

Bee Colony Optimization for Single and Multi-

Objective Numerical Optimization

Khaled Saady Ahmed Elhalawany

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

January 2019

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Assoc. Prof. Dr. Ali Hakan Ulusoy

Acting Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science in Computer Engineering.

Prof. Dr. Işık Aybay

 Chair, Department of Computer

Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

Assoc. Prof. Dr. Adnan Acan

Supervisor

Examining Committee

1. Assoc. Prof. Dr. Adnan Acan

2. Asst. Prof. Dr. Mehtap Köse Ulukök

3. Asst. Prof. Dr. Ahmet Ünveren

http://staff.emu.edu.tr/ahmetunveren

iii

ABSTRACT

One common feature of natural systems is the ability for the dynamic interaction

between the most basic individual organisms to produce systems capable of

performing complex tasks. This thesis introduces a novel population based search

algorithm known as Bees Algorithm (BA), that simulates the manner in which

swarms of honey bees forage for food. This algorithm involves a collection of a

neighborhood and stochastic search and is used in both functional and combinatorial

optimization. After describing the algorithm in detail, this thesis attempts to elucidate

the robustness and efficiency of the algorithm based on the outcomes for a library of

complex numerical optimization problems.

The Artificial Bee Colony (ABC) is a swarm based on meta-heuristic algorithm used

to optimize numerical optimization problems and provide accurate solutions. The use

of the term ‗meta-heuristic‘ here refers to the capacity of the algorithm to provide

optimal solutions even in cases on imperfect or incomplete information. Bee colonies

scour many sources of food to determine the best source based on a number of

parameters, such as time, the amount and quality of nectar, etc. In a similar manner,

models that use the ABC algorithm are composed of three components: Unemployed

bees, Employed bees, and Food sources (Fitness). The employed bees are responsible

for finding affluent sources of food close to the hive. In the algorithm, artificial

forager bees acting as environmental agents search for rich food sources. The process

of applying the algorithm begins with transforming the given optimization problem

into one of examining the best parameter vectors, from a population of vectors, to

iv

minimize the objective function. Starting with population of preliminary solution

vectors, potential solutions are enhanced using certain strategies.

This thesis work introduces a Bee Colony Optimization Algorithm and examines its

feasibility based on the results of CEC'05 and CEC'17 expensive benchmark

problems for single objective optimization problems , and used CEC'09 and CEC'18

expensive benchmark problem for Multi-objective optimization. The methods used

in our studies are compared to different well-knows methods proposed in the related

literature was conducted. The final ranking of all test problems indicate that BCO

was always among the top best algorithms that were used for the same purpose.

Keywords: Multi-agent systems, Meta-heuristic algorithms, Multi-objective

optimization, Swarm intelligence, Pareto optimality

v

ÖZ

Doğal sistemlerin ortak özelliklerinden biri temel bireysel organizmalar arasındaki

dinamik etkileşim yeteneği ile karmaşık görevleri yerine getirebilmeleridir. Bu tez arı

algoritması (BA) olarak bilinen bir popülasyonun tabanlı arama algoritmasını tanıtır

ve bal arıları kolonisinin yem arama sürecindeki davranışlarını benzetimler. Arı

algoritmasının daha basit sürümü olarak, bir komşuluk kümesi çerçevesinde ve

işlevsel eniyileme problemlerinin çözümüne yönelik stokastik arama mekanizmaları

içeririr. Algoritma ayrıntılarını detaylı olarak açıklayan bu tez çalışması, güvenilirlik

ve verimlilik konularına bir dizi karmaşık problem üzrinden yapılan deneylerin

sonuçlarına dayalı olarak algoritmanın etkinliğini aydınlatmaya çalışır.

Yapay arı kolonisi (ABC) algoritması, sayısal eniyileme problemlerine zaman,

maliyet, hesaplama karmaşıklığı ve saklama ölçütleri gözetlenerek hassas çözümler

üretmek üzere önerilmiş bir popülasyon tabanlı sezgisel yöntemdir. ‗Meta sezgisel'

terimi önerilen bir algoritmanın problemin belirsizlik içerdiği durumlarda bile en

uygun çözümleri sunmak için algoritma kapasitesini ifade eder. Arı kolonileri nektar

kalitesini zaman ve miktar parameterlerine göre birden fazla kaynağı

değerlendirerek belirler. Arı kolonilerine benzer şekilde, ABC algoritmasının da

kullandığı eniyileme modelleri üç bileşenden oluşur: işsiz arılar, işçi arılar ve gıda

kaynakları (Fitness). İşçi arılar kovana yakın zengin yiyecek kaynaklarını bulmaktan

sorumludur. Algoritmada, yapay yiyecek-arayıcı arılar çevrede bulunan zengin

yiyecek kaynaklarını aramak amacıyla hareket ederler.. Algoritma süreci ilk olarak,

verilen eniyileme problemini vektörel gösterim temelinde modelleyerek bir amaç

işlevine dnüştürmekle başlar ve bu amaç işlevinin parametrelerini değiştirerek işlev

vi

değerini en aza indirmeyi hedefler. Yapay arılar, eniyileme sürecinde kullandıkları

arama stratejileri sonucunda başlangıçtaki popülasyonu içerisinde amaç işlevini

eniyileyen vektörlerin de bulunduğu daha kaliteli bir popülasyona dönüştürür.

Bu tez çalışması arı kolonisi eniyileme algoritmasını sunar ve bu algoritmanın

uygulanabilirliğini çok iyi bilinen ve yaygın kullanılan kıyaslama problemlerini

kullanarak inceler. Bu anlamda tek amaçlı eniyime için CEC‘05 ve CEC‘07

kıyaslama problem kümeleri, çok amaçlı eniyileme için ise CEC‘09 ve CEC‘18

kıyaslama problem kümeleri kullanılmıştır. Bu kıyaslama problemeleri için elde

edilen deneysel sonuçlar aynı problemler üzerinde sınanan diğer güçlü yöntemlerin

sonuçlarıyla karşılaştırılarak detaylı analizler yapılmıştır. Bu analizlere göre, önerilen

arı algoritması tüm kıyaslama problemleri için en iyi yöntemler arasında yer almıştır.

Anahtar kelimeler: Çoklu ajan sistemleri, Meta-sezgisel algoritmalar, Tek ve çok

amaçlı işlevler, Eniyileme, Pareto eniyileme

vii

ACKNOWLEDGMENT

This thesis would not have been possible without the inspiration and support of a

number of wonderful individuals — my thanks and appreciation to all of them for

being part of this journey and making this thesis possible. I owe my deepest gratitude

to my supervisor Assoc.Prof.Dr.Adnan Acan. Without his enthusiasm,

encouragement, support and continuous optimism this thesis would hardly have been

completed. I, also, would like to thank the members of the jury, Asst. Prof. Dr.

Ahmet Ünveren , Asst. Prof. Dr. Mehtap Köse Ulukök and

Assoc.Prof.Dr.Muhammed Salamah for their reviews and comments for the

improvement of this thesis. Special gratitude to Asst. Prof. Dr. Ahmet Ünveren for

his support and positive energy that he provided me during all my time in the EMU.

My deep and sincere gratitude to my family for their continuous and unparalleled

love, help and support. Thanks to my mom's prayers. I am forever indebted to my

parents for giving me the opportunities and experiences that have made me who I

am. They selflessly encouraged me to explore new directions in life and seek my

own destiny. This journey would not have been possible if not for them, and I

dedicate this milestone to them.

It is a pleasure to thank my friends Dr.Basmah Anber and Abdallah Alaraj for the

wonderful times we shared. In addition, I would like to thank all my friends in

Famagusta who gave me the necessary distractions from my research and made my

stay in cyprus memorable.

http://staff.emu.edu.tr/ahmetunveren
http://staff.emu.edu.tr/ahmetunveren

viii

Finally, My deepest gratitude to all the thoughtful wishes of my old friends, each

message and call was deeply appreciated. I would also like to thank all those friends

that accompanied and helped me in the pursuit of my Master's degree.

ix

TABLE OF CONTENTS

ABSTRACT…………………………………………………………………..…......iii

ÖZ……………………………………………………..………………………….......v

ACKNOWLEDGMENT………………………………………………………........vii

LIST OF TABLES……………………………..……………………...……...……..xii

LIST OF FIGURES…………………………...…………………..…………..……xiv

LIST OF ABBREVIATIONS……………….……………………….……...……....xv

1 INTORDUCTION…………………….………………………………………...….1

 1.1 Metaheuristics..…………….……………..…...2

 1.2 Genetic Algorithm (GA)…......……..……...........................………..……….....2

 1.3 Characteristics of the Proposed Bees Algorithm.....…….......………….............4

 1.3.1 Neighborhood Search….…..........………….......……..................................4

 1.3.2 Site Selection……….….…..........…………..6

2 LITERATURE REVIEW…………………………….……………….....................7

 2.1 Artificial Bee Colony …………………..……..…………...……...……..…….7

2 .1.1 The ABC Algorithm Used for Unconstrained Optimization Problems......9

 2.2 Single –Objective Optimization Problem……..…………...……...………….12

 2.3 Bee Colony Optimization for Single Objective Problems..…...……….……..12

 2.3.1 Loyalty Decision…...….…..........………….......…....................................17

 2.3.2 Recruiting Process…...….…..........……….......…….................................18

 2.3.3 External Archive ….....….…..........……….......…….................................19

 2.4 Independent Run of BCO Algorithms………………….……………..…..…..19

 2.5 Synchronous Cooperation of BCO Algorithms…………………….……..…..20

 2.6 Asynchronous Cooperation of BCO Algorithms………………...…..…..…....20

x

 2.7 Multi –Objective Optimization Problem…………………..……...…………..23

 2.7.1 Multi –Objective Optimization Using Evolutionary Algorithms…............25

 2.7.2 Goals Multi-Objective Evolutionary Algorithms….…..........…….............27

2.8 Basic Operators of Multi-Objective Evolutionary Algorithms………...………..28

2.9 Bee Colony Optimization in Multi-Objective Problem…………………..……..30

 2.9.1 External Archive………………………………………………....…..........32

 2.9.2 Diversity…………………………………………….…..........…................32

 2.9.3 Update External Archive………………………………………....…..........33

3 METHODOLOGY………………………………………..………………………34

 3.1 Pseudo-Code for BCO in Single-Objective Optimization Problems….............34

3.2 Pseudo-Code for BCO in Multi-Objective Optimization Problems…....……...37

3.2.1 Initialization …………………………………………………..…............38

3.2.2 Crowding Distance Assignment …………...…………………..…..........39

3.2.3 Conservation of the Crowding Distance Archive …..……….....…..........40

3.2.4 Send Employed Bees …………………………………………..…..........41

3.2.5 Send Onlookers Bees …………………………………………..…..........43

3.2.6 Send Scout Bees ……………..….……………………………..…..........45

4 EXPERMENTAL RESULTS and EVALUATIONS…………………….……….46

4.1 CEC'05 Expensive Optimization Test Problems……………....………………47

4.1.1 Common Definition….…..........………….......…….................................47

4.1.2 Result……….….…..........………….......……..47

4.2 CEC'17 Expensive Optimization Test Problems……………....………………50

4.2.1 Common Definition….…..........………….......…….................................50

4.2.2 Result……….….…..........………….......……..50

4.3 CEC'09 Test Problems for Multi-Objective Problem……….……..............……56

xi

4.4 CEC'18 Test Problems for Multi-Objective Problem ……….....……...…….…74

4.4.1 Definition….…..........………….......……...74

4.4.2 Result……….….…..........………….......……..75

5 CONCLUSION…………………………………………………………..…….….80

REFERENCES…………………………………………………………..………….82

xii

LIST OF TABLES

Table 2.1: Solution Relations…………...…………………………….....…………..24

Table 4.1: Comparisons between BCO, CEP and FEP on ………...….........47

Table 4.2: Comparisons between BCO, CEP and FEP on ………….…......48

Table 4.3: Comparisons between BCO, CEP and FEP on …………...…..48

Table 4.4: Summary of CEC'15 Optimization Test Problems…….…………..…….51

Table 4.5: Best Results of BCO Algorithm in Dimension 10 (30 Runs)…….…...…52

Table 4.6: IGD Values Obtained by BCO and its 3 Competitors for CEC‘17 Test

Function.………………………………….…………………………………………54

Table 4.7: Min, Max, Average, Standard Deviation of IGD Values and Number of

Function Evaluation of BCO in 30 Runs………….…………………..…………….56

Table 4.8: IGD Values Obtained by BCO and its 11 Competitors for UF1, UF2 and

UF3……………….………………………………………………………...……….57

Table 4.9: IGD Values Obtained by BCO and its 11 Competitors for UF4, UF5 and

UF6. ………………………………………………………………..……………….58

Table 4.10: IGD Values Obtained by BCO and its 11 Competitors for UF7, UF8 And

UF9. ….……………………………………...……………………..…………….....58

Table 4.11: IGD Values Obtained by BCO and its 11 Competitors for UF10, ZDT1

and ZDT2. ………...……………………………………….………................……..59

Table 4.12: IGD Values Obtained by BCO and its 11 Competitors for ZDT3, ZDT4

and ZDT6. …...…………………………………………….............................……..60

Table 4.13: IGD Values Obtained by BCO and its 11 Competitors for WFG1, WFG2

and WFG3. …….…………………………………………………….……………...61

xiii

Table 4.14: IGD Values Obtained by BCO and its 11 Competitors for WFG4, WFG5

and WFG6. ……………………………..………………………………......……….61

Table 4.15: IGD Values Obtained by BCO and its 11 Competitors for WFG7, WFG8

and WFG9. ……………………………………………...62

Table 4.16: IGD Values Obtained by BCO and its 11 Competitors for DTLZ1,

DTLZ2 and DTLZ3. …………………….……………..………………......……….63

Table 4.17: IGD Values Obtained by BCO and its 11 Competitors for DTLZ4,

DTLZ5 and DTLZ6. …………………………………………………….…..……...63

Table 4.18: IGD Values Obtained by BCO and its 11 Competitors for DTLZ7…....64

Table 4.19: Min, Max, Average, Standard Deviation of IGD Values and Number of

Function Evaluation of BCO in 30 Runs. ….……………………………...………..75

Table 4.20: IGD Values Obtained by BCO and its 2 Competitors for MaOP1,

MaOP2 and MaOP3 ………….……………………………...……………………...75

Table 4.21: IGD Values Obtained by BCO and its 2 Competitors for MaOP4,

MaOP5 and MaOP6...….……..………………………………..……………………75

Table 4.22: IGD Values Obtained by BCO and its 2 Competitors for MaOP7,

MaOP8 and MaOP9…………….………………………………..………………….76

Table 4.23: IGD Values Obtained by BCO and Its 2 Competitors for MaOP1,

MaOP2 and MaOP3...…….………….……………………………..……………….76

xiv

LIST OF FIGURES

Figure 1.1: Genetic Algorithms…………………………………….......………...…..4

Figure 2.1: Partial/Complete Solutions After (n) Forward Pass…………………....13

Figure 2.2: Recruiting of Un-Committed Followers ………………………….…….15

Figure 2.3: Recruiting Process in (n) Backward Pass…...………………………......15

Figure 2.4: Partial or Complete Solutions After (n) th Forward Pass……………….16

Figure 2.5: Flowchart of BCO Algorithm………...………..22

Figure 2.6: Mapping From Decision Space to Objective Space …………………....23

Figure 2.7: Multi-Objective Optimization Process………………………………….26

Figure 3.1: Pseudo-Code for BCO……………………………………………….….35

Figure 3.2: Pseudo-Code for EMOABC Algorithm…………………………….......38

Figure 3.3: Algorithm of Crowding Distance Assignment……………………….…40

Figure 3.4: Algorithm of Send Employed Bees………………………...……...…....42

Figure 3.5: Algorithm Send Onlooker Bees…………………………………...…....44

Figure 3.6: Algorithm of Send Scout Bees……………...……….……...………......45

Figure 4.1: The Plots of Computed Pareto-Fronts and PF-True………………….…73

Figure 4.2: The Plots of Computed Pareto-Fronts and PF-True……......…..........….79

xv

LIST OF ABBREVIATIONS

ABC Artificial Bee Colony

ACO Ant Colony Optimization

BA Bees Algorithm

BCO Bee Colony Optimization

DE Deferential Evolution

DM Decision Marker

EA Evolutionary Algorithm

Fobj Objective Function

GA Genetic Algorithms

Gbest Global Best

MOABC Multi-Objective Artificial Bee Colony

MOEAs Multi-Objective Evolutionary Algorithms

MOO Multi-Objective Optimization

NSGAII Non-Dominated Sorting Genetic Algorithm

Pbest Personal Best

Pc Crossover Probability

Pm Mutation Probability

SA Simulated Annealing

TS Tabu Search

1

Chapter 1

INTRODUCTION

The classical optimization techniques are useful to find the optimum solution or

unconstrained minima or maxima of continuous and differentiable functions. Such

types of techniques are analytical in nature and often stuck of locally optimal

solutions. Concerted research efforts have been made recently in order to invent

novel optimization techniques for solving real life problems, which have the

attributes of memory update and population-based search solutions. Presently,

general-purpose optimization techniques such as Simulated Annealing, and Genetic

Algorithms, have become standard optimization techniques. The popularity of such

models is due to the capacity of biological systems to adjust themselves to their

constantly changing environments in an efficient manner. Examples of such nature-

inspired algorithms include: evolutionary computation, particle swarm optimization,

neural networks, bacteria foraging algorithm, immune systems, bee colony and ant

colony optimization.

Swarm behavior is a common feature of different colonies of social insects (termites,

antes, wasps, bees). The main features of such behavior include division of labor,

autonomy, and self-organization.

Swarm Intelligence [1, 2] is a branch of Artificial Intelligence, whose primary focus

is the study of individual actions within different kinds of decentralized systems.

2

Researchers try to apply as many features of swarm intelligence in natural settings to

the creation of Swarm Intelligence models and techniques.

1.1 Metaheuristics

The majority of engineering applications share the common challenge of how to

solve optimization problems. These types of problems are solved using optimization

algorithms like metaheuristics, which are a specific type of optimization algorithm

inspired by nature. There are two kinds of metaheuristics: trajectory-based, which

provide a single solution, and population-based, which provide a population of

solutions. Metaheuristics utilize certain forms of stochastic optimization, which

include algorithm sets that find the near-global or global optimal solution to a

problem using random selection. As such, they are used in solving a many of

optimization problems [3].

The more common types of trajectory-based Metaheuristics include Tabu Search [7]

,Great Deluge Algorithm [5] and Simulated annealing [4], and the types of

population based Metaheuristics include the Genetic algorithm [8], Artificial bee

colony [10] ant colony optimization [9] and Differential Evolution [11, 12].

1.2 Genetic Algorithms (GA)

Genetic algorithms (GAs) are search and optimization algorithms whose

development was inspired by basic of natural development.‖ John Holland‖ (1975)

is credited with developing the first algorithmic and computational description of

GAs [8, 13, 14]. GAs function in relation to a population of potential solutions in

which the individual solutions are known as chromosomes. Each chromosome‘s

content is taken to be the genotype of the relevant solution, while its phenotype or

fitness indicates to the evaluation of the primary objective function. GAs begins,

3

first, by randomly initializing a population of solutions, which is consecutively

improved over a number of generations.

The individual chromosomes in each generation are modified using three kind of

genetic operators: ‗natural selection‘, ‗mutation‘ and ‗crossover‘. The natural

selection operator is used in selecting the individual that is subjected to the

crossover operator from the current population. It is a stochastic operator with a

preference for individuals with high fitness levels whose genetic characteristics are

then passed on to future generations. The crossover operator on the other hand,

functions by mixing the genetic characteristics (also known as allelic values) of

individuals to produce offspring based on the principle that their fitness value

should at least be higher than that of their respective parents. As a type of

intensification operator, the crossover does not change the gene content of

population by adding any new genetic information, so this task is completed by the

‗mutation‘ operator instead, which randomly specify allelic values to the relevant

domain to the genetic location. A type of diversification operator, the application of

mutation typically includes a small probability. Old populations are replaced

through the generation of new offspring populations, which terminates upon the

satisfaction of predetermined termination criteria. Algorithm 1.1 provides an

algorithmic description of GAs, while their problem-specific representational issues

and implementation details are contained in [15].

4

 Algorithm 1.1. Genetic Algorithms (Pop, Pc, Pm),

1. Iteration=1;

2. Pop=Initial Population;

3. Fitness=Fobj(Pop);

4. Best_Solution=Best-fitness chromosome within the Pop;

5. Termination_Cond=FALSE;

6. While not(Termination_Cond),

i. Mating_Pool=Selection(Pop);

ii. Offspring=Crossover(Pc, Mating_Pool);

iii. New_Pop=Mutation(Pm, Offspring);

iv. New_Fitness=Fobj(New_Pop);

v. Update the Best_Solution;

vi. Pop=New_Pop;

vii. Fitness=new_Fitness;

viii. Iteration= Iteration+1;

ix. Check(Termination_Cond);

7. End While.

8. Return Best_Solution found so far.

Figure 1: Genetic Algorithms [15]

1.3 Characteristics of the Proposed Bees Algorithm

 In this section certain key characteristics of the proposed Bees Algorithm (BA) will

be discussed in detail.

1.3.1 Neighborhood Search

Not least in the case of the BA, Neighborhood search is fundamental in all

evolutionary algorithms. In BA, the process of searching a site is akin to that of the

foraging field exploitation of honey bee colonies in nature.

5

As previously described; when a scouting bee discovers a 'fruitful' foraging field, it

reports the location back to the hive to enlist more bees to that area. This practice is

both useful and crucial in sustaining the colony. In the same vein, this productive

process may well be an effective process for problems relating to optimization in

engineering. The 'wriggle dance' back amongst the fellow bees is integral to the

process of harvesting, where the recruit bees engage in a monitoring phase leading to

decision making for the ultimate purpose of gathering the crop.

In the case of BA, this monitoring exercise can be related to and used as a

neighborhood search. Basically, when the scout discovers a good field (good

solution), it is advertised to more bees. In so doing, the recruited bees fly to the lode

location, harvest the nectar and return to their hive.

Subject to the quality at that source and of the nectar quality, the location can be re-

advertised by bees already aware of the location. In the proposed BA, this behavioral

practice has been used as a neighborhood search.

As described above; from each foraging site (neighborhood site) only one bee is

selected and must be equipped with the best solution information for that respective

field. It is with this in mind, the algorithm may create certain solutions, which are

related to the ones previous.

Neighborhood search is depend on a random dispersal of bees in a specific range

(patch size). For each selected site, bees are distributed at random to seek a good

solution (fitness).

6

Simultaneously, during the process of harvesting, additional elements should also be

undertaken for the purposes of increased efficiency, ideally the number of recruited

bees on that neighborhood patch and the patch size itself. Management of recruited

bee numbers targeting selected sites should be properly defined.

Number of function evaluations will be increased or reduced respectively, depends

on the neighborhood range. If the range can be organized sufficiently, then the

number of bee recruits will be dependent upon the intricacy of a solution range.

1.3.2 Site Selection

There are two method have been implemented to use in site selection best site and

probabilistic selection. ‗Roulette wheel‘ method has been utilized in probabilistic

selection and the site that have good fitness have more chance to selected, but in best

site selection, the best site according to a good fitness will be selected.

7

Chapter 2

LITERATURE REVIEW

2.1 Artificial Bee Colony

The artificial bee colony (ABC) optimization technique is a member of the set of

swarm based algorithm optimization techniques presently available. In simple terms,

ABC is a meta heuristic technique modeled based on the lifestyle of bees. Bee colony

optimization techniques include three type of bees: employed bees, scout bees and

onlooker bees.

The Artificial Bee Colony is able to overcome limitations on the applicability of

optimization techniques through the application of information share models. These

approaches all have certain agents who simultaneously explore the solution space.

These agents (artificial bees) attempt to solve a given problem with incomplete

information in all of the approaches under consideration, which are also not subject

to any form of global control. Artificial bees are modeled based on cooperation,

which serves to improve their efficiency and allow them satisfy objectives they

otherwise could not achieve through individual action. The resulting algorithms

represent algorithmic frameworks applicable to different type of optimization

problems.

8

The food source in the ABC is used to represent a candidate solution for optimization

i.e. the amount of nectar denotes the fineness ‗quality‘ of the solution that food

source represents. The fineness ‗quality‘ of the prospective optimal solution raises

parallel to the amount of nectar. Each search cycle in the ABC algorithm is split into

three stages: first, deploying employed bees to food and to determine the amount of

their nectar content; second, the selection of solution ‗food sources‘ by onlookers

bees predicted on information received from the employed bees about the amount of

nectar in the foods; and third, mobilizing the scout bees and sending them out to

possible food sources.

The ability of BCO to help solve non-standard combinatorial optimization problems,

such as those with inaccurate data or including multiple-criteria optimization, is well

documented. The utilization of BCO in such cases requires it to be hybridized using

suitable methods.

The primary aim of this research is the development of swarm-based optimization

algorithms motivated by the honey-bees behavior. These algorithms are intended to

solve complex optimization problems more efficiently.

The main research objectives include:

• Developing an original intelligent optimization method premised on the swarm

food-foraging behaviors of bees that is also applicable to industrial problems.

• Enhancing the search procedure used by the algorithm to improve its performance

in combinatorial domains.

9

2.1.1 The ABC Algorithm Used for Unconstrained Optimization Problems

In ABC algorithm [16, 17], the colony of artificial bees consists of three groups of

bees: employed bees, onlookers and scouts. First half of the colony consists of the

employed artificial bees and the second half includes the onlookers. For every food

source, there is only one employed bee. In other words, the number of employed bees

is equal to the number of food sources around the hive. The employed bee whose the

food source has been abandoned by the bees becomes a scout.

In ABC algorithm, the position of a food source represents a possible solution to the

optimization problem and the nectar amount of a food source corresponds to the

quality (fitness) of the associated solution. The number of the employed bees or the

onlooker bees is equal to the number of solutions in the population. At the first step,

the ABC generates a randomly distributed initial population P(G=0) of SN solutions

(food source positions), where SN denotes the size of population. Each solution

xi(i=1,2, ..., S N)isaD-dimensional vector. Here, D is the number of optimization

parameters. After initialization, the population of the positions (solutions) is

subjected to repeated cycles, C=1,2, ..., M CN ,of the search processes of the

employed bees, the onlooker bees and scout bees. An employed bee produces a

modification on the position (solution) in her memory depending on the local

information (visual information) and tests the nectar amount (fitness value) of the

new source (new solution). Provided that the nectar amount of the new one is higher

than that of the previous one, the bee memorizes the new position and forgets the old

one. Otherwise she keeps the position of the previous one in her memory. After all

employed bees complete the search process, they share the nectar information of the

food sources and their position information with the onlooker bees on the dance area.

10

An onlooker bee evaluates the nectar information taken from all employed bees and

chooses a food source with a probability related to its nectar amount. As in the case

of the employed bee, she produces a modification on the position in her memory and

checks the nectar amount of the candidate source. Providing that its nectar is higher

than that of the previous one, the bee memorizes the new position and forgets the old

one.

An artificial onlooker bee chooses a food source depending on the probability value

associated with that food source, , calculated by the following expression:

∑

Where is the fitness value of the solution i which is proportional to the nectar

amount of the food source in the position i and SN is the number of food sources

which is equal to the number of employed bees (BN).

In order to produce a candidate food position from the old one in memory, the ABC

uses the following expression:

Where { } and { } are randomly chosen indexes .Although

k is determined randomly, it has to be different from i . is a random number

between [-1, 1]. It controls the production of neighbor food sources around xi,j and

represents the comparison of two food positions visually by a bee. As the

difference between the parameters of the xi,j and xk,j decreases, the perturbation on

the position xi,j gets decrease, too.

11

Thus, as the search approaches to the optimum solution in the search space, the step

length is adaptively reduced. If a parameter value produced by this operation

exceeds its predetermined limit, the parameter can be set to an acceptable value. In

this work, the value of the parameter exceeding its limit is set to its limit value. The

food source of which the nectar is abandoned by the bees is replaced with a new food

source by the scouts. In ABC, this is simulated by producing a position randomly and

replacing it with the abandoned one. In ABC, providing that a position can not be

improved further through a predetermined number of cycles, then that food source is

assumed to be abandoned. The value of predetermined number of cycles is an

important control parameter of the ABC algorithm, which is called ―limit‖ for

abandonment. Assume that the abandoned source is xi and j { 1, 2,..., D} ,

then the scout discovers a new food source to be replaced with xi .

 Pseudo-code of the ABC algorithm:

 1: Initialize the population of solutions xi,j .i=1,…,SN,J=1,…D

 2: Evaluate the population

 3: cycle=1

 4: repeat

 5: Produce new solutions υi,j for the employed bees and evaluate them

 6: Apply the greedy selection process

 7: Calculate the probability values Pi,j for the solutions xi,j

 8: Produce the new solutions υi,j for the onlookers from the solutions xi,j

 selected depending on Pi,j and evaluate them

 9: Apply the greedy selection process

 10: Determine the abandoned solution for the scout, if exists, and replace it

 with a new randomly produced solution xi,j by (3)

 11: Memorize the best solution achieved so far

 12: cycle=cycle+1

 13: until cycle=MCN

12

2.2 Single -Objective Optimization Problems

Optimization can be described as a process through which the most optimal outcome

in terms of objective function can be determined. Single optimization problems are

characterize by the being of a singular objective function with the goal of either

minimizing or maximizing it using the relevant algorithms [18]. The general form of

Single Objective Optimization Problems is the maximization or minimization of

 subject to ≤0 i={1,2,3,….,m} and =0,j={1,2,3,….,m},

 whereby and specify the constraints that must taken into

consideration when optimizing . The solution to the problem is to either

minimize or maximize where is the n-dimensional decision variable array is

and is the universe for . The global optimal is identified using the method known

as global optimization.

2.3 Bee Colony Optimization for Single Objective Problems

BCO is a meta–heuristic method drawing from nature and developed as an efficient

way to solve intricate combinatorial optimization problems. The underlying logic of

BCO is to use a multi-agent system (Colony of artificial bees) to find solutions to

many combinatorial optimization problems by exploiting the same rules honey bees

use in the steps of collecting nectar.

While the artificial bee colony typically contains a lesser number of individual bees,

the BCO principles it adheres to are replicated from natural systems. The

autonomous artificial bees examine the search space to find the best possible

solutions by sharing information and collaborative effort. This information sharing

enables they develop a pool of collective knowledge that allows the artificial bees

determine which areas are more likely to produce optimal solutions. The artificial

https://www.powerthesaurus.org/drawing_from/synonyms

13

bees then gradually and collectively produce or/and develop their solutions. The

BCO search is continually repeated until it has satisfied a predefined stopping

criterion.

BCO is conducted by a population of B individuals (artificial bees). Each of these

individuals is expected to handle one possible solution to the given problem. forward

pass and the backward pass the basic steps in BCO algorithm .All of the artificial

bees examine the search space in the forward pass. By applying a previous amount of

moves that improve the complete/partial solutions, they are able to generate new

partial solutions. To illustrate, we assume Bee 1, Bee 2, . . . , Bee B partake in the

process of decision-making in n entities. This entity could either be a complete

singular solution expected to be enhanced by BCOi in the algorithm‘s later phases, or

a subset (one or more) of partial solution components according to the constructive

version [19].

Figure 2.1: Partial /Complete solutions after (n) pass [19]

14

Figure.2.1 illustrates the possible solutions after (n) forward pass. The rectangles in

Figure show the partial/complete solutions related to each bee with different style

denoting the different solutions associated to each bee.

The second backward pass phase begins after the new partial/complete solutions

have been obtained. This phase involves information sharing between all the

artificial bees regarding the fitness (quality) of their individual solutions. In natural

settings, honey bees turn back to the hive and use the ‗waggle dance‘ to signal to

other bees the number of food they found, as well as its distance from the hive; that

is, the overall quality of their discovery. In the search algorithm, this ‗waggle dance‘

announcement takes the form of calculating the objective function values of every

partial or complete solution. Following the evaluation of each solution, each artificial

bee determines the likelihood of its continued loyalty to its solution.

Bees with relatively superior solutions are in a better position to both retain and

promote their respective solutions. In contrast to natural bees, however, artificial

bees that remain loyal to their solutions simultaneously function as ‗recruiters‘ – that

is, other bees will also consider their solutions. One a bee abandons its solution; it

will need to detect one from the advertised solutions. This selection process is based

on probability in that the more advertised a solution, the better its chances of being

selected for further exploration. As such, all the bees are categorized into one of two

groups during each backward pass: R recruiters and B – R uncommitted bees (see

Figure. 2.2). The values for each group change for each backward pass.

15

Figure 2.2: Recruiting of uncommitted followers [19]

If we assume that Bee-1 from Figure 2.1 decides to put away its solution after all the

generated partial/complete solutions have been compared and joins ‗Bee B‘, both

‗Bee-1‘ and Bee-B ―fly with each other‖ through the route that produced by the ‗Bee

B‘ (see Figure.2.3). Simply put, the solution produced by ‗Bee B‘ is adopted by

 ‗Bee 1‘ as illustrated by their similar solution-rectangles in Figure.2.3. After this

stage, however, both bees are free to individually decide their next steps. Bees 2, 3

from the earlier example retain their generated solutions.

Figure 2.3: Recruiting process in (n) backward pass [19]

16

Based on the deductive BCO, each bee give a various set of components to the

partial solution it generated before in the next forward pass, while the bees in BCOi

attempts to improve the quality of their complete solutions by altering some of their

components. Figure. 4.2 illustrate this condition after the next forward pass when the

bees‘ solutions have changed as symbolized by new patterns in their associated

rectangles.

Figure 2.4: Partial / Complete solutions after (n) forward pass [19]

The forward and backward pass stages of the algorithm also have alternating NC

times; that is, they cannot begin until each bee is finished generating its solution or

preforming NC solution modifications. Earlier versions of the BCO algorithm used

the NC parameter to determine the amount of factors that needed to be assigned to

the partial solutions in each forward pass. The meaning of ―NC‖ was changed after

the development of BCOi in an effort to unify the algorithm description. Recent

literature also contains other amendments to BCO parameters [20, 21].

Regardless, the parameter NC denotes how frequently the bees exchange

information. The most suitable of all B solutions is selected after the completion of

the NC steps. This solution is utilized to enhance the global best solution, thereby

17

completing one BCO iteration. The B solutions are then deleted at this juncture and

subsequently followed by the start if a new BCO iteration. The BCO algorithm

continues running iterations until the termination condition is satisfied. Examples of

such criterion include: maximum allowed CPU time, maximum number of iterations

without any advancement in the objective function score, maximum number of

iterations, among others. Once the criterion has been the current global best solution

is considered final.

The values of the following factor need to be declared before executing the BCO

algorithm:

B—Size bee colony (Number of bees)

NC —Number of passes (forward and backward) in each iteration.

2.3.1 Loyalty Decision

Each bee has to decide whether or not to remain loyal to its previous solution at the

end of every forward pass. This decision is made by comparing the fitness of its

solution to that of the other solutions. The following formula calculates the

probability that the bee will remain loyal to its previous solution [18]:

Where:

Omax: The maximum of all solutions to be compared.

Ob: objective functions of solution created by the bee by, and the number of forward

passes by u (taking values 1, 2. . . NC).

Based on whether the objective function needs to be maximized or minimized, the

normalization can be performed one of two ways. If the objective function value of

18

bee solution is represented by Cb (b =1, 2. . . B), its normalized value in the case of

minimization is computed using the following formula [19]:

Where the values of solutions associated to minimum and maximum objective

function values gotten by all the relevant bees are represented by Cmin and Cmax

respectively. Equation (2) illustrates that Ob is larger when the bee‘s solution is

further from the maximal value of all solutions (Cmax) than its normalized value,

and vice versa.

Equation (3) is used to evaluate the normalized value of Cb in the case of

maximization criterion [19],

It is evident from equation (3) that the normalized value Ob is larger when the value

of the solution Cb is higher and vice versa. In Equation (1) with a randomly-

generated number, the individual artificial bees determine even to continue

examining their own solutions or turn into uncommitted follower. If the selected

random number is less than the calculated probability then the bee remains loyal to

its solution. Conversely, if the calculated probability is less than the random

number
 , then the bee becomes uncommitted.

2.3.2 Recruiting Process

For each ‗Uncommitted bee‘ has to decide which recruiter to monitor based on the

fitness of all advertised solutions. The chance that bee solution is chosen by an

uncommitted bee is mathematically computed as [19]:

19

Where

Ok value for the objective function of the advertised solution.

 R represents the total number of recruiter‘s bees; roulette wheel is used to pair each

uncommitted follower to one recruiter.

2.3.3 External Archive

The proposed algorithm works with an internal population and an external archive. It

uses a decomposition-based strategy for evolving its working population and uses a

domination-based sorting for maintaining the external archive. Information extracted

from the external archive is used to generate new solution using genetic operator

,first solution selected from the archive using roulette wheel method and by select

one solution from archive and second solution will generate randomly then modified

both solution by crossover or mutation .

2.4 Independent Run of BCO Algorithms

Parallelization of BCO in its simplest form presents the independent procedure of

important computations on various processors. Speed up the search performed is the

aim of this strategy in BCO by divide total of work between different processors .In

[22], it was recognize by a reduction of the stopping condition on each processor,

the BCO could work in parallel on q processors for runtime=q seconds. The BCO

parameters (number of bees B and number of forward/backward passes NC) were the

same for all BCO processes executing on various processors in order to ensure a load

balance between all processors. The BCO algorithms running on different processors

were different in the seeds values. This variant of parallelized BCO was named

Distributed BCO (DBCO) [23]. Another way to implement the coarse grained

20

parallelization strategy proposed in [22] was the following: Instead of the stopping

criterion, the number of bees could be divided. Namely, if the sequential execution

uses B bees for the search, parallel variant executing on q processors would be using

B=q bees only. Actually, on each processor, a sequential BCO is running with the

reduced number of bees. This variant was referred to as BBCO [19].

2.5 Synchronous Cooperation of BCO Algorithms

More advance way to perceive parallelization is cooperative work of several BCO

processes. At certain execution points, all processes share the relevant information

that are used to guide further search. This synchronous strategy named Cooperative

BCO (CBCO) and proposed in [22]. The communication points were specified in

two different ways: fixed and processor dependent. In the first case, the best solution

was shared 10 times during the parallel BCO execution. In such a way processors

were given more freedom to execute independent part of the search [19].

2.6 Asynchronous Cooperation of BCO Algorithms

To decrease the communication and synchronization overhead during the cooperative

execution of different BCO algorithms, in [22] the authors proposed the use of the

asynchronous execution method. They implemented this method in two different

ways, but under the common name General BCO (GBCO). The first implementation

concerned a centrally coordinated knowledge exchange, while the second utilized

non-centralized parallelism [19].

The first asynchronous approach proposed in [22] supposed the presence of a central

blackboard - to which each processor has access. Improvement of the current best

solution is the aim of communication condition. The stopping condition was not

reduced and was set to maximum allowed CPU time in order to ensure better load

21

balancing. Non-centralized asynchronous parallel BCO execution supposed the

existence of several blackboards so that only a subset of (neighboring) processors

may post and access information on the corresponding blackboard.

22

Figure 2.5: Flowchart of BCO Algorithm [24]

23

2.7 Multi-Objective Optimization Problems

The essential notion behind multi-objective optimization is the existence of a multi-

objective problem that has more than one functions that need to be improved

(optimized ―minimized or maximized‖) using the solution x, as well as different

constraints to satisfy as seen in Equation 5 [25].

X: vector of decision variables: , each of which is

constrained by the lower and upper bounds xLi and xUi respectively [26] . These

bounds establish the decision range D and the M: number of objective functions

 m(x) define a converting from D to the objective range Z. This mapping is

subjective and occurs between the n-dimensional solution vectors x D and the m

dimensional objective vectors m(x) Z so that each x D is linked to a point y Z

(See Figure 2.6).

Figure 2.6: Mapping from Decision Space to Objective Space [25]

24

Equation 5 can also be made to show J inequality and K equality constraints by

constraining the problem.

The switch to single-objective optimization problems from multi-objective problems

presents a new challenge for how solutions are compared as performance becomes a

vector of objective values rather than a single scalar. This issue is addressed by the

idea of Pareto dominance, which allows solutions to be compared. . The solution x

can be dominating solution when the following conditions have been met:

1) Solution y is not better than solution x in all objectives function.

2) Solution x is better than solution y on at least in one objective function.

Considering all objectives are subject to minimization, this is mathematically written

as [25]:

This binary dominance relation is asymmetric, non-reflexive and transitive. Several

relations between solutions, however, can still be observed. Table 2.1 outlines some

of the more common relations between solutions, their corresponding notations and

formal interpretations [26]. The list is arranged based on the level of strictness

enforced.

Table 2.1: Solution Relation [25]

Relation Notation Interpretation

Strictly dominates

Dominates

Weakly dominates

Incomparable
Indifferent

25

A number of other important definitions can also be derived from the definition of

dominance. One important concern during optimization is to locate the non-

dominated set of solutions. Non-dominated set of solutions ‗ P` ‘ in a set of solutions

‗P‘ are the solutions not dominated by any other members of P. Accordingly, the

globally Pareto-optimal set is defined as the non-dominated set of the whole usable

search range S D. Denoted by Pareto optimal set, the approximation of this set is

the expected goal of multi-objective optimizers. The mapping from the Pareto-

optimal set in an objective space denotes the true Pareto-optimal front/true Pareto

front as illustrated in Figure 2.6 [25].

2.7.1 Multi-Objective Optimization Using Evolutionary Algorithms

An evolutionary algorithm (EA) can be utilized to carry out a multi-objective

optimization. EAs are optimizers that draw inspiration from Darwinian evolution.

The solutions to a particular problem in an EA are assumed to be individuals in a

population with each individual‘s fitness determined by its efficacy at solving said

problem. Mating between individuals in a population produces offspring who then

compete with their parents for the chance to be added in the next generation. Since

only the fittest individuals survive, the general population is improved with each

iteration [26]. In a more formal sense, the advantage of EA is that is uses a set of

solutions, as opposed to merely enhancing a single solution. This allows for the

combination of useful solutions to create new ones. Based on probabilistic operators,

an EA is in fact a stochastic meta-heuristic, that is, a method of optimization.

Consequently, different executions of the EA can produce different outcomes, in

contrast to deterministic algorithms.

26

The most significant distinction between single- objective and multi-objective EAs

(MOEAs) is that while returning to the most optimal solution for a population is

relatively simple in single objective optimization due to the implication of a specific

order among solutions, MOEAs present an entirely different situation [25]. The

greater dimensionality inherent to the objective space makes it impossible to

compare all of the individuals in a population to one another since they each

represent an optimal compromise between objectives. Put differently, this simply

means that the set of solutions produced by a MOEA will most likely be non-

dominated. It is therefore the decision-maker‘s responsibility to determine which

solution(s) to realize. A description of the entire process is provided in Figure.2.7.

Figure 2.7:Multi-Objective Optimization Process [25]

27

2.7.2 Goals Of Multi-Objective Evolutionary Algorithms

As was noted earlier, the purpose of a MOEA is the estimation of the ―Non-

dominated solution‖ of solutions [25]. This goal, however, is often separated into

three objectives:

1. Proximity to the real Pareto front set.

2. Evenly-distributed solutions.

3. Well-dispersed solutions.

First, by getting all the solutions as closeness to the Pareto optimal front, we can

guarantee they are as optimal as possible. This closeness is calculated as the

Euclidian distance in an objective space. Because NP complete combinatorial

problems constitute the majority of problems solved using MOEAs, it is impossible

to ‗guess‘ the mapping of the decision vector to a suitable point in the objective

range. The most dominated or non-dominated solution are selected for survival in the

MOEA to help the population reach its Pareto optimal front since such individuals

are the most similar to it. Under ideal condition, all of the solutions returned from a

MOEA are on the Pareto front [27].

The MOEAs second objective is to occupy as large an area of the Pareto front as can

be managed an is rather unique to multi-objective optimization. When the individuals

on the Pareto front are evenly distributed, a variable set of exchange between

objectives is guaranteed. When the solutions in a set are equidistant from their

neighbors, the DM is provided with an survey of the Pareto front that allows for the

final selection, which then occurs on the basis of the exchange between objectives

described by the population, as shown in Figure 2.6 [25].

28

The third objective is very much related to the second. A high expansion means a

similarly high space between the two extremes for solutions in an objective range,

which ensures that the Pareto front is covered. The diversity of the population is

usually guaranteed by the application of a crowding or density measure, which

punished individuals in close proximity to one another within the objective space

[28].

In terms of application, the first objective is undoubtedly the most important as it

relates directly to how optimal the returned solutions are. The second objective,

although also important, is less so since only a few solutions in the final population

are typically investigated further. Lastly, the third objective is virtually unimportant

as very few extreme solutions are every applied in reality.

Traditional MOEAs utilize two mechanisms in pursuance of these three objectives.

These mechanisms are intended to directly promote the convergence of the Pareto

front true as well as a suitable distribution of solutions. The first, elitism, is used to

guarantee that solutions in nearness to the true Pareto optimal front will remain in the

population all through its evolution, i.e., there can be no reduction in the amount of

Pareto optimal set (‗non-dominated solutions‘) in the population.

2.8 Basic Operators of Multi-Objective Evolutionary Algorithms

The operators are iteratively applied until they satisfy some predefined termination

criterion, which is typically determined by the amount of function evaluations carried

out since this constitutes the bulk of the entire computational effort. This, however,

rely on the dimensionality of the test problem M, amount of Bees (size of the

population) N, and the number of production(generation) performed T. It is not

29

unusual for a new offspring to be produced per parent so that the M × N × T function

evaluations are performed in T generations. The primary operators used in the

MOEA are [25]:

• Evaluation.

• Selection.

• Variation.

Evaluation is usually grounded in the dominance relation described above. By

assigning each individual a Pareto-rank depend on the number of other individuals

they dominate, its intended purpose is to indicate the level of dominance of each

individual. This ranking out to be Pareto-compliant and more or less graded,

contingent on the method used for the ranking itself. The assignment of the final

fitness is incorporated with a second fitness criterion I traditional MOEAs so as to

enforce and order on individual quality prior to selection. Evaluation occurs in an

objective space and is dependent on the objective functions, which are themselves

problem-dependent.

Selection comes in one of two forms ad is based on the fitness attributed to the each

individual in the evaluation stage described above. The first, sexual/mating selection

is used to define which individuals in a generation will be allowed to mate and

produce offspring. This typically random selection can also involve all individuals in

a population so as to ensure an equal mating chance. The second, environmental

selection occurs after variation and includes the application of the famous concept of

survival of the fittest, whereby the next generation exclusively comprises of the best

pairs of parents and their offspring. The effect of this is to cut the population‘s size

down to its original value. Both selection types are applied in objective space.

30

Variation is used to individuals in a population that have been selected as candidates

for mating. These individuals are given the opportunity to produce offspring that are

essentially variations of themselves. These variations are achieved using either

recombination or mutation. While the recombination operator allows the offspring to

retain the best parts of multiple parents, mutation causes only relatively minor

changes in the offspring. Generally, recombination improves exploration of the

search space, whereas mutation improves exploitation. A shared feature of all

variation operators is their common application in the decision space.

2.9 Bee Colony Optimization in Multi-Objective Problem

One problem common to scientists and engineers is that of multi-objective

optimization, which involves the optimization of problems that have various and

often inconsistent objectives. In theory, a multi-objective optimization problem

(MOP) cannot have a multi-solution but instead has a group of non-dominated

solution (Pareto-optimal solutions). This following continuous MOP is taken into

consideration in this paper [29]:

Where the decision space is ∏
 , m real valued continuous objective

functions , are contained in : ∏
 →Rm, and the objective

space is R
m

. In contrast to single-objective optimization, MOP solutions exist such

that the efficacy of one objective can only be enhanced by sacrificing that of at least

one other objective. Consequently, an MOP‘s solution takes the form of a

replacement trade off described as a ‗Pareto optimal set‘.

31

The Pareto optimal Set is expressed on the basis of Pareto dominance [30]. If u (u1,

u2... um) and v (v1, v2,..., vm) are two vectors in an objective space, v can be said to

be dominated by u only if vi ui for every individual i and at least one instance

where ui < vi. If no x is found in the decision range for example‖ F(x∗)― is

dominated by ―F(x)‖, ‗x∗’ is known a (globally) Pareto optimal solution [31].

Artificial Bee Colony (ABC) algorithm is one of the most recent additions to swarm

based search approach. There are three types of bees found in the ABC performing

different kinds of functions to ensure the algorithm remains beneficial. Employed

bees are deployed to sources of food as part of an attempt at improving them based

on neighbor information. Using a greedy method on the information regarding the

fitness of solution provided by ‗employed bees‘, each of the onlooker bees decides

on a specific food source and attempts to enhance it. Lastly, scout bees search for

solution that yet not optimized using a restricted number of iteration in an effort to

re-initialize it and eliminate the poor solution. The ABC is especially suited to multi-

objective optimization primarily since it discovers good solutions and has a relatively

speedier convergence for single-objective optimization.

Main feature of our MOABC are [29]:

1. Provided elitism strategy. In its simple form, employed bees and onlooker bees in

ABC algorithm produce solution exclusively using neighbor information. This

mechanism, however, can easily trap the entire colony in a poor region since

neighbors are concentrated around an optimal point. In the employed bees phase,

the elite is considered to be the intermediate solution with the highest value for

its crowding distance and is used in producing new food sources. The values for

32

crowing distance are updated when the whole bee colony has been updated. A

new elite is then selected and utilized in the subsequent phase of onlooker bees.

Each of this process is repeated until the algorithm is terminated [10, 20]. The

exploitation ability of the eMOABC can be enhances using such an elitism

strategy since employed and onlooker bees exploit the regions containing elites

FN times. The whole colony is consequently pulled towards the least populated

zone. The benefits of this strategy include:

 (1) The exploitation of more potentially ―non-dominated solutions‖.

 (2) Keep the spread of solutions in the approximated set.

2. Two control parameters that need to be manually configured in the MOABC

algorithm can be said to be of particular significance: the limit (the Stopping

criteria) and CS (the number of bees).

2.9.1 External Archive

In contrast to single objective optimization, MOEAs are more likely to keep a group

of non-dominated solutions. Due to the lack of preference information in multi-

objective optimization, no solution be able to superior to others. Consequently, Bee

algorithm utilize an external archive as way to accurately document the pareto

optimal set non dominated vectors encountered during the explore method [31,32].

2.9.2 Diversity

The success of MOEA can be attributed to its capability to uncover a group of non-

dominated solution (―Pareto optimal solutions‖) from one iteration. Evolutionary

algorithms need to conduct a multimodal search, which includes a variety of unique

potential solutions, as a way to determine a reliable approximation of the Pareto

33

optimal set from a single optimization run. As such, the efficiency of MOEA

considerably relies on the availability of a diverse population [33].

2.9.3 Update External Archive

New solutions are consistently assigned to the external archive over the course of the

evolution. The decision of new solution remains in the external archive or not is

based on a comparison between it and every other pareto optimal set (non-dominated

0solution in the archive, the size of which is limited.

Each individual in our algorithm search for a new solution in each generation. The

new solution is allowed into the external archive if it is found to dominate the

original individual. Conversely, if the original individual dominates the new solution,

it is not permitted into the external archive. If neither of the two solutions dominates

the other, one of them is chosen at random to add into external archive, which is

updated after each generation. If the number of Pareto optimal set is greater than the

pre-determined archive size, crowding distance [35] is then used to delete any extra

members.

34

Chapter 3

METHODOLOGY

3.1 Pseudo-code for BCO in Single Objective Optimization Problems

Artificial bee colonies collectively explore for the new optimal solution to a specific

function. The individual bees in the colony each generate a solution to the function

using two steps: the ‗forward pass‘ and the ‗backward pass‘ (both of which

collectively constitute one iteration in our proposed algorithm). The ‗forward pass‘ is

reminiscent of a searcher bee who leaves the hive in search of a solution (food

source), while the backward pass resembles said bee‘s turn back to the beehive to

share its information about the solution(food source) with other searcher (forager)

bees (role change).

35

Initialization: Read problem data, Parameter values (B and NC),

Do

1. Assign a (n) (empty) solution to each bee.

2. For (i=0 ; i < NC ; i++)

//Forward pass

a) For (b= 0 ; b < B ; b++)

For (s=0; s < f (NC); s++) //Count moves

I. Evaluate Possible Moves;

II. Choose one move using the roulette wheel;

 //Backward pass

b) For (b= 0 ; b < B ; b++)

Evaluate the (partial/complete) solution of bee b;

c) For (b= 0 ; b < B ; b++)

Loyalty decision for bee b;

d) For (b= 0 ; b < B ; b++)

If (b is uncommitted), choose a recruiter by the roulette wheel.

3. Evaluate all solutions and find the best one .Update Xbest and f(Xbest)

While stopping criterion is not satisfied.

Return (Xbest, f (Xbest))

 Figure 3.1: Pseudo-Code for BCO [36]

The duration of each forward pass in the algorithm is regulated by NC, itself a

representation of the number of solution components each bee visits in every forward

pass. The forager bee assesses the usefulness of all partial routes from a trip in each

forward movement, as well as delivers the food (scheduling solution) and shares

information on quantity of solution with the other bees during its turn back to the

beehive on the backward pass. Upon receiving information about the new partial or

complete solutions, the forager bees initiate the backward pass and turn back to the

beehive to meet their nest mate. The fitness of each solution is then evaluated and

each of the bees has to decide whether to remain loyal to its food source and continue

foraging it or recruit nest mates using the waggle dance, or to abandon the food

source entirely in favor of one chosen by its nest mate. In the BCO algorithm, the

36

operation of this rule functionally divides the bees into two types: scouts and

followers. If a forager bee finds a solution with a greater profitability than the

expectation of the colony, it assumes the role of a scout for that round and can

advertise its solution to the other bees. Conversely, if the bee‘s solution in the

forward pass is less profitable than the colony‘s expectations, it assumes the role of a

follower bee.

The random function below is used to produce initial food sources based on the

acceptable ranges of the parameters:

Where and , with B and D respectively denoting the total

number of bees and optimization parameters. The initial solutions of the bees were

produced using the roulette wheel method, while each forward pass has a specific

number of constructive moves determined by NC.

Each bee corresponds to a single food source and modifies the solution in its memory

using a combination of local information and neighboring food sources:

Where . In the function above, , , and ’ are a component of the

solution, the neighbor of a component and a modified value of , respectively. The

component can be reset to a more suitable value if the value of exceeds its

boundaries; in this study, the component was set as the boundary itself. The better

value between and is chosen based on the fitness values of the overall

solution.

37

3.2 Pseudo code for BCO in Multi Objective Optimization Problems

An enhancement of the ABC algorithm, the design of the eMOABC stores Pareto

optimal set (―non-dominated solutions‖) discovered at the time the explore process in

an external archive. The following are some of control parameters that need to be set

prior to its initiation:

•CS, number of bees colony (Size).

 •limit a solution which not is able to improve through ―limit‖ of trials and will be

abandoned.

This parameters have effect on performance of essential ABC and eMOABC

algorithm .There are two other factor in eMOABC that are mostly used in swarm-

based algorithms or multi objective evolutionary:

 AS, capacity of external archive (―Non-dominated solution‖).

 MaxCycle, the stopping criteria. This value can be the greatest number of

function evaluations.

The MOABC approaches have a ‗six‘ main phases: initialization, send employed

bees, crowding-distance assignment, send onlooker bees, Crowding Distance

function, Conservation of the crowding distance archive, and send scout bees.

38

 Algorithm: eMOABC

Input:

o CS, the size of the bee Colony;

o AS, the size of the crowding archive;

o Limit, the abandonment criteria;

o MaxCycle, the termination criteria;

Output:

o Archive.

1. Initialization:

1.1 Initialize the colony with the parameter CS;

1.2 Initialize the crowding –distance archive with the parameter AS.

1.3 Add non-dominated solutions within the initial colony into the

archive.

//Compute crowding-Distance for the members in the initial archive.

1.4 CrowdingDistanceAssignment (Archive);

2. For(t=0 ;t<maxCycle-1;t++){

2.1 SendEmployedBees(Colony, archive);

2.2 CrowdingDistanceAssignment (Archive);

2.3 SendOnlookerBees(Colony, archive);

2.4 CrowdingDistanceAssignment (Archive);

2.5 SendScoutBees(Colony, archive);

}

3. Return archive

Figure 3.2: Pseudo-Code for eMOABC Algorithm [37]

3.2.1 Initialization

Every food source in the eMOABC algorithm symbolizes one solution to the given

problem, and FN (the total number of individual ‗solution‘) represents half the size

of the colony (CS). Particularly, ―FN=CS/2‖ fitness representing the entire bee

colony in an „N-dimensional‘ and ‗M-objective‘ MOP are randomly produced in the

decision range ∏
 In the initialization phase. As such, a randomly-

39

generated n-dimensional vector Xi= (Xi1, Xi2...) is allocated to the solution using

the following equation:

Where ; and rand (0, 1) is a random number between

[0,1]; L and U represent the lower bound and upper bound of the dth dimension.

Subsequently, variable trili are attributed to every food source in an effort to

determine which sources need to be abandoned in following runs. . Parameters trili is

a number of failer trials for finding solutions, and in the initialization phase each trili,

i=1, 2,..., FN is set to be 0. The employed bee for a solution that cannot be enhanced

in a given a amount of ―trils‖ is transformed into a scout bee and back into an

employed bee after performing a random search.

3.2.2 Crowding-Distance Assignment

The following process is utilized to calculate the crowding distance: First, the

population is arranged in an ascending order based on the magnitude of each

objective function value. Second, infinite distance value is assigned for each

objective function. Third, distance value is the absolute difference in fitness function

of two neighbor solution is added to the other intermediate solutions. The aggregate

‗Crowding-Distance‘ is then computed as the addition of the distance score for each

individual objective.

40

 Function 1: CrowdingDistanceAssignment (archive)

1. n=|archive| // number of solutions in the archive

// Initialize distance as 0.0 for each solution i

2. For each i ,archive [i].setCrowdingDistance(0.0)

3. For each objective m

//Sort archive using each objective value

3.1. archive =sort(archive ,m)

3.2. archive [1].setCrowdingDistance()

3.3. archive [n].setCrowdingDistance()

3.4. For i=2 to n-1

Distance= archive [i+1].m- archive [i-1].m

Distance= Distance/ (objMax.m-obj.Min.m)

// (objMax.m-obj.Min.m), range of the mth objective

 archive [i].setCrowdingDistance (Distance)

End For i

End For m

 Figure 3.3: Algorithm of Crowding Distance Assignment [37]

3.2.3 Conservation of the Crowding Distance In Archive

In the archive, each solution i is allocated a crowding distance i-dist representing an

evaluate of the density of food source (solution) i in the search range. Solutions that

form part of this set in the archive are Pareto optimal set (―non-dominated solution‖)

and are more preferable when their location is a less-crowded region as opposed to a

very-crowded region and a consequently smaller crowding-distance value.

When a new food source I is added to the archive, I is abandoned if it turns out to

either be dominated by any member(solution) in the archive or equal to any solution

in the archive. All ‗dominated solutions‘ are discarded from the ‗archive‘ if several

members are dominated by i, which is then added to the archive. I solution can be

inserted directly to the archive directly if the size of archive is empty or not full and

solution I is not dominated by any member. If I is to be added to a full archive,

41

however, it is necessary to first insert i into the ‗archive‘ and then utilize the

crowding Distance Assignment method in order to determine the new score of

crowding distances for each member in the archive‘s, as well as the new solution i,

Solution that have minimum value crowding-distance is subsequently discarded from

the archive.

3.2.4. Send Employed Bees

The simulated algorithm used to ‗Send Employed Bees‘ (colony, archive) is shown

in Figure.3.4. The employed bee attributed to each food source xi explores the

temporary position is identical to the food source with the exception of the

added change to a randomly-selected dimension d. As such, the equation for each

food source can be updated to:

Where: and two random number selected between [−1, 1], and the solution

 is a neighbor to . The elite is the most suitable solution in the external archive,

either because it is an intermediate solution in the least-crowded region or with the

highest crowding distance value in the archive.

42

Function2: SendEmployedBees (Colony, archive)

Select the elite from the archive

For i=1 to FN

 Determine one dimension d to be modified randomly

 Select a neighbor Xk from the colony stochastically

 For food source Xi, Calculate its new Position Vi

 Evaluate Vi

 If Vi dominated Xi

 Xi Vi

 Triali =0

 Add Vi into the archive.

 Else If Xi and Vi are non-dominated with each other

 If Vi is successfully added into the archive

 Xi Vi

 Triali =0

 Else

 Triali = Triali +1

 End If

 Else

 Triali = Triali +1

 End If

End For

Use the function CalculateFitness (Colony, archive) to compute fitness

value of each food source.

End of SendEmployedBees(Colony, archive)

 Figure 3.4: Algorithms of Send Employed Bees [37]

43

3.2.5. Send Onlooker Bees

The simulated code used to ‗Send Onlooker Bees‘ (colony, archive) is described in

Figure.3.5. Once they are done optimizing heir solution, the employed bees back to

the beehive and share their info regarding the quality of their respective solution with

the onlooker bees, which then determine which food sources to exploit. To that end,

the following formula is used to determine the probability of solution k advertised by

employed bee:

Where the fitness value of is reinstated using F (). It is evident from Eq. (12)

that a high selection probability is attributed to the food source with a lower fitness

value due to the necessity of minimizing the fitness value used in the eMOABC.

44

Function 3: SendOnlookerBees (Colony, Archive)

Calculate the selection probility prob by Eq. (12) for each food source
Select the elite from the archive

i=1, t-1;

While t

If rand

 t=t+1

 Determine one dimension d to be modified randomly

 Select a neighbor Xk from the colony stochastically

 For food source Xi, Calculate its new position Vi

 Evaluate Vi

 If Vi dominated Xi

 Xi Vi

 Triali =0

 Add Vi into the archive.

 Xi Vi

 Triali =0

 Else

 Triali =Triali+1

 End If

 Else

 Triali =Triali+1

 End If

 i=i+1

 If i== FN+1, then i=1

 End If

 End While

End of SendOnlookerBees (Colony, archive)

 Figure 3.5: Algorithm of Send Onlooker Bees [37]

45

3.2.6. Send Scout Bees

The simulated algorithm used to ‗Send Scout Bees‘ (colony, limit) is shown in

Figure.3.6. Here, abandoned food sources are identified in the algorithm and

subsequently replaced with new solution. Food sources that could not be enhanced

by their onlooker or employed bee for limit cycles are abandoned and substituted for

a vector, which is generated in a manner similar to the initialization phase.

 Function4: SendScoutBees (Colony, Limit)

 Determine one food Source Xk with maximum trial in the colony

 If trialk limit

 Xkd=Lbd+rand (0, 1) . (Ubd-Lbd), d=1, 2,…, n.

 Evaluate the new food source Xk

 Trialk=0

 End If

End of SendScoutBees (Limit)

 Figure 3.6: Algorithm of Send Scout Bees [37]

46

Chapter 4

EXPERIMENTAL RESULT AND EVALUATIONS

Execution evaluation of the algorithm suggested, and the display of the comparable

success set apart from the standard meta heuristics is to be undertaken within the

difficulties of CEC2005 [25], CEC2009 [26,27,28,29] , CEC2017 [30] and

CEC2018. [31].

Although the definitions, categorizations and characteristics (fitness landscape) are

not described here, the functional benchmarks are clearly explained in the references.

To ensure an equitable and comparative evaluation, the independent runs, and the

stopping criteria of the function evaluations will be identical to those of the

corresponding references. Likewise, the proposed algorithmic parameter

methodology will remain the same in all test functions; throughout the program

executions, there will be no interactive intervention. Test function integrity also

dictates that the number of variables, in respect of the test functions, also obtain to

that of the corresponding references.

47

4.1 CEC'05 Expensive Optimization Test Problems [25]

4.1.1 Common Definitions

All test functions are minimization problems defined as follows in (equation 1):

Where D is the number of decision variable. All search ranges and Dimension are

clearly explained in the references.

4.1.2 Results

Our Proposed algorithm was tested distinctly for optimizing CEC2005 single

objective problems [25] .The results intended to demonstrate a large improvement

from the BCO solutions. Each problem have been Averaged over 30 runs.

Table 4.1: Comparison between BCO, FEP and CEP on

Functio

n

Number of

Generation
BCO FEP CEP

Mean

Best

Std Dev Mean

Best

Std

Dev

Mean

Best

Std

Dev

 1500 2.25 10
-6

 1.85 10
-6

 5.7 10
-4

 1.3 10
-4

 2.2 10
-4

 5.9 10
-4

 2000 2.91 10
-6

 8.42 10
-7

 8.1 10
-3

 7.7 10
-4

 2.6 10
-3

 1.7 10
-4

 5000 6.96 10
-8

 9.52 10
-8

 1.6 10
-2

 1.4 10
-2

 5.0 10
-2

 6.6 10
-2

 5000 0.28 0.7 0.3 0.5 2.0 1.2

 20000 5.03 4.48E-01 5.06 5.87 6.17 13.61

 1500 0 0 0 0 577.76 1125.76

 3000 9.14 10
-5

 1.00 10
-5

 7.6 10
-3

 2.6 10
-3

 1.8 10
-2

 6.4 10
-3

The results from test problems generated by competing algorithms are

listed in Table 4.1. BCO shows a better performance on all tests than all other peer

competitors, except it obtains similar statistical results compared to FEP

Algorithm.

(1)

48

Table 4.2: Comparison between BCO, FEP and CEP on

Function

Number of

Generation

BCO FEP CEP

Mean

Best

Std Dev Mean

Best

Std Dev Mean

Best

Std

Dev

 0999 -11823 2163 -12554.5 52.6 -7917.1 634.5

 9 5999 8 10
-8

 4.40 10
-8

 4.6 10
-2

 1.2 10
-2

 89.0 23.1

 0599 5.7 10
-01

 2.9 10
-01

 1.8 10
-2

 2.1 10
-3

 9.2 2.8

 2999 1.61 10
-3

 2.75 10
-3

 1.6 10
-2

 2.2 10
-2

 8.6 10
-2

 0.12

 0599 5.77 10
-3

 2.63 10
-2

 9.2 10
-6

 3.6 10
-6

 1.76 2.4

 0599 3.66 10
-4

 2.01 10
-3

 1.6 10
-4

 10
-5

 1.4 3.7

From the results measured by BCO on test problems (Table 4.2), it is

clearly show that BCO achieves the best performance among other competitors

on 9 test function, while performs slightly worse

on 9 by FEP.

Table 4.3: Comparison between BCO, FEP and CEP on

Functio

n

Number of

Generation
BCO FEP CEP

Mean

Best

Std Dev Mean

Best

Std Dev Mean

Best

Std

Dev

 100 9.98 10
-1

 3.39 10
-16

 1.22 0.56 1.66 1.19

 4000 7.94 10
-4

 3.15 10
-4

 5.0 10
-4

 3.2 10
-4

 4.7 10
-4

 3.0 10
-4

 100 -1.03 1.55 10
-8

 -1.03 4.7 10
-7

 -1.03 4.9 10
-7

 100 3.98 10
-4

 1.13 10
-16

 0.398 1.5 10
-7

 0.398 1.5 10
-7

 100 3 0 3.02 0.11 3.0 0

 9 100 -3.86 1.18 10
-11

 -3.86 1.4 10
-5

 -3.86 1.4 10
-2

 200 -3.25 3.66 10
-5

 -3.27 5.9 10
-2

 -3.28 5.8 10
-2

 100 -9.53 1.007 -5.52 1.59 -6.86 2.67

 100 -9.39 1.51 -5.52 2.12 -8.27 2.95

 100 -6.49 1.58 -6.57 3.14 -9.10 2.92

 100 9.98 10
-1

 3.39 10
-16

 1.22 0.56 1.66 1.19

49

Table 4.3 shows that BCO wins over FEB and CEP on and shows a

better performance on all tests than all other peer competitors, but underperforms

on in which FEP performs better.

Table 4.1, 4.2, 4.3 shows comparison results for the Bees Algorithm, FEP and CEP

in expression of average and standard deviations. The experiment results gained by

the Bees approaches were compared with the solutions from [25].Note that the best

results so far in the literature are reported in bold in all tables given in this section.

The average relative deviation of the Bees Algorithm was compared to the FEP and

CEP. As can be seen the Bees Algorithm outperforms these two algorithms. And the

total averages in Table 4.1, 4.2, 4.3, the Bees Algorithm is better than the FEP and

CEP.

The standard deviation for the Bees Algorithm very small (nearly zero), which means

that it is more robust than CEP and FEP. All the tables show that the execution of the

Bees Algorithm is supreme to all other Algorithm.

50

4.2 CEC'17 Expensive Optimization Test Problems [30]

After downloading the Codes for ‗CEC'17‘ test suite [30], all the test function were

installed and handle as black-box optimization.

4.2.1 Common Definitions

All test problem are minimization function as following in (equation 2):

Where:

D is the amount of decision variable of the test problem. All search space are

declared for all function as [-100, 100]
 D

.

4.2.2 Results

Our Proposed algorithm was tested clearly for optimizing CEC2017 single objective

problems in 10 Dimension. The results designed to show a large enhancement from

the BCO solutions.

51

Table 4.4: Summary of CEC‘17 Optimization Test Problem

 No. Functions
∗=

∗)

Unimodel

Functions

1 Shifted and Rotated Bent Cigar Function 100

2 Shifted and Rotated Sum of Different Power

Function

200

3 Shifted and Rotated Zakharov Function 300

Simple

Multimodal

Functions

4 Shifted and Rotated Rosenbrock‘s Function 400

5 Shifted and Rotated Rastrigin‘s Function 500

6 Shifted and Rotated Expanded Scaffer‘s F6

Function

600

7 Shifted and Rotated Lunacek Bi_Rastrigin‘s

Function

700

8 Shifted and Rotated Non-Continuous

Rastrigin‘s Function

800

9 Shifted and Rotated Levy Function 900

10 Shifted and Rotated Schwefel‘s Function 1000

Hybrid

Functions

11 Hybrid Function 1(N=3) 1100

12 Hybrid Function 2(N=3) 1200

13 Hybrid Function 3(N=3) 1300

14 Hybrid Function 4(N=4) 1400

15 Hybrid Function 5(N=4) 1500

16 Hybrid Function 6(N=4) 1600

17 Hybrid Function 6(N=5) 1700

18 Hybrid Function 6(N=5) 1800

19 Hybrid Function 6(N=5) 1900

20 Hybrid Function 6(N=6) 2000

Composition

Function

21 Composition Function 1 (N=3) 2100

22 Composition Function 1 (N=3) 2200

23 Composition Function 1 (N=4) 2300

24 Composition Function 1 (N=4) 2400

25 Composition Function 1 (N=5) 2500

26 Composition Function 1 (N=5) 2600

27 Composition Function 1 (N=6) 2700

28 Composition Function 1 (N=6) 2800

29 Composition Function 1 (N=3) 2900

30 Composition Function 1 (N=3) 3000

Search R:

52

Table 4.5: Best Result of BCO Algorithm in Dimension 10 Over 30 Runs.

Function Number Optimal Solution BCO Error

1 100 100 0.00E+00

2 200 200 0.00E+00

3 300 300 0.00E+00

4 400 400 0.00E+00

5 500 500 0.00E+00

6 600 600 0.00E+00

7 700 710 1.04E+01

8 800 800 0.00E+00

9 900 900 0.00E+00

10 1000 1000.25 2.50E-01

11 1100 1100 0.00E+00

12 1200 1200.187 1.87E-01

13 1300 1300.144 1.44E-01

14 1400 1400.022 2.18E-02

15 1500 1500.005 5.37E-03

16 1600 1600.205 2.05E-01

17 1700 1700.81 8.10E-01

18 1800 1800.13 1.30E-01

19 1900 1900.174 1.74E-01

20 2000 2000 0.00E+00

21 2100 2100.011 1.09E-02

22 2200 2200 0.00E+00

23 2300 2300.247 2.47E-01

24 2400 2400.008 8.25E-03

25 2500 2500.233 2.33E-01

26 2600 2600.03 2.97E-02

27 2700 2700.19 1.90E-01

28 2800 2800.65 6.50E-01

29 2900 2900 0.00E+00

30 3000 3000.002 1.53E-03

The results of the analyses of Table 4.5 revealed an apparent improvement in the

quality of solutions, which obviously tend to get closeness to the optimal values.

The findings of our experiment with BCO are consistent to some extent with the past

studies on CEC 2017 problem optimization .Both of the Unimodal functions results

in BCO algorithm in Dimension 10 reached optimal solutions without any small

differences from optimality. Multimodal functions were mixed between problems

53

which had very high differences from optimal solutions; problem no. 7, and

Composite functions that included problem no. 10, had very small differences from

optimal solutions.

While the rest of the problems' results in the same category reached to the optimal

solutions. Finally, Hybrid functions and Composition function which included

problems from no.11 to no.30, reached near-optimal solutions with relatively small

differences from optimality.

54

Table 4.6: IGD Values Obtained by BCO and it are 3 Competitors for CEC‘17

 Test Function

Function

Number

BCO LSHADE SPA SPACMA

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

2 0.00E+00 0.00E+00 0.00E+00 0.00E+00

3 0.00E+00 0.00E+00 0.00E+00 0.00E+00

4 0.00E+00 0.00E+00 0.00E+00 0.00E+00

5 0.00E+00 3.0E+00 1.8E+00 1.8E+00

6 0.00E+00 0.00E+00 0.00E+00 0.00E+00

7 1.04E+01 1.2E+01 1.2E+01 1.1E+01

8 0.00E+00 2.4E+00 1.9E+00 8.4E-01

9 0.00E+00 0.00E+00 0.00E+00 0.00E+00

10 2.50E-01 2.2E+01 2.2E+01 2.2E+01

11 0.00E+00 4.1E-01 0.00E+00 0.00E+00

12 1.87E-01 7.7E+01 1.2E+02 1.2E+02

13 1.44E-01 3.2E+00 3.6E+00 4.4E+00

14 2.18E-02 1.7E-01 2.0E-02 1.6E-01

15 5.37E-03 1.7E-01 2.7E-01 4.1E-01

16 2.05E-01 4.1E-01 5.2E-01 7.4E-01

17 8.10E-01 1.7E-01 1.2E-01 1.6E-01

18 1.30E-01 2.8E-01 2.4E+00 4.4E+00

19 1.74E-01 1.1E-02 5.5E-02 2.3E-01

20 0.00E+00 1.5E-02 1.8E-01 3.1E-01

21 1.09E-02 1.6E+02 1.6E+02 1.0E+02

22 0.00E+00 1.0E+02 1.0E+02 1.0E+02

23 2.47E-01 3.0E+02 3.0E+02 3.0E+02

24 8.25E-03 3.2E+02 2.9E+02 2.7E+02

25 2.33E-01 4.1E+02 4.2E+02 4.3E+02

26 2.97E-02 3.0E+02 3.0E+02 3.0E+02

27 1.90E-01 3.9E+02 3.2E+02 3.2E+02

28 6.50E-01 3.6E+02 4.0E+02 3.2E+02

29 0.00E+00 2.3E+02 2.3E+02 2.3E+02

30 1.53E-03 7.8E+04 4.1E+04 4.1E+02

Table 4.6 shows the best IGD values for CEC‘17 Test Problem. The results gained

Bee Colony algorithm as against with the solution from [30]. IGD score of obtained

solutions found by Bees approach are very small. That means Bees Algorithm can

discover a well spread sets and high quality solution in objective range for each

problems.

55

Comparisons between BCO with the other algorithms in the competition denote that

the Bees approach is more efficacious than other algorithms in all test problems.

By examining the comparison between error rates demonstrated in Table 4.6, it can

be concluded that the highest number of best problem optimization results belong to

the BCO Algorithm. The table showed superior performance of BCO from

optimizing results of 27 out of 30 problems, which is the highest between all the

methods from literature. In problems number (1,2,3,4,5,6,8,9,11,20,22 and 29), the

error rates of BCO appeared to be very close to optimality. The rest of the problems'

results varied between generally small differences and extreme differences from the

optimal values.

56

4.3 CEC'09 Test Problems for Multi-objective problem [26]

Set of benchmarks through ‗hybrid composition operations‘, ‗random shifting‘ and

‗random shifting and rotation‘. More information for each problem are presented in

[26, 27, 28, 29].

Table 4.7: Min, Max, Average, Standard Deviation of IGD Values and Number of

Function Evaluation of BCO in 30 Runs.

57

It can be seen from Table 4.7 that BCO is a robust and successful approach explain

with small ‗IGD‘ score and their standard deviation.

Tables 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15 and 4.16 clarify the rating of all

problems in ―CEC2009‖ and BCO with respect to the IGD values. From[26],

MOEA/D, SMPSO, GDE3, MOCell and SPEA2 are the best five approaches in the

contest in order .The defender of this contest was ―MOEA/D‖. From all our result

can see that BCO acted more better than ―MOEA/D‖ in all test problem .The

proposed BCO takes the first rank in all test problems.

Table 4.8: IGD Values Obtained by BCO and it are 11 Competitors for UF1, UF2

and UF3.

Rank UF1 IGD UF2 IGD UF3 IGD

1 MOBCO 5.27E-03 MOBCO 2.21E-03 MOBCO 4.23E-03

2 GDE3 8.60e − 02 IBEA 7.51e − 02 MOEA/D 7.85e − 02

3 CellDE 6.24e − 02 MOCell 6.82e − 02 GDE3 3.52e − 01

4 MOEA/D 3.11e − 02 AbYSS 6.51e − 02 PAES 3.45e − 01

5 PAES 3.64e − 01 SMPSO 4.66e − 02 IBEA 2.90e − 01

6 MOCell 1.64e − 01 SPEA2 4.52e − 02 MOCell 2.83e − 01

7 IBEA 1.46e − 01 GDE3 4.30e − 02 AbYSS 2.80e − 01

8 AbYSS 1.34e − 01 OMOPSO 4.05e − 02 CellDE 2.65e − 01

9 SMPSO 1.26e − 01 NSGAII 3.85e − 02 SMPSO 2.26e − 01

10 SPEA2 1.24e − 01 CellDE 3.85e − 02 SPEA2 1.94e − 01

11 OMOPSO 1.08e − 01 MOEA/D 2.47e − 02 OMOPSO 1.78e − 01

12 NSGAII 1.03e − 01 PAES 1.79e − 01 NSGAII 1.58e − 01

58

Table 4.9: IGD Values Obtained by BCO and it are 11 Competitors for UF4, UF5

and UF6.

Rank UF4 IGD UF5 IGD UF6 IGD

1 MOBCO 1.59E-03 MOBCO 6.31E-02 MOBCO 3.36E-02

2 MOEA/D 7.96e − 02 MOEA/D 7.61e – 01 PAES 7.26e − 01

3 IBEA 6.83e − 02 PAES 5.29e – 01 SMPSO 6.85e − 01

4 OMOPSO 6.43e − 02 AbYSS 5.07e − 01 OMOPSO 5.34e − 01

5 AbYSS 6.26e – 02 MOCell 4.59e – 01 MOCell 4.30e − 01

6 MOCell 5.69e – 02 CellDE 4.16e – 01 AbYSS 4.16e − 01

7 CellDE 5.51e – 02 IBEA 3.99e – 01 IBEA 3.77e − 01

8 SMPSO 5.49e – 02 SPEA2 4.59e – 01 CellDE 3.16e − 01

9 NSGAII 5.20e – 02 NSGAII 4.16e – 0 SPEA2 2.74e − 01

10 SPEA2 5.12e – 02 GDE3 3.99e – 01 NSGAII 2.58e − 01

11 GDE3 4.70e − 02 OMOPSO 1.19e – 00 MOEA/D 2.56e − 01

12 PAES 2.18e − 01 SMPSO 1.86e − 00 GDE3 1.56e − 01

It is apparent from Table 4.8 and Table 4.9 that the MOBCO is the most competitive

algorithm obtaining the best values on 6 problems (UF1, UF2 ,UF3,UF4,UF5 and

UF6), and then it is the GDE3 algorithm which has computed the second best fronts

regarding to this indicator on this evaluated problems .MOEA/D,

SMPSO,AbYSS,MOCell and OMOPSO perform similarly, while CellDE and PAES

give poor results regarding this indicator.

Table 4.10: IGD Values Obtained by BCO and it are 11 competitors for UF7, UF8

and UF9.

Rank UF7 IGD UF8 IGD UF9 IGD

1 MOBCO 7.74E-03 MOBCO 1.86E-02 MOBCO 1.86E-02

2 OMOPSO 6.48e − 02 IBEA 4.43e − 01 CellDE 6.57e − 01

3 SMPSO 6.19e − 02 PAES 4.13e − 01 OMOPSO 5.59e − 01

4 CellDE 5.67e − 02 CellDE 4.054e − 01 SMPSO 3.976e − 01

5 GDE3 4.11e − 02 OMOPSO 3.66e − 01 AbYSS 3.81e − 01

6 MOEA/D 1.52e − 02 GDE3 3.32e − 01 NSGAII 3.15e − 01

7 PAES 5.05e − 01 AbYSS 2.80e − 01 MOCell 2.87e − 01

8 MOCell 3.45e − 01 MOCell 2.57e − 01 IBEA 2.83e − 01

9 AbYSS 3.25e − 01 SMPSO 2.26e − 01 PAES 2.71e − 01

10 NSGAII 1.85e − 01 NSGAII 2.21e − 01 SPEA2 2.04e − 01

11 IBEA 2.84e − 01 SPEA2 1.99e − 01 GDE3 2.01e − 01

12 SPEA2 1.69e − 01 MOEA/D 1.15e − 01 MOEA/D 1.57e − 01

59

Table 4.11: IGD Values Obtained by BCO and it are 11 Competitors for UF10,

ZDT1 and ZDT2.

Rank UF10 IGD ZDT1 IGD ZDT2 IGD

1 MOBCO 1.81E-02 MOBCO 4.77E-04 MOBCO 4.97E-04

2 MOEA/D 8.73e − 01 NSGAII 4.83e − 03 IBEA 9.41e − 03

3 AbYSS 6.69e − 01 CellDE 4.83e − 03 MOEA/D 9.13e − 03

4 IBEA 6.01e − 01 IBEA 4.10e − 03 NSGAII 4.89e − 03

5 PAES 5.10e − 01 SPEA2 3.92e − 03 CellDE 4.36e − 03

6 MOCell 4.43e − 01 GDE3 3.77e − 03 GDE3 3.91e − 03

7 NSGAII 3.85e − 01 AbYSS 3.72e − 03 SPEA2 3.89e − 03

8 SPEA2 3.24e − 01 OMOPSO 3.71e − 03 OMOPSO 3.83e − 03

9 SMPSO 2.92e − 01 MOCell 3.68e − 03 AbYSS 3.82e − 03

10 GDE3 1.55e + 00 SMPSO 3.67e − 03 MOCell 3.79e − 03

11 OMOPSO 2.20e + 00 MOEA/D 1.25e − 02 SMPSO 3.79e − 03

12 CellDE 2.58e + 00 PAES 1.17e − 02 PAES 1.46e − 02

Table 4.10 and Table 4.11 indicate that the MOBCO is the most competitive

algorithm obtaining the best values on 4 problems (UF7, UF8, UF9, UF10). Roughly,

SMPSO, AbYSS, CellDE, MOCell,SPEA2 and GDE3 give competitive results

regarding this indicator. The rest of the algorithms (MOEA/D,PAES,IBEA and

NSGAII) obtain worse fronts compared to other algorithms.

Tables 4.8, 4.9, 4.10 and 4.11 shows the best IGD values for all two objective UF1 to

UF7 and for three objective UF8 to UF10 .The solutions gained by the proposed

approach (Bee Colony Algorithm) were compared with the solutions from [26]. IGD

score of gained solutions computed by Bees Approach are very small. This indicates

that Bee Colony algorithm able detect a well distributed sets and high quality

solution in objective range for all objective function in each problem.

Tables 4.8, 4.9, 4.10, 4.11 illustrate the ranking of all two objective UF1 to UF7 and

for three objective UF8 to UF10. Tables show that BCO performance much better

60

than other algorithms in all problems .The proposed BCO takes the first position in

all test problems.

Table 4.12: IGD Values Obtained by BCO and it are 11 Competitors for ZDT3,

ZDT4 and ZDT5.

Rank ZDT3 IGD ZDT4 IGD ZDT6 IGD

1 MOBCO 6.63E-04 MOBCO 3.76E-04 MOBCO 5.32E-04

2 MOCell 6.17e − 03 PAES 7.34e − 03 PAES 7.07e − 03

3 NSGAII 5.38e − 03 NSGAII 4.93e − 03 IBEA 5.16e − 03

4 SPEA2 4.84e − 03 MOCell 3.84e − 03 NSGAII 4.76e − 03

5 GDE3 4.36e − 03 SMPSO 3.71e − 03 MOEA/D 4.16e − 03

6 OMOPSO 4.35e − 03 AbYSS 4.41e − 03 CellDE 3.43e − 03

7 SMPSO 4.28e − 03 SPEA2 4.07e − 03 SPEA2 3.17e − 03

8 PAES 5.61e − 02 IBEA 6.26e − 01 GDE3 3.12e − 03

9 IBEA 2.97e − 02 GDE3 4.72e − 01 AbYSS 3.05e − 03

10 MOEA/D 1.72e − 02 MOEA/D 1.43e − 01 OMOPSO 3.01e − 03

11 AbYSS 1.50e − 02 OMOPSO 4.92e + 00 SMPSO 3.03e − 03

12 CellDE 1.02e − 02 CellDE 4.24e + 00 MOCell 3.00e − 03

Table 4.11 and Table 4.12 indicate that the MOBCO has been also the best algorithm

obtaining the values in 5 Problems (ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 (. GDE3

may be the second best algorithm which out performs other algorithms on

considerable number of problems. CellDE, IBEA and PAES are three worst

algorithms in terms of this indicator.

Tables 4.11 and 4.12 illustration that the best IGD values for ZDT1 – ZDT6 of

gained solution sets found by the proposed algorithm are also very small.

This means the BCO performs most efficient than the other algorithms on all test

cases over. Tables illustrate the ranking for ZDT1– ZDT6 compared with other

algorithms, and it can be seen over the tables that BCO performed better than other

algorithms in all test problems and takes the first position in all test problems.

61

Table 4.13: IGD Values Obtained by BCO and it are 11 Competitors for WFG1,

WFG2 and WFG3.

Rank WFG1 IGD WFG2 IGD WFG3 IGD

1 MOBCO 2.15E-03 MOBCO 7.14E-03 MOBCO 8.36E-02

2 CellDE 8.73e − 02 IBEA 9.84e − 02 PAES 1.67e − 01

3 GDE3 5.07e − 02 AbYSS 6.21e − 02 MOEA/D 1.43e − 01

4 OMOPSO 8.36e − 01 MOEA/D 4.97e − 02 CellDE 1.42e − 01

5 AbYSS 7.32e − 01 MOCell 4.93e − 02 NSGAII 1.41e − 01

6 SPEA2 3.71e − 01 NSGAII 3.75e − 02 IBEA 1.39e − 01

7 MOCell 3.46e − 01 SPEA2 3.58e − 02 AbYSS 1.39e − 01

8 MOEA/D 3.21e − 01 CellDE 1.14e − 02 SPEA2 1.39e − 01

9 IBEA 2.89e − 01 SMPSO 1.071e − 02 GDE3 1.386e − 01

10 NSGAII 1.96e − 01 OMOPSO 1.03e − 02 SMPSO 1.385e − 01

11 PAES 1.25e + 00 GDE3 1.00e − 02 MOCell 1.38e − 01

12 SMPSO 1.10e + 00 PAES 3.06e − 01 OMOPSO 1.38e − 01

Table 4.14: IGD Values Obtained by BCO and it are 11 Competitors for WFG4,

WFG5 and WFG6.

Rank WFG4 IGD WFG5 IGD WFG6 IGD

1 MOBCO 4.71E-03 MOBCO 4.90E-03 MOBCO 1.42E-03

2 SMPSO 2.69e − 02 IBEA 7.28e − 02 PAES 9.74e − 02

3 OMOPSO 2.30e − 02 PAES 6.97e − 02 AbYSS 9.32e − 02

4 MOEA/D 2.22e − 02 MOEA/D 6.82e − 02 MOCell 6.32e − 02

5 IBEA 2.02e − 02 NSGAII 6.81e − 02 IBEA 5.39e − 02

6 CellDE 1.61e − 02 SPEA2 6.67e − 02 NSGAII 3.49e − 02

7 PAES 1.55e − 02 CellDE 6.64e − 02 SPEA2 2.31e − 02

8 NSGAII 1.36e − 02 GDE3 6.64e − 02 MOEA/D 1.90e − 02

9 SPEA2 1.27e − 02 SMPSO 6.63e − 02 CellDE 1.45e − 02

10 GDE3 1.08e − 02 MOCell 6.62e − 02 GDE3 1.30e − 02

11 MOCell 1.04e − 02 OMOPSO 6.62e − 02 SMPSO 1.28e − 02

12 AbYSS 1.04e − 02 AbYSS 6.59e − 02 OMOPSO 1.26e − 02

62

Table 4.15: IGD Values Obtained by BCO and it are 11 Competitors for WFG7,

WFG8 and WFG9.

Rank WFG7 IGD WFG8 IGD WFG9 IGD

1 MOBCO 4.97E-03 MOBCO 3.84E-03 MOBCO 1.78E-03

2 MOEA/D 2.02e − 02 NSGAII 9.90e − 02 PAES 2.06e − 02

3 PAES 1.95e − 02 MOEA/D 8.30e − 02 AbYSS 2.03e − 02

4 NSGAII 1.62e − 02 PAES 6.95e − 02 MOCell 2.01e − 02

5 IBEA 1.55e − 02 GDE3 1.36e − 02 IBEA 1.74e − 02

6 CellDE 1.43e − 02 IBEA 1.32e − 02 NSGAII 1.55e − 02

7 SPEA2 1.29e − 02 AbYSS 1.30e − 02 SPEA2 1.45 e − 02

8 GDE3 1.24e − 02 OMOPSO 1.26e − 02 MOEA/D 1.45e − 02

9 SMPSO 1.19e − 02 CellDE 1.21e − 02 CellDE 1.45e − 02

10 AbYSS 1.19e − 02 MOCell 1.17e − 02 GDE3 1.35e − 02

11 OMOPSO 1.17e − 02 SPEA2 1.05e − 02 SMPSO 1.35e − 02

12 MOCell 1.17e − 02 SMPSO 1.03e − 02 OMOPSO 3.04e − 02

By observing Table 4.13, 4.14 and 4.15 carefully, we find that the MOBCO is the

most competitive algorithm obtaining the best values on all problems, and then it is

the PAES algorithm which has computed the second best fronts regarding to this

indicator on evaluated problems. MOEA/D, SMPSO, AbYSS, MOCell and

OMOPSO perform similarly, while CellDE and GDE3give poor results regarding

this indicator.

The IGD results from WFG1-WFG9 test problems generated by BCO algorithms are

listed in Tables 4.13, 4.14 and 4.15, it is clearly shown that BCO achieves the best

performance among its all other competitors in three objective function problems.

In addition, Tables illustrate the ranking of all three objective function problems

WFG1 to WFG9.From tables can be see that the BCO performed more better than

other algorithms in all problems and takes the first position in all test problems.

63

Table 4.16: IGD Values Obtained by BCO and it are 11 Competitors for DTLZ1,

DTLZ2 and DTLZ3.

Rank DTLZ1 IGD DTLZ2 IGD DTLZ3 IGD

1 MOBCO 1.14E-03 MOBCO 5.09E-03 MOBCO 5.79E-02

2 PAES 5.86e − 02 SMPSO 7.17e − 02 MOCell 7.55e − 01

3 MOCell 2.86e − 02 AbYSS 6.88e − 02 IBEA 5.11e − 01

4 SMPSO 2.82e − 02 NSGAII 6.88e − 02 AbYSS 3.94e − 01

5 AbYSS 2.73e − 02 OMOPSO 6.88e − 02 SPEA2 3.38e − 01

6 NSGAII 2.61e − 02 MOEA/D 6.71e − 02 NSGAII 2.93e − 01

7 MOEA/D 2.54e − 02 MOCell 6.68e − 02 PAES 1.91e − 01

8 GDE3 2.33e − 02 CellDE 6.61e − 02 SMPSO 1.15e − 01

9 SPEA2 2.02e − 02 GDE3 6.28e − 02 MOEA/D 1.17e + 00

10 CellDE 1.60e − 01 SPEA2 5.42e − 02 GDE3 2.25e + 00

11 IBEA 1.81e − 01 PAES 3.15e − 01 CellDE 8.51e + 00

12 OMOPSO 1.18e + 01 IBEA 1.22e − 01 OMOPSO 1.15e + 02

Table 4.17: IGD Values Obtained by BCO and it are 11 Competitors for DTLZ4,

DTLZ5 and DTLZ6.

Rank DTLZ4 IGD DTLZ5 IGD DTLZ6 IGD

1 MOBCO 3.39E-03 MOBCO 5.53E-04 MOBCO 1.26E-04

2 CellDE 7.71e − 02 CellDE 8.56e − 03 MOEA/D 9.36e − 03

3 SMPSO 6.80e − 02 PAES 6.83e − 03 PAES 7.13e − 03

4 GDE3 6.57e − 02 NSGAII 5.42e − 03 CellDE 4.54e − 03

5 OMOPSO 6.48e − 02 SPEA2 4.33e − 03 GDE3 4.15e − 03

6 NSGAII 6.39e − 02 GDE3 4.19e − 03 SMPSO 3.93e − 03

7 AbYSS 6.05e − 02 OMOPSO 4.13e − 03 OMOPSO 3.89e − 03

8 MOEA/D 5.49e − 02 AbYSS 4.08e − 03 AbYSS 7.89e − 02

9 PAES 3.99e − 01 MOCell 4.05e − 03 IBEA 5.75e − 02

10 IBEA 2.10e − 01 SMPSO 4.09e − 03 NSGAII 1.35e − 02

11 SPEA2 1.37e − 01 IBEA 1.93e − 02 SPEA2 1.25e − 02

12 MOCell 1.35e − 01 MOEA/D 1.04e − 02 MOCell 7.55e − 01

64

Table 4.18: IGD Values Obtained by BCO and it are 11 Competitors for DTLZ7.

Rank DTLZ7 IGD

1 MOBCO 5.21E-03

2 OMOPSO 8.68e − 02

3 SMPSO 8.52e − 02

4 NSGAII 7.64e − 02

5 GDE3 7.47e − 02

6 SPEA2 6.96e − 02

7 PAES 8.87e − 01

8 IBEA 3.99e − 01

9 AbYSS 3.94e − 01

10 MOCell 2.45e − 01

11 MOEA/D 1.90e − 01

12 CellDE 1.23e − 01

It is apparent from Table 4.16, 4.17 and Table 4.9 that the MOBCO is the most

competitive algorithm obtaining the best values on 7 problems (DTLZ1, DTLZ2,

DTLZ3 , DTLZ4 , DTLZ5 , DTLZ6 and DTLZ7), and then it is the NSGAII

algorithm which has computed the second best fronts regarding to this indicator on

this evaluated problems .MOEA/D, SMPSO, AbYSS and OMOPSO perform

similarly, while CellDE and MOCell give poor results regarding this indicator.

Tables 4.16, 4.17 and 4.18 shows the best IGD values for all three objective function

problems DTLZ1 to DTLZ7.The results gained Bee Colony algorithm as against

with the solution from [26]. IGD score of obtained solutions found by Bees approach

are very small. That means Bees Algorithm can discover a well spread sets and high

quality solution in objective range for all objective function for each problems.

Tables illustrate the ranking of all three objectives DTLZ1 to DTLZ7 .From tables

can be see that BCO acted better than other approaches in all problems. BCO takes

the first position in all test problems.

65

Comparisons between BCO with the second best acting algorithm in the competition

called SMPSO denote that the Bees approach is more efficacious than SMPSO in all

test problems. BCO executed substantially better rank than GDE3, MOCell and

SPEA2 approach in all test problems.

66

67

68

69

70

71

72

73

Figure 4.12: The Plots of Best Computed Pareto-Fronts and PF-True

Figure 4.12 illustrate the plots of computed Pareto-optimal set gained by BCO and

Pareto Front True shared as a result of the competition .Plots present that the Pareto-

optimal set found by Bee Algorithm quite close to PF-True and has a good spread.

74

4.4 CEC'18 Test Problems for Multi-objective problem

4.4.1 Definition

Multi-objective unconstrained test problems within this group. All test functions are

minimization problems defined as follows:

75

4.4.2. Result

Table 4.19: Min, Max, Average, Standard Deviation of IGD Values and Number of

Function Evaluation of BCO in 30 Runs.

Table 4.19 describe that BCO is a robust and successful approach illustrated with

small IGD scores and the standard deviation with small number of function

Evaluation.

Table 4.20: IGD Values Obtained by BCO and it are 2 Competitors for MaOP1,

MaOP2 and MaOP3.

Rank MaOP1 IGD MaOP2 IGD MaOP3 IGD

1 MOBCO 7.79E-04 MOBCO 7.42E-04 MOBCO 7.97E-04

2 MOPSO 23.3509 MOPSO 14.446 MOPSO 22.669

3 MONSG

A-II

6.66e+05 MONSG

A-II

1.79e+03 MONSG

A-II

28.855

Table 4.21: IGD Values Obtained by BCO and it are 2 Competitors for MaOP4,

MaOP5 and MaOP6.

Rank MaOP4 IGD MaOP5 IGD MaOP6 IGD

1 MOBCO 7.45E-04 MOBCO 6.57E-04 MOBCO 6.58E-04

2 MOPSO 247.93 MOPSO 2.16e+04 MOPSO 75.213

3 MONSG

A-II

2.45e+05 MONSG

A-II

2.28e+05 MONSG

A-II

2.56e+04

Function Average Min Max Std Dev Function

Evaluation

MaOP1 7.79E-03 8.28E-03 9.09E-03 2.35E-04 36180

MaOP2 7.42E-03 7.78E-03 8.63E-03 2.45E-04 36180

MaOP3 7.97E-03 8.27E-03 9.21E-03 2.90E-04 36180

MaOP4 7.45E-03 8.09E-03 8.55E-03 1.57E-04 36180

MaOP5 6.57E-03 7.00E-03 7.48E-03 1.66E-04 36180

MaOP6 6.58E-03 7.05E-03 7.67E-03 2.21E-04 36180

MaOP7 7.91E-03 8.27E-03 9.01E-03 2.26E-04 36180

MaOP8 7.87E-03 8.35E-03 9.05E-03 2.11E-04 36180

MaOP9 7.96E-03 8.61E-03 9.18E-03 1.98E-04 36180

MaOP10 7.79E-04 8.24E-04 8.99E-04 2.87E-05 36180

76

Table 4.22: IGD Values Obtained by BCO and it are 2 Competitors for MaOP7,

MaOP8 and MaOP9.

Rank MaOP7 IGD MaOP8 IGD MaOP9 IGD

1 MOBCO 7.91E-04 MOBCO 7.87E-04 MOBCO 7.96E-04

2 MOPSO 1.91e+03 MOPSO 7.20e+03 MOPSO 1.44e+03

3 MONSG

A-II

1.14e+04 MONSG

A-II

6.35e+04 MONSG

A-II

1.50e+03

Table 4.23: IGD Values Obtained by BCO and it are 2 Competitors for MaOP10.

Rank MaOP10 IGD

1 MOBCO 7.79E-04

2 MOPSO 1.20e+03

3 MONSG

A-II

5.23e+06

IGD results from MaOP1- MaOP10 test problems generated by BCO algorithms are

listed in Tables 4.20, 4.21, 4.22 and 4.23, it is clearly shown that BCO achieves the

best performance among its all other competitors in three objective function

problems.

Table 4.11 and Table 4.12 show that the MOBCO has been also the best algorithm

obtaining the values in 10 Problems (MaOP1-MaOP10 (.MOPSO may be the second

best algorithm which out performs other algorithms on considerable number of

problems. MONSGA-II the worst algorithm in terms of this indicator.

In addition, Tables illustrate the ranking of all three objective function problems

MaOP1- MaOP10.From the tables can indicate that BCO performed more efficient

than other algorithms in all problems and takes the first position in all test problems.

77

78

79

Figure 4.2: The Plots of Best Computed Pareto-Fronts and PF-True

80

Chapter 5

CONCLUSION

 The Bee Colony Optimization (BCO) algorithm, one of several Swarm Intelligence

techniques, is a meta heuristic approach, driven by the action of foraging honeybees.

It presents a general algorithmic framework pertinent to a variety of optimization

difficulties in the areas of management, engineering and control, to name a few, and

should always be tailor-made for any particular function. BCO is founded on the

conceptual model of collaboration; increasing the adequacy of artificial bees.

BCO is capable of intensifying searches within the favorable areas of the 'solution-

space' by way of information reciprocate and the recruiting operation. The procedure

of diversification is achieved through limiting the search within deferent runs.

An archive founded on ‗crowding distance‘ is utilized in the proposed algorithm as a

way to record all non-dominated solutions that are found. When there is no space in

archive, a new individual (solutions) replaces the individual(solution) in the archive

with the lowest crowding distance at the time of its addition in an effort maintain

diversity. An enhanced ABC algorithm utilizing an elitism method is used to stop

early convergence by selecting the elite (member in the least crowded region) and

using it to generate new solution(food sources) in the ‗employed bee‘ stage and the

‗onlooker bee‘ stage.

81

Experiments conducted on n-dimension uni-modal and multi-modal functions have

discovered that the Bee Colony Algorithm is significantly robust and agile with a

100% success rate. The algorithm has also proven minimum and maximum

convergence without getting stuck at local optima. The bee algorithm has been found

to be faster and more accurate compared to results gotten from other techniques.

82

REFERENCES

[1] V. Tereshko and A. Loengarov, Collective Decision-Making in Honey Bee

Foraging Dynamics. Computing and Information Systems Journal, ISSN 1352-

9404, 2005.

[2] G. Beni and J. Wang, Swarm intelligence. Tokyo: Proc. Seventh Annual Meeting

of the Robotics Society of Japan, ISSN 425–428, 1989.

[3] S.Luku, Essentials of metaheuristics, 2nd ed. http://cs.gmu.edu/sean/book

/metaheuristics, 2014.

[4] D. Bertsimas and j. Tsitsiklis, Simulated Annealing. ISSN 10-15, 1993.

[5] G. Dueck, New optimization heuristics: the great deluge algorithm and the

record to record travel. Journal of Computational physics. ISSN 86‐92, 1993.

[6] M. Naeem, S. Xue and D. Lee, Cross-entropy optimization for sensor selection

problems. Communications and information technology. ISCIT 396-401, 2009.

[7] R. Chelouah and P. Siarry, Tabu search applied to global optimization. European

Journal of Operational Research. ISSN 256-270, 2000.

[8] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.

Boston.USA: Addison-Wesley Longman Publishing Co, 1989.

http://cs.gmu.edu/sean/book

83

[9] M. Dorigo and D. Caro, The ant colony optimization-heuristics. New York.

McGraw: New Ideas in Optimization .ISSN 11-32, 1999.

[10] I. Kennedy and R. Eberhart, Particle Swarm optimization. IEEE international

conference on neural networks.1942-1948, 1995.

[11] K. Price, An Introduction to Differential Evolution. McGraw-Hill. London.:

New Ideas in Optimization, 1997.

[12] R. Storn and K. Price, Differential Evolution – A Simple and Efficient Heuristic

for Global Optimization over Continuous Space. Journal of Global Optimization

.341-359, 1997.

[13] S. Sivanandam and S. Deepa, Introduction to genetic algorithms.

Berlin.Germany: Springer verlog berlin Heidelberg, 2008.

[14] R. Haupt and S. Haupt, Practical genetic algorithms. New Jersey: John wiley

and sons, 2004.

[15] R. Caruana and L. Eshelman, Representation and Hidden Bias II: Eliminating

Defining Length Bias in Genetic Search via Shuffle Crossover. IJCAI. 750-755,

1995.

 [16] D. Karaboga, An Idea Based On Honey Bee Swarm For Numerical

Optimization, Technical Report-TR06, Erciyes University, Engineering Faculty,

Computer Engineering Department, 2005.

84

[17] B. Basturk, D.Karaboga, An Artificial Bee Colony (ABC) Algorithm for

Numeric function Optimization, IEEE Swarm Intelligence Symposium 2006,

May 12-14, 2006.

[18] C. Lamont and G. Van Veldhuizen, Evolutionary Algorithms For Solving Multi-

objective Problems, 2nd ed. Springer, 2007.

 [19] D. Tatjana, T. Duˇsan and S. Milica, BEE COLONY OPTIMIZATION PART I:

THE ALGORITHM OVERVIEW. 2014.

[20] M. Nikoli´c and D. Teodorovi´c, Empirical study of the bee colony optimization

(BCO) algorithm,Expert Systems with Applications. 4609–4620, 2013.

[21] M. Nikoli´c and D. Teodorovi´c, Transit network design by bee colony

optimization,Expert Systems with Applications. 5945–5955, 2013.

[22] Davidovi´c, T., Jakˇsi´c, T., Ramljak, D., ˇSelmi´c, M., and Teodorovi´c, D.,

‖MPI parallelization strategies for bee colony optimization‖, Optimization,

Special Issue entitled “Advances in Discrete Optimization”, 62(8) (2013)

1113–1142,2011.

[23] P. Lu, J. Zhou, H. Zhang, R. Zhang and C. Wang, Chaotic differential bee

colony optimization algorithm for dynamic economic dispatch problem with

valve-point effects. International Journal of Electrical Power & Energy Systems,

2014.

85

[24] M. Kefayat, A. Lashkar Ara and S. Nabavi Niaki, A hybrid of ant colony

optimization and artificial bee colony algorithm for probabilistic optimal

placement and sizing of distributed energy resources. Energy Conversion and

Management, 2015.

[25] P. Justesen, C. Pedersen and R. Ursem, Multi-objective Optimization using

Evolutionary Algorithms. Denmark, 2009.

[26] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms: An

Introduction. India: Indian Institute of Technology Kanpur, 2011.

[27] J. Knowles, L. Thiele, and E. Zitzler. A Tutorial on the Performance Assessment

of Stochastic Multiobjective Optimizers. In: TIK Report 214, Computer

Engineering and Networks Laboratory (TIK), ETH Zurich, 2006.

[28] J. Handl, J. Knowles, An Evolutionary Approach to Multiobjective Clustering.

In: IEEE Transactions on Evolutionary Computation, volume 11, 2007.

[29] Y. Xianga, Y. Zhoua and H. Liuc, An elitism based multi-objective artificial bee

colony algorithm. China: European Journal of Operational Research, 2015.

[30] R. Akbari, R. Hedayatzadeh, K. Ziarati and B. Hassanizadeh, A multi-objective

artificial bee colony algorithm. Swarm and Evolutionary Computation, 2012.

86

[31] H. Liu, L. Gu and Q. Zhang, Decomposition of a multi objective optimization

problem into a number of simple multi objective sub problems. IEEE

Transactions on Evolutionary Computation, 2014.

[32] E. Zitzler, M. Laumanns, and L. Thiele, ―SPEA2: improving the strength Pareto

evolutionary algorithm,‖ Tech. Rep., Computer Engineering and Networks

Laboratory _TIK_, Swiss Federal Institute of Technology _ETH_, Zurich,

Switzerland, May 2001.

[33] J. D. Knowles and D. W. Corne, ―Approximating the nondominated front using

the Pareto Archived Evolution Strategy,‖ Evolutionary computation, vol. 8, no.

2, pp. 149–172, 2000.

[34] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, ―Comprehensive learning

particle swarm optimizer for global optimization of multimodal functions,‖

IEEE Transactions on Evolutionary Computation, vol. 10, no. 3, pp. 281–295,

2006.

[35] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary

Computation,182–197, 2002.

[36] D. Teodorović, T. Davidović and M. Šelmić, Bee Colony Optimization

Overview. submitted for publication, 2010.

87

[37] Y. Xiang, Y. Zhou and H. Liu, An elitism based multi-objective artificial bee

colony algorithm. European Journal of Operational Research.168-193, 2015.

