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ABSTRACT 

In this study, dynamic 3D facial expression recognition is addressed by proposing 

novel landmark-based and appearance-based approaches. As a preliminary work, a 

set of geometric landmark-based features are extracted from 3D images, followed by 

sequential forward feature selection (SFFS) and a two-layered support vector 

machine (SVM), fuzzy SVM classifier to recognize six basic expressions. 

Experiments conducted on BU-3DFE data set proved that the proposed algorithm 

outperforms the conventional methods advocating the effectiveness of geometric 

landmark-based methods. 

In the second phase, a novel method using time series analysis of landmark-based 

geometric deformations is proposed for dynamic 3D facial expression recognition. 

After head pose correction and normalization, a set of multimodal time series are 

constructed from the local temporal deformations by applying a sliding window 

averaging on a comprehensive set of geometric landmark-based deformations (point, 

distance and angle). This stage is interlocked with facial action unit analysis to 

identify the key points from facial landmarks. Then, neighborhood component 

analysis feature selection (NCFS) is utilized to discard redundant features. Finally, 

adaptive cost dynamic time warping (AC-DTW) is applied to classify six prototypic 

expressions. Experiments on BU-4DFE data set confirmed the effectiveness of the 

proposed algorithm. 

In the third phase, an appearance-based dynamic 3D facial expression recognition is 

proposed using low-rank sparse codes and a novel spatiotemporal region of interest 
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(ROIs) pooling. 12 ROIs are defined using automatically detected and tracked 

landmarks in by applying a multi-point tracker. LBP-TOP feature descriptors are 

extracted from cuboids inside spatiotemporal regions of interests in both texture and 

depth sequences and are fused to form the feature matrix. Sparse codes are obtained 

using low-rank sparse coding. Finally, hidden-state conditional random fields are 

employed to classify six basic expressions. Experimental results on BU-4DFE data 

set verified that proposed method improves the accuracy of dynamic facial 

expression recognition in comparison to previously proposed approaches.  

Keywords: Dynamic 3D facial expression recognition; Spatiotemporal analysis; 

Geometric landmark-based deformations; Time series analysis; Dynamic time 

warping; Facial landmark detection; Landmark tracking; Sparse Code; Region of 

interest. 
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ÖZ 

Bu çalışmada, dinamik üç boyutlu yüz ifadesi tanıma, özgün öznitelik noktaları ve 

görünüm tabanlı yaklaşımlar önerilerek ele alınmıştır. Önerilen ön çalışmada, 3 

boyutlu görüntülerden bir dizi geometrik öznitelik noktaları çıkarılarak, ardından altı 

temel ifadeyi tanımlamak için sıralı ileri öznitelik seçimi (SFFS) sonrasında iki 

katmanlı bir sınıflandırıcı kapsamında destek vektör makinesi (SVM) ve bulanık 

SVM sınıflandırıcı kullanılmıştır. BU-3DFE veri seti üzerinde yapılan deneyler, 

önerilen algoritmanın geometrik öznitelik noktaları tabanlı yöntemin etkinliğini 

geleneksel yöntemleri geride bırakarak ortaya koymaktadır. 

İkinci aşamada, dinamik 3D yüz ifadesi tanıma için öznitelik noktaları tabanlı 

geometrik deformasyonların zaman serisi analizini kullanan yeni bir yöntem 

önerilmiştir. Kafa poz düzeltmesi ve normalizasyondan sonra, geniş bir geometrik 

öznitelik noktaları temelli deformasyon setine (nokta, mesafe ve açı) kayar ortalama 

pencere uygulanarak yerel zamansal deformasyonlardan dizi çok-kipli bir zaman 

serisi oluşturulmaktadır. Bu aşama, yüz üzerinde önemli noktaları belirlemek için 

yüz aksiyon birimi analizi ile gerçekleştirilir. Daha sonra, fazla özellikleri azaltmak 

için komşu bileşen analizi özellik (NCFS) seçimi kullanılır. Son olarak, uyarlanabilir 

maliyetli dinamik zaman atlaması (AC-DTW) altı prototipik ifadeyi sınıflandırmak 

için uygulanmıştır. BU-4DFE veri seti üzerinde yapılan deneyler önerilen 

algoritmanın etkinliğini doğrulamaktadır. 

Üçüncü aşamada, düşük sıralı seyrek kodlar ve yeni bir zamanmekansal ilgi alanı 

(ROI) havuzu kullanılarak görünüm temelli bir dinamik 3D yüz ifadesi ifadesi 
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önerilmiştir. 12 ROI, otomatik olarak algılanan ve izlenen yüz işaretleri kullanılarak 

çok noktalı bir izleyici uygulanarak tanımlanmaktadır. LBP-TOP öznitelik 

tanımlayıcıları hem doku hem de derinlik dizilerindeki ilgi alanlarının 

zamanmekansal bölgelerinde bulunan küplerden çıkarılır ve öznitelik matrisini 

oluşturmak için birleştirilir. Seyrek kodlar düşük dereceli seyrek kodlama 

kullanılarak elde edilmiştir. Son olarak, gizli-durum koşullu rasgele alanlar altı temel 

ifadeyi sınıflandırmak için kullanılmıştır. BU-4DFE veri setindeki deneysel sonuçlar, 

önerilen yöntemin daha önce önerilen yaklaşımlara kıyasla dinamik yüz ifadesi 

tanıma doğruluğunu artırdığını doğrulamıştır. 

Anahtar Kelimeler: Dinamik 3D yüz ifadesi tanıma; zamanmekansal analiz; 

Geometrik öznitelik noktaları tabanlı deformasyonlar; Zaman serisi analizi; Dinamik 

zaman atlaması; Yüz öznitelik noktaları tespiti; Öznitelik noktaları izleme; Seyrek 

Kod; İlgi bölgesi. 
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Chapter 1 

1INTRODUCTION 

1.1 Background  

Image processing and pattern recognition have been a fast developing area of 

research embracing a diverse range of topics including image enhancement [1], face 

recognition [2], facial expression recognition (FER) [3], medical image processing 

[4], geology [5] etc. In fact, emerging advances in image registration equipment and 

storage devices have provided the access to two-dimensional (2D), three-dimensional 

(3D) and four-dimensional (4D) data sets in a wide range of domains. Emotion 

analysis from facial images and videos is one the recent topics with many 

applications in medical care, psychology, marketing, customer service industry, 

education and gaming [6]. In recent years, extensive studies have been conducted on 

facial expression recognition by researchers in computer vision, image processing 

and biometrics [7]–[9].  

FER systems are designed to recognize different emotions expressed by movements 

of facial muscles from facial images or videos. From the dimension point of view, 

FER data sets can be categorized in three types including 2D, 3D and 4D data sets. 

Both 2D and 3D data sets provide spatial information of facial expression. In 2D data 

sets, texture information and 2D coordinates of facial landmarks are available while 

3D images contain depth information and 3D coordinates of facial landmarks. In 

four-dimentsional facial expression recognition (4D FER) systems, also known as 
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dynamic 3D facial expression recognition systems, texture, depth and 3D coordinates 

of facial landmark are recorded as time sequences during emotion expression. 

The aim of this thesis is to conduct a comprehensive study on dynamic 3D facial 

expression recognition by going beyond conventional approaches in feature 

extraction, feature selection, classification and related issues. For simplicity, we term 

dynamic 3D facial expression recognition as dynamic facial expression recognition 

(D-FER).   

1.2 Problem Definition  

There are different challenges in D-FER system design. Some of these issues 

correspond to the dynamic characteristic of D-FER system and the obligation to 

capture temporal information, while others are related to representation of spatial 

information. In the mainstream 2D/3D image processing systems, spatial information 

in texture/depth images is analyzed and the main challenge is how to convert the 

RGB images, gray-scale images and depth vertex images into a dense representation. 

Several appearance-based feature descriptors are developed for this purpose [10].  

However, facial expression image processing and recognition are different from 

general image processing and recognition in the sense that expression-related 

information are mainly exist in the neighborhoods of some special spots (interest 

points) on face [11]. These specific spots are called facial landmarks or key points 

which are displaced by movements of facial muscles during the expression of 

emotion. In fact, the regions on face which are activated to exhibit emotions are 

categorized by experts into several action units (AUs) based on the location and 

displacement of different facial elements including eyebrows, eyes, nose, cheeks, lips 
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and chin [12]. The deformations in these facial elements result in displacement of 

facial landmarks and specific AUs contribute to each emotion. Consequently, 

landmark locations and their displacements have been exploited in facial expression 

analysis and recognition [13], [14]. This feature extraction method is known as 

geometric landmark-based approach in FER studies.  

On the other hand, conventionally used feature descriptors which extract appearance 

information from small patches in texture and depth images are applied in FER 

studies. Furthermore, it has been confirmed that incorporating AUs information in 

appearance-based approaches improves the performance of FER systems [15]. 

Integrated FER systems rely on a combination of geometric and non-geometric 

information. Although these techniques have been recently initiated, they yield the 

promising results [16], [17]. Nevertheless, an efficient scheme that incorporates the 

concept of AU and facial regions of interest with general appearance-based methods 

is still questionable. There is a need for a comprehensive analysis on landmark-based 

approaches to discover the potential issues, drawbacks and strengths.     

Another critical challenge in D-FER systems is capturing the dynamics of the 

expressions. Dynamic 3D facial expression recognition aims at detection of emotions 

from facial video sequences. Hence, unlike static FER systems functioning on spatial 

data extracted from facial still images, D-FER systems are designed to be employed 

on spatiotemporal data. Thus, capturing transitions in temporal domain is as crucial 

as capturing spatial features for these systems. Mainly, dynamic facial expression 

recognition is addressed as a spatiotemporal problem in image processing.     
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The third challenge in dynamic 3D facial expression recognition originates from the 

novelty of the problem. Facial expression recognition from 3D video sequences has 

appeared in the literature in 2008 [18]. Consequently, there is a large room for 

investigating advanced techniques in image processing, computer vision, machine 

learning, and pattern recognition in this domain. Addressing the issues in dynamic 

3D facial expression recognition requires an extensive knowledge on the 

spatiotemporal characteristics of the problem as well as the properties of the tools 

which can be applied on it. Therefore, different phases of a D-FER system including 

preprocessing, automatic landmark detection and tracking, feature extraction, feature 

selection, feature coding/pooling and classification may be modified with proper 

techniques to improve the system performance.  

1.3 Objectives 

The aim of this study is to explore dynamic 3D facial expression recognition from 

different aspects. The list of the particular objectives to reach this inclusive aim is as 

follows. 

1. To study the appearance-based feature descriptors and geometric landmark-

based feature extraction approaches in D-FER systems.  

2. To propose a novel landmark-based framework for capturing and analysis of 

spatiotemporal information. 

3. To review the existing feature selection and classification approaches in 

pattern recognition and machine learning which are applicable in D-FER 

studies. 

4. To incorporate alternative feature selection and classification methods for 

improved recognition performance. 
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5. To integrate landmark-based information in appearance-based approaches. 

6. To adapt recent sparse coding and pooling methods into automatic dynamic 

3D facial expression recognition. 

In summary, these objectives open a new horizon in dynamic 3D facial 

expression recognition by exploring the subject of matter from different 

perspectives and suggesting novel alternatives for each phase of the whole 

system based on the recent trends in image processing, machine learning and 

pattern recognition. 

1.4 Contributions 

The main contributions of this study are given below. 

1. Sequential forward feature selection (SFFS) and fuzzy support vector 

machine (FSVM) classification are applied in landmark-based 3D facial 

expression recognition to tackle the problems of high dimensionality, 

high-redundancy and multi-class characteristics.  

2. Multimodal time series analysis is adapted for the first time in dynamic 

3D facial expression recognition based on a comprehensive set of 

landmark-based geometric deformations. 

3. Neighborhood component feature selection method is applied as a fast 

and effective feature selection method to address the excessive 

redundancy among high-dimensional landmark-based features.   

4. Adaptive cost dynamic time warping (AC-DTW) is used for the first time 

as a time series classification to deal with inherent temporal dynamics 

facial expression video sequences.  
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5. Low-rank sparse coding is applied for the first time in dynamic 3D facial 

expression recognition to encode the texture and depth feature 

descriptors.  

6. Landmark-based information is integrated into appearance-based 

descriptors by proposing a novel spatiotemporal region of interest (ROI)-

based pooling.   

1.5 Overview 

The rest of this thesis is organized as follows. In the next chapter, Chapter 2, 

different components of FER systems are reviewed. The feature extraction, feature 

selection, and classification approaches applied in static and dynamic FER systems 

are presented and discussed to provide a clear view of the problem. In Chapter 3, a 

static facial expression recognition system based on SFFS and FSVM is proposed 

and evaluated. Features are extracted as the pairwise Euclidean distances between the 

landmarks. Chapter 4 addresses the geometric landmark-based approach in dynamic 

3D facial expression recognition by adapting the multimodal time series analysis to 

the notion to point, distance and angle deformations extracted from the displacement 

of facial key points in an expression sequence. Neighborhood component feature 

selection and AC-DTW are then applied for feature selection and classification, 

respectively. Incorporating landmark-based information into appearance-based 

information is undertaken in Chapter 5. Spatiotemporal regions of interest are 

identified by a set of automatically detected and tracked landmarks. Texture and 

depth feature descriptors are extracted from these regions of interests and are coded 

using low-rank sparse coding. Then conventional spatial pyramid pooling (SPP) is 

replaced by the proposed ROI pooling. Pooled codes are classified by hidden state 
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conditional random field which is an effective classification method for dynamic 

problems. Finally, in Chapter 6, the thesis is concluded.  
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Chapter 2  

2. LITERATURE REVIEW 

2.1 The Overview of Facial Expression Recognition Systems 

The role of emotions in human social communication is so critical that “recognition 

of emotion is known as a key component of intelligence” [19].  Over the last few 

years, as cameras and registration technologies have advanced in the acquisition of 

3D images and videos, scholars are increasingly attracted to emotion analysis from 

facial images and video sequences. As a matter of fact, automatic facial expression 

recognition has become an emerging topic of interest for both scientists and 

engineers in intelligent systems because of its wide applications ranging from 

psychology to online games.  

Automatic facial expression recognition systems process the visual information of 

facial recordings for emotion-related analysis and recognition [6]. There are three 

different input types for FER system, namely 2D [7], 3D [20], [21] and 4D [3]. 2D 

and three-dimensional facial expression recognition (3D FER) systems handle 

texture and depth still images of facial expression while in 4D systems facial video 

sequences of texture and depth are processed. More information about these systems 

and their similarities and differences are given in Section 2.2 and 2.3. 
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Regardless of this categorization based on the type of facial recordings, there are 

roughly three general components of facial expression recognition systems including 

data acquisition, representation and classification as shown in Fig. 2.1. Facial 

expression data acquisition is the concern of scholars who are preparing FER data for 

the research community. Different issues such as illumination, pose variation, 

location, and the type of visual data to be registered are the main elements in data 

acquisition. For facial expression recognition community, these issues are taken into 

account in preprocessing phase. The other matter is to represent the registered pixels 

in a compressed feature space. Geometric landmark-based methods, active shape 

model (ASM) [22], active appearance model (AAM) [23], facial action coding 

system (FACS) [24] and appearance-based descriptors are some examples of the 

well-known techniques used for facial expression representation. The third main 

concept is the facial expression classification. Examples of widely-used classifiers in 

this domain are neural network, support vector machine (SVM), hidden Markov 

model (HMM), and conditional random fields (CRF). 

Figure 2.1: General components of facial expression recognition system. 

Although the aforementioned concepts are the essential blocks for facial expression 

recognition, there are other processes necessary in practice. As stated before, the data 



10 

 

collected in acquisition phase can be affected by illumination, pose variation, clutter 

and other artifacts. Consequently, preprocessing should be applied on the facial 

expression images and videos. Moreover, the dimension of features computed to 

represent the expressive face is mainly high. High dimensional feature space is 

vulnerable to redundancy, which adds additional burden to the classifier since the 

training and test phases become computationally complex. Hence, feature selection 

and dimensionality reduction methods are extensively used in facial expression 

recognition systems aiming at selecting informative features and discriminative 

subspaces. In evaluation of the system performance, there are two main phases 

namely, train and test phase. In train phase, best feature subspaces are constructed 

from the train samples and through a learning algorithm, classifier models are 

trained. During the test phase, the unseen test samples are used to validate the facial 

expression recognition system. 

Generally, a typical automatic facial expression recognition system includes four 

main blocks: preprocessing, feature extraction, feature selection and classification. 

Depending on the system architecture, preprocessing covers a wide range of 

functions including noise removal, illumination artifact cancelation, head pose 

correction, and landmark detection and tracking [25]–[27]. In feature extraction 

stage, image/video pixels are converted to representative feature descriptors. Feature 

selection and/or dimensionality reduction is the stage for addressing high-

dimensionality of the extracted features. Classification is the algorithm that learns the 

characteristics of the features for each specific emotional state from the train data and 

it identifies the label for each test sample accordingly. An overview of a facial 

expression recognition system with the blocks involved in train and test phase is 

shown in Fig. 2.2.  
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Figure 2.2: Overview of the training and test phases and the main blocks in an 

automatic facial expression recognition system. 

For each test image or sequence, after preprocessing and feature extraction, 

informative features are considered. Then the label is predicted using the constructed 

model. In summary, the aim of FER system is to recognize the emotion from a new 

entry which is a facial expression image or video sequence. Facial expression 

recognition systems can be categorized into two main types. 
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Static and dynamic FER systems are developed to recognize facial still images and 

facial video sequences, respectively. The former relies on the spatial information of 

the facial expression while the latter processes spatiotemporal information. 

Consequently, data sets and feature descriptors are different for these two varieties of 

FER systems. 

2.2 Static Facial Expression Recognition 

In static facial expression recognition, the system explores facial still images for 

emotion analysis. In other words, spatial characteristics of the expressions are to 

apprehend for recognition task. Mainly, the images are recorded at the peak of the 

expression to represent maximum expression-specific deformation [28]. This phase 

of the expression is called the apex. The main difference between 2D and 3D FER 

systems is the availability of depth data in 3D systems. 2D facial images are either 

RGB colored images or gray-scale images capturing texture information as shown in 

Fig. 2.3. 3D images however, contain the depth vertices demonstrating the distances 

from the camera. Considering the AUs and the 3D displacement of the facial 

landmarks, 3D images are more informative for FER task. In fact, 3D information is 

valuable for improving system accuracy [21], [29]. 
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Figure 2.3: (a) RGB colored image and (b) gray-scale image. 

As a matter of fact, although 2D and 3D FER systems are both known as static FER, 

there is a main issue related to 2D facial expression recognition as these systems are 

more susceptible to suffer from illumination changes [29], [30] and pose variations 

[31]. Extensive studies have been conducted on FER systems based on 2D images 

with significant performance [32]–[34]. But, sensitivity to illumination and pose 

variations are still the drawbacks. In recent decade, the progress in 3D acquisition 

techniques has provided a novel solution to address these concerns [29]. 

2.2.1 Static Facial Expression Recognition Data Sets 

There are several publicly available 2D and 3D facial expression data sets. These 

data sets differ from some aspects such as the number of subjects, the quality of the 

images, the number of emotions expressed, availability for public use, providing 

posed versus spontaneous expressions, manually annotated landmarks, noise, clutter 

and artifact levels. Table 2.1 lists some of the public facial expression image data 

sets with their basic specifications. Depending on the aim of the FER research and 

the requirements, one may select among these data sets. 
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Table 2.1: The list of Publicly available Static FER data sets 

Data Set Expressions #Subjects #Images Further Info 

BU-3DFE 

Anger, disgust, fear, 

happiness, sadness, 

surprise, neutral 

100 2,500 
83 annotated facial landmarks, 

4 intensity levels 

Bosphoros 

Anger, disgust, fear, 

happiness, sadness, 

surprise, neutral 

105 4652 
includes intensity and 

asymmetry codes for each AU 

AR Face 
Smile, anger, 

scream 
126 4,000 

different illumination 

conditions, and occlusions (sun 

glasses and scarf) 

Radboud 

Faces 

Anger, disgust, fear, 

happiness, sadness, 

surprise, contempt, 

neutral 

67 13,400 
five camera angles, three gaze 

directions 

EURECOM 

KFD 

Neutral, smile, open 

mouth 
52 936 

6 annotated landmarks, 

recorded: left profile, right 

profile, occlusion eyes, 

occlusion mouth, occlusion 

paper, light on 

AffectNet 

Anger, disgust, fear, 

happiness, sadness, 

surprise, neutral, 

contempt 

- 440000 

collected from the Internet, 

including annotated: none, 

uncertain, non-face 

ND-2006 

Neutral, happiness, 

sadness, surprise, 

disgust, and other 

888 13,450 - 

FRGC v2 

Anger, disgust, 

happiness, sadness, 

surprise, puffy 

466 4,007 - 

JAFFE 

Anger, disgust, fear, 

happiness, sadness, 

surprise, neutral 

10 213 - 
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2.2.2 Feature Extraction in Static Facial Expression Recognition 

From feature extraction point of view, studies in FER domain pursue two main 

streams: Non-geometric approach and geometric (landmark-based) approach. Non-

geometric approaches also known as appearance-based feature extraction methods 

rely on features extracted from texture and depth images. On the other hand, 

geometric methods include landmark-based feature extraction approaches relying on 

the relative deformations of facial key points [22], [23] as well as curvature features 

extracted from 3D vertices [35]. 

Moreover, in recent years, there have been some efforts to combine landmark-based 

features with appearance-based features by extracting feature descriptors from the 

zones in landmarks‟ neighborhood [17]. We termed these approaches as integrated 

feature extraction methods to avoid confusion. In this section, we review the 

commonly used feature extraction methods applied in static facial expression 

recognition. 

Regardless of recording facial expression still images either as 2D or 3D, the 

common appearance-based approaches for feature extraction in FER systems are 

local spatial feature descriptors [36]–[39]. Local feature descriptors such as local 

binary patterns (LBP) [40], [41] , histogram of orientated gradient (HOG) [42], scale 

invariant features transform (SIFT) [40] and their variations  [43], [44] are intended 

to capture regional topology and geometry of the emotion in small patches on facial 

images.  

In computing local feature descriptors, the image is firstly partitioned into small 

patches. For each patch of the image, the pixel intensities are coded into a number 
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that characterizes the local spatial content. Fig. 2.4 shows a sample gray-scale image 

and the procedure of obtaining local binary pattern (LBP) descriptor. In Shan2009 

[40], the authors have conducted a comprehensive set of experiments using LBP 

features and different classifiers to show that these local descriptors are efficient in 

capturing the properties of the human face for different emotion expressions. Their 

findings have also proved that LBP can perform successfully for low-quality videos 

with low-resolution.  

Figure 2.4: A sample gray-scale facial image and computation of local binary pattern 

feature descriptor. 

A comparative study has been carried on by [41] to evaluate the performance of local 

ternary patterns (LTP), LBP, Gabor and HOG in facial expression recognition. They 

have shown that LBP feature descriptors provide superior results in comparison to 

others.  In addition, a novel variation of conventional LBP has been proposed by 

[43]. Compound local binary pattern is a combination of the original LBP with the 

magnitude information of the difference between two gray values and it has 

employed for facial expression recognition effectively.  
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The competence of HOG feature descriptors in FER systems has been extensively 

studied in [42]. They have estimated the performance of FER systems using HOG 

feature descriptors considering different number of orientation bins and different cell 

sizes. It has been argued that with an appropriate parameter setting, HOG descriptor 

can function remarkably well in FER systems [42]. Median ternary pattern (MTP) is 

the name of a new feature descriptor that incorporates a coded 3-valued quantized 

gray-scale value and the median filtering benefits [44].It should be noted that 

appearance-based feature descriptors are basically extracted from both texture and 

depth images in 3D cases and then they are fused to represent geometrical and 

topological properties of the face in three dimensions while expressing an emotion.  

The local descriptors are flexible feature extraction methods applicable in almost all 

image analysis and image processing tasks.  In recent years, some other approaches 

for appearance-based local descriptors have been proposed and utilized in FER 

systems such as principal component analysis (PCA) [45] and wavelet-based local 

features [46]. 

Unlike appearance-based features that capture the local properties of the face in 

small image patches, landmark-based feature extraction approaches rely on the 

movement of the facial landmarks. In general, the coordinates of the points shaping 

facial segments, their distances and the angles between the lines connecting them are 

all known to signify deformation of the face in facial expression. Fig. 2.5 illustrates 

the basic landmarks recognized to represent the deformation of eyebrows, eyes, and 

mouth with related landmark-based features [47]. Fernandes  et al. [48] have applied 

the point distribution model (PDM) to model the deformable expressive face using a 

set of points. The distances between these points have been considered as the 
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features. They have found that by applying a feature selection algorithm namely 

correlation feature selection (CFS), the performance of the facial expression 

recognition is improved significantly compared to the features selected manually by 

a human expert [48]. 

 

Figure 2.5: (a) Basic facial landmarks and (b) geometric landmark-based 

features[47]. 

Additionally, it has been shown that landmark positions are capable of signifying the 

deformation in face shape during an emotion expression [21]–[23], [48]–[50]. 

Basically, geometric landmark-based features are defined as the vectors of pairwise 

Euclidean distances between a set of facial landmarks located mainly around 

eyebrows, eyes, nose, and lips in several studies. It has been confirmed that distance-

based features perform satisfactory in FER systems with proper feature selection and 

classification methods [13], [20], [21], [50]. The geometric approach proposed by 

[49] , is based on the Euclidean distance of the center of gravity of the facial image 

and automatically detected key points. Fiducial points are automatically annotated by 

ASM in advance. Geometric features are computed as the deformation between the 

neutral face of the subject and any of the expressive faces. These deformations 

contain discriminative information related to the expressed emotion [49].  
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ASM is another geometric approach being employed by [22] where the displacement 

of the facial feature points as well as the mean shape of the ASM for each expression 

are exploited to identify the emotions. AAM is also used to identify key points on the 

face. The deviations in the values of the annotated key feature points in relation to 

neutral face are then observed by a fuzzy logic system [22]. Another study by [35] 

have suggested the geometric descriptors to be driven from the 3D mesh of the face 

using triangular mesh models and principal curvature information. 

Although both appearance-based descriptors and geometric landmark-based features 

have been employed effectively in FER domain, each of them has been criticized for 

some drawbacks. Appearance-based features are computationally costly and they 

reflect the general geometry, texture and topology of an image. Hence, the amount of 

information captured by these descriptors is very high and mainly superfluous for 

FER systems. On the other hand, landmark-based features are easy to compute and 

they principally carry the expression-related deformation. However, this category of 

features relies on the annotated facial points and they do not reflect the texture and 

fine deformations. As stated before, there are some studies that have combined the 

appearance-based features with geometric features to overcome these drawbacks. 

This approach includes a range of schemes including extracting feature descriptors 

from specific regions of the face (such as the patches around some landmarks) and 

the pre-identified regions of interest [51]–[53].In [53], Gabor wavelet features are 

extracted from the facial regions modeled by AAM. In [51], [52] the HOG feature 

descriptors is extracted from specific facial components defined according to facial 

AUs function during the expressions. 
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2.3 Dynamic Facial Expression Recognition 

The dynamic 3D facial expression recognition which is also known as 4D FER 

includes inspecting 3D videos for facial expression recognition. D-FER systems are 

designed to process facial expression video sequences and as the information content 

of sequences exists both in spatial and temporal properties, conventional approaches 

adapted for static FER systems may fail in this domain. 4D FER is a new challenging 

field of study amongst image and video processing community. To provide some 

examples as the first published works in this field, we can mention the studies by 

[18], [54] published in 2008 and 2010. Since then, it has been a growing interest 

among the scholars to investigate dynamic facial expression recognition problem. 

2.3.1 Dynamic Facial Expression Recognition Data Sets 

The urge to study human emotions expressed in face has been the main motivation 

for FER community to collect and publish dynamic facial expression recognition 

data sets. Registering, processing, annotation and labeling of facial video sequences 

is much more complicated and time consuming than facial still images taken at the 

peak of the expression named apex. In fact, dynamic FER data sets contain video 

sequences captured during the whole expression procedure starting from neutral to 

onset, apex, and offset phases as shown in Fig. 2.6. These sample frames of 

happiness expression were taken from the texture (top row) and depth (bottom row) 

video sequences of binghamton university four-dimensional facial expression 

database (BU-4DFE) data set [55]. Although several data sets have introduced in 

recent decades for dynamic facial expression recognition studies, there are a few 

widely-studied ones based on their public availability, number of expressions, 

number of subjects, ground truth material and its reliability. 
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Figure 2.6: A sample 4D facial expression record: texture sequence (first row) and 

depth sequence (second row) [55]. 

During the last few years, dynamic facial expression data sets have been introduced 

and studied by researchers [56]–[63]. As a matter of fact, one of the reasons of 

growing publications in dynamic facial expression recognition is the availability of 

the data sets. Dynamic 3D facial expression recognition data sets or 4D FER data 

sets are collected as 3D video sequences. In other words, texture and depth frames 

are recorded as videos which means 3D spatial information as well as temporal 

transition information are available.  

The list of popular dynamic facial expression recognition data sets with a summary 

of their main characteristics is presented in Table 2.2. This list may not include all 

the available data sets published and studied in recent decade but the widely-studied 

ones are considered. Depending on the undertaken research task, scholars can select 

among these data sets based on the number of subjects, number of sequences, 

expressed emotions, different intensity levels and the availability and reliability of 

the ground truth information.  
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Table 2.2: The list of publicly available D-FER data sets 

Data Set Expressions #Subjects #Sequences Further Info 

ADFES 

Anger, contempt, disgust, 

embarrassment, fear, joy, 

neutral, pride, sadness, surprise 

20 648 

FACS coding, 

arousal and 

valence ratings, 

BP-4D 

Anger/upset, disgust, 

embarrassment, fear/nervous, 

happiness/amusement, pain, 

sadness, surprise/startle 

41 328 
FACS coding, 

spontaneous 

BU-4DFE 
Anger, disgust, fear, happiness, 

sadness, surprise 
101 606 

83 annotated 

landmarks on 

each frame 

CK 
AU sequences for anger, disgust, 

fear, joy, surprise, sadness 
97 486 FACS coding 

CK+ 

AU sequences for anger, 

contempt, disgust, fear, happy, 

sadness, surprise 

123 593 

FACS coding, 

Spontaneous 

smiles 

MMI 

AU sequences  for anger, bored, 

disgust, fear, happy, sad, sleepy, 

surprise 

75 2900 

FACS coding, 

frontal and side 

viewpoints 

Hi4D-ADSIP 
Anger, disgust, fear, happiness, 

pain, sadness, surprise, other 
80 3,360 3 intensity levels 

UT Dallas 

Anger, boredom, disbelief, 

disgust, fear, happiness, 

laughter, neutral, puzzlement, 

sadness, surprise 

284 2,556 
spontaneous, 9 

viewpoints 

DaFex 
Anger, disgust, fear, happiness, 

neutral, sadness, surprise 
8 1,008 

3 intensity 

levels, 

audiovisual 

recordings, 

STOIC 
Anger, disgust, fear, happiness, 

neutral, pain, sadness, surprise 
10 80 

3 intensities 

levels 
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2.3.2 Feature Extraction in Dynamic Facial Expression Recognition 

Feature extraction methods adapted for D-FER systems may differ from the 

conventional local feature descriptors previously described for static FER systems. 

Facial expression is a dynamic procedure containing transition. The time interval 

during which an emotion is expressed is remarkably informative. Transitions in this 

interval contain critical temporal information for facial expression recognition [57], 

[60], [64] . 

In fact, static feature extraction approaches adapted for representing spatial 

information fail to capture and exploit temporal information in D-FER systems. 

However, the earlier published works in dynamic facial expression recognition have 

used conventional static descriptors for extracting features, and tried to model the 

dynamics by further processing the extracted features in preceding phases of the D-

FER system[28], [65] . For instance, Bartlett et al. [65] have proposed a dynamic 

facial expression system based on Gabor filter bank. The images (frames of the video 

sequences) were converted into a Gabor magnitude representation. A bank of Gabor 

filters at 8 orientations and 9 spatial frequencies have applied to obtain the 

descriptors.  

More recently, scholars have been proposing reformed variations of the conventional 

appearance-based descriptors or novel feature extraction approaches adapted 

specifically to the dynamic nature of D-FER systems [64], [66]. As stated in Section 

2.2.2, feature extraction methods in the FER studies pursue two main streams: 

appearance-based approach and geometric landmark-based approach. The same 

applies on D-FER systems but the main challenge is representing the dynamics of the 

expression by either appearance-based or landmark-based features. Similar to static 



24 

 

facial expression recognition, non-geometric feature extraction approaches, mainly 

referred as appearance-based descriptors, rely on features extracted from texture and 

depth video sequences. On the other hand, geometric landmark-based and curvature-

based features are extracted from the variations in the geometry of the landmark 

positions and the 3D mesh of the face respectively. 

There are several conventionally used local feature descriptors in image processing 

which are modified to be applicable in D-FER systems. Descriptors such as local 

binary pattern in three orthogonal planes [59], histogram oriented gradients from 

Three Orthogonal Planes [67], expression lets [68], and spatiotemporal texture map 

[58] are examples of  the reformed descriptors suggested and evaluated by the 

researchers for dynamic 3D facial expression recognition.  

Local binary patterns-three orthogonal planes (LBP-TOP) and another variant of 

LBP, i.e. volume local binary pattern has been proposed by Zhao and Pietikainen 

[69] to address the issue of dynamic texture recognition in D-FER systems. Recently, 

Shao et al. [59] have successfully implemented a 3D dynamic FER on low-resolution 

videos using LBP-TOP descriptors. The local feature descriptors are extracted from 

small spatiotemporal cuboids in both texture and depth sequences. Then two 

codebooks are trained using locality constrained linear coding (LLC) and the feature 

descriptors of texture and depth sequences are converted into sparse codes. SPP is 

applied on the codes (concatenated texture and depth codes) to construct the feature 

vectors. This method results in comparable performance although low-resolution 

videos were considered [59]. 



25 

 

An adaptation of well-known HOG descriptor named as histogram of orientated 

gradient-three orthogonal planes (HOG-TOP) has been proposed by Chen at al. for 

dynamic facial expression recognition by adding a temporal mode to conventional 

HOG [67]. This descriptor captures the dynamics of the texture to represent the 

properties of the face as its appearance changes during an expression.  Motivated by 

LBP-TOP, HOG-TOP has been claimed to perform as effective as LBP-TOP in 

multimodal facial expression recognition [67] . It should be noted that although it has 

been claimed that HOG-TOP is a more compact representation compared to LBP-

TOP, this feature descriptor has not been proved to individually function efficiently 

without fusion with other features. Fang and Zhao [70], [71] obtained the registered 

images using mesh matching between the shape models of two consecutive frames. 

Two methods of mesh matching namely, spin image and meshHOG are used to find 

correspondence vertices and then LBP-TOP features are extracted to represent static 

and dynamic characteristics. Radial basis function support vector machine (RBF-

SVM) is applied for classification.  

On the other hand, according to the characteristics of human facial expression, 

extensive studies have been conducted on landmark-based or curvature-based 

features. In [54], a vertex tracking approach is applied to adapt the 3D generic 

deformable models to all frames of the expression video sequence. The proposed 

system is complex and depends on manually marked landmarks. Dynamic range 

models constructed from 3D sequences have been employed in [18]. Nevertheless, 

both of the proposed systems relied on 83 annotated landmarks for the models. 

A Fully automated approach has been suggested for 4D FER in [60] which basically 

uses geometric deformations. Radial curves have been extracted from the face mesh 
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to represent the characteristics of the 3D faces and expression-induced deformations 

have been quantified by Riemannian shape analysis (RSA). One limitation of this 

study is that it relies on accurate nose point detection which may fail for non-frontal 

view frames and in case of occlusion. Another one is that complex process is 

required to apply on high quality videos in order to achieve high performance. In 

[56], an integrated approach for dynamic FER which combines machine learning, 

parallel coordinates and human reasoning has been proposed. Facial points have been 

detected and tracked in video sequences. Features are extracted based on landmark 

movements and curvature changes (Gabor response) in AUs. Several machine 

learning approaches have been examined and acceptable results have been obtained. 

A dynamic FER system have been suggested in [57] inspired by diffeomorphic 

motions of face muscles. Salient and common features among all candidates have 

been extracted for each expression and using training data, reference sequences 

named „atlas‟ are constructed. While the performance of the system has been claimed 

to be superior to state-of-the-art, sensitivity to illumination variation is one of the 

drawbacks of this method. In addition, the system is computationally complicated 

since a dedicated atlas is to be constructed for each expression.  

A fully-automated real-time approach for subject independent dynamic facial 

expression is proposed in [61] . The system relies on a set of automatically detected 

landmarks. A few landmarks are considered and then local descriptors are extracted 

in their neighborhood. In addition, geometric distances of landmarks are utilized as 

features. The feature extraction method in the proposed system can be assumed as an 

integrated one since it exploits landmark information as well as local feature 
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descriptors.  Considering the relatively low complexity of the method and as it has 

been claimed its real time characteristics, the results are acceptable.  

A fully landmark-based geometric feature extraction method has been used for 

dynamic facial expression recognition by [62] . This study utilizes a subset of 83 

facial points provided by BU-4DFE data set. From the expression video sequence, 

the apex phase is detected and features are computed as the deviation of the pairwise 

distances between the facial points in the neutral frame and the apex frame. Although 

the accuracy based on 25 feature points is promising, this method ignores most of the 

transition information in the temporal domain by considering just neutral and apex 

frames.  

In [63], a facial expression recognition system is proposed  based on automatically 

detected landmarks. Several Landmarks were detected from each single frame and 

discrete cosine transform (3D-DCT) features are extracted. The reported accuracy of 

the study is limited compared to the state-of-the-art although too extent processing 

was applied for landmark detection, feature selection and classification. In [61], the 

pairwise distances between automatically detected 3D landmarks are fused with 

SIFT descriptors extracted in the neighborhood of the landmarks. Temporal HMM is 

utilized to model and recognized the expressions. 

In [58], a joint dynamic facial expression recognition and expression intensity 

estimation is proposed. Geometric features which are basically the shape and the 

coordinates of facial landmarks are extracted using AAM. In temporal domain, only 

apex phase of expression has been considered. While it has been claimed that system 
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performs superior to other studies, again the dynamics of the expression were 

ignored. 

In [72], free form deformation features are extracted from 3D sequences. 

Neighboring frames in onset and offset phases are considered for these motion-

related features. The dynamics are modeled in the classification stage by HMM.  

In addition, there are some attempts that rely on the key frame of the video sequence 

[66], [73], although identifying the corresponding frame is yet an issue and the 

temporal information in transitions is ignored. Yao et al. [66] suggest texture and 

geometric scattering features extracted from 2D and 3D key frames. For 

classification, multiple kernel learning (MKL) is applied on different combination of 

2D and 3D operators. In Zhen2017 [73] , extract spatial facial deformation using 

Riemannian shape and amplified them by temporal filtering. Spectral clustering is 

applied to detect the key frame from the whole sequence. Both HMM and SVM 

classifiers are evaluated. 

2.4 Feature Selection Methods in Facial Expression Recognition  

In the field of human computer interaction (HCI), time and computational 

complexity are the factors limiting the real-time applications and implementation in 

electronic devices. For FER systems, specifically the dynamic facial expression 

recognition one of the main phases that carries a high computational and time 

complexity is the feature extraction. Moreover, with large feature matrices the 

algorithm used for classification adds burden to the system and it may degrade 

because of redundancy. Feature selection methods have been designed to decrease 
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the redundancy among the feature, select the most informative features and avoid the 

curse of dimensionality degrade the classifier algorithm.  

It should be noted that both dimensionality reduction methods such as PCA and 

linear discriminant analysis (LDA) as well as attribute selection methods such as 

CFS and minimum-redundancy and maximum-relevance (mRMR) are referred as 

feature selection methods in this study. Both types are used to reduce the 

dimensionality of the original feature space, but PCA-like methods alter the structure 

of the original features and map the feature space into another space, while attribute 

selection methods preserve the properties of the original feature space by picking a 

subset out of it. Both approaches have been exploited in facial expression 

recognition.  

On the other hand, the feature selection as a general machine learning and pattern 

recognition concept comprises a broad range of approaches and categories such as 

supervised versus unsupervised, iterative versus non-iterative, multivariate versus 

univariate, filters versus wrappers and embedded approaches. In fact, depending on 

the feature properties, the main issues classification, and limitation in time and 

complexity, one may decide on the feature selection method. However, the aim of 

this section is not to explore the detail of those approaches, but to briefly review the 

feature selection methods recently applied in facial expression recognition studies.    

PCA is an unsupervised dimensionality reduction method while LDA is considered 

as a supervised simple classifier. These two methods have been widely used 

individually or in combination together in facial expression recognition studies. In 

the fully automated 4D FER approach suggested by [60] , LDA is applied to reduce 
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the dimensionality of the features extracted as geometric deformations. Kaur and 

Kaur [74] have exploited PCA for selecting the most informative Eigen expressive 

face of facial expression recognition. Their algorithm is based on speeded up robust 

features and K-nearest neighborhood classifier. PCA-based dimensionality reduction 

has also been utilized in a study by [75]. LBP feature descriptors are extracted from 

the image patches and PCA is applied to find the orthogonal basis vectors. After 

reducing the dimensionality of the feature space, Kohonen self-organizing map 

(KSOM) neural networks are applied for classification. Soyel et al. [13], have 

suggested an approach based on PCA and LDA to create the optimal feature 

projection subspace. The proposed system functions based on distance features and 

Fisher criterion for discarding redundant distances.  

On the other hand, information theory-based feature selection approaches are among 

the most well-known approaches in feature selection. These approaches have been 

established using the entropy operator and include various methods such the ones 

based on simple entropy or the iterative mRMR method. A facial expression 

recognition system have been proposed by [21] using entropy-based feature selection 

method to select the informative distance features obtained from a set of facial key 

points. The entropy-based feature selection is applied for each expression and then 

followed by a two level SVM classifier. In fact, simple entropy-based feature ranking 

algorithms previously used in FER systems are unsupervised and they are criticized 

for adding redundant features to the subset.  

Other approaches applied for feature selection in FER studies include multivariate 

filter methods such as CFS and optimization techniques such as genetic algorithm 

(GA). In [48] , facial landmark positions are detected by PDM and then geometric 
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features (empirical normalized distances) are extracted from the localized landmarks. 

CFS is applied to find a subset of informative, yet non-redundant features. The non-

dominated sorting GA was also applied successfully in facial expression recognition 

to find the optimal feature subset [76]. One drawback of such feature selection 

approaches is the complexity level which makes it challenging for real-time facial 

expression systems. 

Alternatively, by introduction of bag of words and pooling methods such as SPP in 

image processing and computer vision community, the concept of sparse coding has 

been initiated. Sparse coding is a new approach to covert the dense descriptor 

matrices into sparse matrices. Several algorithms has been proposed for sparse 

coding in image recognition including LLC [77], Laplacian sparse coding [78] and 

low-rank sparse coding [79]. Followed by a pooling mechanism, coding approaches 

have been successfully applied as an alternative to feature selection in image 

recognition and facial expression recognition. Specifically, in dynamic FER systems 

where the features are mainly spatiotemporal, these techniques can contribute to 

significant results. 

In a study by [80] the proposed system of sparse representation using a PCA-based 

dictionary has been claimed to remarkably improve the performance of the facial 

expression recognition system compared to previous studies. Sparse Representation-

based Classification was exploited in FER domain by [81] . The authors have 

suggested a system using the combination of Gabor texture features and local phase 

quantization descriptors. Adaboost method is then applied on Gabor texture features 

to select the useful ones. Sparse codes are then obtained on both types of features and 

classification is implemented on the fusion of the residuals. Ghimire et al. [16] have 
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proposed an automatic dynamic facial recognition system using a set of feature 

vectors computed as the displacement of the facial landmarks with respect to the first 

frame of the expression video sequence. The landmarks are detected and tracked via 

elastic bunch graph matching displacement estimation. For each expression, a 

prototype is constructed and multi-class AdaBoost with dynamic time warping 

(DTW) is used for feature selection. More precisely, the distance between a sample 

feature vector and the related expression prototype is used as a weak classifier to 

implement the supervised feature subset selection. Finally, SVM classifier is applied 

to recognize the expressions. Adaboost has been also used in [82] for selecting 

informative features among a set of Gabor features for facial expression recognition. 

In summary, when deciding on the feature selection method for a FER or D-FER 

system, several aspects are to be considered. The complexity, computational and 

time burden are critical specifically in real-time and real-world applications. Since, 

maximal discriminative power and minimal redundancy among the features are 

important, supervised multivariate methods generally result in higher performance 

than unsupervised univariate methods. On the other hand, coding techniques have 

also been effectively applied in FER domain.  In fact, we cannot jump into the 

conclusion that a specific approach fits the facial expression recognition the best. It 

depends on many factors in the system design including the characteristics of the 

extracted features, the data set, the problem and even the selected classifier. 

2.5 Classification Methods in Facial Expression Recognition 

Classification is the last process in any facial expression recognition system. This 

process generally includes a training phase with a learning algorithm and a test phase 

to evaluate the system performance. Similar to feature selection, classification is a 
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very comprehensive topic in pattern recognition and machine learning. Discussing 

the details of the classification approaches in accordance to their characteristics, 

strengths, and weaknesses is not in the scope of this thesis. Instead, we review some 

of the popular classification methods in facial expression recognition.  

One of the commonly-used classifiers in FER studies is SVM. SVM is a binary 

classification approach with a learning algorithm that finds some support vectors 

from the train samples. The algorithm aims at constructing an optimal separating 

hyperplane with maximum distance between the closest samples of the two classes. 

SVM is a linear classifier in nature and thus using a kernel function, the nonlinear 

problems are mapped into a higher dimensional space with linear separability 

characteristics. In addition, as stated before, SVM is a binary classifier applicable in 

two-class problems. FER problems are all multi-class though and basically a 

collection of one-versus-all or one-versus-one linear SVMs are constructed by the 

scholars in facial expression recognition community.  

A comprehensive study on LBP feature descriptors in FER systems have been 

conducted by [40]. It has been claimed that the best performing features are the 

boosted-LBP and as a classifier SVM outperforms LDA and linear programming. In 

geometric-based approaches for FER, SVMs are very popular [14], [44], [48]. In 

[48], RBF-SVM classification is applied for the proposed geometric landmark-based 

FER system. However, nonlinear kernel SVM such as RBF are costly from 

computational and learning time perspectives. The two-layered SVM structure 

suggested by [21]  for 3D geometric-based FER performs effectively. Another SVM-

based FER system using the length and slopes of line segments connecting facial 

points is proposed by [83] which has resulted in significant recognition accuracy. 
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SVM classifier is also applied in a study by [82] to recognize the facial expressions. 

Canavan et al.  [84] has designed a dynamic facial activity analysis system by 

automatic landmark tracking, curvature features and SVM classifier. SVM classifier 

is also effectively used for posed and spontaneous 4D facial behavior analysis [85] . 

In Kumar2016 [62] , SVM is used in a dynamic 3D FER system based on Euclidian 

distance landmark-based features.  

Hidden Markov Model is another widely-used classifier in facial expression and 

emotion analysis studies. The state-structure of HMMs makes them suitable for 

modeling the dynamics of the expression. In [54], based on 3D generic deformable 

models, a vertex tracking approach is applied to adapt the model to all frames of the 

sequence. Spatial and temporal features are then classified by HMM. Sandbatch et al. 

[86] have applied Gentleboost and HMM to distinguish expressions from video 

sequences containing onset, apex and offset phases. 

A Fully automated approach has been suggested for 4D FER in [60] which basically 

uses geometric deformations. Radial curves have been extracted to represent 3D 

faces and expression-induced deformations have been quantified by RSA. In order to 

reduce the dimensionality of extracted features, LDA has been employed. Temporal 

HMM and random forest classifiers are applied to extract 3D motion and mean 

deformation respectively.  

A fully-automated real-time approach for subject independent dynamic facial 

expression detection (D-FED) is proposed in  [61] . A few landmarks are detected 

and local descriptors are extracted in their neighborhood. In addition, geometric 

distances of landmarks are utilized as features. In classification stage, a four state 
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HMM is used to model each of the four phases of the sequences (neutral, onset, apex 

and offset). More recently, a joint dynamic FER and expression intensity estimation 

have been successfully examined [58]. Geometric features which are basically the 

shape and coordinates of facial landmarks are extracted using AAM. In temporal 

domain, only apex phase of expression has been considered. For classification, 

HMMs have been employed.  

Several other classifiers have been evaluated in FER and D-FER systems. In a 

comprehensive study by [56] , six different classifiers have been evaluated in D-FER 

including decision trees (J48), sequential minimum optimization for SVM , random 

forests, fuzzy rough set nearest neighborhood (FRNN), logistic regression, and 

vaguely quantified nearest neighborhood .The proposed integrated approach 

combines machine learning, parallel coordinates and human reasoning. Facial points 

have been detected and tracked in video sequences. Features are extracted based on 

landmark movements and curvature changes (Gabor response) in AUs. They have 

shown that FRNN and SVM outperform the other classifiers resulting in acceptable 

average performance for recognizing six basic expressions.   

Shao et al. [59] have implemented a 3D dynamic FER on low-resolution videos. 

LBP-TOP features are extracted from small cuboids in texture and depth sequences. 

Then two codebooks are trained using LLC and feature descriptors are converted into 

sparse codes. SPP is applied on feature descriptors (combination of texture and depth 

features) to extract feature vectors. Finally, CRF are used for classification. 

Experimental results confirmed that the proposed approach provides comparable 

results although it used low-resolution videos as input.  
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LDA is also among the classification methods extensively studied by the researchers 

in facial expression studies [87]–[89]. Rosato et al. [87] have applied SVM on a set 

of generalized manifold and texture features extracted from automatically tracked 

landmarks for 3D facial expression recognition. In [89] , a PCA-LDA-based system 

is proposed for 3D facial expression recognition using tracked facial actions.  

In addition, artificial neural networks have been applied for classification in facial 

expression recognition and emotion analysis. For instance, the system presented in 

by [90] is an automatic facial expression recognition system based on self-organizing 

feature maps . After face detection, the pupils are localized to correct the head 

rotation. SOM is used for feature extraction from the cropped and rotated faces. 

Finally, a multi-layer perceptron neural network (MLPNN) is adopted to classify 

neutral and six prototypic expressions. 

Deep learning is another emerging trend in image processing and recognition. 

Specifically, convolutional neural networks (CNNs) and long-short-term memory 

network (LSTM) have been successfully applied in facial expression recognition 

[91]–[93]. Feasibility of these approaches relies on advances in GPU technologies 

made in recent years as well as availability of huge amount of data to train networks. 

Although these methods are successful in extracting useful information from loads of 

data, when the amount of data is limited, deep neural networks suffer from over-

fitting [94]. In image and video processing, data collection is costly and thus the 

conventional methods are to be manipulated for enhanced performance. This 

limitation has been recently spotted by some researchers [92], [94]. It has been 

argued that although CNNs generally achieve high recognition rate with big data, 
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publicly available datasets for facial expression recognition do not contain sufficient 

data for deep architectures [92].        

 

Regardless of these limitations, deep learning approaches have been exploited by 

researchers in both static and dynamic FER systems. Liang et al. [95] have proposed 

a BiLSTM-based dynamic facial expression recognition based on two networks to 

model spatial and temporal information separately and then fused the context. A 

CNN-LSTM system is recently presented in [96] which adaptively initializes CNN 

and LSTM for improved performance. Jung et al. [94] have integrated two deep 

learning models which extract temporal appearance and temporal geometry from 

video sequences and facial landmarks respectively. 

2.6 Applications of Automatic Facial Expression Recognition  

In human-machine interactions, when computers are to analyze the feedbacks and 

entries from the user, emotions cannot be ignored. FER is one of the emerging topics 

of interest in computer vision and image processing. There are a wide range of 

applications for automatic facial expression recognition including HCI, medical care, 

psychology, marketing, customer service, education and gaming.  

 The computers in HCI need to take the actions and provide the responses based on 

the feedbacks received from the user. While keyboard, mouse and touchscreens are 

recognized as the conventional mediums for converting user reactions into 

understandable signals for the machine, advances in technology results in more 

complicated ways of interactions such as voice and image. Facial expression 

recognition systems make it possible for the machine to present more precise and 

effective actions in HCI systems  [97].    
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In addition, the introduction of automated assistive medical systems has encouraged 

the researchers to focus more on the detailed data collection from the patients. 

Emotional state of a patient is one of the valuable information. Emotion recognition 

can also aid the physiologists in diagnoses based on the subject‟s expressive 

behavior. In addition, facial expression recognition can provide further information 

for emotion studies that analyze human emotional behavior. 

In marketing and customer service industry, the responses of the targets to 

advertisement, shop design, and product packaging can be explored by automatic 

emotional detection. Similarly, in computer-based education systems, the learner‟s 

engagement and attitude towards the concept and the lecturer can be investigated by 

automatic emotion analysis system. The policies, strategies and methodologies can 

be modified according to the emotional feedbacks collected in the system both in 

marketing and education industry.  

Another application of automatic facial expression recognition is in the gaming [98]. 

Nowadays, multiplayer online games are very popular because they provide the 

players with the chance to interact and collaborate with other players. Facial 

expression recognition can replace text commands in these games and give the 

players a more real feeling. For example, the emotions of avatars can be controlled 

by such a system instead of conventional prompts [98]. 
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Chapter 3 

3. GEOMETRIC LANDMARK-BASED 3D FER 

3.1 Introduction 

The aim of this chapter is to investigate the landmark-based approach in 3D facial 

expression recognition. This chapter is considered as a preliminary step to study and 

understand the potential challenges in spatial domain before getting involved with 

temporal information in the following chapters. Conventional geometric distance 

features are extracted and the FER problem is addressed by proposing advanced 

feature selection and classification methods. In fact, previous studies in FER have 

been either based on simple univariate feature selection without considering feature 

interactions or using dimensionality reduction such as PCA which does not take into 

account the class discriminability of the subspaces. The first contribution of this part 

of the study is application of SFFS to find an optimum low-dimensional feature 

subspace for person-independent three-dimensional facial expression detection (3D 

FED). The second contribution is in classification phase where a novel two-layered 

SVM-FSVM is designed. The rest of this chapter is framed into four sections. In the 

Section 3.2, BU-3DFE data set is reviewed. In Section 3.3, proposed method is 

described.  Experimental results are demonstrated in Section 3.4 and discussed in 

Section 4.5. The last section, Section 4.6 concludes the chapter. The outline of the 

proposed system and the system used as the reference for comparison are illustrated 

in Fig. 3.1.  
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Figure 3.1: Overview of the proposed and the reference systems. 

3.2 BU-3DFE Data Set  

The data set used in the first phase of this study is 3D FED data set of Binghamton 

University known as BU-3DFE [99] . This data set is published in 2006 and it is one 

of the popular data sets in emotion analysis from 3D images. BU-3DFE images are 

recorded from 100 subjects including 44 male and 56 female subjects. Data set 

contains 25 texture and depth images for each of the subject. It comprises one neutral 

expression image and four different level intensities of emotion expression images 

for each of the 6 basic expressions namely anger, disgust, fear, happiness, sadness, 

and surprise. Data set also provides 3D coordinates of 83 points of the face model 

which are utilized for distance-based feature extraction.  Four sample subjects are 

selected and illustrated in Fig. 3.2 

. 
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Figure 3.2: Four sample subjects from BU-3DFE. First row: texture images and 83 

landmarks of face model. Rows 3, 5 and 7: texture images, rows 2, 4, 6 and 8: depth 

images of different expressions in each column: (a) neutral (b) anger, (c) disgust, (d) 

fear, (e) happy, (f) sadness, and (g) surprise. 

The pictures were captured at the apex phase of the expression. Provided landmark 

points are annotated on the faces as well. Fig. 3.2 (a) represents a typical neutral face 

model. Fig. 3.2 (b) to (g) show the six prototypic expressions as anger, disgust, fear, 
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happy, sadness and surprise respectively. Each emotion is expressed at four different 

intensity levels. Fig. 3.3 shows several sample subject expressing six emotions at 

four intensity levels. The left most image corresponds to the lowest level intensity 

while the right most one represents the highest level intensity. In this study, 

expressions of level four (the highest intensity) are considered. 
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Figure 3.3: A sample subject from BU-3DFE with four intensity levels of expression 

(a) anger, (b) disgust, (c) fear, (d) happy, (e) sadness, and (f) surprise. 
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3.3 Proposed Method  

As stated in section 2.2, geometric features have been utilized by scholars in facial 

expression recognition for decades. Distance-based geometric features which 

measure the pairwise distances of facial landmarks have been proved to perform 

efficiently in 2D and 3D FER systems. However, the large number of features 

induces the necessity to exploit a feature selection method. Here, SFFS is applied to 

select a subset of useful features. The proposed method has three phases: feature 

extraction, feature selection and classification. 

3.3.1 Feature Extraction 

Features are extracted as pairwise distances of 83 points of the face model in 3D 

space. Distances between all pairs of these 3D landmarks are calculated using 

Euclidean distance as shown in Eq. 3.1. 

                             √                                                        (3.1) 

where (xi, yi, zi) and (xj, yj, zj) are the 3D Cartesian coordinates of landmarks i and j 

respectively and dij is the distance feature. All distances are normalized by the 

distance between the inner corners of eyes to compensate the scale variations. As all 

combinations of the pairs of points are to be taken into account, the total number of 

features is equal to(  
 
)      . In fact, this is completely impractical to use all 

these features for classification problem. In addition, the results will be definitely 

poor because of redundancy. Hence, feature selection is applied as an initial stage on 

the train set.  

3.3.2 Sequential Forward Feature Selection 

SFFS is used as feature selection algorithms for each of the two-class classifiers 

separately. Conventional t-test is also applied as another feature selection method for 

comparison. In SFFS, algorithm starts from an empty set and adds features 
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sequentially to the set in order to minimize an error criterion. There is an internal 5-

fold cross validation (5-CV) in which train data is divided into 5 partitions and based 

on the criterion calculated on internal test set, features are added to the selected 

subset in each iteration. Algorithm stops when either a predefined number of features 

are selected or the criterion stops improving. In this study, classification error of 

Naive Bayes classifier is used in SFFS as the optimization function to be minimized. 

SFFS is known as a multivariate feature selection method which means selected 

features are not highly correlated. In conventional univariate methods such as 

entropy-based, F-score and t-test, top features are mainly highly correlated and there 

is a huge amount of redundancy among features. Considering the displacement of the 

landmarks and their relative distances, distance-based geometric features are 

generally correlated in their nature. Using SFFS, a small subset of selected features 

can provide acceptable accuracy if an appropriate classifier is utilized. The algorithm 

of SFFS is as follows: 

  Sequential Forward Feature Selection Algorithm  

1. Start with the empty subset F = ∅        

2. Select the next best feature f = arg min(Er(x∪F)),    x∈{X-F} 

3. Update feature subset F = F∪ f 

4. If stop criterion is not satisfied, go to step 2 

where X is the whole set of features and Er is the classification error of Naive Bayes 

classifier as follows. Assume a Naive Bayesian classifier which classifies sample 
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vectors s into classes Cis (i=1,2,…6). The Bayes error rate is the probability of 

incorrect prediction of the class label and it defines as follows.   

                                    ∑ ∑ ∫           
 ∈  

 
       

 
                                         (3.2) 

where p(.) is the probability function, M is the number of classes and Hj is the area 

that classifier predicts the label of s incorrectly.  

As mentioned before, a traditional supervised univariate feature selection namely 

student t-test is also implemented for comparison. In t-test, the score for feature i is 

calculated as in Eq. 3.3. 

                                                      
  

       

√
  

 

  
 

  
 

  

                                                        (3.3) 

where mk, σk and Nk (k = 0,1) are the mean value, standard deviation and number of 

samples belong to class k respectively. The larger the score is, the more 

discriminative the feature is. This method ranks the features from the most 

discriminative to the least discriminative one and unlike SFFS it does not consider 

their interactions and redundancies.  

3.3.3 Fuzzy-SVM Classification 

Since the problem of facial expression recognition is a multi-class problem, a 

mechanism is required to convert predictions of two-class SVMs into multi-class 

labels of 6 expressions. Conventionally, multi-class problems are divided into several 

two-class classifiers based on either „one versus one‟ or „one versus all‟ scheme 

followed by a majority voting to obtain the predicted label. However, the problem of 

unclassifiable regions limits the accuracy of this method. In this study, both „one 

versus one‟ and „one versus all‟ schemes are used.  
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In fact, the classifier is designed in two layers and in the first and second level of 

which, one versus one and one versus all schemes are performed, respectively. Since 

there are 6 expressions in the data set, the number of all possible binary classifiers in 

level one is equal to 15 while in level two there are 6 classifiers. In the second layer 

conventional SVM is replaced by FSVM. FSVM has been introduced to pattern 

recognition community in recent decade [100]. Recently, its application in multi-

class classification has been attracted the interest of many researchers specifically for 

small samples [101] . The mechanism of FSVM approach is described in the 

following. 

The main idea of FSVM is to replace crisp classification into fuzzy classification. In 

other words, for a binary classification task, when a sample belongs to a class it 

cannot be a member of the other class, but in fuzzy classification a sample can 

belong to both classes with different membership values. Now, consider a set of 

labeled samples and their fuzzy membership values     

                                     

where each d-dimensional sample sk (skϵR
d
) is labeled as ykϵ(+1, -1) and its 

associated fuzzy membership is σ≤mk≤1 with a sufficiently small variable σ. Now, 

consider a mapping υ from R
d
 to the feature space Ζ so as z= υ(s). As in 

conventional SVM where the target is to find the discriminating hyperplane 

w.z+b=0, we need to define an objective function but with taking into account the 

fuzzy membership. Note that the associated fuzzy membership of a sample defines 

its behavior towards the class labels. As a results when in SVM, the parameter ξ is 

error measure, in FSVM m.ξ is the error. Hence, the optimal hyperplane can be 

identified by solving the following optimization problem. 
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                                                        (3.4) 

Subject to 

                                                                                           (3.5) 

where N is the number of samples in training set and C is a constant value defined 

practically by the user. In order to solve the optimization problem, the Lagrangian L 

with parameters α and β is constructed as: 

                
 

 
     ∑     

 
    ∑     

                    

                                                                        ∑   
 
                                                           (3.6) 

for the parameters w, b and ξk the conditions given in Eq. 3.7 must be satisfied. 

             
             

  
   

             

  
   

             

   
                        (3.7) 

By calculating the related terms based on the above conditions, the Lagrangian in 

Eq.3.6 is altered to: 

                      ∑   
 
    

 

 
∑ ∑         

 
   

 
                       (3.8) 

Subject to: 

                             ∑     
 
                                                  (3.9) 

The fuzzy membership function is simply selected by first defining the overlap value 

and then finding the appropriate function that matches the main characteristic of the 

data. In this study, we have a balanced multiclass problem with equal number of 

samples per class. Hence, a simple rectangular fuzzy membership function with 50% 

overlap is used.  
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3.4 Experimental Results  

 

For splitting data into test and train set, 10-fold cross validation (10-CV) is applied. 

All the experiments are repeated 10 times by randomly selecting 90% (90) of 

samples as the train set and 10% (10) as the test set. The task is subject-independent. 

In each fold, feature selection and classifier training are performed on train data and 

then evaluated using test data. Accuracies are reported as average over ten folds. The 

experiments are set as follows. Firstly, system based on t-test feature selection and 

conventional majority voting SVM is implemented as a reference one. Secondly, t-

test is replaced by SFFS and again majority voting SVM is applied in order to 

provide a comparative perspective over t-test and SFFS. Finally, the proposed system 

using SFFS and SVM-FSVM is implemented. The architecture of the system 

established using majority voting SVM is shown in Fig. 3.4. 
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Figure 3.4: The architecture of the reference system (majority voting SVM). 

 

Because the aim of the study is to find an optimum feature subspace, some initial 

evaluations have performed to find the optimum cardinality of feature set subsets for 

both t-test and SFFS. Based on average accuracies, 27 features provide maximal 

performance on t-test and adding more features does not improve average accuracy. 

In SFFS implementation, the size of the feature subset is identified by feature 

selection method. In other words, the iterative procedure is repeated until the decay 

in the error becomes negligible. The evaluations showed that maximum dimension of 

the best subsets is at the most 18. The reason for this difference is that the level of 
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redundancy among the features selected by t-test is high and this degrades the 

classification accuracy. Unlike t-test, SFFS functions as a multivariate feature 

selection that attains subsets of useful, yet on-redundant features. Hence, the 

accuracy of the system keeps improving for a larger number of features. In the 

reference systems based on conventional SVM, a one-layered majority voting 

classification system including 15 two-class SVM classifiers is constructed. Table 

3.1 shows the average confusion matrix. 

Table 3.1: Confusion matrix (t-test and majority voting SVM) 

Expression 
Recognition Accuracy (%) 

Anger Disgust Fear Happy Sadness Surprise 

Anger 66.00 3.00 4.00 1.00 0.00 26.00 

Disgust 10.00 69.00 11.00 2.00 7.00 1.00 

Fear 5.00 9.00 62.00 12.00 4.00 8.00 

Happy 1.00 10.00 6.00 82.00 1.00 0.00 

Sadness 0.00 1.00 9.00 2.00 88.00 0.00 

Surprise 23.00 2.00 8.00 0.00 0.00 67.00 

Overall 72.33 

 

In the next step, t-test is replaced by SFFS approach. As mentioned before, in SFFS, 

the iterative search algorithm finds a subset that minimized Bayesian error by taking 

into account feature interactions. Therefore, feature subset has more discriminate 

potential and the feature subspaces consist of less correlated attributes compared to 

the subspaces selected by t-test. This is also true for other conventional selection 

methods like entropy which does not consider feature interactions in selection 

procedure.  
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This property is illustrated in Fig. 3.5. Figure represents a visual perspective of class 

discriminability and feature correlation for two different cases. Two-dimensional 

feature subspaces of the best features for classification of fear vs. happiness and 

surprise vs. sadness are selected as examples. It is clear in the figure that classes are 

more discriminable when features are selected by SFFS.  

Figure 3.5: Example scatter plots in two dimensional optimal feature subspace (top: 

t-test, bottom: SFFS). 

Another advantage of SFFS method is that there is no need to estimate the 

dimensionality of the optimum subset since the error reaches a plateau after a limited 

number of iterations. This procedure in one of the 10 folds is illustrated in Fig. 3.6. 

The curve of the changes in Bayesian error rate for classification of anger versus 

disgust, and fear versus surprise are plotted. It can be observed that dimensions best 

subsets are 15 and 7 respectively. 
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Figure 3.6: Two example error curves of SFFS feature selection procedure in one 

fold (dimensionality of the feature subsets is 15 and 7). 

According to experimental results, dimension of the best subsets selected by SFFS 

ranges from 2 to 18 for each of the two-class classifiers in all folds. Average 

dimensionality of the feature subsets in 10-fold is reported in Table 3.2 for all 15 

classification cases. In Table 3.3, experimental results obtained by these low-

dimensional feature subsets and majority voting scheme is shown. It is notable that 

average accuracy has been improved by 6% compared to t-test feature selection. 

However, the accuracy rates of this experiments are poor compared to the state-of-

the-art. A general perspective has been provided toward the capability of SFFS in 

selecting low-dimensional feature subset. 

Table 3.2: Average dimension of feature subsets 

AN/DI AN/FE AN/HA AN/SU AN/SA DI/FE DI/HA DI/SU 

15.7 14.9 4.4 14.6 17.4 16.7 13.8 8.0 

DI/SA FE/HA FE/SU FE/SA HA/SU HA/SA SU/SA AVG. 

9.7 15.3 9.8 13.1 15.5 2.5 3.2 11.5 
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Table 3.3: Confusion matrix (SFFS and majority voting SVM) 

Expression 
Recognition Accuracy (%) 

Anger Disgust Fear Happy Sadness Surprise 

Anger 72.00 7.00 2.00 1.00 0.00 18.00 

Disgust 10.00 76.00 8.00 1.00 5.00 0.00 

Fear 2.00 10.00 70.00 9.00 2.00 7.00 

Happy 1.00 1.00 12.00 85.00 1.00 0.00 

Sadness 0.00 1.00 5.00 2.00 92.00 0.00 

Surprise 15.00 5.00 3.00 2.00 0.00 75.00 

Overall 78.33 

The proposed system for 3D facial expression recognition is based on distance 

features, SFFS and a two-layered SVM-FSVM classifier to achieve acceptable 

performance.  More precisely, the first layer of the system consists of 15 one-versus-

one SVMs each trained on a different subset of features selected by SFFS for that 

specific problem. After finding the optimal hyperplane, associated decision values of 

SVM are used as the input to the second layer. These decision values represent the 

attitudes of the train samples toward the optimal separating hyperplane for each 

expression versus any other expressions. In the second layer of the propose 

classification system, there are FSVM classifiers. The 15 decision values are fed to 

the second layer of 6 one-versus-all FSVM classifiers. In other words, input of the 

second stage classifier is w.υ(x)+b values explained in section 3.3.3. In the second 

level, 6 FSVMs are trained for 6 expressions. Train labels are defined in a way that 

for each expression, output of the related FSVM is maximum (1) and output of the 

others are minimum (-1). Train label matrix for each of the 6 expressions is as 

follows. Fig. 3.7 provides a perspective of this system. 



55 

 

[
 
 
 
 
 
  
  
  
  
  
  ]

 
 
 
 
 

 

[
 
 
 
 
 
      
      
    
    
    
    

        
         

  
       
       

       
       

        
          

  
        
       

            
            ]

 
 
 
 
 

 

Figure 3.7: The architecture of the proposed system (SVM-FSVM). 

After these 6 FSVMs are trained, accuracy of the system is estimated by test 

samples. In order to predict the label of a test vector, maximum argument is utilized. 

More precisely, the maximal argument of the fuzzy membership value, i.e. the 

agrmax(mk) is the predicted expression. Table 3.4 shows the experimental results of 

proposed method in terms of confusion matrix. Average multi-class accuracy is 

improved significantly by applying the proposed two stage FSVM classifier. In order 

to highlight the effectiveness of SFFS method, the tests are also conducted on the 

whole set of features. Table 3.5 represents the recognition and confusion rates. 
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Average recognition accuracy of proposed SVM-FSVM classifier without applying 

feature selection is 81.83%. By comparing the results given in Table 3.4 and Table 

3.5, it is clear that SFFS improves average accuracy by almost 6%. In fact, since 

SVM-based classifiers are vulnerable to redundancy, removing redundant features 

results in remarkable improvements.  

Table 3.4: Confusion matrix (SFFS and proposed FSVM) 

 Expression 
Recognition Accuracy (%) 

Anger Disgust Fear Happy Sadness Surprise 

Anger 85.00 3.00 3.00 1.00 0.00 8.00 

Disgust 7.00 85.00 4.00 0.00 4.00 0.00 

Fear 2.00 6.00 82.00 3.00 0.00 7.00 

Happy 1.00 0.00 4.00 94.00 1.00 0.00 

Sadness 0.00 1.00 3.00 1.00 95.00 0.00 

Surprise 5.00 5.00 4.00 1.00 0.00 85.00 

Overall 87.67 

 

Table 3.5: Confusion matrix (All features and proposed FSVM) 

 Expression 
Recognition Accuracy (%) 

Anger Disgust Fear Happy Sadness Surprise 

Anger 80.00 5.00 5.00 1.00 0.00 9.00 

Disgust 10.00 78.00 6.00 1.00 5.00 0.00 

Fear 3.00 8.00 78.00 3.00 1.00 7.00 

Happy 2.00 2.00 6.00 87.00 1.00 2.00 

Sadness 1.00 1.00 6.00 3.00 88.00 1.00 

Surprise 6.00 5.00 6.00 1.00 2.00 80.00 

Overall 81.83 
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3.5 Discussion 

There are two mainstreams in FER research regardless of the details of the 

recognition system namely, geometric-based and appearance-based schemes. The 

most commonly addressed geometric approach is the landmark-based approach 

known well for its simplicity and robustness to illumination noise and acquisition 

artifacts. In this preliminary phase of the study, a novel 3D FER system is designed 

to recognize six prototypic expressions from still images. The experiments are 

structured in such a way that supports the claim of “using an efficient feature 

selection method and a well-designed classifier at the same time, landmark-based 

features may be successfully used in facial expression recognition”.  

Firstly, conventional t-test feature selection is compared with SFFS in feature 

selection stage. According to the experimental results, cardinality of subsets ranges 

from 2.5 to 17.4 on average for 10 folds. Total average is 11.5 which means that the 

selected feature subspaces are low-dimension. Using one layer of conventional 

majority voting SVM, SFFS improves the result of t-test from 72.33% to 78.33%. 

Then by applying the proposed two-layered SVM-FSVM classifier, average accuracy 

reaches to 87.67%. Considering that the work is performed in low-dimensional 

feature subspaces, this accuracy is comparable to previous studies as shown in Table 

3.6. Table 3.6 confirms that proposed FER system achieves higher recognition 

accuracies in comparison to [35], [102] and [20] and [103]. Soyel et al. [76] have 

obtained a slightly better recognition rate by using an evolutionary algorithm for 

feature selection. These algorithms need tuning for the parameters and are 

computationally demanding. Lopes et al. [92] have achieved 90.96% accuracy by 

using a preprocessing approach and CNN. However, considering the time and 
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computational burden of deep-learning approaches this improvement is not 

unexpected.   

Table 3.6: Comparison of proposed system with state-of-the-art 

Author Method ACC% 

Wang et al. [35] Primitive Surface Feature Distribution + LDA 83.60 

Tang et al. [102] 
Geometric Distance and Slope Features + Majority 

voting SVM 
87.10 

Zarbakhsh et al. [20] 
Geometric Distance Features +T-Test +Majority voting 

SVM 
74.63 

Oyedotun et al. [103] RGB and depth map + DCNN 87.05 

Lopes et al. [92] Pre-processing + CNN 90.96 

Soyel et al. [76] Geometric Distance Features +NSGAII + PNN 88.30 

Proposed Method Geometric Distance Features + SFFS + SVM-FSVM 87.67 

3.6 Conclusion 

The aim of this phase of the work is implementing efficient facial expression 

detection (FED) system in an optimal feature subspace. An iterative feature subset 

selection algorithm based on SFFS is proposed which selects feature subspaces for 

15 two-class (one-versus-one) classifiers individually. A two-layered SVM-FSVM is 

then designed for classification. Experiments conducted on BU-3DFE data set have 

proved that proposed method obtains acceptable results. The result of this work is 

worthwhile for low-complexity practical applications of FED. In addition, these 

findings provide the motivation for the second stage as by applying appropriate and 

efficient feature selection and classification methods, geometric landmark-based 

features are potentially valuable in facial expression recognition.   
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Chapter 4 

GEOMETRIC LANDMARK-BASED DEFORMATIONS 

IN 4D FER  

4.1 Introduction 

Four dimentsional facial expression recognition (4D FER) systems are known as 

dynamic 3D facial expression recognition systems. Basically, emotions are 

expressed in the face during a time interval with different phases namely 

neutral, onset, apex and offset [104]. During these phases, the movements 

of facial muscles transform the spatial charm acteristics of some specific 

regions of the face known as AUs. Static FER systems which analyze 

texture and depth images are designed to process the spatial information 

of the facial images recorded at the peak of an expression known as apex. 

On the other hand, since the input to the dynamic FER system is the 

sequence of the facial expression frames, these systems mainly process the 

spatiotemporal information. For simplicity, we term the dynamic 3D facial 

expression recognition as D-FER. 

As a matter of fact, the dynamics in the time interval during which an emotion is 

expressed are very informative. Transitions of feature descriptors and geometric 

deformations taken place in this interval contain critical temporal information for 

facial expression recognition [57], [60], [105] .In D-FER systems, texture, depth and 

even landmark coordinates are recorded as video/time sequences during all phases of 
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the emotion expression. However, capturing temporal information is a challenging 

task and several studies address this by identifying a key frame [66], [73] or by 

analysis the subsequences individually [54], [86] . In this work, a time series-based 

method is proposed which processes the full sequences of facial expression 

recognition. Multimodal time series are constructed by applying a temporal sliding 

window to capture the dynamics as mean geometric deformation of facial key points. 

In this work, we adapt a time series analysis method to construct multimodal time 

series from landmark based deformations extracted from all of the frames in videos 

sequences. The problem is addressed then by classification approaches adapted for 

time series. This study contributes to the literature in three aspects. Firstly, unlike 

conventional geometric schemes that rely on a limited set of landmark-based 

features [14] a comprehensive set of deformations including point, distance and 

angle are extracted from 3D coordinates of facial landmarks to acquire 

displacements in all directions. Secondly, the features in original high dimensional 

feature space are filtered out by an effective feature subset selection algorithm 

named neighborhood component feature selection [106]. Thirdly, the notion of 

multimodal time series analysis is adapted to process full sequences of facial 

expression recognition and consequently, AC-DTW classifier is used for the first 

time in D-FER systems.  

The rest of this chapter is organized as follows. The 4D data set used in this thesis is 

described in Section 4.2. In Section 4.3, the proposed algorithm and its different 

phases are outlined. Section 4.4 represents the experimental results conducted on 

BU-4DFE dynamic 3D facial expression data set. The discussion of the results is 

given in Section 4.5. Finally, in Section 4.6, the chapter is concluded. 
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4.2 BU-4DFE Data Set 

In order to evaluate the performance of the proposed D-FER system, a set of 

experiments are conducted on BU-4DFE [55] , a well-known dynamic 3D facial 

expression recognition data set. This data set is collected from 101 subjects including 

58 female and 43 male subjects. The documents of the recorded data are grouped as 

females and males and for each subject the expression data is recorded in six 

different expressive conditions. For each expression, geometric model and texture 

colored images are provided as separate sequences presented as individual frames. 

Resolutions of the depth and texture video sequences are 35,000 vertices and 

1040×1329 pixels per frame respectively. It should be noted that we term geometric 

models as „depth images‟ in this thesis since they are related to the 3D face shape. 

Texture and depth videos are also available for each expression. This framework of 

the BU-4DFE data set is shown in Fig. 4.1. 

 

Figure 4.1: The Framework of BU-4DFE data set [55]. 
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The subjects are with a variety of ethnic ancestries such as Asian, Black, Hispanic, 

and White. Each of the 101 subjects in data set has expressed 6 basic expressions 

including AN, DI, FE, HA, SA and SU. For each expression a sample recording is 

illustrated in Fig. 4.2. Samples are selected from both male and female groups and 

from different ethnicities. Since there are approximately 100 frames in each 

sequence, a subset of frames including 7 images are selected to represent the general 

process of the emotion expression. 
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Figure 4.2: Sample frames of BU-4DFE texture and depth videos, from top to 

bottom: angry (male, black), disgust (female, East-Asia), fear (male, White), happy 

(female, White), sad (female, Latino), and surprise (male, India), respectively. 
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The rate of the recorded videos is 25 frames per second and thus the length of the 

sequences varies approximately between 3 to 4 seconds. For each expression in 

addition to texture and depth information, the 3-dimensional coordinates of 83 facial 

landmarks of face model are provided. These landmarks are located around critical 

facial regions including eyes, eyebrows, nose, mouth, chin and the face contour. In 

the first frame of each sequence, the landmarks are identified and then tracked in 

other frames using AAM. The depth (range model) sequences are aligned with the 

texture video and consequently, the detected 83 landmarks can also be projected into 

the depth sequences forming 3D feature vertices. These vertices and the 3D 

coordinates of the landmarks are also provided in the data set. Fig. 4.3 shows the 

tracked landmarks and the range models. 

Figure 4.3: Tracked landmarks (top) and the range models (bottom) in BU-4DFE. 

4.3 Proposed Method 

The proposed method comprises four main stages: head pose correction and 

normalization, feature extraction, feature selection and classification. In the first 

stage, head pose correction and normalization are applied to adjust landmarks in all 

frames and among all subjects. Secondly, three types of geometric deformation 
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feature namely point, distance and angle feature are extracted and multimodal time 

series are constructed by sliding a mean deformation window over the full sequence. 

The next stage, feature selection based on nearest component feature selection 

(NCFS) aims at identifying a small subset of informative features and discarding 

redundant ones. Finally, AC-DTW is applied in classification stage to recognize the 

expressions. The architecture of proposed method is illustrated in Fig. 4.4 and the 

details of the stages are explained in the following. 
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Figure 4.4: Architecture of the proposed system 
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4.3.1 Head Pose Correction and Normalization 

In geometric D-FER systems which are designed based on facial landmarks, 

it is crucial to have a frontal view face. In other words, head pose can 

induce changes in the location of landmarks which may be mistaken as 

expression-related variations by the recognition system. Hence, it is of a 

great importance to normalize facial landmark coordinates according to 

head pose. Head movement is a known as an almost rigid transformation in 3-

dimensional space. Derkach et al. [27] have argued that geometric landmark-based 

head pose estimation is as efficient as appearance estimate while it does not require a 

pre-training phase. They have also shown that this method outperforms dictionary-

based methods.  

In geometric landmark-based head pose estimation, given the coordinates of a 

number of facial landmarks, the head pose can be defined by three Euler angles 

around three axes. These angles are called pitch (nodding), yaw (shaking) and roll 

(tilting) as illustrated in Fig. 4.5 [25] Pitch angle (θ) is the head rotation around the 

horizontal x axis. Yaw angle (υ) measures the rotation around vertical y axis. Roll 

angle (ψ) is the rotation around the z axis perpendicular to frontal face plane. In order 

to estimate, two points are used. The line connecting inner eye corners in 3-

dimensional space is projected into xy plane. Knowing that the equation of a line in 

xy plane            , roll angle is obtained. 
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Figure 4.5: Head pose in terms of pitch, roll, and yaw angles describing 3D 

movement of head [25]. 

To estimate pitch and yaw, the equation of an approximate frontal face plane is 

needed. For this purpose, three points including forehead corners and chin tip are 

used. The normal vector of the plane crossing these three points are used to compute 

pitch and yaw rotation angles as follows. 

                                                 (
  

  
)                    

  

  
                                (4.1)                      

where  
 

            is the three dimensional normal vector of the frontal face 

plane.After estimation of the rotation angles (θ, υ, ψ) and given the reference point 

(xr, yr, zr), the landmark coordinates are corrected by applying a rigid affine 

transformation F as: 

                                                                                           (4.2)                      

where the rigid transformation is defined by a rotation matrix   and translation 

vector   as shown in Eq. 4.2. Note that the midpoint of the inner eye corners is 



69 

 

assumed as the reference point in the 3D coordinate system to normalize the 

displacements among all frames. In each frame of the video sequence, the facial 

landmark point            (l = l,...,19) is transformed to               as shown 

in Eq. 4.3. 

   [
   
         
          

] [
          

   
         

] [
         
          

   
]             

      (4.3) 

where θ ,υ and ψ are the estimated head rotation angles and             is the 

reference point coordinates. Note that this procedure is applied to the frames of all 

sequences in the data set. By correcting the head pose according to the reference 

coordinate system, point coordinates are normalized. The length of the line 

connecting inner eye corners is used as the reference length for scale normalization 

of distance deformations. Moreover, the projected length of this line on x, y and z is 

also used as a scale factor to compensate scale variance of point coordinates. Angle 

deformations are already scale and rotation invariant and do not need normalization. 

In Fig. 4.6 the facial landmarks in 3D space are illustrated. The reference line 

connecting inner eye corners and the frontal face plane are also annotated. 
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Figure 4.6:  Facial landmarks in 3D space with reference line and frontal face plane. 

4.3.2 Feature Extraction 

As stated before, three types of geometric landmark based deformations are 

extracted from facial key points in this study. In BU-4DFE data set, there are 83 

landmarks of the face model in 3D space numbered from 1 to 83. The two-

dimensional perspective of these landmark points is illustrated in Fig. 4.7.  
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Figure 4.7: Facial landmarks in BU-4DFE data set. 

As considering all of these landmarks for feature extraction is highly computationally 

costly, a subset of the landmarks are to be considered. We argue that a subset of 

these landmarks exhibit significant deformations during facial expression and the rest 

of them either do not deform during the expression or are redundant as they always 

deform similar to their neighboring landmarks. In order to identify these key points, 

we referred to FACS introduced by Ekman and Friesen [24] FACS defines 44 AUs 

based on facial muscle movements. Extensive research has been conducted to 

analyze how these AUs contribute to facial emotion expression both separately and 

in combination to each other [24],  [26], [12].Basically, it has been argued that only a 
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small subset of these AUs involve in six basic facial expressions [107], [12], [26] . 

Tian et al. [12] have suggested an automatedface analysis system to recognize 

changes in facial expression into AUs. Their system has achieved significant 

recognition rates using 10 lower face and 6 upper face AUs. Wegrzyn et al. [107] 

have studied a facial map for emotions and identified the active AUs for each of the 

six basic expressions. A brief description of the AUs activating during six prototypic 

expressions is given in Table 4.1. 

Table 4.1: Description of AUs contributing to six basic expressions 

 

In fact, these AUs displace a set of key points located around brows, eyelids, nostril 

wing, the nasal end of the nasolabial furrow, lips corners, philtrum, lips mover, and 

chin boss. Accordingly, the facial landmarks considered in this study are directly 

related to AUs which function during six prototypic expressions as shown in Table 

4.2. It should be noted that several landmarks may be displaced by activation of one 

AU Description AU Description 

AU1 

 

Inner brow raiser AU15 

 

Lip corner depressor 

AU2 Outer brow raiser AU16 Lower lip depressor 

 

AU4 

 

Brow lowerer AU19 Tongue show 

 

AU5 

 

Upper lid raiser AU20 

 

Lip stretcher 

AU6   Cheek raiser 

 

AU22 Lip funneler 

 

AU7 Lid tightener 

 

AU23 

 

Lip tightener 

AU9 

 

Nose wrinkeler AU25 Lips part 

 

AU10 Upper lip raiser 

 

AU26 

 

Jaw drop 

AU12 Lip corner puller AU27 Mouth stretch 
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specific AU. For instance upper lid raiser (AU5) deforms landmarks 2, 3, 4,10,11,12, 

but the considered landmarks in this study i.e 3, 11 have remarkable deformations 

compared to their neighboring landmarks. The reader can refer to [24] and [107] for 

more details. 

Table 4.2: AUs contributing to six basic expressions and related landmarks 

numbered in Figure 4.6. 

Expression Action Units Landmarks 

Anger {AU6,AU7,AU9,AU22,AU23,AU25} {3,7,11,15,40,41,44,45,51,53,58,63} 

Disgust 
{AU4,AU6,AU9,AU10,AU16,AU19,AU25,AU26

} 
{31,36,7,15,44,55,58,63,76} 

Fear {AU1,AU2,AU5,AU20,AU25} {3,11,21,26,31,36,49,55,58,63} 

Happiness {AU6,AU12,AU25} {7,15,49,51,53,55,58,63} 

Sadness {AU1,AU4,AU15,AU25} {21,26,31,36,49,55,58,63} 

Surprise {AU1,AU2,AU5,AU25,AU26,AU27} {3,11,21,26,31,36,49,55,58,63,76} 

The displacement of the 19 key points is described by three types of geometric 

deformations. Since the aim of this study is to capture both spatial and temporal 

information, related values are extracted from the individual frames and then time 

series features are constructed by applying a sliding window to obtain mean 

deformation. Geometric deformations are computed from the sequence of frames by 

taking the first frame as the reference one. We assumed that the first frame of each 

video sequence expresses a neutral face which is true to a great extent for the data set 

used in this work. For each type of geometric deformations, the deviation of the 

corresponding variable from the first frame is computed. Then, an averaging window 

is slid over the sequence to construct the time series. These steps are described in the 

following. 
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4.3.3 Point Deformation 

As stated before, the time series-based features proposed in this work are obtained 

using mean geometric deformations. The sliding window averaging is applied on 

video sequences to compute three types of deformations. The first type of geometric 

deformations is defined as the displacement of the key points. Given a sequence of N 

frames numbered as i=0,...,N-1, the displacement of a the l
th 

landmark point‟s 

coordinates in the i
th 

frame relative to the first frame in 3-dimensional space is 

computed as: 

        
    

    
                       

    
    

                       
    

    
                     (4.4) 

where   
 ,   

  and    
 are the three dimensional coordinates of the l

th 
 landmark (l= 

l,...,19)  in the i
th 

 frame of the sequence.   
 ,   

 and   
  are the landmark coordinates 

in the reference frame i.e. the first frame of the video sequence. ∆ stands for the 

deformation along each coordinate. Fig. 4.8 shows how point deformations are obtained from a 

sample happy sequence. For each frame in the sequence, there are       3* 19 = 57 point deformation 

values. Similar scheme is used to extract distance and angle deformations from each sequence.  

Figure 4.8: Computing point deformation from landmark coordinates in a sample 

happy sequence. 

4.3.4 Distance Deformation 

The second type of geometric deformations is defined as the changes in pairwise 

Euclidean distances between the key points. The number of pairwise distances 
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extracted from 19 key points explained in previous section is    
 
     . Given a 

pair of landmarks l and m in the i
th

 frame, Euclidean distance between the landmarks 

is denoted as: 

                              
    √   

    
       

    
       

    
                           (4.5)  

The corresponding deformation values in the i
th

 frame are the deviations of the 

distance    
   

 from the distance in the first frame (  
   

) computed as: 

                                                     
       

      
                                               (4.6) 

4.3.5 Angle Deformation  

These values are computed as the changes in the angle between the two sides of the 

triangle made by three key points. There are three angles in each triangle and thus the 

total number of angle deformations is equal to      
 
      . Now, given a set of 

three key points: l,m and k in i
th

 frame as the vertices of a triangle, three vectors are 

firstly defined on each sides of the triangle. Given these vectors ( 
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), 

the three angles between each pairs of the vectors can be computed as: 
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where  
 

 
   

 is vector initiating at l
th

 landmark and terminating at m
th

 landmark. 

Similarly, the two other vectors are computed. Note that angles between two vectors 

is the ratio of their inner products to the multiplication of their lengths. Angle 
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deformations are then obtained as the deviation of the α angles from corresponding 

values in the first frame computed as  

                                  
         

    
    

    
    

    
                                  (4.8)  

4.3.6 Multimodal Time Series Features 

Multimodal time series features are the temporal representation of geometric 

deformations. Time series analysis has been never applied in FER systems. In this 

study, geometric deformation values are used to construct multimodal time series 

where the modes represent spatial information and the time represents the mean 

temporal information. Assuming a sequence of length N, the first frame of the 

sequence is the reference one numbered as 0. For each of the preceding frames 

numbered as 1 to N − 1, all geometric deformation values are calculated and 

concatenated to form a D-dimensional vector where D = 3135 (Note that the number 

of geometric deformations is equal to 57, 171 and 2907 for point, distance and angle 

deformations, respectively). Consequently, a frame of length N is represented by      

N −1 D-dimensional vectors. To obtain the multimodal time series features, a sliding 

window of size w with one frame shift is applied to the temporal axis of these 

geometric deformation sequences. Let   
  be the multimodal time series 

representation of the sequence of length N, where T is the length of the time series 

and D is the number of modes. The elements of   
   denoted as   

  (t; l) (t = 1,…, T, 

T = N − w and l = 1,…,D) are computed as the local mean temporal deformation 

values across w frames. For example, the first mode of   
   is calculated from the 

deformation of the x coordinates of the first landmark point described in Section 

4.3.3 as: 
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where w is the window size and t is the starting frame of the window on temporal 

axis. The other modes of the multimodal time series are calculated in a similar way 

from all geometric deformations. The sliding window size, w can be defined by 

evaluating the system performance using different values. Fig. 4.9 illustrates a 

portion of one sample happy sequence and sliding window of size 6. The proposed 

multimodal time series features defined in this study capture the local 4D 

spatiotemporal geometric deformations of the whole sequence. 

Figure 4.9: Computing local mean deformation in temporal domain for time series 

features in an example happy sequence with sliding window size = 6. 

4.3.7 Feature Selection 

Feature selection is applied in this study to reduce the dimensionality of the feature space or simply 

the modes of time series features. As features are extracted from facial landmarks, they are highly 

correlated and there is a high level of redundancy among them that reduces the performance of the 

classifier. Feature selection methods are not designed for time series and thus the maximum values of 

feature time series are considered as the input to neighborhood component feature selection. 

In fact, since the features represent the local temporal deviations from the first frame, the maximal 

values in temporal domain correspond to largest geometric deformations. The NCFS is applied in 

FER studies for the first time in this study. It is computationally efficient for high dimensional data 

sets such as the geometric features which we are challenging with in this work. In addition, it is a 

multivariate feature selection method that considers feature interactions and addresses the redundancy. 
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In other words, when two features are highly correlated, only one of them is assigned a nonzero 

weight. These features make it suitable for the proposed system. The NCFS algorithm performs as 

follows. 

Let   {                 } be the set of samples in training data and their 

corresponding class labels i.e. expressions. Note that considering   
   as a time series 

feature for the sample sequence i, the     ∈     is computed as       =       
        

i.e. the maximum of the time series features. More precisely, the maximal value of 

each deformation curve is taken into consideration. Assume a distance function 

which is used to classify the samples using nearest neighbor classifier in D-

dimensional space. By weighting the dimensions (features) using a linear 

transformation, the optimal subspace can be found where the informative/relevant 

features have larger weights and the redundant/irrelevant ones have zero weights. 

The NCFS finds a linear transformation vector L to transform the distance between 

two samples    and   : 

                                                                                                                  (4.10) 

Generally, NCFS defines an optimization problem that selects a d-dimensional subset 

from the original D-dimensional set of attribute (d   D) to maximize the accuracy of 

the nearest neighbor classifier based on a leave-one-out scheme. Considering the fact 

that the nearest neighborhood classification accuracy is non-differentiable, a 

probability function is adopted to approximate the possibility of selecting a reference 

sample. The reference sample is the nearest sample and the probability of    being 

taken as the reference sample of    is given by Eq. 4.11. 
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                                                       (4.11) 

where σ is the kernel function input parameter that controls the number of neighbors 

competing for reference point.      (L) is the weighted distance given in Eq. 4.10. 

The sample       would be correctly classified if the reference sample has the same 

class label as it is how the one nearest neighbor (1NN) classifier works. Accordingly, 

the probability of correct classification of the one sequence is denoted as: 

                                                              ∑    
{       }

                                           (4.12) 

where    and      are the labels of samples      and     respectively and       is the 

adopted probability explained in Eq. 4.11. In order to find the transformation vector 

L given in Eq. 4.10, an optimization problem is defined to maximize the accuracy of 

the 1NN classifier. Thus, the leave-one-out (LOO accuracy) of the nearest neighbor 

classifier is estimated as a function of the transformation vector as given below. 

                                                    ∑                                                       (4.13) 

where L is the transformation vector to weight the distances in D-dimensional space 

and λ is inserted as the regularization term. 

Since the aim of NCFS is to maximize this objective function, its derivative with 

respect to L components is taken and used to update them in a learning procedure. As 

shown in Eq. 10, given the elements of L as weights of attributes, the ones with 

weights equal or close to zero are discarded. For details of the leaning algorithm, one 

may refer to Yang et al. [106]. After discarding the attributes with negligible 

weights, the number of modes of time series in reduced space is equal to d. 
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4.3.8 Classification 

After reducing the dimensionality of feature time series, AC-DTW is applied to classify test samples 

[108] Conventional DTW searches for the optimal warping path to align two sequences of different 

lengths in order to minimize the distance. Noting that facial expression procedure starts with a neutral 

phase followed by onset, apex and offset phases, incorrect alignment of these phases degrades the 

classification performance. AC-DTW is a modified version of DTW that avoids over-stretching and 

over-compression of sequences with remarkable difference in their lengths which makes it suitable for 

D-FER systems. This algorithm has a cost function defined based on the number of points in one 

sequence mapped to one point in another one. The output is the distance between two times series and 

it is used for nearest neighbor classification. In this study, we extend the AC-DTW algorithm into a 

multivariate version to be applicable for classification of proposed multimodal time series features. 

Considering two multimodal feature time series of different lengths denoted as 

   

 and    

 , a preliminary distance matrix    =                 
 is defined with 

elements calculated as the pairwise distances between all the points on the two 

curves. Each element of the distance matrix is computed using all modes of the time 

series (l = 1,…,d) as follows: 

                                         =√∑    
      

          

                                          (4.14) 

where    

         and    

         are the elements of multimodal time series for two 

different sequences. In order to record the number of times each point is used in the 

warping path, two initially null matrices AS and AR are introduced with elements 

      and     . The elements       and      respectively count the number of times each 

point of    

 and    

  are used in the warping path. Then, a control term (r) is added to 

adjust the tolerance to many-to-one mapping. The term r is denoted as r = min (T1, 

T2) / max (T1, T2) to define a cost function. Note that the value of r is determined by 

the difference of the length of the time series. For two sequences of the same length, 
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the corresponding r value is equal to 1. As the length difference gets larger, the r 

value becomes smaller. This value is used to define a cost function as follows. 

                                                                                                             (4.15) 

where x takes its value from the elements of    and   and g is a factor to control the 

effect of cost function. Now, for simplicity, let‟s name the points of    
 and    

as    

and    respectively. A dynamic programming approach is applied to find the optimal 

warping path P(i, j) as given below. 

          { 

 (      )                                         is reused   

                                            no reused point

                                                       is reused

           

(4.16) where c is the cost function that is applied when a point is reused from either 

of curves. Note that there is no cost when a point is not reused in the warping path. 

Otherwise, the elements of    and   i.e.       and     are used to determine the cost 

function. It should be also mentioned that in order to count the number of reuses, the 

elements of    and    are updated as: 

                           (         )  { 

 (          )           is reused   

                     no reused point 

(          )        is reused

                             (4.17) 

Finally, the AC-DTW distance between two multivariate time series is P (T1; T2). Fig 

4.9 shows an example of optimal warping paths found by original DTW and AC-

DTW [108] . It is obvious that AC-DTW aligns the sequences more appropriately 

without extreme extension or compression. 



82 

 

 

 

(a) 
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Figure 4.10: Optimal warping paths found by (a) DTW and (b) AC-DTW. 

4.4 Experimental Results 

In order to evaluate the performance of the proposed D-FER system, a set of 

experiments are conducted on BU-4DFE [55] a well-known dynamic 3D facial 

expression recognition data set. This data set is collected from 101 subjects including 

58 female and 43 male subjects.  The subjects are with a variety of ethnic ancestries 

such as Asian, Black, Hispanic, and White. Each of the 101 subjects in data set has 

expressed 6 basic expressions including AN, DI, FE, HA, SA and SU. Each 

expression is recorded as a video sequence of rate 25 frames per second. The length 

of the sequences varies approximately between 3 to 4 seconds. For each expression, 

texture and depth information are captured and the 3-dimensional coordinates of 83 
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facial landmarks of face model are provided. Resolutions of the depth and texture 

video sequences are 35,000 vertices and 1040×1329 pixels per frame respectively. 

 In order to be able to compare our results with previous studies, the experiments are 

conducted on both 100 and 60 subjects. Equal number of male and female subjects 

are randomly selected. All the experiments are implemented in Matlab2018Rb. Head 

pose correction and normalization phase is performed on all of frames of the data as 

a preliminary step. Frontal face plane is constructed by three points including 

forehead corners (landmarks {69; 83} and the chin middle point defined as the 

midpoint of landmarks {75; 77} (refer to Fig. 4.7). The reference point for rigid 

transformation applied in head pose correction phase is the midpoint of the line 

connecting inner eye corners. It should be noted that the length of this line is utilized 

for normalization of distance values. Given the line connecting inner eye corners and 

frontal face plane, pitch, yaw and roll angles are estimated. The head pose is then 

corrected by transforming coordinates of the landmarks.  

In feature extraction stage, three types of landmark based geometric deformations 

including point, distance and angle are extracted form 19 key points around eyes, 

eyebrows, nose, lips and chin. Referring to Fig. 4.7 which shows the landmarks in 

BU-4DFE data set and Table 4.2 which represents the landmarks significantly 

representative for deformations in basic expression, the considered landmarks for this 

stage of the study are: {3; 7; 11; 15; 21; 26; 31; 36; 40; 41; 44; 45; 49; 51; 53; 55; 58; 

63; 76}. After computing deformation values, a local temporal mean operator as a 

sliding window of length w with one frame shift is applied to obtain multimodal time 

series. The number of frames in each window (w) is defined through a set of 
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experiments evaluating system performance for different window sizes as 1,4,6 and 

15. 

Having all of the obtained time series features, subject independent (10-CV) is applied to partition the 

data into train and test set. In the experiments conducted on 60 subjects, 54 subjects are considered for 

train and the remaining 6 subjects for test in each fold. Similarly, there are 90 train and 10 test 

subjects for experiments on 100 subject. NCFS is applied on the train data and 

resulting attribute weights are used reduce the modes of time series features in both 

train and test sets. It should be noted that maximum values of the deformations along 

temporal axis are taken as the input to feature selection phase. NCFS is implemented 

by Statistics and Machine Learning ToolboxTM in Matlab2018b using neighborhood 

component for classification (fscnca) function. Fig. 4.11 shows an example of 

attributes‟ weights obtained by NCFC in one of the 10 folds for w = 6. Three regions 

are identified by different markers to spot point, distance and angle deformations 

respectively. Note that there are many redundant features with negligible weights 

which can be discarded. 
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Figure 4.11: Feature weights obtained by NCFS. 

A visual representation of the selected attributes is given in Fig. 4.12. The 

dimensionality of the reduced space is remarkably lower that original space. More 

precisely, the average size of the selected subsets across all folds is 67 features. 
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Figure 4.12: Visual representation of selected features of point, distance and angle 

deformation for a sample happy expression, (a) landmark locations in reference 

frame (blue) and an expressive frame (red), best landmark-based deformations in (b) 

reference frame and (c) expressive frame. 

The classification phase of the proposed method is training-free. For each of the test 

samples represented as a multivariate time series in reduced space, multivariate AC-

DTW distance from all train samples is computed. As AC-DTW optimizes the 

stretching and compression rate, the distances are correctly estimated regardless of 

the variations in the length of the sequences. The nearest neighbor classifier is 

applied on the computed distances to recognize the label. In order to have a 

comparative perspective, conventional DTW is also implemented. All the 
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aforementioned phases are evaluated using different window sizes. Table 4.3 

presents the average recognition rate of six basic expressions for different values of 

)w( on 60 and 100 subjects separately. Both AC-DTW and DTW classification 

results are presented in Table 4.3.  

Table 4.3: Average recognition rate of AC-DTW and DTW on six basic expressions 

for different sliding window sizes. 

#Subjects Window size 
Average recognition rate (%) 

AC-DTW DTW 

S=60 

w = 1 91.39 78.61 

w = 4 91.94 79.44 

w = 6 92.50 80.00 

w = 15 89.44 77.78 

S=100 

w = 1 82.00 69.17 

w = 4 82.67 68.83 

w = 6 83.50 69.83 

w = 15 81.33 68.50 

Window size, w, is an important parameter where highest accuracy is achieved with 

w=6 for both AC-DTW and DTW classification schemes. In fact, an optimal window 

size requires a tradeoff between preserving the details of the temporal deformations 

and smoothing. A very small window size is not capable of smoothing out the 

artifacts while a very large window size over-smoothes the aligned curves. In 

addition, AC-DTW significantly outperforms conventional DTW according to its 

capability to align the curves by preserving a tradeoff between the number of points 

mapped to a single point and the minimum distance obtained from the warping path. 

More precisely, AC-DTW finds a more reliable distance value as it aligns the curves 
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more efficiently. This difference between DTW and AC-DTW is clearly shown in 

Fig. 4.13.  

Figure 4.13: Distance calculation for anger sequences of two subjects, (a) original 

distance deformation curves, (b) curves aligned by DTW and (c) curves aligned by 

AC-DTW 

In the figure, two deformation curves (w=6) of anger expression are superimposed. It 

should be noted that the curves are one of the selected modes of the extracted time 

series features. These curves belong to two different subjects named as sub1 and 

sub2. Fig. 4.13 (a) illustrates the original curves. The horizontal axis is the time and 

it can be seen that the length of the sequences is significantly different. In order to 

compute the distance between the curves, DTW and AC-DTW are applied to find the 

warping path. In the warping path, the curves are aligned by mapping several points 

to one point aiming at minimizing the distance. Fig. 4.13 (b) shows the curves 

aligned by DTW and Fig. 4.13 (c) illustrates the curves aligned by AC-DTW. Note 

that the many-to-one mapping is illustrated by repeating the single point on the 

aligned curve resulting in a horizontal section. This way, the aligned curves would be 
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of the same length. The distances obtained from the minimum warping path are equal 

to 11.75 and 7.82 for DTW and AC-DTW respectively. The shapes of the aligned 

curves intuitively confirm that AC-DTW is superior to DTW. In addition, 

considering that both curves are extracted from the same expression sequence i.e. 

anger the smaller the distance is the more accurate the classification is. 

In order to have a clearer image of system performance for each of the six basic 

expressions, the confusion matrix of recognition results is represented. Table 4 and 

Table 5 show the confusion matrix of recognition results for 60 subjects and 100 

subjects respectively. Average recognition accuracy is 92:50% for 60 subjects which 

means 333 sequences out of 360 sequences are recognized correctly by the system. 

For the case of 100 subjects, 501 out of 600 sequences are correctly distinguished by 

the system. The drop in recognition rate when comparing 60-subject and 100-subjects can be 

explained by the corrupted sequences bias in the data set. 

Table 4.4: Confusion matrix for 60 subjects and window size w = 6. 

Expression 
Recognition Accuracy (%) 

Anger Disgust Fear Happy Sadness Surprise 

Anger 95.00 3.33 1.67 0.00 0.00 0.00 

Disgust 5.00 88.33 5.00 0.00 1.67 0.00 

Fear 1.67 5.00 88.33 1.67 3.33 0.00 

Happy 0.00 0.00 1.67 96.67 1.67 0.00 

Sadness 5.00 0.00 3.33 0.00 90.00 1.67 

Surprise 0.00 0.00 3.33 0.00 0.00 96.67 

Overall 92.50 
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Table 4.5: Confusion matrix for 100 subjects and window size w = 6. 

Expression 
Recognition Accuracy (%) 

Anger Disgust Fear Happy Sadness Surprise 

Anger 86.00 6.00 4.00 0.00 3.00 1.00 

Disgust 7.00 78.00 9.00 1.00 4.00 1.00 

Fear 4.00 6.00 82.00 3.00 5.00 0.00 

Happy 0.00 3.00 8.00 86.00 2.00 1.00 

Sadness 9.00 2.00 4.00 1.00 82.00 2.00 

Surprise 1.00 2.00 9.00 0.00 1.00 87.00 

Overall 83.50 

As a matter of fact, two sets of additional experiments are conducted starting with 

only point deformations to provide a clear perspective on the relative contribution of 

each type of deformations. Then, distance deformations are added to the system and 

the whole process is repeated by merging point and distance deformations. In each 

experiment, all phases of the proposed method including head pose correction, 

related normalization, feature selection, and classification are implemented. It should 

be noted that the experiments in this section are performed on 60 subject and the 

window size is set to w = 6. Table 4.6 shows the contingency table of the point 

deformation-based system. The performance is remarkably lower than that of the 

proposed algorithm. In fact, the average accuracy has dropped to 65.28% with lowest 

recognition rate on disgust expression. Then, distance deformations are concatenated 

with point deformations and the experiments are replicated. The results are 

represented in Table 4.7 confirming the significant contribution of distance 

deformations in the performance of the system. More specifically, average accuracy 

is improved to 90.00% with the highest improvement rate (31.66%) on disgust 

expression recognition.  
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Table 4.6: Confusion matrix of point-deformation-based system (60 subjects and 

window size w = 6). 

Expression 
Recognition Accuracy (%) 

Anger Disgust Fear Happy Sadness Surprise 

Anger 68.33 11.67 6.67 8.33 1.67 3.33 

Disgust 15.00 56.67 16.67 5.00 5.00 1.67 

Fear 5.00 11.67 65.00 3.33 10.00 5.00 

Happy 6.67 6.67 8.33 66.67 11.67 0.00 

Sadness 18.33 5.00 8.33 5.00 61.67 1.67 

Surprise 5.00 0.00 13.33 5.00 3.33 73.33 

Overall 65.28 

The aforementioned systems are compared to the proposed system encompassing all 

three types of deformations i.e. point, distance and angle. The results of this section 

approve that the distances of the facial landmarks play a crucial discriminative role in 

expression recognition. In other words, for expressions that have a high rate of 

confusion, displacement of the landmark reflected by point features is not 

discriminative enough. Distance features represent the relative movement of the 

facial landmarks and thus enhance the recognition rate. On the other hand, the 

weights of selected features illustrated in Figure 4.10 still support the influence of 

point deformation. Moreover, the average accuracy increases from 90.00% to 

92.50% by adding angle deformations which advocates the effectiveness of angle 

deformations. 
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Table 4.7: Confusion matrix of point and distance-deformation-based system (60 

subjects and window size w = 6). 

Expression 
Recognition Accuracy (%) 

Anger Disgust Fear Happy Sadness Surprise 

Anger 91.67 3.33 3.33 0.00 1.67 0.00 

Disgust 3.33 88.33 6.67 0.00 0.00 1.67 

Fear 1.67 5.00 86.67 3.33 3.33 0.00 

Happy 1.67 1.67 1.67 90.00 5.00 0.00 

Sadness 5.00 0.00 5.00 0.00 88.33 1.67 

Surprise 0.00 1.67 3.33 0.00 1.67 93.33 

Overall 90.00 

Lastly, in order to have a comparative perspective of proposed system performance, recognition rates 

of recent D-FER studies conducted on BU-4DFE data set are represented in Table 4.8. For each 

study, method, classification and experimental settings are mentioned in the table. 

For instance, subject (S = 60); six expression (6E); 10-CV; window (Win = 6) means 

the experiments have been conducted on 60 subjects to detect 6 basic expression and 

10-CV is used. Win = 6 means the subsequences of length 6 frames are processed 

and classified. For the full seq. cases, the whole sequence is processed and classified 

similar to current work. Key-frame means particular frame is identified in the 

sequence and is used for recognition. In general, we can argue that for 100 subjects 

the proposed algorithm performs significantly better than other methods. For 60 

subjects, the recognition rate of our work is superior to the results reported in [66] [3] 

[86] [61][63] [109] and [110] The limitation of key-frame-based methods proposed 

by Zhen at al. [73] is that clustering  based identification of key-frames makes the 

real-time implementation impractical compared to our method which simply 

calculates the distance between two vectors. Hence, our method is suitable for real-

time applications. Although they achieve high performance by using a high amount 

of spatial data (50 sample vertices of each of the 200 radial curves) in case of low 
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quality videos and mass scale data, temporal information might be used to 

compensate the lack of sufficient spatial data. Moreover, their algorithm for key-

frame detection is based on the assumption that all sequences contain onset, apex and 

offset phases. In real-time applications however, a video can contain either of these 

phases and not necessarily all of them. Our proposed system does not assume this 

and as it aligns the curves, missing phases have less effect on the performance. Sun 

et. al. [54] which achieves higher performance considers all surface points for vertex 

flow modeling. This requires high quality video which may not be suitable for 

practical purposes with low quality and low-resolution data. The study by Amor et al. 

[60] results in higher recognition performance but has limitation due to its sensitivity 

to precise nose tip detection. In fact, the algorithm requires frontal view faces and 

since the whole procedure relies on nose tip detection, head rotation would reduce 

the performance. Our proposed method on the other hand, does not rely on frontal 

view faces since it uses a set of landmarks to estimate and correct head pose. It is 

worth mentioning that proposed approach marginally outperforms the deep learning 

method proposed by Li et al. [110]. Their Dynamic Geometrical Image Network 

(DGIN) has resulted in 92.25% average accuracy. However, deep learning 

approaches are computationally costly, require large data sets and elaborate 

preprocessing stage [92]. It can be argued that proposed low-complexity approach is 

effective even when it is compared to complicated deep-learning approaches.  
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Table 4.8: Comparison of proposed method with previous studies on BU-4DFE data 

set. 
Research Work Method Classifier ES* ACC* 

Reale et al.[111] 
Spatiotemporal Volume + Nebula 

Feature 

SVM-

RBF 

100S, 6E,  

LOO, Win=15 
76.10 % 

Fang et al.[71] MeshHOG + LBP-TOP 
SVM-

RBF 

100S,6E,10-

CV,- 
75.82 % 

Fang et al.[71] Spin Image + LBP-TOP 
SVM-

RBF 

100S,6E,10-

CV,- 
74.63 % 

Proposed 

Method 

Multimodal Time Series 

Geometric Deformation + 

NCFS 

AC-DTW 
100S,6E,10-

CV, Full seq. 
83.50 % 

Yao et al. [66] Texture and Geometric Scattering MKL 
60S,6E,10-CV, 

Key frame 
90.12 % 

Zhen et al.[73] 
Spatial Facial Deformation + 

Temporal Filtering 
HMM 

60S,6E,10-CV, 

Key frame 
95.13 % 

Zarbakhsh et 

al.[3] 

LBP-TOP + Spatiotemporal 

Region of Interest 
HCRF 60S,6E,10-CV,- 86.67 % 

Sandbach et al. 

[86] 
3D motion-based Features 

GentleBo

ost + 

HMM 

60S,6E,6-CV, 

Variable Win 
64.60 % 

Amor et al. [60] Geometric 3D Motion Extraction 
LDA-

HMM 

60S,6E,10-CV, 

Win=6 
93.21 % 

Sun et al. [54] Transformational Vertex Flow HMM 
60S,6E,10-CV, 

Win=6 
94.37 % 

Berretti et al [61] 
Pairwise Distance of 3D 

Landmarks and SIFT 
HMM 

60S,6E,10-CV, 

Win=6 
72.25 % 

Xue et al. [63] 3D-DCT + mRMR 
LDA and 

kNN 

60S,6E,10-CV, 

Full seq. 
78.80 % 

Berretti et al [61] 
Pairwise Distance of 3D 

Landmarks and SIFT 
HMM 

60S,6E,10-CV, 

Full seq. 
79.40 % 

Zhen & Huang 

[109] 

Muscular Movement Model + 

Genetic Algorithm 

SVM + 

HMM 

60S,6E,10-CV, 

Full seq. 
87.06 % 

Li et al. [110] 
Geometric Images (DPI, NCI, 

SII) 

Deep 

Learning 

60S,6E,10-CV, 

Full seq. 
92.22 % 

Proposed 

Method 

Multimodal Time Series 

Geometric Deformation +NCFS 
AC-DTW 

60S,6E,10-CV, 

Full seq. 
92.50 % 
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4.5 Discussion 

The proposed dynamic 3D facial expression recognition system is tested on BU-

4DFE data set. Experiments are conducted using 60 and 100 subjects in order to be 

able to compare the recognition rates with the state-of-the-art. The suggested 

approach based on geometric landmark-based local deformations and AC-DTW have 

resulted in 83.50% and 92.50% average recognition rate for 100 and 60 subjects 

respectively. This rates confirm the effectiveness of the proposed system. On 60 

subjects, the highest recall rate (96.67%) is achieved for happy and surprise 

expression while the lowest rate is obtained for fear and disgust expressions 

(88:33%). Referring to Table 4.8, these numbers are satisfactory compared to 

previous studies.  

4.6 Conclusion 

In this study, a new approach in dynamic 3D facial expression recognition is 

proposed based on time series analysis of landmark-based geometric deformations. 

After head pose correction and normalization of landmark positions, a 

comprehensive set of geometric deformations are computed to form multimodal time 

series features. Referring to the activation patterns of facial AUs in six basic 

expressions, a set of 19 landmarks out of 83-annotated landmarks in BU-4DFE data 

set are considered. From these landmarks, point, distance and angle deformations 

relative to the reference frame are computed in all the consecutive frames of the 

expression sequences. Multimodal time series features are constructed by computing 

the temporal local mean of the deformation. This step is performed by applying a 

sliding window mean operator on all these point, distance and angle values from the 

first frame. To tackle the high dimensionality of the feature space i.e. the modes of 

time series features, NCFS feature subset selection is applied. NCFS is an effective 
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and simple supervised embedded feature subset selection method suitable for high 

dimensional data with a large number of irrelevant features. As a result, it selects a 

small subset of informative geometric deformations for classification. Based on 

selected features, the modes of original multimodal time series features are reduced. 

Finally, a recently introduced variant of DTW known as AC-DTW is utilized to 

classify these time series. 

The main limitation of the current work is that it relies on the correct facial landmark 

locations. In the cases where the coordinates of landmarks are not available, an 

automated landmark detection method is required. However, considering the 

successful studies conducted on automatic facial landmark detection in recent years, 

landmark detection is not a serious issue. On the other hand, relying on landmarks 

for dynamic feature extraction makes the system less sensitive to noise, and lighting 

artifact unlike the systems relying on feature descriptors extracted from texture and 

depth. As a potential future work, an automated landmark detector/tracker may be 

attached to the system to implement an automated low-complexity system suitable 

for real time applications. 
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Chapter 5  

5. APPEARANCE-BASED FEATURE DESCRIPTOR IN 

4D FER 

5.1 Introduction  

As described in the previous chapter, facial landmarks play a crucial role in facial 

expression recognition research. Since the first two stages of this study, geometric 

approaches in static and dynamic FER have been explored respectively. Novel image 

processing and machine learning methods are suggested and successfully tested. 

However, geometric approaches ignore the valuable information in the texture and 

depth images or videos. In this stage, we developed a non-geometric 4D FER system 

also known as dynamic 3D FER or D-FER system. Generally, D-FER systems 

consist of several blocks including preprocessing, feature extraction and 

classification. In preprocessing stage, face bounding box detection, alignment, 

intensity normalization and imaging variation compensation are applied. In feature 

extraction phase, several methods have been proposed based on facial landmarks or 

AUs such as AU-based geometric measures [56], diffeomorphic motion features 

[57],  and AAM landmark coordinates [58] [112] . The main limitation of such 

feature extraction methods is that they rely on manually annotated facial landmarks. 

In other words, an automated system would be required to firstly detect landmarks 

and then it should be examined whether the system performs acceptably with 

automatically detected landmarks.   
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On the other hand, generalized versions of well-known feature descriptors have been 

successfully applied in D-FER systems including SIFT [113], HOG [114] ,Gabor 

wavelet [65] and LBP-TOP [59] .There are two main challenges in this category of 

studies. Firstly, there is a high load of computation since the number of cuboids in 

each sequence is large. Secondly, descriptors provide too much detailed information 

which is not possible to be fed into the classifier. In order to tackle this problem, it is 

required to summarize spatial information. In recent years, sparse coding algorithms 

have become popular in image and video processing[79], [115]. By converting 

feature descriptor matrices into sparse representation, SPP can be used to construct a 

compact representation of an image. However, in facial expression recognition, there 

are specific spatiotemporal regions which contain most of the discriminative 

information for classification of expressions. These regions of interests are better 

candidates for feature pooling than conventional pyramid pooling. In this regard 

ROIs can be defined based on facial AUs or facial landmarks, which are more 

representative for expression than appearance. This approach results more subject-

independence of the system. 

In this chapter, a dynamic feature extraction system based on low-rank sparse coding 

and ROI pooling is proposed. The first contribution of this part of the work is that we 

extend the notion of SPP into ROI pooling. It should be noted that ROIs are defined 

based on automatically detected landmarks. In fact, landmarks are acquired in the 

first frame of each sequence and then they are tracked in other frames in order to 

reduce time and computational complexity. Spatiotemporal regions of interest are 

determined using identified landmarks. The proposed system combines the idea of 

cuboid-based feature descriptors with AU information by pooling sparse codes from 
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spatial ROIs. To the best of our knowledge, low-rank sparse coding is applied in a 

FER for the first time.  The rest of this chapter is as follows. Proposed methodology 

is described in Section 5.2. Results of conducted experiments are represented in 

Section 5.3. In Section 5.4 the results are discussed. Finally, this stage of the study is 

concluded in Section 5.5. 

5.2 Proposed Method 

The proposed system is fully automated and comprises several phases. The first two 

phases are landmark detection and tracking using particle filters. Then, 

spatiotemporal ROIs are extracted using positions of landmarks. LBP-TOP Feature 

descriptors are then computed in cuboids. Subsequently, sparse coding phase is 

implemented based on low rank sparse coding (LRSC).  Finally, hidden-state CRF 

are employed for classification of expressions. In Fig. 5.1, system architecture is 

illustrated in a block diagram. As shown in the figure, in landmark detection phase, 

the first frame is processed to obtain candidate points and detect 22 landmarks. These 

points are tracked in the other frames afterwards. As shown in the figure, 

spatiotemporal regions of interests are taken out from video sequences. Feature 

vector is attained by concatenating texture and depth features. In sparse coding 

phase, feature matrix is transformed to a sparse code matrix and pooling is applied in 

each ROI. Finally, the classifier is trained to estimate the probabilities of each 

expression for each test sequence. These steps are explained in detail in the 

following.  
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Figure 5.1: Architecture of the proposed method. 

5.2.1 Landmark Detection  

In this research, In facial expression recognition, landmark detection schemes have 

attracted the interest of many researchers [116], [117]. As mentioned previously, 

landmarks are firstly detected in the first frame of each texture sequence. It should be 

noted that by texture sequence we mean the RGB video sequence. In this stage, we 

employed the algorithm used in Lowe, 2004 [118] to detect candidate landmarks. 
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The landmarks are selected based on facial AUs as their corresponding spatial ROIs 

are representative for facial expressions. After detection of face bounding box, 

candidate points are identified using scale space extrema method. The scale space 

extrema can be detected using the Gaussian kernel function convolved with the input 

image. The description function L(x, y) of input image in different scale space is 

expressed as: 

                                                                                                     (5.1)  

Where L(x,y, ) is the spatial scale image, I(x, y) indicates input image of facial 

region, and G(x,y,σ) is the Gaussian convolution kernel function defined as: 

          
 

     

        
   ⁄

                                  (5.2) 

For each pixel located at (x,y) in an input image I, the difference of Gaussian (DoG) 

function in scale σ is computed as follows. 

                                                                                    (5.3) 

where k is a constant multiplier to change the scale of smoothness. In this study, 5 

different scales are used resulting in 5 DoG images. In order to detect candidate point 

for landmark detection, scale space extrema are identified by comparing each pixel 

with its 8 surrounding pixels on the same scale, 9 closest pixels on one scale up and 9 

on one scale down. If the pixel is a minimum or maximum among all point under 

comparison, it is considered as an extremum. Fig. 5.2 represents the procedure of 

obtaining DoG images and the extremum. The possible candidate point is shown in 

red and the 26 closest pixels used for comparison on the three levels are shown in 

blue. 
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Figure 5.2: Obtaining DoG images and finding candidate points. 

After candidate point selection, gradient magnitude and orientation histogram are 

used to extract features from candidate points as well as ground truth landmarks 

[119]. The gradient magnitude        and orientation        feature descriptors 

are computed as: 

       √                                                   (5.4) 

                                                          
                 

                 
                                   (5.5) 

where L is the image at scale σ. To detect the landmarks from the interest candidate 

points, a set of landmark detectors with the feature description from the gradient 

orientation histogram of the input images are constructed. The descriptor is 

constructed from a vector containing the values of all the orientation histogram 

entries. At the center of each landmark, a neighborhood window is selected and 

divided into 16 sub regions of 4 × 4. Using Eq. 5.4 and 5.5, the directions and 

amplitudes of all pixels in the sub regions are obtained, and then accumulated into 
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orientation histograms summarizing the contents over the 4 × 4 sub regions. Using 

the orientation histogram, the eight direction distributions in the ranges of 

(0,π/4,π/2,3π/4,π,5π/4,3π/2,7π/4) is calculated with the length corresponding to the 

sum of the gradient magnitudes near that direction within the region. The amplitude 

and Gaussian function are also applied on the eight direction distributions to create 

the direction histogram of sub regions. The feature description of each landmark 

point is obtained by connecting the direction descriptions of all sub regions. The total 

number of the direction descriptions is 16 since we have 4 × 4 sub regions of the 

landmark descriptor. So the length of a landmark point detector is 128 = 16 × 8. 

These feature vectors are applied to Adaboost classifier which learns the locations of 

22 landmarks. In the training stage, the first three frames of each sequence and their 

corresponding ground truth file is used. 22 desired landmarks are selected from 83 

points provided in BU-4DFE data set and the detected nose tip. Each landmark and 

its 8 neighbors are assumed as positives, while 10 randomly selected points inside 

the face region are taken as negatives. In testing phase, candidate points are marked 

in the first frame and Adaboost which learnt the model, detects the landmarks among 

them. 

5.2.2 Landmark Tracking 

It is not computationally reasonable to detect landmarks in all frames. Instead, visual 

tracking methods such as mean shift, Kalman filter and particle filter are used. Mean 

shift is a simple tracker with an iterative algorithm aiming at minimizing the distance 

between the histogram of the target model and that of the candidate point [120] In 

mean shift tracker, motion information of the object is ignored. Kalman filter is a 

minimum variance estimator with Gaussian assumption [121]. For facial landmark 
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tracking, as the head moves nonlinearly, Kaman filter fails to track the points 

accurately. Unimodality and tracking delay are the other drawbacks of this approach.  

In recent years, particle filters have attracted the attention of many researchers in 

visual point tracking. Particle filters are Bayesian filters without Gaussian 

assumption which propagate the particle estimation according to probability 

densities. Their capability fit into any state-space model even in presence of 

nonlinearity makes them efficient trackers in facial landmark detection. Particle 

filters are simple, robust and flexible but for multi-point tracking, conventional 

approach may break down to one point after some iterations [119] . It is due to the 

high dimensionality of the state variables and can be effectively addressed by 

resampling which discards the particles with small weights [122] .  This modified 

version of particle filter is known as differential Evolution-Markov chain (DE-MC).  

In this study, multiple tracker version of DE-MC particle filters is applied to track 

detected landmarks in other frames of the sequence [119] . In fact, each landmark 

point is modeled by a particle which is part of the parametric mixture model. For a 

given candidate point (observation), density probability function of the location of 

the landmark (target) is estimated by weighted particles. Details of this approach are 

demonstrated in [119]. As there are 22 landmarks in our model, the corresponding 

22-component model over the state    is: 

                                              ∑                 
  
                                        (5.6) 

Where             is the posterior probability of the j
th

 landmark,      is the 

observation vector      {          } and Pi is the mixture weight. The motion 

model of facial landmarks is considered in learning phase to improve the 
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performance. Motion model is the probability of the    given the previous state      

(         ). By replacing      with         in Eq. 5.6, the predictive distribution 

becomes a function of previous states. Using total probability law: 

                                 ∫                                                        (5.7) 

The measurement model is          which the probability of the k
th

 observation is. 

Now, Eq. 5.6 can be restated as: 

                                             ∑               
  

   
  

                           ∫                                                                        (5.8) 

Where    is a constant value. In learning phase, positions of the landmarks are 

estimated using train data. Principally, particles are sampled from landmarks to 

estimate the correct distribution function. In tracking mode, for the k
th

 frame 

candidate particles are sampled from the appropriate distribution ( ̂ ) based on their 

weights computed via 22 estimated likelihood distributions. The weight of each 

sampled candidate is updated according to the following formula.  

                                             
      ̂     ̂   ̂    

   ̂              
                          (5.9) 

Given automatically detected landmarks in the first frame, landmarks in consequent 

frames are detected by maximizing color-based observation likelihood. 

5.2.3 Spatiotemporal Segmentation  

After finding the position of landmarks in all frames, spatial and temporal ROIs are 

detected. In spatial domain, our suggested regions are characterized to adapt to AUs 

in FER literature as well as human reasoning about expressive regions. It is an 

established fact that facial AUs are mainly around eyes, eyebrows, lip, cheeks and 

lower forehead. In recent few years, finding the appropriate regions to compute 
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feature descriptors and how to combine descriptors have been studied in facial 

expression area[123], [124].  Zhalehpour et al. [125] have introduced the terms 

relevant and irrelevant sub-blocks in facial expression.  In Fang et al. [56] feature 

descriptors are extracted from regions of cheeks, inner brows, eye outer corners and 

forehead. It has been suggested that local patches around landmarks are more 

efficient for feature extraction patches in FER than holistic patches [124]. Motivated 

by these studies, we defined 12 spatial ROIs in human face which. These regions are 

constructed based on 22 landmarks picked from 83 points of face model and nose tip. 

Our assumption is texture and depth information in these regions are fundamentally 

representative for expressions. Fig. 5.3 shows proposed landmarks and 

corresponding ROIs. 
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Figure 5.3: Facial landmarks and proposed ROIs (* 83 points of face model, ▪ 22 

landmarks). 

In addition to spatial ROIs, temporal segments of sequences are to be identified. 

Facial expressions comprise 4 phases including neutral, onset, apex and offset as 

shown in Fig. 5.4 for disgust expression. In the studies based on deformations and 

geometric features, apex part is taken for FER [112], [126] .However, temporal 

dynamics of expressions appear in onset phase. It has been proved that onset phase 

which contains transitions can be used efficiently for facial expression recognition 

[59].  In this study, onset phase is segmented from the whole sequence using a simple 

similarity measure based on mean Euclidean distance. 
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Figure 5.4: Different phases of disgust expression. 

The first frame is taken as the reference and assumed to denote a neutral face (this 

assumption is true for majority of sequences in BU-4DFE data set). For each 

subsequent frame   , mean similarity measure in respect to first frame (  ) is 

calculated using the coordinates of detected landmarks (     ) as follows. 

                                          

 

  
∑ √(         )

 
 (         )

   
   

   
 (√(         )

 
 (         )

 
)

                            (5.10) 

After calculation of S over all frames of the sequence, a similarity curve is obtained. 

The frames in the largest decreasing line segment of the curve are supposed as the 

onset phase.   

5.2.4 LBP-TOP Feature Extraction from Texture and Depth Videos 

LBP are among the most effective spatial feature descriptors. As explained in 

Chapter 2, LBP is extracted from small patches by thersholding the pixels 

surrounding a central pixel. The size of the neighbor pixels depends on the number of 

surrounding points defined for descriptor extraction. The number of points can vary 

based on the radius of the circle enclosing the center point. In Fig. 5.5, the structure 

of the patches for 8, 16 and 24 points are illustrated and a sample 8-point LBP code 

is obtained to clarify the computation of this descriptor.  The dimensionality of the 

LBP features is identified by the number of specific codes assigned to each pattern. 

Since LBP is rotation invariant, the dimensionality is predefined and can be learnt 

from LBP tables. For 8-point LBP descriptor, the dimensionality of the feature 
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descriptor vector is equal to 59. More precisely, 59 discriminant rotation-invariant 

LBP are possible.   

Figure 5.5: A sample 8-point LBP code (top) and the perspective of 8, 16 and 24 

neighboring points (bottom). 

In dynamic 3D facial expression recognition, time axis also exists. To adapt the LBP 

into dynamic image processing, variants of LBP feature descriptor such as volume 

local binary patterns (VLBP) and LBP-TOP [69] have been suggested. LBP-TOP 

features have been successfully utilized in D-FER systems [59], [69]. It reduces the 

computational time and the irrelevancy of the descriptors for FER classifier. The 

fundamental computation approach of LBP-TOP is similar to conventional LBP. 

However, features are extracted from three orthogonal planes namely, XY, XT and 

YT. Hence, instead of image patches, the blocks are named as cuboids. The 

schematic of 8-point LBP-TOP feature extraction is shown in Fig 5.6. It can be seen 

from the figure that in each plane of the cuboid, the LBP code is extracted and the 

histograms are computed on all the cuboids. 
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 Figure 5.6: A schematic of 8-point LBP-TOP feature descriptor. 

In feature extraction stage, the difference between our work and previous works is 

that feature descriptors are extracted from cuboids located in ROIs and not the whole 

face region. A simple preprocessing stage is applied in advance to compensate size 

variations and head rotation. Inner eye corners and nose point are used to align face 

and resize all frames. All pixels inside spatiotemporal ROIs (onset phase frames and 

12 spatial regions) are considered in feature extraction phase. As LBP-TOP features 

are computed using 8 neighboring points, the dimension of histogram for each plane 

is 59 [69] It should be noted that, from this stage on, texture and depth videos are 

sequences of gray-scale images. The feature vector extracted from each cuboid is a 

59*3 vector. Since feature descriptors are computed in texture and depth videos 

separately the descriptor matrix of a sequence is of size Ns*τ*(59*3*2) where Ns is 

the number of patches in spatial domain and τ is the number of cuboids in temporal 
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axis. For simplicity we assume N=Ns *τ and define the feature matrix of the 

sequence as: 

                           {    
             

         (   
           

     )}                        (5.11) 

Where   ∈           and it is defined in cuboid p as  

                            {   (     )    (     )    (     )}                              (5.12) 

In the above formula, (        ) are the spatiotemporal coordinates of the central 

pixel of the cuboid p. This phase of feature fusion is shown in Fig. 5.7. For detailed 

explanation of LBP-TOP feature descriptors one can refer to [69]. 

Figure 5.7: Fusion of texture and depth LBP-TOP feature descriptors. 

5.2.5 Low-Rank Sparse Coding 

Splitting tensile was Feature descriptors are dense and difficult for linear classifiers 

to be correctly classified. Sparse coding is a new approach to covert descriptor 

matrices into sparse matrices. Several algorithms have been proposed for sparse 
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coding in image classification including LLC [59], Laplacian sparse coding [127] 

and LRSC [128] .Codebook training for sparse coding is defined as an optimization 

problem with different constrains such as locality, sparsity and low-rankness. Most 

recently, low-rank sparse coding has attracted immense attention as it encourages 

both sparsity and spatial consistency. In other words, as the feature descriptors 

extracted from small neighboring regions have relevancies among them, the resulted 

sparse code should be low-rank [128] .By taking into account the underlying 

relevancies in LRSC, the codebook training phase converges rapidly, as the sparse 

low-rank optimization problem can be solved by a closed form update formula.  

Assume that F is the feature descriptor, D is the codebook and R is the representation 

matrix. In LRSC, the optimization problem is defined as: 

     
 

 
‖    ‖ 

    ‖ ‖    ‖ ‖                               (5.13)                              

   and    are regularization parameters to control sparsity and low-rankness. 

Comprehensive description of LRSC is presented in [79]. It has been proved that by 

transforming the form of the optimization problem, it can be solved by conventional 

Index Augmented Lagrange Multiplier. IALM is basically used for matrix rank 

minimization and makes it possible to obtain a closed update formula which results 

in time and computation simplicity compared with other approaches such as LLC 

[128]. Note that in closed form there is no need to set regularization parameters. 

Instead a used defined stop criteria (ε) is required to check the amount of changes in 

B after each iteration. Getting a codebook D, a feature descriptors matrix   ∈

            is converted into sparse codes  ∈      as represented in Fig. 5.8. 
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Figure 5.8: Low-rank sparse coding of LBP-TOP features. 

5.2.6 Region of Interest Pooling 

Basically in image processing systems, multiscale SPP is applied after coding to pool 

the codes in three local scales. However, in facial image processing systems such as 

FER systems, the local regions can be defined based on the face areas deformed 

during the expression. In this thesis, the notion of pooling is extended to 

spatiotemporal ROI pooling. In other words, maximum pooling in ROIs is then 

applied to sparse codes representing each sequence as a matrix of size 12*τ*M where 

M is the length of the sparse vector, 12 is the number of ROIs and τ is the number of 

cuboids on temporal axis which depends (but not equal) on the number of frames in 

onset phase. SPP versus proposed ROI pooling is presented in Fig. 5.9. 
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Figure 5.9: Multiscale SPP (top) versus ROI pooling (bottom). 

5.2.7 Hidden-state Conditional Random Field Classifier 

Conditional random field (CRF) have been extensively employed in multi-class 

image and video classification problems [129] Variations of CRF have been 

proposed and examined in image classification particularly in gesture and body 

motion recognition such as hidden-state conditional random fields (HCRF) [130] and 

latent dynamic conditional random field (LDCRF). Recently, there has been an 

increased interest in applying CRF for FER [59] While CRF assigns one label to 

each frame in a sequence, HCRF predicts one label for the whole video. In fact, the 

latter has more capability in modeling dynamics of temporal sequences. Moreover, 

by letting the model have hidden states which are trained simultaneously on multiple 

expressions, recognition accuracy improves significantly [130] .In this study, HCRFs 
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are utilized for performing multiclass classification problem of facial expression 

recognition. Assume that   {          } is a feature matrix of m local 

descriptors and y is the class label. HCRF estimates the conditional probability of a 

class label given an observation as: 

                                       ∑             
∑            

 

∑             
  ∈   ∈ 

                    (5.14) 

where  ∈    and specific underlying characteristics of each class is captures by a 

hidden state s. In potential function  , consistency between a y, X and a 

configuration of s is measured by parameter  .  Learning process is an optimization 

problem to find corresponding   value which maximizes the following function. 

Basically, gradient decent algorithm is used for optimization. 

                                      ∑               
     

 

   
‖ ‖                              (5.15) 

The first term is the log likelihood function and the second one is the logarithm of a 

Gaussian probability function.   

5.3 Experimental Results 

Proposed algorithm for dynamic 3D FER is examined on one of the most popular 

data sets in this field, BU-4DFE data set. This data set contains expression video 

sequences (RGB and 3D mesh) of 101 subjects each expressed 6 basic facial 

expressions including AN, DI, FE, HA, SA and SU. Each RGB and 3D mesh 

sequence (texture and depth) contains approximately 100 frames recorded at 25 

frames per second. Resolution of texture and 3D model frames are about 1040×1329 

pixels and 35,000 vertices respectively. Basically, researchers apply their 

experiments either on 360 video sequences of 60 subjects or all 600 video sequences 

from all 100 subjects. In Shao et al. (2015) [59] however, 95 subjects are selected for 

the experiments. Here, we conducted our experiments on 60, 100 and 95 subjects in 
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order to be able to make a reasonable comparison. Motivated by [59], low-resolution 

images of size 240*160 are used in all the experiments in this phase of the study.  

Subject independent 10-CV is performed on the data sets. The ratio of test to train 

subjects are 6/54, 9/86 and 10/90 for 60-subject, 95-subject and 100-subject 

experiments respectively. Face bounding box in all frame of texture image is 

detected by Viola-Jones software.  In landmark detection and tracking, besides 21 

points picked from face model, nose tip is required which is simply extracted from 

depth frames assuming that images are frontal-view. The nose tip point is used to 

determine the top border of region 7 (R7) by connecting a line between this point and 

upper lip central point. The middle point of this line defines the topline for R7. 

Similarly, the line connecting chin landmark and lower lip center is used to identify 

the lower border of R7. More precisely, one third of this line length is assumed. 

These trends are to make sure R7 always encompasses lips. Head movement is 

normalized using inner eye corners and nose tip. More precisely, the line connecting 

inner eye corners is aligned horizontally and nose tip is positioned at the same 

location as the first frame.  

After landmark detection and tracking, onset phase frames are segmented from the 

sequence using similarity curve. Fig. 5.3 illustrates similarity curves of one subject 

for different expressions. It can be seen that onset phase corresponds to the longest 

transition in the similarity measure when it decreases from maximum to minimum 

value. An example temporal segment for fear expression is annotated in the figure by 

vertical dashed lines. It should be noted that the dimensions of cuboids are selected 

empirically as 10*10 spatial patches on 3 frames on temporal axis. 8-point LBP-TOP 

features are extracted from a rectangular area including only the cuboids inside 
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spatiotemporal ROIs in a sequence. Codebook training parameters for LRSC are 

selected as M = 1024 (the size of the codebook) and ε = 10
-3

 (stop parameter).  

 

Figure 5.10: Similarity curves and onset phase of expressions.  

Expression recognition confusion matrices for 60 and 100 subjects are represented in 

Table 5.1 and Table 5.2 respectively. Each column of the tables corresponds to the 

true expression and each row reports the classification result. It is observed that 

maximum recognition results are achieved for surprise expression in both cases while 

the results on fear expression are poor. This finding is consistent with previous 

studies in D-FER which are based on texture and depth sequences. As stated before, 

we also conducted experiments on 95 subjects and the average recognition accuracy 

is very close to what obtained on 100 subjects (85.09%).  

 

 



118 

 

Table 5.1: Confusion matrix on 60 subjects 

Expression 
Recognition Accuracy (%) 

Anger Disgust Fear Happy Sadness Surprise 

Anger 88.33 8.33 0.00 0.00 3.33 0.00 

Disgust 3.33 86.67 5.00 1.67 1.67 1.67 

Fear 3.33 6.67 65.00 13.33 1.67 10.00 

Happy 0.00 0.00 0.00 96.67 3.33 0.00 

Sadness 10.00 0.00 3.33 1.67 85.00 0.00 

Surprise 0.00 0.00 1.67 0.00 0.00 98.33 

Overall 86.67 

 

Table 5.2: Confusion matrix on 100 subjects 

Expression 
Recognition Accuracy (%) 

Anger Disgust Fear Happy Sadness Surprise 

Anger 83.0 11.0 0.0 2.0 3.0 1.0 

Disgust 4.0 82.0 8.0 4.0 0.0 2.0 

Fear 5.0 7.0 67.0 9.0 2.0 10.0 

Happy 0.0 0.0 1.0 95.0 4.0 0.0 

Sadness 10.0 0.0 3.0 3.0 84.0 0.0 

Surprise 0.0 1.0 1.0 0.0 0.0 98.0 

Overall 84.84 

5.4 Discussion  

The experiments are conducted on texture and depth sequences of BU-3DFE data 

sets. In fact, as the main motivation for this work is the study by Shao et al. [59], our 

first experiments are performed on 95 subjects to compare the recognition rate to 

[59]. The first contribution of this phase of the study is that LRSC is applied for the 

first time in dynamic 3D facial expression recognition. Secondly, the novel 

spatiotemporal regions of interest are constructed by landmarks which are 

automatically detected in the first frame and tracked using a multi-point tracker (DE-
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MC) in the subsequent frames. Lastly, the region of interest pooling is introduced as 

an alternative to conventional SPP.  

In order to compare recognition results with other studies, average recognition 

accuracies of recent papers conducted on BU-4DFE are reported in Table 5.3. 

Average accuracies on 100, 95 and 60 subjects are reported and compared to state-

of-the-art. The results indicate that the proposed algorithm provides comparable and 

relatively superior results in comparison with previous studies considering that low-

resolution videos are used in this work. More specifically, proposed system results in 

a significant improvement when conducted on the whole data set including 100 

subjects. In addition, although Shao et al. have [59] selected their 95 subjects 

manually by discarding corrupted sequences and biased the results by this selection; 

proposed method outperforms their work on 95 randomly selected subjects with the 

same resolution. For 60 subjects, recognition results of the proposed system are 

higher than the accuracies reported in [61] , [63] and [86] nevertheless our 

experiments are performed on low-resolution videos.  In fact, for practical 

applications, low-complexity systems based on low-quality and noisy videos are 

preferred. It is also worth mentioning that in [60], the original quality videos are 

processed. Furthermore, accurate nose tip detection is a crucial step that the proposed 

system in [60] relies on. In case of [76], the system is not automated and the high 

accuracy is achieved by using 83 landmark points annotated in the data set. Li et al. 

[110] has obtained 92.25% average accuracy using their deep learning neural 

network named as Dynamic Geometrical Image Network (DGIN). However, as 

mentioned it previous before, deep learning approaches are computationally costly, 

require large data sets and elaborate preprocessing stage.  
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Table 5.3: Comparison of proposed method with recent literature 
Research Work Method Auto. Classifier ES* ACC** 

Reale et al. [111] 
Spatiotemporal Volume + 

Nebula Feature 
yes SVM 100S, 6E,  LOO 76.10 

Fang et al.[71] MeshHOG + LBP-TOP yes SVM 100S,6E,10-CV 75.82 

Fang et al.[71] Spin Image + LBP-TOP yes SVM 100S,6E,10-CV 74.63 

Proposed 

Method 

LBP-TOP + Spatiotemporal 

ROI Pooling 
yes HCRF 100S,6E,10-CV 84.84 

Shao et al. [59] LBP-TOP + SPP yes CRF 95S,6E,10-CV 83.07 

Proposed 

Method 

LBP-TOP + Spatiotemporal 

ROI Pooling 
yes HCRF 95S,6E,10-CV 85.09 

Berretti et al. [61] 
Pairwise Distance of 3D 

Landmarks and SIFT 
yes HMM 60S,6E,10-CV 79.40 

Amor et al. [60] 
Geometric 3D Motion 

Extraction 
yes LDA + HMM 60S,6E,10-CV 93.25 

Kumar et al. [112] Euclidian distance (geometric) no SVM 60S,6E,10-CV 93.06 

Xue et al. [63] 3D-DCT + mRMR yes LDA + KNN 60S,6E,10-CV 78.80 

Sandbach et al. 

[86] 
3D motion-based Features yes 

GentleBoost + 

HMM 
60S,6E,6-CV 64.60 

Li et al. [110] 
Geometric Images (DPI, NCI, 

SII) 
yes Deep Leraning 60S,6E,10-CV 92.22  

Proposed 

Method 

LBP-TOP + Spatiotemporal 

Region of Interest 
yes HCRF 60S,6E,10-CV 86.67 

*Experimental Setting 
**Accuracy (%) 

5.5 Conclusion 

In the third stage of this study, a 3D facial expression recognition method using 

LRSC pooled from automatically detected ROIs, is proposed. ROIs are defined using 

detected landmarks based on facial AUs, which are assumed to be more 

representative for the respective facial expressions than subject appearance. LBP-

TOP feature descriptors are computed from cuboids inside spatiotemporal ROIs in 

both texture and depth sequences. Features extracted from texture and depth images 

are fused, where LRSC is utilized to obtain sparse codes from feature descriptors. In 
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the classification stage, HCRFs are used for the classification of six basic 

expressions. Experimental results have shown that the average accuracy of the 

proposed system in recognition of six basic expressions on 60 subjects and 100 

subjects in BU-4DFE data set is equal to 86.67% and 84.84% respectively. These 

results verify that proposed algorithm improves the accuracy of D-FER in 

comparison to recent studies. 
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Chapter 6  

6. CONCLUSIONS AND FUTURE WORK 

6.1 Comparison and Discussion of Proposed Methods 

In this thesis, dynamic 3D facial expression recognition (D-FER) also known as 4D 

facial expression recognition is studied from two main perspectives. Generally 

speaking, there are two main streams in D-FER studies: facial landmark-based 

methods and appearance-based methods. In the preliminary phase, static FER is 

addressed using conventional distance features extracted from facial landmark 

locations. The aim is to find out if using an effective feature selection method and a 

well-developed classifier, geometric landmark-based feature result in an acceptable 

performance. The experiments conducted on BU-3DFE have confirmed that both 

sequential forward feature selection and SVM-FSVM classification improve the 

recognition rate. These findings provide the motivation for the second phase of the 

study, namely geometric landmark-based D-FER.  

The proposed system is designed to address the dynamics of facial expression by 

extracting multimodal time series features from facial landmarks movements in the 

sequences. A comprehensive set of geometric deformations including point, distance 

and angle features are extracted from 3D coordinates of facial key points. The 

novelty of the method is applying time series analysis tools for feature extraction and 

classification of test sequences. As mentioned before, feature selection also plays a 

critical role in the performance of D-FER systems. Hence, a recently developed 
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feature selection method named as NCFS is utilized to address the dimensionality 

problem and to prune the redundant features. The selected classifier, AC-DTW is a 

new classification approach for time series analysis. A multivariate version of this 

approach has been adapted for our geometric landmark-based D-FER system. 

Experimental results proved that performance of the system is comparable to the 

state-of-the-art regardless of the low complexity of the system. 

In order to complete the study, the effectiveness of facial landmark-based 

information in combination to appearance-based features is addressed in the third 

phase of the study. In other words, after verifying that a successful D-FER system 

can be designed relying only on facial landmarks, a fully automated system for low-

quality videos is proposed in which the landmark information is dovetailed in an 

appearance-based system. This time, facial landmarks are utilized to define 

spatiotemporal regions of interest where coded LBP-TOP features are pooled from. 

The system is fully automated as the landmark locations are detected and tracked by 

the multi-point tracker. LBP-TOP features are extracted from the cuboids of low-

quality texture and depth sequences. This phase of the work is compared to similar 

recent studies to evaluate the effectiveness. Although the performance of this 

approach is lower that our geometric landmark-based system, considering the 

practical applications of D-FER systems, the improvement is worthwhile. In fact, the 

proposed appearance-based D-FER system aims to have a closer look at the real 

world D-FER systems where the locations of landmarks are unknown and the quality 

of the registered images and videos is mainly low. 

To have a general perspective of the study and its different phases, a summary table 

is represented in Table 6.1. In the rest of the chapter, we may refer to each proposed 
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method by its name for convenience. The reference systems are the baseline 

approaches that have been improved by suggested methods.  It should be noted that 

even though static FER system is not directly comparable to D-FER systems, the 

results advocate the importance of facial landmarks in facial expression recognition 

problems providing motivation for the other proposed methods.  

Table 6.1: A summary of the phases of study 
System Name Method 

FER 
A 3D landmark distances + SFFS + SVM-FSVM 

Reference 3D landmark distances + SFFS + SVM 

D-FER 

B Geometric landmark-based mean deformation time series + NCFS + AC-

DTW 

Reference Geometric landmark-based mean deformation time series + NCFS + DTW 

C LBP-TOP of texture and depth + LRSC + ROI pooling + HCRF 

Reference
*
 LBP-TOP of texture and depth + LLC + SPP + CRF  

*Conducted on 95 subjects 

The proposed FER and D-FER systems are tested on BU-3DFE and BU-4DFE data 

sets respectively. For D-FER systems, the experiments are conducted on different 

number of subjects in order to be able to compare the recognition rates with state-of-

the-art. The results of the proposed approaches on 100 subjects and their main 

reference systems are summarized in Table 6.2. Although, the maximum recognition 

accuracy and maximum improvement belongs to A FER system, there are many 

practical limitations in the system. In fact, BU-3DFE data set is a set of still images 

recorded at the peak of the expression. Each subject has expressed 4 different levels 

of each of the 6 basic expressions. The coordinates of 83 landmarks are available 

without any head pose rotation artifact. Furthermore, as stated before, the highest 

intensity level (level 4) images are used for this study. These conditions are far 

different from real world applications when there is no control over the head pose, 
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intensity and the peak of expression. However, this controlled registration procedure 

of BU-3DFE images potentials the high recognition accuracy of system A (87.67%) 

compared to B and C.  

On the other hand, in D-FER systems which simulate a more realistic situation, the 

head rotation occurs within the sequences making the landmark coordinates less 

precise. Furthermore, unlike BU-3DFE data set, in BU-4DFE data set there is no 

control over the intensity of the expression across the subjects and the sequences 

contain both low and high intensity expressions. It is also worth mentioning the extra 

computational burden infused when scholars suggest identifying the peak expression 

from the video converting a D-FER system into an FER system.  Hence, the 

recognition rate of D-FER systems designed based on practical limits is in general 

lower than that of FER systems. 

Table 6.2: A summary of the results and comparisons 

Scheme Data Set System Automated Accuracy (%) 

FER BU-3DFE 
A No 87.67 

Reference No 78.33 

D-FER BU-4DFE 

B No 83.50 

Reference No 69.83 

C Yes 84.84 

Reference
 

Yes 83.07 

Table 6.2 confirms that proposed system based on AC-DTW classification of time 

series features extracted from mean deformations of facial landmarks performs 

significantly better than its conventional version using DTW classifier. More 

precisely, the recognition rate rises from 69.83% to 83.50%. The B system is 
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characterized by its simplicity and low-complexity. However, in real world problems 

when the resolution of the videos and images is limited, identifying the precise 

coordinates of facial landmarks is demanding. Therefore, the D-FER system can 

benefit from texture and depth information of the video sequences. In phase C, this 

problem is addressed by integration of facial landmark information into the pooling 

step and designing an automated recognition system. In other words, the coded LBP-

TOP feature descriptors are pooled from the ROIs defined based on facial landmark 

points. The system performs successfully on 100 subjects and outperforms system B 

regardless of its low-resolution video input and automatic detection and tracking of 

landmarks. There is also improvement over the main reference study for system C. 

6.2 Conclusions 

Dynamic 3D facial expression recognition is an emerging topic having attracted the 

interest of researchers in computer vision and image processing. In this thesis, 

dynamic 3D facial expression recognition is studied from different aspects. The aim 

of the study is to uncover and address the main challenges in recognizing human 

emotions from 3-dimensional facial video sequences. This objective is fulfilled by 

analysis of the fundamental stages in general D-FER systems and exploring the 

issues and possible solutions. These basic stages include feature extraction, feature 

selection and classification. The work is performed in four main phases including 

literature review to comprehend the background, 3D facial expression recognition for 

a preliminary practical evaluation, geometric dynamic 3D facial expression 

recognition and non-geometric dynamic 3D facial expression recognition. 

In the first phase of the thesis, previous studies on both static and dynamic FER 

systems are examined. The literature review section is outlined according to the 
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fundamental stages in FER systems.  Since the difference between the FER and D-

FER systems is basically in the feature extraction procedure, previous works in 

feature selection are assessed for static and dynamic systems individually. Two 

mainstreams in feature extraction i.e. geometric and non-geometric approaches are 

described. The feature descriptors adapted from still images to videos are explained 

and consequently the advantages and failings are disclosed.   

In the second phase, a typical geometric 3D facial expression recognition system is 

implemented aiming at exploring the potential of landmark-based features by 

applying decent feature selection and classification methods. Pairwise distances 

between facial key points are extracted to construct the feature set. For selecting the 

useful subset of the features, SFFS based on Naive Bayesian classifier error is 

applied. Since SVM is a very popular classifier in FER studies, an improved 

multiclass version of SVM called fuzzy SVM is applied for classification. The 

experiments conducted on BU-3DFE data set have shown that in a system using 

conventional majority voting SVM, replacing the typical t-test feature selection with 

SFFS results in 6% improvement in average recognition accuracy of six basic 

expressions. Then by applying proposed FSVM classifier, average accuracy reaches 

from 72.33% to 87.67%. The results are motivating in the sense that by applying 

appropriate feature selection and classification methods, landmark-based features 

represent the discriminative facial deformations for facial expression recognition. 

Accordingly, in the third phase of the thesis, a dynamic 3D facial expression 

recognition system based on time series analysis of geometric landmark based 

deformations is proposed. More precisely, time series features are computed from 

local temporal deformation of landmark locations to capture the dynamics of the 
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whole sequence.  After head pose detection, correction and normalization of 

landmark positions, a comprehensive set of geometric deformations are extracted 

from 3D coordinates of facial landmarks. The point, distance and angle deformations 

are computed in each frame of the expression sequences with respect to the first 

frame. Then, time series features are constructed by applying a sliding window 

averaging on deformation values. In fact, the notion of time series analysis is 

introduced in D-FER systems for the first time to capture local mean dynamics. 

Since the dimensionality of feature space is high and there is a high level of 

correlation among features, a feature selection method named NCFS is applied to 

discard redundant features. NCFS is an effective and simple supervised embedded 

feature selection method suitable for high dimensional data with a large number of 

irrelevant features. As a result, it selects a small subset of useful geometric features 

for classification. Based on selected features, multimodal time series features are 

formed in reduced space. Finally, a recently introduced variant of DTW known as 

AC-DTW is utilized to classify these multivariate time series. Experiments 

conducted on BU-4DFE data set have resulted in 92.50% and 83.50% average 

recognition rate on 60 and 100 subjects respectively which confirm the effectiveness 

of the proposed system when compared to state-of-the-art. 

Finally, in the last phase, an automatic dynamic 3D facial expression recognition 

system using LRSC and ROI pooling is proposed. Facial landmarks are 

automatically detected and tracked in texture sequences using candidate point‟s 

identification by scale space extrema, DoG features descriptors and Adaboost.  ROIs 

are defined using detected landmarks based on facial AUs, which are assumed to be 

more representative for the respective facial expressions than subject appearance. 
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Appearance-based dynamic feature descriptors, namely LBP-TOP are computed 

from cuboids inside spatiotemporal ROIs in both texture and depth sequences. 

Texture and depth features descriptors are then fused and LRSC is utilized to obtain 

sparse codes. In the classification stage, HCRF is applied to recognize six basic 

expressions. Experimental results conducted on BU-4DFE data set have shown that 

the average accuracy of the proposed system on 60, 95 and 100 subjects is equal to 

86.67%, 85.09% and 84.84 respectively. This verifies the proposed algorithm is 

efficient in comparison with recent studies. 

In summary, this study has followed a comprehensive manner for dynamic 3D facial 

expression recognition in view of theoretical aspects and practical challenges. The 

problem is studied from different sides in three different phases and the existing 

methods are modified and improved to obtain higher recognition rate.  The major 

practical limits are taken into account and at the same time the most recent 

approaches in machine learning, pattern recognition and image processing are 

adapted to tackle the problems.  

6.2 Future Work 

As a potential future work, similar to LBP-TOP and HOG-TOP novel spatiotemporal 

feature descriptors motivated by conventional feature descriptors may be adapted. 

Moreover, appearance-based and landmark-based features can be fused to construct 

the feature matrix for improved performance. For real-time applications, time and 

complexity limitations should be considered when implementing different phases of 

the system. Exploring the descriptors which perform even on low-quality videos, in 

presence of noise, occlusion, illumination variation and other real-world encounters 

are also challenging topics not having been addressed well in dynamic 3D facial 



130 

 

expression recognition.  In addition, deep learning approaches which have attracted 

the interest of many researchers in recent years are another alternative. The 

promising results of CNN and other deep-learning neural networks can be applied in 

FER and D-FER systems to obtain higher recognition accuracy.    
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