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ABSTRACT

In this thesis, the theory of classical orthogonal polynomials which are Hermite,
Laguerre and Jacobi polynomials will be studied. To begin with, we will supply an
outline regarding the special functions. Followed by examples of properties for
orthogonal polynomials in Chapter 2. In the third chapter, we begin classical
orthogonal polynomials. To start with, we collate the orthogonal relation, Rodrigues
formulas followed by the norm of the classical orthogonal polynomials. In the same
chapter, the division of the collected examples of classical orthogonal polynomials
into three chapters and assign them the weight function, intermission of the
orthogonality, followed by differential equations, hypergeometric representation. To

finalise we explain limit relations between polynomials.

Keywords: Classical orthogonal polynomials, hypergeometric functions, second

order differential equations, Rodrigues formula.



(0Y/

Bu tezde Hermite, Laguerre ve Jacobi olan klasik ortogonal polinomlar agiklanmustir.
Oncelikli olarak dzel fonksiyonlar hakkinda bilgi verilmistir. Ilerleyen béliimlerinde
ise ortogonal polinomlarin 6zelikleri anlatilmistir. Daha sonraki boliimde de klasik
ortogonal polinomlar tanimlanarak ortogonallik iligkisi anlatilmistir. Rodrigues
formiilii ile klasik ortogonal polinomlar igin norm hesabi1 yapilmigtir. Daha sonra ise
Klasik ortogonal polinom orneklerinin ti¢ boliime ayrildigini goriiriiz. Bunlarin her
biri igin ayr1 ayr1 agirhk fonksiyonlari, ortogonallik araligi, ikinci dereceden
diferensiyel denklemi ve hipergeometrik gdsterimi verilerek anlatilmistir. Tezin son

boliimiinde de polinomlar arasindaki limit iligkileri agiklanmustir.

Anahtar Kelimeler: Klasik ortogonal polinomlar, hipergeometrik fonksiyon, ikinci

dereceden diferansiyel denklem, Rodrigues formiilii.
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Chapter 1

INTRODUCTION

1.1 Preliminaries

Definition 1.1 (Inner Product Space) Assume Y is a vector space then scalar valued
function <,>:YxY — L with L = R or C is said to be inner product space if it
fulfills the following axioms which is denoted by (Y, <>);

1) Vuvwey <utv,w>=<uw>+<v,w>,

2) VuveYandleLl <Luv>=Il<u,v>,

3) VuveY <uv>=<vu>,

4) VueY <uu>=20 or <uu>=0e u=0.

Example 1.2 Let C[m, n] be an inner product space where being the space of all real-
valued continuous functions on a closed interval [m,n]. The inner product is defined

as follows;

< hw>= fg h(x).w(x)dx where h,w € C[m,n] .

Theorem 1.3 Let u and v be any elements of Y and let (Y, <>) be inner product

space. Then u and v are orthogonal to each other if and only if < u,v >= 0.



Example 1.4 Assume we have two functions g(x) and w(x) and they are defined on
closed interval [m, n] . As stated in theorem 1.3, g(x) and w(x) are orthogonal on a

closed interval [m, n] provided that their inner product is zero

b
fg(x).w(x)dx = 0.

Definition 1.5 (Hypergeometric Equations) The 2™ order differential equation
D(x)k" (x) + E(x)k'(x) + yk(x) = 0, is said to be hypergeometric equation where

degree of D(x) is at most 2, degree of E (x) is at most 1 and y is a constant.

Theorem 1.6 Hypergeometric equations provides all the derivatives of the solution

of hypergeometric equations.

Definition 1.7 (Gamma Function) Let x be a Gamma function which is defined as

follows

rx) = [ e k*dk vx €R—{..,—2,—1,0} (1.1)

Gamma functions have some properties as follows:
1. I'(x+1)=xI'(x),

2. '(x+1)=x!,

w

T +m) = (Ol (),

B

r(3)=vm.
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Definition 1.8 (Beta Function) The Beta function is defined as follows;
B(w,y) = [, k""" (1 —k)*"'dk  where Re(w),Re(y) > 0. (1.2)
Gamma function can be written in terms of the beta function as follows;

rmwr)
B(w,y) =75 (13)
Definition 1.9 (Pochhammer Symbol) The Pochhammer symbol is denoted by
(), ,Wheren € Z* and x € R or C

Op=x(x+Dx+2)..(x+n—-1). (1.4)

Pochhammer Symbols have some properties as follows:

r'(x+n)
1' (x)n = F(x) ]

2. (=) =(CD*"x—n+1),,

3. (x),, = 22" (f)n (ﬂ)n, (1.5)

4. (x)n+p = (n(x+pn,

5. (x)n — (D)™ (—x)!

(=x-n)! '

6. (X)_p= -

(1-x)n ’

(-D'p!
—_ | — 2=
7. p—-D!'= . (1.6)

py _ P (=D)"(-p)
8. (l) Tup-nr T '

Definition 1.10 (Hypergeometric Functions) Let ,F. be generalized

hypergeometric series, which is defined as follows;

. o) v @Dr(@2)k-(ag)k y*
aFr(@y @z g Bu Bz - Brs¥) = B ) o "0, (L.7)



Properties of Hypergeometric Functions:

r(BOr(f1—a—az)
r(pi—a)r(f1—az)’

1. 2Fi(ay, az; ;1) =

(B—a)r
2. GR(-mail) =T

3. 1Fola; =) =1 —y)™*.

Definition 1.11 (Differential Equations of Hypergeometric Functions) The

hypergeometric function, which is defined as

[ee]

(a)k (@) y*
2Fi(ay, az;B5y) = Z M—,
L (B K
has the differential equation which is given below ;
yA—-yr" + [ —(a; +ay, + Dylr' — aya,r = 0. (1.8)

Definition 1.12 (Linear Functional) A linear functional is a linear operator that
consists of a vector space and L (R or €) which is stated as follows;

g:Y - L(Ror(C)



Chapter 2

ORTHOGONAL POLYNOMIALS

Definition 2.1 (Orthogonality on Intervals) Assume (a,b) is a finite or infinite open

interval in the real line R. {p,(x)}, m=0,1,2,..., is called an orthogonal set of
polynomials on (a,b) with respect to the weight function w(x) (= 0) if

[P Pm(IPs 0(x) dx = 0, m # s, (2.1)
with w(x) continuous or piecewise continuous or integrable, satisfying
0< [ x®mw(x)dx<o forallm.
Throughout the thesis, we will assume that for every orthogonal polynomials p,,(x)

the variable x is restricted with the closure of the interval (a,b) unless otherwise

specified.

Definition 2.2 (Orthogonality on Finite Point Sets) Assume X is a finite set of
distinct points, or a countable infinite set of distinct points on the real line R,
with w,, xeX, a set of non-negative constants. In that case, a system of
polynomials {p,(x)}, m=0,1,2,..., on X with respect to the weight function wy is
said to be orthogonal if
2xexPm(Xps®wy =0, m#*s (2.2)
When X is infinite provided that ,
YiexX*Mwy <0, m,s=0,1,..,N;m=#s, (2.3)

and



YxexPmX)psX)wy,=0; m,s=0,1,... ,N; m#s, (2.4)
when X is a finite set of N+1 distinct points, whereas in the second case the system

{pm(x)}is finite: m = 0,1, ..., N.

Definition 2.3 (X-Difference Operators) Provided that the orthogonality discrete

set X is {0,1,2,...N}or {0,1,2, ...}, in that instance the role of the differentiation
operator;—x in the case of classical orthogonal polynomials is placed by Ay, the

forward difference operator , or by V,, the backward difference operator.

If the orthogonality interval is (—oo, 00) or (0, o) , then the role of% can be placed

by 6x, the central difference operator in the imaginary direction .

Definition 2.4 (Normalization) The orthogonality relations from (2.1) to (2.4)
determine the polynomials p, (x) uniquely up to constant factors, which can be fixed

by suitable normalization.

To clarify
By = [ (0n(2))? @(%) dX 07 Tex(Pn(x)) 2y, (2.5)
For = J X2 (0))?0 () dX 07 Tyex x (P (x))2x, (26)
and

P (%) = kpx™ + K x™ L + kx4 -, (2.7

In that case there are two special types of normalization:
1. Orthonormal Orthogonal Polynomials with h, =1, k, > 0;

2. Monic Orthogonal Polynomials with k, = 1

6



Definition 2.5 (Normalization Functions) 1y, is called a normalization function

defined as follows;

b
Yoo f (P () w0 (x)dx,

for continuous orthogonal polynomials withm = 1,2, ...

Also,

Yz ) (pm() (),

xX€EX

for discrete orthogonal polynomials m = 1,2, ... , M where M— oo .

Definition 2.6 (Recurrence Relations) The polynomials {p,(x),p;(x),...} is an
orthogonal set which has a three-term recurrence relation which is given below,

xpn(x) = Anpn+1(x) + Bnpn(x) + Cnpn—l(x) n=12,..

Obviously the coefficients appearing in the relation depend on n.

1) First Form
Prs1(X) = (Apx + Bp)pn(x) — Cupp-1(x) (2.8)
A,, Bo(n=>0), and C,(n>1) appearing in (2.8) are real constants,

and A,_;A,C, > 0 forn = 1. We then have,

o
n kn )
_ (*nt1 _kn _ _hn
B, = (kn+1 kn) Ap= =12 Ay, (2.9)

_ Ank=n + Bnk—n — Kn+1 _ Ay hy

C =
" kn—l An—l hn—l



2) Second Form
xpn(x) = apPp1(X) + bppn(x) + cypn_q1 (%), nz=0 (2.10)
Here again the coefficients a, , b, (n =0), and ¢, (n>1) are real constants,

and a,_;c, = 0 whenn > 1. Thus,

= kn+1 '
_kn_Fne1 _ Bn
on = e et (2.11)
c. = l?n - anl?n+1 - bnEn —a hn
" kn—l not hn—l

e |f the orthogonal polynomials are orthonormal, then ¢, =a,_; (n>1).

e If the orthogonal polynomials are monic, thena, = 1 (n > 0).
On the contrary, if a system of polynomials {p,(x)} satisfies (2.10) with a,_;c, > 0
(n>1), then {p,(x)} is orthogonal with respect to some positive measure on R
(see Favard’s theorem). It is not necessarily for this measure to be of the form
w(x) dx and it need not necessarily be unique.
Proof: Any polynomial T, (x) of degree, can be expressed in terms of py, py, ... , Pn

and with coefficients S;,, such that

1,0 = ) Buni(3)
i=0

where

1

on(x)

Bin = —— [7 T, ()pi ()W (x) d, (2.12)

xpn+1(x) = AnPn+1(x) + Bnpn(x) + Cnpn—l(x)



Then we can write

n+1

xpn(x) = z Binbi(x),

xpn(x) = Bonbo(X) + Prnpr(x) + -+ + ﬁn+1,npn+1(x) .

The set of polynomials {p,(x), p1(x), ...} is orthogonal and every p,,(x) is
orthogonal to any polynomial with degree < n.

From (2.12)

1 b
in = 555 | PiCOACOWEIL,

xPn (%) = BonPo (%) + B1np1(x) + -+ + Br_1nPn-1(X) + Brnpn(x)
+ Bn+1nPns1(X).

Since the degree of xp;(x) isi + 1, the orthogonality property of p,, (x) yields the
coefficients f;,, to be all zero when i + 1 is less than n which has the form below;
XPn (X)=Br-1,1Pn-1(%) + BunPn (%) + Brs1nPn1 ().
Let us compare the coefficients of p,,_; (x), p,,(x), Pn+1(x) of the equations;
An = Briins
Bn = Bnn,
Cn = Bn-1n-

Change the index and write f;;,, one more time
1 b
Bn = 555 |, PO COWEOA

1 b
bui = 5 f P ()P (DW()d,

Binon(x) = Bnioi(x)
— ﬁino-n(x)

a;(x)

ﬁni



Turn back to;
A, = Ppy1n andtaken - n—1

ATL—l = ﬁn,n—l define n— 1 ES l

_ Binon(x)
A = Bni=

gi(x)

(%) n ()
Ai = Zi(j:) ﬁin - An—l = O’:-lJEX) ﬁn—ln where Cn = ,Bn—l,n
Op—1(x)
A 4= —C
n-1 O'n(X) n
. on(X)
n not O'n—l(x)

Now let us check the representation of p,, (x) with respect to the three terms
recurrence relation;
Pn(x) = apx™ + ap_1x" 1+ -+ aq
xPn(X) = ApPn1(x) + Bupp(x) + Cpn—1(x)
apx™t +a,_x™+ -+ ag
= Aplan i x™ + apx™ + - + agl
+ Byla,x™ + ap_1x™ 1+ -+ ag]
+ Cplan_1x"" 1+ ap_,x™ 2 + -+ ag).
Compare the coefficients of the terms x™*1 and x™;

an = ApQniq

a
A, =—
an+1
— _ an
ap-1 = Anan + Bnan ap-1 = an[an+1 + Bn]
B An—1 an
" an An+1

10
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Leta, 1 =G, an = Cpya.

— & _ Cnna
Byn= = (2.14)
Since we have; C, = An_la""—(’gc) where 4,_, = %
n—1 n
C, = An-1_on(*) (215)

an Op-1(x)

Theorem 2.7 (Christoffel-Darboux Formula) In mathematics, the Christoffel—
Darboux theoremis an identity for a sequence of orthogonal polynomials,
introduced by Elwin Bruno Christoffel (1858) and Jean Gaston Darboux (1878).

The theorem states that

n
Z piCOP(Y)  kn Par1()Pa(Y) — Pn(O)Pns1(Y)
= X *Yy
=0 hl hnkn+1 X—=Yy

where p;(x) is the [*® term of a set of orthogonal polynomials of squared norm h;
and leading coefficient k;.

There is also a "confluent form™ of this identity:

n 2 kn
z (plg;c)) - h (pln+1(x)pn(x) - pnl(x)pn+1(x))
=0 "

kn+1

Proof: Write the 3 three-term recurrence relation with the terms x and ;

XDPn (x) = aazl pn+1(x) + .Bnpn(x) + a;—l O_O—i—?(?c)pn—l(x)
an an-1 Gn(x)
yon(y) = a—ﬂpnﬂ(y) + Bapn(¥) + @ oD Pn-1(¥)

11



Multiply the 1% equation with p,,(y) and then the 2™ equation with p,, (x) to get

an

xpp (O)pn(y) = a Pr1()0n (Y) + Brnpn (O ()

n+1

an-1 Gn(x)
an Op_1(X)

pn—l(x)pn(Y)

an

ypn(y)pn(x) = a pn+1(y)pn(x) + ﬁnpn(y)pn(x)

n+1

an—l On (x)
an O-n—l(x)

Pn-1()pn(x).

Subtract the equations

(x = Yo (P (y) =

an-1 on(x)
an on-1(x)

= [Pns1(DPa(Y) = Prra (DPa (0] + [Pt COPn (y) —

Pr-1(Y)pn ()]

an Prs1()Pn (V) — Pre1(MPn(x) N
An+1 (x - y)

Pn (P (y) =

An—1 0n(X) Pro1(O)Pn(y) — Pr-1()Pn(x)
an O-n—l(x) (x - y)

A Prt1(OPn () = Prts (Pa(x) _

An+1 (X - J’)
_ on(x) an—1 Pn—1(X)Pn(Y)—Dn-1)Pn(x)
Pn (x)pn(y) on1(X) an —y) (2.16)

Replace n by n—1 in (2.16), then right hand side can be easily seen as the
following;

a;lr_ll pn(x)pn—l(.éz _ f};(y)pn-l(x) o OPesy)

On-1(%) @nz Pn—2()Pn-1(y) — Ppn—2(¥)Pn-1(x)
Jn—z(x) an—1 (x - y)

12



Multiplying the equation by —1 and substituting it into the equation we have,

an Pn+1(OPn (V) — Prr1 (M (x)
An+1 (x —y)

= P (P (y) — O_O-if(cy)c) [Pn-1()Pr-1(¥) +

On-1 (x) an—2 Pn-2 (x)pn—l (y) — Pn-2 (y)pn—l (x)
Gn—z(x) an—1 (x - y)

Taking n - n — 2 in equation (2.16) again we can find the last term of this equation

by

An—2 Pn-1()Pn-2(Y) — Pro1(¥)Pn—2(x)
ap-1 (x — y)

= Pp—2(X)Pp-2(y)

_ On-2 (%) An-3 Pn-3()Pn—2(y) = Pr—3(¥)Pp-2(x)
On-3 (x) an—2 (x - Y)

Putting this equation to (2.15)

A1 Pn () Pn-1() — P (¥)Pp-1(x)
an (X - J’)

= Pp-1(0)Pp-1(¥) + "f())pn 1P () —

e | P ms0)

On—2 (x) an—3 Pn-3 (x)Pn—z (y) — Pn-3 (}’)Pn—z (x)
+
On—3(X) an_, (x—y)

n_ Prt1 (0P () = Pris (Pa(x) _
An+1 (x - y)

’(‘ Pa-i (Pt ) + %pn (P2 () —

Pn () (y) +

0n(x) an_3Pn-3(0)Pp—2(Y) — Pr—s(¥)Pp—2(x)
Un—S(x) an—2 (x - y)

13



If we continue to replicate the equation we get;

Ay Prr1()Pn (V) = Pns1 (M (x)
Ans1 (x—y)

= pn(Opn(y) + ;’j—%pn_l(x)pn_l(y) + ;’_l—f(ci)pn_z(x)pn_z(y) + -

_op(x)
ao(x)

Po (X))o ().

n

aai : Pn+1(X)Dn (g : §;+1(y)pn () _ Z Z: 8 2 COPL ()

k=0

n

Z ; () pe(y) = 1 an Pn+1()Pr (V) — Prt1 (Mo (x)
& O_k(x) Pk by o_n(x) Anin (X — y) .

Definition 2.8 (Zeros) Every n zeros of an orthogonal polynomials p, (x) are simple,
and located on (a,b), the orthogonality interval. The zeros of p,(x) and p,41(X)
distinquish each other, and if m < n, there is at least one zero of p, (x) between any

two zeros of p,, (x).

Definition 2.9 (Explicit Representation)
e Trigonometric Functions
e Rodrigues Formulas
e Finite Power Series, the Hypergeometric Functions and Generalized
Hypergeometric Functions

e Numerical Coefficient

14



2.1 Types of Orthogonal Polynomials

2.1.1 Discrete Orthogonal Polynomials

Definition 2.10 (Meixner polynomials) The Meixner polynomials MX* (x) are
orthogonal with respect to the weight function w(x) on [0, co]with

o(x)=x, w)=yp—-x1-w, 0<u<l, y>0 A,=n(l-p),
and

WA -y +x) 2 @)ap™

Rn PO =—rora+rn 0 “T o

VEE

Definition 2.11 (Kravchuk polynomials) The Kravchuk polynomials KF (x) are

orthogonal with respect to the weight function w(x) on [0, N]withn < N

(@) = W= "X gcp<r, A=t
o\xX —x, T(X) = 1_p, p ] n_l_pt
and
p*N!(1—p)¥™* n!Nip™(1—p)"
R = —1n = 2=
i N S S Ve s L (N —n)!

Definition 2.12 (Charlier polynomials) The Charlier polynomials C (x) are
orthogonal with respect to the weight function w(x) on [0, co]with

o(x) =x, T(x) =pu—x, u>0, A,=n,
and

_pre)™
T T(1+x)’

n

R,=(=D", p(x) d2 =nlu

15



Definition 2.13 (Hahn polynomials) The Hahn polynomials hf{'ﬁ (x,N) are
orthogonal with respect to the weight function w(x) on [0,N) with
(a>-1,>-1)

o(x) =x(x+a—N), X)) =B +1DWN-1)—x(a+ B+ 2),

Ap=n(a+B+N+1),

and
_ (="
" (@+B+n+1),’
B I'NI'(a+p+2)F(a+N-x)[((B+1+x)
PO = F DI B+ D@+ f+ N+ DTN -l A+ 1)
d2 = r(Nr(a+p+2)n!r(a+n+1)r(B+n+1)r(a+p+N+n+1)(a+p+n+1)y2
o=

I'a+)r(f+r(a+p+N+1)(a+B+2n+1)(N—n—-)'r(a+B+n+1)
with the symmetry property

RPN —1—x N) = (=1)"h%* (x, N).

2.1.2 Continuous Orthogonal Polynomials

Definition 2.14 (Jacobi polynomials) The Jacobi polynomials Pn“’ﬁ (x) are
orthogonal with respect to the weight function w(x) on [—1,1] with
ox)=1—-x% t1x)=—(@+B+2D)x+p—a A,=Mn+a+p+1)and

_ ="
" (n4+a+p+1),’

'a+p+2)

— )@ B — —
2“+B+1F(a+1)f‘(,8+1)(1 N 1+A+x)P,a>-1,>-1

p(x) =

g2 - 22" T(n+a+ DI(n+ B+ Dl(a+ B +2)
" T+ DB+ DIn+a+Bf+1D)Cn+a+Bf+1)(n+a+p +1)2

with the symmetry property

B (=) = (—1)"By P ().
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Definition 2.15 (Laguerre polynomials) The Laguerre polynomials L%(x) are
orthogonal with respect to the weight function w(x) on [0,00) with

o(x) =x, tx)=—x+a+1, A,=n,

and

x%e™* _T(n+a+n!

R,=(-D" , P(x)=m, a>-1, di = NCEE))

It was mentioned that the weight functions w(x) in the above formulas correspond to
probability measures, for example total weight equal to 1. This will be useful in
obtaining the correct limit relations between the corresponding generalized

polynomials.

For all monic polynomials we also have,

MO = = fnl)n F(?(;)”, KZ(0) = % CE(0) = (=)™,
h,‘f‘ﬁ(o, N) = (B +(1_)1(3\;lll(i J: Z)J!r(jz)iNa_+1;!+ 1),

hg’ﬁ(N —LN) = I'(a + 1)£Isla—+nn—+1;!)g:; ;)-:- g +1),
RtV Y VN G V A

n+a+p+1),’° n+a+p+1),

D" T(n+a+1)

O =——a57
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Chapter 3

CLASSICAL ORTHOGONAL POLYNOMIALS

Definition 3.1 A polynomial p,,,(x) form of classical orthogonal set, if it satisfies the
hypergeometric type differential equations

U)pm(x) + V()P (x) + Ympm(x) = 0 with respect to the Pearson equation
d

E[U(x).w(x)] =V(x).w(x).

Classical orthogonal polynomials have properties as follows:

e Orthogonality relation is satisfied.

e Rodrigues formula is satisfied as follows:

Ks

& WU ().

w(x)

ps(x) =
e They can be written in hypergeometric form.
e Their derivatives ( {p,,(x)}) also form an orthogonal system.
e Hypergeometric type differential equation is satisfied as follows:
U)pm(x) +V ()pm(X) + Ympm (x) = 0.
3.1 Examples for the Classical Orthogonal Polynomials
e Hermite Polynomials : H,,(x).

e Laguerre Polynomials: LY (x) wherey > —1.

e Jacobi Polynomials: P,fly"”(x) where y > -1 , 6> —1.

18



3.2 Hermite Polynomials

3.2.1 Generating Function for Hermite Polynomials

We can define the Hermite Polynomials as ,

[m

= (=)L (2%)™ 2!
Hm(x) =
=0

(m-=2D'1!

Thus,

m-2 m-4
Hm(x) _ (2x)m _ m!(2x) + m!(2x) e

(m-2)'2! (m—4)'3!

where m is the highest degree of H,,(x).

The polynomial is defined by

Hp,(x) = 2mx™ + t1,,_,(x), where the degree of polynomial t,,,_,(x) is (m — 2) in
X.

» Assume that m is even, then the polynomial of H,,(x) is also even polynomial.

» Assume that m is odd, then the polynomial of H,,,(x) is also odd polynomial.

3.2.2 Hypergeometric Representation of Hermite Polynomials

Let

m

= (—1)!(2x) ™2t
(m—=2D!1!

Hm(x) =

In the equation above (2x)™ does not depend on [ so we can take (2x)™ to the

outside of the summation. Then we have

Ha(0) = () 312} Com (&) = @om i L (2).

=0 (m-2D! \2x 1=022l(m—-20)1! \x2
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Now we can use pochhammer symbol property (1.5) and (1.6). From (1.5) and (1.6),

we get the following;

(=1)?*'m!

(m —2D)! = (—m)z

| “my (—m+1
oy~ Cma =25, (),

[%] 221 —m —-m+1
Hy(x) = (2x)™ z (2 )2121(“ 2 )l(;_21>l

=0

2 2 K/

Hn() = @™ oFy (o, 5 =)

3.2.3 Reccurrence relations for Hermite Polynomials
We can define recurrence relation for Hermite polynomials as
2(m + 1)H,,(x) = 2H,,(x) + 2xH,,(x) — Hy, (x).
Now send all terms into the one side;
Hy (x) — 2xH},(x) + 2mH,,(x) = 0.

We get the hypergeometric equation with;

U(x) =1,
V(x) = —2x,
On = 2m.

3.2.4 Orthogonal Relations for Hermite Polynomials

Ortogonality of Hermite polynomials is defined as follows ;

j we-szm(x)Hs(x) =0,

where the left hand side will be zero because of the orthogonality conditions.

The orthogonality interval is (—co, 00) with weight functions : w(x) = e™*"

20



3.2.5 Rodrigues Formula for Hermite Polynomials
For Hermite polynomials , we can give the Rodrigues formula;

Let L, = (=1)™then,

m

Hp) = (-1 (o).

3.2.6 Derivative of Hermite Polynomials

We define the derivative of Hermite polynomials as follows;

d
dx m(x) = 2mHp,_1 (x).

3.2.7 Finding the Coefficients a,, and c,, for Hermite Polynomials

v" For the coefficient a,,, , we can define the formula as follows;

, m+k—1 .,
am =L | [ V') + =000
k=0
m-—1
am = 0" | [l-21=27
k=0
a, = 2™

v' For the coefficient c,, , we can define the formula as follows;

m nVTIn_l(x)'

where
V() = V(x) + mU' (x)
Ve (%) = =2x Vi1 (0) = 0
Vih(x) = =2 Vg (x) = —2

Cmp=m2"0 - ¢, =0
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3.2.8 Normalization Function for Hermite Polynomials

b
fpm(x)ps(x)w(x)dx = Ombsm

a

is generalized form for the orthogonality equations. We can get these equations by

using the norm of Hermite Polynomials as follows ;

oo

st(x)Hm(x)e‘xzdxz 2" m! Vi Ss,,.

3.3 Laguerre Polynomials

3.3.1 Rodrigues Formula and Hypergeometric Representation of Laguerre
Polynomials
The Rodrigues formula for Laguerre polynomials are defined as follows ;

x Ye* d™
4 = - (eo— +
Lin(x) = — = (e7%™™)

and also one can define the hypergeometric representation of Laguerre polynomials

as

Ly( )_(y:n—l)rn 1F1(—m;]/+1;x)

where

N _Cm _
Z k' (y + 1)l - 1F1(_m’y + 1,X)

3.3.2 Gamma Functions Representation of Laguerre Polynomials

Representation of Laguerre polynomials defined as follows ;

Ty +14+m) (—x)
— ry+14+H (m-0n'0 -

L (x) =
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3.3.3 Generating Function for Laguerre Polynomials

The generating function of Laguerre polynomials has the form ;

3.3.4 Recurrence Relation for Laguerre Polynomials
3 term recurrence relation has the form ;

(m+ DL mi1 (X)) +(x—2m—y — LY (x) + (m + )/)L’;n_l(x) =0 m=12,..
3.3.5 Orthogonality Relation for Laguerre Polynomials

Orthogonality of Laguerre polynomials is defined as follows ;
f e *xVL" (x) LY (x)d, = 0.
0

where the left hand side will be zero because of the orthogonality conditions.
The orthogonality interval is [0, o) with weight function: w(x) = e *x?.
For the Laguerre polynomials, we can give the rodrigues formula

where L,,, = %

xYe* d™
T m(e—xxmﬂf)

L, () =

3.3.6 Derivative of Laguerre Polynomials

Derivative of Laguerre Polynomials has the form;

L) = L ).
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3.3.7 Finding the Coefficients a,, and c,, for Laguerre Polynomials

v' For the coefficient a,,, , we can define the formula as follows;

-1

3

, m+k—1
am = L, [V(x)+T
0

1 m-—1
an=1a] |0
k=0

D™
Uy =~

U (0]

&
Il

v' For the coefficient c,, , we can define the formula as follows;

Vin-1(0)

Cry = May, =5
m m Vr,n—1(x)'

where
Vp(x)=V(x)+mU'(x). Vy(x)=1+y—x+m

V-1 (X)) =1+y—x+m—-1=y—x+m

Vin-1(0) =y +m Vi-1(x) = -1
=DMy 4+m
m =M 1
(D™ y +m)
m = T = 1)

3.3.8 Normalization Function for Laguerre Polynomials
Normalization function for Laguerrre Polynomials are defined as follows;

_F(m+y+1)

m m!
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3.4 Jacobi Polynomials
3.4.1 Rodrigues Formula and Hypergeometric Representation of Jacobi

Polynomials

Definition3.4.1: For Jacobi Polynomials, the rodrigues formula is defined as follows;

PY O (x) = —(z_mlrzz (1-x0)7A+x)7° % [(1 =207+ + x)5+m),

For Jacobi Polynomials, there are 4 different hypergeometric representations;

1. The 1% representation of Jacobi Polynomials is ;

x—1\"(1+9) 1+x
P,Ely’(s)(x):( > ) — m 2F1(—m,—m—y;5+1;x_1>.

2. The 2" representation of Jacobi Polynomials is ;

1+x\"(1+7y) 1+x
,0

3. The 3" representation of Jacobi Polynomials is ;

y+ D
m!

1—x
PYD(x) = ,F, (—m,6+m+y+ Ly +1; )

2
4. The 4™ representation of Jacobi Polynomials is ;

D"E+ D
m!

,8
PP () =

1+x

3.4.2 Symmetry Property of Jacobi Polynomials

Symmetry relation for Jacobi polynomials is defined as

PYD(—x) = (=1)"BLY (x).

25



3.4.3 Generating Function of Jacobi Polynomials

Generating function of Jacobi polynomials has the form

Sy + 6+ 1), PV (x0)tm
y+Dn

m=0

1 1 1
:m*z F1(§(5+V+1);§(5+V+2);)/

_2t(x -1
LT

3.4.4 Orthogonal Relation for Jacobi Polynomials

Orthogonality of Jacobi polynomials is defined as follows ;

f (107 + 0PI (1) RO () = 0.
-1

where the left hand side will be zero because of the orthogonality conditions.
The orthogonality interval is [—1,1] with weight function:

w(x) = (1 —x)"(1+ x)°.

3.4.5 Three Term Recurrence Relation for Jacobi Polynomials

3 term recurrence relation for Jacobi polynomials has the form ;

2m+1)(m+y+6+1

r.6)
P =
) = G2ty o) @mt L1y £5)

62 _ )/2 .5)
P Y,
+6+2m)(y+6+2m+2) ™ () +

Z(m + 6)(m+)/) P(V"S)(x)
Cm+y+6+2)Cm+y+6+1) ™17

3.4.6 Derivative of Jacobi Polynomials

The derivative of Jacobi polynomials is defined as follows;

d s +od+m+1) s
_P()’. )(x) — z Prgl]/_-l-ll, +1)(x)_

d, ™
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Chapter 4

LIMIT RELATIONS

In this chapter we contemplate the dissimilar limit transition for moderation of the
classical polynomials acquired by the addition of one or two point masses at the end
of the interval of orthogonality. The relationship between Jacobi, Laguerre, Charlier,

Meixner, Kravchuk and Hahn generalized polynomials are proved.

Limit Relations involving the generalized polynomials

Hahn
" (x, N)
1.6 45
44
Jacobi Meixner Kravchuk
Py P74 (x) MEPA K (x)
47 41 k A

Laguerre Chatlier

LA () i (%)
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4.1 Limit relation between Meixner and Laguerre Polynomials

Limit relation between Meixner and Laguerre polynomials is defined as follows;

mpgY+1L1-h (7N _ ;v
}ll_r)r(l)h M, (h)—Lm (%)

Proof: We need to prove that

. masY+1,1-hA Y.A
lim A MY, (h)—L (x)

h—0

M%/1+1,1—h,A (%) _ }ll_% hm[(MyH 1-h (;Cl)

y+1,1— hA() +11-hA x—h
P

@ + D1 = )™ M, )

n! (1 + AKer: (0,0 h

We know that limy_o h™M% 1" (%) =L’ (x), if we substitute in the above

formula, we get

MT];I+1,1—h,A (%)

P g

@ + D1 = )™ M, 0

n! (1 + AKer: (0,0 h

— 7Y ; m
=L (x)+ }ll_rgh A

From generalized Laguerre case we know that Ker;k_,(0,0) = g";&%

Then we have

MT]:I+11 h,A (h) _ (x)

y+11-hA X y+1,1-hA4 X —h
+ lim A™A v+ Dm (1 = )™ Mm ) — M 7o)
5 AT
h—0 ni(1+AYm 1()/+1)S$1 h) h

Aly+1)m

Assume that T, - (1+AKer,§1 _1(0,0))

My+11 -h A My+11 -hA(x—h
(k5

= Tn(h™(1 = )™ : :
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oy +L1-hA (XN oy
}ll_rng (h) = Lo (%)

MY LA (%) _ pyrAha (#)

: )

+ lim Ty, (R™ (1 = h)™(

) MY HLI-RA(X) L y+11-hA(x=h 4
It is clear that( 2 ® hm (%) = (EMV+1,1—h,A (%))

o y+L1-hA (X oy : meq _ pym [ Gy yata-na (X
lim ], (h)—Lm(x)+}11_r>r(1)Fm(h (1 - h) < =M (h))

Now , according to the Meixner representation formulas

MEFA ) = MEF () + BuUMEF (x) = (I + BLW)MEF (), (4.1)

BT (1-B) " (@)m

B, =
m ml(1+AKerM_,(0,0))’

wefinda=y+1 pB=1-h.

Substitute a and S in Meixner representation formulas (4.1) and multiply both sides
with h™,

We find

- X —h (X
limAm M (2) = Rl () + R B UMy ()

}E)r(l)hmMr);:- 1,1-h,A (%)

= pmpYAh (f)

h
A-N"A-A-))"'"U+Dm__ ap
hmA VM.’
+ m! (1 + AKer™ ,(0,0)) m
Aly+1Dm

Since I, = ,
m n!(1+AKer,l;l_1(0,0))

VMT):’l+1,1—h (%)
h

o y+11-hA (X _ gy . m _mym
}ll_r)r(l)Mm (h)—Lm(x)+}l1_r)r(1)h I,(1 —h)

hmVle+1,1—h (%)
h

. _ mi:
:}ll_r)r(l)[‘m(l h) }llir(l)

29



. _ my; Y
:}ll_rgFm(l h) l}lrEOVLm(x)

ar’ dLi(x)

: _ K\m
= }ll_r%l“m(l h) —dx

dLm(x)

=17 (%) + ( llmF (1 —h)™) —2—

Now, according to the Laguerre representation formulas

DA = L (x) + Ty o 1 (x)—(I+Fi) (o),

dx d
[ = Ay + 1)m A + Dm
~ m!(1+ AKerk_,(0, 0) mi (1 + A(OE +E){n)-!1))

We find

. y+1,1-hA (X y i 14 — JvA
}ll_l’)l(l)Mm (h) =L, (x)+ T m Ly, (x) =L (x)
4.2 Limit relation between Meixner and Charlier Polynomials

Limit relation between Meixner and Charlier polynomials is defined as follows;
B
afB-
lim Mm(f”+“) (x) =)
a— 00
4.3 Limit relation between Kravchuk and Charlier Polynomials

Limit relation between Kravchuk and Charlier polynomials is defined as follows;

lim K2/ () = Cp()
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4.4 Limit relation between Hahn and Meixner Polynomials
Limit relation between Hahn and Meixner polynomials is defined as follows;

lim

N—-oo

Rt~ PPNATE e, Ny = M ()

where
Y1 )™(N-D)!T(u+m+1) xy+u+m+1,-m,
o' (2, N) = m(N-m-1)!T(u—1) 3 2( 1-N,u+1 1)
and
,Bm -m,—Xx 1
Ma'ﬁ = F. ( ; 1-— —>

4.5 Limit relation between Hahn and Kravchuk Polynomials
Limit relation between Hahn and Kravchuk polynomials is defined as follows;

lim ROt (0 NY = KT (x, N — 1)

4.6 Limit relation between Hahn and Jacobi Polynomials

Limit relation between Hahn and Jacobi polynomials is defined as follows;

m

2
lim ——RI¥ (N = Dx,N) = By (2x = 1)

4.7 Limit relation between Jacobi and Laguerre Polynomials

Limit relation between Jacobi and Laguerre polynomials is defined as follows;

lim up”a )—L (x)
p—>co 2m
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Chapter 5

CONCLUSION

The first two chapters in this thesis, attempt to introduce the orthogonal polynomials.
They were written in order to supply conclusive information regarding any set of
orthogonal polynomials. A frequentative progression to create a collection of
polynomials which are orthogonal in relation to each other, are then supplied with
several attributes agreeable by any assemblage of orthogonal polynomials as
detailed. The classical orthogonal polynomials become apparent when the weight

functions connected to the orthogonality status becomes a certain form.

These polynomials acquire an additional accumulation of contributing factors and
directly fulfill a secondary differential equation, which are detailed in chapter three.
The chapters that follow delve into the breakdown of specific polynomial collections
beginning at the differential equation. Known as classical orthogonal polynomials

referred to as Hermite polynomials, Laguerre polynomials and Jacobi polynomials.

In the following sections significant characteristics of classical orthogonal
polynomials relating to the weight function, time lapse of the orthogonality and the
secondary direction of differential equation, Rodrigues formula, hypergeometric

representations are given.
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