 71: Linear SVM LDA classification result of 1000 fingerprint images using 5 

IQMs. 

  Quadaratic SVM 

 
Figure 72: Quadaratic SVM classification result of 1000 fingerprint images using 5 

IQMs. 
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  Fine KNN 

 
Figure 73: Fine KNN classification result of 1000 fingerprint images using 5 IQMs. 

  Logistic Regression 

 
Figure 74: Logistic Regression classification result of 1000 fingerprint images using 

5 IQMs. 

 

 



 

 138 

7.  Table and Screenshot of Training Results For 100 Fingerprint 

Images Using 25 IQMs: 

100 Fingerprint Images With 25 IQMs Result Using 6 Classifiers: 

  LDA 

 
Figure 75: LDA training result of 100 fingerprint images using 25 IQMs. 

  QDA 

 
Figure 76: QDA Training Result of 100 Fingerprint Images Using 25 IQMs. 
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  Linear SVM 

 
Figure 77: Linear SVM training result of 100 fingerprint images using 25 IQMs. 

  Quadaratic SVM 

 
Figure 78: Quadaratic SVM training of 100 fingerprint images using 25 IQMs. 
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  Fine KNN 

 
Figure 79: Fine KNN training result of 100 fingerprint images using 25 IQMs. 

  Logistic Regression  

 
Figure 80: Logistic Regression training result of 100 fingerprint images using 25 

IQMs. 
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8.  Screenshot of Classification Results For 1000 Fingerprint Images 

Using All 25 IQMs 

1000 Fingerprint images with 25 IQMs result using 6 classifiers: 

  LDA 

 
Figure 81: LDA classification result  of 1000 fingerprint images using 25 IQMs. 

  QDA 

 
Figure 82: QDA classification result of 1000 fingerprint images using 25 IQMs. 
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  Linear SVM 

 
Figure 83: Linear SVM classification result of 1000 fingerprint images using 25 

IQMs. 

  Quadaratic SVM 

 
Figure 84: Quadaratic SVM classification result of 1000 fingerprint images using 25 

IQMs. 
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  Fine KNN 

 
Figure 85: Fine KNN classification result of 1000 fingerprint images using 25 IQMs. 

  Logistic Regression  

 
Figure 86: Logistic Regression classification result of 1000 fingerprint images using 

25 IQMs. 


