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ABSTRACT 

The speed of light    is taken to be a constant in a vacuum. This forms the basic tool 

for the principle of General Covariance, which asserts that, all laws of Physics should 

take the same form in all frames of reference. Without putting inflation into 

consideration, the theory of varying speed of light (VSL) would solve basic problems 

of cosmology in the early universe. Furthermore, the constants, Λ and G that 

occurred in the Friedmann Equations may not have been real constants in the early 

universe but have some variation with the universe scale factor.  We obtained 

solutions to the cosmological model of flat FRW Universe where Λ and G are taken 

to be variables. We used the solution to obtain deceleration parameter and state 

finder parameter. We also found out that the Hubble constant will be a constant if 

and only if Λ = 0 but conversely, it is inversely proportional to the cosmic time. For 

VSL, we have used the power law where we have taken       and       . 

For    , we obtained the expansion rate of the universe and for      by 

numerical solution we observed that the expansion of the universe accelerating for 

flat space geometry where    . Also, we assumed that    ̇, this enabled us to 

obtain the expression for the age of the universe for this model. We also studied the 

model of Linearly Varying Deceleration Parameter which reveals that the universe 

evolves from a big bang and ends with a big rip. 

Keywords: Deceleration Parameter, Friedmann Equation, FRW Metric, CMB, 

Equation of State. 
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ÖZ 

Işık c'nin hızı bir vakumda sabit olarak alınır. Bu, tüm Fizik yasalarının tüm referans 

çerçevelerinde aynı formu alması gerektiğini öne süren Genel Kovaryans ilkesi için 

temel aracı oluşturur. Enflasyon dikkate alınmadan, değişen ışık hızı teorisi (VSL) 

erken evrende kozmolojinin temel problemlerini çözecektir. Ayrıca, Friedmann 

Denklemlerinde meydana gelen Λ ve G sabitleri, erken evrende gerçek sabit 

olmayabilir, ancak evren ölçek faktörü ile bazı farklılıklar gösterebilir. FR ve G 

değişkenlerinin alındığı düz FRW Evreninin kozmolojik modeline çözümler elde 

ettik. Çözümü yavaşlama parametresi ve durum bulucu parametresi elde etmek için 

kullandık. Ayrıca Hubble sabitinin yalnızca Λ = 0 ise ve bunun tersi olarak, kozmik 

zamanla ters orantılı olduğu zaman sabit olacağını öğrendik. VSL için, c a ^ (- r) ve 

Λ a ^ (- 2r) aldığımız güç yasasını kullandık. R = 0 için, evrenin genişleme oranını 

elde ettik ve r> 0 için sayısal çözümle, k = 0 olan düz uzay geometrisi için evrenin 

genişlemesinin hızlandığını gözlemledik. Ayrıca, c a  'nın, bu model için evrenin 

yaşı için ifade almamızı sağladığını varsaydık. Ayrıca, evrenin büyük bir patlamadan 

evrildiğini ve büyük bir kopuşla sona erdiğini ortaya koyan Doğrusal Değişen 

Yavaşlama Parametresi modelini de inceledik. 

Anahtar Kelimeler: Yavaşlama Parametresi, Friedmann Denklemi, FRW Metrik, 

CMB, Durum Denklemi 
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Chapter 1 

INTRODUCTION 

The study of the Cosmos can be rooted to religious and ancient philosophers in their 

quest for answers to the beginning of our Universe. Many myths across the world 

and religious philosophy tried to predict the beginning and fate of the Universe. 

None of such predictions have experimental backing. The Universe or Cosmos is a 

richly textured, with structures on a vast range of scales which includes; planets, stars 

collected in the galaxies and other celestial bodies. The gravitational force of 

attraction binds galaxies to form clusters, embedded in the cluster of galaxies are 

superclusters [1-3] 

Amongst the theories of the beginning of the unıverse, the Big Bang theory is the 

scientifically accepted theory that describes how it all begins. According to [4], 

George Gamow and his colleagues in 1950 constructed the history of the first few 

minutes of the Universe‟s infancy; starting from a primordial hot and dense of 

predominantly protons, neutrons, electrons and photons. This model later became 

what is known as the hot Big Bang model of cosmology [5,6].  Just immediately after 

the birth of the universe, our cosmos experienced a period of accelerating expansion. 

This is what is theoretically referred to today as cosmic inflation, the period in which 

the observable universe expands by a factor of      in size [3]. At very early times, 

this period of inflation was followed by a period of intense reheating of the Universe 

at the process, matter was created. Due to high temperatures and pressures 
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immediately after the Big Bang, atoms could not exist in the first three hundred 

thousand years of Universe. Instead, matter was distributed as highly ionized plasma 

and photons were held together in a fog at the early universe. 

The Epoch of Recombination follows; the expansion of the Universe influences a 

drop in temperature and density of matter to a point where atomic nuclei and 

electrons recombined to form atoms. At this time, photons could escape the fog and 

travel freely. A record of the photon at the time of their escape is termed Cosmic 

Microwave Background radiation (CMB) (that is, left over radiation at an early state 

of the Universe). 

 One of the most important consequences of the cooling down of the Universe and its 

loss of symmetry would be phase transition. The inflation theory has solved some 

striking questions of whether there was a Big Bang: that is the homogeneity, isotropy 

and the spatial flatness of the observable Universe as proposed by the Big Bang 

model. According to [3], inflation is governed by quantum field, which brings about 

a small vacuum imbalance during the period of expansion by stretching microscopic 

to macroscopic length scales. The small fluctuations developed to all structures in the 

later Universe. Although, there are still many unanswered questions, quantum 

perturbations during the inflation period are still the best candidates to give birth to 

the offspring of cosmic structures [3]. At the end of inflation, the temperature falls 

and the energy content of the Universe became dominantly radiant energy. The 

energy of the Universe during phase transition, emanated mostly from pressure-free 

matter or dust with equation of state identically zero, this state is termed matter 

dominated era. Subsequently, the Universe suddenly became dominated by dark 

energy; it is still in this state today. 
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The invention of the telescope in the 20th century and merging of new gravitation 

with Einstein‟s general relativity induced physicists and astronomers to start tackling 

tenaciously queries arising on the origin and fate of our Universe. This gave birth to 

that branch of Physics known as modern cosmology which is concerned with the 

study of the evolution and properties of the Universe as an entity [4]. Cosmology is 

concerned with the universe, including its origin, nature, evolution and possibly, 

predictions on the fate of the universe. Cosmologists apply laws of physics to 

describe the universe. 

Observational Cosmology has it that, everything in the Universe is moving away 

from us. The recession velocities of object are measured through the Redshift    by 

the concept of Doppler Effect as applied to light waves [5-8]. Galaxies recedes from 

us by the quantity    defined by; 

  
       

   
         (1.1)   

where,     and     are wavelength of light from the galaxy at the point of emission 

and  wavelength as measured by an observer respectively. The, recession velocity    

of the galaxy is obtained from 

  
 

 
          (1.2) 

 According to [2], Einstein‟s formulation of a mathematical model of the universe via 

the tools of General Relativity evolves modern cosmology evolved in 1917. General 

Relativity is the basic theory for deriving major results in cosmology. Its major 

equation, the Einstein field equation given as 

                       (1.3) 

Where   
   

  , The Einstein tensor Gμν is the Einstein tensor which represents the 

deformation of space-time with respect to Minkowski space-time and  Tμν is stress-
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energy momentum  tensor that describes the matter content of the space-time. When 

distance, time, mass and temperature are measured in appropriate Planck units, then 

the speed of light c, the Boltzmann constant k, the associated Planck constant  , and 

gravitational constant are equal unity. 

Studying the spectra of galaxies in 1927, Edwin Hubble observed a shift in the 

spectra towards the red, indicating that the galaxies were moving away from us. The 

theory of General Relativity asserts that the expanding universe is due to the 

deformation of the geometry of space as a result of matter present. The reason while 

the galaxies move away from us is because they are being carried by expanding 

geometry, a scenario analogous to a cork passively floating down a sloping river [5]. 

In recent times, tandem observation of type-Ia supernovae and CMB suggests that 

cosmic expansion is accelerating are some of the tremendous advancements in the 

study of the cosmos [9].  The geometry of a homogeneous and isotropic universe is 

characterized by a time dependent function, a curvature parameter k, and the scaling 

factor     . For a closed Universe, whose geometry is like that of a sphere,    , if 

it is flat,      , or if opened like of a Saddle,       . Basically, the scale factor is 

a measure of the rate at which the geometry stretches. On the assumption that an 

ideal gas that has an energy density      and pressure      can be used to model 

matter, Einstein‟s Equation gives the dynamics of the scalar factor      by [10-17] 

 (
 ̇

 
)
 

 
    

 
 

 

  
       (1.4) 

Where 
 ̇

 
  is the Hubble parameter and G, the gravitational constant. 
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Equation (1.2) is the Friedmann Equation which describes how the universe expands, 

what causes the expansion and how the expansion rate will change over time. If we 

know where it began and its transitions, we can measure its expansion rate and 

predict its fate. The ΛCDM (Lambda-Cold Dark Matter) is the standard of 

cosmology model (SMC) that asserts that the universe is created from pure energy in 

a big bang [17]. Our Universe present composition is 5% ordinary matter, 25% dark 

matter and 70% dark energy [18]. The Standard Model of Cosmology conditioned 

assumptions on the Standard Model of Particle Physics (SMPP) and the General 

Theory of Relativity (GTR). However, the theory of general relativity and the 

Standard Model of Particle Physics are both not complete because they do not give 

insight into many empirical observations. For instance, the GTR do not provide 

knowledge to Big Bang Cosmology, cosmic inflation, nature of dark matter, etc. In 

the SMC, ΛCDM the big bang is parameterized such that the general theory of 

relativity contains cosmological constant Λ, which is related to the dark energy [17]. 

The extrapolation of the universe gives temperature at a finite time and infinite 

energy density. Hence, the Big Bang should be associated with a singularity that the 

breakdown of the laws of physics. Light elements were formed after the expansion 

and cooling hot dense mass energy with hydrogen about 75% and lithium 

approximately 25% [17]. The figure below shows the estimate matter content of the 

universe. 
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Figure 1.1: Matter content of the universe 

During the expansion and cooling process, nuclei of lighter elements capture 

electrons to form neutral atoms. Observations revealed that if Newton‟s law of 

universal gravitation is approximately valid in the solar system, hidden more mass is 

required to be present in each galaxy. The invisible matter is termed dark matter 

whose nature remains unknown [18]. Also, observation that the expanding universe 

is also accelerating has also brought the notion of dark energy. Dark energy is hence 

thought of as a hypothetical form of energy that pervades the whole space and causes 

the expansion of the universe to accelerate at large cosmological distances . The 

figure below shows the accelerated expansion of the universe. 
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Figure 1.2: Accelerated expansion of the universe  

The big bang cosmology has faced some fundamental problems such as, why are the 

galaxies similar, why is there isotropy in Cosmic Microwave Background (CMB)? 

(Horizon Problem). Geometry of the observable Universe is so flat (but the 

Friedmann Equation informs us how unnatural it is to have a flat universe). This is 

what is termed Flatness Problem. The unified theory tells us that they should be 

many monopoles but in reality, there is no monopole in the universe. This gives rise 

to Monopole Problem. In trying to answer the question of the origin of the galaxy 

and the beginning of the singularity, many scientists have applied various theories of 

physics to solve these problems and more is required to remove every ambiguity 

from the birth, evolution and fate of our universe. 
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Aside from the above mentioned problems, Cosmologists are now seeking answers 

to the following questions: 

 Is dark matter a particle or superpartner? What really is it? 

 What causes the accelerating expansion of the universe? Is it dark energy?  

 The matter content of the universe is more than antimatter, why is this so? 

 How correct is the cosmic inflation theory in the early universe? What are 

its phase transition and the scalar field that initiated if? 

 What is the fate of the universe? Will it end in a big rip, big freeze or big 

crunch?  
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Chapter 2 

1 NEWTONIAN COSMOLOGY 

The idea of the expanding universe referred as Newtonian Cosmology was 

introduced in 1934 by E.A. Milne [19] and in 1955 by W.H. McCrea [42]. 

Newtonian dynamics and gravitation led to the formation of equations describing the 

time evolution of an expanding homogeneous and isotropic universe. According to 

[11], the large scale dynamics of the universe are governed by gravity. Therefore, the 

theory of gravity is the backbone of theoretical cosmology. In Newtonian cosmology, 

the Friedman equation is derived from the equation of motion for particles (galaxies) 

under the influence of gravitational force. 

2.1  Hubble’s Law 

The relationship between distance and recession velocity of galaxies was observed 

by Edwin Hubble in 1929. From His observations, the concept of the expanding 

universe was unveiled and gave us a broader knowledge of the cosmos. The 

revolution in Hubble‟s incepts the field of observational cosmology that has shown 

interesting facts about the universe; its expansion and evolution and its contents such 

as galaxies, dark energy, and dark matter [10]. This implies that it is not up to a 

century that we begin to have deep knowledge about the Universe that has existed for 

the past 14 years [10]. 

According to Hubble‟s observations, the recession velocity of galaxies is 

proportionality to their distance from us. His findings also reveal that distant galaxies 
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recede faster than closer ones. Figure (2.3) presents relationship between Hubble‟s 

observed velocities and distances from nearby galaxies showing a linear relationship 

between the velocity of galaxies and distance L.  

If L is considered to be the proper length between a stationary observer and a distant 

recessing galaxy, separated by some coordinate distance  , which increases by 

          . The distance increases at the rate given by 

  

  
 

  

  
  

  

  

    
          (2.1) 

Or 

              
 ̇

 
          (2.2) 

Where 
 ̇

 
   . This implies that the speed of recession is proportional to the 

separation L. 

 
          Figure 2.1:  Plot of recession velocity against distance of extragalactic nebulae 
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The expansion rate may be constant in all directions at any given time, but the rate 

has been changing with time for the past 14 billion years. Where H is the Hubble 

constant, when expressed as a function of cosmic time      is known as the Hubble 

parameter.  

At present time, the Hubble constant H0, is obtained to be 
    

 
     ,      

                              [1]. The reciprocal of the Hubble constant is 

the Hubble time,    
 

  
 ∼14 billion years, which relates to the age of the universe 

from big bang till present time. It presents the time from t = 0, which a linear cosmic 

expansion began.  

2.2 The Friedmann Equations 

The Friedmann‟s Equations are sets of equations governing the evolution of the 

Universe. They describe the rate at which the universe has been expanding over the 

past 14 billion years. They can be derived from the theory of General Relativity 

using the Einstein Field Equation or by Newtonian mechanics. According to 

Newtonian Theory, the Universe is taken to be static, but McCrea and Milne [19,42] 

that Friedmann Equations can be derived from the Newtonian Theory.  How be it, 

both the two approaches give the same result. The mathematics of the Newtonian 

approach is simpler than the method of General Relativity. The major task for 

Cosmologists is solving these equations by making critical assumptions of the 

material content of the Universe [9]. At first, Friedmann‟s work describing a 

spatially isotropic and homogeneous expanding or contracting universe did not 

receive attention. It was after Hubble‟s results about receding galaxies were 

published that Einstein acknowledged the reality of the expanding Universe [1].    
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To derive the Friedmann equation, let us consider the universe to be homogenous of 

total mass M. If the sphere expands or contracts isotropically, in a manner that its 

radius increases or decreases with time, then it is given as R(t).  If we consider a 

particle of mass m, at radius R(t) from a fixed point, from Newton‟s second law, 

   
   

                (2.3) 

The gravitational force F experienced by a particle of mass m, is given by  

     
  

     
        (2.4) 

Combining equations (2.3) and (2.4), obtain the gravitational acceleration given by 

 
   

      
 

     
        (2.5) 

Multiplying both sides of (2.5) by 
  

  
 and integrating, we obtain 

 

 
(
  

  
)
 

  
 

    
          (2.6) 

where U is a constant of integration. The quantity at the left hand side of (2.6) is the 

kinetic energy per unit mass    while, the gravitational potential energy per unit 

mass is given by  

     
 

    
           (2.7) 

As the sphere contracts or expands, its mass remains constant, in terms of its density, 

    , we can write 

  
  

 
                 (2.8) 

This implies that       for non-relativistic particles (matter). Because the 

expansion of the sphere is the same at all directions about its center, its radius can be 

written in terms of the scale factor      and the comoving radius   as  

                  (2.9) 

At current time       . Putting (2.9) and (2.8) on (2.6), we obtain 
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   ̇  

  

 
              (2.10) 

Multiplying (2.10) by  
 

    , we get 

(
 ̇

 
)
 

 
   

 
     

  

  

 

     
      (2.11) 

Equation (2.11) is the Newtonian form of the Friedmann Equation, where  ̇  
  

  
. If 

 ̇    means the sphere is a contracting one with its opposite,  ̇    denoting 

expansion. Also, considering the case where U > 0, the RHS of equation (2.11) is 

always positive, so  ̇  and the sphere expands forever. The maximum value of the  

scale factor is given by  

      
  

  
         (2.12)  

after which the RHS of equation (2.11) is equal to zero, and the expansion will end 

and the sphere will contract. Finally, in the case U = 0, then  ̇    as t → ∞ and ρ → 

0. According to [1], the correct of the Friedmann Equation with all general 

relativistic effects is [38] 

(
 ̇

 
)
 

 
   

        
   

  
 

 

     
       (2.13) 

The energy density is related to the mass density by      . This is a deviation 

from the Newtonian form of the Friedmann Equation to relativistic form. The mass 

density    is replaced by the energy density    divided by the square of the speed of 

light and k represents the spatial curvature of the universe. The Universe is 

considered closed if k > 0, and has the geometry of a 3-sphere.  A flat Universe is 

one in which k = 0, obey the laws of 3-dimensional Euclidean geometry, E
3
.  For k < 

0, it is an open universe, and has the geometry of a 3-dimensional unbounded 

hyperboloid, H
3
. 

 
These cases are illustrated in the figure below. 
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Figure 2.2: Evolution of the scale factor of the Universe with time for three possible 

cases of k 

The possible curvature of the universe is shown in the table below: 

Table 2.1: A Summary of Possible Geometries of the Universe 

 

In terms of Hubble‟s Parameter, the Friedmann Equation (2.13) is rewritten as 

      
   

        
   

  
 

 

     
       (2.14) 
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For    , that is flat universe, equation (2.14) becomes 

      
   

   
             (2.15) 

Therefore, the critical density of the universe is defined as 

      
        

   
        (2.16) 

Critical density is not necessarily the true density of the Universe since the universe 

is not needed to be flat [9], rather, it sets a real scale for the density of the universe. 

In terms of energy density, Cosmologist defined a dimensionless quantity known as 

density parameter as 

     
    

     
        (2.17) 

As expressed, the density parameter Ω, is a function of time, since both   and    are 

time dependent, the current value of the density parameter is represented by    [9].. 

Still under scrutiny [1], observations show at present day, the density parameter is in 

the range of         , the Fridmann equation (2.13) takes the form 

        
   

  
        

       (2.18) 

If Ω > 1 at any given time, it would continue to be the same at all times. Similarly, if 

   , it will follow the same pattern and if it is equal to one, it will also be one at 

all timeAt present time, equation (2.18) is  

      
   

  
   

         (2.19) 

The quantity 
 

  
 is the so called Hubble distance. Equation (2.19) enables us to 

compute the radius of curvature R0 of the Universe. 

2.3 The Fluid Equation 

The fundamental equation of cosmology, the Friedmann Equation, cannot all by 

itself describe the evolution of the scale factor with time. Different types of material 
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existing in the Universe might have different pressures p, and lead to changes in its 

density over time. The Friedmann Equation will make more sense when combined 

with an equation describing how the density ρ of material in the Universe is evolving 

with time.  We introduce the fluid equation, an equation containing p to solve for   

and   as functions of time. The fluid equation is derived from the first law of 

thermodynamics which states that the total energy of the universe is conserved. The 

actual meaning of the Friedmann Equation in the Newtonian approximation is a 

statement that, the sum of gravitational potential energy and kinetic energy of an 

expanding Universe is conserved. The first law of thermodynamics is given by 

                 (2.20) 

where    
  

 
 is the change in entropy and    is the heat influx or efflux from a 

sphere of volume V with comoving radius and pressure P. A perfect homogeneous 

Universe is said to be adiabatic and for any given volume,     , that is, there is no 

change in entropy. Hence, equation (2.20) takes the form 

               ̇    ̇            (2.21) 

If we consider a sphere of comoving radius r, expanding along with the universe 

expansion, its volume is given by  

     
  

 
              (2.22) 

The volume change at rate given by 

 ̇  
  

 
      ̇    (

 ̇

 
)      (2.23) 

The internal energy       of the sphere is the product of its volume and energy 

density given by 

                     (2.24) 

The rate of change of the internal energy is given by 
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  ( ̇   

 ̇

 
 )      (2.25) 

Putting (2.24) and (2.23) into (2.21) we obtain 

 ( ̇   
 ̇

 
   

 ̇

 
   )       (2.26) 

Or 

 ̇   
 ̇

 
               (2.27) 

Equation (2.27) is called the Fluid Equation and the second important equation that 

describes the expansion of the Universe [1]. 

2.4 The Acceleration Equation 

Combining the Friedmann Equation and the Fluid equation, we arrived at an 

acceleration equation which explains who the expansion of the Universe speeds up or 

slows down with time. The combination of these two equations is a statement of 

conservation of energy.  Multiplying equation (2.13) by     we obtain 

 ̇  
   

          
   

  
        (2.28) 

Differentiating (2.28) with respect to t gives 

  ̇ ̈  
   

   
  ̇       ̇       (2.29) 

Dividing (2.29) by   ̇   we obtain 

 ̈

 
 

   

   ( ̇
 

 ̇
   )        (2.30) 

From the Fluid Equation, (2.27), we make the following simplification 

 ̇
 

 ̇
               (2.31) 

Substituting (2.31) into (2.30) gives 

 ̈

 
  

   

   
             (2.32) 

Equation (2.31) is the Acceleration Equation which independent of the curvature. It 

contains pressure, the pressure associated with density is       . If   is positive, 
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the acceleration will be negative (i.e, the value of  ̇ is decreased, hence, reducing the 

relative velocity of any two points in the Universe). 

2.5 Equation of State 

To find the scale factor, energy density and pressure an equation that relates pressure 

and energy density. The mathematical relation is known as the equation of state 

given as  

                 (2.33) 

For cosmological substances, the equation of state is simplified as [1] 

             (2.34) 

where  , is a dimensionless number, called the equation of state parameter. 

For a low-density gas of non-relativistic massive particle of temperature T, and root 

mean square thermal velocity      equation of state parameter is given by 

  
    

              

For photons and other massless particles that are relativistic in nature, the equation of 

state is  

     
 

 
            (2.35) 

Particular values of   are of particular interest in cosmology. For a Universe with 

non-relativistic matter,    . For a Universe filled with photons and other 

relativistic particles,   
 

 
. The case where    

 

 
 is of great significant in 

cosmology because it provides a positive acceleration according to acceleration 

equation. The component of the Universe characterized by    
 

 
 indicates dark 

energy. For a case with     , has P    indicates the universe contains 

cosmological constants. 
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2.6 Effect of Cosmological Constants, Λ 

Einstein was one of such persons that believed in static universe but his theory of 

general relativity did not support a static universe. To permit a static universe he 

proposed a change in the equations by introducing what is termed Cosmological 

Constant Λ appears in the Friedmann Equation  

      
   

   
     

   

  
 

 

     
 

 

 
       (2.36) 

By introducing the cosmological constant, the fluid equation is not changed 

 ̇   
 ̇

 
                (2.36b) 

The acceleration equation takes the form 

 ̈

 
  

   

   
       

 

 
       (2.37) 

At present time, the Friedmann Equation with cosmological constant is 

  
  

   

      
   

  
  

 

 
       (2.38) 

We define the critical density as 

   
     

 

   
          (2.39) 

The dimensionless density parameters are defined from equation (2.38) as 

   
 

  
 

    

     
 ,     

   

  
   

    and      
 

   
    (2.40) 

The three are related conveniently by 

                 (2.41) 

2.7 A Simple Solution of the Friedmann Equation in Flat Space 

From equations (2.36) and (2.34) we can write 

 ̇

 
  

 ̇

 
            (2.42) 

We obtain the solution of the above equation to be  

     
              (2.43) 
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For k = 0, equation (2.28) becomes 

(
 ̇

 
)
 

 
   

 
   

             (2.44) 

Or 

 (
 ̇

 
)
 

   
          

Hence,  

   ̇     
 

      

  

Therefore,  

           
 

        

This gives the scale factor of the universe for this model. 
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Chapter 3 

3 GENERAL RELATIVITY AND COSMOLOGY 

The theory of General Relativity was proposed by Einstein in 1916, is a modified 

theory of gravity. It connects gravitational field with geometry of space-time and 

provides a level playground to discuss our universe. By so doing, it incorporates the 

gravitational field within the framework of Special Relativity to discuss the universe. 

The Newton‟s theory, which was the initial accepted theory of gravity, tends to have 

fatal flaws, because of its inconsistency with the theory of special relativity.  

According to Newton, gravitational field intensity   is given by 

                            
  

 
      (3.1) 

     is the gravitational potential (a scalar field) and satisfied the Laplace‟s and 

Poisson‟s equations 

                               (3.2) 

  depends on   and not on time t. But, Special Relativity is associated with the 

Lorentz Covariant Field; a four-vector rather than three-vector field is both spatial 

and temporary dependent [14]. In this field, the equations of gravity look alike in all 

reference and connected by the Lorentz Transformation. 

Einstein‟s theory of general relativity is based on two important postulates namely: 

- The principle of equivalence; making use of the postulate of Galileo, the 

equivalence principle permits the equality of gravity and acceleration, thereby 

allowing a locally switching off of the gravitational effect. 
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- The covariance principle: this asserts that, laws of Physics should take the 

same form in all inertial and accelerating frames of reference. 

Einstein began from the equivalence principle which is derived from the basics of 

Newtonian mechanics. It states that, no experiment in Physics can distinguish 

between a gravitational field and accelerating frame of reference. By applying the 

principle of the equivalence principle to a free falling body, gravity is ceased and the 

relativity acceleration of the body can be attributed to the curvature of space-time. 

The Newtonian concept of gravitation is replaced by curvature of space-time in 

Einstein‟s general relativity. Einstein summed it up as thus; mass (source of energy) 

causes space to curve, and curvature caused mass to move [1]. 

The theory of general relativity consist of the Einstein‟s field equation 

         
 

 
     

   

           (3.2)   

The description of the motion of a free falling particle is governed by space-time 

coordinate   , where            . 

                                (3.3) 

In Minkowski space-time, the metric is given by 

                      ̅       (3.4) 

Where             and the Minkowskian metric tensor is 

‖   ‖                         (3.5) 

Under coordinate transformation,        ̅   and  

                (3.6) 
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Where     is a symmetric metric given by       
  

   

   
 As the particles move 

freely, its motion is given by four-acceleration vector whose magnitude is zero and 

given by 

    

                                    (3.7)  

Infinitesimal variation     is given as  

    
   

       
   

              (3.8) 

3.1 Geodesic Equation 

A geodesic, replaced the notion of a straight line in curved spacetime. A free falling 

particle will move along a geodesic. General Relativity envisage not to be a force but 

rather a consequence of a curved spacetime geometry with stress-energy tensor 

(matter content, for instance) as source of curvature. In particular, a path or trajectory 

of a particle free from external and gravitational forces is a form of geodesic. 

According to [14], the Geodesic equation takes the form 

  
    

       
    

  

   

  
            (3.9)    

Where    
 

 
   

   

    

       denotes the Christoffel Symbol. Using Einstein‟s 

Summation, we rewrite equation (3.8) as 

    
   

   
                 

   

   
         (3.10) 

The invariant interval can now take the form 

       
   

   

   

   
                       (3.11) 

Where        
   

   

   

   , is the metric tensor which has the following properties: 

i. It is a symmetric tensor (i.e,         )  

ii. Inverse matrix, defined by          
 

 (Kronecker Delta ). 
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The metric    , contains the required information concerning spacetime (curvature), 

it contains the needed information about gravitational field since it is equivalent to 

gravity.  

3.2 The Christoffel Symbol (Metric Connection) 

Recall that the metric tensor was given by 

        
   

   

   

   
 

Replacing   by   we obtain  

       
   

   

   

   
        (3.12) 

Also, if we replaced the index  , with  , we have 

         
   

   

   

           (3.13) 

Taking the partial derivative of     with respect to    

    

     
 

        
   

   

   

      =    
    

       
   

       
   

   

    

        (3.14) 

To rewrite the Christofell symbol, given by 

   
 

 
   

   

    

              (3.15) 

we multiply each side of the equation above by 
   

   
 to obtain 

(   
 

)( 
   

     
   

   

    

      (
   

   )   
   

   

   

    
    

          (3.16) 

Where 
   

   

   

   
 

   

   
   

    if     and 0 if    . Putting     

(   
 

) ( 
   

   
)  

    

      
       (3.17) 

Substituting (3.17) into (3.14) we obtain 

  
    

        
   

   

   

      
 

    
   

   

   

      
 

     (3.18) 

Equation (3.18) can be written as 
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       (3.19) 

Swapping   with ν in equation (3.19) 

    

           
 

       
 

       (3.20) 

Again, swapping   and   we obtain 

    

    
       

 
       

 
       (3.21) 

Adding (3.19) + (3.20) – (3.21) yield 

    

     
    

     
    

           
 

       
 

        
 

       
 

 (      
 

 

      
 

 )         
 

  

Or  

      
 

 
 

 
 
    

     
    

     
    

           (3.22) 

Multiplying both sides of (3.22) by     gives 

         
 

   
 
   

 
     

 
 
    

     
    

     
    

         (3.23) 

Putting     we have 

   
 

 
 

 
    

    

     
    

     
    

           (3.24) 

Equation (3.24) is the so called the Christoffel Symbol or Metric connection. 

3.3 Covariant Derivatives 

The principle of general covariance asserts that laws of physics should take the same 

form in all frames of reference. That is, they are expressed as balanced tensor 

relationships that are covariant under general coordinate transformation [2]. 

However, for a vector with component  , the derivative 
   

    does not transform 

smoothly under general coordinate transformation to be a component of a rank 2 

tensor. By the process of covariant differentiation, we obtain a tensor obeying the 
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principle of general covariance. For a contravariant tensor defined as       . The 

rate of change of the components with respect to    is 

  

    
   

           

    
   

           
 

  ́    (3.25) 

Swapping   with    in the second term of the RHS leads to 

  

   
 

   

   
        

   ́   
   

   
      

       

The covariant derivative of a contravariant tensor is given by 

            
   

   

   
      

      (3.26) 

Similarly, the covariant derivative of a covariant tensor is given by 

               
   

         
      (3.2b) 

For other higher ranked tensors, the following equations hold 

   
  

          
 

       
          (3.27) 

               
 

       
 

         (3.28) 

    
 

     
 

    
 

  
 

    
 

  
 

      (3.29) 

If we consider a vector V, that is parallel transported from point P around an 

infinitesimal flat surface of sides     and    . Due to the difference in curvature of 

the space, the victor arrived at P as     . The difference between V and      is 

given by [2]: 

         ∑     
         

           (3.30) 

Where,     
  is a measure of the curvature,in flat space,        such that      

   . 

Under general coordinate transformation,      
  transforms a four rank tensor with 1 

contravariant index and three covariant indices [2].      
  is known as the Riemann 
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Curvature Tensor or simply Riemann Tensor which vanishes at flat space and 

exist at curved space. It can be shown that the Riemann tensor is given by 

    
  

    
 

   
 

    
 

   
    

    
     

    
      (3.31) 

In   dimensions, the Riemann tensor has   components. For example, in three-

dimensions, it has 81 components. Due to symmetry, in the number of components 

are reduced to sixteen in three-dimensional space. The contraction of the first and the 

last indices of the Riemann tensor gives a rank 2 tensor known as the Ricci tensor 

which of the form 

                   (3.32) 

The Ricci tensor is symmetric, i.e        . A further contraction of the Ricci 

tensor gives 

                (3.32) 

The quantity R is known as the curvature scalar. 

3.4 Stress-Energy-Momentum Tensor  

The density, flux of energy and momentum in spacetime are described by a tensor 

quantity known as stress-energy-momentum tensor or energy-momentum tensor. In 

the Newtonian theory of gravity, the source of gravitation is – a conserved quantity is 

mass or compactly mass density. In special relativity, the mass of a particle is not a 

conserved quantity, but is related to its energy E, and momentum P, by [2] 

                     (3.33) 

Because there are conservation laws that relate energy and momentum, in relativistic 

theory the source of gravitation would not be only mass, energy and momentum are 

also involved. The stress-energy-momentum tensor is a source of gravitational field 

in Einstein field equations of General Relativity; it is the property of matter, radiation 
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and non-gravitational fields. The energy-momentum tensor is a rank 2 tensor denoted 

by     specified events in spacetime by sixteen components. It is a symmetric tensor 

i.e,        , so only ten of its components are independent. It has the following 

general significance in the neighborhood of each event in spacetime: 

     , is the local energy density which includes all mass-energy contribution. 

         is the density of the  -component of momentum 

         is the rate of flow the  -component of momentum per unit area 

perpendicular to the  -direction. 

For a Universe filled with dust, the components of energy-momentum tensor is given 

by 

                 (3.34) 

where U is a four-velocity. When described in matrix representation, the energy-

momentum tensor for dust particle is given by 

      [

      
    
    
    

]      (3.35)  

Here, the only non-zero component is     which represents the energy density. 

Similarly, for an ideal fluid with density   and pressure   that acts in every direction, 

the component of the energy-momentum tensor of the fluid is given by 

    (  
 

  )              (3.36) 

In matrix form, the above equation becomes 

      [

      
    
    
    

]       (3.37) 
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Due to conservation of relativistic energy and momentum in an inertial frame of 

reference, the covariant derivative of energy-momentum tensor is conserved 

                (3.38)  

3.5 FLRW Cosmology 

To describe the Universe on large scales, the Friedmann-Lemaitre-Robertson-Walker 

(FLRW) metric based on assumption of a high symmetry (Cosmological Principle) is 

used [2]. Since it does not have crossed terms, the FLRW metric describes an 

isotropic universe, and homogeneous universe due to its spherical symmetry [16]. 

The Friedmann-Lemaitre-Robertson-Walker is given by 

              *
   

                      +   (3.39) 

From the metric, the non-vanishing components of the Einstein tensor are 

     (
 

   
 ̇

  )

    
  

     
    ̇     ̈ 

           ̇     ̈ 

                ̇     ̈ ⌉
⌉
⌉
⌉
⌉
 

     (3.40)   

Assuming that the matter content of the Universe is described by ideal fluid, the 

energy-momentum tensor is given by 

                          (3.41) 

Where              and        
  

In comoving coordinates, the non-zero components of the energy-momentum tensor 

are 

 

     

    
   

     

         

              ⌉
⌉
⌉
⌉
 

       (3.42) 

Using equations (3.40) and (3.42) on the Einstein Equation given by  
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             (3.43) 

We obtain two independent equations of the form 

 (
 

  
 

 ̇ 

  
)  

 

  
          (3.44) 

     ̇     ̈            (3.45) 

Solving the above two equations, we obtain the famous Friedmann equations derived 

earlier as 

   
   

   
  

 

           (3.46) 

 ̇                    (3.47) 

Using the above two equations, we get the acceleration equation 

 ̈

 
 

         

   
          (3.48) 

From equation (3.46), we rewrite in terms of density parameter the Friedmann 

Equation as 

    
 

       

The homogeneity and isotropy of the metric equation (3.39) is seen in comoving 

coordinates (       ) that define a rest frame. Stationary objects fixed values of 

(      ) and physical distance between two stationary objects changes as the 

spacetime expands. If we consider two galaxies, A at   ̅          and B at   ̅  

       . The physical distance measured at fixed time t (      and along a radial 

path         is obtained by integrating the metric 

       ∫   
  

  
 ∫ √

        

     
     ∫

  

√     

 

 

 

 

     {

 

√ 
     √                              

                                                  
 

√  
      √                   

}

⌉
⌉
⌉
⌉
⌉
⌉
 

   (3.49) 
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Hence, the constant coordinate distance between A and B, also known as the 

comoving distance is 

   
  ∫

  

√     

 

 
         (3.50) 

While the proper or physical distance is  

           
         (3.51) 

3.6 Inflation 

The Universe in its early stages of evolution involves exponential expansion in an 

unstable vacuum-like state. The cosmic scenario is called inflation. Inflation ended 

when the energy of the unstable vacuum (of a classical scalar field) transforms into 

the energy of hot dense matter. Subsequently, the evolution of the universe is 

described by hot universe theory. The standard Hot Big Bang scenario, which the 

very early universe dominated by radiation has three noticeable problems namely; 

flatness problem, horizon problem and monopole problem [1]. Alan Guth in 1987 

gave a simple inflationary model in which there was supercooling during the era of 

phase transition [20]. Guth‟s model is now considered „old model‟ and is problematic 

when considering the probability of formation of bubbles. This is because to standard 

problems of cosmology not being solved and the universe being anisotropic and 

inhomogeneous [20]. A new inflation theory asserts that inflation begins in the 

presence of unstable state of at peak of effective potential of false vacuum. Here 

inflation field rolls down slowly in effective potential that leads to homogeneous 

universe. The inflation field     is required to have a flat plateau of its potential 

when φ = 0 which is another fine-tuning problem [21]. According to [20], great 

success was achieved in 1983 when chaotic inflation theory was introduced which 

solves the problems of both old and inflation theory. If we consider a scalar field φ 

with mass   and potential      which has a minimum value φ = 0 define as  
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          (3.52) 

If the universe is assumed to be homogeneous, then the Einstein‟s equation becomes 

[20]. 

   
 

   
 

 
                (3.53) 

3.7 Flatness Problem 

From the Friedmann equation given by 

    
 

    
         (3.54) 

The quantity      in the standard big bang evolution is always on the decrease. The 

value of Ω increases and keeps shifting away from unity. On the contrary, 

observations show that Ω is within the magnitude of 1, this is somewhat kind of 

strange and indicate that its value had to be even closer in the past.     

         is the required condition for during the epoch of nucleosynthesis [Liddle, 

1996] and at Planck epoch the required condition is             . Hence, to 

have the current value of Ω match with observation indicates a very fine-tuning of 

the conditions in the early universe. Otherwise, the universe would have collapsed 

after the big bang or rapidly expand and not allowing structure to form. The 

expansion of the universe would be thought to create a lag in its flatness, thus 

making it less flat. Nevertheless, the universe still maintains its flatness. This is 

known as flatness problem. 

3.8 Horizon Problem 

The evolution of the Universe over time results in wavelength of photon lesser than 

the Hubble radius. Particle Horizon       where photons travel from the beginning 

of the Universe      is   

             
         (3.55) 
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Where    
  is the comoving distance. If     ,    

     and characterized an era 

dominated by matter. During the epoch of recombination when decoupling occurred, 

photons in the CMB are emitted. Causality region of photons is small, since any 

regions which are more than two degrees apart in CMB are causally separated at 

decoupling. However, due to the homogeneity of the Universe, the CMB photons are 

across all the sky is in thermal equilibrium with each other. This is called The 

Horizon Problem. 

3.9 The Monopole Problem 

Many modern particle theories predict the existence of magnetic monopoles, while 

search is still on the way for magnetic monopole which has not yet been observed. 

According to theoretical frameworks, these monopoles were created in the early 

universe during the breaking of supersymmetry. The monopoles dilutes slower than 

radiation, it is expected that they dominate the present universe. This completely 

negates the present observations. This has been termed The Monopole Problem. 
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Chapter 4 

4 COSMOLOGY WITH VARIABLE PHYSICAL 

CONSTANTS 

The principle of general covariance asserts that the laws of Physics take the same 

form in all frames of reference. This form one the basis in which Einstein‟s theory of 

General Relativity holds its ground. However, recent Astronomical observations 

from quasar linked the fine structure constant to depend on redshift – hence 

suggesting its variation with cosmological time [22]. According to [23], 

observational data relating the luminosity-redshift from type Ia supernovae now at 

range    . The varying speed of light theory is geared towards explaining: hard 

breaking the Lorentz invariance, bimetric theories (with postulates that the speeds of 

gravity and light are not the same), locally Lorentz invariance. By varying the speed 

of light, the principle of general covariance is violated and the laws of Physics are 

now valid only in some special frames.  Varying Speed of Light (VSL) theory has 

successfully handled some fundamental contention in cosmology such as flatness, 

horizon and Lambda problem. [24], introduced the VSL scenario using the power 

law with           in which c changes from    to    during the phase transition. 

Where        is the scale factor and c0 is a constant. It is worth noting that changes in 

c do not influence the geometry of the Universe.  

 Aside c, other physical constants of nature G and Λ that occurred in both the 

Einstein field equation and Friedmann equation have been varied in the literatures. In 
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the Einstein field equation for instance, the gravitational constant G serves as a 

coupling constant between matter and gravity [25]. At the infant stage of our 

universe, G appears to be time dependent [4]. In other to unify gravitation and 

elementary particles Physics, appendages of Einstein‟s Gravitation with time 

dependent G have been introduced [26]. By so doing, Λ which is interpreted as due 

to quantum mechanics and vacuum Physics is also varied. The inconsistency 

between observed value of the vacuum energy density and the theoretical large value 

of zero point-point energy as envisaged by the quantum field theory is called 

cosmological constant problem. [27] gives an elaborate discussion of the catastrophe 

and the effects of cosmology with time varying physical constants.  

According to [28], the variation of the cosmological constant with time takes the 

form           while, [29] opines that       where      is the scale factor in 

the Robertson-Walker metric. In another model, [30] proposed that   
 ̈

 
. Working 

on the Robertson-Walker universe with variable Λ and G, [31] proposed that 

   
 

  
. 

4.1 Cosmology with Variable G and Λ 

Consider the spatially Homogeneous and isotropic Friedmann-Robertson-Walker 

(FRW) line element given by  

              *
   

                      +  (4.1) 

Where        and           is the respective curvature parameter for the 

open, flat and closed universe. The Einstein field equation with variable   and Λ 

terms is given by 

    
 

 
                      (4.2) 
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Assuming that the matter in the universe is represented by the energy-momentum 

tensor of s perfect fluid given  

                         (4.3) 

Where   and   denote respective mass density and pressure of the matter and    is 

the four velocity satisfying 

                     (4.4) 

Using (4.1), (4.3), (4.4) in (4.2), we obtain [31] 

            
 

  
      (4.5)   

 
 ̈

 
  

 ̇

 
   

 

                 (4.6) 

Taking the time derivative of equation (4.5), we obtain 

  ( ̇    ̇)    
 ̇

 
(  

 ̈

 
  

 ̇ 

   
  

  )   ̇    (4.7) 

Adding (4.5) and (4.6) yields 

  
 ̈

 
  

 ̇ 

   
  

                 (4.8) 

Equation (4.7) takes the form 

  ( ̇    ̇)   
 ̇

 
     

 ̇

 
 

 ̇

  
     (4.9)  

Equation (4.9) can be rewritten as  

  ( ̇  
 ̇

  
)   *

 

  
           ̇+        (4.10) 

From thermodynamics perspective, the quantity 
 

  
           ̇    is the famous 

conservation equation. Hence, equation (4.10) reduces to [31] 

 ̇  
 ̇

  
           (4.11) 

Combining equations (4.5) and (4.6), we get 

  ̈             
 

   
       (4.12) 

Using the proposal theory that [31] 
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,   

 

   
      

 

   
     (4.13) 

Where         are constants, and applying the EOS of the form             

to the conservation equation we get that,  

 ̇

 
   

 ̇

 
             (4.14) 

From equation (13), we have 

 ̇     
 ̇

            (4.15) 

Combining equation (4.15) with (4.11), we obtain 

 ̇  
 

  
    ̇         (4.16) 

From equation (4.16) and (4.13) yield, 

 ̇

 
 

 

 

 ̇

 
         (4.17) 

Using equation (4.11)   

 ̇  
 ̇

  
         (4.18) 

From equation (4.13) and (4.18) we obtain 

 ̇

 
  

 

 

 ̇

 
         (4.19) 

Using (4.17) and (4.19), we get 

 ̇

 
   

 ̇

 
         (4.20) 

Taking the integral of equation (4.14), (4.19) and (4.20) with the initial conditions 

                       we obtain 

     
 

  
             

 

  
 

 

          
  

 
     (4.21) 

Putting equation (4.13) into (4.5) we obtain  

 ̇  √(
   

 
)         √(

   

 
)          (4.22) 



38 

 

Applying the EOS and equation (4.13) into (4.12), we get 

  ̈     
       

 
 

 

 
        (4.23) 

In this model, as the density decreases from   to   , G increases to    and R expands 

from R to   . It can be deduced from equation (4.21) that       and    . As 

   ,     and     as the universe expands. We can infer from (4.20) that 

   . Also, from equation (4.11),    ,  ̇    then  ̇    such that as the 

universe expands, Λ must be a negative and increasing  function of cosmic time. 

Equation (4.23) implies that  ̈    and the model is a decelerating one. 

In another model, we used the equation of state of the form  

                 (4.24) 

The energy conservation equation is given by  

 ̇   
 ̇

 
              (4.25) 

Using (4.24) in (4.25) and integrating, we get 

  
 

            (4.26) 

where B is a constant of integration. To obtain B, we assume that the present values 

of     ,      is the critical density at     . Equation (4.26) takes the form 

    
  

   

            (4.27) 

We define the deceleration parameter    
  ̈

 ̇     
 ̇

  , for flat space, (4.5) and 

(4.6) respectively become 

                  (4.28) 

                      (4.29) 

Assuming that the cosmological constant varies as the square of the Hubble 

parameter, i.e 



39 

 

                 (4.30) 

Using equations (4.24), (4.28), (4.28) and (4.30) we get 

  ̇                   (4.31) 

Equation (4.31) has the solution of the form 

      
  

              
        (4.32) 

By evaluating the constant of integration B, we obtain 

     
   

                  
       (4.33)  

From (4.33) we obtain  

  
 

        
(
  

 
  )    

  

 
      (4.34) 

From equation (4.28) and (4.30), we obtain 

  
 

   
              (4.35) 

Integrating equation (4.33), we obtain      to be, 

                           
 

         (4.36) 

Now, putting (4.36) into (4.27) we obtain 

         
     

                       
 

        (4.37) 

Inserting equation (4.33) into (4.30) we find  

     
    

 

                     
       (4.38) 

To find G(t), we use equation (4.11) given as  ̇  
 ̇

  
   by inserting into it (4.37) 

and (4.38) to obtain, 

     
                           

  
   

      
     

        (4.39)  

At this point, we can now define quantities of cosmic importance such as: 

The Deceleration Parameter given as 
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 ̇

  
    

      

 
       (4.40) 

The Expansion Scalar expressed as 

     
   

                  
      (4.41) 

For flat universe, the density parameter is obtained as, 

  
    

   
   

 

 
        (4.42) 

 
Figure 4.1: Deceleration parameter for different choices of β and w 

4.2 Cosmology with Variable c and Λ 

For variable c, the spatially Homogeneous and isotropic Friedmann-Robertson-

Walker (FRW) line becomes 

                   *
   

                      + (4.24) 
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Where        and           remain the respective curvature parameter for 

the open, flat and closed universe. The Einstein field equation with variable   and Λ 

terms is given by 

    
 

 
          

      

  
      (4.25) 

Assuming that the matter in the universe is represented by the energy-momentum 

tensor of a perfect fluid given  

    (  
 

  
)                 (4.26) 

Where   and   denote respective mass density and pressure of the matter and    is 

the four velocity satisfying 

                     (4.27) 

The solution to the Einstein become [22] 

               
   

          (4.28)   
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         (4.29) 

For flat space,     and using the equation of state of the form 

                     (4.30) 

We obtain 

 
 ̈

 
 (

    

 
) (

 ̇

 
)
 

             (4.31) 

According to [22], there is a between         and suggest that either   to vary and Λ 

to be constant and vice versa. For instance,       or      and Λ= constant 

corresponds to        or       and c = constant. This follows the variation law 

that asserts that, one can take either c or Λ to be time depend provided on the 

parameters is held constant. It is obvious that equation (4.31) do not have analytical 

solution and [22] resolve to obtaining a numerical solution by setting Λ= constant 
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and     and introducing the density parameters terms    
   

   
 for matter and 

   
   

   
 for cosmological term. Note that the present time values for the abundance 

components are         and         and the Hubble parameter is taken to be 

              and the age of the universe is    
 

 
  

  . 

Here we have assumed that        and       without keeping any constant and 

put into equation (4.31) to obtain the scale factor as a function of the cosmic time and 

the acceleration of the universe for the model of variable speed of light. The first 

instant is the case where    , and equation (4.31) reduced to 

 

 

̈  
 

 
(
 ̇

 
)
 

            (4.32) 

The solution of the above equation is given by  

 √   
     

 
 √  

√ 
 

 

 
       (4.33) 

And we obtain the scale factor to be given as  

      (
√   √  

  
√ 
 

 
)

 

 

       (4.34) 

The rate of expansion of the universe is shown in figure 4.2 below. After the Big 

Bang scenario, the universe has been in continuous exponential expansion as seen in 

equation (4.34). 
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Figure 4.2: Variation of the scale factor with cosmic time 

To check the acceleration of the varying speed of light model, we resolve to 

obtaining numerical solution of (4.31). The figure below show the cases in when 
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Figure 4.3: The expansion of universe for r=0.2 

 
Figure 4.4: The expansion of universe for r=1.0 
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The solution is singular with the evolution of the universe and as    , the solution 

becomes nonsingular and inflationary model , implying  ̈   . Hence, the model 

presents an accelerating one which is a good candidate for studying dark energy. The 

universe evolves from a singularity with      and undergoes rapid exponential 

expansion. This is characterized by what is today known as cosmic inflation. As   

increases, the exponential expansion slows down as shown in figure 4.3. 

    ̇   ,    
  

     
        (4.35) 

As will be expected,      ̇    satisfies the dimensionality of physical quantities 

since      denotes length, its directional time derivative must give velocity. 

Therefore, equation (4.31) becomes  

 ̈  (
    

 
 

  

 
)

 ̇ 

 
         (4.36) 

Where       
  is a constant.  

Solving equation (9), we obtain a solution of the form 

                    
  

            (4.37) 

Where    and    are real constants  and simplifying with boundary conditions yield 

        (
   

 
)     

 

            (4.38) 

Equation (11) gives the scale factor as a function of cosmic time for variable speed of 

light. The constant     but may either be negative or positive, depending on 

dominance of the universe. The rate of expansion of the universe is affected its 

content. Indeed the speed of light would not have been constant in a multiple 

universe, whose content changes over different cosmic epoch. Taking      and 

    , we obtain the age of the universe to be 

   
 

      
  

          (4.39) 



46 

 

The constant A has significance in determining the current age of the universe. With 

adequate modification of A, we can obtain the present age of the universe with good 

precision than with    
 

      
  

   model. 

 
Figure 4.5: Variation of scale factor with cosmic time for c   a  (t) 

Fig shows the variation of the scale factor with cosmic as a function of cosmic time 

according to the power law. At     and     is characterized by a zero-sized 

universe with infinite density, which describes the Big Bang scenario. For a universe 

dominated with dust, that is     and      may not infer a singularity but a 

mathematical curiosity. If consider the case where   
 

 
 (radiation case), we found 

from equation (4.35) that  ̈   , which is accelerating model of the universe. 
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4.3 Cosmology with Linearly Varying Deceleration Parameter 

The deceleration parameter q, is a factor which indicates the rate at which the 

universe‟s expansion is slowing down due to self-gravitation. In recent times, 

observations suggest that the rate of expansion of the universe is accelerating, 

thereby yielding negative values to the deceleration parameter. Berman [32],[33] 

proposed the theory of constant deceleration parameter (CDP) in which q is a 

constant. The CDP model has been used to obtain cosmological models in terms of 

Dark Energy (DE) and some modified theories of gravity such as      gravity. 

Berman proposed law of variation for the Hubble parameter using Robertson-Walker 

spacetimes and the theory of general relativity gives the deceleration parameter as 

  
   ̈

 ̇             (4.40)  

  is the scale factor and     is a constant. The deceleration parameter can attain 

the value of    . The discovery of the present accelerating universe has induced 

the study of cosmological models in aspect of dark energy since       . We 

view a generalized LVDP in the form [34] 

  
   ̈

 ̇ 
               (4.41) 

Where     and     are constants. Equation (4.41), reduces to equation (4.40) if 

   . Equation (4.41) is a generalization of (4.40). If    , the expansion of the 

universe is decelerating, if      it is constant expansion. An accelerating power 

law expansion is exhibited if        and de Sitter expansion (exponential 

expansion) if       while       corresponds to super-exponential expansion 

[35][36]. In the CDP model, the fastest rate of expansion is exponential expansion 

whereas in LVDP model, the universe without contradiction evolves into the super-

exponential expansion stage except where     depicting the fate of the universe 
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according to observations [36],[37]. From our metric of spacetime and the Einstein 

Field Equation, the Friedmann equations (4.5) and (4.6) can be written as without Λ 

as  

 (
 ̇

 
)
 

  
 

             (4.42)   

 
 ̇

 
    

 ̈

 
 

 

              (4.43) 

Now, the solutions to the solutions to the differential equation (4.41) are  

            [
 

√       
        (

    

√       
)]for     and     (4.44) 

              
 

   for     and        (4.45) 

                   for     and        (4.46) 

Where                    and    are constants of integration. Equations (4.45) and 

(4.46) correspond to solutions to CDP model and we only dwell attention to (4.44) 

which corresponds to LVDP. If we put      we obtain the scale factor to be 

          *
 

 
        (

  

 
  )+      (4.46) 

Hence, the Hubble parameter of the universe is given by 

  
 ̇

 
 

 

        
       (4.47) 

Substituting equation (4.46) into (4.42) and (4.43), the energy density becomes 

  
  

          
  

 

  
    *

  

 
        (

  

 
  )+   (4.48)  

And the pressure 

    
       

 

 

          
 

 

  
    *

  

 
        (

  

 
  )+   (4.49)  

From the equation of state     , the EOS parameter is obtained to be 

  
    

 (       
 

 
)   *

  

 
       (

  

 
  )+            

    
    *

  

 
       (

  

 
  )+             

   (4.50) 
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The deceleration parameter as a function of redshift      
    

 
 where      is the 

present value of the scale factor is given by 

               *
 

 
                (

      

 
  )+ (4.51) 

Where           for CDP (or     for the present case)  

 
Figure 4.6: Scale factor against cosmic time, for m=1.6 and k=0.097 
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Figure 4.7: Hubble parameter against time, for m=1.6 and k=0.097 

 
Figure 4.8: Deceleration parameter against time, for m=1.6 and k=0.097 

Figure 4.5 present a plot of the scale factor against cosmic time which shows that the 

universe originates from a big bang at     and ends at a big rip at     . This is 

closer to the lifetime of the universe given by [37] to be        . Figure 4.6 shows 

the variation of the Hubble parameter with cosmic time. It is observed that the 

Hubble parameter diverges at the beginning and end of the universe. A variation of 
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the deceleration parameter with time in figure 4.7 initial       indicating that the 

universe started with decelerating expansion and reaches         which implies 

the phase of accelerating expansion of the universe. The universe enters this phase of 

accelerating expansion at       and       . 
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Chapter 5 

5 SUMMARY AND CONCLUSION 

Indeed, the speed of light, Λ and the gravitational constant G, may not have been real 

physical constants at the early inhomogeneous and anisotropic universe but may be 

considered constants in the present day scenario [39,40,41,42]. For the time varying 

Λ and G case in matter dominated FWR-Universe, the Hubble constant will only be a 

constant if and only if Λ=0, however it has an inverse relation with cosmic time [12]. 

Furthermore, as proposed, for the Einstein equations with time varying G and Λ, it is 

observed that the conservation law asserts that      for G > 0 and G < 0, Λ < 0 for 

 ̇   . For           the solution of the Friedmann equation for flat spacetime 

and the deceleration parameter, expansion scalar and statefinder parameter are 

obtained. For variable c, we proposed        and       and obtain analytical 

solution of the scale for the case where    . For      we resolve to obtaining 

numerical solution. An interesting case is when we vary the speed of light with the 

rate of change of the scale factor. We found out that that the constant of variation 

plays an important role in determining the age of the universe under consideration. 

The study linearly varying deceleration parameter is a generalization of the constant 

deceleration parameter ansatz proposed by Berman. It is observed that the universe 

starts with positive deceleration parameter indicating decelerating expansion, then 

transits to a negative deceleration parameter which, indicates the phase of 

accelerating expansion. 
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