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ABSTRACT 

Kalman filtering is a powerful estimation method. One of its weaknesses is related to 

the white or colored nature of the disturbing noises in the Kalman filtering model. At 

the same time, real noises are rarely white or colored. They are mostly wide band. In 

this regard, white or colored noise Kalman filtering makes concessions on adequacy. 

This pushes system scientists to develop mathematical methods of estimation for 

systems corrupted by wide band noises. In applications, wide band noises are 

detected by their autocovariance and cross-covariance functions which do not allow 

modeling them uniquely. Therefore, it becomes important to develop estimation 

methods which are independent of a class of wide band noises, but dependent on the 

unique autocovariance and cross-covariance functions. Such results are called 

invariant results. In this paper, we prove a complete set of invariant equations for 

Kalman type filter for a linear signal-observation system corrupted by correlated 

wide band noises. This filter has a ready form to be used in applications, just 

respective numerical methods must be developed. We also discuss an application 

scenario for the proposed filter. 

Keywords: Wiener process, white noise, wide band noise, Kalman filter. 
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ÖZ 

Güçlü bir tahmim metodu olan Kalman filtrelemesinin zayıf yönlerinden biri  

Kalman filtreleme metodundaki etkileyici gürültünün beyaz veya renkli doğası ile 

ilgilidir. Aynı zamanda gerçek gürültüler genellikle geniş bandlı olup nadiren beyaz 

veya renklidirler. Bu bağlamda renkli veya beyaz gürültü uygulamalarında Kalman 

filtrelemesi kullanmak yetersiz kalıyor. Bu, sistem bilimcileri  geniş bandlı gürültü 

tarafından etkilenmiş sistemler için için matematiksel tahmin metodları geliştirmeye 

yitmiştir.  Uygulamalarda, geniş band gürültüleri  özdeğişim ve çapraz değişim 

fonksiyonları tarafından saptanır ki bu onların tek olarak modellenmesine imkan  

vermez. Bu nedenle geniş bandlı gürültü sınıfından bağımsız fakat tek özdeğişim ve 

çapraz değişim fonksiyonlarına bağımlı bir tahmin metodu geliştirmek önemli olur. 

Bu sonuçlar değişmez sonuçlar olarak adlandırılır. Bu tezde, geniş bandlı gürültüler 

tarafından etkilenmiş lineer sinyal-gözlem sistemleri için Kalman tipli filtrenin tüm 

denklemleri bulunmuş ve ispat edilmiştir. Matematiksel olarak bulunmuş bu filter 

uygulamalarda kullanılmaya hazır durumdadır. Sadece uygun nümerik yöntemlerin 

geliştirilmesi gerekmektedir. 

Anahtar Kelimeler: Wiener süreci, beyaz gürültü, geniş bandlı gürültü, Kalman 

filtresi. 
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Chapter 1 

1 INTRODUCTION 

Kalman filtering (simply KF) [1, 2] is a powerful estimation method having great 

engineering applications. Its application areas include guidance, navigation, and 

control of aircrafts and space crafts [3], control of robotic motions [4], forecasting 

and analysis of time series in signal processing and econometrics [5], but not 

restricted to these. 

Despite its great applications, KF has deficiencies. For example, it assumes linear 

state-observation system. This deficiency is removed in an extended KF by 

linearization of nonlinearities. Another deficiency which is related to the nature of 

the noise processes in the KF model is discussed. Overall applications of KF 

considers WN model (independent or correlated) of disturbing noises. In [8] the KF 

is modified to colored noises. But as noted in [9], the real noises behave as a WBN in 

which WN’s are an ideal case. Therefore, to be more adequate there is a need in a 

modification of KF to WBN driven systems. 

There are principally two approaches to WBN’s. In [21] and references therein, 

WBN driven systems are investigated by a method of approximation. The other 

method through integral representation was considered in [22, 23] This leads to 

modeling WBN’s as a distributed delay of WN’s [24, 25] Indeed, for a function 
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Φ𝑡,𝑠 of two variables on [0,∞)  × [−𝜀, 0] and a Wiener process 𝑤, it can be 

calculated that the random process 

𝜑𝑡 = ∫ Φ𝑡,𝑠−𝑡𝑑𝑤𝑡

𝑡

max (0,𝑡−𝜀)

, 

has the autocovariance function (𝜑𝑡+𝜃, 𝜑𝑡) = Λ𝑡,𝜃 ≠ 0 if 0 ≤  𝜃 <  𝜀, and Λ𝑡,𝜃 = 0 

if 𝜃 ≥  𝜀. Therefore, 𝜑 is a WBN. It becomes stationary on [𝜀,∞) if Φ, which is 

called a relaxing (damping) function, is independent on its first variable 𝑡. In the 

stationary case 

Λ𝑡,𝜃 = ∫ Φ𝑠−𝜃Φ𝑠
∗𝑑𝑠

0

max (−𝜀,𝜃−𝜀)

, 

where Φ∗ is the transpose of Φ and it is seen that Λ𝑡,𝜃 ≡ Λ𝜃 if 𝑡 ≥  𝜀. 

This representation is somehow universal because it covers WN’s and point wise 

delays of them if Φ is selected as Dirac’s delta-function [28, 29].  Moreover, in  [30, 

31]  in the one-dimensional stationary case it is shown that for given positive definite 

function Λ there are infinitely many relaxing functions Φ such that all them produce   

a WBN with the autocovariance function Λ. Therefore, it is important to obtain 

results which are independent on the infinite variations of Φ, but dependent on the 

unique Λ because in applied problems WBN’s are detected by their autocovariance 

functions. Such results are called invariant   results. 

Some invariant results for WBN driven systems have already been obtained.  In [32, 

33] invariant maximum principle in the Pontryagin’s form and controllability result 

are established for nonlinear systems. Invariant KF is also obtained in the signal 

noise is wide band but the observation noise is non-degenerate white [34], and when 

the signal noise is WBN but the observations are WN’s [35]. In fact, this work 
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generalizes these results to the case when both signal and observations systems are 

corrupted by the sum of white and WBN’s. We assume that there is a correlation 

between the WBN’s while WN’s are independent each other as well as on WBN’s. 

The main result of the this study expresses a complete set of equations for the best 

least square estimate in terms of autocovariance and cross-covariance functions of 

disturbing WBN’s. 

To the best of our knowledge, the first record about the concept of a WBN, 

demonstrating its adequacy, appears in page 126 of the 1975 edition book [9] by 

Fleming and Rishel, although possible earlier discussions in the engineering 

literature are not excluded. Later, the adequacy of WBN’s was also prompted in [10]. 

In [11] WBN’s in speech signals are analyzed. Since then, the system scientists 

created just two baselines for handling the WBN driven systems. In [12, 13, 14, 15, 

16, 17, 18, 19, 20, 21] WBN driven systems are discussed by a method of 

approximation. A different method by integral representation was suggested in [22, 

23] which leads to modeling WBN’s as a distributed delay of WN’s [24, 25].  

Unfortunately, both of them have been remained in the theoretical level, do not 

providing any efficient algorithm of applied nature. Instead, efficient applied 

algorithms have been created for WN driven systems on the basis of its strong 

mathematical baseline, provided by Ito’s stochastic calculus [26, 27]. Additionally, 

in some applied areas WN’s, being mathematically an ideal case of WBN’s, present 

an approximation to real noises up to a certain level of adequacy. Perhaps, these 

factors prompted WN’s as a widely accepted noise model. Withal, technology needs 

more delicate estimation methods. In this way, KF for WBN driven signal-

observation system which can be realized as an algorithm of applied nature is seem 
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to be necessary. In this study, the main result obtained is converting those theoretical 

results, obtained via the above mentioned method by integral representation, to 

invariant results for more general KF (corrupted by correlated WBN’s). This result 

can be turned into practically realizable algorithm. 

This study consists of five chapters. Chapter 1 consists of introduction to this work 

and some preliminaries. 

In Chapter 2 Issues related to the definition of KF and several generalizations of kf 

are concerned with. Staring from the classical KF in section 2.1 followed by the 

discrete and the continuous KF in the sections 2.2 and 2.3, ending the chapter with 

selected generalizations of KF in section 2.4. 

Chapter 3 introduces the concept of WBN in section 3.1 and some results for the KF 

under WBN. Different cases have been investigated starting from KF for WBN in 

signal or in measurements, in sections 3.2 and 3.3, respectively. The last section, 

investigate the KF for WBN’s in both signal and measurements. 

Chapter 4 starts with introducing the integral representation of the WBN and the 

invariance concept in section 4.1. In section 4.2 and 4.3 two cases of invariant KF 

corrupted by independent WBN and WN’s in the signal and measurements, 

respectively. Followed by, invariant KF corrupted by a summation of independent 

WN and WBN’s in the signal in section 4.4. 

The main and completely new result is presented in chapter 5. A complete set of 

invariant results for KF for a linear signal-observation system under correlated WBN 

is introduced. In the first section WBN’s are defined and an integral representation is 
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motivated for them. Section 5.2 defines a very crucial concept of invariance of 

results for WBN driven systems. Section 5.3 sets a filtering problem under 

consideration. In Section 5.4 the proof of the invariant equations for KF for 

correlated WBN is finalized and discussed. Finally, in Section 5.5 numerical aspects 

are investigated to introduce discrete formulas for the resultant equations. Moreover, 

in many sections, LQG applications for the KF problem are investigated as well. 
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Chapter 2 

2 THE KF AND SOME OF ITS GENERALIZATIONS 

2.1 Classical KF 

KF is one of the most essential results of filtering theory. It plays great role in space 

engineering , telecommunications, etc. In 1960-1961 Kalman [1] and Bucy [2] it was 

presented as a method for estimating linear systems disturbed by WN processes. 

Kalman build the construction of state estimation depending on probability theory, 

precisely, on the properties of conditional GRV’s. The concept that he wanted to 

minimize is the state vector covariance norm, so, yielding to the classical form: the 

new estimation is given from the previous one by addition of correction term 

respective to the prediction error. 

KF presents the formulas of the best estimate 𝑥̂(𝑡) of 𝑥(𝑡) using the observation 

process 𝑧(𝑡),0 ≤ 𝑠 ≤ 𝑡, consisting a partially observable system (𝑥, 𝑧). Here the state 

process satisfy the following linear stochastic DE 

                       {
𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑤(𝑡), 𝑡 > 0,
𝑥(0) = 𝑥0,                                    

                                               (2.1.1)     

 and 𝑧(𝑡) is the observation process, based on 𝑥(𝑡) in the following linear form 

                    𝑧(𝑡) = 𝐾𝑥(𝑡) + 𝑣(𝑡), 𝑡 > 0,                                        (2.1.2) 

where 𝐴, 𝐵 and 𝐾 are assumed to be matrices, 𝑥 and 𝑧 are respective vector-valued, 

𝑤(𝑡) and 𝑣(𝑡) are independent vector-valued WN’s, it is also assumed that 𝑥0 is 

Gaussian random vector with mean equals to zero and known covariance 𝑃0, 𝑥0 is 
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independent with respect to the WN’s 𝑤(𝑡) and 𝑣(𝑡). The previous two equations 

formulate the classical form of the KF problem. 

The importance of KF comes from its presenting of the best estimate 𝑥̂(𝑡) of the 

observation signal 𝑥(𝑡) as a dynamical process. It is presented as a solution of the 

following linear equation 

                  {
𝑥̂′(𝑡) = 𝐴𝑥̂(𝑡) + 𝑃(𝑡)𝐾𝑇(𝑧(𝑡) − 𝐾𝑥̂(𝑡)), 𝑡 > 0,

𝑥̂(0) = 0,                                                                      
                            (2.1.3) 

Where 𝐾𝑇 is the transpose of  𝐾 and 𝑃 is presented as a solution of the following 

deterministic matrix Riccati equation 

{
𝑃(𝑡)́ = 𝐴𝑃(𝑡)𝐴𝑇 + 𝐵𝐵𝑇 − 𝑃(𝑡)𝐾𝑇𝐾𝑃(𝑡), 𝑡 > 0,
𝑃(0) = cov𝑥0 = 𝑃0,                                                    

                                 (2.1.4) 

the linear transformation (3.1.3) is called KF. It presents the best estimate 𝑥̂(𝑡) for 

the observation 𝑧(𝑡) at every value 𝑡 > 0. 

2.2 Discrete KF 

2.2.1 Introduction and problem formulation 

The KF problem is different from the linear regression problem by assuming that 𝑥 is 

a dynamical process. In the discrete KF problem this difference is clearly seen. The 

aim of this section is to obtain a continual estimator of a state vector whose values 

change discretely over time. Updating is obtaining based on a set of measurements or 

predictions 𝑧(𝑡)which gives information about the state signal 𝑥(𝑡). Depending on 

those observations the estimator will provide an estimate 𝑥̂(𝑡 + 𝜖) at some time 𝑡 +

𝜀. If 𝜀 > 0, the problem will be a prediction filter, and, if 𝜀 < 0  it will be a 

smoothing filter, and if 𝜀 = 0 the problem is simply called filtering. 
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The description of regression problem in section 3.1 will be modified to this case by 

considering the state model as a discrete dynamical model, it could be described with 

                           𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑤𝑘, 𝑘 = 0, 1, 2, . . .,                                       (2.2.1) 

considering that the initial state vector 𝑥0 is Gaussian random vector with 

expectation equals to zero and 𝐵𝑘is the noise transition matrix of respective 

dimension, 𝐴𝑘 ∈ 𝑅
𝑛×𝑛 and the state noise 𝑤𝑘 ∈ 𝑅

𝑛 is assumed to be white Gaussian 

with zero mean, 𝑄𝑘 covariance i.e. 

𝑤𝑘~ ℵ(0,𝑄𝑘), 

and 

𝑄𝑘 = 𝐸(𝑤𝑘, 𝑤𝑘
𝑇). 

Consider the discrete measurement process 𝑧1, 𝑧2, . .. are defined in the following 

manner  

                            𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝐺𝑘𝑣𝑘, 𝑘 = 1, 2, . . .,                                              (2.2.2) 

where  𝐻𝑘 ∈ 𝑅
𝑚×𝑛 and 𝐺𝑘 is an invertible square matrix of respective dimensions 

and the measurement noise  𝑣𝑘 ∈ 𝑅
𝑚 . Measurements noise, 𝑣𝑘, is white Gaussian 

with zero mean , 𝑅𝑘 covariance i.e. 

𝑣𝑘~ ℵ(0, 𝑅𝑘), 

and 

𝑅𝑘 = 𝐸(𝑣𝑘𝑣𝑘
𝑇). 

Also, assume the state noise 𝑤𝑘 and measurements noise 𝑣𝑘 independent and 

uncorrelated. 

𝐸(𝑤𝑖𝑤𝑗
𝑇) = 𝑄𝑘𝛿(𝑖, 𝑗), 

𝐸(𝑣𝑖𝑣𝑗
𝑇) = 𝑅𝑘𝛿(𝑖, 𝑗),  

𝐸(𝑤𝑖𝑣𝑗
𝑇) = 0, 
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where, 𝛿(𝑖, 𝑗) is defined as 

                                            𝛿(𝑖, 𝑗) = {
1,   𝑖 = 𝑗,
0,    𝑖 ≠ 𝑗.

                                                 (2.2.3) 

The discrete KF problem (2.2.1) and (2.2.2) yields a formulation for the best 

estimation of the state vector 𝑥𝑘 depending on the measurements 𝑧𝑘, 𝑘 = 1, 2 . . .. 

In fact, the best estimate 𝑥̂𝑘 of the state vector 𝑥𝑘 is the conditional expectation  

𝑥̂𝑘 = 𝐸(𝑥𝑘|𝑧1, . . . , 𝑧𝑘−1), 

since both of the state vector 𝑥𝑘 and the measurements are linear combinations of 

independent and Gaussian vectors, so 𝑥0, 𝑥1, . . . , 𝑧1, 𝑧2, . .. is a Gaussian system. 

2.2.2 Derivation of discrete KF 

Define a priori estimate error 𝑒𝑘  as 

𝑒𝑘 = 𝑥̂𝑘 − 𝑥𝑘. 

Let 𝑥𝑘
∗  be the best linear estimate of 𝑥𝑘 on the base of the measurement 𝑧1, 𝑧2, . . 

., 𝑧𝑘.  A posteriori estimate error as 

𝑒𝑘
∗ = 𝑥𝑘

∗ − 𝑥𝑘 ,                                                    (2.2.4) 

a priori estimate error covariance 𝑃𝑘 is defined as 

𝑃𝑘 = 𝐸(𝑒𝑘 𝑒𝑘
𝑇),                                                  (2.2.5) 

and a posteriori estimate error covariance 𝑃𝑘
∗ is defined as 

𝑃𝑘
∗ = 𝐸(𝑒𝑘

∗𝑒𝑘
∗𝑇). 

Now, substituting error expression in the formula of the priori error covariance gives 

𝑃𝑘
∗ = 𝐸((𝑥̂𝑘 − 𝑥𝑘)(𝑥̂𝑘 − 𝑥𝑘)

𝑇).                                      (2.2.6) 

The expression of the state estimator could be written as 
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𝑥𝑘
∗ = 𝑥̂𝑘 + 𝐾𝑘(𝑧𝑘 − 𝐻𝐾𝑥̂𝑘),                                          (2.2.7) 

where,  𝐾𝑘 is the blending factor, which is called as a Kalman gain matrix. In fact, to 

design KF an equation for 𝐾𝑘 must be derived. From the previous expression the 

covariance 𝑃𝑘 could be written as  

𝑃𝑘
∗ = 𝐸((𝑥𝑘

∗ − 𝑥𝑘)(𝑥𝑘
∗ − 𝑥𝑘)

𝑇),                                   (2.2.8) 

substituting the expression (3.2.7) in the expression (3.2.8), 

𝑃𝑘
∗ = 𝐸({𝑥̂𝑘 + 𝐾𝑘(𝑧𝑘 − 𝐻𝐾𝑥̂𝑘) − 𝑥𝑘}{𝑥̂𝑘 + 𝐾𝑘(𝑧𝑘 − 𝐻𝐾𝑥̂𝑘) − 𝑥𝑘}

𝑇),       (2.2.9) 

then 

𝑃𝑘
∗ = ({𝑒𝑘 + 𝐾𝑘(𝑧𝑘 − 𝐻𝐾𝑥̂𝑘)}{𝑒𝑘 + 𝐾𝑘(𝑧𝑘 − 𝐻𝐾𝑥̂𝑘)}

𝑇), 

after simplifying,  

𝑃𝑘
∗ = 𝐸(𝑒𝑘 𝑒𝑘

𝑇 + 𝐾𝑘𝑧𝑘 − 𝐻𝐾𝑥̂𝑘𝑒𝑘
𝑇 + 𝑒𝑘 (𝑧𝑘 − 𝐻𝐾𝑥̂𝑘)

𝑇𝐾𝑘
𝑇 + 𝐾𝑘(𝑧𝑘 −𝐻𝐾𝑥̂𝑘)(𝑧𝑘 −

𝐻𝐾𝑥̂𝑘)
𝑇𝐾𝑘

𝑇).                                                                                         (2.2.10) 

We already know that 

𝑧𝑘 − 𝐻𝐾𝑥̂𝑘 = 𝐻𝐾𝑥𝑘 + 𝑣𝑘 − 𝐻𝐾𝑥̂𝑘 = 𝑣𝑘 − 𝐻𝐾𝑒𝑘 . 

Hence the expression (3.2.20) becomes 

𝑃𝑘
∗ = (𝑒𝑘 𝑒𝑘

𝑇 + 𝐾𝑘𝑣𝑘𝑒𝑘
𝑇 − 𝐾𝑘𝐻𝐾𝑒𝑘 𝑒𝑘

𝑇 + 𝑒𝑘 𝑣𝑘
𝑇𝐾𝑘

𝑇 − 𝑒𝑘 𝑒𝑘
𝑇𝐻𝑘

𝑇𝐾𝑘
𝑇

+ 𝐾𝑘(𝑣𝑘𝑣𝑘
𝑇 − 𝑣𝑘𝑒𝑘

𝑇𝐻𝑘
𝑇 − 𝐻𝐾𝑒𝑘 𝑣𝑘

𝑇 + 𝐻𝐾𝑒𝑘 𝑒𝑘
𝑇𝐻𝑘

𝑇)𝐾𝑘
𝑇), 

implying 

𝑃𝑘
∗ = 𝐸(𝑒𝑘 𝑒𝑘

𝑇) + 𝐾𝑘𝐸(𝑣𝑘𝑒𝑘
𝑇) − 𝐾𝑘𝐻𝐾(𝑒𝑘 𝑒𝑘

𝑇) + 𝐸(𝑒𝑘 𝑣𝑘
𝑇)𝐾𝑘

𝑇 − 𝐸(𝑒𝑘 𝑒𝑘
𝑇)𝐻𝑘

𝑇𝐾𝑘
𝑇

+ 𝐾𝑘{𝐸(𝑣𝑘𝑣𝑘
𝑇) − 𝐸(𝑣𝑘𝑒𝑘

𝑇)𝐻𝑘
𝑇 − 𝐻𝐾𝐸(𝑒𝑘 𝑣𝑘

𝑇) + 𝐻𝐾𝐸(𝑒𝑘 𝑒𝑘
𝑇)𝐻𝑘

𝑇}𝐾𝑘
𝑇 , 

since 𝑒𝑘  and 𝑣𝑘 are linearly independent the last formulae can be modified to 

𝑃𝑘
∗ = 𝐸(𝑒𝑘 𝑒𝑘

𝑇) − 𝐾𝑘𝐻𝐾𝐸(𝑒𝑘 𝑒𝑘
𝑇) − 𝐸(𝑒𝑘 𝑒𝑘

𝑇)𝐻𝑘
𝑇𝐾𝑘

𝑇

+ 𝐾𝑘{𝐸(𝑣𝑘𝑣𝑘
𝑇) + 𝐻𝐾𝐸(𝑒𝑘 𝑒𝑘

𝑇)𝐻𝑘
𝑇}𝐾𝑘

𝑇, 

or, 
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𝑃𝑘
∗ = 𝑃𝑘 − 𝐾𝑘𝐻𝐾𝑃𝑘 − 𝑃𝑘𝐻𝑘

𝑇𝐾𝑘
𝑇 +𝐾𝑘(𝑅𝑘 + 𝐻𝐾𝑃𝑘𝐻𝑘

𝑇)𝐾𝑘
𝑇 . 

Now, re-arranging the above equation will introduce 

𝑃𝑘
∗ = (𝐼 − 𝐾𝑘𝐻𝐾)𝑃𝑘(𝐼 − 𝐾𝑘𝐻𝐾)

𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑘
𝑇 ,                            (2.2.11) 

where, 𝐼 is an identity matrix of respective dimension. 

Expanding formulae (2.2.11) and regrouping terms as linear and quadratic give 

𝑃𝑘
∗ = 𝑃𝑘 − (𝐾𝑘𝐻𝐾𝑃𝑘 + 𝑃𝑘𝐻𝑘

𝑇𝐾𝑘
𝑇) + 𝐾𝑘(𝐻𝐾𝑃𝑘𝐻𝑘

𝑇 + 𝑅𝑘)𝐾𝑘
𝑇,              (2.2.12) 

where 𝑃𝑘  is quadratic only when (𝐻𝐾𝑃𝑘𝐻𝑘
𝑇 + 𝑅𝑘) is symmetric and positive definite.  

Assume that 

𝜙𝑘 = 𝐻𝐾𝑃𝑘𝐻𝑘
𝑇 + 𝑅𝑘, 

substitute the value of 𝜙𝑘  in the last expression of 𝑃𝑘
∗   

𝑃𝑘
∗ = 𝑃𝑘 − (𝐾𝑘𝐻𝑘𝑃𝑘 + 𝑃𝑘𝐻𝑘

𝑇𝐾𝑘
𝑇) + 𝐾𝑘𝜙𝑘𝐾𝑘

𝑇 . 

The aim is to find the value of 𝐾𝑘 such that the error covariance 𝑃𝑘
∗ will be 

minimized. So, differentiate 𝑃𝑘
∗ with respect to 𝐾𝑘 and find the critical 𝐾𝑘 

𝜕𝑃𝑘
∗

𝜕𝐾𝑘
= −(𝐻𝑘𝑃𝑘)

𝑇 − 𝑃𝑘𝐻𝑘
𝑇 + 2𝐾𝑘𝜙𝑘 = 0,  

where 𝑃𝑘  is symmetric matrix. Then  

𝐾𝑘 = 𝑃𝑘𝐻𝑘
𝑇(𝐻𝐾𝑃𝑘𝐻𝑘

𝑇 + 𝑅𝑘)
−1.                                       (2.2.13) 

Now substituting the value of Kalman gain matrix 𝐾𝑘 in the expression of the error 

covariance 𝑃𝑘
∗ gives what we call, minimum variance estimator 

𝑃𝑘
∗ = (𝐼 − 𝐾𝑘𝐻𝑘) 𝑃𝑘.                                            (2.2.14) 

For a next priori state estimate 𝑥̂𝑘+1 using 𝑥𝑘
∗ ,  starting from (2.2.1) by ignoring the 

state noise since it has zero mean we obtain  

𝑥̂𝑘+1 = 𝐴𝑘𝑥𝑘
∗ , 𝑘 = 0, 1, 2. . ..                                    (2.2.15) 
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Next, find a priori error for the step k+1  

𝑒𝑘+1 = 𝑥̂𝑘+1 − 𝑥𝑘+1 = 𝐴𝑘𝑥𝑘
∗ − 𝐴𝑘𝑥𝑘 − 𝐵𝑘𝑤𝑘 = 𝐴𝑘𝑒𝑘

∗ − 𝐵𝑘𝑤𝑘.  

Assuming that the error 𝑒𝑘+1 has zero mean, 

𝑃𝑘+1 = 𝐸(𝑒𝑘+1𝑒𝑘+1
𝑇), 

substituting the value of 𝑒𝑘+1 we obtain  

𝑃𝑘+1 = 𝐸((𝐴𝑘𝑒𝑘
∗ − 𝐵𝑘𝑤𝑘)(𝐴𝑘𝑒𝑘

∗ − 𝐵𝑘𝑤𝑘)
𝑇),  

or,  

𝑃𝑘+1 = 𝐸(𝐴𝑘𝑒𝑘
∗𝑒𝑘
∗𝑇𝐴𝑘

𝑇 − 𝐴𝑘𝑒𝑘
∗𝑤𝑘

𝑇𝐵𝑘
𝑇 − 𝐵𝑘𝑤𝑘𝑒𝑘

∗𝑇𝑒𝑘
∗𝐴𝑘

𝑇 + 𝐵𝑘𝑤𝑘𝑤𝑘
𝑇𝐵𝑘

𝑇),  

second term and third term of the last equation are zeros since 𝑒𝑘
∗  and 𝑤𝑘 are 

independent i.e. 

𝑃𝑘+1 = 𝐴𝑘𝐸(𝑒𝑘
∗𝑒𝑘
∗𝑇)𝐴𝑘

𝑇 + 𝐵𝑘𝐸(𝑤𝑘𝑤𝑘
𝑇)𝐵𝑘

𝑇 ,  

or,  

𝑃𝑘+1 = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 + 𝐵𝑘𝑄𝑘𝐵𝑘

𝑇 .                                        (2.2.16) 

Theorem 2.2.1. The best estimate 𝑥̂𝑘 of 𝑥𝑘 under the previous conditions and 

notations and based on the set of measurements {𝑧1, 𝑧2, . . ., 𝑧𝑘−1} must satisfy the 

following recurrence equation  

{
𝑥̂𝑘+1 = 𝐴𝑘𝑥̂𝑘 + 𝐴𝑘𝑃𝑘𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘𝐻𝑘
𝑇 + 𝐷𝑘𝐷𝑘

𝑇)−1(𝑧𝑘 − 𝐻𝑘𝑥̂𝑘),
𝑥0 = 0, 𝑘 = 1, 2, 3, . . .,                                                                   

          (2.2.17) 

also, the error covariance must satisfy the following recurrence equation 

{
𝑃𝑘+! = 𝐴𝑘𝑃𝑘𝐴𝑘

𝑇 − 𝐴𝑘𝑃𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝐷𝑘𝐷𝑘
𝑇)−1𝐻𝑘𝑃𝑘𝐴𝑘

𝑇 + 𝐵𝑘𝑄𝑘𝐵𝑘
𝑇 ,

𝑃0 = 𝐸(𝑥0𝑥0
𝑇), 𝑘 = 1, 2, 3, . . ..                                                                      

   (2.2.18) 

𝐏𝐫𝐨𝐨𝐟. Equation (2.2.17) follows directly from (2.2.15),(2.2.7) and (2.2.13) , and 

𝑥̂0 = 0 since the initial estimation based on no observation equals to the expectation 

of the initial state i.e. 𝑥̂0 = 𝐸(𝑥0) = 0. Then, substituting (2.2.14) in (2.2.16) and 

using (2.2.13), the recurrence equation (2.2.18) directly will be done. Here 
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𝑃0 = 𝐸(𝑒0𝑒0
𝑇) = 𝐸(𝑥0 − 𝑥̂0)(𝑥0 − 𝑥̂0)

𝑇 = 𝐸𝑥0𝑥0
𝑇 , 

since 𝑥̂0 = 0. 

Moreover, equation (2.2.18) is called a discrete Riccati equation. 

2.3 Continuous KF 

2.3.1 Introduction and problem formulation 

In this case, the time parameter changes continuously and the filtering problem 

(2.2.1)-(2.2.2) could be modified to the following linear dynamical system disturbed 

by noise processes: 

{
𝑥́(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑤(𝑡), 𝑡 > 0,

𝑥(0) = 𝑥0,
                               (2.3.1) 

and 

𝑧(𝑡) = 𝐻(𝑡)𝑥(𝑡) + 𝑣(𝑡), 𝑡 ≥ 0,                                        (2.3.2) 

where 𝐴, 𝐵 and 𝐻 are continuous matrix-valued functions on [0,∞) and 𝑥0 is a 

Gaussian random vector with zero mean, and 𝑤 and 𝑣 are independent vector-valued 

WN’s. Similar to the discrete case 𝑣, 𝑤 and 𝑥0 are pairwise independent. Consider 

that 𝑤 and 𝑣 are normally distributed with mean zero and covariance equal one. 

The linear dynamical filtering problem (2.3.1)-(2.3.2) yields finding the formulae for 

the best estimate 𝑥̂(𝑡) depending on the measurements 𝑧(𝑟), 0 < 𝑟 < 𝑡. Again, 

similar to the discrete case, if 𝑥̂(𝑡) exists, then 

𝑥̂(𝑡) = 𝐸(𝑥(𝑡)|𝑧(𝑟)), 0 < 𝑟 < 𝑡. 

2.3.2 Derivation of continuous KF 

Starting from the discrete KF, the continuous KF can be deduced considering the 

following sequence 0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑘+1 = 𝑡 as a partition of the time interval 

[0, 𝑡], this partition consists of 𝑘 + 1 subintervals of the same length ∆𝑡, considering 

that 𝑘 is sufficiently large. 
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Start by assuming that 𝑥(𝑡𝑘) = 𝑥𝑘, then by (3.2.1) 𝑥𝑘+1 can be expressed as  

𝐴𝑘 = 𝑒
∫ 𝐴(𝑠)𝑑𝑠
𝑡𝑘+1
𝑡𝑘   and  𝐵𝑘𝑤𝑘 = ∫ 𝑒

∫ 𝐴(𝑠)𝑑𝑠
𝑡𝑘+1
𝑡𝑘

𝑡𝑘+1
𝑡𝑘

𝐵(𝑟)𝑤(𝑟)𝑑𝑟. 

Matrix exponent formula implies 

𝐴𝑘 ≈ 𝐼 = ∫ 𝐴(𝑠)𝑑𝑠
𝑡𝑘+1

𝑡𝑘

≈ 𝐼 + ∆𝑡𝐴(𝑡𝑘), 

note that, any term containing a power of ∆𝑡 more than one is neglected. 

Substituting the value of 𝐴𝑘 in the state equation implies 

𝑥𝑘+1 ≈ (𝐼 + ∆𝑡𝐴(𝑡𝑘))𝑥𝑘 + 𝐵𝑘𝑤𝑘 ,                                       (2.3.3) 

where {𝐵𝑤𝑘} is a sequence of independent GRV’s with mean equals to zero. Next, 

consider 

𝐵𝑘𝐵𝑘
𝑇 = 𝐵𝑘𝐸(𝑤𝑘𝑤𝑘

𝑇)𝐵𝑘
𝑇 = 𝐸(𝐵𝑘𝑤𝑘)(𝐵𝑘𝑤𝑘)

𝑇

= ∫ 𝑒∫ 𝐴(𝑠)𝑑𝑠
𝑡𝑘+1
𝑟 𝐵(𝑟)𝐵(𝑟)𝑇𝑒∫ 𝐴(𝑠)𝑇𝑑𝑠

𝑡𝑘+1
𝑟 𝑑𝑟

𝑡𝑘+1

𝑡𝑘

≈ ∫ (𝐼 + (𝑡𝑘+1

𝑡𝑘+1

𝑡𝑘

− 𝑟)𝐴(𝑟))𝐵(𝑟)𝐵(𝑟)𝑇(𝐼 + (𝑡𝑘+1 − 𝑟)𝐴
𝑇(𝑟))𝑑𝑟

≈ ∆𝑡(𝐼 + ∆𝑡𝐴(𝑡𝑘))𝐵(𝑡𝑘)𝐵(𝑡𝑘)
𝑇(𝐼 + ∆𝑡𝐴𝑇(𝑡𝑘))

= 𝐵(𝑡𝑘)𝐵(𝑡𝑘)
𝑇{∆𝑡 + (∆𝑡)2𝐴(𝑡𝑘) + (∆𝑡)

2𝐴𝑇(𝑡𝑘)

+ (∆𝑡)3𝐴(𝑡𝑘)𝐴
𝑇(𝑡𝑘)} ≈ ∆𝑡𝐵(𝑡𝑘)𝐵(𝑡𝑘)

𝑇 , 

where the terms containing a second or higher order of ∆𝑡 are neglected. 

Applying Mean Value theorem for integrals on the measurements 𝑧𝑘 implies 

𝑧𝑘 =
1

∆𝑡
∫ 𝑧(𝑟)𝑑𝑟,
𝑡𝑘+1

𝑡𝑘

 

and considering 𝐻𝑘 = 𝐻(𝑡𝑘) one may obtain 

𝑧𝑘 =
1

∆𝑡
∫ 𝐻(𝑟)𝑥(𝑟)𝑑𝑟
𝑡𝑘+1

𝑡𝑘

+
1

∆𝑡
∫ 𝑣(𝑡)𝑑𝑡
𝑡𝑘+1

𝑡𝑘

, 

or, 
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𝑧𝑘 = 𝐻𝑘𝑥𝑘 +Ψ𝑘𝑣𝑘 ,                                             (2.3.4) 

knowing that 

Ψ𝑘𝑣𝑘 =
1

∆𝑡
∫ 𝑣(𝑡)𝑑𝑡,
𝑡𝑘+1

𝑡𝑘

 

and  {Ψ𝑘𝑣𝑘} is a a sequence of independent GRV’s of mean equals to zero i.e. 

𝐸(Ψ𝑘𝑣𝑘) = 0 for all 𝑘. And 

Ψ𝑘Ψ𝑘
𝑇 = Ψ𝑘𝐸(𝑣𝑘𝑣𝑘

𝑇)Ψ𝑘
𝑇 = 𝐸(Ψ𝑘𝑣𝑘)(Ψ𝑘𝑣𝑘)

𝑇 

=
1

(Δ𝑡)2
𝐸 [∫ 𝑣(𝑟)𝑣𝑇(𝑟)𝑑𝑟

𝑡𝑘+1

𝑡𝑘

] 

=
1

(Δ𝑡)2
∫ 𝑣(𝑟)𝑣𝑇(𝑟)𝑑𝑟
𝑡𝑘+1

𝑡𝑘

 

=
1

(Δ𝑡)2
∫ 𝐼𝑑𝑟
𝑡𝑘+1

𝑡𝑘

=
Δ𝑡

(Δ𝑡)2
=
1

∆𝑡
. 

It is clear that Ψ𝑘 is invertible since Ψ𝑘 =
1

√Δ𝑡
. Hereby, the continuous KF problem 

(2.3.1)-(2.3.2) has been modified to the discrete case and theorem (3.2.1) implies 

𝑃𝑘+1 = (𝐼 + Δ𝑡𝐴(t𝑘))P𝑘(𝐼 + Δ𝑡𝐴(t𝑘))
𝑇
+ Δ𝑡𝐵(𝑡𝑘)𝐵(𝑡𝑘)

𝑇

− (𝐼 + Δ𝑡𝐴(t𝑘))P𝑘𝐻𝑘
𝑇(H𝑘P𝑘𝐻𝑘

𝑇 + Δ𝑡−1𝐼)−1H𝑘P𝑘(𝐼 + Δ𝑡𝐴(t𝑘))
𝑇
, 

implying (2.3.5) 

𝑃𝑘+1 = 𝑃𝑘 + Δ𝑡𝐴(𝑡𝑘)𝑃𝑘 + Δ𝑡𝑃𝑘𝐴(𝑡𝑘)
𝑇 + (Δ𝑡)2𝐴(𝑡𝑘)𝑃𝑘𝐴(𝑡𝑘)

𝑇 + Δ𝑡𝐵(𝑡𝑘)𝐵(𝑡𝑘)
𝑇

− Δ𝑡𝑃𝑘𝐻𝑘
𝑇(Δ𝑡H𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝐼)−1H𝑘𝑃𝑘

− (Δ𝑡)2𝑃𝑘𝐻𝑘
𝑇(Δ𝑡H𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝐼)−1H𝑘𝑃𝑘𝐴(𝑡𝑘)
𝑇

− (Δ𝑡)2𝐴(𝑡𝑘)𝑃𝑘𝐻𝑘
𝑇(Δ𝑡H𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝐼)−1H𝑘𝑃𝑘

− (Δ𝑡)3𝐴(𝑡𝑘)𝑃𝑘𝐻𝑘
𝑇(Δ𝑡H𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝐼)−1H𝑘𝑃𝑘𝐴(𝑡𝑘)
𝑇 . 

Moreover, for 𝑥̂𝑘+1, 
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𝑥̂𝑘+1 = (𝐼 + Δ𝑡𝐴(t𝑘))(𝑥̂𝑘 + 𝑃𝑘𝐻𝑘
𝑇(H𝑘P𝑘𝐻𝑘

𝑇 + Δ𝑡−1𝐼)−1(𝑧𝑘 − H𝑘𝑥̂𝑘)) = 𝑥̂𝑘 +

               ∆𝑡𝐴(𝑡𝑘)𝑥̂𝑘 + (𝐼 + Δ𝑡𝐴(t𝑘))𝑃𝑘𝐻𝑘
𝑇(Δ𝑡H𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝐼)−1(𝑧𝑘 − H𝑘𝑥̂𝑘).       

(2.3.6) 

Theorem 2.3.2 Under the previous conditions, the best estimate 𝑥̂(𝑡) of 𝑥(𝑡) 

depending on the measurements 𝑧(𝑟), 0 ≤ 𝑟 ≤ 𝑡 which described in the continuous 

KF problem (2.3.1)-(2.3.2) must satisfy the following equation 

{
𝑥́̂(𝑡) = 𝐴(𝑡)𝑥̂(𝑡) + 𝑃(𝑡)𝐻(𝑡)𝑇(𝑧(𝑡) − 𝐻(𝑡)𝑥̂(𝑡)), 𝑡 > 0,

𝑥̂(0) = 0,                                                                                     
                 (2.3.7) 

where 𝑃(𝑡) is the covariance of the error and it satisfies the following equation 

{
𝑃́(𝑡) = 𝐴(𝑡)𝑃(𝑡) + 𝑃(𝑡)𝐴(𝑡)𝑇 + 𝐵(𝑡)𝐵(𝑡)𝑇 − 𝑃(𝑡)𝐻(𝑡)𝑇𝐻(𝑡)𝑃(𝑡), 𝑡 > 0,

𝑃(0) = 𝑃0 = 𝐸𝑥0𝑥0
𝑇 .                                                                                                   

  (2.3.8) 

Proof. From (2.3.5) one can easily obtain 

𝑃𝑘+1 − 𝑃𝑘
Δ𝑡

= 𝐴(𝑡𝑘)𝑃𝑘 + 𝑃𝑘𝐴(𝑡𝑘)
𝑇 + Δ𝑡𝐴(𝑡𝑘)𝑃𝑘𝐴(𝑡𝑘)

𝑇 + 𝐵(𝑡𝑘)𝐵(𝑡𝑘)
𝑇

− 𝑃𝑘𝐻𝑘
𝑇(Δ𝑡H𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝐼)−1H𝑘𝑃𝑘

− Δ𝑡𝑃𝑘𝐻𝑘
𝑇(Δ𝑡H𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝐼)−1H𝑘𝑃𝑘𝐴(𝑡𝑘)
𝑇

− Δ𝑡𝐴(𝑡𝑘)𝑃𝑘𝐻𝑘
𝑇(Δ𝑡H𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝐼)−1H𝑘𝑃𝑘

− (Δ𝑡)2𝐴(𝑡𝑘)𝑃𝑘𝐻𝑘
𝑇(Δ𝑡H𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝐼)−1H𝑘𝑃𝑘𝐴(𝑡𝑘)
𝑇 . 

Considering that lim
∆𝑡→0

𝑃𝑘 = 𝑃(𝑡). Take the limit of the last formulae as ∆𝑡 tends to 

zero for both sides, then the equation (2.3.7) will be clear. 

Also, (2.3.6) implies 

𝑥̂𝑘+1 − 𝑥̂𝑘
∆𝑡

= 𝐴(𝑡𝑘)𝑥̂𝑘 + (𝐼 + Δ𝑡𝐴(t𝑘))𝑃𝑘𝐻𝑘
𝑇(Δ𝑡H𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝐼)−1(𝑧𝑘 − H𝑘𝑥̂𝑘), 

letting lim
∆→0

𝑥̂𝑘+1 = 𝑥̂𝑘. Now, taking the limit of both sides as Δ𝑡 tends to zero yields 

the equation (2.3.8). 
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The formulae (2.3.7 - (2.3.8) gives the KF equations for the continuous case. 

Equation (2.3.8) is called a continuous time Riccati equation.  

2.4 Selected Generalizations of the KF  

In this section some of the generalizations of the KF will be considered. Such 

generalizations obtained and derived based on different types of noises corrupting the 

state and the measurement and on the relation between those noises. 

2.4.1 The KF When the State and Measurements Noises are White and 

Correlated 

The Kalman formulae in theorem 3.3.2 were presented to describe the solution of the 

KF when the state and the measurements are disturbed by independent WN’s. 

Independency of the WN’s means that the source that affect the state and 

measurements systems are independent, but reality attains that may the same source 

affect both systems which means that the noises are correlated. KF has a 

generalization to this case. For this, the following systems describe this case 

{
𝑥′(𝑡|) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑤(𝑡), 𝑡 > 0,

𝑥(0) = 𝑥0,                                               
                              (2.4.1) 

𝑧(𝑡) = 𝐻(𝑡)𝑥(𝑡) + 𝑣(𝑡), 𝑡 ≥ 0,                                    (2.4.2) 

where 𝐴, 𝐵, and 𝐻 are matrix-valued functions on [0,∞), 𝑥0 is a Gaussian random 

vector with zero mean, 𝑤 and 𝑣 are WN processes, all of them of respective 

dimensions. Also, consider that 𝑥0 and {𝑣, 𝑤} are independent and 𝑤 and 𝑣 are 

correlated, for this 

𝜌 = 𝐸𝑤(𝑡)𝑣(𝑡)𝑇 = ℜ𝛿(𝑡), 

where 𝜌 is the correlation coefficient of 𝑤 and 𝑣. Note that, the correlation 

coefficient is same as the covariance since both of 𝑤 and  𝑣 are WN processes. The 

continuous KF with independent noises is a particular case considering that  
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ℜ = 0, 

in this case, it is assumed that  ℜ is nonzero in general and 𝑤(𝑡) = 𝑣(𝑡). This attains 

that   

𝜌 = 𝐸𝑤(𝑡)𝑣(𝑡)𝑇 = ℜ𝛿(𝑡) = 𝐼𝛿(𝑡). 

KF formulae for this case can be derived in a similar manner to the continuous 

Kalman case with independent WN processes. Hereby, the best estimate 𝑥̂(𝑡) is 

presented as a solution for the following equation 

{
𝑥̂′(𝑡) = 𝐴(𝑡)𝑥̂(𝑡) + (𝑃(𝑡)𝐻(𝑡)𝑇 + 𝐵(𝑡))(𝑧(𝑡) − 𝐻(𝑡)𝑥̂(𝑡)), 𝑡 > 0,

𝑥̂(0) = 0,
                (2.4.3) 

and the covariance of the error is given as a solution for the following equation 

{

𝑃′(𝑡) = 𝐴(𝑡)𝑃(𝑡) + 𝑃(𝑡)𝐴(𝑡)𝑇 + 𝐵(𝑡)𝐵(𝑡)𝑇                                           

 (𝑃(𝑡)𝐻(𝑡)𝑇 + 𝐵(𝑡))(𝐻(𝑡)𝑃(𝑡) + 𝐵(𝑡)𝑇), 𝑡 > 0

𝑃(0) = 𝑃0 = 𝐸𝑥0𝑥0
𝑇 .                                                                            

           (2.4.4)         

2.4.2 The KF When the Signal Noise is Colored 

If the real noises are sufficiently close to WN the previous model and formulae work 

with certain adequacy. Generally, the real noises can significantly be away from the 

WN, in fact, engineers proved that the noises in reality are never white [9]. This 

means that the resulting estimation from the previous model is not always the best 

one, even the error might be very large. For this issue, and to reduce this error and 

give the best estimate under such kind of noises, engineers introduced the concept of 

colored noise [8] as it was defined in the previous chapter. Recall that colored noise 

was defined as a solution of stochastic DE with additive WN. 

Now, consider the following state and measurements systems, respectively 

{
𝑥′(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝜑(𝑡), 𝑡 > 0,

𝑥(0) = 𝑥0,                                        
 

and 

𝑧(𝑡) = 𝐻(𝑡)𝑥(𝑡) + 𝑤(𝑡), 𝑡 ≥ 0, 
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where 𝜑 is the colored noise corrupting the state and it is defined as a solution of the 

following stochastic DE 

{
𝜑′(𝑡) = 𝐹(𝑡)𝜑(𝑡) + Φ(𝑡)𝑤(𝑡), 𝑡 > 0,

𝜑(0) = 0,                                                   
 

where 𝑤 is WN. 

Now, combining the state formula with its noise formula, the following new model 

can be introduced 

{
𝑥̃′(𝑡) = 𝐴̃(𝑡)𝑥̃(𝑡) + Φ̃(𝑡)𝑤(𝑡), 𝑡 > 0,
𝑥̃(0) = 𝑥̃0,                                           

 

and  

𝑧(𝑡) = 𝐻̃(𝑡)𝑥̃(𝑡) + 𝑤(𝑡), 𝑡 ≥ 0, 

with 

𝑥̃(𝑡) = [
𝑥(𝑡)
𝜑(𝑡)

] , 𝑥̃0 = [
𝑥0
0
], 

the new matrix-valued functions are given by 

𝐴̃(𝑡) = [
𝐴(𝑡) 𝐼
0 𝐹(𝑡)

] , Φ̃(𝑡) = [
0

Φ(𝑡)
] , H̃(𝑡) = [𝐻(𝑡) 0]. 

Hereby, we modified the system with colored state noise to a system with correlated 

WN’s. For this, the best estimate 𝑥̂̃(𝑡) is the solution of the following equation  

{
𝑥̂̃′(𝑡) = 𝐴̃(𝑡)𝑥̂̃(𝑡) + (𝑃̃(𝑡)𝐻̃(𝑡)𝑇 + Φ̃(𝑡)) (𝑧(𝑡) − H̃(𝑡)𝑥̂̃(𝑡)) , 𝑡 > 0,

𝑥̂̃(0) = 0,                                                                                                            
 

and the error covariance is a solution of the following Riccati equation 

{
P̃′(𝑡) = P̃(𝑡)Ã(𝑡)𝑇 + 𝐴̃(𝑡)𝑃̃(𝑡) + Φ̃(𝑡)Φ̃(𝑡)𝑇 − (P̃(𝑡)H̃(𝑡)𝑇 + Φ̃(𝑡)) (H̃(𝑡)P̃(𝑡) + Φ̃(𝑡)𝑇),

P̃(0) = 𝑐𝑜𝑣𝑥̃0.                                                                                                                                        
 

These equations can be modified to system of equations using the following manner. 

Let  
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𝑥̂̃(𝑡) = [
𝑥̂(𝑡)

𝜓(𝑡)
] , 𝑃 ̃(𝑡) = [

𝑃(𝑡) 𝐾(𝑡)

𝐾(𝑡)𝑇 𝑆(𝑡)
] . 

It is clear that 𝑃̃(𝑡) is symmetric. Then based on the equations for 𝑥̂̃(𝑡) and 𝑃̃(𝑡), the 

equation: 

{
𝑥̂′(𝑡) = 𝐴(𝑡)𝑥̂(𝑡) + 𝜓(𝑡) + 𝑃(𝑡)𝐻(𝑡)𝑇(𝑧(𝑡) − 𝐻(𝑡)𝑥̂(𝑡)),   𝑡 > 0,

𝑥̂(0) = 0,                                                                                                      
 

presents the best estimate 𝑥̂(𝑡), with 𝜓(𝑡), satisfying 

{
𝜓′(𝑡) = 𝐹(𝑡)𝜓(𝑡) + (𝐾(𝑡)𝑇𝐻(𝑡)𝑇 +Φ(𝑡)(𝑧(𝑡) − 𝐻(𝑡)𝑥̂(𝑡))) , 𝑡 > 0,

𝜓(0) = 0,                                                                                                               
 

and equation for 𝑃(𝑡) is  

{
𝑃′(𝑡) = 𝑃(𝑡)𝐴(𝑡)𝑇 + 𝐴(𝑡)𝑃(𝑡) + 𝐾(𝑡) + 𝐾(𝑡)𝑇 − 𝑃(𝑡)𝐻(𝑡)𝑇𝐻(𝑡)𝑃(𝑡),   𝑡 > 0,
𝑃(0) = 𝑐𝑜𝑣 𝑥0,                                                                                                                     

 

with 𝐾(𝑡) is given as a solution of the following equation: 

{
𝐾′(𝑡) = 𝐾(𝑡)𝐹(𝑡)𝑇 + 𝐴(𝑡)𝐾(𝑡) + 𝑆(𝑡) − 𝑃(𝑡)𝐻(𝑡)𝑇(𝐻(𝑡)𝐾(𝑡) + Φ(𝑡)𝑇, 𝑡 > 0),
𝐾(0) = 0,                                                                                                                                

 

and 𝑆(𝑡), satisfying  

{

𝑆′(𝑡) = 𝑆(𝑡)𝐹(𝑡)𝑇 + 𝐹(𝑡)𝑆(𝑡) + Φ(𝑡)Φ(𝑡)𝑇                                         

−(𝐾(𝑡)𝑇𝐻(𝑡)𝑇 +Φ(𝑡))(𝐻(𝑡)𝐾(𝑡) + Φ(𝑡)𝑇), 𝑡 > 0,

𝑆(0) = 0.                                                                                                          

 

2.4.3 KF When the Measurements Noise is Colored  

The observation system may be corrupted by colored noise. The KF problem for this 

case can be presented for the signal system 

{
𝑥′(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑤(𝑡),   𝑡 > 0,
𝑥(𝑡) = 𝑥0,                                                  

 

and the measurements system 

𝑧(𝑡) = 𝐻(𝑡)𝑥(𝑡) + 𝜑(𝑡) + 𝑤(𝑡), 𝑡 ≥ 0, 

where 𝜑(𝑡) is again a colored noise given as a solution of the equation 

{
𝜑′(𝑡) = 𝐹(𝑡)𝜑(𝑡) + Φ(𝑡)𝑤(𝑡),   𝑡 > 0,

𝜑(0) = 0.                                                    
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Note that, the appearance of the summation of WN and colored noises in the 

measurements system is accepted by the nature of the KF which always assumes a 

non-degenerate WN in the measurements system. 

Next, a new signal process 𝑥̃(𝑡)  can be introduced 

𝑥̃(𝑡) = [
𝑥(𝑡)

𝜑(𝑡)
] , 𝑥̃0 = [

𝑥0
0
], 

and new matrix-valued functions 

𝐴̃(𝑡) = [
𝐴(𝑡) 0
0 𝐹(𝑡)

] , Φ̃(𝑡) = [
𝐵(𝑡)

Φ(𝑡)
] , 𝐻̃(𝑡) = [𝐻(𝑡) 𝐼] . 

Then the modified signal and observation systems can be presented as 

{
𝑥̃′(𝑡) = 𝐴̃(𝑡)𝑥̃(𝑡) + Φ̃(𝑡)𝑤(𝑡),   𝑡 > 0.
𝑥̃(0) = 𝑥̃0,                                                   

 

and 

𝑧(𝑡) = 𝐻̃(𝑡)𝑥̃(𝑡) + 𝑤(𝑡), 𝑡 ≥ 0. 

Hereby, the KF problem is reduced to a problem with correlated WN’s. Then the best 

estimate 𝑥̂̃ can be presented as a solution of the following equation 

{
𝑥̂̃′(𝑡) = 𝐴̃(𝑡)𝑥̂̃(𝑡) + (𝑃̃(𝑡)𝐻̃(𝑡)𝑇 + Φ̃(𝑡)) (𝑧(𝑡) − 𝐻̃(𝑡)𝑥̂̃(𝑡)) , 𝑡 > 0,

𝑥̂̃(0) = 0,                                                                                                          
 

 where 𝑃̃(𝑡) is a solution of the following Riccati equation 

{ 

𝑃̃′(𝑡) = 𝑃̃(𝑡)𝐴̃(𝑡)𝑇 + 𝐴̃(𝑡)𝑃̃(𝑡) + Φ̃(𝑡)Φ̃(𝑡)𝑇                                       

   − (𝑃̃(𝑡)𝐻̃(𝑡)𝑇 + Φ̃(𝑡)) (𝐻̃(𝑡)𝑃̃(𝑡) + Φ̃(𝑡)𝑇), 𝑡 > 0,   

𝑃̃(0) = 𝑐𝑜𝑣 𝑥̃0 .                                                                                            

 

Letting 

𝑥̂̃(𝑡) = [
𝑥̂(𝑡)

𝜓(𝑡)
] , 𝑃̃(𝑡) = [

𝑃(𝑡) 𝐾(𝑡)

𝐾(𝑡)𝑇 𝑆(𝑡)
], 

now,  𝑥̂(𝑡) can be obtained from 
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{
𝑥̂′(𝑡) = 𝐴(𝑡)𝑥̂(𝑡) + (𝑃(𝑡)𝐻(𝑡)𝑇 +𝐾(𝑡) + 𝐵(𝑡))(𝑧(𝑡) − 𝐻(𝑡)𝑥̂(𝑡) − 𝜓(𝑡)),   𝑡 > 0,

𝑥̂(0) = 0,                                                                                                                                       
 

with 𝜓(𝑡) satisfying 

{
𝜓′(𝑡) = 𝐹(𝑡)𝜓(𝑡) + (𝐾(𝑡)𝑇𝐻(𝑡)𝑇 + 𝑆(𝑡) + Φ(𝑡))((𝑧(𝑡) − 𝐻(𝑡)𝑥̂(𝑡) − 𝜓(𝑡)), 𝑡 > 0,

𝜓(0) = 0,                                                                                                                                        
 

and the covariance of the error 𝑃(𝑡) satisfy 

{

𝑃′(𝑡) =    𝑃(𝑡)𝐴(𝑡)𝑇 + 𝐴(𝑡)𝑃(𝑡) + 𝐵(𝑡)𝐵(𝑡)𝑇                                            

            −(𝑃(𝑡)𝐻(𝑡)𝑇 + 𝐾(𝑡) + 𝐵(𝑡))(𝐻(𝑡)𝑃(𝑡) + 𝐾(𝑡)𝑇 + 𝐵(𝑡)𝑇)

𝑃(0) = 𝑐𝑜𝑣𝑥0 = 𝑃0,                                                                                          

, 𝑡 > 0, 

where 𝐾(𝑡) and 𝑆(𝑡) satisfy the following tow equations, respectively, 

{

𝐾′(𝑡) = 𝐾(𝑡)𝐹(𝑡)𝑇 + 𝐴(𝑡)𝐾(𝑡) + 𝐵(𝑡)Φ(𝑡)𝑇                                                                      

−(𝑃(𝑡)𝐻(𝑡)𝑇 + 𝐾(𝑡) + 𝐵(𝑡))(𝐻(𝑡)𝐾(𝑡) + 𝑆(𝑡)𝑇 +Φ(𝑡)𝑇), 𝑡 > 0,

𝐾(0) = 0,                                                                                                                                     

 

and 

{

𝑆′(𝑡) = 𝑆(𝑡)𝐹(𝑡)𝑇 + 𝐹(𝑡)𝑆(𝑡) + Φ(𝑡)Φ(𝑡)𝑇                                                                      

−(𝐾(𝑡)𝑇𝐻(𝑡)𝑇 + 𝑆(𝑡) + Φ(𝑡))(𝐻(𝑡)𝐾(𝑡) + 𝑆(𝑡)𝑇 +Φ(𝑡)𝑇), 𝑡 > 0,

𝑆(0) = 0.                                                                                                                                     

 

2.4.4 KF When the Signal and Measurements Noises are Colored 

Consider the following signal system 

{
𝑥′(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝜑1(𝑡) + 𝐵(𝑡)𝑤(𝑡), 𝑡 > 0,

𝑥(0) = 𝑥0,                                                                
 

where 𝜑1(𝑡) stands for colored noise affects the signal system, satisfying  

{
𝜑1
′ (𝑡) = 𝐹1(𝑡)𝜑1(𝑡) + Φ1(𝑡)𝑤(𝑡), 𝑡 > 0,            

𝜑1(0) = 0,                                                                   
 

also, consider the measurements system 

𝑧(𝑡) = 𝐻(𝑡)𝑥(𝑡) + 𝑤(𝑡) + 𝜑2(𝑡), 𝑡 ≥ 0, 

where 𝜑2(𝑡) stands for colored noise affects the measurements system, satisfying 

{
𝜑2
′ (𝑡) = 𝐹2(𝑡)𝜑2(𝑡) + Φ2(𝑡)𝑤(𝑡), 𝑡 > 0,           

𝜑2(0) = 0.                                                                   
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A new signal and measurements systems can be deduced by introducing new signal 

processes 

𝑥̃(𝑡) = [

𝑥(𝑡)

𝜑1(𝑡)

𝜑2(𝑡)
],  𝑥̃0 = [

𝑥0
0
0
],  

and matrix-valued functions 

𝐴̃(𝑡) = [

𝐴(𝑡) 𝐼 0

0 𝐹1(𝑡) 0

0 0 𝐹2(𝑡)
],  Φ̃(𝑡) = [

𝐵(𝑡)

𝜑1(𝑡)

𝜑2(𝑡)
] , H̃(𝑡) = [𝐻(𝑡) 0 𝐼].  

Then the given signal and measurements systems become as 

{
𝑥̃′(𝑡) = 𝐴̃(𝑡)𝑥̃(𝑡) + Φ̃(𝑡)𝑤(𝑡), 𝑡 > 0,              
𝑥(0) = 0,                                                                

 

and 

𝑧(𝑡) = H̃(𝑡)𝑥̃(𝑡) + 𝑤(𝑡) + 𝜑2(𝑡), 𝑡 ≥ 0, 

the new signal and measurements are in the form when the signal and measurements 

are corrupted by correlated WN’s. So, the best estimate 𝑥̂̃ is introduced as a solution 

of  

{
𝑥̂̃′(𝑡) = 𝐴̃(𝑡)𝑥̂̃(𝑡) + (𝑃̃(𝑡)H̃(𝑡)𝑇 + Φ̃(𝑡))(𝑧(𝑡) − H̃(𝑡)𝑥̂̃(𝑡)), 𝑡 > 0,

𝑥̂̃(0) = 0,                                                                                                      
 

the new covariance of  the error 𝑃̃(𝑡) is a solution of the following Riccati equation 

{

𝑃̃′(𝑡) = 𝐴̃(𝑡)𝑃̃(𝑡) + 𝑃̃(𝑡)𝐴̃(𝑡)𝑇 + Φ̃(𝑡)Φ̃(𝑡)𝑇                           

         −(𝑃̃(𝑡)H̃(𝑡)𝑇 + Φ̃(𝑡))(H̃(𝑡)𝑃̃(𝑡) + Φ̃(𝑡)𝑇), 𝑡 > 0,

𝑃̃(0) = 𝐸𝑥̃0𝑥̃0
𝑇 = 𝑐𝑜𝑣𝑥̃0.                                                                 

 

Then, following system of equations can be obtained 

𝑥̂̃(𝑡) = [

𝑥̂(𝑡)
𝜓1(𝑡)
𝜓2(𝑡)

] , 𝑃̃(𝑡) = [

𝑃(𝑡) 𝐾1(𝑡) 𝐾2(𝑡)

𝐾1(𝑡)
𝑇 𝑆1(𝑡) 𝑅(𝑡)

𝐾2(𝑡)
𝑇 𝑅(𝑡)𝑇 𝑆2(𝑡)

]. 

𝑥̂(𝑡)  is a solution of  
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{
𝑥́̂(𝑡) = 𝐴(𝑡)𝑥̂(𝑡) + 𝜓1(𝑡)                                                                                              

      +(𝑃(𝑡)𝐻(𝑡)𝑇 + 𝐾2(𝑡) + 𝐵(𝑡))(𝑧(𝑡) − 𝐻(𝑡)𝑥̂(𝑡) − 𝜓2(𝑡)),   𝑡 > 0,

𝑥̂(0) = 0,                                                                                                                           

 

with 𝜓1(𝑡) and 𝜓2(𝑡) satisfy the following equations  

{
𝜓1
′ (𝑡) = 𝐹1(𝑡)𝜓1(𝑡) + (𝐾1(𝑡)

𝑇𝐻(𝑡)𝑇 + 𝑅(𝑡) + Φ1(𝑡))(𝑧(𝑡) − 𝐻(𝑡)𝑥̂(𝑡) − 𝜓1(𝑡)), 𝑡 > 0,

𝜓1(0) = 0,                                                                                                                                                
 

and 

{
𝜓2
′ (𝑡) = 𝐹2(𝑡)𝜓2(𝑡) + (𝐾2(𝑡)

𝑇𝐻(𝑡)𝑇 + 𝑆2(𝑡) + Φ2(𝑡))(𝑧(𝑡) − 𝐻(𝑡)𝑥̂(𝑡) − 𝜓2(𝑡)), 𝑡 > 0,

𝜓2(0) = 0.                                                                                                                                                 
 

Also, the error covariance is given as a solution of the equation 

{

𝑃′(𝑡) =  𝑃(𝑡)𝐴(𝑡)𝑇 + 𝐴(𝑡)𝑃(𝑡) + 𝐾1(𝑡) + 𝐾1(𝑡)
𝑇 + 𝐵(𝑡)𝐵(𝑡)𝑇                                            

     −(𝑃(𝑡)𝐻(𝑡)𝑇 + 𝐾2(𝑡) + 𝐵(𝑡))(𝐻(𝑡)𝑃(𝑡) + 𝐾2(𝑡)
𝑇 + 𝐵(𝑡)𝑇), 𝑡 > 0,            

𝑃(0) = 𝑐𝑜𝑣𝑥0 = 𝑃0,                                                                                                                          

 

where 𝑆1(𝑡), 𝑆2(𝑡), 𝐾1(𝑡), 𝐾2(𝑡) and 𝑅(𝑡) are obtained by the following equations 

{

𝑆1
′(𝑡) = 𝑆1(𝑡)𝐹1(𝑡)

𝑇 + 𝐹1(𝑡)𝑆1(𝑡) + Φ1(𝑡)Φ1(𝑡)
𝑇                                                           

           −(K1(𝑡)
𝑇𝐻(𝑡)𝑇 + 𝑅(𝑡) + Φ1(𝑡))(𝐻(𝑡)𝐾1(𝑡) + 𝑅(𝑡)

𝑇 +Φ1(𝑡)
𝑇), 𝑡 > 0,

𝑆1(0) = 0,                                                                                                                                    

 

{

𝑆2
′(𝑡) = 𝑆2(𝑡)𝐹2(𝑡)

𝑇 + 𝐹2(𝑡)𝑆2(𝑡) + Φ2(𝑡)Φ2(𝑡)
𝑇                                                           

             −(K2(𝑡)
𝑇𝐻(𝑡)𝑇 + 𝑆2(𝑡) + Φ2(𝑡))(𝐻(𝑡)𝐾2(𝑡) + 𝑆2(𝑡)

𝑇 +Φ2(𝑡)
𝑇), 𝑡 > 0,

𝑆2(0) = 0,                                                                                                                                    

 

{

𝐾1
′(𝑡) = 𝐾1(𝑡)𝐹1(𝑡)

𝑇 + 𝐴(𝑡)𝐾1(𝑡) + 𝑆1(𝑡) + 𝐵(𝑡)                                                           

      −(𝑃(𝑡)𝐻(𝑡)𝑇 + 𝐾2(𝑡) + 𝐵(𝑡))(𝐻(𝑡)𝐾1(𝑡) + 𝑅(𝑡)
𝑇 +Φ1(𝑡)

𝑇), 𝑡 > 0,

𝐾1(0) = 0,                                                                                                                                   

 

{

𝐾2
′(𝑡) = 𝐾2(𝑡)𝐹2(𝑡)

𝑇 + 𝐴(𝑡)𝐾2(𝑡) + 𝑅(𝑡) + 𝐵(𝑡)Φ1(𝑡)
𝑇                                                           

      −(𝑃(𝑡)𝐻(𝑡)𝑇 +𝐾2(𝑡) + 𝐵(𝑡))(𝐻(𝑡)𝐾2(𝑡) + 𝑆2(𝑡)
𝑇 +Φ2(𝑡)

𝑇), 𝑡 > 0,           

𝐾2(0) = 0,                                                                                                                                               

 

and 

 {

𝑅′(𝑡) = 𝑅(𝑡)𝐹2(𝑡)
𝑇 + 𝐹1(𝑡)𝑅(𝑡) + Φ1(𝑡)Φ2(𝑡)

𝑇                                                   

             −(K1(𝑡)
𝑇𝐻(𝑡)𝑇 + 𝑅(𝑡) + Φ1(𝑡))(𝐻(𝑡)𝐾2(𝑡) + 𝑆2(𝑡)

𝑇 +Φ2(𝑡)
𝑇),

𝑅(0) = 0, 𝑡 > 0.                                                                                                               
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2.4.5 KF when the systems are of infinite dimensional 

 Hilbert space concept is very important to investigate the infinite dimensional 

dynamical systems. This issue is helpful for KF under WBN’s as well. Therefore, in 

this section we assume that 𝑋 is a Hilbert space. 

 Abstract Cauchy Problem 

A function 𝔄 from [0,∞) to ℒ(𝑋), where ℒ(𝑋) is the space of bounded linear 

operators on the space 𝑋, is said to be a strongly continuous semigroup if it the  

following conditions are satisfied 

1. 𝔄(0) =  𝐼, 

2. 𝔄(𝑡 +  𝑠) =  𝔄(𝑡)𝔄(𝑠), ∀ 𝑡 ≥ 0 𝑎𝑛𝑑 𝑠 ≥ 0, 

3. ∥ 𝔄(𝑡)𝑥 − 𝑥 ∥→ 0 𝑎𝑠 𝑡 → 0, ∀ 𝑥 ∈ 𝑋. 

One can associate the linear operator 𝐴: 𝑋 → 𝑋 with the strongly continuous 

semigroup 𝔄 by 

𝐴𝑥 = lim
𝑥→0+

𝔄(𝑡)𝑥 − 𝑥

𝑡
, 

for all 𝑥 ∈ 𝑋, such that previous limit exists. Let 𝔇  be the collection of all such 𝑥, It 

is proved 𝔇 is dense in 𝑋 and 𝐴: 𝔇 → 𝑋 is a closed linear operator. 𝐴 is said to be 

infinitesimal generator of the semigroup 𝔄. It is also proved that the following 

relationship between 𝔄 and 𝐴 is satisfied 

𝑑

𝑑𝑡
𝔄(𝑡)𝑥 = 𝐴𝔄(𝑡)𝑥 = 𝔄(𝑡)𝐴𝑥, 𝑥 ∈ 𝐷. 𝑡 > 0, 

this can be written as 

𝔄(𝑡)𝑥 = 𝑥 + ∫ 𝔄(𝑠)𝐴𝑥𝑑𝑠
𝑡

0

 

                            = 𝑥 + ∫ 𝐴𝔄(𝑠)𝑥
𝑡

0

𝑑𝑠, 𝑥 ∈ 𝔇, 

note that, this integral is in Bochner sense. Based on this the function 𝑥(𝑡) =  𝔄(𝑡)𝑥0 
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is a solution of the abstract Cauchy problem 

𝑥′(𝑡) = 𝐴𝑥(𝑡), 𝑥(0) = 𝑥0, 𝑡 > 0, 

if 𝑥0 ∈ 𝔇. If 𝑥0 belongs to the set 𝑋, then 𝑥(𝑡) = 𝔄(𝑡)𝑥0 is still defined (since the 

domain of 𝔄 equals to 𝑋), but it is possible that 𝑥(𝑡) ∉  𝔇 (since 𝔇 ≠ 𝑋 generally, 

although 𝔇̅̅̅ = 𝑋). In the wider case 𝑥(𝑡) = 𝔄(𝑡)𝑥0 is called a mild solution of the 

stated abstract Cauchy problem. Depending on this, 𝔄 together with  𝐴 is also 

denoted by 𝑒𝐴𝑡 since it reduces to the matrix exponents if 𝑋 = ℝ𝑛 and 𝐴 ∈ ℝ𝑛×𝑛. 

Example 1. If 𝐴 ∈, then similar to finite dimensional case it can be shown that  

𝔄(𝑡) =  𝑒𝐴𝑡 =∑
(𝐴𝑡)𝑛

𝑛!

∞

𝑛=0

. 

Example 2. In this example, the case when the semigroups are strongly but not 

uniformly continuous is discussed. In theory of PDF’s using separation of variables 

method it is true that the solution of the following heat equation 

 𝑢′𝑡(𝑡, 𝜃) = 𝑢𝜃𝜃
′′ (𝑡, 𝜃), 𝑢(0, 𝜃) = 𝑓(𝜃), 𝑢(𝑡, 0) = 𝑢(𝑡, 1) = 0, 0 ≤ 𝜃 ≤ 1, 𝑡 ≥ 0, 

has the following representation 

𝑢(𝑡, 𝜃) = ∑2𝑒𝑘
2𝜋2𝑡sin (𝑘𝜋𝜃)∫ 𝑓(𝛾) sin(𝑘𝜋𝛾)𝑑𝛾.

1

0

∞

𝑘=1

 

Therefore, letting 𝑋 =  𝐿2(0,1) (the space of all square integrable real valued 

functions on the interval [0; 1]) and 𝐴 =  𝑑2/𝑑𝜃2 with  

𝔇 = {ℎ ∈ 𝐿2(0,1): ℎ
𝑘 ∈ 𝐿2(0,1), ℎ(0) = ℎ(1) = 0}, 

then for every ℎ ∈ 𝑋 

[ 𝑒𝐴𝑡ℎ](𝜃) =∑2𝑒𝑘
2𝜋2𝑡sin (𝑘𝜋𝜃)∫ ℎ(𝛾) sin(𝑘𝜋𝛾) 𝑑𝛾

1

0

∞

𝑘=1

, 

where 0 ≤ 𝜃 ≤ 1, 𝑡 ≥ 0. 
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Example 3. (Left Translation Semigroub) Consider the one dimensional PDE 

𝑣𝑡
′(𝑡, 𝜃) = 𝑣𝜃

′ (𝑡, 𝜃), 𝑣(0, 𝜃) = 𝑓(𝜃), 𝑣(𝑡, 0) = 0,−𝜀 ≤ 𝜃 ≤ 0, 𝑡 ≥ 0, 

where 𝜀 > 0 and 𝑣(𝑡, 𝜃) ∈ ℝ𝑘. In theory of PDF’s it is proved that the solution of the 

this PDE has the representation 

𝑣(𝑡, 𝜃) = {
ℎ(𝜃 + 𝑡), 𝜃 + 𝑡 ≤ 0,
0,               𝜃 + 𝑡 > 0.

 

Letting 𝑋 = 𝐿2
𝑘(−𝜀, 0) (the space of all square integrable functions on the interval 

[−𝜀, 0] with values is ℝ𝑘) and 𝐴 =  𝑑/𝑑𝜃 with 

𝔇 = {𝑓 ∈ 𝐿2
𝑘(−𝜀, 0): 𝑓′ ∈ 𝐿2

𝑘(−𝜀, 0), 𝑓(0) = 0}, 

it can be obtained that ∀𝑓 ∈ 𝑋, 

[𝒮(𝑡)𝑓](𝜃) =[ 𝑒𝐴𝑡𝑓](𝜃) = {
𝑓(𝜃 + 𝑡), 𝜃 + 𝑡 ≤ 0,
0,               𝜃 + 𝑡 > 0,

                           (3.4.1) 

where −𝜀 ≤ 𝜃 ≤ 0, 𝑡 ≥ 0. This semigroub will be denoted by 𝒮. 

Example 4. (Right Translation Semigroub) It is known that if 𝐴 generates a strongly 

continuous semigroup 𝔄 , then 𝔄∗, the semigroup generated by  𝐴∗ is also strongly 

continuous, Therefore, the domain of 𝐴 =  𝑑/𝑑𝜃 

𝔇∗ = {𝑓 ∈ 𝐿2
𝑘(−𝜀, 0): 𝑓′ ∈ 𝐿2

𝑘(−𝜀, 0), 𝑓(−𝜀) = 0}, 

with the adjoint 𝐴∗ = −𝑑/𝑑𝜃 from previous example generates the strongly 

continuous semigroub 

[𝒮∗(𝑡)𝑓](𝜃) =[ 𝑒𝐴
∗𝑡𝑓](𝜃) = {

𝑓(𝜃 − 𝑡), 𝜃 − 𝑡 ≤ −𝜀,
0,               𝜃 − 𝑡 > −𝜀,

                               (2.4.2) 

where −𝜀 ≤ 𝜃 ≤ 0, 𝑡 ≥ 0. 

Considering the linear SDE  

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝜑(𝑡) + 𝐵𝑤(𝑡);  𝑡 > 𝑡0, 𝑥(𝑡0) = 𝑥0,              (2.4.3) 

where 𝐴 is a closed linear operator on the space X which generates a strongly 

continuous semigroup 𝔄, 𝐵 ∈ ℒ(ℝ𝑚, 𝑋), 𝑥0 is 𝑋-valued Gaussian random vector, 𝜑 
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is an 𝑋-valued random process and 𝑤 is an ℝ𝑚-valued WN process, 𝑥(𝑡) can be 

written in a variation of constant formula 

𝑥(𝑡) = 𝔄(𝑡)𝑥0 + ∫ 𝔄(𝑡 − 𝑠)𝜑(𝑠)𝑑𝑠
𝑡

𝑡0
+ ∫ 𝔄(𝑡 − 𝑠)𝐵𝑤(𝑠)𝑑𝑠

𝑡

𝑡0
,               (2.4.4) 

it is assumed that both of these integrals exist where the first integral is an ordinary 

integral of 𝑋-valued functions (defined at fixed samples and called a Bochner 

integral), the second entegral is a stochastic integral of 𝑋-valued random process. 

The random process 𝑥(𝑡) defined by (2.4.4) is called a mild solution of the equation 

(2.4.3). Similar to non-homogenous case, it is a strong solution, i.e., 𝑥(𝑡) ∈ 𝔇 and 

equation (2.4.3) holds, if some other conditions valid. By the solution of (2.4.3) it is 

always denote a mild solution. 

 Operator Riccati Equation 

The KF needs a Riccati equation in the form (2.4.4). The form of this equation in a 

Hilbert space is (Note that in the infinite case 𝐻∗ = 𝐻𝑇) 

{
𝑃′(𝑡) = 𝐴𝑃(𝑡) + 𝑃(𝑡)𝐴∗ + 𝐵𝐵∗ − (𝑃(𝑡)𝐻∗ + 𝐵)(𝐻𝑃(𝑡) + 𝐵∗),
𝑃(0) = 𝑐𝑜𝑣(𝑥0), 𝑡 > 0,                                                                          

           (2.4.5) 

where 𝐴, 𝐻 and 𝐵 are chosen to be time independent to make the issue simpler. Here 

we assume that 𝐴 is a closed linear operator in the space 𝑋 on the dense domain 𝔇, 

generating a strongly continuous semigroup 𝔄, 𝐵 ∈ ℒ(ℝ𝑚, 𝑋) and 𝐵 ∈ ℒ(𝑋,ℝ𝑚). 

Generally, the solution of the equation (2.4.5) can not be understood in the ordinary 

sense since 𝐴 is an unbounded. Denote by 𝔇∗ the domain of 𝐴∗ , also, 𝐴∗ is a densely 

defined on 𝑋. Then 𝑃 (𝑡) is called a solution of the equation (2.4.5) in the scalar 

product sense if 𝑃(0) = cov𝑥0 and 

〈𝑃(𝑡)𝑥, 𝑦〉 = 〈𝐴∗𝑥, 𝑃(𝑡)𝑦〉 + 〈𝑃(𝑡)𝑥, 𝐴∗𝑦〉

+ 〈𝐵𝐵∗ − (𝑃(𝑡)𝐻∗ + 𝐵)(𝐻𝑃(𝑡) + 𝐵∗)𝑥, 𝑦〉, 
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∀𝑥, 𝑦 ∈ 𝔇∗ and 𝑡 > 0, where 〈. , . 〉 is a scalar product in 𝑋.  It is proved that under the 

above conditions there exists a unique solution in the scalar product sense of the 

operator Riccati equation (2.4.5) and it has the properties 𝑃∗(𝑡) = 𝑃(𝑡) and 

〈𝑃(𝑡)𝑥, 𝑥〉 ≥ 0 for every 𝑥 ∈ 𝑋 and 𝑡 ≥ 0, i.e., 𝑃(𝑡) is a nonnegative operator for 

every 𝑡 ≥ 0. 

 The KF for Infinite Dimensional Systems 

Consider the following signal system 

{
𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑤(𝑡), 𝑡 > 0,
𝑥(0) = 𝑥0,                                    

                                            (2.4.6) 

and the measurements system 

𝑧(𝑡) = 𝐻𝑥(𝑡) + 𝑤(𝑡), 𝑡 ≥ 0,                                               (2.4.7) 

where 𝑋 is a Hilbert space, 𝑥0 is an 𝑋-valued Gaussian random vector with zero 

mean, A is defined densely as a closed linear operator on the Hilbert space 𝑋 

generating the strongly continuous semigroup 𝔄, 𝐻 ∈ ℒ(𝑋,ℝ𝑚)and 𝐵 ∈ ℒ(ℝ𝑚, 𝑋) 

and 𝑤 is an ℝ𝑚-valued WN processes, all of them are of respective dimensions. 

Considering that 𝑥0 and 𝑤 are independent. Then the best estimate 𝑥̂(𝑡) is a mild 

solution of the following equation 

{
𝑥̂′(𝑡) = 𝐴𝑥̂(𝑡) + (𝑃(𝑡)𝐻∗ + 𝐵)(𝑧(𝑡) − 𝐻𝑥̂(𝑡)), 𝑡 > 0,

𝑥̂(0) = 0,                                                                                  
               (2.4.8) 

and the error covariance  𝑃(𝑡) is given as a solution of the following operator Riccati 

equation 

{
𝑃′(𝑡) = 𝐴𝑃(𝑡) + 𝑃(𝑡)𝐴∗ + 𝐵𝐵∗ − (𝑃(𝑡)𝐻∗ + 𝐵)(𝐻𝑃(𝑡) + 𝐵∗),
𝑃(0) = 𝑐𝑜𝑣𝑥0, 𝑡 > 0.                                                                               

               (2.4.9) 

For the full proofs and derivation of these formulae they are listed in [36]. 
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Chapter 3 

3 KF FOR WBN’S 

3.1 Introduction to WBN 

Basically, the KF was presented for the WN model. Later, engineers have observed 

that the WN model is an ideal model of noise processes.  To deal with the situation 

the WBN introduced as follows [9]: 

“WBN. Suppose that some physical process, if unaffected by random disturbances 

can be described by a (vector) ordinary DE 𝑑𝜁 = 𝑏(𝑡, 𝜁(𝑡))𝑑𝑡. If, however, such 

disturbances enter the system in an additive way, then one might take as a model 

𝑑𝜁 = 𝑏(𝑡, 𝜁(𝑡)) + 𝑣(𝑡), 

where 𝑣 is some stationary process with mean 𝑣 and known autocovariance matrix 

𝑅(𝑟): 

𝑅𝑖𝑗 = 𝐸{𝑣𝑖(𝑡)𝑣𝑗(𝑡 + 𝑟)}, 𝑖, 𝑗 = 1, … , 𝑛. 

If R(r) is nearly 0 except in a small interval near 𝑟 =  0, then 𝑣 is called WBN.  WN 

corresponds to the ideal case when 𝑅𝑖𝑗 is a constant 𝑎𝑖𝑗times a Dirac delta function. 

Then 𝑣(𝑡)𝑑𝑡 is replaced by 𝜎𝑑𝑤, where 𝜎 is a constant matrix such that  𝜎𝜎𝑇 =

𝑎, 𝑎 =  𝑎𝑖𝑗” 

Definition An ℝ𝑚-valued random process 𝜑 on [0,∞] is called a WBN if for some 

𝜖 > 0, 
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𝑐𝑜𝑣(𝜑(𝑡), 𝜑(𝑠)) = {
Λ(𝑡, 𝑠),   |𝑡 − 𝑠| < 𝜀,

0,             |𝑡 − 𝑠| ≥ 𝜀,
 

where Λ is an ℝ𝑚×𝑚-valued nonzero function. If 𝐸𝜑(𝑡) = 0 and Λ(𝑡, 𝑠) = Λ(𝑡 − 𝑠) 

for 0 ≤ 𝑡 ≤ 𝑠, then 𝜑 is said to be stationary ( in  wide sense). Λ is known as an 

autocovariance function of 𝜑. Bashirov [36] presents the WBN 𝜑 under the general 

conditions in the following form  

𝜑(𝑡) = ∫ Φ(𝑡, 𝜃 − 𝑡)𝑤(𝜃)𝑑𝜃,
𝑡

max (0,𝑡−𝜀)

 

where 𝑤 is a WN process and Φ is a deterministic function depending on the 

autocovariance function Λ and 𝜑. In addition, 𝜑 is stationary on  [𝜀,∞) if Φ is 

independent on the first variable. It is also proved that if Φ is differentiable 

and Φ(−ε) = 0 the WBN given above can be presented and reduced in the following 

form 

𝜑(𝑡) = ∫ 𝜑̃(𝑡, 𝜃)𝑑𝜃,
0

−𝜖

 

where 𝜑̃ is treated as a solution of the following PDE 

𝜕𝜑̃(𝑡, 𝜃)

𝜕𝑡
= −

𝜕𝜑̃(𝑡, 𝜃)

𝜕𝜃
+Φ′(θ)𝑤(𝑡). 

3.2 KF When the Signal Noise is Wide Band 

Consider the following signal system   

{
𝑥′(𝑡) =  𝐴𝑥(𝑡) + 𝜑(𝑡);  𝑡 > 0,

𝑥(0) = 𝑥0,                                  
                                                   (3.2.1) 

which is corrupted by the WBN 𝜑(𝑡) which is defined by 

𝜑(𝑡) = ∫ Φ(𝑡 − 𝑠)𝑤(𝑠)𝑑𝑠
𝑡

max (0,𝑡−𝜖)

, 

and the measurements system 

𝑧(𝑡) = 𝐻𝑥(𝑡) + 𝑤(𝑡), 𝑡 ≥  0,                                                     (3.2.2) 
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Here consider 𝜀 > 0, and Φ is a differentiable on the interval [−𝜀, 0], satisfying 

Φ(−ε) = 0. We also take 𝐴 and 𝐻 are considered to be constant matrices. 

Let 

𝜑̌(𝑡, 𝜃) = ∫ Φ′(𝑠 − 𝑡 + θ)𝑤(𝑠)𝑑𝑠,
𝑡

max (0,𝑡−𝜀−𝜃)

 

where−𝜀 ≤ 𝜃 ≤ 0 and 𝑡 ≥ 0. Consider the integral operator Γ which is defined as 

Γ𝑔 = ∫ 𝑔(𝜃)𝑑𝜃,
0

−𝜀

 

on the space 𝐿2
𝑚(−𝜀, 0) of all square integrable functions on the interval [−𝜀, 0] with 

the values in the signal space, then it is clear that 

Γ𝜑̌(𝑡, . ) = ∫ 𝜑̌(𝑡, 𝜃) = 𝜑(𝑡)
0

−𝜖

, 

while 

(
𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
) 𝜑̌(𝑡, 𝜃) = Φ′(θ)𝑤(𝑡). 

The previous equation shows that 𝜑̌ is, in fact, a colored noise with ∞-dimensional. 

Thus, if we introduce a new ∞-dimensional signal process as 

𝑥̌(𝑡) = [
𝑥(𝑡)

𝜑̌(𝑡, . )
],    𝑥̌(0) = [

𝑥0
0
], 

together with the linear transformations 

𝐴̌ = [
𝐴 Γ
0 −𝑑/𝑑𝜃

] , 𝐻̌ = [𝐻 0], Φ̌ = [
0

Φ′(. )
], 

we have  

{
𝑥̌′(𝑡) = 𝐴̌𝑥̌(𝑡) + Φ̌(𝑡)𝑤(𝑡), 𝑡 > 0,
𝑥̌(0) = 𝑥̌0,                                             

                                               (3.2.3) 

where 𝑥(𝑡) is the signal process of (3.2.1). So, the system (3.2.1) is modified to the 

system (3.2.2) with ∞-dimensional state process. 
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Letting  

𝑥̂̌(𝑡) = [
𝑥̂(𝑡)

𝜓(𝑡, . )
], 

be the best estimate of 𝑥̂(𝑡) on the base of measurements 𝑧(𝑠), 0 ≤ 𝑠 ≤ 𝑡, for the 

system (3.2.2). Then its first component of 𝑥̂̌(𝑡) is the best estimate of 𝑥(𝑡) depending 

on the measurements 𝑧(𝑠), 0 ≤ 𝑠 ≤ 𝑡 , for the system (3.2.1). Therefore, KF results in 

Hilbert spaces can be used to obtain equations of the KF for a WBN driven signal 

system. 

Indeed, note that 𝑃̌(𝑡) of the parallel Riccati equation has the form 

𝑃̌(𝑡) = [
𝑃(𝑡) 𝐾̌(𝑡)

𝐾̌∗(𝑡) 𝑆̌(𝑡)
], 

where for every 𝑡 ≥ 0,  𝐾̌(𝑡) is an operator from 𝐿2 to the finite-dimensional signal 

space, 𝐾̌∗(𝑡) is its adjoin operator and  𝑆̌(𝑡) is an operator defined on  𝐿2
𝑚(−𝜀, 0). It 

is given that such operators are integral operators with respective kernels. Let 𝐾(𝑡, 𝜃) 

and 𝑆(𝑡, 𝜃, 𝜏) be the antiderivatives of these kernels with zero boundary conditions 

𝐾(𝑡,−𝜀) = 0 and (𝑡, −𝜀, 𝜏) = 𝑆(𝑡, 𝜃,−𝜀) = 0. Then, in terms of 𝜓(𝑡, 𝜃), 𝑃(𝑡), 𝐾(𝑡, 𝜃) 

and 𝑆(𝑡, 𝜃, 𝜏), the equations of KF for WBN signal system (3.2.1) and its WN driven 

measurements system are 

{
𝑥̂′(𝑡) = 𝐴𝑥̂(𝑡) + 𝜓(𝑡, 0) + 𝑃(𝑡)𝐻𝑇(𝑧(𝑡)− 𝐻𝑥̂(𝑡)),−𝜖 ≤ 𝜃 ≤ 0, 𝑡 > 0,

𝑥̂(0) = 0,                                                                                                              
 

where 

{
(
𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
)𝜓(𝑡, 𝜃) = (𝐾(𝑡, 𝜃)𝑇𝐻𝑇 +Φ(𝜃))(𝑧(𝑡) − 𝐻𝑥̂(𝑡)),

𝜓(0, 𝜃) = 𝜓(𝑡,−𝜖) = 0,−𝜀 ≤ 𝜃 ≤ 0, 𝑡 > 0.                           

 

Here, 𝑃 is a solution of the DE 

{
𝑃′(𝑡) = 𝑃(𝑡)𝐴𝑇 + 𝐴𝑃(𝑡) + 𝐾(𝑡, 0) + 𝐾(𝑡, 0)𝑇 − 𝑃(𝑡)𝐻𝑇𝐻𝑃(𝑡), 𝑡 > 0,

𝑃(0) = 𝑃0,                                                                                                              
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where 𝐾 satisfies 

{
(
𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
)𝐾(𝑡, 𝜃) = 𝐴𝐾(𝑡, 𝜃)+ 𝑆(𝑡, 0, 𝜃) − 𝑃(𝑡)𝐻𝑇(𝐻𝐾(𝑡, 𝜃)+Φ(𝜃)T),

𝐾(0, 𝜃) = 𝐾(𝑡,−𝜀) = 0,−𝜀 ≤ 𝜃 ≤ 0, 𝑡 > 0,                                                   

 

and 𝑆 satisfies 

{
 
 

 
 (

𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
+
𝜕

𝜕𝜏
) 𝑆(𝑡, 𝜃, 𝜏) = Φ(𝜃)Φ(𝜃)T − (𝐾(𝑡, 𝜃)𝑇𝐻𝑇 +Φ(𝜃))(𝐻𝐾(𝑡, 𝜏) + Φ(𝜏)T),

,
𝑆(0, 𝜃, 𝜏) = 𝐾(𝑡, −𝜀, 𝜏) = 𝑆(𝑡, 𝜃, −𝜖) = 0,−𝜀 ≤ 𝜃 ≤ 0,−𝜀 ≤ 𝜏 ≤ 0, 𝑡 > 0.                    

.               

 

So, the Riccati equation in the case of WBN is presented in three equations, the first 

equation is the decomposition of the Riccati equation for WN model, and other two 

equations are PDE’s resulting from the distributed delay nature of the WBN’s. 

Finally, the error of estimation is given in the equation 

𝑒(𝑡) = 𝚬‖𝑥(𝑡) − 𝑥̂(𝑡)‖𝟐 = tr 𝑃(𝑡), 

where tr 𝑃 is the trace of the matrix 𝑃 and ‖∙‖ is the Euclidean norm. 

3.3 KF When the Measurements Noise is Wide Band  

Now we will investigate the case when a WBN corrupts the measurements system. 

Let the signal system be 

{
𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝐹𝑤(𝑡), 𝑡 > 0,
𝑥(0) = 𝑥0,                                     

                                                  (3.3.1) 

which is corrupted by the WN, 𝑤, and let the measurements system be 

   𝑧(𝑡) = 𝐶𝑥(𝑡) + 𝑤(𝑡) + 𝜑(𝑡), 𝑡 ≥ 0,                                             (3.3.2) 

which is corrupted by the summation of WN and WBN’s.  Note that, the nature of 

KF always assumes a non-degenerate WN in the measurements system. That’s why a 

WBN in addition to WN are considered in the measurements system.  Here, as in the 

previous section 𝜑(𝑡) is a WBN defined by 

𝜑(𝑡) = ∫ Φ(𝑠 − 𝑡)𝑤(𝑠)𝑑𝑠,
𝑡

𝑚𝑎𝑥(0,𝑡−𝜎)
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where Φ is a differentiable function on [– 𝜎, 0]with values in the observation space 

satisfying Φ(−𝜎) = 0. Letting again 

𝜑̌(𝑡, 𝛾) = ∫ Φ′(𝑠 − 𝑡 + γ)𝑤(𝑠)ds,
𝑡

max (0,𝑡−𝜎−𝛾)

 

where −𝜎 ≤ 𝛾 ≤ 0 and 𝑡 ≥ 0  and the integral operator Γ which is defined as 

Γ𝑔 = ∫ 𝑔(𝛾)𝑑𝛾
0

−𝜎

, 

on the space 𝐿2
𝑚(−𝜎, 0) of all square integrable functions on the interval [−𝛾, 0] with 

the values in the measurements space, then it is clear that 

Γ𝜑̌(𝑡, . ) = ∫ 𝜑̌(𝑡, 𝛾) = 𝜑(𝑡)
0

−𝜎

, 

while 

(
𝜕

𝜕𝑡
+
𝜕

𝜕𝛾
) 𝜑̌(𝑡, 𝛾) = Φ′(γ)w(t). 

The previous equation shows that 𝜑̌ is a colored noise with ∞-dimensional. Thus, if 

we introduce a new ∞-dimensional signal process as 

𝑥̌(𝑡) = [
𝑥(𝑡)

𝜑̌(𝑡, . )
],    𝑥̌(0) = [

𝑥0
0
], 

together with the linear transformations 

𝐴̌ = [
𝐴 0
0 −𝑑/𝑑𝛾

] , 𝐻̌ = [𝐻 Γ], Φ̌ = [
𝐵

Φ′(. )
], 

we have  

{
𝑥̌′(𝑡) = 𝐴̌𝑥̌(𝑡) + Φ̌(𝑡)𝑤(𝑡), 𝑡 > 0,
𝑥̌(0) = 𝑥̌0,                                             

                                               (3.3.3) 

and 

𝑧(𝑡) = 𝐻̌𝑥̌(𝑡) + 𝑤(𝑡), 𝑡 ≥ 0,                                     (3.3.4) 
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where 𝑥(𝑡) is the signal process of (3.3.1). So, the system (3.3.1) is modified to the 

system (3.3.3) with both signal and measurements systems corrupted by WN’s with 

∞-dimensional state process. 

Letting  

𝑥̂̌(𝑡) = [
𝑥̂(𝑡)

𝜓(𝑡, . )
], 

be the best estimate of 𝑥̌(𝑡) on the base of measurements 𝑧(𝑠), 0 ≤ 𝑠 ≤ 𝑡, then the 

first component of 𝑥̂̌(𝑡) is the best estimate of 𝑥(𝑡)depending on the measurements 

𝑧(𝑠), 0 ≤ 𝑠 ≤ 𝑡 . Similar to the case when the signal noise is WBN, KF equations for 

driven measurements system can be presented as  

{
𝑥̂′(𝑡) = 𝐴𝑥̂(𝑡) + (𝐾(𝑡, 0) + 𝐵 + 𝑃(𝑡)𝐻𝑇)(𝑧(𝑡)− 𝐻𝑥̂(𝑡) − 𝜓(𝑡, 0)), 𝑡 > 0,

𝑥̂(0) = 0,                                                                                                                   
 

where 

{
(
𝜕

𝜕𝑡
+
𝜕

𝜕𝛾
)𝜓(𝑡, 𝛾) = (𝐾𝑇(𝑡, 𝛾)𝐻𝑇 + 𝑆(𝑡, 0, 𝛾) + Φ(𝛾))(𝑧(𝑡) − 𝐻𝑥̂(𝑡)−𝜓(𝑡, 0),

𝜓(0, 𝛾) = 𝜓(𝑡, −𝜎) = 0,−𝜎 ≤ 𝛾 ≤ 0, 𝑡 > 0.                                                            

 

Here, 𝑃 is a solution of the DE 

{
𝑃′(𝑡) = 𝑃(𝑡)𝐴𝑇 + 𝐴𝑃(𝑡) + 𝐵𝐵𝑇 − (𝑃(𝑡)𝐻𝑇 + 𝐾(𝑡, 0) + 𝐵)(𝐻𝑃(𝑡) + 𝐾(𝑡, 0)𝑇 + 𝐵𝑇), 𝑡 > 0,

𝑃(0) = 𝑃0,                                                                                                                                                      
 

where 𝐾 satisfies 

{
 
 

 
 (

𝜕

𝜕𝑡
+
𝜕

𝜕𝛾
)𝐾(𝑡, 𝛾) = 𝐴𝐾(𝑡, 𝛾) + 𝐵Φ(𝛾)T                                                                       

                                       −(𝑃(𝑡)𝐻𝑇 + 𝐾(𝑡, 0) + 𝐹)(𝐻𝐾(𝑡, 𝛾)+ 𝑆(𝑡, 0, 𝛾)+Φ(𝛾)T),
𝐾(0, 𝛾) = 𝐾(𝑡,−𝜎) = 0,−𝜎 ≤ 𝛾 ≤ 0, 𝑡 > 0,                                                              

 

and 𝑆 satisfies 

{
 
 

 
 (

𝜕

𝜕𝑡
+
𝜕

𝜕𝛾
+
𝜕

𝜕𝜏
) 𝑆(𝑡, 𝛾, 𝜏) = Φ(𝛾)Φ(𝛾)T                                                                                         

                                     −(𝐾(𝑡, 𝛾)𝑇𝐻𝑇 + 𝑆(𝑡, 0, 𝛾)𝑇 +Φ(𝛾))(𝐻𝐾(𝑡, 𝜏) + 𝑆(𝑡, 0, 𝛾) + Φ(𝜏)T),
,

𝑆(0, 𝛾, 𝜏) = 𝐾(𝑡, −𝜎, 𝜏) = 𝑆(𝑡, 𝛾, −𝜎) = 0,−𝜎 ≤ 𝛾 ≤ 0,−𝜎 ≤ 𝜏 ≤ 0, 𝑡 > 0.                        
.               
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Here again, the error of estimation is given in the equation 

𝑒(𝑡) = 𝚬‖𝑥(𝑡) − 𝑥̂(𝑡)‖𝟐 = tr 𝑃(𝑡). 

3.4 KF When the Signal and Measurements Noises are Wide Band  

Now we will investigate the case when a WBN corrupts both signal and 

measurements systems. Let the signal system be 

{
𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝜑1(𝑡) + 𝐵𝑤(𝑡), 𝑡 > 0,

𝑥(0) = 𝑥0,                                                    
                                    (3.4.1) 

which is corrupted by the WBN 𝜑1(𝑡) and 𝜑1(𝑡) is defined by the integral 

𝜑1(𝑡)  = ∫ Φ1(𝜃 − 𝑡)𝑤(𝜃)𝑑𝜃,
𝑡

𝑚𝑎𝑥(0,𝑡−𝜖)

 

 and let the measurements system be 

                       𝑧(𝑡) = 𝐶𝑥(𝑡) + 𝑤(𝑡) + 𝜑2(𝑡), 𝑡 ≥ 0,                             (3.4.2)                                   

which is corrupted by the WBN 𝜑2(𝑡) defined by 

𝜑2(𝑡)  = ∫ Φ2(𝛾 − 𝑡)𝑤(𝛾)𝑑𝛾,
𝑡

𝑚𝑎𝑥(0,𝑡−𝜂)

 

where 𝜀 > 0 and 𝜂 > 0 are constants and the functions Φ1 and Φ2 are differentiable 

on [– 𝜀, 0] and  [– 𝜂, 0], respectively, with values in the measurements space 

satisfying Φ1(−𝜀) = 0 and Φ2(−𝜂) = 0. Letting again 

𝜑̌1(𝑡, 𝜃) = ∫ Φ′(𝑠 − 𝑡 + θ)𝑤(𝑠)𝑑𝑠,
𝑡

max (0,𝑡−𝜎−𝜃)

 

where−𝜀 ≤ 𝜃 ≤ 0, −𝜂 ≤ 𝛾 ≤ 0 and 𝑡 ≥ 0  and the integral operators Γ1 and Γ2 

which are defined as 

Γ1𝜑̌1(𝑡, . ) = ∫ 𝜑̌1(𝑡, 𝜃)𝑑𝜃 = 𝜑(𝑡)
0

−𝜀

, 

and 

Γ2𝜑̌2(𝑡, . ) = ∫ 𝜑̌2(𝑡, 𝛾)𝑑𝛾 = 𝜑(𝑡)
0

−𝜂

, 
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on the spaces 𝐿2
𝑚(−𝜀, 0) and 𝐿2

𝑚(−𝜂, 0)  of all square integrable functions on the 

intervals [−𝜖, 0] and [−𝜂, 0], respectively with the values in the measurements 

space, then it is clear that 

(
𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
) 𝜑̌1(𝑡, 𝜃) = Φ′

1(𝜃)𝑤(𝑡), 

and 

(
𝜕

𝜕𝑡
+
𝜕

𝜕𝛾
) 𝜑̌2(𝑡, 𝛾) = Φ′

2(𝛾)𝑤(𝑡). 

Thus, if we introduce a new infinite dimensional signal process as 

𝑥̌(𝑡) = [

𝑥(𝑡)

𝜑̌1(𝑡, . )

𝜑̌2(𝑡, . )
],    𝑥̌(0) = [

𝑥0
0
0
], 

together with the linear transformations 

𝐴̌ = [

𝐴 Γ2 0
0 −𝑑/𝑑𝜃 0
0 0 −𝑑/𝑑𝛾

] , 𝐻̌ = [𝐻 0 Γ2], Φ̌ = [

𝐵
Φ′

1(. )

Φ′
1(. )

], 

we have  

{
𝑥̌′(𝑡) = 𝐴̌𝑥̌(𝑡) + Φ̌(𝑡)𝑤(𝑡), 𝑡 > 0,
𝑥̌(0) = 𝑥̌0,                                             

                                               (3.4.3) 

and 

𝑧(𝑡) = 𝐻̌𝑥̌(𝑡) + 𝑤(𝑡), 𝑡 ≥ 0,                                                        (3.4.4) 

where 𝑥(𝑡) is the signal process of (3.4.1). So, the system (3.4.1) is modified to the 

system (3.4.3). 

Letting  

𝑥̂̌(𝑡) = [

𝑥̂(𝑡)
𝜓1(𝑡, . )
𝜓2(𝑡, . )

], 

be the best estimate of 𝑥̌(𝑡) on the base of measurements 𝑧(𝑠), 0 ≤ 𝑠 ≤ 𝑡, then the 

first component of 𝑥̂̌(𝑡) is the best estimate of 𝑥(𝑡)depending on the measurements 
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𝑧(𝑠), 0 ≤ 𝑠 ≤ 𝑡 . Now, decomposition of the respective Riccati equation is presented in 

the form  

𝑃̌(𝑡) = [

𝑃(𝑡) 𝐾1(𝑡) 𝐾̌2(𝑡)

𝐾1
𝑇
(𝑡) 𝑆̌1(𝑡) 𝑅̌(𝑡)

𝐾2
𝑇
(𝑡) 𝑅̌𝑇(𝑡) 𝑆̌2(𝑡)

]. 

Again, let 𝐾1(𝑡, 𝜃),  𝐾2(𝑡, 𝛾),  𝑆1(𝑡, 𝜃, 𝜏),  𝑆2(𝑡, 𝛾, 𝜎) and 𝑅(𝑡, 𝜃, 𝛾) be the anti-derivatives 

of the kernels of the integral operators. KF equations for this system can be presented 

as  

{

𝑥̂′(𝑡) = 𝐴𝑥̂(𝑡) + 𝜓1(𝑡, 0)                                                                                 

       +(𝐾2(𝑡, 0) + 𝐵 + 𝑃(𝑡)𝐻
𝑇)(𝑧(𝑡)− 𝐻𝑥̂(𝑡) − 𝜓2(𝑡, 0)), 𝑡 > 0,

𝑥̂(0) = 0,                                                                                                              

 

where 

{
(
𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
)𝜓

1
(𝑡, 𝜃) = (𝐾1

𝑇(𝑡, 𝜃)𝐻𝑇 + 𝑅(𝑡, 𝜃, 0) + Φ1(𝜃))(𝑧(𝑡) − 𝐻𝑥̂(𝑡)−𝜓2(𝑡, 0),

𝜓
1
(0, 𝜃) = 𝜓

1
(𝑡,−𝜀) = 0,−𝜀 ≤ 𝜃 ≤ 0, 𝑡 > 0,                                                                 

 

and 

{
(
𝜕

𝜕𝑡
+
𝜕

𝜕𝛾
)𝜓

2
(𝑡, 𝛾) = (𝐾2

𝑇(𝑡, 𝛾)𝐻𝑇 + 𝑆2(𝑡, 𝛾, 0) + Φ2(𝛾))(𝑧(𝑡) − 𝐻𝑥̂(𝑡)−𝜓2(𝑡, 0),

𝜓
2
(0, 𝛾) = 𝜓

2
(𝑡,−𝜂) = 0,−𝜂 ≤ 𝛾 ≤ 0, 𝑡 > 0.                                                                 

 

Here, 𝑃 is a solution of the DE 

{

𝑃′(𝑡) = 𝑃(𝑡)𝐴𝑇 + 𝐴𝑃(𝑡) + 𝐾1(𝑡, 0) + 𝐾2
𝑇(𝑡, 0) + 𝐵𝐵𝑇                      

            −(𝑃(𝑡)𝐻𝑇 + 𝐾2(𝑡, 0) + 𝐵)(𝐻𝑃(𝑡) + 𝐾2
𝑇(𝑡, 0) + 𝐵𝑇),          

𝑃(0) = 𝑃0, 𝑡 > 0,                                                                                           

 

where 𝐾1 and  𝐾2 satisfies the following equations , respectively, 

{
 

 (
𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
)  𝐾1(𝑡, 𝜃) = 𝐴 𝐾1(𝑡, 𝜃) +  𝑆1(𝑡, 0, 𝜃) + 𝐹Φ1

𝑇(𝜃)                                       

          −(𝑃(𝑡)𝐻𝑇 +  𝐾2(𝑡, 0) + 𝐵)(𝐻 𝐾1(𝑡, 𝜃) + 𝑅(𝑡, 𝜃, 0) + Φ1
𝑇(𝜃)),   

 𝐾1(0, 𝜃) =  𝐾1(𝑡, −𝜀) = 0, −𝜀 ≤ 𝜃 ≤ 0, 𝑡 > 0,                                                          

 

{
 
 

 
 (

𝜕

𝜕𝑡
+
𝜕

𝜕𝛾
)  𝐾2(𝑡, 𝜃) = 𝐴 𝐾2(𝑡, 𝛾) +  𝑆1(𝑡, 0, 𝛾) + 𝐹Φ2

𝑇(𝜃)                                           

     −(𝑃(𝑡)𝐻𝑇 +  𝐾2(𝑡, 0) + 𝐵)(𝐻 𝐾2(𝑡, 𝛾) +  𝑆2(𝑡, 𝛾, 0) + Φ2
𝑇(𝛾)),    

 𝐾2(0, 𝛾) =  𝐾2(𝑡, −𝜂) = 0,−𝜂 ≤ 𝛾 ≤ 0, 𝑡 > 0,                                                              
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and,  𝑆1 and  𝑆2 satisfies the following equations, respectively, 

 

{
 

 (
𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
+
𝜕

𝜕𝜏
)  𝑆1(𝑡, 𝛾, 𝜏) = Φ1(𝜃)Φ1

𝑇(𝜏)                                                                  

   −(𝐾1
𝑇(𝑡, 𝜃)𝐻𝑇 + 𝑅(𝑡, 𝜃, 0) + Φ1(𝜃))  × (𝐻 𝐾1(𝑡, 𝜏) + 𝑅

𝑇(𝑡, 𝜏, 0) + Φ1
𝑇(𝛾)),

 𝑆1(0, 𝜃, 𝜏) =  𝑆1(𝑡, −𝜀, 𝜏) =  𝑆1(𝑡, 𝜃, −𝜀) = 0,−𝜀 ≤ 𝜃 ≤ 0, −𝜀 ≤ 𝜏 ≤ 0, 𝑡 > 0,

 

{
 
 

 
 (

𝜕

𝜕𝑡
+
𝜕

𝜕𝛾
+
𝜕

𝜕𝜎
)  𝑆2(𝑡, 𝛾, 𝜎) = Φ2(𝛾)Φ2

𝑇(𝛾)                                                                   

−(𝐾2
𝑇(𝑡, 𝛾)𝐻𝑇 +  𝑆2(𝑡, 𝛾, 0) + Φ2(𝛾))(𝐻 𝐾2(𝑡, 𝜎) +  𝑆2(𝑡, 𝜎, 0) + Φ2

𝑇(𝜎)),
,

 𝑆2(0, 𝛾, 𝜏) =  𝑆2(𝑡, −𝜎, 𝜏) =  𝑆2(𝑡, 𝛾, −𝜎) = 0,−𝜂 ≤ 𝛾 ≤ 0, −𝜂 ≤ 𝜎 ≤ 0, 𝑡 > 0,
.               

 

and, finally, 𝑅  satisfies 

{
 
 

 
 (

𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
+
𝜕

𝜕𝛾
)𝑅(𝑡, 𝜃, 𝛾) = Φ1(𝜃)Φ1

𝑇(𝛾)                                                                     

           −(𝐾1
𝑇(𝑡, 𝜃)𝐻𝑇 + 𝑅(𝑡, 𝜃, 0) + Φ1(𝜃))(𝐻 𝐾1(𝑡, 𝛾) +  𝑆2(𝑡, 𝛾, 0) + Φ2

𝑇(𝛾)),
,

𝑅(0, 𝜃, 𝛾) = 𝑅(𝑡, −𝜀, 𝛾) = 𝑅(𝑡, 𝜃, −𝜂) = 0,−𝜂 ≤ 𝜃 ≤ 0,−𝜀 ≤ 𝜏 ≤ 0, 𝑡 > 0.   
.               

 

 

 

 

  



 

41 

Chapter 4 

4 INVARIANT KF FOR WBN 

4.1 Introduction  

4.1.1 Integral Representation of WBN 

A WBN is a vector-valued random process 𝜑 satisfying 

𝑐𝑜𝑣(𝜑𝑡+𝜎, 𝜑𝑡) = {
0,               𝜎 ≥ 𝜀,
Λ𝑡,𝜎 , 0 ≤  𝜎 ≤ 𝜀,  

where 𝑐𝑜𝑣(. , . ) is a covariance matrix, ε >  0, and Λ is a matrix-valued nonzero 

function. Here, 𝑐𝑜𝑣(. , . ) and Λ are consistent. If the mean of 𝜑(𝑡) is zero and Λ  is 

free of its first argument i.e (Λ𝑡,𝜎 ≡ Λ𝜎), the WBN 𝜑 is said to be stationary (in the 

wide sense). 

For motivation of the WBN’s and the integral representation for it, we start from the 

evidence that in some cases a replacement of WBN’s by WN’s produces 

mathematical results quite acceptable for applications in reality. What does make 

these results acceptable? To discuss this question assume that 𝑤 is a standard Wiener 

process (Wiener process is a natural model of Brownian motion. It describes a 

random, but continuous motion of a particle).for simplicity, it is chosen to be one-

dimensional. It is known that its derivative does not exist (in the ordinary sense). But 

it is possible to force the existence of its derivative 𝑤′ and we call it as a WN. 

Therefore, informally 

𝑤′𝑡 = lim
𝜀→0

𝑤𝑡+𝜀 − 𝑤𝑡
𝜀

 . 
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Here 𝜀 is a positive or negative change of the present time t. Since at the present time 

only the past of 𝑤 can be observed let us treat the preceding informal limit as the left 

limit and get 

𝑤′𝑡 = lim
𝜀→0+

𝑤𝑡−𝜀 −𝑤𝑡
−𝜀

= lim
𝜀→0+

∫
1

𝜀

𝑡

𝑡−𝜀

𝑑𝑤𝑠. 

If we let 

𝜑𝑡 = ∫
1

𝜀
𝑑𝑤𝑠

𝑡

𝑡−𝜀
,                                                     (4.1.1) 

then 

Λ𝜎 = 𝑐𝑜𝑣(𝜑𝑡+𝜎, 𝜑𝑡) = Ε(𝜑𝑡+𝜎𝜑𝑡) =
𝐼(𝜀 − 𝜎)

𝜀2
≠ 0 𝑖𝑓  0 ≤ 𝜎 < 𝜀 , 

and 𝑐𝑜𝑣(𝜑𝑡+𝜎, 𝜑𝑡) = 0 if 𝜎 ≥ 𝜀.Therefore, 𝜑 is a WBN and Λ is its autocovariance 

function. 

This motivates us to consider WBN’s in real processes as an “uncompleted 

derivative” of WP’s in the form of (4.1.1). In the cases when 𝜀 is a sufficiently small 

positive value, 𝜑 and 𝑤′ are very close to each other and, respectively, mathematical 

methods for the WN 𝑤′ reflect the reality with more or less acceptable accuracy. But 

for more adequate mathematical results (for serving the issues such as precise 

tracking satellites for improvement of preciseness of GPS), control and filtering 

results for the WBN 𝜑 must be developed. 

Interestingly, equation (4.1.1) presents a WBN as a distributed delay of a WN. For 

some reasons, a WN has an effect to the system: the action of a WN at 𝑡 − 𝜀 

continues acting on [𝑡 − 𝜀, 𝑡] and then it becomes negligible. Therefore, for study of 

WBN’s in (4.1.1), principle of delay can be uses. Indeed, this is a basic idea of our 

approach to WBN’s. Previously, this was stressed in Bashirov et al [24]. 
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Equation (4.1.1) should be updated in the form 

𝜑𝑡 = ∫
1

𝜀

𝑡

𝑚𝑎𝑥(0,𝑡−𝜀)

𝑑𝑤𝑠, 

because the Wiener process 𝑤 is observed starting some initial instant that is 

ordinarily taken to be 0. The removed parts 

∫
1

𝜀

𝑡

𝑡−𝜀

𝑑𝑤𝑠, 0 ≤ 𝑡 ≤ 𝜀 , 

must be considered as a part of the initial value of a WBN driven system that is 

normally independent on disturbing noise processes. More generally, the constant 

integrand in (4.1) can be taken vector-valued and dependent on 𝑡, 𝑠  and also on 

random sample ∈ Ω . In the sequel we consider WBN’s in the form 

                                              𝜑𝑡 = ∫ Φ𝑡,𝑠−𝑡
𝑡

𝑚𝑎𝑥(0,𝑡−𝜀)
𝑑𝑤𝑠, 𝑡 ≥ 0,                        (4.1.2) 

where 𝜀 >  0, 𝑤 is a 𝑘-dimensional standard Wiener process, and Φ is an ℝ𝑛×𝑘-

valued function (random or not) on [0,∞) × [ −𝜀, 0]. We regard equation (4.1.2) as 

an integral representation of 𝜑 and the function Φ in (4.1.2) as a relaxing (damping) 

function of 𝜑. 

4.1.2 Invariance 

Bashirov raised an important problem. In applications WBN can be measured just by 

autocovariance function which is one of the difficulties of working with it since 

autocovariance function may give different WBN’s. Let W(Λ) be the collection of all 

WBN’s measured by autocovariance function Λ. Basically, distinct WBN’s from 

W(Λ) create distinct best estimates and distinct optimal controls in the given 

estimation problems. It also possible that estimations are just depend on Λ  and 

independent on WBN’s from W(Λ). So, the below problems can be suggested: 
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(a) Is the Λ sufficient for construction of best estimates no matter what is the WBN’s 

from W(Λ)? 

(b) If it is yes, what are the conditions? 

(c) on the other hand, if Λ is not sufficient, how the best estimate of the best 

estimates should be chosen? 

(d) If it is difficult to answer the previous questions for W(Λ), is it possible to find 

𝑊0(Λ) ⊆ W (Λ)  such that the above questions can be answered? 

(e) How reasonable is 𝑊0(Λ)? 

These problems were partially presented and formulated and listed as unsolved. 

Hereby, some theoretical and applied arguments somehow describing 𝑊0(Λ): 

• The set 𝑊0(Λ) is wide. In [30] and [31] it is shown that 𝑊0(Λ) has infinitely many 

WBN processes. 

• The WBN from 𝑊0(Λ) has a natural interpretation: it is distributed delay of WN. 

So, the WBN’s in real systems can be easily understood as an after effect of WN’s. 

• The WBN’s from 𝑊0(Λ) are manageable. They can be presented through linear 

delay SDE’s. 

•Finally, it is true that the WBN’s corrupting the real systems are belonging to 

𝑊0(Λ) , this is because of: 

Consider the Wiener process 𝑤𝑡 and consider the ratio 
𝑤𝑡+𝜀−𝑤𝑡

𝜀
. The previous ratio is 

a WBN’s of the sort 𝑊0(Λ). In the ordinary sense the limit of this ratio as 𝜀 →  0 is 

not defined, but we force it to be and call it a WN. The substitution of WBN’s by 

WN’s gives acceptable results. This allow us to stress on the fact that the above ratio 

can be argued as an “ uncompleted derivative” of the Wiener process for sufficient 

small 𝜀 > 0 which behave as a noise process in real systems. 
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In the next sections, linear filtering problems and LQG for linear signal and 

measurement systems under WBN’s and WN’s are considered, respectively. A 

complete set of equations for the best estimate and the optimal filter in terms of only 

the autocovariance function are presented, the independence of such results on the 

relaxing function but dependence on autocovariance function leads to very useful 

results, these results are named invariant knowing that the autocovariance function 

must be known. It is important to obtain invariant results in terms of autocovariance 

function rather than relaxing function because such results construct optimal filters 

based just on the autocovariance function.  

4.2 Invariant KF When the Signal Noise is WBN 

In this section the first invariant KF is presented. Consider the 𝑛-dimensional WBN 

𝜑: [0,∞) × Ω → ℝ𝑛 with the autocovariance function 

Λ𝜎 = 𝑐𝑜𝑣(𝜑𝑡+𝜎, 𝜑𝑡) = {
0,              𝜎 ≥   𝜀,
Λ𝑡,𝜎,   0 ≤ 𝜎 < 𝜀, 

Where 𝜀 >  0 and Λ is an ℝ𝑛×𝑛-valued nonzero function. One can show`  that the 

random process 𝜑 given by (4.1.2), in which Φ is an ℝ𝑛×𝑘-valued relaxing function 

on [0, ∞) × [ −𝜀, 0], and 𝑤 is a 𝑘-dimensional standard Wiener process, is an 𝑛-

dimensional WBN with 

𝑐𝑜𝑣(𝜑𝑡+𝜎, 𝜑𝑡) = ∫ Ε(Φ𝑡+𝜎,𝑠−𝑡−𝜎Φ𝑡,𝑠−𝑡
𝑇 )

𝑡

𝑚𝑎𝑥(0,𝑡+𝜎−𝜀)

𝑑𝑠, 

if 0 ≤ 𝜎 < 𝜀. If  Φ is nonrandom and depends only on its second argument, then 

𝑐𝑜𝑣(𝜑𝑡+𝜎, 𝜑𝑡) = ∫ Φ𝑠−𝜎Φ𝑠
𝑇 ,

0

𝑚𝑎𝑥(−𝑡,𝜎−𝜀)
                                   (4.2.1) 

 if 0 ≤ 𝜎 < 𝜀 ,that is 𝜑 becomes stationary for 𝑡 ≥ 𝜀. 
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For a moment, consider a simplest case when 𝜑  is a one-dimensional WBN and 

stationary since the instant 𝜀 and having the autocovariance function Λ: [0, 𝜀]  →  ℝ. 

Then, by (4.2.1), in order to be represented as 

𝜑𝑡 = ∫ Φ𝑠−𝑡

𝑡

𝑚𝑎𝑥(0,𝑡−𝜀)

𝑑𝑤𝑠, 

where 𝑤 is also one-dimensional, the function Φ: [ −𝜀, 0] → ℝ should satisfy the 

equation 

Λ𝜎 = ∫ Φ𝑠−σΦ𝑠

0

𝜎−𝜀

𝑑𝑠. 

This is a convolution equation. In Bashirov and Ugural [31, 32], it is known that if 

Λ𝜎 is a + definite and very general conditions hold, then this equation has an 

infinitely many solutions Φ ∈ 𝐿2(−𝜀, 0; ℝ), noticing that the +definiteness is a 

defining property of Λ𝜎. This result can be extended to many random cases. 

Therefore, given Λ𝜎, there are infinitely many damping functions Φ and, so, 

infinitely many WBN in the form of (4.1.2) for the same autocovariance function Λ. 

Hereby, we consider the partially observable linear system 

{
𝑥′𝑡 = 𝐴𝑥𝑡 + 𝜑𝑡,        𝑥0 = 𝜇, 𝑡 > 0,
𝑑𝑧𝑡 = 𝐵𝑥𝑡𝑑𝑡 + 𝑑𝑣𝑡 , 𝑧0 = 0, 𝑡 > 0,

                                                  (4.2.2) 

where 𝑥 and 𝑧 are vector-valued signal and observation processes, 𝐴 and 𝐵 are 

matrices, 𝜑 ∈ 𝑊0(Λ) has an integrable representation (4.1.2)  

𝜑𝑡 = ∫ Φ𝑡,𝑠−𝑡

𝑡

𝑚𝑎𝑥(0,𝑡−𝜀)

𝑑𝑤𝑠, 𝑡 ≥ 0, 

given that Φ is a square integrable relaxing function. 𝜇 is a GRV with zero mean, 𝑤 

and 𝑣 are independent Wiener processes. The signal system in (4.2.2) is given in 

terms of only derivative while the measurements system is given in terms of 

differential. By this, we stress on the idea that not like WN’s, which are defined as 
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derivatives of WP’s and they do not exist in the ordinary sense, WBN’s are well 

defined. Working under these general conditions, the best estimate 𝑥̂ for the system 

(4.2.2) is uniquely determined as a solution of  

{

𝑑𝑥̂𝑡 = (𝐴𝑥̂𝑡 + 𝜓𝑡,𝜃)𝑑𝑡 + 𝑃𝑡𝐵
𝑇(𝑑𝑧𝑡 − 𝐵𝑥̂𝑡𝑑𝑡),

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
)𝜓𝑡,𝜃𝑑𝑡 = 𝐾𝑡,𝜃𝐵

𝑇(𝑑𝑧𝑡 − 𝐵𝑥̂𝑡𝑑𝑡),       

𝑥̂0 = 0,𝜓0,𝜃 = 𝜓𝑡,−𝜖, −𝜖 ≤ 𝜃 ≤ 0, 𝑡 > 0,        

                                      (4.2.3) 

where 𝑃 and 𝐾 are given as solutions of the following equations, respectively, 

{
𝑃′𝑡 = 𝐴𝑃𝑡 + 𝑃𝑡𝐴

𝑇 + 𝐾𝑡,0 + 𝐾𝑡,0
𝑇 − 𝑃𝑡𝐵

𝑇𝐵𝑃𝑡 ,

𝑃0 = 𝑐𝑜𝑣𝜇, 𝑡 > 0,                                               
                                        (4.2.4) 

{
(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
)𝐾𝑡,𝜃 = 𝐾𝑡,𝜃Λ

𝑇 + Λ𝑡,−𝜃 − 𝑆𝑡,𝜃,0 − 𝐾𝑡,𝜃𝐵
𝑇𝐵𝑃𝑡 ,

𝐾0,𝜃 = 𝐾𝑡,−𝜖 = 0,−𝜖 ≤ 𝜃 ≤ 0, 𝑡 > 0,                             
                      (4.2.5) 

and S is given as a solution of the equation 

{
(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
+

𝜕

𝜕𝑟
) 𝑆𝑡,𝜃,𝑟 = 𝐾𝑡,𝜃𝐵

𝑇𝐵𝐾𝑡,𝑟
𝑇 ,                           

𝑆0,𝜃,𝑟 = 𝑆𝑡,−𝜖,𝑟 = 𝑆𝑡,𝜃,−𝜖 = 0,−𝜖 ≤ 𝜃, 𝑟 ≤ 0, 𝑡 > 0,
                        (4.2.6) 

in addition, the mean square error of the estimation is given as  

℮𝑡 = 𝑬‖𝑥̂𝒕 − 𝑥𝑡‖
2 = 𝑡𝑟𝑃𝑡 . 

The filter determined by the equations (4.2.3)-(4.2.6) is called a WBN filter. Note 

that the classical KF consists of just two equations for 𝑥̂  and 𝑃 while the WBN 

filter contains also equations for 𝜓, 𝐾 and 𝑆. By solving the second equation of 

(4.2.3), 𝜓 has the representation  

𝜓𝑡,𝜃 = ∫ 𝐾𝜏,𝜏−𝑡+𝜃𝐵
𝑇(𝑑𝑧𝜏 − 𝐵𝑥̂𝜏𝑑𝜏),

𝑡

max (0,𝑡−𝜃−𝜖)

 

this gives 

𝜓𝑡,0 = ∫ 𝐾𝜏,𝜏−𝑡𝐵
𝑇(𝑑𝑧𝜏 − 𝐵𝑥̂𝜏𝑑𝜏).

𝑡

max (0,𝑡−𝜖)

 

So, 𝜓𝑡,0 sets as a WBN with its relaxing function equals  
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Ψ𝑡,θ = 𝐾𝑡+𝜃,𝜃𝐵
𝑇 . 

Let the autocovariance function for 𝜓𝑡,0 be denoted by Π. The function 𝐾 is an 

important factor for the relaxing function Ψ. The equation (4.2.5) which includes 

𝑆0,𝜃,𝑟  is satisfied by 𝐾. 𝑆 satisfies the equation (4.2.6) and has the representation  

𝑆𝑡,𝜃,𝜂 = ∫ 𝐾𝜏,𝜏−𝑡+𝜃𝐵
𝑇𝐵𝐾𝜏,𝜏−𝑡+𝜂

𝑇 𝑑𝜏.
𝑡

max (0,𝑡−𝜃−𝜖,𝑡−𝜂−𝜖)

 

This implies 

𝑆𝑡,𝜃,0 = ∫ 𝐾𝜏,𝜏−𝑡+𝜃𝐵
𝑇𝐵𝐾𝜏,𝜏−𝑡

𝑇 𝑑𝜏.
𝑡

max (0,𝑡−𝜃−𝜖)

 

It is clear now that  

𝑆𝑡,𝜃,0 = Π𝑡,−𝜃. 

Therefore, the WBN filter (4.2.3)-(4.2.6) works in following manner 

 Equation (4.2.6) gives the covariance function of the WBN 𝜓𝑡,0. 

 Equation (4.2.5) gives an important factor for the relaxing function of the 

WBN 𝜓𝑡,0. 

 Equation (4.2.4) is a modified Riccati equation from the classic KF. 

 The second equation in (4.2.3) gives the WBN 𝜓𝑡,0. 

 This makes the first equation in (4.2.3) to be driven by the sum of WN and 

WBN’s. This equation presents the best estimate 𝑥̂. 

The equations (4.2.4)–(4.2.6) are deterministic and can be solved without need of 

(4.2.3) and the values of 𝑃 and 𝐾 stored in computer. The PDEs (4.2.4)–(4.2.6) can 

be simply solved by numerical methods. Then the WBN noise filter (4.2.4)–(4.2.6) 

acts as in figure 4.1, in which Γ stands for an operator sending a function, on the 

interval [−𝜀, 0] to its value 𝑓0. 
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Figure 4.1. The WBN filter  

An application of the WBN filter (4.2.3)–(4.2.6) to LQG problem can be presented. 

Consider LQG problem  

ℒ(𝑢) = 𝐸 (〈𝑥𝑇 , 𝐵𝑥𝑇〉 + ∫ (〈𝑥𝑡, 𝐾𝑥𝑡〉 + 〈𝑢𝑡, 𝑀𝑢𝑡〉)𝑑𝑡
𝑇

0
).                        (4.2.7) 

Over the following partially observable system 

{
𝑥′𝑡 = 𝐴𝑥𝑡 + 𝐻𝑢𝑡 + 𝜑𝑡,        𝑥0 = 𝛿, 0 < 𝑡 ≤ 𝑇,
𝑑𝑧𝑡 = 𝐹𝑥𝑡𝑑𝑡 + 𝑑𝑣𝑡, 𝑧0 = 0,               0 < 𝑡 ≤ 𝑇,

                           (4.2.8) 

where 𝐸 denotes the expectation. Assuming that the conditions of the previous 

filtering problem hold and, moreover, H, B, K and M are matrices in which B and K 

are considered to be nonnegative and M is positive. After all, the optimal control 

𝑢∗ in the problem (4.2.7)–(4.2.8) is uniquely presented by  

𝑢𝑡
∗ = −𝐺−1𝐻𝑇 (𝒱𝑡𝑥̂𝑡

∗ + ∫ 𝒴𝑠,𝑡
∗min(𝑇,𝑡+𝜀)

𝑡
𝒱𝑠𝜓𝑡,𝑡−𝑠𝑑𝑠),                       (4.2.9) 

giving that 𝑥̂𝑡
∗ is the best estimate of 𝑥𝑡

∗ which is defined by (4.2.8) and corresponds 

to the optimal control 𝑢 = 𝑢∗, 𝜓 is the associated process, both of them satisfying the 

following  
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{

𝑑𝑥̂𝑡
∗ = (𝐴𝑥̂𝑡

∗ + 𝜓𝑡,0 + 𝐻𝑢𝑡
∗)𝑑𝑡 + 𝑃𝑡𝐶

𝑇(𝑑𝑧𝑡
∗ − 𝐹𝑥̂𝑡

∗𝑑𝑡),

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
)𝜓𝑡,𝜃𝑑𝑡 = 𝒬𝑡,𝜃

𝑇 𝐹𝑇(𝑑𝑧𝑡
∗ − 𝐹𝑥̂𝑡

∗𝑑𝑡),                    

𝑥̂𝑡
∗ = 0,𝜓0,𝜃 = 𝜓𝑡,−𝜀 = 0,−𝜀 ≤ 𝜃 ≤ 0, 0 < 𝑡 ≤ 𝑇,     

                         (4.2.10) 

𝑧∗ is denoting the measurements process  which is defined by (4.2.8) and 

corresponds to the optimal control 𝑢 = 𝑢∗, 𝒱 is presented as a solution of the 

following Riccati equation 

{
𝒱𝑡
′ + 𝒱𝑡𝐴 + 𝐴

𝑇𝒱𝑡 + 𝐾 − 𝒱𝑡𝐻𝑀
−1𝐻𝑇𝒱𝑡 = 0,

𝒱𝑇 = 𝐵, 0 < 𝑡 ≤ 𝑇,                                              
                               (4.2.11) 

𝑃, 𝒬 are solutions of the equations (4.2.4)-(4.2.5) and 𝒴 is a bounded perturbation of 

the transition matrix 𝑒𝐴𝑡 of  𝐴 by −𝐻𝑀−1𝐻∗𝒱𝑡. This result is presented in [37], pp. 

224–225, for relaxing functions of special form. The previous filter stated before 

makes the optimal solution valid under given conditions. 

 Same as the WBN filter, the optimal control (4.2.9)–(4.2.11) is also independent of 

𝜑 ∈ 𝑊0(Λ), just dependent on Λ. Which means it is also an invariant control result. 

4.3 KF Filtering When the Signal and the measurements noises are 

uncorrelated WBN’s and WN’s, respectively. 

In this section linear filtering and optimal control problems are investigated when the 

signal noise is a WBN, the measurements noise is a WN, and the cost functional is 

quadratic. Three theorems are proved. 

Let us fix the autocovariance function Λ and name the collection of all WBN’s 

having the autocovariance function Λ by 𝑊( Λ), this is too wide class. According to 

the previously integral representation for the WBN, we are interested in those 𝜑 ∈

𝑊(Λ) which have an integral representation (4.2.2). 

 Depending on selections of Φ, we can define the following subclasses of 𝑊( Λ): 
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 Denote by 𝑊𝐿2
ℱ(Λ) the collection of all 𝜑 ∈ 𝑊(Λ) such that 𝜑 has the 

representation in (4.2.2) with Φ ∈ 𝐶(0,∞; 𝐿2([−𝜀, 0] × Ω;ℝ
𝑛×𝑘)) such that 

for all 𝑡 ≥  0 and 𝑚𝑎𝑥(−𝑡;−𝜀) ≤ 𝜃 ≤ 0,Φ𝑡,𝜃 is ℱ𝑡+𝜃 -measurable, where 

{ℱ𝑡} is a complete and continuous filtration generated by 𝑤. Here the 

measurability condition surves the existence of stochastic integral in (4.2.2). 

This class is suitable for a study of control and estimation problems for 

stochastic systems disturbed by WBN’s that are dependent on state or control. 

In such a way, in Bashirov [38] a stochastic maximum principle is proved for 

WBN driven nonlinear systems. 

 Denote by 𝑊𝑊1,2(Λ) the collection of all 𝜑 ∈ 𝑊(Λ) such that 𝜑 has the 

representation in (4.2.2) with Φ ∈ 𝐶(0,∞;𝑊1,2(−𝜀, 0; ℝ𝑛×𝑘)). One can also 

de ne its subclass 𝑊𝑊0
1,2(Λ) of all  𝜑 ∈ 𝑊𝑊1,2 with the integral representation 

in (4.2.2) where Φ𝑡,−𝜀 = 0. This class was employed in Bashirov [38]. 

 Denote by 𝑊𝐿2
(Λ) the collection of all 𝜑 ∈ 𝑊(Λ) such that 𝜑 has the 

representation in (4.2.2) with Φ ∈ 𝐶(0,∞; 𝐿2 (−𝜀, 0; ℝ
𝑛×𝑘 ) ). This class is 

our concern in this section. 

Besides, two more classes can be defined in order to demonstrate that WBN’s with 

integral representation cover white and colored noises as well. 

 Denote by 𝑊 𝜎(Λ) the collection of all 𝜑 ∈ 𝑊(Λ) such that 𝜑 has the 

representation in (4.2.2) with the relaxing function Φ in the form 

Φ𝑡,𝜃 =∑𝐹𝑖𝛿𝜃+𝑡−𝜆𝑖,𝑡

𝑚

𝑖=1

 , 

where 𝛿 is Dirac's delta-function, 0 ≤ 𝜀1 < ⋯ < 𝜀𝑚 ≤ 𝜀, 𝜆𝑖 satisfies the inequalities 

𝑡 − 𝜀𝑖 ≤ 𝜆𝑖,𝑡 ≤ 𝑡, and 𝐹𝑖 ∈ ℝ
𝑛×𝑘 for all 𝑖 =  1, … ,𝑚. Then 
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𝜑𝑡 = ∫ ∑𝐹𝑖𝛿𝑠−𝜆𝑖,𝑡𝑑𝑤𝑠 =∑𝐹𝑖𝑤′𝑚𝑎𝑥(0,𝜆𝑖,𝑡)

𝑚

𝑖=1

𝑚

𝑖=1

𝑡

𝑚𝑎𝑥(0,𝑡−𝜀)

. 

Thus 𝜑 becomes a delayed (multiply and time-dependent) WN. This kind of relaxing 

functions has been studied in Bashirov et al [28, 29] by approximation of them with 

relaxing functions from 𝐶 (0,∞;𝑊0
1,2(−𝜀, 0; ℝ𝑛×𝑘)). 

 Denote by 𝑊𝑒−𝐴𝑡(Λ) the collection of all 𝜑 ∈ 𝑊(Λ) such that 𝜑 has the 

representation in (4.2.2) with 

Φ𝑡,𝜃 = 𝑒
−𝐴𝜃𝐹𝑡+𝜃 , 

where 𝑒−𝐴𝑡  is a transition matrix of −𝐴. Then 

𝜑𝑡 = ∫ 𝑒𝐴(𝑡−𝑠)
𝑡

0

𝐹𝑠𝑑𝑤𝑠, 0 ≤ 𝑡 ≤ 𝜀 , 

implying 

𝑑𝜑𝑡 = 𝐴𝜑𝑡𝑑𝑡 + 𝐹𝑡𝑑𝑤𝑡, 𝜑0 = 0, 0 < 𝑡 ≤ 𝜀. 

Thus 𝜑 becomes a colored noise. 

Just for simplicity, below we consider filtering and LQG problems for a partially 

observable stationary linear system in finite-dimensional Euclidean spaces, assuming 

that the signal noise is WBN and the observation noise is white. A more general case 

when the signal process takes values in a Hilbert space and the system is non-

stationary can be handled with minor changes. The WBN will be assumed to be non-

stationary in general because the main object of discussion in this paper is the wide 

band nature of the signal noise. We will mainly concentrate on linear filtering 

problem. LQG problem will be considered as an application of the filtering result. 

Throughout this section we assume: 
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(𝐹): 𝐴 ∈ ℝ𝑛×𝑛, 𝐶 ∈ ℝ𝑚×𝑛, 𝑤 and 𝑣 are ℝ𝑘 - and ℝ𝑚-valued standard Wiener 

processes, 𝜉 is an ℝ𝑛-valued GRV with Ε𝜉 = 0, (𝑤, 𝑣) and 𝜉 are independent, 𝑤 and 

𝑣 are correlated with 𝑐𝑜𝑣(𝑤𝑡, 𝑣𝑠) = Ε 𝑚𝑖𝑛(𝑡, 𝑠). 

Note that, 𝑤 and 𝑣 are assumed to be correlated just for generality and for a 

discussion of invariance in this case. The contributions of this section to these 

problems are in the case Ε = 0, that is, when 𝑤 and 𝑣 are uncorrelated. This is 

equivalent to their independence because of Gaussian nature of the noises. 

Consider the partially observable linear system 

{
𝑥′𝑡 = 𝐴𝑥𝑡 + 𝜑𝑡,   𝑥0 = 𝜉, 𝑡 > 0 ,          
𝑑𝑧𝑡 = 𝐶𝑥𝑡𝑑𝑡 + 𝑑𝑣𝑡 ,   𝑧0 = 0,    𝑡 > 0,

                                      (4.3.1) 

where 𝑥 and 𝑧 are vector-valued signal and observation systems. We also assume: 

(𝑊): 𝜀 >  0 and 𝜑 is an 𝑛-dimensional WBN with the autocovariance function 

𝑐𝑜𝑣(𝜑𝑡+𝜎, 𝜑𝑡) = Λ𝑡,𝜎 for 𝑡 ≥ 0 and 0 ≤ 𝜎 ≤ 𝜀, so that it has the integral 

representation in (4.2.2) for some Φ ∈ 𝐶(0,∞; 𝐿2 (−𝜀, 0; ℝ
𝑛×𝑘 ) ) that is, 𝜑 ∈

𝑊𝐿2
(Λ). 

The filtering problem for the system in (4.3.1) consists of finding equations for the 

best estimate 𝑥̂𝑡 of  𝑥𝑡 based on the observations 𝑧𝑠, 0 ≤ 𝑠 ≤ 𝑡, that is, for the 

conditional expectation 𝑥̂𝑡 = 𝚬(𝑥𝑡|𝑧𝑠, 0 ≤ 𝑠 ≤ 𝑡). 

Note that, the signal system in (4.3.1) is given in terms of derivative while the 

observation system in terms of differential which is the difference between this 

section and the previous one. By this, we stress on the fact that unlike WN’s, which 

are generalized derivatives of WP and do not exist in the ordinary sense, WBN’s are 

well-defined random processes. In condition (𝑊), the continuity of Φ in the first 

variable is not an essential restriction. It can be replaced by measurability and local 
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boundedness. But here, it is essential for Φ being 𝐿2 (−𝜀, 0; ℝ
𝑛×𝑘 )- valued relaxing 

function. 

A wide range of selection of relaxing functions creates a difficulty since the integral 

representation in (4.2.2), corresponding to given autocovariance function Λ , is not 

unique. As it was mentioned previously, there are infinitely many relaxing functions 

 Φ ∈ 𝐶(0,∞; 𝐿2 (−𝜀, 0; ℝ
𝑛×𝑘 ) ) for which the WBN 𝜑, represented in the form of 

(4.3.2), has the given autocovariance function , that is, 𝑊𝐿2(Λ) is an infinite set. This 

requires making a proper decision about selection one of 𝜑 ∈ 𝑊𝐿2(Λ) or one of Φ ∈

𝐶(0,∞; 𝐿2 (−𝜀, 0; ℝ
𝑛×𝑘 ) ). So, fix one of these relaxing functions and stick to the 

WBN 𝜑 ∈ 𝑊𝐿2(Λ), corresponding to this Φ. The method adopted is a derivation of 

equations for the best estimate 𝑥̂ for this 𝜑 and getting these equations independent 

on Φ , just dependent on Λ . Then all 𝜑 ∈ 𝑊𝐿2(Λ) became equivalent in the sense 

that 𝑥̂ is independent of them, just depends on Λ. 

In the coming theorem we obtain an optimal filter in the filtering problem for the 

system in (4.3.1) assuming that the WBN 𝜑 is given by its relaxing function Φ. 

Theorem 4.3.1. Assuming that the conditions (𝐹) and (𝑊) are satisfied, the best 

estimate process 𝑥̂ in the filtering problem for the system in (4.3.1) is uniquely 

presented as a solution of the equations 

{

𝑑𝑥̂𝑡 = (𝐴𝑥̂𝑡 + 𝜓𝑡,0)𝑑𝑡 + 𝑃𝑡𝐶
𝑇(𝑑𝑧𝑡 − 𝐶𝑥̂𝑡𝑑𝑡),                 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
)𝜓𝑡,𝜃𝑑𝑡 = (𝑄𝑡,𝜃𝐶

𝑇 +Φ𝑡−𝜃,𝜃𝐸)(𝑑𝑧𝑡 − 𝐶𝑥̂𝑡𝑑𝑡),

𝑥̂0 = 0,𝜓0,𝜃 = 𝜓𝑡,−𝜀 = 0, −𝜀 ≤ 𝜃 ≤ 0, 𝑡 > 0,              

                       (4.3.2) 

where 𝑃, 𝑄 and 𝐺 are solutions of: 
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{
𝑃𝑡
′ = 𝐴𝑃𝑡 + 𝑃𝑡𝐴

𝑇 + 𝑄𝑡,0 + 𝑄𝑡,0
𝑇 − 𝑃𝑡𝐶

𝑇𝐶𝑃𝑡,

𝑃0 = 𝑐𝑜𝑣𝜉, 𝑡 > 0,                                               
                                              (4.3.3) 

{
(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
)𝑄𝑡,𝜃 = 𝑄𝑡,𝜃𝐴

𝑇 + 𝐺𝑡,𝜃,0 − (𝑄𝑡,𝜃𝐶
𝑇 +Φ𝑡−𝜃,𝜃𝐸)𝐶𝑃𝑡 ,

𝑄0,𝜃 = 𝑄𝑡,−𝜀 = 0, −𝜀 ≤ 𝜃 ≤ 0, 𝑡 > 0,                                       
                 (4.3.4)                 

and 

{

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
+

𝜕

𝜕𝜏
)𝐺𝑡,𝜃,𝜏 = Φ𝑡−𝜃,𝜃Φ𝑡−𝜏,𝜏

𝑇                                                     

                                         −(𝑄𝑡,𝜃𝐶
𝑇 +Φ𝑡−𝜃,𝜃𝐸)(𝐶𝑄𝑡,𝜏

𝑇 + 𝐸𝑇Φ𝑡−𝜏,𝜏
𝑇 ),

𝐺0,𝜃,𝜏 = 𝐺𝑡,−𝜀,𝜏 = 𝐺𝑡,𝜃,−𝜀 = 0,−𝜀 ≤ 𝜃 ≤ 0, −𝜀 ≤ 𝜏 ≤ 0 , 𝑡 > 0,   

    (4.3.5)                 

Moreover, the mean square error is equal to 

𝑒𝑡 = 𝚬‖𝑥̂𝑡 − 𝑥𝑡‖
𝟐 = tr 𝑃𝑡 .  

Proof. The idea of the proof is as follows. Define the 𝐿2(−𝜀, 0; ℝ
𝑛)-valued random 

process 𝜙 by 

[𝜙𝑡]𝜃 = ∫ 𝚿𝑠,𝑠−𝑡+𝜃𝑑𝑤𝑠,
𝑡

𝑚𝑎𝑥(0,𝑡−𝜀−𝜃)
− 𝜀 ≤ 𝜃 ≤ 0, 𝑡 ≥ 0,      (4.3.6) 

where 

𝚿𝑡,𝜃 = Φ𝑡−𝜃,𝜃 , −𝜀 ≤ 𝜃 ≤ 0, 𝑡 ≥ 0,                                       (4.3.7) 

one can verify the equality 

Γ𝜙𝑡 = [𝜙𝑡]0 = 𝜑𝑡,                                                             (4.3.8) 

for 𝜑 defined by (4.2.2), where Γ is a linear operator from 𝑊1,2(−𝜀, 0; ℝ𝑛) to ℝ𝑛, 

assigning to ℎ ∈ 𝑊1,2(−𝜀, 0; ℝ𝑛) its value ℎ0 .Let – 𝑑/𝑑𝜃 be a differential operator 

on 𝐿2(−𝜀, 0; ℝ
𝑛) with the domain 

𝐷(−𝑑/𝑑𝜃) = {ℎ ∈ 𝑊1,2(−𝜀, 0; ℝ𝑛): ℎ−𝜀 = 0}, 

noticing that (−𝑑/𝑑𝜃)∗ = 𝑑/𝑑𝜃 and 

𝐷(𝑑/𝑑𝜃) = {ℎ ∈ 𝑊1,2(−𝜀, 0; ℝ𝑛): ℎ0 = 0}. 

One can verify that 𝜙 is a mild solution of the linear SDE. 

𝑑𝜙𝑡 = (−𝑑/𝑑𝜃)𝜙𝑡𝑑𝑡 + Ψ𝑡𝑑𝑤𝑡, 𝜙0 = 0, 𝑡 > 0.                             (4.3.9) 
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Equations (4.3.7)-(4.3.9) lead to the reduction of the linear system in (4.3.1), driven 

by the WBN 𝜑, to a linear system, driven by a WN, with an enlarged ℝ𝑛 ×

𝐿2(−𝜀, 0; ℝ
𝑛)-valued signal process. Indeed, letting 

𝑥̃𝑡 = [
𝑥𝑡
𝜙𝑡
] , 𝜉𝑡 = [

𝜉
0
], 

and 

𝐴̃ = [
𝐴 Γ
0 −𝑑/𝑑𝜃

] , Φ̃𝑡 = [
0
Ψ𝑡
] , 𝐶̃ = [𝐶 0], 

we obtain that 

{
𝑑𝑥̃𝑡 = 𝐴̃𝑥̃𝑡𝑑𝑡 + Φ̃𝑡𝑑𝑤𝑡, 𝑥̃0 = 𝜉, 𝑡 > 0,

𝑑𝑧𝑡 = 𝐶̃𝑥̃𝑡𝑑𝑡 + 𝑑𝑣𝑡 , 𝑧0 = 0,      𝑡 > 0,
                                           (4.3.10) 

obviously, the first component of 𝑥̂̃𝑡 = 𝚬(𝑥̃𝑡|𝑧𝑠, 0 ≤ 𝑠 ≤ 𝑡) is the best estimate 𝑥̂𝑡 

for the system in (4.3.1). Therefore, it remains to find the equations for 𝑥̂̃𝑡 which will 

be finalized by the methods of functional analysis. 

In (4.3.10), 𝐴̃ is a densely defined closed linear operator on ℝ𝑛 × 𝐿2(−𝜀, 0; ℝ
𝑛) with  

𝐷(𝐴̃) = ℝ𝑛 × 𝐷(−𝑑/𝑑𝜃), 

generating a strongly continuous semigroup. According to linear filtering theory in 

Hilbert spaces,] the best estimate process 𝑥̂̃𝑡 is a unique mild solution of the equation 

{
𝑑𝑥̂̃𝑡 = 𝐴̃𝑥̂̃𝑡𝑑𝑡 + (𝑃̃𝑡𝐶̃

𝑇 + Φ̃𝑡Ε)(𝑑𝑧𝑡 − 𝐶̃𝑥̂̃𝑡𝑑𝑡),

𝑥̂̃0 = 0, 𝑡 > 0 ,                                                       
                                    (4.3.11) 

where 𝑃̃ is a scalar product solution of the operator Riccati equation  

{
𝑃̃𝑡
′ = 𝐴̃𝑃̃𝑡 + 𝑃̃𝑡𝐴̃

𝑇 + Φ̃𝑡Φ̃𝑡
𝑇 − (𝑃̃𝑡𝐶̃

𝑇 + Φ̃𝑡Ε)(𝐶̃𝑃̃𝑡 + Ε
∗Φ̃𝑡

𝑇),

𝑃̃0 = 𝑐𝑜𝑣𝜉, 𝑡 > 0,                                                                        
                        (4.3.12) 

and 

𝚬‖𝑥̃𝑡 − 𝑥̂̃𝑡‖
𝟐
= tr 𝑃̃𝑡 .                                            (4.3.13) 

Here, the values of 𝑃̃ are self-adjoint Hilbert-Schmidt operators on the Hilbert space 

ℝ𝑛 × 𝐿2(−𝜀, 0; ℝ
𝑛). Therefore, we can decompose 𝑃̃𝑡 as 
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𝑃̃𝑡 = [
𝑃𝑡 Q̃𝑡

𝑇

𝑄̃𝑡 𝐺̃𝑡
], 

assuming that 𝑄̃𝑡 and 𝐺̃𝑡 are linear integral operators from ℝ𝑛 and 𝐿2(−𝜀, 0; ℝ
𝑛) to 

𝐿2(−𝜀, 0; ℝ
𝑛), respectively. Let 𝑄𝑡,𝜃 and 𝐺𝑡,𝜃,𝜏 be respective kernels, that is, 

[𝑄̃𝑡𝑥]𝜃 = 𝑄𝑡,𝜃,𝑥, −𝜀 ≤ 𝜃 ≤ 0, 𝑡 ≥ 0, 𝑥 ∈  ℝ𝑛,  

and 

[𝐺̃𝑡ℎ]𝜃 = ∫ 𝐺𝑡,𝜃,𝜏ℎ𝜏𝑑𝜏,−𝜀 ≤ 𝜃 ≤ 0, 𝑡 ≥ 0, ℎ ∈  𝐿2(−𝜀, 0; ℝ
𝑛).

0

−𝜀

 

We will deduce the equations for 𝑃, 𝑄 and 𝐺 from (15) in the following way. 

At first, note that 

𝐴̃∗ = [
𝐴𝑇 0
Γ∗ 𝑑/𝑑𝜃

], 

where Γ∗  is understood as 

∫ 〈Γ∗𝑥, ℎ𝜃〉𝑑𝜃 = 〈𝑥, ℎ0〉,
0

−𝜀

𝑥 ∈  ℝ𝑛, ℎ ∈ 𝐷(−𝑑/𝑑𝜃). 

Take arbitrary (𝑥, 𝑔), (𝑦, ℎ) ∈ ℝ𝑛 × 𝐷(𝑑/𝑑𝜃), noticing that 𝑔0 = ℎ0 = 0. Writing 

(4.3.12) for the component 𝐺̃ of 𝑃̃, we obtain  

𝐺̃𝑡
′ = (−𝑑/𝑑𝜃)𝐺̃𝑡 + 𝐺̃𝑡(𝑑/𝑑𝜃) + Ψ𝑡Ψ𝑡

𝑇 − (𝑄̃𝑡𝐶
𝑇 +Ψ𝑡Ε)(𝐶Q̃𝑡

𝑇 + Ε𝑇Ψ𝑡
𝑇), 

or in scalar product 

〈𝐺̃𝑡
′𝑔, ℎ〉 = 〈𝐺̃𝑡𝑔, (

𝑑

𝑑𝜃
) ℎ〉 + 〈𝐺̃𝑡 (

𝑑

𝑑𝜃
)𝑔, ℎ〉 + 〈Ψ𝑡Ψ𝑡

𝑇𝑔, ℎ〉

− 〈(𝑄̃𝑡𝐶
𝑇 +Ψ𝑡Ε)(𝐶Q̃𝑡

𝑇 + Ε𝑇Ψ𝑡
𝑇)𝑔, ℎ〉. 

Here, the terms can be evaluated in the following way: 

〈𝐺̃𝑡
′𝑔, ℎ〉 = ∫ ∫ 〈

𝜕

𝜕𝑡
𝐺𝑡,𝜃,𝜏𝑔𝜏, ℎ𝜃〉

0

−𝜀

0

−𝜀

𝑑𝜏𝑑𝜃, 

〈𝐺̃𝑡𝑔, (𝑑/𝑑𝜃)ℎ〉 = ∫ ∫ 〈𝐺𝑡,𝜃,𝜏𝑔𝜏, ℎ′𝜃〉
0

−𝜀

0

−𝜀

𝑑𝜏𝑑𝜃, 
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= −∫ 〈𝐺𝑡,−𝜀,𝜏𝑔𝜏, ℎ−𝜀〉
0

−𝜀

𝑑𝜏 − ∫ ∫ 〈
𝜕

𝜕𝜃
𝐺𝑡,𝜃,𝜏𝑔𝜏, ℎ𝜃〉

0

−𝜀

0

−𝜀

𝑑𝜏𝑑𝜃, 

〈𝐺̃𝑡(𝑑/𝑑𝜃)𝑔, ℎ〉 = ∫ ∫ 〈𝐺𝑡,𝜃,𝜏𝑔′𝜏, ℎ𝜃〉
0

−𝜀

0

−𝜀
𝑑𝜏𝑑𝜃  

= −∫ 〈𝐺𝑡,𝜃,−𝜀𝑔−𝜀 , ℎ𝜃〉
0

−𝜀

𝑑𝜃 − ∫ ∫ 〈
𝜕

𝜕𝜏
𝐺𝑡,𝜃,𝜏𝑔𝜏, ℎ𝜃〉

0

−𝜀

0

−𝜀

𝑑𝜏𝑑𝜃, 

〈Ψ𝑡Ψ𝑡
𝑇𝑔, ℎ〉 = ∫ ∫ 〈Φ𝑡−𝜃,𝜃Φ𝑡−𝜏,𝜏

𝑇 𝑔𝜏, ℎ𝜃〉
0

−𝜀

0

−𝜀

𝑑𝜏𝑑𝜃, 

〈𝑊̃𝑡𝑊̃𝑡
𝑇𝑔, ℎ〉 = ∫ ∫ 〈W𝑡,𝜃W𝑡,𝜏

𝑇 𝑔𝜏, ℎ𝜃〉
0

−𝜀

0

−𝜀

𝑑𝜏𝑑𝜃, 

where for brevity we denote 

𝑊̃𝑡 = 𝑄̃𝑡𝐶
𝑇 +Ψ𝑡𝐸 and W𝑡,𝜃 = Q𝑡,𝜃𝐶

𝑇 +Φ𝑡−𝜃,𝜃𝐸. 

Hence, 

0 = ∫ ∫ 〈(
𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
+
𝜕

𝜕𝜏
)𝐺𝑡,𝜃,𝜏𝑔𝜃, ℎ𝜏〉

0

−𝜀

0

−𝜀

𝑑𝜏𝑑𝜃

+ ∫ ∫ 〈(W𝑡,𝜃W𝑡,𝜏
𝑇 −Φ𝑡−𝜃,𝜃Φ𝑡−𝜏,𝜏

𝑇 )𝑔𝜃, ℎ𝜏〉
0

−𝜀

0

−𝜀

𝑑𝜏𝑑𝜃

+ ∫ 〈𝐺𝑡,−𝜀,𝜏𝑔𝜏, ℎ−𝜀〉
0

−𝜀

𝑑𝜏 + ∫ 〈𝐺𝑡,𝜃,−𝜀𝑔−𝜀 , ℎ𝜃〉
0

−𝜀

𝑑𝜃. 

Since 𝑔, ℎ ∈ 𝐷(𝑑/𝑑𝜃), where 𝐷(𝑑/𝑑𝜃) is dense in 𝐿2(−𝜀, 0; ℝ
𝑛), we can extend the 

last equality to all four-tuples (𝑔−𝜀 , 𝑔, ℎ−𝜀 , ℎ) ∈ ℝ
𝑛 × 𝐿2(−𝜀, 0; ℝ

𝑛) × ℝ𝑛 ×

𝐿2(−𝜀, 0; ℝ
𝑛), treating 𝑔−𝜀 and  ℎ−𝜀 independently on 𝑔 and ℎ. This implies that 𝐺 

satisfies (8) with the zero initial and boundary conditions. Additionally, we also 

obtain that 𝐺𝑡,.,𝜃, 𝐺𝑡,𝜃,. ∈ 𝐷(−𝑑/𝑑𝜃). 

In the same way, from (15), we derive the equation for 𝑄̃ as 

𝑄̃𝑡
′ = (−𝑑/𝑑𝜃)𝑄̃𝑡𝐴

𝑇 + 𝑄̃𝑡
𝑇Γ𝑇 − (𝑄̃𝑡𝐶

𝑇 +Ψ𝑡𝐸)𝐶P𝑡, 

or in scalar product 
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〈𝑄̃𝑡
′𝑥, ℎ〉 = 〈𝑄̃𝑡𝑥, (𝑑/𝑑𝜃)ℎ〉 + 〈𝑄̃𝑡𝐴

𝑇𝑥, ℎ〉 + 〈Γ∗𝑥, 𝐺̃𝑡ℎ〉 − 〈(𝑄̃𝑡𝐶
𝑇 +Ψ𝑡𝐸)𝐶P𝑡𝑥, ℎ〉. 

Here, 

〈𝑄̃𝑡
′𝑥, ℎ〉 = ∫ 〈

𝜕

𝜕𝑡
𝑄𝑡,𝜃,𝑥, ℎ𝜃〉 𝑑𝜃,

0

−𝜀

 

〈𝑄̃𝑡𝑥, (𝑑/𝑑𝜃)ℎ〉 = ∫ 〈𝑄𝑡,𝜃,𝑥, ℎ𝜃
′ 〉𝑑𝜃

0

−𝜀

 

                                                                     = −〈𝑄𝑡,−𝜀𝑥, ℎ−𝜀〉 − ∫ 〈
𝜕

𝜕𝜃
𝑄𝑡,𝜃,𝑥, ℎ𝜃〉 𝑑𝜃,

0

−𝜀
 

〈𝑄̃𝑡𝐴
∗𝑥, ℎ〉 = ∫ 〈𝑄𝑡,𝜃,𝐴

𝑇𝑥, ℎ𝜃〉𝑑𝜃,
0

−𝜀

 

〈Γ∗𝑥, 𝐺̃𝑡ℎ〉 = 〈𝑥, Γ𝐺̃𝑡ℎ〉 = ∫ 〈𝑥, 𝐺𝑡,0,𝜏ℎ𝜏〉
0

−𝜀

𝑑𝜏 = ∫ 〈𝐺𝑡,0,𝜃
𝑇 𝑥, ℎ𝜃〉𝑑𝜃

0

−𝜀

 

= ∫ 〈𝐺𝑡,𝜃,0𝑥, ℎ𝜃〉𝑑𝜃
0

−𝜀

, 

〈𝑊̃𝑡𝐶𝑃𝑡𝑥, ℎ〉 = ∫ 〈𝑊𝑡,𝜃,𝐶𝑃𝑡𝑥, ℎ𝜃〉𝑑𝜃.
0

−𝜀

 

Hence, 

0 = ∫ 〈((
𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
)𝑄𝑡,𝜃 − 𝑄𝑡,𝜃𝐴

𝑇 − 𝐺𝑡,𝜃,0)𝑥, ℎ𝜃〉
0

−𝜀

𝑑𝜃

+ ∫ 〈𝑊𝑡,𝜃,𝐶𝑃𝑡𝑥, ℎ𝜃〉𝑑𝜃 + 〈𝑄𝑡,−𝜀𝑥, ℎ−𝜀〉.
0

−𝜀

 

In a similar way we can extend the last equality to all triples (𝑥, ℎ−𝜀 , ℎ) ∈ ℝ
𝑛 ×

ℝ𝑛 × 𝐿2(−𝜀, 0; ℝ
𝑛), treating ℎ−𝜀 independently on ℎ. This implies that 𝑄 satisfies 

(4.3.4) with the zero initial and boundary conditions. Additionally, we obtain 

𝑄𝑡,., 𝑄𝑡,.
∗ ∈ 𝐷(−𝑑/𝑑𝜃). 

Next, we concentrate on the equation for 𝑃. From Eq. (4.3.12), we deduce 

𝑃𝑡
′ = 𝐴𝑃𝑡 + 𝑃𝑡𝐴

𝑇 + 𝑄̃𝑡
𝑇Γ∗ + Γ𝑄̃𝑡 − 𝑃𝑡𝐶

𝑇𝐶𝑃𝑡 , 
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or in scalar product  

〈𝑃𝑡
′𝑥, 𝑦〉 = 〈𝑃𝑡𝑥, 𝐴

𝑇𝑦〉 + 〈𝑃𝑡𝐴
𝑇𝑥, 𝑦〉 + 〈𝑄̃𝑡

𝑇Γ∗𝑥, 𝑦〉 + 〈𝑄̃𝑡𝑥, Γ
∗𝑦〉 − 〈𝑃𝑡𝐶

𝑇𝐶𝑃𝑡𝑥, 𝑦〉. 

Here, 

[𝑄̃𝑡𝑥]𝜃 = 𝑄𝑡,𝜃𝑥, −𝜀 ≤ 𝜃 ≤ 0, 

implying 

〈𝑄̃𝑡𝑥, Γ
∗𝑦〉 = 〈Γ𝑄̃𝑡𝑥, 𝑦〉 = 〈𝑄𝑡,0𝑥, 𝑦〉. 

Similarly, 

〈𝑄̃𝑡
𝑇Γ∗𝑥, 𝑦〉 = 〈𝑄𝑡,0

𝑇 𝑥, 𝑦〉. 

Then 

〈(𝑃𝑡
′ − 𝐴𝑃𝑡 − 𝑃𝑡𝐴

𝑇 − 𝑄𝑡,0
𝑇 − 𝑄𝑡,0 + 𝑃𝑡𝐶

𝑇𝐶𝑃𝑡)𝑥, 𝑦〉 = 0. 

Since 𝑥, 𝑦 ∈ ℝ are arbitrary, we obtain the equation in (4.3.3) for 𝑃.  

Now we consider (4.3.11). It produces two equations 

𝑑𝑥̂𝑡 = 𝐴𝑥̂𝑡𝑑𝑡 + Γ𝜓𝑡𝑑𝑡 + 𝑃𝑡𝐶
𝑇(𝑑𝑧𝑡 − 𝐶𝑥̂𝑡𝑑𝑡), 

and 

𝑑𝜓𝑡 = (−𝑑/𝑑𝜃)𝜓𝑡𝑑𝑡 + (𝑄̃𝑡𝐶
𝑇 + 𝜓𝑡𝐸)(𝑑𝑧𝑡 − 𝐶𝑥̂𝑡𝑑𝑡), 

where we let 𝜓 = 𝜙.̂  It is not difficult to see that they produce the system in (4.3.5). 

Finally, the formula for the error 𝑒𝑡of estimation follows from (4.3.13). This 

completes the proof. 

The classic KF contains two equations for 𝑥̂ and 𝑃. But the filter from Theorem 4.3.1 

includes the associated equations for, 𝑄 and 𝐺. What is the meaning of them in the 

filter? The solution of the equation (4.3.2) for 𝜓 is presented as 

𝜓𝑡,𝜃 = ∫ (𝑄𝑠,𝑠−𝑡+𝜃𝐶
𝑇 +Φ𝑡−𝜃,𝑠−𝑡+𝜃𝐸)(𝑑𝑧𝑠 − 𝐶𝑥̂𝑠𝑑𝑠),

𝑡

𝑚𝑎𝑥(0,𝑡−𝜀)

 

implying 
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𝜓𝑡,0 = ∫ (𝑄𝑠,𝑠−𝑡𝐶
𝑇 +Φ𝑡,𝑠−𝑡𝐸)(𝑑𝑧𝑠 − 𝐶𝑥̂𝑠𝑑𝑠),

𝑡

𝑚𝑎𝑥(0,𝑡−𝜀)

 

therefore, 𝜓𝑡,0in (4.3.2) acts as a WBN generated by the innovation process. The 

function 𝑄, together with 𝐶, Φ and 𝐸, takes part in forming the relaxing function of 

𝜓𝑡,0. It satisfies (4.3.4), that includes 𝐺𝑡,𝜃,0. From the considerations of the next 

section it will follow that in fact 𝐺𝑡,𝜃,0is the difference of the covariance functions of 

the WBN’s 𝜑𝑡of the system and 𝜓𝑡,0 of the filter. Therefore, the filter from Theorem 

4.3.1 works in the following form: 

 Equation (4.3.5) produces the difference of covariance functions of the 

system and filter WBN’s. 

 Equation (4.3.4) contributes to the relaxing function of the WBN filter. 

 Equation (4.3.3) is a classic KF modified to Riccati equation. 

 The second of equations in (4.3.2) produces the WBN’s filter. 

 Finally, the first of equations in (4.3.2) produces the best estimate. 

It was mentioned that the WBN’s cover delayed WN’s as well. For this, the relaxing 

function Φ in (4.2.1) should be selected as Φ𝑡,𝜃 = 𝐹𝛿𝜃+𝑡−𝜆𝑡  to achieve one single 

time dependent delay of a WN. Actually, Theorem 4.3.1 does not cover this case. To 

make the picture more complete, we present the following. 

Theorem 4.3.2. Under the condition (𝐹) with 𝑘 =  𝑚, 𝑤 =  𝑣, and 𝐸 =  𝐼 and for 

𝜀 >  0, the best estimate process 𝑥̂ in the filtering problem for the partially 

observable linear system 

{
𝑑𝑥𝑡 = 𝐴𝑥𝑡𝑑𝑡 + 𝐹𝑑𝑤𝑚𝑎𝑥(0,𝜆𝑡), 𝑥0 = 𝜉, 𝑡 > 0,

𝑑𝑧𝑡 = 𝐶𝑥𝑡𝑑𝑡 + 𝑑𝑤𝑡, 𝑧0 = 0, 𝑡 > 0,                   
 

where 𝜆 is a strictly increasing differentiable function on [0,∞) and satisfies 𝑡 − 𝜀 ≤

𝜆𝑡 ≤ 𝑡 for all 𝑡 ≥ 0, is uniquely presented as a solution of the equations 
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{
 
 

 
 𝑑𝑥̂𝑡 = (𝐴𝑥̂𝑡 + 𝜓𝑡,0)𝑑𝑡 + 𝑃𝑡𝐶

𝑇(𝑑𝑧𝑡 − 𝐶𝑥̂𝑡𝑑𝑡),                                           

(
𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
)𝜓𝑡,𝜃𝑑𝑡 = 𝑄𝑡,𝜃𝐶

𝑇(𝑑𝑧𝑡 − 𝐶𝑥̂𝑡𝑑𝑡),                                                   

𝑥̂0 = 0, 𝜓0,𝜃 = 0, 𝑑 𝜓𝑡,𝑡−𝜆𝑡−1 = 𝐹(𝑑𝑧𝑡 − 𝐶𝑥̂𝑡𝑑𝑡), −𝜆0
−1 ≤ 𝜃 ≤ 0, 𝑡 > 0,

 

where 𝑃, 𝑄 and 𝐺 are solutions of 

{
𝑃𝑡
′ = 𝐴𝑃𝑡 + 𝑃𝑡𝐴

𝑇 + 𝑄𝑡,0 + 𝑄𝑡,0
𝑇 − 𝑃𝑡𝐶

𝑇𝐶𝑃𝑡,

𝑃0 = 𝑐𝑜𝑣𝜉, 𝑡 > 0,                                             
 

{
(
𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
)𝑄𝑡,𝜃 = 𝑄𝑡,𝜃𝐴

𝑇 + 𝐺𝑡,𝜃,0 − 𝑄𝑡,𝜃𝐶
∗𝐶𝑃𝑡,         

𝑄0,𝜃 = 0,𝑄𝑡,𝑡−𝜆𝑡−1 = −𝐹𝐶𝑃𝑡 , −𝜆0
−1 ≤ 𝜃 ≤ 0, 𝑡 > 0,

 

and 

{
 
 

 
 (

𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
+
𝜕

𝜕𝜏
)𝐺𝑡,𝜃,𝜏 = −𝑄𝑡,𝜃𝐶

𝑇𝐶𝑄𝑡,𝜏
𝑇 ,                                          

𝐺0,𝜃,𝜏 = 0,−𝜆0
−1 ≤ 𝜃 ≤ 0,−𝜆0

−1 ≤ 𝜏 ≤ 0 ,                                     

𝐺𝑡,𝜃,𝑡−𝜆𝑡−1 = −𝑄𝑡,𝜃𝐶
𝑇𝐹𝑇 − 𝐹𝐶𝑄𝑡,𝑡−𝜆𝑡−1

𝑇 , 𝑡 − 𝜆𝑡
−1 ≤ 𝜃 ≤ 0, 𝑡 > 0,

𝐺𝑡,𝑡−𝜆𝑡−1,𝜏 = −𝑄𝑡,𝑡−𝜆𝑡−1𝐶
𝑇𝐹𝑇 − 𝐹𝐶𝑄𝑡,𝜏

𝑇 , 𝑡 − 𝜆𝑡
−1 ≤ 𝜏 ≤ 0, 𝑡 > 0,

 

moreover, the mean square error of estimation is given by 

𝑒𝑡 = 𝚬‖𝑥̂𝑡 − 𝑥𝑡‖
𝟐 = tr 𝑃𝑡 .  

Proof. This theorem is proved in Bashirov [28]. One can verify that Theorem 6.1 can 

be obtained from Theorem 4.3.2 by substitution Φ𝑡,𝜃 = 𝐹𝛿𝜃+𝑡−𝜆𝑡 and using informal 

integral relations for delta-function. 

In the case of independent noises, i.e., 𝐸 =  0, Theorem 4.3.1 produces an 

exceptional result: the filter from Theorem 4.3.1 becomes independent on relaxing 

function Φ , depends just on the autocovariance function Λ. 

Theorem 4.3.3 Under the conditions (𝐹), (𝑊) and 𝐸 =  0, the best estimate process 

𝑥̂ in the filtering problem for the system in (4.3.1) is uniquely presented as a solution 

of the equations 
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{

𝑑𝑥̂𝑡 = (𝐴𝑥̂𝑡 + 𝜓𝑡,0)𝑑𝑡 + 𝑃𝑡𝐶
𝑇(𝑑𝑧𝑡 − 𝐶𝑥̂𝑡𝑑𝑡),

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
)𝜓𝑡,𝜃𝑑𝑡 = 𝑄𝑡,𝜃𝐶

𝑇(𝑑𝑧𝑡 − 𝐶𝑥̂𝑡𝑑𝑡),      

𝑥̂0 = 0,𝜓0,𝜃 = 𝜓𝑡,−𝜀 = 0,−𝜀 ≤ 𝜃 ≤ 0, 𝑡 > 0,

                              (4.3.14) 

where 𝑃, 𝑄 and 𝑅 are solutions of 

{
𝑃𝑡
′ = 𝐴𝑃𝑡 + 𝑃𝑡𝐴

𝑇 + 𝑄𝑡,0 + 𝑄𝑡,0
𝑇 − 𝑃𝑡𝐶

𝑇𝐶𝑃𝑡 ,

𝑃0 = 𝑐𝑜𝑣𝜉, 𝑡 > 0,                                             
                                 (4.3.15) 

 

{
(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
)𝑄𝑡,𝜃 = 𝑄𝑡,𝜃𝐴

𝑇 + Λ𝑡,−𝜃 − 𝑅𝑡,𝜃,0 − 𝑄𝑡,𝜃𝐶
𝑇𝐶𝑃𝑡,         

𝑄0,𝜃 = 𝑄𝑡,−𝜀 = 0,−𝜀 ≤ 𝜃 ≤ 0, 𝑡 > 0,                                     
        (4.3.16) 

and 

{
(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
+

𝜕

𝜕𝜏
)𝑅𝑡,𝜃,𝜏 = 𝑄𝑡,𝜃𝐶

𝑇𝐶𝑄𝑡,𝜏
𝑇 ,                                               

𝑅0,𝜃,𝜏 = 𝑅𝑡,−𝜀,𝜏 = 𝑅𝑡,𝜃,−𝜀 = 0,−𝜀 ≤ 𝜃 ≤ 0,−𝜀 ≤ 𝜏 ≤ 0, 𝑡 > 0.  
     (4.3.17)                   

Proof. Letting 𝐸 =  0 in (4.3.2)-(4.3.5), we obtain (4.3.14) and (4.3.15) exactly, but 

the equations for 𝑄 and 𝐺 become 

{
(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
)𝑄𝑡,𝜃 = 𝑄𝑡,𝜃𝐴

𝑇 + G𝑡,𝜃,0 −𝑄𝑡,𝜃𝐶
𝑇𝐶𝑃𝑡 ,         

𝑄0,𝜃 = 𝑄𝑡,−𝜀 = 0,−𝜀 ≤ 𝜃 ≤ 0, 𝑡 > 0,                         
                      (4.3.18) 

and 

{
(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
+

𝜕

𝜕𝜏
)𝐺𝑡,𝜃,𝜏 = Φ𝑡−𝜃,𝜃Φ𝑡−𝜏,𝜏

𝑇 − 𝑄𝑡,𝜃𝐶
𝑇𝐶𝑄𝑡,𝜏

𝑇 ,                         

𝐺0,𝜃,𝜏 = 𝐺𝑡,−𝜀,𝜏 = 𝐺𝑡,𝜃,−𝜀 = 0,−𝜀 ≤ 𝜃 ≤ 0, −𝜀 ≤ 𝜏 ≤ 0, 𝑡 > 0,       
(4.3.19) 

the solution of Eq. (4.3.19) has the representation 

𝐺𝑡,𝜃,𝜏 = ∫ (Φ𝑡−𝜃,𝑠−𝑡+𝜃Φ𝑡−𝜏,𝑠−𝑡+𝜏
𝑇 − 𝑄𝑠,𝑠−𝑡+𝜃𝐶

𝑇𝐶𝑄𝑠,𝑠−𝑡+𝜏
𝑇 )𝑑𝑠.

𝑡

𝑚𝑎𝑥(0,𝑡−𝜃−𝜀,𝑡−𝜏−𝜀)

 

then 

𝐺𝑡,𝜃,0 = ∫ (Φ𝑡−𝜃,𝑠−𝑡+𝜃Φ𝑡,𝑠−𝑡
𝑇 − 𝑄𝑠,𝑠−𝑡+𝜃𝐶

𝑇𝐶𝑄𝑠,𝑠−𝑡
𝑇 )𝑑𝑠.

𝑡

𝑚𝑎𝑥(0,𝑡−𝜃−𝜀)

 

Using Λ𝑡,−𝜃 = 𝑐𝑜𝑣(𝜑𝑡−𝜃, 𝜑𝑡), one can derive 

Λ𝑡,−𝜃 = ∫ Φ𝑡−𝜃,𝑠−𝑡+𝜃Φ𝑡,𝑠−𝑡
𝑇 𝑑𝑠.

𝑡

𝑚𝑎𝑥(0,𝑡−𝜃−𝜀)
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This implies 

𝐺𝑡,𝜃,0 = Λ𝑡,−𝜃 −∫ 𝑄𝑠,𝑠−𝑡+𝜃𝐶
𝑇𝐶𝑄𝑠,𝑠−𝑡

𝑇 𝑑𝑠.
𝑡

𝑚𝑎𝑥(0,𝑡−𝜃−𝜀)

 

Therefore, we can introduce a function 𝑅 as a solution of (4.3.17) and write (4.3.19) 

in the form of (4.3.16). This proves the theorem.  

Theorem 4.3.3 presents an invariant optimal filter while the filter from Theorem 

4.3.1 is non- invariant. Why does it happen that in the case of independent noises the 

optimal filter does not depend on the relaxing functions and depends just on the 

autocovariance function? To answer this question we will make two simplifications 

in the conditions of Theorem 4.3.1. 

At first, let 𝜉 =  0. Then 𝑃0 = 𝑐𝑜𝑣𝜉 = 0 and the solution of (4.3.15) becomes 

identically zero if 𝑄𝑡,0 = 0. Secondly, let the autocovariance function Λ be stationary 

(starting the instant 𝜀). Then the relaxing functions Φ, corresponding to Λ , are 

independent on the first variable and we can write 

Λ𝜎 = ∫ Φ𝑠−𝜎

0

𝜎−𝜀

Φ𝑠
𝑇𝑑𝑠. 

If Φ̅𝜃 = Φ−𝜃
𝑇 , 0 ≤ 𝜃 ≤ 𝜀, then 

Λ𝜎 = ∫ Φ𝑠−𝜎

0

𝜎−𝜀

Φ̅−𝑠𝑑𝑠 = ∫ Φ𝑠

−𝜎

−𝜀

Φ̅𝜎−𝑠𝑑𝑠, 

assuming that Φ and Φ̅ vanish outside of [– 𝜀, 0] and [0, 𝜀], respectively. Thus, Λ 

(more correctly, the extension of Λ to [– 𝜀, 𝜀], defined by Λ𝜎 = Λ−𝜎) is a convolution 

of Φ and Φ̅, i.e., Λ = ΦΦ̅. Informally, regarding Φ̅ as a conjugate of Φ , very 

similar to complex numbers we can write|Φ |2 = Λ . This equality can be treated as 

some sort of “circle” with the “squared radius” Λ centered at the origin. Following to 
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Bashirov [39], we can wish to select that relaxing function Φ which answers to the 

autocovariance function and minimizes the error of estimation. In other words, we 

have to solve the constrained optimization problem 

𝐽(Φ ) = 𝑡𝑟𝑃𝑡 → 𝑚𝑖𝑛, |Φ |2 = Λ,                              (4.3.20) 

where 𝑃 is defined by (4.3.15)-(4.3.17). 

For a moment, remove the constraint from (4.3.20). Then 𝐽(Φ ) is a quadratic 

functional of Φ in 𝐿2(−𝜀, 0; ℝ
𝑛×𝑘), (see the first term in the right hand side of 

(4.3.19)). By properties of Riccati equations, this functional is nonnegative. 

Moreover, at Φ = 0, (4.4.16) and (4.4.17) have zero solutions 𝑄 =  0 and 𝑅 =  0 by 

the uniqueness of solution of Riccati equations. This produces 𝐽(0) = 0. Therefore, 

we can treat 𝐽(Φ ) as some sort of “upward oriented paraboloid” with the global 

minimum at zero. Turning back to the constrained optimization problem in (4.3.20), 

we can informally regard it as a minimization of the “paraboloid” 𝐽(Φ )over the 

“circle” |Φ |2 = Λ . Making analogy with elementary calculus, 𝐽(Φ ) is a constant on 

|Φ |2 = Λ if and only if 𝐽(Φ ) is a “circular paraboloid”. Thus, in the case of 

independent noises 𝐽(Φ ) behaves as an “upward oriented circular paraboloid”. 

Now consider the constrained optimization problem in (4.3.20) under conditions of 

Theorem 4.3.1 (correlated noises). Again make the above simplifications. Then in a 

similar way 𝐽(Φ ) can still be associated with an “upward oriented paraboloid” which 

takes its minimal value 0 at Φ = 0. At the same time, 𝐽(Φ ) is not constant on 

|Φ |2 = Λ since (4.3.3)-(4.3.5) include the covariance of signal and observation 

noises. Therefore, now 𝐽(Φ ) behaves as an “upward oriented elliptic paraboloid” 
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and we can expect at least two points on the “circle”  |Φ |2 = Λ as a solution of the 

constrained minimization problem in (4.3.20). 

This informal consideration is just a hint to a solution of the problem on selection of 

relaxing function that produces minimal error of estimation in the case of correlated 

noises (non-invariant filtering result). We left its strong justification still open at this 

stage of developments. 

Now, an engineering applications investigation about how does the filter from 

Theorem 4.3.1 work if we try to implement it in? For this, using the representation 

𝜓𝑡,0 = ∫ 𝑄𝑠,𝑠−𝑡𝐶
𝑇(𝑑𝑧𝑠 − 𝐶𝑥̂𝑠𝑑𝑠),

𝑡

𝑚𝑎𝑥(0,𝑡−𝜀)

 

for the solution of the second equation in (4.3.14), write the first equation in (4.3.14) 

in the form 

               𝑥̂𝑡
′ = (𝐴 − 𝑃𝑡𝐶

𝑇𝐶)𝑥̂𝑡 

                − ∫ 𝑄𝑠,𝑠−𝑡𝐶
𝑇𝐶𝑥̂𝑠𝑑𝑠

𝑡

𝑚𝑎𝑥(0,𝑡−𝜀)
+ ∫ 𝑄𝑠,𝑠−𝑡𝐶

𝑇𝑧𝑠
′𝑑𝑠

𝑡

𝑚𝑎𝑥(0,𝑡−𝜀)
,            (4.3.21) 

where we have employed the derivative notation for SDE instead of the differential 

notation. In this equation, 𝑃 and 𝑄 (together with 𝑅) are solutions of deterministic 

PDEs (4.3.15)-(4.3.17). Therefore, they can be calculated beforehand by use of 

numerical methods for solution of PDE and stored somewhere in a computer. 

Actually, 𝑧𝑡
′ is an observation made at time 𝑡. Together with its 𝜀-past it is an input of 

the filter. Therefore, the filter does not work without memorial manner. Storing the 

observation at instant 𝑡 up to the instant 𝑡 + 𝜀 is required. After the instant 𝑡 + 𝜀 the 

observation value 𝑧𝑡
′ can be deleted from the memory. The term 

𝑓𝑡 = 𝑓(𝑧𝑠
′; 𝑚𝑎𝑥(0, 𝑡 − 𝜀) < 𝑠 ≤ 𝑡) = 𝑃𝑡𝐶

𝑇𝑧𝑡
′ +∫ 𝑄𝑠,𝑠−𝑡𝐶

𝑇𝑧𝑠
′𝑑𝑠,

𝑡

𝑚𝑎𝑥(0,𝑡−𝜀)
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in the right hand side of (4.3.21) is formed on the base of the observation input data. 

So, the best estimate is a solution of the DE 

𝑥̂𝑡
′ = (𝐴 − 𝑃𝑡𝐶

𝑇𝐶)𝑥̂𝑡 − ∫ 𝑄𝑠,𝑠−𝑡𝐶
𝑇𝐶𝑥̂𝑠𝑑𝑠

𝑡

𝑡−𝜀
+ 𝑓𝑡 , 𝑡 > 0,                     (4.3.22) 

with 𝑥̂𝑡 = 0 for 𝑡 ∈ [−𝜀, 0]. This is a differential delay equation with a distributed 

delay of the best estimate. So, again calculated best estimate 𝑥̂𝑡
′ at the instant 𝑡 should 

be stored up to the instant 𝑡 + 𝜀. After the instant 𝑡 + 𝜀 it can be deleted. 

Thus instead of ODE in the case of the KF, the filter from Theorem 4.3.1 is based on 

differential delay equation. 

4.4 Invariant KF When the Signal and the measurements noises are 

sum of independent WN and WBN’s. 

In this section we present equations of KF when the signal and observation systems 

are corrupted by the sum of WN and WBN’s. We assume that all the noise processes 

are independent and derive the equations depending on autocovariance function of 

the WBN’s. As an application, it is used for synthesis of the optimal control in LQG 

problem under WBN’s. 

In accordance to the introductory section, the partially observable linear system will  

be considered 

{
𝑑𝑥𝑡 = (𝐴𝑥𝑡 + 𝜑𝑡

1)𝑑𝑡 + 𝐵𝑑𝑤𝑡,   𝑥0 = 𝜉, 𝑡 > 0 ,          

𝑑𝑧𝑡 = (𝐶𝑥𝑡 +𝜑𝑡
2)𝑑𝑡 + 𝑑𝑣𝑡 ,   𝑧0 = 0  𝑡 > 0,               

                  (4.4.1)         

where 𝑥 and 𝑧 are vector-valued signal and mesurements processes, 𝐴, 𝐵 and 𝐶 are 

matrices, 𝜉 is a vector-valued GRV with 𝑬 𝜉 =  0, 𝑤 and 𝑣 are standard Wiener 

processes, 𝜑𝑡
1  and 𝜑𝑡

2 are stationary (starting the instants 𝑡 =  𝜀 >  0 and 𝑡 =  𝛿 >

 0) WBN’s with the autocovariance functions 𝛬𝑡,𝜃 and 𝛴𝑡,𝛼, respectively, 
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and  𝜉, 𝑤, 𝑣, 𝜑𝑡
1  , 𝜑𝑡

2  are mutually independent. We will assume that 𝜑𝑡
1   and  𝜑𝑡

2   

accept the integral representations  

𝜑𝑡
1 = ∫ Φ𝑠−𝑡

1 𝑑𝑤1𝑡

max (0,𝑡−𝜀)
 and  𝜑𝑡

2 = ∫ Φ𝑠−𝑡
2 𝑑𝑤2𝑡

max (0,𝑡−𝜀)
, 𝑡 ≥ 0,          (4.4.2) 

where 𝑤1 and 𝑤2 are Wiener processes, Φ1 and Φ2 are absolutely continuous, Φ0
1 =

0, and Φ−𝛿
2 = 0. As it was mentioned in the introductory part of this chapter, the 

existence of such representations is already proved in the one-dimensional case 

although the number of functions Φ1  and Φ2 is infinite in general. To reach the 

independence of 𝜉, 𝑤, 𝑣, Φ1, Φ2 we assume that 𝜉, 𝑤, 𝑣, 𝑤1, 𝑤2 are mutually 

independent. The dimensions of all vectors and matrices in (4.4.1) and (4.4.2) are 

assumed to be consistent to each other. In this section, invariant equations for the 

best estimate 𝑥̂𝑡 = 𝐸(𝑥𝑡|𝑧𝑠, 0 ≤ 𝑠 ≤ 𝑡)  will be deduced. 

Considering the filtering problem (4.4.1), in [30]  it  is  proved  that  the  best  

estimate  process  𝑥̂  in  the  filtering  problem  (4.4.1)  is uniquely presented as a 

solution of the   equation 

𝑑𝑥̂𝑡 = (𝐴𝑥̂𝑡 + 𝜓𝑡,0
1 )𝑑𝑡 + (𝑃𝑡𝐶

𝑇 +𝑀𝑡,0
𝑇 )(𝑑𝑧𝑡 − 𝐶𝑥̂𝑡𝑑𝑡 − 𝜓𝑡,0

2 𝑑𝑡),            (4.4.3) 

for 𝑡 > 0 with the initial condition 𝑥̂0 = 0, where 𝜓2 and 𝜓2 are unique solutions of 

{
(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
)𝜓𝑡,𝜃

1 𝑑𝑡 = (𝑄𝑡,𝜃𝐶
𝑇 + 𝐺𝑡,𝜃,0

𝑇 )(𝑑𝑧𝑡 − 𝐶𝑥̂𝑡 − 𝜓𝑡,0
2 𝑑𝑡),

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝛼
)𝜓𝑡,𝛼

2 𝑑𝑡 = (𝑀𝑡,𝛼𝐶
𝑇 + 𝐾𝑡,𝛼,0

𝑇 )(𝑑𝑧𝑡 − 𝐶𝑥̂𝑡 − 𝜓𝑡,0
2 𝑑𝑡),

                 (4.4.4) 

for 𝑡 >  0, −𝜀 <  𝜃 ≤  0, −𝛿 <  𝛼 ≤  0 with the zero initial and boundary 

conditions along the lines 𝜃 =  −𝜀 and 𝛼 =  −𝛿. Here 𝑃 is a unique solution of the 

Riccati equation 

𝑃′𝑡 = 𝐴𝑃𝑡 + 𝑃𝑡𝐴
𝑇 + 𝑄𝑡,0 + 𝑄𝑡,0

𝑇 + 𝐵𝐵𝑇 − (𝑃𝑡𝐶
𝑇 +𝑀𝑡,0

𝑇 )(𝐶𝑃𝑡 +𝑀𝑡,0),       (4.4.5) 

for 𝑡 >  0 and satisfies the initial condition 𝑃0  =  𝑐𝑜𝑣 𝜉. The supplemental functions 

𝑄,𝑀 , 𝐾 and  𝐺 are solutions of 
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{
 
 
 
 

 
 
 
 (

𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
)𝑄𝑡,𝜃 = 𝑄𝑡,𝜃𝐴

𝑇 + 𝑆𝑡,𝜃,0 − (𝑄𝑡,𝜃𝐶
𝑇 + 𝐺𝑡,𝜃,0

𝑇 )(𝐶𝑃𝑡 +𝑀𝑡,0),      

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝛼
)𝑀𝑡,𝛼 = 𝑀𝑡,𝛼𝐴

𝑇 + 𝐺𝑡,𝛼,0 − (𝑀𝑡,𝛼𝐶
𝑇 + 𝐾𝑡,𝛼,0)(𝐶𝑃𝑡 +𝑀𝑡,0),    

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
+

𝜕

𝜕𝜏
) 𝑆𝑡,𝜃,𝜏 = Φ𝜃

1Φ𝜏
1𝑇 − (𝑄𝑡,𝜃𝐶

𝑇 + 𝐺𝑡,𝜃,0
𝑇 )(𝐶𝑄𝑡,𝜏

𝑇 + 𝐺𝑡,𝜏,0),     

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝛼
+

𝜕

𝜕𝜎
)𝐾𝑡,𝛼,𝜎 = Φ𝛼

2Φ𝜎
2𝑇 − (𝑀𝑡,𝛼𝐶

𝑇 + 𝐾𝑡,𝛼.0)(𝐶𝑀𝑡,𝜎
𝑇 + 𝐾𝑡,𝜎,0

𝑇 ),

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
+

𝜕

𝜕𝛼
) 𝐺𝑡,𝛼,𝜃 = −(𝑀𝑡,𝛼𝐶

𝑇 + 𝐾𝑡,𝛼.0)(𝐶𝑄𝑡,𝜃
𝑇 + 𝐺𝑡,𝜃,0),                

        (4.4.6) 

with the zero initial and boundary conditions. Moreover, 𝑒𝑡 = 𝐸‖𝑥̂𝑡 − 𝑥𝑡‖
2 = 𝑡𝑟𝑃𝑡. 

The method of the proof of equations (4.4.3)-(3.3.6) is a reduction of the system in 

(4.4.1) to an infinite dimensional linear system disturbed by only WN’s, using the 

KF for the reduced system, and applying methods of functional analysis. 

The equations in (4.4.3)-(3.3.6) are not invariant because they contain the relaxing 

functions Φ1 and Φ2. In the following theorem, these equations will be changed so 

that to make them independent on Φ1 and Φ2, dependent on 𝛬 and 𝛴 of the WBN’s 

𝜑𝑡
1  and 𝜑𝑡

2, respectively.  This is stated in the following theorem. 

Theorem 4.4.1 Under the conditions stated in first section of this chapter, the best 

estimate process 𝑥̂ in the filtering problem (4.4.1) is uniquely presented as a solution 

of the equation (4.4.3) for  𝑡 >  0 with the initial condition 𝑥̂0  =  0, where 𝜓1 and 

𝜓2  are unique solutions of 

{
(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
)𝜓𝑡,𝜃

1 𝑑𝑡 = (𝑄𝑡,𝜃𝐶
𝑇 + 𝐺𝑡,𝜃,0

𝑇 )(𝑑𝑧𝑡 − 𝐶𝑥̂𝑡 − 𝜓𝑡,0
2 𝑑𝑡),                

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝛼
)𝜓𝑡,𝛼

2 𝑑𝑡 = (𝑀𝑡,𝛼𝐶
𝑇 + Σ𝑡,−𝛼 − 𝑁𝑡,𝛼,0)(𝑑𝑧𝑡 − 𝐶𝑥̂𝑡 − 𝜓𝑡,0

2 𝑑𝑡),
        (4.4.7)      

for 𝑡 >  0, −𝜀 <  𝜃 ≤  0, −𝛿 <  𝛼 ≤  0 with the zero initial and boundary 

conditions along the lines 𝜃 =  −𝜀 and 𝛼 =  −𝛿. Additionally, 𝑃 is a unique 

solution of the Riccati equation (4.4.5) for 𝑡 >  0 with 𝑃0 =  𝑐𝑜𝑣 𝜉 and the 

supplemental functions 𝑄,𝑀, 𝑅, 𝑁, and 𝐺 are solutions of 
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{
 
 
 
 
 

 
 
 
 
 (

𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
)𝑄𝑡,𝜃 = 𝑄𝑡,𝜃𝐴

𝑇 + Λ𝑡,−𝜃 − 𝑅𝑡,𝜃,0 − (𝑄𝑡,𝜃𝐶
𝑇 − 𝐺𝑡,𝜃,0

𝑇 )(𝐶𝑃𝑡 +𝑀𝑡,0) 

(
𝜕

𝜕𝑡
+
𝜕

𝜕𝛼
)𝑀𝑡,𝛼 = 𝑀𝑡,𝛼𝐴

𝑇 + 𝐺𝑡,𝛼,0 − (𝑀𝑡,𝛼𝐶
∗ + Σ𝑡,−𝛼−𝑁𝑡,𝛼,0)(𝐶𝑃𝑡 +𝑀𝑡,0),

   

(
𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
+
𝜕

𝜕𝜏
)𝑅𝑡,𝜃,𝜏 = (𝑄𝑡,𝜃𝐶

𝑇 − 𝐺𝑡,𝜃,0
𝑇 )(𝐶𝑄𝑡,𝜏

𝑇 − 𝐺𝑡,𝜏,0),                                 

(
𝜕

𝜕𝑡
+
𝜕

𝜕𝛼
+
𝜕

𝜕𝜎
)𝑁𝑡,𝛼,𝜎 = (𝑀𝑡,𝛼𝐶

𝑇 + Σ𝑡,−𝛼 − 𝑁𝑡,𝛼.0)(𝐶𝑀𝑡,𝜎
𝑇 + Σ𝑡,−𝜎

𝑇 − 𝑁𝑡,𝜎,0
𝑇 ),

 

(
𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
+
𝜕

𝜕𝛼
)𝐺𝑡,𝛼,𝜃 = (𝑀𝑡,𝛼𝐶

𝑇 + Σ𝑡,−𝛼 − 𝑁𝑡,𝛼.0)(𝐶𝑄𝑡,𝜃
𝑇 + 𝐺𝑡,𝜃,0),                

 

…(4.4.8) 

with zero initial and boundary conditions. Moreover,  𝑒𝑡 = 𝐸‖𝑥̂𝑡 − 𝑥𝑡‖
2 = 𝑡𝑟𝑃𝑡. 

Proof. As far as 𝜑𝑡
1  and 𝜑𝑡

2  are WBN’s with the autocovariance functions 𝛬 and 𝛴, 

we can choose one of the relaxing functions Φ1 and Φ2 for them among infinitely 

many possible relaxing functions.  Then the best estimate 𝑥̂ in the problem (4.4.1)-

(4.4.2) satisfies the set of equations (4.3.3)-(4.4.6). It remains to show that (4.4.4) 

and (4.4.6) can be written as (4.4.7) and (4.4.8), respectively. One can see that 

everywhere in (4.4.3)-(4.4.6), 𝐺 is replaced by −𝐺. This is done just to make positive 

the sign of the right side of the last equation in (4.4.6). 

Furthermore, letting 𝐷𝑡,𝜃,𝜏 be the solution of the equation 

(
𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
+
𝜕

𝜕𝛼
)𝐷𝑡,𝜃,𝜏 = Φ𝜃

1Φ𝜏
1𝑇, 

with the initial and boundary conditions 𝐷0,𝜃,𝜏 = 𝐷𝑡,𝜃,−𝜀 = 𝐷𝑡,−𝜀,𝜏 = 0, −𝜀 ≤ 𝜃 ≤ 0, 

−𝜀 ≤ 𝜃 ≤ 0, 𝑡 > 0, we see that 𝐷𝑡,𝜃,𝜏 has the representation 

𝐷𝑡,𝜃,𝜏 = ∫ Φ𝑠−𝑡+𝜃
1 Φ𝑠−𝑡+𝜏

1𝑇
𝑡

max (0,𝑡−𝜃−𝜀,𝑡−𝜏−𝜀)

𝑑𝑠. 

Using the definition of the autocovariance function, the previous equation becomes  

𝐷𝑡,𝜃,𝜏 = ∫ Φ𝑠−𝑡+𝜃
1 Φ𝑠−𝑡

1𝑇
𝑡

max(0,𝑡−𝜃−𝜀)

𝑑𝑠 = Λ𝑡,−𝜃. 
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Letting 𝑅𝑡,𝜃,𝜏 = 𝐷𝑡,𝜃,𝜏 − 𝑆𝑡,𝜃,𝜏 , we see that 𝑅𝑡,𝜃,𝜏 satisfies the third equation in 

(4.4.8). Therefore, we can replace the equation for 𝑆 in (4.4.6) with the equation for 

𝑅 in (4.4.8) with the substitution 𝑆𝑡,𝜃,0 = Λ𝑡,−𝜃 − 𝑅𝑡,𝜃,0 everywhere. The same can be 

done with the equation for 𝐾 in (4.4.6), transforming it to the equation for 𝑁 in 

(4.4.8) and substituting 𝐾𝑡,𝛼,0 = Σ𝑡,−𝛼 − N𝑡,𝛼,0 everywhere. This produces the 

equations of Theorem 4.4.1, which are valid for all relaxing functions corresponding 

to the autocovariance functions Λ and Σ, which finalize the proof. 

The process 

𝑧̅ = 𝑑𝑧𝑡 − 𝐶𝑥̂𝑡𝑑𝑡 − 𝜓𝑡,0
2 𝑑𝑡, 𝑧0̅ = 0, 𝑡 > 0, 

is the innovation process in the filtering problem (4.4.1) and, therefore, it is a 

standard Wiener process. From the first equation in (4.4.7), 

𝜓𝑡,𝜃
1 = ∫ (𝑄𝑠,𝑠−𝑡+𝜃𝐶

𝑇 − 𝐺𝑠,𝑠−𝑡+𝜃,0
𝑇 )𝑑𝑧𝑠̅.

𝑡

max (0,𝑡−𝜃−𝜀)

 

This implies 

𝜓𝑡,0
1 = ∫ (𝑄𝑠,𝑠−𝑡𝐶

𝑇 − 𝐺𝑠,𝑠−𝑡,0
𝑇 )𝑑𝑧𝑠̅.

𝑡

max (0,𝑡−𝜀)

 

Comparing this with (4.4.2), one can see that 𝜓𝑡,0
1  is a WBN generated by the 

innovation process 𝑧̅  and relaxing function 

Ψ𝑡,0
1 = 𝑄𝑡+𝜃,𝜃𝐶

𝑇 − 𝐺𝑡+𝜃,𝜃,0
𝑇 . 

Similarly, 𝜓𝑡,0
2  is a WBN generated by the innovation process 𝑧̅  and relaxing 

function 

Ψ𝑡,0
2 = 𝑀𝑡+𝛼,𝛼𝐶

𝑇 + Σ𝑡+𝛼,−𝛼 −𝑀𝑡+𝛼,𝛼,0
𝑇 . 

Therefore, the WBN KF from Theorem 4.4.1 works in the following way.  The 

equations in (4.4.7) produce two WBN’s 𝜓𝑡,0
1  and 𝜓𝑡,0

2  which effect to the equation in 
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(4.4.3) of the best estimate 𝑥̂𝑡.  One of them effects to the drift in (4.4.3), the other 

one forms the innovation process. The equation in (6) is a modification of the Riccati 

equation of the WN KF.  The system of equations in (4.4.8) serves for relaxing and 

autocovariance functions of 𝜓𝑡,0
1  and 𝜓𝑡,0

2 .  The first two equations in (4.4.8) for 𝑄 

and 𝑀 produce components of the relaxing functions, the next two equations for 𝑅 

and 𝑁 form the autocovariance functions, and the last  equation for 𝐺 produces the 

joint autocovariance function of 𝜓𝑡,0
1  and 𝜓𝑡,0

2 .  Although 𝜑𝑡
1 and 𝜑𝑡

1 are independent 

WBN’s in (4.4.1), the WBN’s 𝜓𝑡,0
1  and 𝜓𝑡,0

2  of the filter are dependent because they 

are generated by the same innovation process. Therefore, the KF from Theorem 4.4.1 

is a nontrivial extension of particular cases from [25, 28, 30] because it additionally 

adjusts the effect of the function G to the filter relating two correlated WBN’s 𝜓𝑡,0
1  

and 𝜓𝑡,0
2 . 

The WBN KF from Theorem 4.4.1 is independent on relaxing functions Φ1and Φ2, 

depends on autocovariance functions 𝛬 and 𝛴 which are exactly the parameters 

available in applications. Therefore, theoretically it is ready for applications if 

respective numerical methods are developed. In this way, no difficulty appears with 

the equations related to 𝜓𝑡,0
1 . The way of overcoming the difficulties related to 

numerical solution of equations for  𝜓𝑡,0
2  is discussed somehow. 

Theorem 4.4.1 has immediate impact to control problems for designing invariant 

optimal controls. As example, consider LQG problem for system corrupted by the 

sum of white and WBN’s. Adding the first equation in (4.4.1) a control action 𝑢, 

consider LQG problem of minimizing the functional  

J(𝑢) = 𝐸 (〈𝑥𝑇
𝑢, 𝐿𝑥𝑇

𝑢〉 + ∫ (〈𝑥𝑇
𝑢, 𝐹𝑥𝑇

𝑢〉 + 〈𝑢𝑡, 𝐻𝑢𝑡〉)𝑑𝑡
𝑇

0
),                         (4.4.9) 

over all square integrable vector-valued controls 𝑢 on [0, 𝑇] subject to  
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{
𝑑𝑥𝑡

𝑢 = (𝐴𝑥𝑡
𝑢 + 𝐷𝑢𝑡 + 𝜑𝑡

1)𝑑𝑡 + 𝐵𝑑𝑤𝑡, 𝑥0
𝑢 = 𝜉, 0 < 𝑡 ≤ 𝑇,

𝑑𝑧𝑡 = (𝐶𝑥𝑡
𝑢 + 𝜑𝑡

2)𝑑𝑡 + 𝑑𝑣𝑡 , 𝑧0 = 0, 0 < 𝑡 ≤ 𝑇,                  
                 (4.4.10) 

where 𝐸 is the expectation. In addition to the conditions of the first section, we 

assume that 𝐷, 𝐹, 𝐻, and 𝐿 are matrices of respective dimensions such that 𝐹 and 𝐿 

are nonnegative and 𝐻 is positive matrices. 

Theorem 4.4.2 (Application to LQG problem) Under the conditions stated in the 

first section of this chapter, the optimal control 𝑢∗ in the LQG problem (4.4.9)-

(4.4.10) is uniquely determined by 

𝑢𝑡
∗ = −𝐻−1𝐷𝑇 (𝐸𝑡𝑥̂𝑡

∗ −∫ 𝒰𝑡−𝜃
∗ 𝐸𝑡−𝜃𝜓𝑡,𝜃

1
0

max(−𝜀,𝑡−𝑇)

𝑑𝜃), 

where, 𝑥̂𝑡
∗ is the optimal trajectory satisfying 

𝑑𝑥̂𝑡
∗ = (𝐴𝑥̂𝑡

∗ + 𝐷𝑢𝑡
∗ + 𝜓𝑡,0

1 )𝑑𝑡 + (𝑃𝑡𝐶
𝑇 +𝑀𝑡,0

𝑇 )(𝑑𝑧𝑡 − 𝐶𝑥̂𝑡
∗𝑑𝑡 − 𝜓𝑡,0

2 𝑑𝑡, 

for 0 < 𝑡 ≤ 𝑇 with the initial condition 𝑥̂0
∗ = 0, 𝐸 is a unique solution of the Riccati 

equation  

𝐸𝑡
′ + 𝐸𝑡𝐴 + 𝐴

𝑇𝐸𝑟 + 𝐹 − 𝐸𝑟𝐷𝐻
−1𝐷𝑇𝐸𝑡 = 0, 0 < 𝑡 ≤ 𝑇, 𝐸𝑇 = 𝐿, 

𝒰𝑡,𝑠 is the transition matrix of  −𝐷𝐻−1𝐷𝑇𝐸𝑡, (𝜓
1, 𝜓2) is a unique solution of the 

system in (4.4.7), 𝑃 is the unique solution of the Riccati equation in (4.4.5), and 

(𝑄,𝑀, 𝑅, 𝑁, 𝐺) is the unique solution of the system in (4.4.8). 

Proof. The optimal control of this theorem was derived in terms of functions defined 

by (5)-(7) in [30], which are in non-invariant form. Applying the transition of the 

equations in (5) and (7) to equations (4.4.7) and (4.4.8), respectively, we easily 

obtain these formulae in the preceding invariant form. 
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Chapter 5 

5 INVARIANT KF FOR CORRELATED WBN’S 

5.1 Introduction and Motivation 

In this chapter a complete set of invariant equations for KF for a linear signal-

observation system corrupted by correlated WBN is introduced. In fact, the result 

here generalizes all cases in the previous chapter with some particular assumptions. 

This filter has a ready form to be used in application, just respective numerical 

methods must be developed. 

In this chapter, we assume all the conditions in section 4.1, particularly, we define 

the WBN 𝜙𝑡 as 

𝜙𝑡 = ∫
1

𝜀

𝑡

𝑡−𝜀
𝑑𝑣𝑠 ,                                                    (5.1.1) 

we have 

Λ𝜃 = 𝑐𝑜𝑣(𝜙𝑡+𝜃, 𝜙𝑡) = Ε(𝜙𝑡+𝜃𝜙𝑡) =
𝐼(𝜀 − 𝜃)

𝜀2
≠ 0, 

where 𝑣 is a Wiener process (for simplicity, one dimensional). If 0 < 𝜃 ≤ 𝜀, and 

𝑐𝑜𝑣(𝜙𝑡+𝜃, 𝜙𝑡) = 0 if 𝜃 > 𝜀. Therefore, 𝜙 is a WBN and Λ is its autocovariance 

function. 

This motivates us to consider WBN’s in real processes as an “uncompleted 

derivative” in the form of (5.1.1) of Wiener processes. In the cases when ε is a 

sufficiently small, 𝜙 and 𝑣′are very close to each other and, respectively, 



 

75 

mathematical methods for the WN 𝑣′ reflect the reality with more or less acceptable 

accuracy. But, for more adequate mathematical results (for example, serving the 

issues such as precise tracking satellites for improvement of GPS precision), WBN’s 

with representation in (5.1.1) should be handled. 

Equation (5.1.1) should be modified with replacement of 𝑡 − 𝜀 by max(0, 𝑡 − 𝜀 ) 

because WP’s are observed starting some initial instant that is ordinarily taken to be 

zero. More generally, the constant integrand in (5.1.1) can be taken vector-valued 

and dependent on two time arguments. In the sequel we consider WBN’s in the form 

𝜑𝑡 = ∫ Φ𝑡,𝑠−𝑡
𝑡

𝑚𝑎𝑥(0,𝑡−𝜀)
𝑑𝑤𝑠, 𝑡 ≥ 0,                            (5.1.2) 

𝑤 is a vector-valued standard Wiener process, and Φ is a matrix-valued non-random 

function on [0,∞] × [−𝜀, 0]. Here  and  below  we do not specify the dimensions of 

vectors and matrices assuming that they are finite-dimensional and consistent to each 

other. 

The covariance calculation formula for stochastic integrals   implies that 𝜑,   defined   

by  (5.1.2),   has the autocovariance function 

Λ𝑡,𝜃 = 𝑐𝑜𝑣(𝜑𝑡+𝜃, 𝜑𝑡) = ∫ Φ𝑡+𝜃,𝑠−𝑡−𝜃Φ
𝑇
𝑡,𝑠−𝑡𝑑𝑠 ≠ 0

𝑡

max (0,𝑡−𝜃−𝜀)
,               (5.1.3) 

if 0 < 𝜃 ≤ 𝜀, and Λ𝑡,𝜃 = 0 if 𝜃 ≥ 0. Therefore, it is a WBN. We regard equation 

(5.1.2) as an integral representation of 𝜑 and the function Φ as a relaxing (damping) 

function of 𝜑. It is seen that 𝜑 becomes stationary on [𝜀,∞) if Φ is independent on 

its first argument. In this case  

Λ𝑡,𝜃 = ∫ Φ𝑠−𝜃Φ𝑠
𝑇𝑑𝑠,

0

max (−𝑡,𝜃−𝜀)
                                      (5.1.4) 

implying Λ𝑡,𝜃 = Λ𝜃 if 𝑡 ≥ 𝜀. 
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The formula in (5.1.2) presents the WBN 𝜑 as a distributed delay of the WN 𝑤′. We 

can think that for some reasons, the WN 𝑤′ has an aftereffect to a system on time 

intervals of the length 𝜀. The relaxing function Φ smoothly relaxes the aftereffect. 

Therefore, it becomes natural to assume that Φ is differentiable and Φ𝑡,−𝜀 = 0.  In 

the sequel, these conditions will be imposed to relaxing functions. 

A few scenarios of the aftereffects in specific areas are as follows:  

 In a satellite communication, the basic sources creating noises are water 

vapors and radioactive particles in the higher layers of atmosphere. The 

density of the water vapor and the intensity of radioactive particles do not 

change momentarily, they are subjected to change during some time interval. 

Once affecting to a signal, they continue to affect till the atmospheric 

conditions and radioactivity change. This should create aftereffects of the 

initial effects. 

  Financial markets are stochastic due to noise sources accumulated from 

unexpected changes in social and natural environments which do not change 

immediately. For example, the September 11 attacks had a significant impact 

to the stock markets over the world and had the aftereffect during some time 

interval. 

 A quantization produces a partial loss of information, creating a quantization 

noise, commonly modeled as a WN.  In a quantization of a continuously 

differentiable signals, a noise should have an aftereffect since, for example, a 

positive derivative at some quantization instant continues to be positive on 

some time interval and creates a correlation of the values of quantization 

noise within this time interval. 
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 The concept of a WN originates from the Brownian motion (a movement of a 

suspended particle in a liquid or a gas). This movement is probably an 

example of “mostly white” noise although it is not completely white. This   is 

because a suspended particle has a constant speed within tiny time intervals 

between every two consequent collisions and, therefore, the derivative of the 

(real) Brownian motion is auto correlated within these tiny intervals. 

These scenarios demonstrate that in a majority of cases the WN model of real noises 

is a simplified (although important) ideal version of a WBN model. The 

mathematical results for WN’s can be deduced from the results for WBN’s as   a 

limiting case. This allows us to deduce a KF for systems with point wise delayed 

WN’s [28, 29] which is not covered by the classical KF. 

5.2 Invariance 

In modeling real processes, WBN’s are detected just by autocovariance and also 

cross- covariance functions. They are obtained as a result of estimation (commonly, 

by use of time series analysis) of large data. This is similar to estimation of 

covariance and correlation matrices in the WN KF model. Commonly, such 

estimations decrease the level of adequacy of the model. But, a discussion of this 

issue does not belong to the aim of this chapter, in which we assume that the 

respective autocovariance and cross-covariance functions are given readily. 

There is another issue that also effects to the adequacy of the filtering model. In the 

one-dimensional stationary case, it is shown in [30, 31] that for a given positive 

definite function Λ, there are infinitely many relaxing functions Φ producing 

infinitely many WBN’s with the same autocovariance function  Λ. If two WBN’s 
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𝜑 1and 𝜑2 are given by autocovariance functions Λ and Σ and also by cross- 

covariance function Π, then still there are many pairs of relaxing functions (Φ 1, Φ2). 

Therefore, modeling of WBN’s in the integral form requires making a proper 

selection among infinitely many pairs of relaxing functions. This raises an 

importance of obtaining the results which are independent on the infinite variations 

of relaxing functions, but dependent on the unique autocovariance and cross 

covariance functions. This type of results are called invariant results. 

5.3 Setting of the Problem 

Consider the partially observable linear system 

{
𝑑𝑥𝑡 = (𝐴𝑥𝑡 + 𝜑𝑡

1)𝑑𝑡 + 𝐵𝑑𝑢𝑡,   𝑥0 = 𝜉, 𝑡 > 0 ,          

𝑑𝑧𝑡 = (𝐶𝑥𝑡 +𝜑𝑡
2)𝑑𝑡 + 𝑑𝑣𝑡 ,   𝑧0 = 0  𝑡 > 0,               

                    (5.3.1) 

where 𝑥 and 𝑧 are vector-valued signal and observation processes, 𝐴, 𝐵 and 𝐶 are  

matrices, 𝜉 is a vector-valued GRV with 𝐸𝜉 = 0, 𝑢 and 𝑣 are standard Wiener 

processes. We assume that 𝜑 1and 𝜑2 are WBN’s accepting the integral 

representations 

𝜑𝑡
1 = ∫ Φ𝑠−𝑡

1 𝑑𝑤𝑠
𝑡

max (0,𝑡−𝜀)
, 𝑡 ≥ 0,                                (5.3.2) 

and  

  𝜑𝑡
2 = ∫ Φ𝑠−𝑡

2 𝑑𝑤𝑠
𝑡

max (0,𝑡−𝜀)
, 𝑡 ≥ 0,                                (5.3.3) 

where Φ1 and Φ2 are unknown differentiable relaxing functions with square 

integrable derivatives, satisfying Φ−𝜀
1 = 0 and Φ−𝜀

2 = 0. Instead, the autocovariance 

functions Λ𝑡,𝜃 and Σ𝑡,𝛼 of φ1 and φ2, respectively, together with the cross-covariance 

functionΠ𝑡,𝜃 are known. The random variable 𝜉 and processes 𝑢, 𝑣 and 𝑤 are 

assumed to be mutually independent. The dimensions of matrices and vectors are not 

specified considering that they are consistent. In this chapter, the aim is to derive the 
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invariant results for the best least square estimate 𝐸(𝑥𝑡|𝑧𝑠, 0 ≤ 𝑠 ≤ 𝑡). This will be 

called the filtering problem (5.3.1). 

According to (5.1.4), the following relations hold  

Λ𝑡,𝜃 = 𝑐𝑜𝑣(𝜑𝑡+𝜃
1 , 𝜑𝑡

1) = ∫ Φ𝑠−𝜃
1 Φ𝑠

1𝑇𝑑𝑠,
0

max (−𝑡,𝜃−𝜀)
                     (5.3.4) 

Σ𝑡,𝜃 = 𝑐𝑜𝑣(𝜑𝑡+𝜃
2 , 𝜑𝑡

2) = ∫ Φ𝑠−𝜃
2 Φ𝑠

2𝑇𝑑𝑠,
0

max (−𝑡,𝜃−𝜀)
                     (5.3.5) 

Π𝑡,𝜃 = 𝑐𝑜𝑣(𝜑𝑡+𝜃
2 , 𝜑𝑡

1) = ∫ Φ𝑠−𝜃
2 Φ𝑠

1𝑇𝑑𝑠,
0

max (−𝑡,𝜃−𝜀)
                     (5.3.6) 

where 𝑡 ≥ 0 and  −𝜀 ≤ 𝜃 ≤ 0. As it was mentioned in section (5.2), the knowledge 

of Λ, Σ, and Π does not imply a unique pair (Φ1, Φ2). There are infinitely many such 

pairs. The essence of the invariant KF for the problem (5.3.1) consists of finding its 

equations in terms of Λ, Σ, and Π and demonstrating that these equations do not 

change for different pairs (Φ1, Φ2). 

5.4 Invariant KF for a Linear Signal Measurements System 

Corrupted by Correlated WBN’s 

The following theorem states the main result of this chapter. 

Theorem 5.4.1 Under the conditions stated in the previous section, there exist a 

unique solution (𝑃, 𝑄,𝑀, 𝑅, 𝑁, 𝑆) of the system consisting of the Riccati equation  

𝑃′𝑡 = 𝐴𝑃𝑡 + 𝑃𝑡𝐴
𝑇 + 𝑄𝑡,0 + 𝑄𝑡,0

𝑇 + 𝐵𝐵𝑇 − (𝑃𝑡𝐶
𝑇 +𝑀𝑡,0

𝑇 ) 

    × (𝐶𝑃𝑡 +𝑀𝑡,0), 𝑃0 = 𝑐𝑜𝑣 𝜉, 𝑡 >  0,                                     (5.4.1) 

and the PDE’s 
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{
 
 
 
 
 

 
 
 
 
 (

𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
)𝑄𝑡,𝜃 = 𝑄𝑡,𝜃𝐴

𝑇 + Λ𝑡,−𝜃 − 𝑅𝑡,𝜃,0 − (𝑄𝑡,𝜃𝐶
𝑇 + Π𝑡,−𝜃

𝑇 − 𝑆𝑡,𝜃,0
𝑇 )(𝐶𝑃𝑡 +𝑀𝑡,0),

(
𝜕

𝜕𝑡
+
𝜕

𝜕𝛼
)𝑀𝑡,𝛼 = 𝑀𝑡,𝛼𝐴

𝑇 + Π𝑡,−𝛼 − 𝑆𝑡,𝛼,0 − (𝑀𝑡,𝛼𝐶
𝑇 + Σ𝑡,−𝛼−𝑁𝑡,𝛼,0)(𝐶𝑃𝑡 +𝑀𝑡,0),

(
𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
+
𝜕

𝜕𝜏
)𝑅𝑡,𝜃,𝜏 = (𝑄𝑡,𝜃𝐶

𝑇 + Π𝑡,−𝜃
𝑇 − 𝑆𝑡,𝜃,0

𝑇 )(𝐶𝑄𝑡,𝜏
𝑇 + Π𝑡,−𝜏 − 𝑆𝑡,𝜏,0),                  

(
𝜕

𝜕𝑡
+
𝜕

𝜕𝛼
+
𝜕

𝜕𝜎
)𝑁𝑡,𝛼,𝜎 = (𝑀𝑡,𝛼𝐶

𝑇 + Σ𝑡,−𝛼 − 𝑁𝑡,𝛼.0)(𝐶𝑀𝑡,𝜎
𝑇 + Σ𝑡,−𝜎

𝑇 − 𝑁𝑡,𝜎,0
𝑇 ),              

 

(
𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
+
𝜕

𝜕𝛼
) 𝑆𝑡,𝛼,𝜃 = (𝑀𝑡,𝛼𝐶

𝑇 + Σ𝑡,−𝛼 − 𝑁𝑡,𝛼.0)(𝐶𝑄𝑡,𝜃
𝑇 +Π𝑡,−𝜏 − 𝑆𝑡,𝜃,0),                 

 

… (5.4.2) 

with the zero initial and boundary conditions 

{
 
 

 
 
𝑄0,𝜃 = 𝑄𝑡,−𝜀 = 0, 𝑡 ≥ 0, 𝜃 ∈ [−𝜀, 0],                           

𝑀0,𝛼 = 𝑀𝑡,−𝜀 = 0, 𝑡 ≥ 0, 𝛼 ∈ [−𝜀, 0],                          

𝑅0,𝜃,𝜏 = 𝑅𝑡,−𝜀,𝜏 = 𝑅𝑡,𝜃,−𝜀 = 0, 𝑡 ≥ 0, 𝜃, 𝜏 ∈ [−𝜀, 0],

𝑁0,𝛼,𝜎 = 𝑁𝑡,−𝜀,𝜎 = 𝑁𝑡,𝛼,−𝜀 = 0, 𝑡 ≥ 0, 𝛼, 𝜎 ∈ [−𝜀, 0],

𝑆0,𝛼,𝜃 = 𝑆𝑡,−𝜀,𝜃 = 𝑆𝑡,𝛼,−𝜀 = 0, 𝑡 ≥ 0, 𝛼, 𝜃 ∈ [−𝜀, 0],

 

for this solution, there exist a unique solution (𝑥̂, 𝜓1, 𝜓2) of the system consisting of 

the linear stochastic ordinary 

𝑑𝑥̂𝑡 = (𝐴𝑥̂𝑡 + 𝜓𝑡,0
1 ) + (𝑃𝑡𝐶

𝑇 +𝑀𝑡,0
𝑇 )𝑑𝑧𝑡̅, 𝑥̂0 = 0, 𝑡 > 0,                (5.4.3) 

and partial 

{
(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
)𝜓𝑡,𝜃

1 𝑑𝑡 = (𝑄𝑡,𝜃𝐶
𝑇 + Π𝑡,−𝜃

𝑇 − 𝑆𝑡,𝜃,0
𝑇 )𝑑𝑧𝑡̅,

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝛼
)𝜓𝑡,𝛼

2 𝑑𝑡 = (𝑀𝑡,𝛼𝐶
𝑇 + Σ𝑡,−𝛼 − 𝑁𝑡,𝛼,0

𝑇 )𝑑𝑧𝑡̅,
                   (5.4.4)  

DE’s with zero initial and boundary conditions  

{
𝜓0,𝜃
1 = 𝜓𝑡,−𝜀

1 = 0,𝜓0,𝛼
2 = 𝜓𝑡,−𝜀

2 = 0,

𝑡 ≥ 0, 𝜃, 𝛼 ∈ [−𝜀, 0],                             
 

where 𝑧̅ is defined by 

𝑑𝑧𝑡̅ = 𝑑𝑧𝑡 − 𝐶𝑥̂𝑡𝑑𝑡 − 𝜓𝑡,0
2 , 𝑡 > 0, 𝑧0̅ = 0.                          (5.4.5) 

The process 𝑥̂ equals to the best least square estimate in the filtering problem (5.3.1) 

and has the error of estimation 𝑒𝑡 = 𝐸‖𝑥̂𝑡 − 𝑥𝑡‖ = 𝑡𝑟𝑃𝑡. 
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Proof. This consists of two major steps. The first and most time consuming step has 

already been done in [36]. Since the WBN’s 𝜑1 and 𝜑2 accept integral 

representations, we can represent them as in (5.3.2)–(5.3.3) for some pair of relaxing 

functions (Φ1, Φ2) which are related to the autocovariance and cross-covariance 

functions Λ, Σ, and Π as in (5.3.4)–(5.3.6). In [36] it is proved that Theorem 5.4.1 

holds if the system of equations (5.4.2) is replaced by 

{
 
 
 
 

 
 
 
 (

𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
)𝑄𝑡,𝜃 = 𝑄𝑡,𝜃𝐴

𝑇 + 𝐹𝑡,𝜃,0 − (𝑄𝑡,𝜃𝐶
𝑇 + 𝐺𝑡,𝜃,0

𝑇 )(𝐶𝑃𝑡 +𝑀𝑡,0),       

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝛼
)𝑀𝑡,𝛼 = 𝑀𝑡,𝛼𝐴

𝑇 + 𝐺𝑡,𝛼,0 − (𝑀𝑡,𝛼𝐶
𝑇 + 𝐾𝑡,𝛼,0)(𝐶𝑃𝑡 +𝑀𝑡,0),    

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
+

𝜕

𝜕𝜏
)𝐹𝑡,𝜃,𝜏 = Φ𝜃

1Φ𝜏
1𝑇 − (𝑄𝑡,𝜃𝐶

𝑇 + 𝐺𝑡,𝜃,0
𝑇 )(𝐶𝑄𝑡,𝜏

𝑇 + 𝐺𝑡,𝜏,0),    

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝛼
+

𝜕

𝜕𝜎
)𝐾𝑡,𝛼,𝜎 = Φ𝛼

2Φ𝜎
2𝑇 − (𝑀𝑡,𝛼𝐶

𝑇 + 𝐾𝑡,𝛼.0)(𝐶𝑀𝑡,𝜎
𝑇 + 𝐾𝑡,𝜎,0

𝑇 ),
 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
+

𝜕

𝜕𝛼
) 𝑆𝑡,𝛼,𝜃 = Φ𝛼

2Φ𝜃
1𝑇 − (𝑀𝑡,𝛼𝐶

𝑇 +𝐾𝑡,𝛼.0)(𝐶𝑄𝑡,𝜃
𝑇 + 𝐺𝑡,𝜃,0),   

      (5.4.6) 

with the initial and boundary conditions  

{
 
 

 
 
𝑄0,𝜃 = 𝑄𝑡,−𝜀 = 0, 𝑡 ≥ 0, 𝜃 ∈ [−𝜀, 0],                           

𝑀0,𝛼 = 𝑀𝑡,−𝜀 = 0, 𝑡 ≥ 0, 𝛼 ∈ [−𝜀, 0],                          

𝐹0,𝜃,𝜏 = 𝐹𝑡,−𝜀,𝜏 = 𝐹𝑡,𝜃,−𝜀 = 0, 𝑡 ≥ 0, 𝜃, 𝜏 ∈ [−𝜀, 0],

𝐾0,𝛼,𝜎 = 𝐾𝑡,−𝜀,𝜎 = 𝐾𝑡,𝛼,−𝜀 = 0, 𝑡 ≥ 0, 𝛼, 𝜎 ∈ [−𝜀, 0],

𝐺0,𝛼,𝜃 = 𝐺𝑡,−𝜀,𝜃 = 𝐺𝑡,𝛼,−𝜀 = 0, 𝑡 ≥ 0, 𝛼, 𝜃 ∈ [−𝜀, 0],

 

and (5.4.3) by 

{
(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜃
)𝜓𝑡,𝜃

1 𝑑𝑡 = (𝑄𝑡,𝜃𝐶
𝑇 + 𝐺𝑡,𝜃,0

𝑇 )𝑑𝑧𝑡̅,

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝛼
)𝜓𝑡,𝛼

2 𝑑𝑡 = (𝑀𝑡,𝛼𝐶
𝑇 + 𝐾𝑡,𝛼,0

𝑇 )𝑑𝑧𝑡̅,
                       (5.4.7) 

with the same zero initial and boundary conditions.  

 Shortly, this was proved by reduction of the system (5.3.1) to an ∞-dimensional 

system with the new state process 

𝑥̃𝑡 = [

𝑥𝑡
𝜑̃𝑡
1

𝜑̃𝑡
2
], 
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corrupted only by WN’s. A crucial role here are played by the integral 

representations in (5.3.2)–(5.3.4), which represent the WBN’s 𝜑1 and 𝜑2 as a 

distributed delays of a WN. The equations in (5.4.3)–(5.4.4) are deduced on the basis 

of the equations for the components of 𝑥̂̃. Since the state space is enlarged, the 

solution of the respective operator Riccati equation became in the form 

[

𝑃𝑡 𝑄̃𝑡
𝑇 𝑀̃𝑡

𝑇

𝑄̃𝑡 𝐹̃𝑡 𝐺̃𝑡
𝑇

𝑀̃𝑡 𝐺̃𝑡 𝐾̃𝑡

], 

in which 𝑄̃𝑡
𝑇, 𝑀̃𝑡

𝑇, 𝐹̃𝑡, 𝐾̃𝑡, and 𝐺̃𝑡
𝑇 are integral operators. In fact, the solutions 𝑄, 𝑀, 𝐹, 

𝐾, and 𝐺 of the equations in (5.4.6) are the kernels (or adjoints of kernels) of these 

integral operators. The existence and uniqueness of solutions of these equations are 

immediate consequence of the same in the ∞-dimensional case. All these are realized 

in [36] by use of the WN KF in Hilbert spaces and methods of functional analysis. 

As a result, it produced KF for the problem (5.3.1) in the non-invariant form since 

(5.4.6) includes unknown relaxing functions Φ1 and Φ2. 

The second step, which we are going to realize here, consists of demonstration that 

(5.4.6) can be replaced by (5.4.2) and (5.4.7) by (5.4.4). For this, introduce new 

functions 𝐷, 𝐸, and 𝐻 as the solutions of the equations 

{
 
 

 
 (

𝜕

𝜕𝑡
+
𝜕

𝜕𝜃
+
𝜕

𝜕𝜏
)𝐷𝑡,𝜃,𝜏 = Φ𝜃

1Φ𝜏
1𝑇 ,

(
𝜕

𝜕𝑡
+
𝜕

𝜕𝛼
+
𝜕

𝜕𝜎
)𝐸𝑡,𝛼,𝜎 = Φ𝛼

2Φ𝜎
2𝑇 ,

(
𝜕

𝜕𝑡
+
𝜕

𝜕𝛼
+
𝜕

𝜕𝜃
)𝐻𝑡,𝛼,𝜃 = Φ𝛼

2Φ𝜃
1𝑇 ,

 

with the initial and boundary conditions  

{

𝐷0,𝜃,𝜏 = 𝐷𝑡,−𝜀,𝜏 = 𝐷𝑡,𝜃,−𝜀 = 0, 𝑡 ≥ 0, 𝜃, 𝜏 ∈ [−𝜀, 0],

𝐸0,𝛼,𝜎 = 𝐸𝑡,−𝜀,𝜎 = 𝐸𝑡,𝛼,−𝜀 = 0, 𝑡 ≥ 0, 𝛼, 𝜎 ∈ [−𝜀, 0],

𝐻0,𝛼,𝜃 = 𝐻𝑡,−𝜀,𝜃 = 𝐻𝑡,𝛼,−𝜀 = 0, 𝑡 ≥ 0, 𝛼, 𝜃 ∈ [−𝜀, 0].
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It is seen that 𝐷𝑡,𝜃,𝜏 has the representation  

𝐷𝑡,𝜃,𝜏 = ∫ Φ𝑠−𝑡+𝜃
1 Φ𝑠−𝑡+𝜏

1𝑇 𝑑𝑠.
𝑡

max (0,𝑡−𝜃−𝜀,𝑡−𝜏−𝜀)

 

Using (5.3.4), we obtain 

𝐷𝑡,𝜃,0 = ∫ Φ𝑠−𝑡+𝜃
1 Φ𝑠−𝑡

1𝑇 𝑑𝑠 = Λ𝑡,−𝜃.
𝑡

max (0,𝑡−𝜃−𝜀)

 

Let 𝑅𝑡,𝜃,𝜏 = 𝐷𝑡,𝜃,𝜏 − 𝐹𝑡,𝜃,𝜏. Then  

𝑅𝑡,𝜃,0 = Λ𝑡,−𝜃 − 𝐹𝑡,𝜃,0. 

In similar manner, letting 𝑁𝑡,𝛼,𝜎 = 𝐸𝑡,𝛼,𝜎 − 𝐾𝑡,𝛼,𝜎, 𝑆𝑡,𝛼,𝜃 = 𝐻𝑡,𝛼,𝜃 − 𝐺𝑡,𝛼,𝜃, and using 

(5.3.5)-(5.3.6), we obtain 

𝑁𝑡,𝛼,0 = Σ𝑡,−𝛼 − 𝐾𝑡,𝛼,0, 

and 

𝑆𝑡,𝛼,0 = Π𝑡,−𝛼 − 𝐺𝑡,𝛼,0. 

So, changing (𝐹, 𝐾, 𝐺) to (𝑅, 𝑁, 𝑆), we see that the equations in (5.4.6) and (5.4.7) 

can be replaced by the equations in (5.4.2) and (5.4.4). Since the equations in (5.4.1)-

(5.4.5) are independent on Φ1 and Φ2, 𝑥̂ from (5.4.3) is the best estimate for all 

WBN’s 𝜑1 and 𝜑2 which accept integral representations and have the 

autocovariance functions Λ and Σ, respectively, and the cross-covariance function Π. 

This proves the theorem.  

The WN KF consists of two equations for the best estimate 𝑥̂ and the Riccati 

equation. In the case of additional WBN’s  as they appear in (5.3.1), these equations 

need adjustment to produce the best estimate. The additional equations in (5.4.4) and 

(5.4.2) are for this adjustment. 
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 The process 𝑧̅ defined by (5.4.5) is the innovation process in the filtering problem 

(5.3.1), therefore, it is a standard Wiener process. From the first equation in (5.4.4), 

𝜓𝑡,𝜃
1 = ∫ (𝑄𝑠,𝑠−𝑡+𝜃𝐶

𝑇 + Π𝑠,𝑡−𝑠−𝜃
𝑇 −𝑆𝑠,𝑠−𝑡+𝜃,0

𝑇 )𝑑𝑧𝑠̅.
𝑡

max (0,𝑡−𝜃−𝜀)

 

This implies 

𝜓𝑡,0
1 = ∫ (𝑄𝑠,𝑠−𝑡𝐶

𝑇+Π𝑠,𝑡−𝑠
𝑇 − 𝑆𝑠,𝑠−𝑡,0

𝑇 )𝑑𝑧𝑠̅.
𝑡

max (0,𝑡−𝜀)

 

Comparing this with (4.4.2), one can see that 𝜓𝑡,0
1  is a non-stationary WBN generated 

by the innovation process 𝑧̅  and relaxing function 

Ψ𝑡,𝜃
1 = 𝑄𝑡+𝜃,𝜃𝐶

𝑇+Π𝑡+𝜃,−𝜃
𝑇 − 𝑆𝑡+𝜃,𝜃,0

𝑇 . 

Similarly, 𝜓𝑡,0
2  is a non-stationary WBN generated by the innovation process 𝑧̅  and 

relaxing function 

Ψ𝑡,𝛼
2 = 𝑀𝑡+𝛼,𝛼𝐶

𝑇 + Σ𝑡+𝛼,−𝛼 − 𝑁𝑡+𝛼,𝛼,0
𝑇 . 

Next, the third equation in (5.4.2) has the representation  

𝑅𝑡,𝜃,𝜏 = ∫ Ψ𝑡−𝜃,𝑠−𝑡+𝜃
1 Ψ𝑠−𝜏,𝑠−𝑡+𝜏

1𝑇
𝑡

max (0,𝑡−𝜃−𝜀,𝑡−𝜏−𝜀)

𝑑𝑠. 

Using the definition of the autocovariance function, the previous equation becomes  

𝑅𝑡,𝜃,𝜏 = ∫ Φ𝑠−𝜃,𝑠−𝑡+𝜃
1 Φ𝑡,𝑠−𝑡

1𝑇
𝑡

max(0,𝑡−𝜃−𝜀)

𝑑𝑠 = Λ𝑡,−𝜃. 

Comparing this with (5.1.3) we see that 𝑅𝑡,𝜃,0 is the autocovariance function of the 

WBN 𝜓𝑡,0
1 . In a similar way, 𝑁𝑡,𝛼,0 is the autocovariance function of the WBN 𝜓𝑡,0

2  

and 𝑆𝑡,𝛼,0 is the cross-covariance function of the WBN’s 𝜓𝑡,0
2  and 𝜓𝑡,0

1 .  

Resuming, the WBN KF from Theorem 5.4.1 works in the following way: 
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 The equations in (5.4.4) produce two WBN’s 𝜓𝑡,0
2  and 𝜓𝑡,0

1  which effect to 

the equation in (5.4.3) of the best estimate 𝑥̂𝑡. The first oneeffects to the drift 

in (5.4.3), the other one forms the innovation process given by (5.4.5). 

 The equation in (5.4.1) is a modification of the Riccati equation of the WN 

KF and it provides the mean square error of estimation. 

 The first two equations in (5.4.2) for 𝑄 and 𝑀 produce components of the 

relaxing functions of 𝜓𝑡,0
2  and 𝜓𝑡,0

1 . 

 The next two equations in (5.4.2) for 𝑅 and 𝑁 form the autocovariance 

functions of  𝜓𝑡,0
2  and 𝜓𝑡,0

1  . 

 The last equation in (5.4.2) for 𝑆 produces the cross-covariance function of  

𝜓𝑡,0
2  and 𝜓𝑡,0

1  . 

The WBN KF from Theorem 5.4.1 is independent on relaxing functions Φ1 and Φ2, 

it depends on autocovariance functions Λ and Σ and the cross-covariance function Π, 

which are exactly the parameters available in applications. This implies that the 

autocovariance and cross-covariance functions of disturbing WBN’s are sufficient 

for the filter from Theorem 5.4.1. 

 Finally, some remarks about the wideness of the invariance of the filter from 

Theorem 5.4.1 are made. In [34] it is proved that the invariance of the signal WBN 

𝜑1 can be extended (at least in a special case) to all square integrable relaxing 

functions Φ1. But its proof method is not extendable to the invariance of the 

observation WBN 𝜑2, which still remains within differentiable relaxing functions 

Φ2. with square integrable derivatives and Φ−𝜀
2 = 0. While it is questionable, it may 

be possible the existence of WBN’s which have a given autocovariance function but 

no integral representation. Mathematically, the invariance of the filter from Theorem 
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5.4.1 does not cover such WBN’s. Although it is not proved yet, we think that 

Theorem 5.4.1 extends to them (if exits any) as well. But ordinary logic says that, if 

there is no any argument about selection of a WBN with a given autocovariance 

function, why not to choose that one (or ones) with which everything goes well. 

5.5 Numerical Aspects 

Theorem 5.4.1 carries into practice a long term mathematical investigations on 

estimation under WBN’s. Therefore, it is appropriate sketching a skim, 

demonstrating how the filter from Theorem 5.4.1 can be numerically realized. 

 Once, it should be noted that the filter from Theorem 5.4.1 produces the best least 

square estimate. Therefore, any simplification of the WBN’s 𝜑1 and 𝜑2 by some 

WN’s with further application of the WN KF is obligated to produce a less adequate 

estimate.  

Next, the filter from Theorem 5.4.1 is ready for applications since its equations 

depend on the system parameters 𝐴, 𝐵, 𝐶 as well as the autocovariance and cross-

covariance functions Λ,  Σ and Π, which are available in applied problems. On the 

first hand, the equations in (5.4.1)–(5.4.5) may look complicated from 

computationally. But, they are a bit suitable for calculations. The equations in (5.4.1) 

and (5.4.2) are deterministic. Therefore, they can be solved numerically beforehand 

and stored somewhere in a computer. The equations in (5.4.3)–(5.4.5) are stochastic. 

These equations transform the observation process 𝑧  (input) to the best estimate 

process 𝑥̂ (output). The processes  𝜓1 and 𝜓2 from (5.4.4) and 𝑧̅ from (5.4.5) are just 

steps from the input toward to the output. Therefore, the main equation of the best 

estimate 𝑥̂ in (5.4.3) could be solved depending on these stored data and timely 

available measurements. 
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 In fact, the same numerical scheme can be applied to (5.4.3)–(5.4.5) and (5.4.1)–

(5.4.2). The distinction is just in the number of equations and arguments. Therefore, 

we will just work on this for simple equations in (5.4.3)–(5.4.5). 

convert the continuous argument t to discrete by considering  

0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 < ⋯, 

and do the same for 𝜃 and 𝛼 by consisting  

−𝜀 = 𝜃𝑙 < 𝜃𝑙−1 < ⋯ < 𝜃𝑚 < ⋯ < 𝜃0 = 0, 

−𝜀 = 𝛼𝑙 < 𝛼𝑙−1 < ⋯ < 𝛼𝑘 < ⋯ < 𝛼0 = 0. 

For simplicity, assume that 

𝑡𝑛+1 − 𝑡𝑛 = 𝜃𝑚 − 𝜃𝑚+1 = 𝛼𝑘 − 𝛼𝑘+1 = ℎ, 

for all 𝑛 = 0, 1, 2, … ,𝑚, 𝑘 = 0, 1, … , 𝑙 − 1. Denote  

𝑈𝑡 = 𝑃𝑡𝐶
𝑇 +𝑀𝑡,0

𝑇 , 

𝑉𝑡,𝜃 = 𝑄𝑡,𝜃𝐶
𝑇 + Π𝑡,−𝜃

𝑇 − 𝑆𝑡,𝜃,0
𝑇 , 

𝑊𝑡,𝛼 = 𝑀𝑡,𝛼𝐶
𝑇 + Σ𝑡,−𝛼 − 𝑁𝑡,𝛼,0, 

Assuming that Σ and Π are given autocovariance and cross-covariance functions, 

related to the WBN’s  𝜑1 and 𝜑2, and (𝑃, 𝑄,𝑀,𝑁, 𝑆) is numerically calculated as a 

solution of (5.4.1)-(5.4.2) and stored in a computer. Implicitly, (𝑈, 𝑉,𝑊) depends on 

Λ and 𝑅 as well while they do not appear in the preceding equations. Then (5.4.3) 

can be written as 

𝑥̂𝑡
′ = (𝐴 − 𝑈𝑡𝐶)𝑥̂𝑡 + 𝜓𝑡,0

1 − 𝑈𝑡𝜓𝑡,0
2 + 𝑈𝑡𝑧𝑡

′. 

Again, for simplicity, let 

𝑥̂𝑛 = 𝑥̂𝑡𝑛 , 𝑧𝑛
′ = 𝑧𝑡𝑛

′ , 𝜓𝑛,𝑚
1 = 𝜓𝑡𝑛,𝜃𝑚

1 , 𝜓𝑛,𝑘
2 = 𝜓𝑡𝑛,𝛼𝑘

2 , 𝑈𝑛 = 𝑈𝑡𝑛, 𝑉𝑛,𝑚 = 𝑉𝑡𝑛,𝜃𝑚 , 

𝑊𝑛,𝑘 = 𝑊𝑡𝑛,𝛼𝑘. 

Then using 
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𝑥̂𝑛+1
′ ≈

𝑥̂𝑛+1 − 𝑥̂𝑛
ℎ

, 

the equation in (5.4.3) is converted to discrete form  

𝑥̂𝑛+1 = 𝑥̂𝑛 + ℎ[(𝐴 − 𝑈𝑛𝐶)𝑥̂𝑛 + 𝜓𝑛,0
1 − 𝑈𝑛𝜓𝑛,0

2 + 𝑈𝑛𝑧𝑛
′ ], 𝑥̂0 = 0.          (5.4.8) 

Here the input of the filter is 𝑧𝑛
′ . Therefore, we need only to determine formulae for 

𝜓𝑡,0
1  and  𝜓𝑡,0

2  such that 𝑥̂𝑛+1 can be calculated on the basis of 𝑥̂𝑛. It can be fulfilled 

in 2𝑙 steps by discretization of the equations in (5.4.4), note that the number of those 

steps decreases to 2𝑛 if 0 ≤ 𝑛 ≤ 1. 

 For this, let 𝑖 and 𝑗 be unit vectors in the + directions of the 𝑡-axis and 𝜌-axis. Now, 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝜌
)𝜓𝑡,𝜌 is a directional derivative of 𝜓 in the direction of summation vector  

𝑖 + 𝑗 on the 𝑡𝜌-plane. Therefore, we can let 

(
𝜕

𝜕𝑡
+
𝜕

𝜕𝜌
)𝜓𝑛,𝑖 ≈

𝜓𝑛,𝑖 − 𝜓𝑛−1,𝑖+1

ℎ√2
, 

where  𝜓 is either 𝜓1  or  𝜓2 , 𝜌 is either 𝜃 or 𝛼, and 𝑖 is either 𝑚 or 𝑘. On this basis, 

the first equation in (5.4.4) can be discretized as 

𝜓𝑛,𝑚
1 = 𝜓𝑛−1,𝑚+1

1 + ℎ√2𝑉𝑛−1,𝑚+1(𝑧𝑛−1
′ − 𝑥̂𝑛−1 − 𝜓𝑛−1,0

2 ),               (5.4.9) 

and the second equation as 

𝜓𝑛,𝑘
2 = 𝜓𝑛−1,𝑘+1

2 + ℎ√2𝑊𝑛−1,𝑘+1(𝑧𝑛−1
′ − 𝑥̂𝑛−1 − 𝜓𝑛−1,0

2 ),               (5.4.10) 

which means that for going from calculation of 𝑥̂𝑛 to calculation of 𝑥̂𝑛+1 there are 

min(𝑙, 𝑛) steps for finding 𝜓𝑛,0
2  and then the same number steps for 𝜓𝑛,0

1 . Figure 5.1 

demonstrated these steps, in which data at the black squares are taken from boundary 

conditions (all are 0), data at the black dots must be known before fining the values 

of 𝑥̂𝑛+1, and data at the white dots must be calculated after the fining the values of 

𝑥̂𝑛+1. Data at the tails of the arrows must be calculated to find the data at the head 

points. 
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Figure 5.1. flow of steps for solution of (5.4.3)-(5.4.5) 
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Chapter 6 

6 CONCLUSION  

In this thesis invariant Kalman filter results under wide band noise are reviewed. The 

theory is contributed by the method involving integral representation of the wide band 

noise. This result can be turned into practically realizable algorithm. For this, 

numerical application is suggested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

91 

REFERENCES 

[1] Kalman, R. E., A new approach to linear filtering and prediction problem”, 

Trans. ----ASME (J. BasicEng.) Ser. D, Vol. 82, pp. 35–45 (1960). 

 [2] Kalman, R. E. and R. S. Bucy, New results in linear filtering and prediction 

……theory, Trans. ASME (J. Basic Eng.) Ser. D, Vol. 83, pp. 95–108 (1961).  

[3] Crassides, J. L. and J. L. Junkins, Optimal estimation of dynamic systems, 

……Chapman and Hall/CRC (2004). 

[4] Lefebvre, T., H. Bruyninckx, and J. De Schutter, Nonlinear Kalman filtering for -

-   /force-controlled robot tasks, Springer-Verlag (2005). 

[5] Harv221ey, A. C., Forecasting, structural time series models and Kalman filter,   

--   /Cambridge University Press (1989). 

[6] Maitu, A. and R. Padhi, Robost control design of an air breathing engine for a 

vvf.supersonic vehicle using back stepping and UKF, Asian J. Contr., Vol. 19, No. 

…...5,  …...pp. 1–12 (2017). 

[7] Rana, M. M., L. Li, and S.W. Su, Distributed state estimation of smart grids with 

vvf packet looses, Asian J. Contr., Vol. 19, No. 4, pp. 1306–1315 (2017). 

[8] Bucy, R. S. and P. D. Joseph, Filtering for stochastic processes with application 

…..to guidance, Wiley (1968). 



 

92 

[9] Fleming, W. M. and R. W. Rishel, Deterministic and stochastic optimal control, 

vvf Springer-Verlag(1975). 

[10] Kushner, H. J. andW. J. Runggaldier, Filtering and control for wide bandwidth 

vvf  noise driven systems, IEEE Trans. Automat. Control, Vol. 32-AC, pp.123-133 

vvf  (1987). 

 [11] Wang, W., D. Liu, and X. Wang, An improved wide band noise signal analysis 

vvf    method, Computer and Information Science, Vol. 3, No, 1, pp. 76-80 (2010). 

[12] Al-Ansary, M. and H. Khalil, On the interplay of singular perturbations and 

f…...wide band stochastic fluctuations, SIAM J. Contr., Vol. 24, pp. 83-98 (1986). 

 [13] Blankenship, G. B. and G. C. Papanicolaou, Stability and control of stochastic 

vv    systems with wide band noise disturbances, SIAM J. Appl. ath. Vol. 34, pp 437- 

kkkk476 (1978). 

[14] Kushner, H. J., Jump diffusion approximation for ordinary differential 

mmmequations with wideband random right sides, SIAM J. Contr. Optim. Vol. 17, 

mmmpp.729-744 (1979). 

 [15] Kushner, H. J., Diffusion approximations to output processes of nonlinear 

vvfhhsystems with wide-band inputs, and application, IEEE Trans. Inform. Theory 

MM..Vol. IT-26, pp. 715-725 (1980). 



 

93 

[16] Kushner, H. J. and W. J. Runggaldier, Nearly optimal state feedback controls for 

stochastic systems with wideband noise disturbances, SIAM J. Contr. Optim. 

Vol. 25, No. 2, pp. 298-315 (1987).  

[17] Kushner, H. J. and K. M. Ramachandran, Nearly optimal singular controls 

vvfg.for wide band noise driven systems, SIAM J. Contr. and Optim., Vol. 26, No.3, 

vvfg pp..569-591 (1988). 

[18] Kushner, H. J., Weak convergence methods and singularly perturbed control vvf   

and filtering problems, Birkh¨auser, Boston (1990). 

[19] Kushner, H. J., W. J. Runggaldier, and M. Taksar, Diffusion approximation and 

vvfgoptimal stochastic control, Theory of Probability and Applications, Vol. 44. pp. 

vvfg669-698 (2000).  

[20] Liptser, R. S., W. J. Runggaldier, and M. Taksar, Diffusion approximation and 

vvfgoptimal stochastic control. Theory of Probability and Applications, 44, pp. 669- 

vvfg698 (2000). 

[21] Kushner, H. J., Modelling and approximations for stochastic systems with state 

vvg. dependent singular controls and wide-band noise, SIAM J. Contr. Optim., Vol. 

vvf . 52, No. 1, pp. 311–338 (2014). 

[22] Bashirov, A. E., H. Etikan, and N. S¸ emi, Filtering, smoothing and prediction 

vvfg.for wide band noise driven systems, J. Franklin Inst., Vol. 334B , No.4, pp..   

…….667–683 (1997). 



 

94 

 [23] Bashirov, A. E., L. V. Eppelbaum, and L. R. Mishne, Improving E¨otv¨os 

vvfg..correction by wide band noise Kalman filtering, Geophys. J. Int., Vol. 108, 

vvfg  No..1, pp. 193–197 (1992). 

 [24] Bashirov, A. E., Z. Mazhar, H. Etikan, and S. Ert¨urk, Delay structure of wide 

vvfg..band noises with application to filtering problems, Optimal Control Appl. 

vvfg..Methods, Vol. 34, No. 1, pp. 69–79 (2013).  

[25] Bashirov, A. E., Z. Mazhar, H. Etikan, and S. Ert¨urk, Boundary value 

,,,,,,,,,,problems.arising in Kalman filtering, Boundary Value Problems, Vol. 2008, 

,,,,,,,,,,doi:.10.1155/2008/279410, 10 p. (2008).  

[26] Ito, K., Stochastic integral, Proceedings of the Imperial Academy, Tokyo, Vol. 

vvfg.20, pp. 519-524(1944). 

[27] Ito, K., On stochastic differential equations, Memoirs of the American 

vvfg..Mathematical Siciety, Vol. 4, pp. 645-668 (1951). 

[28] Bashirov, A. E., Filtering for linear systems with shifted noises, Internat. J. 

vvfg.Contr., Vol. 78, No.7, pp. 521–529 (2005). 

[29] Bashirov, A. E., Z. Mazhar, and S. Ert¨urk, Kalman type filter for systems with 

vvfgdelay in observationnoise, Appl. Comput. Math., Vol. 12, No. 3, pp. 325–338 

vvf..(2013). 



 

95 

[30] Bashirov, A. E. and S. Uˇgural, Analyzing wide band noise processes with 

vvfgapplication to control and filtering, IEEE Trans. Automat. Control, Vol. 47-AC, 

vvfgNo. 2, pp. 323–327 (2002). 

[31] Bashirov, A. E. and S. Uˇgural, Representation of systems disturbed by wide 

vvfgband noises, Appl. Math. Lett., Vol. 15, No. 5, pp. 607–613 (2002) 

[32] Bashirov, A. E., Stochastic maximum principle in the Pontryagin’s form for 

vvfgwide band noise driven systems, Internat. J. Control, Vol. 88, No. 3, pp. 461-

vvfg468   2015).  

[33] Bashirov, A. E. and N. Ghahramanlou, On partial S-controllability of 

vvfgsemilinear partially observable systems, Internat. J. Control, Vol. 88, No. 5, 

vvfgpp. 969-982  …...(2015).  

[34] Bashirov, A. E. and K. Abuassba, Invariant linear filtering and control results 

vvf  for wide band noise driven signal systems, TWMS J. Appl. Eng. Math., Vol. 8, 

vvf  No. 1. 

[35] Bashirov, A. E., Linear filtering for wide bandnoise driven observation systems, 

vvfgCircuits Syst. Signal Process, Vol. 36, No. 3, pp. 1247-1263 (2017). 

 

[36] Bashirov, A. E., Partially observable linear systems under dependent noises vvfg

       Systems & Control: Foundations & Applications, Birkh¨auser, Basel (2003). 



 

96 

[37] Bashirov, A. E., (1993), Control and filtering for wide band noise driven linear 

////// /systems, AIAA J. Guidance Control and Dynamics, 16, pp. 983-985. 

[38] Bashirov, A.E. Stochastic maximum principle in the Pontryagin’s form for wide 

,,,,,,,,band noise driven systems, International Journal of Control, V.88, No.3, 2015, 

,,,,,,,,pp.461-468. 

[39] Bashirov, A.E. Problem 2.1: On error of estimation and minimum of cost for 

……wide band noise driven systems, In: V.D. Blondel and A. Megretski (Eds.), 

vvfgUnsolved.Problems in Mathematical Systems and Control Theory, Princeton 

vvfgUniversity Press, Princeton and Cambridge, 2004, pp.67-73 




