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ABSTRACT 

It is of practical interest to know whether a biological network contains mass-

preserving and state-preserving subnetworks. In a mass-preserving subnetwork, the 

total mass remains constant. In any state-preserving subnetwork, biological reactions 

bring the subnetwork back to an initial state. For instance, any reversible reaction 

forms a state-preserving subnetwork. In a large intricate biological network, it is rather 

cumbersome task to determine mass-preserving and state-preserving subnetworks. P-

invariants and T-invariants are analysis methods that can be successfully used to 

determine mass-preserving and state-preserving subnetworks in a Petri net. 

In this thesis, the information is derived from the biological databases Reactome and 

KEGG as well as from the existing literature to date, to create rather detailed Petri net 

model of cancer pathway, and perform its qualitative analysis with P-invariants and T-

invariants.  

Keywords: Biological network, Petri net, P-invariants, T-invariants.  
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ÖZ 

Bir biyolojik ağın kitle-koruyucu ve durum-koruyucu alt ağlar içerip içermediğini 

bilmenin pratik önemi vardır. Bir kitle-koruyucu alt ağda, toplam kitle sabittir ve bu 

nedenle sınırlıdır. Herhangi bir durumu koruyan alt ağda, biyolojik reaksiyonlar alt ağı 

bu duruma geri getirir. Örneğin, geri-dönüşümlü herhangi bir reaksiyon, durum 

koruyucu bir alt ağ oluşturur. Büyük ve karmaşık bir biyolojik ağda, kitle ve durum 

koruyucu alt ağları belirlemek oldukça zorlu bir iştir. P-invariantlar ve T-invariantlar, 

kitle koruyucu ve durum koruyucu alt ağların belirlenmesinde başarılı olabilen Petri 

net analiz yöntemleridir. 

Bu tezde, Reactome ve KEGG gibi biyolojik veri tabanlarından ve mevcut literatürden 

bilgi derleyerek kanser yollarnın ayrıntılı Petri ağı modeli oluşturulur ve bu modelin 

P-invariantlar ve T-invariantlar metodları ile nitel analizi yapılmıştır.  

Anahtar Kelimeler: Biyolojik ağda, Petri net, P-invariantlar, T-invariantlar. 
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Chapter 1 

INTRODUCTION 

There is a big challenge in understanding how complex molecular interactions control 

the cell behaviour in a large biological network. To deal with this challenge, one needs 

to find formal methods suitable enough to handle the task should be studied. Petri nets 

represent both formal method and practical tool which suits well to the nature of 

biological systems. The dynamical models can be viewed applying either quantitative 

analysis or qualitative analysis methods. Qualitative analysis of biological systems is 

aimed at creating the detailed description of the system’s structure, its behaviour, and 

understanding the requirements and specifications of the biomolecular reactions. 

Meanwhile quantitative analysis requires accurate information on kinetics which are 

often lacking. 

Petri nets represent a mathematical theory that was invented by Carl Adam Petri in the 

beginning of 60s. Over the past several decades, Petri nets have been used for 

modelling and analysis of various concurrent, distributed, asynchronous and dynamic 

systems [22]. Existence of effective software tools makes Petri nets a powerful 

modelling platform. Biological systems are bipartite consisting of 

substances/substrates and their interactions, referring respectively to places and 

transitions in Petri nets [19]. Because of similarities between biological systems and 

Petri nets, modelling with Petri nets has recently discovered to be advantageous for 

analysis of biological systems. 
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Protein Kinase B (AKT) and Mitogen Activated Kinase B (MAPK) pathways were 

investigated separately by several authors. This is the main motivation behind the 

present research to perform qualitative analysis of the whole network composed of 

these two important signalling pathways and their crosstalk. In this thesis, we perform 

qualitative analysis of the network composed of AKT and MAPK pathways aimed at 

identifying of state-preserving and mass-preserving fragments. Qualitative analysis is 

done in terms of P- and T-invariants, siphons and traps to predict structural and 

behavioural characteristics of underlying network.  

This thesis is organized as follow. Chapter 2 is a brief introduction to Petri nets. 

Chapter, presents the properties of Petri nets and their analysis methods. Chapter 4 

introduces the biological context behind of the present research. Chapter 5 deals with 

Petri net model of underlying biological network and its qualitative analysis. Finally, 

the thesis ends up with conclusions and remarks.  
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Chapter 2 

PETRI NETS 

The origin of Petri nets goes back to the beginning of 60s when Carl Adam Petri was 

working on his dissertation. Since then Petri nets has gained much attention. On one 

hand, Petri nets is increasingly demanded by practitioners for modelling scientific, 

engineering and industrial applications. On the other hand, it is rapidly developing 

research area in which hundreds of researchers contribute to the further development 

of the field [1]. 

Petri nets are suitable for modelling and simulation of scientific, engineering and 

industrial problems. Petri nets can be used to represent concurrent, distributed, 

uncertain and stochastic dynamic systems. Drawing and graphical abilities make Petri 

indispensable method for the modellers [2]. 

2.1 Regular Petri nets 

There exist many extensions of Petri nets each employing additional characteristics 

such as colour, time, continuity, fuzziness, hierarchy, etc. Petri net can also be 

enhanced with multiple characteristics such as time and colour or hierarchy and colour. 

A Petri net with multiple extensions is more powerful and suits best to the structure of 

the system being modelled. The simplest Petri net is perhaps the one which has no 

extension or additional specification. Such a Petri net is usually called regular or 

classical Petri net, or simply Petri net, for short. Any regular Petri net is composed of 

three types of principal components: places, transitions and arcs. A place is denoted 
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by circle and a transition by a rectangular shape. Arcs are between places and 

transitions. An arc is incident from a place to the transition or vice versa. Arcs are 

labelled with positive integers called weights. Arcs establish direction of data flow 

over the net while arc weights determine its density. A Petri net can be formally 

defined as a 5-tuple PN = <P, T, A, W, 𝑀0> where: 

 P = {𝑝1, 𝑝2, … , 𝑝𝑛} is a finite set of places, 

 T = {𝑡1, 𝑡2, … , 𝑡𝑚} is a finite set of transitions such that 𝑃 ∩ 𝑇 =  ∅ , 

 A ⊆ (P ×T) ∪ (T × P) is the set of arcs, 

 W: A →{1, 2, 3 …} is a weight function, 

 𝑀0: P →{0, 1, 2, 3 …} is the initial marking. 

State of a Petri net or marking is recognised by distribution of the tokens among its 

places. A marking is represented by the vector   𝑀𝑖 = (𝑚1, 𝑚2, … , 𝑚𝑛), and the 

number of tokens in place 𝑝𝑖 is denoted either by 𝑚(𝑝𝑖) 𝑜𝑟  𝑚𝑖. The marking defines 

the state in a given Petri net or more precisely the state of the system described by the 

Petri net. So, the change of the state of the system corresponds to the change of the 

marking too. Several often-used applications of transitions, input and output places are 

shown in Table 1. 

Table 1: Some interpretation of transitions and places 

Area Input Places  Transition Output Places 

Event processing Precondition Event Postcondition 

Data processing Input data Computation step Output data 

Signal processing Input signals Signal processor Output signals 

Resource allocation Resource needed Task or Job Resources release 

Propositional logic Conditions Clause in Logic Conclusion 

Buffer processing Buffers Processor Buffer  
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Figure 1 represents an example of a regular Petri net PN = (P, T, A, W, M0) such that 

 𝑃 = {𝑝1, 𝑝2, 𝑝3} 

 𝑇 = {𝑡1} 

 𝐴 = {(𝑝1, 𝑡1 ), (𝑝2, 𝑡1), (𝑡1, 𝑝3)} 

 𝑊 = {(𝑝1, 𝑡1 ) = 2; (𝑝2, 𝑡1) = 1; (𝑡1, 𝑝3) = 1} 

 𝑀0 = (3,1,1) 

 

 

          

 

Figure 1: Graphical representation of the Petri net 𝑃𝑁 = (𝑃, 𝑇, 𝐴, 𝑊, 𝑀0). 

Let 𝑝•  and 𝑝•  represent, respectively, input place and output place of 𝑡. A transition 

𝑡  is said to be enabled if each 𝑝•  is marked with at least w( 𝑝• , 𝑡) tokens, where 

w( 𝑝• , 𝑡) is the weight of the arc from 𝑝•  to 𝑡. An enabled transition may or may not 

fire (or occur) depending on whether or not the event actually takes place. Firing of 

the transition 𝑡 consists of withdrawing w( 𝑝• , 𝑡) tokens from 𝑝•  and adding w(𝑝• , 𝑡) 

tokens in 𝑝• . Occurrence of a transition modifies marking accordingly by changing 

𝑚(𝑝) into 𝑚′(𝑝) as follows 𝑚′(𝑝) = 𝑚(𝑝) − 𝑤( 𝑝• , 𝑡) + 𝑤(𝑝• , 𝑡). For example, 

firing of 𝑡1changes marking from 𝑀0 = (3,1,1) to 𝑀1 = (1,0,2). 

A transition without input place is called source transition and the one without output 

place is called sink transition. The source transition is unconditionally enabled; thus, 

𝑝1 

𝑝2 

𝑝3 1 

𝑡1 

1 

3 2 
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it can fire an unlimited number of times, and the firing of a sink transition consumes 

or destroys tokens. 

2.2 High-level Petri nets 

Structural simplicity, existence of easy-to-use and user-friendly software tools have 

made Petri nets very popular among practitioners. Over the years Petri nets have been 

successfully applied for modelling and simulation in workflow management, business 

process organisation, performance evaluation, operating systems, resource allocation 

and many other areas. But one needs to use more advanced characteristics to model 

dynamic systems with complex properties. Unfortunately, modelling power of regular 

Petri net is somewhat limited and not enough for modelling many problems arising in 

scientific, engineering and industrial domains [4]. These limitations concern the 

qualitative and quantitative aspects. The extension of the qualitative aspect that has 

been discussed in the literature includes enhancing regular Petri nets with new features 

such as arcs with additional features, coloured tokens, etc. In what follows we below 

briefly describe existing Petri net extensions. 

Petri nets with test and inhibitor arc. Test or read arcs are used to check the presence 

and absence of a token in the source place so that the token is not consumed at the end 

of action. Inhibitor arcs inhibit the firing action if specified place contains tokens [1,4]. 

It has been proved that the problem of producer and consumer cannot be modelled in 

terms of Petri nets without using inhibitor arc [23]. 

Self-modifying or functional Petri nets (FPNs). In FPNs it is possible to represent 

arc weights by functions of the tokens in places. This adds more dynamism to the 

system.  
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Coloured Petri nets (CPNs) In CPNs, the tokens are associated with a data type and 

arcs can be used together with conditions regarding these data types. In CPNs, one can 

distinguish between the tokens even in the same place. CPNs are very convenient for 

representing large Petri nets in a very compact form while keeping the main logic of 

the original net.  

Time Petri nets (TPNs). Some problems include a quantifiable time parameter. 

Corresponding Petri net is expected to involve a time parameter. Such a Petri net is 

called time or timed Petri net. In TPNs a transition 𝑡 is associated with time interval 

[𝑎𝑡, 𝑏𝑡] so the transition 𝑡 can fire only after 𝑎𝑡 time units elapsed but not later than 𝑏𝑡 

time units elapsed. It is assumed that the firing action takes no time. TPNs are used for 

quantitative modelling of dynamic deterministic systems. 

Stochastic Petri nets (SPNs). In a system with high degree of randomness the time 

delay until next firing of a transition 𝑡 is not fixed and, therefore, it is customary to 

associate firing delay of a transition 𝑡 with a random variable. In SPNs, transition 𝑡 is 

assigned an execution rate which equals to the value of random variable. Generalized 

stochastic Petri nets, generalized Markovian stochastic Petri nets, stochastic high-level 

Petri nets are all Petri nets which involve stochastic parameter. 

Continuous Petri nets (KPNs) and Hybrid Petri nets (HPNs). KPNs are 

increasingly demanded just because in many dynamic systems processes flow 

smoothly so that discrete Petri nets are not sufficiently enough to model such problems. 

In KPNs, marks with non-negative real values are used instead of tokens. Switch to 

real numbers is requested by many applications. For example, concentration of the 

molecular species changes smoothly and can be naturally represented by real numbers. 
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In KPNs, firing rate of a transition expresses the ‘‘speed’’ of the transformation from 

input to output places. Hybrid Petri combine both abilities of discrete and continuous 

Petri nets [1] since they have both discrete and continuous places and transitions. 
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Chapter 3 

PROPERTIES AND ANALYSIS METHODS OF PETRI 

NETS 

After modelling with Petri nets, the question arises “What are the characteristics of the 

system being modelled?” The main advantage of the modelling with Petri net is that 

one can study characteristics of the system in terms of the properties that the Petri net 

model holds. Generally speaking, properties of Petri nets are classified into two 

classes. Behavioural properties of a Petri net depend on the initial marking while its 

structural properties deal with the net structure only [1,2]. 

3.1 Behavioural properties 

The boundedness, safety, liveness, deadlock, reversibility, coverability, persistence 

and reachability are among behavioural properties. 

Reachability. The marking 𝑀1 is said to be reachable from its initial marking  𝑀0  if 

there exists a firing sequence 𝜎 that will yield 𝑀1.  

Boundedness. A Petri net with an initial marking 𝑀0 is said to be 𝒌-bounded if 

𝑚(𝑝) ≤ 𝑘, ∀𝑝 ∈ 𝑃 and ∀𝑀 ∈ 𝑅(𝑀0), where 𝑚(𝑝) is the number of tokens in place 𝑝 

in marking 𝑀. A Petri net is said to be bounded if it is 𝑘-bounded for ∃𝑘 ∈ ℕ. 

Safety. A Petri net is said to be safe if it is 𝑘-bounded and 𝑘 = 1.  
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Deadlock. A marking 𝑀′ reachable from the initial marking 𝑀0 is a deadlock if none 

of the transitions of the Petri net is enable in 𝑀′.  

Liveness. A Petri net is said to be live if for all transitions there is a way to fire 

transition in ∀𝑀′ ∈ 𝑅(𝑀0) and ∀𝑡 ∈ 𝑇, ∃𝑀 ∈ 𝑅(𝑀′) such that 𝑡 is enable in 𝑀′.  

Reversibility. A Petri net is reversible means that for every state 𝑀 ∈ 𝑅(𝑀0) there is 

a way back to reach the initial marking. So, the net has the capacity of re-initialization. 

A Petri net is said to be reversible if for each marking 𝑀 ∈ 𝑅(𝑀0)  𝑀0 is reachable 

from M.  

Coverability. A marking 𝑀 in a Petri net is coverable if 𝑀′𝜖 𝑅(𝑀0) such that 𝑀′ ≽

𝑀, thus, 𝑀′(𝑝) ≥ 𝑀(𝑝) for ∀𝑝 ∈ 𝑃.  

Persistency. A Petri net is persistent if for a pair of enabled transitions, occurrence of 

one of them does not disable another. 

3.2 Structural properties 

Some general structural properties are liveness, boundedness, and conservativeness, 

pure, ordinary. 

Liveness. A Petri net is said to be structurally live if there exists an initial marking 

𝑀0 such that net is live, so a Petri net which is live is also structurally live. 

Boundedness. A Petri net is structurally bounded if it is bounded for any initial 

marking 𝑀0. 
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Conservativeness. A Petri net is conservative, if all transitions fire token-preserving, 

i.e. all transitions add exactly as many tokens to their post places (output places) as 

they subtract from their preplaces (input places). 

Pureness. A Petri net is pure if there are no two nodes connected in both directions, 

meaning that the net contains no self-loop, i.e. ∀𝑥, 𝑦 ∈ 𝑃 ∪ 𝑇: 𝑤(𝑥, 𝑦) ≠ 𝑜 

∀ 𝑥, 𝑦 𝜖 𝑃 ∪ 𝑇: 𝑊(𝑥, 𝑦) ≠ 0 ⇒ 𝑊(𝑦, 𝑥) = 0. 

Ordinary. A Petri net is said to be ordinary if all of its arc weights are 1’s. 

3.3 Reachability and coverability tree methods 

The basic idea behind of reachability tree method is to collect under tree structure all 

markings that are directly or indirectly reachable from the initial marking. The 

resulting tree is a rooted tree with the initial marking as the root and remaining 

markings as the nodes of the tree. In reachability tree each arc represents a transition 

occurrence. Reachability tree can be used to answer some questions, e.g., whether or 

not Petri net is bounded, live, reversible, safe, etc. Reachability tree method can be 

efficiently used for small or modest size Petri nets. However, the method does not 

work for Petri nets with infinite reachability set. For large Petri nets the method can 

result in continuously growing reachability tree leading to memory overflow.  

Figure 3 represents the reachability tree of the Petri net in Figure 2. As can be seen, 

the initial marking is the vector (1 1 0 0 0) which is the root of the tree. There are two 

enable transitions 𝑡2 and 𝑡3 in the initial marking. Occurrence of 𝑡2 changes the initial 

state to (0 1 1 0 1), in which 𝑡3 becomes enabled. Then, occurrence of 𝑡3 consequently 

sets the Petri net to marking (0 0 1 1 0), and so on.  
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Figure 2: A Petri net with five places and four transitions. 

 

 

 

 

 

 

 

Figure 3: Reachability tree of Petri net illustrated in Figure 2. 

It is impossible to draw all markings with the exact number of tokens in an unbounded 

and live Petri net, because number of the tokens in some places grows up to infinity. 

To keep the tree finite, a special symbol “𝜔” [1-3], which represents infinity, is used 

to indicate arbitrarily large number of tokens. For any positive integer  𝑘 > 𝜔 the 

property 𝜔 ± 𝑘 = 𝜔 holds. Use of the symbol 𝜔 allows us to define an abstract 

marking composed of positive integers and 𝜔. Now reachability space of an 

unbounded and live Petri net can be represented by compact form using finite tree. 
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Related method is called the method of coverability tree. The coverability tree 

algorithms can be found in [2].  

 

 

 

 

 

 

Figure 4: A regular Petri net. 

 

 

  

Figure 5: The coverability tree of the Petri net in Figure 4. 

Here is example demonstrating use of the method. Consider the Petri net shown in 

Figure 4. Two transitions 𝑡1 and 𝑡2 are enable in the initial marking 𝑀0 = (1 0 0 0),. 

Occurrence of 𝑡1 transforms 𝑀0 to  𝑀1 = (0 1 0 0) and consequently enables 𝑡3. 

Occurrence of 𝑡3 in 𝑀1 results in 𝑀3 = (0 2 0 0), which covers 𝑀1 = (0 1 0 0). 

Therefore, the new marking is 𝑀3 = (0 𝜔 0 0). Now, occurrence of 𝑡2 in 𝑀0 results 

in 𝑀2 = (0 0 1 0), which enables 𝑡4. When 𝑡4 occurs in 𝑀2, this change marking to 

𝑡2 

1 

 

𝑡1 

𝑡4 

𝑡3 𝑝1 

𝑝3 

𝑝2 

𝑝4 

2 

𝑡1 

𝑡3 𝑡4 

𝑡2 

(1 0 0 0)  

(0 1 0 0) 

(0 𝜔 0 0) 

(0 𝜔 0 0) “old”   

𝑡3 

(0 0 0 1)  “dead-end” 

(0 0 1 0)  
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𝑀4 = (0 0 0 1), which is a dead-end node, since no transition is enabled in  𝑀4. The 

coverability tree of this Petri net is shown in Figure 5. 

The coverability graph of a Petri net PN is a labelled directed graph 𝐺 = (𝑉, 𝐸), in 

which 𝑉 is the set of distinct labelled nodes of the coverability tree, and 𝐸 is the set of 

its arcs.  

 

 

 

 

 

Figure 6: Coverability graph of Petri net in Figure 4. 

As an example, consider the coverability graph of the Petri net shown in Figure 4 This 

graph is demonstrated in Figure 6. If a Petri net is bounded then its coverability and 

reachability graphs are same since the vertex set 𝑉 becomes the same as the 

reachability set 𝑅(𝑀0). 

3.4 State equation method 

The dynamic behaviour of many problems arising in engineering can be described in 

terms of differential or algebraic equations. It is a question of theoretical interest to 

know whether or not mathematical methods are applicable for studying properties in 

Petri nets. The method of state equation is an example of algebraic equation which is 

used to represent the structure of a Petri net and analyse the reachability property in 

Petri nets. So, the problem is posed as follows. Given regular Petri net check whether 

𝑡1 

𝑡3 𝑡4 

𝑡2 

(1 0 0 0)  

(0 1 0 0) 

(0 𝜔 0 0) (0 0 0 1)  “dead-end” 

(0 0 1 0)  
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a certain marking 𝑀𝑑   is reachable from the initial marking 𝑀0 or the sequence of 

transitions that fires to produce a reachable marking of 𝑅(𝑀0). 

In a Petri net with 𝑛 transitions and 𝑚 places, the incidences matrix A = [𝑎𝑖𝑗] is an 

𝑛 × 𝑚 matrix of integers and its typically entry is given by 𝑎𝑖𝑗 =  𝑎𝑖𝑗
+ −  𝑎𝑖𝑗 

−  where 

 𝑎𝑖𝑗
+ = 𝑤(𝑖, 𝑗)  is the weight of the arc from the transition 𝑖 to its output place 𝑗, and 

𝑎𝑖𝑗
− = 𝑤(𝑗, 𝑖) is the weight of the arc to transition 𝑖 from its input place 𝑗. It is easy to 

see 𝑎𝑖𝑗
−  , 𝑎𝑖𝑗

+  and 𝑎𝑖𝑗, respectively, represent the number of removed, added and 

remained tokens in place 𝑗 when transition 𝑖 fires. 

If there exists a nonnegative integer solution 𝑥 to the state equation then 𝑀𝑑 is 

reachable from 𝑀0, but reciprocal is not correct. Let 𝑚 × 1 be the vector representation 

of a marking  𝑀𝑘, where  𝑚𝑗 denotes the number of tokens in place 𝑗 after the 𝑘-th 

firing. 

The state equation is expressed by   𝐴𝑇 ∙ 𝑥 =  Δ𝑀 , where  Δ𝑀 =  𝑀𝑑 −  𝑀0 and  𝑥  is 

an 𝑛 × 1 column vector of nonnegative integer and is called the firing count vector. 

The 𝑖th entry of 𝑥 denotes the number of times that the transition 𝑇𝑖 must fire to 

transform𝑀0 to 𝑀𝑑. 

Example: Consider the Petri net in Figure 4. Assuming that we want to check whether 

or not the destination marking 𝑀𝑑 = (0 10 0 0)  is reachable from the initial 

marking 𝑀0 = (1 0 0 0), the state equation is given by:  

 (

−1 −1 0  0
   1    0 1  0
   0
  0

   1
   0

   
0
0

−1
1

) × (

𝑥1
𝑥2
𝑥3
𝑥4

) =  (
0

10
0
0

) −  (
1
0
0
0

) = (
−1
10
0
0

) 
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The above matrix equation has a unique solution 𝑥1 = 1; 𝑥2 = 0; 𝑥3 = 9; 𝑥4 = 0 

and, therefore, 𝑀𝑑 is reachable from 𝑀0 through occurrence of 𝜎 = {𝑇1, 𝑇3}. 

3.5 Place and transition invariants 

In general, we say class of objects is invariant regarding specific transformation if 

certain property remains unchanged when the transformation is applied to that class. 

In context of Petri nets, invariants indicate states in the Petri net that remain invariant 

after firing or a sequence of transitions. The two known types of invariants are place 

invariants (or P-invariants) and transitions invariants (or T-invariants). 

A P-invariant is a set of places over which regardless of firing sequence the weighted 

sum of tokens remains unchanged, so that occurrence of any transition has no effect 

on P-invariant. Indeed, this means that P-invariant conserves the number of tokens [5]. 

A T-invariant represents a set of transitions, whose firing returns Petri net to the initial 

state. 

Below we provide brief introduction to the topic, but more detailed information the 

readers are directed to related literature [1,5]. 

Consider the incidence matrix 𝑨, of a Petri net. A place vector is a vector  𝑥: 𝑃 → ℤ, 

that is indexed by 𝑃. Similarly, a transition vector is a vector 𝑦: 𝑇 → ℤ, that is indexed 

by 𝑇. Any non-trivial non-negative integer solution of the linear equation  𝑥 ∙  𝐴 =

0 ( 𝐴 ∙ 𝑦 = 0) is called P-invariant (T-invariant). Support of an invariant 𝑥, 

represented by 𝑠𝑢𝑝𝑝(𝑥) = {𝑡𝑗: 𝑥𝑗 > 0}, is a set of invariant’s nonzero entries. An 

invariant 𝑥 is called minimal, if ∄ 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑧: 𝑠𝑢𝑝𝑝(𝑧)  ⊂ 𝑠𝑢𝑝𝑝(𝑥), if the support of 

any other invariant 𝑧 is not contained in its support. A Petri net is covered by P-
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invariants (T-invariants), if every place (transition) belongs to a P-invariant (T-

invariant). 

Figure 7: Petri net model of enzymatic reaction. 

Let 𝑥 and 𝑦 be two P-invariants. If 𝑥 and 𝑦 have the same support, then 𝑥 and 𝑦 are 

linearly dependent, meaning that there exist two positive integers 𝛼 and 𝛽 such that 

𝛼 ∙ 𝑥 =  𝛽 ∙ 𝑦. If 𝛼 and 𝛽 are nonnegative integers, then 𝛼 ∙ 𝑥 + 𝛽 ∙ 𝑦 is a P-invariant. 

If all components of vector 𝑥 − 𝑦 are nonnegative integers, then 𝑥 − 𝑦 is a P-invariant. 

The incidence matrix of the Petri net in Figure 7 is as follows:  

                                                        𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝐷𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 

𝐶 =     

𝐸𝑛𝑧𝑦𝑚𝑒
𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝐸𝑛𝑧𝑦𝑚𝑒𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒𝐶𝑜𝑚𝑝𝑙𝑒𝑥
𝑃𝑟𝑜𝑑𝑢𝑐𝑡

     [

−1
−1

1
0

                         

1
1

−1
0

                     

1
0

−1
0

] 

 

UP-invariantsU The state equation 𝑥 ∙ 𝐶 = 0, where 𝑥 = (𝑥1 𝑥2 𝑥3 𝑥4 )   is the place 

vector, has two solutions 𝑥 = (1 0 1 0) and 𝑥 = (0 1 1 1). Support of the P-invariant 

1 1 

Substrate Enzyme 

Association Dissociation

e 

Enzyme Substrate Complex 

Product 

Synthesis 
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(1 0 1 0) is {Enzyme, EnzymeSubstrateComplex}, while support of P-invariant 

(0 1 1 1) is {Substrate, Product, EnzymeSubstrateComplex}. The two supports are 

not subset of one and another. The greatest common divisor of the non-zero elements 

in both P-invariants is 1 and, therefore, (1 0 1 0) and (0 1 1 1) are minimal P-

invariants. 

T-invariants  The state equation 𝐶 ∙ 𝑦 = 0 with the transition vector 𝑦 = (𝑦1 𝑦2 𝑦3) 

has unique solution (1 1 0). Support of the T-invariant is 

{𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛, 𝐷𝑖𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛}. The T-invariant is minimal. 

3.6 Siphons and traps 

By definition, a trap is devise designed to capture or restrain something. In Petri net, a 

trap is a subnet that caches tokens and retain at least of them; the number of tokens in 

a trap can decrease but never become zero [5] (see Figure 8). 

 

 

 

 

Figure 8: An example of trap. 

A trap cannot become empty, if it has contained tokens, post-transitions in trap will 

always return tokens in the trap. The subnet in red colour indicates a trap. 

𝑝5  

𝑡1 

𝑝1 𝑝2 𝑝4 

𝑡2 

𝑡3 

 

𝑡4 

𝑡5 

𝑝3 
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Definition: A set of places 𝑄 ⊆ 𝑃 is called a trap if 𝑄 • ⊆ • 𝑄 (the set of post-

transitions is contained in the set of pre-transitions), i.e., every transition which 

subtracts tokens from a place of the trap, also has a post-place in this set. 

Considering the example in Figure 8, we have: 

o Set of all places 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5}, 

o Set of places constituting a trap 𝑄 = {𝑝3, 𝑝4, 𝑝5}, 

o 𝑄 ⊆ 𝑃, meaning places 𝑝3, 𝑝4, 𝑝5 of set of 𝑄 are contained in the set 𝑃, 

o 𝑄 • is the set of post-transitions of places in set 𝑄, thus, 𝑄 •= {𝑡4, 𝑡5}, 

o • 𝑄 is the set of pre-transitions of places in set 𝑄, thus, • 𝑄 = {𝑡1, 𝑡3, 𝑡4, 𝑡5 }, 

o 𝑄 •⊆• 𝑄, thus, 𝑄 • is a subset of • 𝑄, meaning post-transitions 𝑡4 and 𝑡5 of set 

𝑄 • are contained in the set of pre-transitions • 𝑄. 

 

Considering the example in Figure 8, we have: 

o Set of all places 𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5}, 

o Set of places constituting a siphon 𝐷 = {𝑝1, 𝑝2, 𝑝3}, 

o 𝐷 ⊆ 𝑃: 𝐷 is a subset of 𝑃, meaning places A, B of set of D are contained in the 

set P, 

o 𝐷 •: Set of post-transitions of places in set D, 𝐷 •= {𝑡1, 𝑡2, 𝑡3}, 

o • 𝐷: Set of pre-transitions of places in set D, • 𝑄 = {𝑡1, 𝑡2}, 

o • 𝐷 ⊆ 𝐷 •: • 𝐷 Is a subset of 𝐷 •, meaning pre-transitions t1, t2 of set •𝐷 are 

contained in the set of post-transitions 𝐷 •.  
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Chapter 4 

BIOLOGICAL CONTEXT  

Protein Kinase B (AKT) and Mitogen Activated Kinase B (MAPK) signalling 

pathways play essential role in controlling cell survival, differentiation and its 

proliferation. Interaction between the AKT and MAPK pathways regulates growth. It 

is now becoming clear that some components of these pathways are mutated in human 

cancer [6], and, therefore, the crosstalk between AKT and MAPK is of utmost 

importance in cancer therapeutics. In this chapter, we use the biological databases 

together with tools and methods of bioinformatics to study the crosstalk between AKT 

and MAPK.  

4.1 Biological databases 

The collection of information related to metabolic, gene regulation and signal 

transduction networks in a computer readable form are compiled inside biological 

databases. Two important and popular biological databases are KEGG (Kyoto 

Encyclopedia of Genes and Genomes) and Reactome. 

KEGG is a database of biological information used to understand structures and 

molecular mechanisms behind of organisms based on their genome information [7]. 

It is a collection of genome, biological pathway, disease, drug and chemical 

substance databases. KEGG is well-suited for bioinformatics research including data 

analysis. It accumulates genomic, chemical and network information under the same 

umbrella and provides software to handle the information. KEGG resources are 
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accessible at https://www.kegg.jp. KEGG COMPOUND, KEGG DRUG, KEGG 

REACTION, KEGG PATHWAY, KEGG ENZYME and other web services are 

available and accessible in KEGG. 

Reactome is open access and peer-reviewed collection of human pathways and 

processes [8]. Reactome provides tools for the visualization, interpretation and 

analysis of biological pathways. Reactome is accessible to users on 

34Thttps://reactome.org3 4T.  

4.2 MAPK pathway 

Ras is an important upstream molecule of several signalling pathways including AKT 

and MAPK [9]. Cascade of phosphorylation and dephosphorylation reactions in 

MAPK pathway is schematically illustrated in Figure 9. Each phosphorylation/ 

dephosphorylation reaction is induced by dephosphatase/phosphatase. In this and 

preceding figures dephosphatases are explicitly named while phosphatases are shortly 

called “phase”.  

MAPK signalling pathway is usually initiated by activation Ras protein. Ras transmits 

the signal to the plasma membrane and permit its activation [10]. Activated RAF 

(RAFP) induces a cascade of mitogen-activated protein kinase/ERK kinase (MEK) 

and extracellular signal regulated kinase (ERK). RAFP phosphorylates MEK to MEKP 

and then to MEKPP. 

When activated, the extracellular-signal-regulated kinases (ERK) plays an important 

role in the induction of certain processes including cell proliferation, differentiation, 

https://reactome.org/
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development [11]. ERK is regulated by phosphorylation mediated by MEKP and 

MEKPP. 

Figure 9: RAS/RAF/MEK/ERK cascade in MAPK pathway. 

4.3 AKT pathway 

AKT pathway is a signalling pathway that is responsible for cell survival, cell growth, 

cell proliferation, cell differentiation and other functions. Indeed, all these functions 

are important in cancer therapeutics. 

The activation of the AKT pathway is a multi-step process. Phosphatidylinositol (PI) 

molecules are important players of intracellular signalling. In response to extracellular 

signals, these molecules generate second messengers including phosphatidylinositol 

3,4-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3) [12,13]. 

Phosphoinositide 3-kinase (PI3K) phosphorylates PIP2 to PIP3 and PTEN 
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dephosphorylates PIP3 to PIP2 [12-17]. PIP3 in turn recruits AKT phosphorylation to 

AKTP and PDK induces dephosphorylation of AKTP to AKTPP. Cascade of 

phosphorylation/dephosphorylation reactions in AKT pathway is illustrated in Figure 

10. 

Figure 10: Cascade of phosphorylation reactions in AKT pathway. 
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Chapter 5 

MODEL DESIGN AND ANALYSIS WITH PETRI NETS: 

CASE STUDY OF THE CROSSTALK BETWEEN AKT 

AND MAPK PATHWAYS 

Biochemical reaction systems are composed of components of two types, species and 

their interactions. The interactions between species usually occur independently and 

concurrently [10]. This facilitates use of Petri nets for modelling reason, which has 

exactly same distinctive characteristics as underlying biochemical reaction systems. In 

this chapter, we discuss how to pass from signal transduction pathways to Petri nets 

and from Petri nets models to their qualitative analysis through performing 

simulations. 

5.1 From a biological pathway to its Petri net model 

Use of places and transitions in biological systems is straightforward. Places represent 

chemical compounds such as genes, and gene products, while transitions stand for 

chemical reactions that transform chemical compounds into one another [4,10,19]. 

Places in the preconditions represent substrates or reactants, meanwhile places in the 

postconditions represent reaction products. Arc weights are derived by the reaction 

stoichiometry. 

The flow of tokens between places in a Petri net defines its dynamic behaviour. In the 

biochemical context, each firing of a transition in a Petri net is associated with 
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occurrence of a biochemical reaction which consumes substrates and creates products 

[19]. The correspondence between biological pathway elements and Petri net 

components is described by Table 2.  

Table 2: Correspondence between pathway elements and Petri net components. 

Pathway elements Petri net components 

metabolites, enzymes, compounds places 

Reactions transitions 

substrates, reactants input places 

reaction products output places 

stoichiometric coefficients  arc weights 

quantity of metabolites, enzymes or compounds tokens 

kinetic laws of reaction transitions rate 

 

The basic net structures used to create Petri net model of MAPK pathway are discussed 

in [10]. These basic structures are represented in Table 3. In the present thesis, we use 

same basic net structures to create Petri net model of AKT and MAPK pathways and 

their crosstalk.  

Table 3: Basic types of biochemical reactions and associated Petri net models. 
Reaction 

symbolic representation name Petri net model 

𝐴 → 𝐵 Simple reaction 

 

𝐴 ⇌ 𝐵 
Simple reversible  

reaction 

 

𝑘1 𝐴 𝐵 

𝑘2 

𝐴 𝐵 𝑘1 
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𝐴 ⇌ 𝐵 

Hierarchical  

representation  

of reversible reaction 

 

𝐴 + 𝐸 → 𝐵 + 𝐸 Enzymatic reaction 

 

𝐴 + 𝐸 ⇌ 𝐵 + 𝐸 
Reversible enzymatic  

reaction 
 

𝐴 + 𝐸 ⇌ 𝐵 + 𝐸 

Hierarchical  

representation of  

reversible enzymatic  

reaction 

 

𝐴 + 𝐸 ⇌ 𝐴𝐸 → 𝐵 + 𝐸 

Reversible enzymatic  

reaction with mass  

action kinetics 

 

𝐴 + 𝐸 ⇌ 𝐴𝐸 → 𝐵 + 𝐸 

Hierarchical  

representation of  

reversible enzymatic  

reaction with mass  

action kinetics 

 

𝐴 + 𝐸1 ⇌  𝐴𝐸1 → 𝐵 + 𝐸1; 
𝐵 + 𝐸2 ⇌  𝐵𝐸2 → 𝐴 + 𝐸2 

Cycle of reversible  

enzymatic reactions  

with mass action  

kinetics 

 

𝑘1 𝐴 𝐵 

𝑘2 

𝑘1 

𝐴 𝐵 

𝐸 

𝑘2 

𝐴 

𝐵 

𝑘1 𝐸 

𝑘1/𝑘2 

𝐴 𝐵 

𝐸 

𝑘2 

𝐴 

𝐴𝐸 

𝑘1 𝐸 
𝑘3 𝐵 

𝑘2 

𝐴 

𝐴𝐸 

𝑘1 
𝐸 

𝑘3 𝐵 

𝐸1 

𝑘2 
𝐴 

𝐴𝐸1 

𝑘1 𝑘3 

𝐵 
𝑘4 

𝐵𝐸2 

𝑘5 𝑘6 

𝐸2 
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𝐴 + 𝐸1 ⇌  𝐴𝐸1 → 𝐵 + 𝐸1; 
𝐵 + 𝐸2 ⇌  𝐵𝐸2 → 𝐴 + 𝐸2 

Hierarchical  

representation of  

cycle of reversible  

enzymatic reactions  

with mass action  

kinetics 

 

 

Here is short explanation for the reactions represented in Table 3. A simple reaction 

𝐴 →  𝐵 transforms the substrate 𝐴 to the reactant 𝐵 at the reaction rate 𝑟1 while 

reversible reaction 𝐴 ⇌  𝐵 produces the reactant 𝐵 from the substrate 𝐴 and vice 

versa. Reversible reaction 𝐴 ⇌  𝐵 can be represented in hierarchical fashion. In a 

simple enzymatic reaction 𝐴 + 𝐸 → 𝐵 + 𝐸 the reactant 𝐵 is obtained from the 

substrate 𝐴  where enzyme 𝐸 catalyses the reaction. In a reversible enzymatic reaction 

𝐴 + 𝐸 ⇌ 𝐵 + 𝐸, the substrate 𝐴 produces the product  𝐵 and vice versa where enzyme 

𝐸 catalyses both forward and reverse reactions. Reversible enzymatic reaction can also 

be represented in a hierarchical way. Reversible enzymatic reaction with mass action 

kinetics is a two-phase process. An intermediate product 𝐴𝐸1 is obtained firstly from 

the substrate 𝐴, and then the product 𝐵 is produced from 𝐴𝐸1. All reactions proceed 

under catalytic activity of the enzyme 𝐸. A chain of enzymatic reactions can proceed 

in a circular way. The two enzymatic reversible reactions 𝐴 + 𝐸1 ⇌  𝐴𝐸1 → 𝐵 + 𝐸1 

and 𝐵 + 𝐸2 ⇌  𝐵𝐸2 → 𝐴 + 𝐸2 can proceed in a circular fashion: product B is firstly 

obtained from the substrate A, which is then it is tuned into the product A. The 

𝐸1 

𝐴 

𝐴𝐸1 

𝑘1

/𝑘  
𝑘3 

𝐵 

𝐵𝐸2 

𝑘4
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𝑘6 
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reactions are induced by the activity of the enzymes 𝐸1 and 𝐸2 whereever it is 

necessary.  

5.2 Snoopy and Charlie software tools 

Snoopy software tool supports discrete, continuous, hybrid, hierarchical, coloured and 

stochastic Petri nets. Snoopy provides a framework which has wide-spread applied in 

modelling biological processes [20]. Petri nets may easily serve as a convenient 

umbrella formalism integrating qualitative and quantitative modelling and analysis 

techniques. It is publicly available at 34Thttp://www-dssz.informatik.tu-

cottbus.de/DSSZ/Software/Snoopy3 4T. 

A Snoopy screenshot with our case study on the screen is shown in the Figure 11. 

 
Figure 11: Snoopy screenshot of the case study. 

Snoopy facilitates export and import of data among different software including 

Charlie and Marcie, which are also trademark of Brandenburg University of 

http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy
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Technology at Cottbus. Snoopy, Charlie and Marcie are indeed compatible software 

tools.  

Charlie is a software tool with ability of use such analysis techniques as P-invariants, 

T-invariants, check for siphon and trap properties [21]. Charlie software toll is 

accessible at 34Thttp://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie34T. 

5.3 Developing the Petri net model  

We develop the Petri net model in accordance with the fragments represented in Table 

3. Correspondence between Petri net objects (places and transitions) and the pathway 

components are detailed in Table 4 and Table 5. In these tables, proteins and their 

complexes are indicated by the sign “_” between the neighbouring proteins. The 

suffixes P and PP indicate phosphorylated and doubly phosphorylated forms, 

respectively. Petri net model of AKT and MAPK pathways and their crosstalk are 

schematically illustrated in Figure 12, while Petri net model developed using Snoopy 

software tool is demonstrated in Figure 13.  

Table 4: Correspondence between metabolites and places. 
Place mapping for Petri net model 

Index Metabolite compound Index Metabolite compound 

1 Activated RAS (RAS_GTP) 2 RAF 

3 RAFP 4 RAF_RASGTP 

5 PHASE1 6 RAFP_PHASE1 

7 MEK 8 MEK_RAFP 

9 MEKP 10 PHASE2 

11 MEKP_PHASE2 12 MEKP_RAFP 

13 MEKPP 14 MEKP_PHASE2 

15 ERK 16 ERK_MEKPP 

17 ERKP 18 PHASE3 

19 ERKP_PHASE3 20 ERKP_MEKPP 

21 ERKPP 22 ERKPP_PHASE3 

23 PI3K 24 PHASE4 

25 PI 26 PI_PHASE4 

27 PIP 28 PHASE5 

29 PIP_PHASE5 30 PIP_PHASE4 

31 PIP2 32 PIP2_PHASE5 

33 PIP2_PI3K 34 PIP3 

35 PTEN 36 PIP3_PTEN 

http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie
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37 AKT 38 AKT_PIP3 

39 PP2A 40 AKT_PP2A 

41 AKTP 42 PDK 

43 AKTP_PDK 44 AKTPP 

45 AKTPP_PP2A 46 BAD 

47 BAD_AKTPP 48 BADP 

49 PHASE6 50 BADP_PHASE6 

 

Table 5: Correspondence between reactions and transitions. 

Transition mapping for Petri net model 

Name Reaction description Name Reaction description 

R1 Binding of RAS_GTP to RAF R35 
Dissociation of PIP_PHASE5 

complex 

R2 
Dissociation of RAF_RAS_GTP 

complex 
R36 Dephosphorylation of PIP by PHASE5 

R3 Phosphorylation of RAF by RAS_GTP R37 Binding PIP to PHASE4 

R4 Binding RAFP to phase1 R38 
Dissociation of PIP_PHASE4 

complex 

R5 
Dissociation of RAFP_PHASE1 

complex 
R39 Phosphorylation of PIP by PHASE4 

R6 
Dephosphorylation of RAFP by 

PHASE1 
R40 Binding PIP2 to PHASE5 

R7 Binding RAFP to MEK R41 
Dissociation of PIP2_PHASE5 

complex 

R8 Dissociation of RAFP_MEK complex R42 
Dephosphorylation of PIP2 by 

PHASE5 

R9 Phosphorylation of MEK by RAFP R43 Binding PIP2 to PI3K 

R10 Binding MEKP to RAFP R44 Dissociation of PIP2_PI3K complex 

R11 Dissociation of MEKP_RAFP complex R45 Phosphorylation of PIP2 by PI3K 

R12 Phosphorylation of MEKP by RAFP R46 Binding PIP3 to PTEN 

R13 Binding MEKPP to PHASE2 R47 Dissociation of PIP3_PTEN complex 

R14 
Dissociation of MEKPP_PHASE2 

complex 
R48 Dephosphorylation of PIP3 by PTEN 

R15 
Dephosphorylation of MEKPP by 

PHASE2 
R49 Binding AKT to PIP3 

R16 Binding MEKP to PHASE2 R50 Dissociation of AKT_PIP3 complex 

R17 
Dissociation of MEKP_PHASE2 

complex 
R51 Phosphorylation of AKT by PIP3 

R18 
Dephosphorylation of MEKP by 

PHASE2 
R52 Binding AKTP to PP2A 

R19 Binding MEKPP to ERK R53 Dissociation of AKTP_PP2A complex 

R20 Dissociation of ERK_MEKPP complex R54 Dephosphorylation of AKTP by PP2A 

R21 Phosphorylation of ERK by MEKPP R55 Binding AKTP to PDK 

R22 Binding  MEKPP to ERKP R56 Dissociation of AKTP_PDK complex 

R23 Dissociation of MEKPP_ERKP complex R57 Phosphorylation of AKTP by PDK 

R24 Phosphorylation of ERKP by MEKPP R58 Binding AKTPP to PP2A 

R25 Binding ERKPP to PHASE3 R59 
Dissociation of AKTPP_PP2A 

complex 
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R26 
Dissociation of ERKPP_PHASE3 

complex 
R60 

Dephosphorylation of AKTPP by 

PP2A 

R27 
Dephosphorylation of ERKPP by 

PHASE3 
R61 Binding BAD to AKTPP 

R28 Binding ERKP to PHASE3 R62 
Dissociation of BAD_AKTPP 

complex 

R29 
Dissociation of ERKP_PHASE3 

complex 
R63 Phosphorylation of BAD by AKTPP 

R30 
Dephosphorylation of ERKP by 

PHASE3 
R64 Binding BADP to PHASE6 

R31 Binding PI to PHASE4 R65 
Dissociation of BADP_PHASE6 

complex 

R32 Dissociation of PI_PHASE4 complex R66 
Dephosphorylation of BADP by 

PHASE6 

R33 Phosphorylation of PI by PHASE4 R67 Activation of PI3K by RAS_GTP 

R34 Binding PIP to PHASE5   
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Figure 12:  Schematic illustration of the crosstalk between AKT and MAPK 

pathways. 
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Figure 13: A snoopy snapshot of the Petri net model. 
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5.4 Simulations and qualitative analysis  

5.4.1 Structural and behavioural properties  

Below we describe the structural properties that depend directly on the places, 

transitions and arcs. These properties characterize the network structure. Structural 

properties are used to make sure whether net’s characteristics are good enough to use 

it as modelling platform for the problem. Biological meaning of some structural 

properties are explained below [5]. 

Table 6: Structural properties and their biological interpretation. 

Property Informal definition Biological meaning 

Pure  

(PUR) 

Net has loop-free structure. 

This excludes read arcs and 

double arcs. 

A biological component cannot 

be produced and consumed by 

single reaction, that is, 

enzymatic reactions need to be 

formulated in more detail. 

Ordinary  

(ORD) 

All arcs have the same weight 

that is equal to 1. 

Each stoichiometric parameter 

has the same numeric value 

equal to one. 

Homogeneous 

(HOM) 

Outgoing arcs of a place are 

assigned same weight. 

Each consuming reaction that a 

component involved in 

consumes the same amount of 

this component (in terms of 

molecules). 

Connected  

(CON) 

A Petri net has connected 

structure.  

All biological components are 

directly or indirectly connected 

with each other via 

biomolecular reactions. 

Strongly 

connected  

(SC) 

A Petri net is strongly 

connected.  

All components are directly 

connected with each other via 

biomolecular reactions. 

Non-blocking 

multiplicity  

(NBM) 

The maximum of the weights of 

outgoing arcs is not greater than 

the minimum of the weights of 

the incoming arcs for a place. 

There is a balance between 

amounts of produced and 

consumed molecules for a 

biological component. 

Conservative  

(CSV) 

A firing action adds as many 

tokens to post-places as the 

number of token removed from 

pre-places.  

A reaction consumes as many 

molecules as the number of 

produced molecules.  

Static conflict 

free (SCF) 

None of the pre-places is shared 

by multiple transitions.  

Biological reactions do not 

share reactants.  
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No input 

transitions 

(FT0) 

All transitions have pre-places. There is a finite source for a 

component. 

No output 

transitions  

(TF0) 

All transitions have post-

places. 

Sink of a component. 

No input places  

(FP0) 

All places have pre-transitions. None of the reactions produces 

specified component.  

No output 

places 

(PF0) 

All places have post-

transitions. 

A component can be infinitely 

accumulated. This component 

is not consumed by any 

reaction. 

 

Table 7: Behavioural properties and their biological meaning 

Property Informal Definition Biological meaning 

Structurally 

boundedness  

(SB) 

A Petri net that is bounded for any 

initial marking is also structurally 

bounded. 

Accumulation of a component 

depends on initial state of the 

system.  

1-boundedness  

(1-B) 

If all places are 1-bounded then 

the Petri net is 1-bounded. 

Amount of any component is 

limited with one molecule. 

𝑘-boundedness  

(𝒌-B) 

A Petri net is 𝑘-bounded if all its 

places are 𝑘-bounded at the most. 

Amount of a component is 

limited with 𝑘 molecules. 

Liveness  

(LIV) 

Every transition is enabled. If a 

transition is disabled there exists a 

firing sequence that enables it. 

All reactions repeatedly occur 

contributing to the time-

dependent and special-

dependent development. 

Reversibility 

(REV) 

The initial marking can be 

reached from any marking.  

Whatever the state reached 

there is a sequence of reactions 

that reproduces the initial state 

of biomolecular system.  

Dynamically 

conflict free 

(DCF) 

A Petri net is said to be free of 

dynamic conflicts if there does not 

exists a state, in which two enable 

transitions can disable each other 

in a circular way. 

This a situation when two 

reactions can occur 

simultaneously, but occurrence 

of any of them inhibits another 

one. This is a typical situation 

when common reactants are 

fully consumed by one of the 

reactions. 

Dead states  

(DSt) 

A Petri net is dead if all transitions 

are disabled.  

The system is deadlocked, no 

reaction can occur. 

Dead transition 

(DTr) 

A transition is dead if it is disable 

and cannot be enabled anymore.  

A reaction cannot occur any 

more. 

Siphon Trap 

Property  

(STP) 

Every siphon contains a marked 

trap.  

There is an outflow of the 

components induced by a 

siphon. The system has an 

initial active trap.  
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Covered by 

places invariants  

(CPI) 

Every place of the Petri net 

belongs to some P-invariant. 

The system has mass preserving 

nature.  

Covered by 

transition 

invariants 

(CTI) 

Every transition of the Petri net 

belongs to some T-invariant. 

The initial state can be 

reproduced from any state of the 

biomolecular system. 

Strongly 

connected 

 by transition 

 invariants  

(SCTI) 

If Petri net is covered by non-

trivial T-invariants then it is 

strongly covered by T-invariants. 

Any trivial T-invariant is a system 

of two reactions. 

There does not exist a pair of 

reactions restoring each 

another. 

 

5.4.2 Simulation results 

We used Charlie simulation tools to conduct the simulations for the satisfiability of the 

properties represented in Table 6 and Table 7. The simulation results are provided in 

Table 8.  

Table 8: Simulation results and their interpretations in biological context. 

Structural properties 

PUR = YES:  

The model does not use read arcs (side conditions for reactions). 

Enzymatic reactions are represented in detail as sequence of simple 

steps. 

ORD = YES:  For all reactions the stoichiometry equal to 1. 

HOM = YES:  
If there exist multiple reactions consuming a component then these 

reactions consume equal number of molecules of this component. 

CON = YES:  The molecular network has connected structure. 

SC = YES:  
In addition, each component is directly connected to all other 

components. 

SB = YES: 
Regardless of the initial marking none of the components can be 

infinitely accumulated. 

STP = YES: 

There is a chain of reactions occurred in a circular way. As a result, 

the total number of molecules in these chains of reactions will 

never be consumed. 

CSV = NO:  Each reaction includes association and dissociation of components. 

SCF = NO:  Some components are shared as reactants by multiple reactions. 

FT0 = YES:  There does not exist any external source. 

TF0 = YES:  There does not exist any external sink. 

FP0 = YES:  None of the components is a reactant only. 

PF0 = YES:  None of the components is a product only. 

 

Behavioural properties 
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 1-B = YES:  For each component there is one just one molecule. 

𝒌-B = YES:  For each component the number of molecules is bounded. 

LIV = YES:  
Due to the cyclic nature of reactions each reaction occurs forever 

contributing to the signalling. 

REV = YES:  
Due to the cyclic nature of reactions there is a chain of reactions 

reproducing the initial state. 

DCF = NO:  
When a protein gets dephosphorylated it loses the ability to 

phosphorylate reactions. 

DSt = 0:  At least one of the reactions can always occur. 

DTr = NO:  If a reaction is not active there still exits a way to activate it. 

CTI = YES:  
All reactions are involved in a circular chain of reactions. A chain 

of circular reactions can reproduce its initial state. 

CPI = YES:  
Mass conservation is indicated, meaning that a P-invariant covers 

all states of a specified component. 

SCTI = NO:  
Some of the chains of circular reactions make up by associated 

reactions consist only of two steps. 

 

As a result of the analysis we determine the following P-invariants and T-invariants. 

Minimal semi positive P-invariants and their meanings: 

1. 𝑿𝟏  = (PI_PHASE4, PIP_PHASE4, PHASE4) determines the states of PHASE4. 

2. 𝑿𝟐 = (PIP_PHASE5, PIP2_PHASE5, PHASE5) determines the states of PHASE5. 

3. 𝑿𝟑 = (PI, PIP, PIP2, PIP3, PIP_PHASE5, PIP2_PHASE5, PIP3_PTEN, 

PI_PHASE4, PIP_PHASE4, PIP2_PI3K, AKT_PIP3) determines the states of PI. 

4. 𝑿𝟒 = (AKTP_PP2A, AKTPP_PP2A, PP2A) determines the states of PP2A. 

5. 𝑿𝟓 
= (AKT, AKT_PIP3, AKTP, AKTP_PP2A, AKTP_PDK, AKTPP, 

AKTPP_PP2A, BAD_AKTPP) determines the states of AKT. 

6. 𝑿𝟔 = (BAD, BAD_AKTPP, BADP, BADP_PHASE6) determines the states of 

BAD. 

7. 𝑿𝟕 = (RAS_GTP, PIP2_PI3K, PI3K, RAF_RAS_GTP) determines the states of 

RAS_GTP. 
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8. 𝑿𝟖 = (RAF_RASGTP, RAF, RAFP, RAFP_PHASE1, MEK_RAFP, 

MEKP_RAFP) determines the states of RAF. 

9. 𝑿𝟗 = (MEKP_PHASE2, PHASE2, MEKPP_PHASE2) determines the states of 

PHASE2. 

10. 𝑿𝟏𝟎 = (MEK_RAFP, MEK, MEKP, MEKPP, MEKP_RAFP, MEKP_PHASE2, 

MEKPP_PHASE2, ERK_MEKPP, ERKP_MEKPP) determines the states of 

MEK. 

11. 𝑿𝟏 𝟏 = (ERKP_PHASE3, ERKPP_PHASE3, PHASE3) determines the states of 

PHASE3. 

12. 𝑿𝟏𝟐 = (ERK, ERK_MEKPP, ERKP, ERKPP, ERKP_MEKPP, ERKP_PHASE3, 

ERKPP_PHASE3) determines the states of ERK. 

Figures 14-16 show the examples of net structures representing P-invariants 

(invariants 1, 3 and 8 in the above list). All three P-invariants are automatically 

detected by the software and then we interpreted their meanings.  

Figure 14: Place invariant X1 that determines the states of PHASE4. 
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Figure 15: Place invariant X3 that determines the states of PI. 

Figure 16: Place invariant X8 that determines the states of RAF. 

Minimal semi positive T-invariants and the meanings: 

1. 𝒀𝟏 = (R33, R36, R31, R34) determines a sequence of reactions reproducing the 

initial state. The sequence consists of binding of PHASE4 to PI, phosphorylation 

of PI to PIP and its release, binding of PHASE5 to PIP and dephosphorylation of 

PIP and its release reactions. 

2. 𝒀𝟐 = (R39, R42, R37, R40) determines a sequence of reactions reproducing the 

initial state. The sequence consists of binding of PHASE4 to PIP, phosphorylation 
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of PIP to PIP2 and its release, binding of PHASE5 to PIP2 and dephosphorylation 

of PIP2 and its release reactions. 

3. 𝒀𝟑 = (R45, R48, R43, R46, R67) determines a sequence of reactions reproducing 

the initial state. The sequence consists of activation of PI3K, binding of PI3K to 

PIP2, phosphorylation of PIP2 to PIP3 and its release, binding of PTEN to PIP3 

and dephosphorylation of PIP3 and its release reactions. 

4. 𝒀𝟒 = (R51, R54, R49, R52) determines a sequence of reactions reproducing the 

initial state. The sequence consists of binding of PIP3 to AKT, phosphorylation of 

AKT to AKTP and its release, binding of PP2A to AKTP and dephosphorylation 

of AKTP and its release reactions. 

5. 𝒀𝟓 = (R57, R60, R55, R58) determines a sequence of reactions reproducing the 

initial state. The sequence consists of binding of PDK to AKTP, phosphorylation 

of AKTP to AKTPP and its release, binding of PP2A to AKTPP and 

dephosphorylation of AKTPP and its release reactions. 

6. 𝒀𝟔 = (R63, R66, R61, R64) determines a sequence of reactions reproducing the 

initial state. The sequence consists of binding of AKTPP to BAD, phosphorylation 

of BAD to BADP and its release, binding of PHASE6 to BADP and 

dephosphorylation of BADP and its release reactions. 

7. 𝒀𝟕 = (R3, R6, R1, R4) determines a sequence of reactions reproducing the initial 

state. The sequence consists of binding of RAS_GTP to RAF, phosphorylation of 

RAF to RAFP and its release, binding of PHASE1 to RAFP, dephosphorylation of 

RAFP and its release reactions. 

8. 𝒀𝟖 = (R9, R18, R7, R16) determines a sequence of reactions reproducing the initial 

state. The sequence consists of binding of RAFP to MEK, phosphorylation of MEK 
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to MEKP and its release, binding of PHASE2 to MEKP and dephosphorylation of 

MEKP and its release reactions. 

9. 𝒀𝟗 = (R12, R15, R10, R13) determines a sequence of reactions reproducing the 

initial state. The sequence consists of binding of RAFP to MEKP, phosphorylation 

of MEKP to MEKPP and its release, binding of PHASE2 to MEKPP and 

dephosphorylation of MEKPP and its release reactions. 

10. 𝒀𝟏𝟎 = (R21, R30, R19, R28) determines a sequence of reactions reproducing the 

initial state. The sequence consists of binding of MEKPP to ERK, phosphorylation 

of ERK to ERKP and its release, binding of PHASE3 to ERKP and 

dephosphorylation of ERKP and its release reactions. 

11. 𝒀𝟏𝟏 = (R24, R27, R22, R25) determines a sequence of reactions reproducing the 

initial state. The sequence consists of binding of MEKPP to ERKP, 

phosphorylation of ERKP to ERKPP and its release, binding of PHASE3 to 

ERKPP and dephosphorylation of ERKPP and its release reactions. 

Figure 17 shows two examples of T-invariants. Both T-invariants were automatically 

detected by the software and then we interpreted their meanings. 
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Figure 17: Transition invariants Y7 (in the left) and Y3 (in the right). 

Trivial T-invariant present in our Petri net model, for example transition R1_R2 shows 

in Figure 18, consists of association and dissociation of proteins. 

 

 

 

 

 

Figure 18: Example of trivial T-invariant constituting association and dissociation 

reactions between RAS_GTP and RAF. 

Siphons and traps. The simulation results show that Petri net contains 16 siphons that 

are traps at the same time. All siphons (or traps) are listed below: 

1. 𝑺𝟏 = (PI, PIP, PIP2, PIP3, PIP_PHASE5, PIP2_PHASE5, .PIP3_PTEN, 

PI_PHASE4, PIP_PHASE4, PIP2_PI3K, AKT_PIP3); 
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2. 𝑺𝟐 = (AKTP_PP2A, AKTPP_PP2A, PP2A); 

3. 𝑺𝟑 = (MEK_RAFP, MEK, MEKP, MEKPP, MEKP_RAFP, MEKP_PHASE2, 

MEKPP_PHASE2, ERK_MEKPP, ERKP_MEKPP); 

4. 𝑺𝟒 = (AKT, AKT_PIP3, AKTP, AKTP_PP2A, AKTP_PDK, AKTPP, 

AKTPP_PP2A, BAD_AKTPP); 

5. 𝑺𝟓 = (PI_PHASE4, PIP_PHASE4, PHASE4); 

6. 𝑺𝟔 = (BADP_PHASE6, PHASE6); 

7. 𝑺𝟕 = (BAD, BAD_AKTPP, BADP, BADP_PHASE6); 

8. 𝑺𝟖 = (RAF_RASGTP, RAF, RAFP, RAFP_PHASE1, MEK_RAFP, 

MEKP_RAFP); 

9. 𝑺𝟗 = (ERKP_PHASE3, ERKPP_PHASE3, PHASE3); 

10. 𝑺𝟏𝟎 = (RAS_GTP, PIP2_PI3K, PI3K, RAF_RASGTP); 

11. 𝑺𝟏𝟏 = (RAFP_PHASE1, PHASE1); 

12. 𝑺𝟏𝟐 = (MEKP_PHASE2, PHASE2, MEKPP_PHASE2); 

13. 𝑺𝟏𝟑 = (ERK, ERK_MEKPP, ERKP, ERKPP, ERKP_MEKPP, ERKP_PHASE3, 

ERKPP_PHASE3); 

14. 𝑺𝟏𝟒 = (AKTP_PDK, PDK); 

15. 𝑺𝟏𝟓 = (PIP_PHASE5, PIP2_PHASE5, PHASE5); 

16. 𝑺𝟏𝟔 = (PIP3_PTEN, PTEN) 
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Chapter 6 

CONCLUSION 

In this thesis we show way of modelling and analysing signal transduction pathways 

or biochemical network using Petri net. This approach when through the translation of 

biological reaction into logical terms and then turn in net components. We have 

illustrated it by considering qualitative Petri net description of the MAPK and AKT 

signalling pathway.  

The modelling of biochemical network using Petri net is appealing and easy because 

it is simple in its application, is visually comprehensible and allows computational 

manipulations. On the other hand, it can be further extended or modified to fit specific 

attributes required for modelling of a variety of systems (inhibitor arc, TPN, CPN, 

KPN, HPN are such extensions).  

We mainly focus on transition and place invariants analysis, which play a role in model 

validation. Once we have a validated Petri net model, several application and extension 

can be applied. The net may be refined and extended to a quantitative model by 

including know or estimated kinetic parameters like concentration, reaction rates or 

time, by using hybrid or continuous Petri nets. In this way, the resulting quantitative 

Petri net model will maintain structural properties and some behavioural properties. In 

this case signal flows are given by simulation. 
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