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ABSTRACT 

Relation extraction an important field in Biomedical Natural Language Processing is 

the study of identifying relations between entity mentions. The extraction of relation 

instances over multiple sentence mention levels (intra- and inter-sentence levels) has 

been a challenge. In the intra-sentence level, the mention of a pair of entity is found in 

a single sentence, whereas in the inter-sentence level, they are found in spanning 

neighbouring sentences. The variations in the level of extractable information and 

performance from these levels have been a reason for this challenge.  

In this thesis, we tackled this challenge by carefully examining the stages of text 

processing and relation instance construction of the candidate relation instances across 

the multiple sentence levels and further performed a combination of the relation 

instances over these mention levels in order improve the performance of the system. 

In the text processing stage, we performed sentence simplification after the sentences 

have been segmented in order to improve the information extracted through a 

dependency parse tree. During the extraction of the candidate relation instances, we 

applied some sentence structures and rules to help improve the level of the types of 

candidates selected.  

We performed relation extraction using two systems. We developed a system that 

employs an optimization technique namely genetic algorithm, to combine the output 

of the classifiers trained using the candidate relation instances from both levels. We 

introduce the novel approach of using two decision-making under uncertainty 

techniques for our classifier selection. The other system is based on an ensemble of 
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two machine learning algorithms. We performed relation extraction by employing the 

candidate relation instances from the two levels in two forms. Firstly, the instances are 

merged after they have been classified individually, and secondly, the instances are 

merged before the classification. The system then introduces the novel use of a 

maximum probability-based voting algorithm to combine the results generated from 

these two forms. All the experiments in this study are performed using the BioCreative 

V chemical disease relation dataset which is the most comprehensive dataset in the 

domain. 

Keywords: Classifier Ensemble, Decision-Making Techniques, Genetic Algorithms, 

Optimization Techniques, Relation Extraction, Text Mining. 
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ÖZ 

Text içerisinde geçen varlıklar arasındaki ilişkileri bulmayı hedefleyen ilişki çıkarımı 

biyomedikal doğal dil işleme konusundaki önemli alanlardan biridir. İki varlık 

arasındaki ilişki tek bir cümle içerisinde tanımlanabileceği gibi, birbiriyle komşu iki 

veya daha fazla cümle ile de tanımlanabilir. Tek bir cümle içerisinde tanımlanan 

ilişkiler için “cümle-içi”, tanımı komşu iki veya daha fazla cümle ile yapılan ilişkilere 

“cümleler-arası” ilişki terimleri kullanılmıştır. Cümle-içi ve cümleler-arası seviyelerde 

ilişkilerin çıkarımını yapmak, her iki seviyede elde edilen bilgilerin içerik ve miktar 

olarak farklı olması nedeniyle zorluk çıkarmaktadır. 

Çalışmamızde, her iki seviyedeki aday ilişki örneklerinin oluşturulması için metin 

işleme ve ilişki örneği oluşturma aşamalarını dikkatle inceleyerek ve akabinde 

performansın daha da iyileştirilmesi için her iki seviyede tahmin edilmiş olan ilişki 

örneklerini sınıflayıcı kombinasyonları kullanılarak birleştirmek suretiyle bu zorluk 

aşılmıştır. Metin işleme aşamasında, metin cümlelere bölündükten sonra cümle 

basitleştirilmesi uygulanarak bağımlılık ayrıştırma ağacından çıkarılacak bilgilerin 

iyileştirilmesi sağlanmıştır. Aday ilişki örneklerinin çıkarılması sırasında, anlamlı ve 

doğru ilişki adayları seçebilmek için bazı kurallar ve cümle yapıları uygulanmıştır. 

 

Tez kapsamında ilişki çıkarımı için iki ayrı sistem geliştirilmiştir. Geliştirilen ilk 

sistemde, her iki cümle seviyesindeki aday ilişki örnekleri ile eğitilen 

sınıflandırıcıların çıktıları eniyileme yöntemi ile birleştirmektedir. Eniyileştirme 

tekniği olarak genetik algoritma ve yenilik olarak sınıflandırıcı seçimi için belirsizlik 

teknikleri altında iki karar verme yaklaşımı kullanıldı. Geliştirilen diğer makine 
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öğrenimi sistemimizde, ilişki adayları cümle-içi ve cümleler arası seviyede ayrı ayrı 

derlenmiş ve bu iki veri kümesi birleştirilerek tüm ilişki adaylarını içeren üçüncü bir 

veri kümesi oluşturulmuştur. Bu şekilde oluşturulan üç veri seti ayrı ayrı iki makine 

öğrenimi algoritması kombinasyonunun eğitilmesi için kullanılmıştır. Bu aşamadan 

sonra tüm ilişki adayları kullanılarak eğitilen sistemin çıktısı ile cümle-içi ve cümleler-

arası seviyelerinde eğitilen sınıflandırıcılarının çıktılarının birleşimi maximum 

probability voting algoritması kullanılarak birleştirilmiştir. İkinci sistemde sunulan 

yenilik farklı seviyelerin bu şekilde sınıflandırıcı kombinasyonları kullanılarak 

birleştirilmesidir. Bu çalışmadaki tüm deneyler, alandaki en kapsamlı veri kümesi olan 

BioCreative V kimyasal hastalık ilişkisi veri kümesi kullanılarak gerçekleştirilmiştir. 

Anahtar Kelimeler: Eniyileştirme Teknikleri, Genetik Algoritmalar, İlişkisel 

Çıkarım, Karar Verme Teknikleri, Metin Madenciliği, Sınıflandırıcı Topluluğu 
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Chapter 1 

1 INTRODUCTION 

1.1 Motivation 

The increase in the amount of predominantly unstructured or weakly structured text 

motivated the research in text mining. Text mining which is an important aspect of 

Natural Language Processing (NLP) is aimed at creating and implementing systems 

that can process, comprehend and discover new, formerly unknown information from 

them. During the past recent decades, a number of applications of text mining such as 

Information Extraction (IE), Information Retrieval, and Relation Extraction systems 

have been developed. The implementation of these systems has led to an increase in 

the scientific efforts dedicated to improving knowledge discovery in texts such as 

biomedical literature. IE is a process of generating structural data from unstructured 

text in order to extract desired information. IE plays a vital role in data management 

in computational linguistics. Biomedical literature is important for research in biology 

and medical fields. The studies on the relationship between biomedical entities such 

as protein-protein interactions [1], drug-drug interactions [2, 3], and chemical-disease 

relations [4] crucially depend on biomedical data for their existence [5].  

Relation extraction systems in the biomedical domain have employed various 

approaches such as machine learning (ML), pattern recognition, and knowledge-based 

(KB) approaches. However, the ML systems have been the most frequently employed 

approach. Relation extraction is treated as a classification task in the ML-based 



2 

 

systems [6, 7, 8, 9, 10]. The ML-based systems are data-driven and are capable of 

deriving models for automated extraction from annotated data [11, 12, 13, 14, 15]. The 

input vectors for an ML classifier can be in the form of extracted features or structure 

representation such as graphs and trees or both. In order to implement both types of 

input vectors, discriminative classifiers such as support vector machines, decision 

trees, maximum entropy classifiers may be employed. The aim of biomedical relation 

extraction is to identify or extract relationships between entities such as drugs, 

chemicals, side effects and diseases. These relations may be described in a single 

sentence or two or more neighbouring sentences that mention the two entities. These 

two cases are referred to as intra sentence or co-occurrence level and inter-sentence or 

non-co-occurrence level. The amount and type of information that can be extracted 

from these two different levels of representations are clearly not always compatible. 

ML methods meet challenges in coping with the variations of information across the 

mention levels. In order to address this problem, this thesis aims to find a suitable way 

extracting relation instances across these mention levels and developing a suitable way 

of combining them. We show that the use of the different mention levels in different 

arrangement and combination is capable of creating an effective biomedical relation 

extraction system.  

1.2 Thesis Contributions 

In this thesis, we study methods for relation extraction from biomedical literature. We 

develop two ML-based methods, namely Multiple Classifier System (MCS) that uses 

an optimization technique based on two decision-making techniques to generate the 

best possible classifier ensemble for the relation extraction task and a system that 

extracts relation instances from multiple sentence levels and finally combines them 
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through the use of a voting algorithm. We focus on the chemical disease relation 

extraction task where full annotated training data are available due to the BioCreative 

V Challenge. The major contributions of this thesis are as follows: 

i. Chemical-induced disease (CID) relation extraction have mainly been 

performed using ML-based, knowledge-based, and Rule-based systems, 

however, in our first method, we introduce the novel approach of using an MCS 

which utilizes the Genetic Algorithm (GA) as the optimization technique. 

ii. The implementation of GA as an optimization technique for a 

multidimensional classifier selection is made dynamic through the introduction 

of two decision-making under uncertainty techniques as voting algorithms and 

a voting bit attached to the chromosomes which determines what voting 

algorithm is applied on individual chromosomes. Additional variations are 

introduced in the system during evolution through the use of two selection 

techniques and two types of crossover. 

iii. In the second method, we also introduce another novel approach where we deal 

with relation mentions on multiple sentence levels by using a classifier 

combination of two ML classifiers and then combine the results from these 

levels through the use of a voting algorithm in order to improve the 

performance of our system. 

1.3 Thesis Outline 

The remaining of this dissertation consists of the following chapters:  

Chapter 2 provides background knowledge for relation extraction methods in the 

biomedical literature. Firstly, we introduce the concept of a relation extraction system, 

then we discuss the major components of a general relation system and the main 

approaches employed in Section 2.1. In Section 2.2, we discuss ML approach which 
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is the most frequently used approach relation extraction and then in Section 2.3, we 

discuss multiple classifier systems, its components, implementation and also the GA 

optimization technique which is implemented in this thesis. Finally, Section 2.4 

provides a discussion on the available corpora in the biomedical domain. 

The experimental settings employed in this thesis to develop two relation extraction 

methods are discussed in Chapter 3. It presents the dataset employed in Section 3.1, 

the base classifiers used in Section 3.2, a description of sentence segmentation and 

simplification processes performed during text processing in Section 3.3, the 

construction of the candidate relation instances in Section 3.4, the types of features 

used in Section 3.5. Finally, in Section 0, we describe the evaluation methods 

employed.  

Chapter 4 presents a CID relation extraction system which is a multi-classifier system 

using GA. The GA-based system involves the novel implementation of two decision-

making techniques for classifier selection. In this section, we first review existing 

methods and then present our method and discuss its results by comparing it to the 

other state-of-the-art systems. Finally, we discuss some possible improvements for our 

approach. 

Chapter 5 provides another novel approach for chemical disease relation extraction 

from biomedical text. After describing the related methods used for chemical disease 

relation (CDR) extraction tasks, we present our method which involves the extraction 

of relation instances from multiple sentence mention levels. We describe the use of the 

combination of two ML classifiers for the CID relation extraction task. We then 

discuss how we combined the multiple sentence levels by using a voting algorithm to 



5 

 

further improve the performance of the system. Finally, we discuss the results and 

compare with that of the other state-of-the-art systems. 

Chapter 6 summarizes the thesis with an overall discussion on the contributions and 

future work. 
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Chapter 2 

2 BACKGROUND AND RELATED WORK 

This chapter provides background knowledge on relation extraction and also a review 

of the existing techniques for relation extraction tasks in the biomedical domain. 

Additionally, it introduces the concepts required for understanding the works 

presented in this thesis. In Section 2.1 we describe the relation extraction task, 

followed by a description of the major components and approaches of a relation 

extraction system in Section 2.1.1. Section 2.2 discusses the ML approach used for the 

biomedical relation extraction tasks. In Section 2.3, we discuss the approach of using 

the multiple classifier systems, with an introduction to this approach given in Section 

2.3.1, a discussion on the types of selection algorithms utilized in this approach in 

Section 2.3.2 and the optimization technique employed in one of the methods reported 

in this thesis. Finally, in Section 2.4, we describe the available corpora in the 

biomedical domain that are useful for the relation extraction tasks. 

2.1 Relation Extraction 

Relation extraction is a task aimed at identifying a relation between entity mentions in 

a literature with high efficiency and accuracy. Culotta et al. defined relation extraction 

as “the task of discovering semantic connections between entities” [16]. In biomedical 

context, relation extraction is a task aimed at extracting relations between biomedical 

entities mentioned in a life science literature. This task can be further divided into two 

subtasks: to check if there exists a relation between then entity mentions [7, 8, 12], and 

to find out the type of relationship that exists [17, 18]. 
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2.1.1 Components of a Relation Extraction System 

Due to the exponential growth in the quantity of biomedical text, it becomes 

increasingly more challenging for biocurators and researchers to be up-to-date with 

the related development in this field [19]. Over the years, biomedical research has 

gradually shifted focus from named entity mentions such as chemicals, diseases, or 

proteins to the entire biological system, thereby creating an urgent increase in the 

demand for the development of systems capable of extracting existing relationships 

between the biological entity mentions (e.g. chemical disease relations, protein-protein 

interactions) [20, 21] to enhance knowledge discovery and possibly to develop 

scientific hypotheses. This has resulted in the development of automated relation 

extraction systems capable of handling significantly more articles in order to help solve 

the time-consuming and strenuous demands associated with the manual transformation 

of unstructured text into a structured format [22]. Based on various approaches, 

different relation extraction systems have been proposed. Over the years, these 

approaches have evolved from the simple co-occurrence approaches to some very 

robust approaches such as ML-based, pattern-based, and knowledge-based [8, 12, 23, 

24, 25]. A relation extraction system is mainly designed to consist of three main 

modules. These are the text pre-processing, parsing and relation extraction modules 

[17] as shown in Figure 2.1. 
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Figure 2.1. A general relation extraction pipeline 

2.1.1.1 Text Pre-processing 

The text pre-processing module comprises many other sub-processes such as sentence 

segmentation, tokenization, part-of-speech tagging and named entity recognition.  

i. Sentence segmentation: Most current relation extraction systems perform 

relation extraction on a sentence level, therefore, the text processing module 

normally starts with a sentence segmentation process to segment an input text 

such as abstracts or a full document into separate sentences. In order to perform 

sentence segmentation, the sentence boundary has to be determined. This is a 

non-trivial task especially in the biomedical domain due to the irregularities 

associated with entity names (e.g. dot-1.1), decimal values (e.g. 0.79), inline 

citations (e.g. Onye et al. 2016, p. 39), and abbreviations (e.g. i.v., i.e.). 

ii. Tokenization: In this step, a sentence is broken into individual tokens 

sequentially in their order of appearance in the sentence. Normally, the tokens 

are separated by the white space between them, however, this step is also non-

trivial due to the irregularities associated with tokens in the biomedical domain. 

Some of the possible errors in tokenization results from the presence of white 

spaces in biological entity names (e.g. HCFC 124, retinal toxicity) and 
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hyphenation where it is difficult to determine the number of tokens to be 

returned.  

iii. Part-of-Speech (POS) tagging: In this step, the grammatical form of a token 

is identified based on the token’s structure and the context derived from its 

neighbouring tokens. A complete sentence is sent to the POS tagger and it 

assigns a part-of-speech tag (e.g. verbs, adverbs, nouns, adjectives) to the 

individual tokens. This step helps cope with the ambiguities that arise from 

words with different grammatical forms depending on the context, therefore, it 

is a vital step in the syntactic analysis. An example part-of-speech tagged 

sentence is shown in Figure 2.2 B. 

iv. Named Entity Recognition (NER): In order to properly identify the 

biomedical entity mentions, the NER is performed. The recognition of 

biological entity names can be non-trivial due to the complexities resulting 

from the non-standardized formats of the entity names [26]. Some NER toolkits 

(e.g. BANNER [27]) help to provide high accuracy and efficiency for this 

recognition process. According to Bikel et al. NER is an essential step in the 

workflow of any relation extraction system [28]. However, some relation 

extraction systems now rely basically on the entity annotations provided 

through gold standard annotated corpora which enable the systems to recognise 

the existing biomedical entity mentions (e.g. names of chemicals and drugs) in 

the document.  

2.1.1.2 Parsing 

Parsing is a process of determining the syntactic structure of a sentence by analysing 

its constituent tokens based on the grammar of the language. A parser consists of two 
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main components, the sentence and the grammar. Sentence parsing can either be 

shallow or full parsing. 

Shallow Parsing: By using the POS information, sequences of tokens are grouped 

into their respective syntactic groups such as Noun Phrases, Verb Phrases as shown in 

Figure 2.2 C. Shallow parsing which is also referred to as chunking constructs a more 

structured POS tagged sentence and it is a prerequisite stage in the construction of a 

fully parsed sentence. 

 
Figure 2.2. Part-of-speech tag and parser outputs of a sample sentence. A. The 

sample sentence. B. Part-of-speech tags for the sample sentence. C. The output of the 

shallow parser. D. The output of the dependency parser 

Full Parsing: The combination of the outputs from the POS tagging and the shallow 

parsing helps a full parsing process to extract more information about the structural 

dependencies existing between phrases. Full parsing extracts the most elaborate 

information about the syntactic structure of a sentence to produce parse trees as 

outputs. An example of a full parser is the dependency parsing which finds the 

dependencies between the tokens. The output from dependency parsing is a parse tree 

consisting of leaves which are the tokens and edges representing the relationships 

between the tokens. An output from a dependency parser is shown in Figure 2.2 D. 
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2.1.1.3 Relation Extraction Module 

This is the main module of any relation extraction system. Currently, different 

approaches are being employed to develop relation extraction systems. In this thesis, 

we have employed the ML-based approach and developed two different ML-based 

systems where one utilizes the GA as the optimization technique for MCS, and the 

other applies a combination of two ML classifiers. 

2.2 Machine Learning 

ML methods are the most commonly employed approaches in relation extraction. This 

section introduces the basic concepts of the ML methods and provides a discussion 

about their application in a relation extraction system. ML is classified as an artificial 

intelligence method and is based on statistical data to deduce general rules [29]. ML 

methods can be employed in multiple domains due to the advantage of their models 

being able to solve problems that are impossible to be represented or handled using 

explicit algorithms [29]. In general, irrespective of the difficulty in representation, ML 

models are capable of finding relations between the inputs and the outputs. This 

distinguishing ability has enabled the ML models to be successfully employed in many 

tasks such as classification, forecasting, pattern recognition and relation extraction. A 

review of the general ML algorithms including detailed algorithms for relation 

extraction can be studied [30].  

In relation extraction, ML models utilize available data such as annotated text, 

sentences, to solve problems that are impossible to solve using explicit programming. 

ML models either learn rules by distinguishing data instances from each other or from 

the examples which reveal the structure of the underlying data. The outcomes of these 

ML models are either the learning rules or a prediction model that is used to predict 
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unknown data based on previously seen data [30]. For example, given biomedical data 

with a set of candidate chemical-disease relations, an ML method learns a model to 

predict this relation in unseen biomedical data [31]. This learning method corresponds 

to a supervised machine learning model that contains a training phase and a testing 

phase. During the training phase, the ML method creates a model through learning sets 

of properties with their own values of the examples given in the training data [31]. 

These properties are called features. The use of features helps the learning method to 

decide and group examples in classes (e.g. relation, no-relation). In order to 

differentiate the classes, most ML algorithms try to learn a set of distinctive values and 

combination particular to them. Additionally, in order to increase the robustness of a 

learning method and improve its computational efficiency, each example given in the 

training data must have distinguishing features [12]. The support vector machines 

(SVM) are one of the most frequently employed ML method for relation extraction 

tasks [32]. 

2.3 Multiple Classifier System 

2.3.1 Introduction 

The MCS consists of the use of a few different classifiers or a pool of base classifiers 

in the classifier ensemble. This approach has become an alternative to the use of a 

single classifier system in classification tasks. A single classifier system involves the 

selection of the most appropriate classification algorithm, parameter settings and 

feature subset for a given classification task. Due to a large number of classification 

algorithms and possible parameters, selecting the most appropriate classifier algorithm 

and finding the best settings for the parameters is not always trivial. Additionally, the 

selection of the optimum feature subset from the large set of features makes the process 

of selecting the best classifier even more complicated. In MCSs, an ensemble of the 
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base classifiers is constructed in order to generate the best possible classifier 

combination subsets from the base classifiers for the given classification task. In terms 

of classification tasks in different domains, the MCSs have proven to produce better 

accuracy compared to the individual classifiers that make up the ensemble [33, 34]. 

In designing an MCS, the individual classifiers are trained on samples labelled with 

corresponding class labels. The training data are mostly enhanced with discriminative 

features that are extracted from the given data set or from external knowledge 

resources. The individual predictions of the various classifiers are used in a predefined 

setting to classify new samples. For the total number of classifiers C in the ensemble, 

the output derived from the individual classifiers determines the possible ways they 

can be combined. Given a case where each classifier maps an input vector X to a 

specific class Yi among N possible class labels, the outputs of the classifiers can be of 

either an abstract, rank, measurement or oracle level [35, 36]. An example of a typical 

MCS architecture is given in Figure 2.3. 

 
Figure 2.3. General Multiple Classifier System Architecture 
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The selection of classifiers for an ensemble is one of the most important decisions in 

an MCS framework. The classifiers that would produce the optimum solution when 

employed in the ensemble are selected at this phase. In most cases, the classifiers with 

weaker classification performances are not expected to be very useful when making 

the aggregate decision. The combination of similar classifiers is not expected to 

improve performance as they are expected to make similar mistakes. Therefore, the 

base classifiers in an MCS should possess some uniqueness and diversity. That is, they 

should have differences in their classification errors. Some types of diversity measures 

such as correlation, within-set generalization diversity, compound diversity, 

disagreement measures and Q statistics have been discussed by [37, 38]. In practice, 

the diversity among the base classifiers of an MCS can be increased by: 

i. Applying the same classifiers with different parameter values. 

ii. Using different classifier algorithms such as SVM, Decision Tree, Naïve 

Bayes, Bayes Network, etc. as the base classifiers. 

iii. Using different feature combination on different classifiers. 

iv. Training the classifiers on different training dataset or by using different 

subsets of the training data on different classifiers. 

In other to design an MCS, decisions on the architecture of the base classifier, the type 

of output to be combined, and the selection criteria to be used for choosing the base 

classifiers Di, from the repository of C classifiers and the fusion function F such that 

joint decision D(𝐱) = F(D1(𝐱),…, DC(𝐱)), where Di(𝐱) is the prediction of the ith 

classifier for the given input x. 
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2.3.2 Classifier Selection Criteria 

The selection of the most suitable classifiers from a pool of classifiers is one of the 

most critical steps in designing an MCS. The classifier selection methods are grouped 

into two, namely: Static Classifier Selection (SCS) and Dynamic Classifier Selection 

(DCS). The main objective of these approaches is to achieve the optimum 

classification performance. However, there is one key distinction between them. In the 

SCS, the same set of classifiers in the ensemble is used in predicting all unseen samples 

while the DCS generally selects a set of different classifiers in the ensemble for each 

unseen sample. In the SCS approach, the base classifiers are trained on the training 

data and then by using the results of the combination from the development data the 

subset of classifiers with the optimum performance is selected. This selected ensemble 

is then used to classify the unseen data. However, for a corpus that has no development 

data, n-fold Cross Validation can be applied to the training set to find the optimum 

classifier subset to test the unseen data [37]. The DCS implementation has many 

approaches to finding an optimum classifier ensemble. In one of the approaches, the 

candidate classifiers expected to make the decision is dynamically determined based 

on the performance of the classifiers on the similar input values in the training data 

[36]. In another approach, the single best performing classifier or classifier ensemble 

in the neighbourhood of the unseen data is selected.  

2.3.3 Search Algorithms used for Classifier Selection in MCSs 

The search space containing all the candidate classifier combinations computed from 

all the present individual classifiers must be explored in order to achieve the most 

optimum classifier ensemble. This search can be performed using various methods 

such as Single Best, N Best, Forward Search, Backward Search, Exhaustive Search, 

and Evolutionary Search algorithms. The single and N best search algorithms 
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respectively consider the highest performing single or N classifiers from the pool of 

classifiers. The forward and backward search algorithms are typical examples of a 

greedy search algorithm and they stop when the evaluation function can no longer be 

improved from its current state with respect to the next step. The exhaustive search 

algorithm assumes that the number of the candidate classifier ensembles is small, 

making it impractical or unfeasible for an increase in the number of the base classifiers 

[39]. The evolutionary search is one method developed in order to avoid the challenges 

of an exhaustive search. 

The process of an evolutionary search algorithm is better suited to handle a pool of a 

large number of classifier compared to the algorithms based on the greedy search 

approach. For the classifier selection process, these search algorithms have been 

successfully implemented in several studies [40]. Some of the evolutionary search 

algorithms are genetic algorithms, Bee Colony [41], Firefly [42, 43], and Ant Colony 

[44, 45]. GA is one most widely implemented evolutionary search algorithms [40, 46]. 

In this thesis, one of our methods for relation extraction in biomedical domain 

employed the GA as part of the designed architecture as discussed in Chapter 4. GA is 

a model that mirrors of a natural evolutionary system [47]. 

2.3.4 Genetic Algorithm 

GAs are a type of optimization algorithm and have been used in fields like engineering 

and science as an adaptive algorithm for solving practical problems and also as a 

computational model of natural evolutionary systems [47]. Charles Darwin’s theory of 

natural evolution inspired the heuristic search called GA [48]. This algorithm reflects 

the process of a natural selection where the fittest individuals are selected for 

reproduction in order to produce offspring of the next generation. 
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John Holland invented GAs in the 1960s which were later developed in the 1960s and 

the 1970s by Holland and his students and colleagues at the University of Michigan 

[47]. Intensive research has been dedicated to GA in order to bring about a lot of 

applications in the machine learning domain [49, 50, 51, 52]. Despite the numerous 

varieties of the GA present, the fundamental principles remain unchanged [46]. GA is 

designed to simulate a biological process, therefore, much of the relevant 

terminologies applied in GA is borrowed from biology. However, the entities that this 

terminology denotes to in GA are much simpler than their biological counterparts [53]. 

The main problem associated with GAs is the premature convergence to the local 

optima of the objective function [54]. The basic phases of GA are: 

2.3.4.1 Initial Population 

The population is made up of a set of individuals. Each individual is characterized by 

a set of parameters called Genes. Genes are combined into strings to form a 

chromosome. Chromosomes then make up the core GA which is usually represented 

by binary-encoded values (strings of 0s and 1s) of the candidate solutions to the 

optimization problem [55]. Each candidate solution is encoded as an array of 

parameter values [56]. For a problem with N dimensions, each chromosome is encoded 

as an N-element array. 

chromosome =  [p1, p2, … , pN]  

Where each pi is an actual value of the ith parameter [56]. 

2.3.4.2 Fitness Function 

The fitness function tests and quantifies the performance of a potential solution. The 

fitness of a chromosome is its ability to compete with other chromosomes and to 

achieve the desired task. The fitness of a chromosome is assigned a probability of 

survival proportional to its fitness.  
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2.3.4.3 Selection  

Selection phase selects the fittest chromosomes for reproduction based on a user-

defined probability distribution. The selected chromosomes pass their genes to the next 

generation of chromosomes. The common assumption is that only the fit chromosomes 

are selected and allowed to produce offspring. However, this would lead to the 

similarity of chromosomes in a few generations, and therefore decreased diversity. 

Two pairs of chromosomes called the parents can be selected based on a variety of 

some selection schemes such as roulette wheel selection, tournament selection, rank 

selection, and elitism. In this thesis, we employed the roulette wheel and tournament 

selection as discussed in Chapter 4.  

2.3.4.4 Crossover  

This is a very significant phase in GAs. The selected chromosomes are allowed to 

reproduce themselves through recombining and passing on their genotype to the next 

generation. For the mating pairs of chromosomes, a crossover point is chosen either 

by default or randomly from within the genes. Offspring are produced by exchanging 

some of the parents’ genes among themselves until the chosen crossover point is 

reached. The new offspring are added to the population. For the one-point crossover, 

after the selected crossover point, the tails of the parent chromosomes are swapped to 

produce new offspring. If two or more crossover points are taken, then it is a multi-

point crossover. In this thesis, we employed a one-point and two-point crossover as 

discussed in Chapter 4. 

2.3.4.5 Mutation  

The mutation operation generally involves a small change in the genotype of an 

individual to which it is applied. This change happens at a frequency called the 
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mutation rate. Mutation rate is defined as the probability at which a selected position 

of the genotype in an individual is mutated in every iteration of the GA evolution [54]. 

2.4 Biomedical Corpora 

High-quality biomedical corpora are very important in the development of relation 

extraction systems. The creation of biomedical corpora is a time-consuming and error-

prone task which has made the number of biomedical corpora available to be small. 

The Protein-Protein Interaction (PPI) task is one of the largest studied relation 

extraction task in the biomedical domain. Pyysalo et al [1] converted the five major 

PPI corpora (AIMed [57], BioInfer [58], HPRD50 [59], IEPA [60], and LLL [61]) into 

a unified format. A full list of the available biomedical corpora can be found in the 

[62]. Some biomedical relation corpora are listed in Table 2.1. 

Table 2.1. Biomedical relation extraction corpora 
Datasets Description 

AIMed Protein-protein interactions 

AnEM Anatomical Entity Mention corpus 

BioCreative 2 Gene Mention task Gene and protein mentions 

BioCreAtIvE II and III  Protein-protein interactions 

BioCreAtIvE V  Chemical-disease relations 

BioInfer Protein-protein interactions 

BioNLP 2009 and 2011 Shared Task Biological events, such as gene expression, 

regulation, phosphorylation, etc. 

BioText Disease and treatment relationships 

Drug-Drug Interaction Extraction 2011 and 2013 Drug-Drug Interaction 

HPRD50 Protein-protein interactions  

IEPA Protein-protein interactions  

LLL Protein-protein interactions  
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Chapter 3 

3 EXPERIMENTAL SETTINGS 

3.1 Dataset 

The BioCreative V corpus [4] contains 1500 documents [63] having only titles and 

abstracts. These articles are grouped into the training, development datasets and test 

dataset each of them having 500 articles. The training, development datasets and 400 

articles of the test dataset were selected randomly from the Comparative 

Toxicogenomics Database (CTD)-Pfizer corpus [64]. This corpus was produced 

through the curation collaboration between CTD and Pfizer and consists of over 

150,000 chemical-disease relations in 88,000 articles [64]. The remaining 100 articles 

for the test set were selected through a process ensuring that they would contain a 

similar distribution of entities as the training and development datasets. The entire 

BioCreative V corpus is manually annotated with the chemicals, diseases and their 

relations; the entity mentions have unique concept identifiers. Table 3.1 shows the 

statistical information on this corpus [63, 65]. 

Table 3.1. Statistics of the BioCreative V dataset 
Dataset Articles Sentences Chemicals Diseases No. of CID 

relations 

Average sentence 

lengths 

Mention ID Mention ID  Original Simplified 

Training 500 4519 5203 1467 4182 1965 1038 20.70 19.25 

Development 500 4395 5347 1507 4244 1865 1012 20.44 19.03 

Test 500 4759 5385 1435 4424 1988 1066 20.38 18.03 
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3.2 Base Classifiers 

3.2.1 Support Vector Machines (SVMs) 

The support vector machine is a classifier designed for binary classification and it is 

one of the most commonly used ML classifiers in biomedical relation extraction tasks 

such as PPI [12, 13], text categorization [17], and CID relation extraction [66, 67]. 

During the training phase, SVM finds the optimal hyperplane separating two classes 

by maximizing the margin between the hyperplane and a subset of the training data 

points, called the support vectors that are nearest to the hyperplane. During the testing 

phase, the input vectors are classified as positive or negative depending on the side of 

the hyperplane they are mapped to. In order to compute the separating hyperplane for 

data that are not linearly separable, SVM utilizes a kernel function to transform the 

data into a higher dimensional space where it can be separated linearly. Some of the 

kernel functions used in SVM are polynomial, radial basis function (RBF), Gaussian, 

and sigmoid kernels. Figure 3.1 shows a hyperplane separating two classes that are 

linearly separable in two-dimensional space. 

 
Figure 3.1. An example of a linearly separable binary classification task. A 

hyperplane separates the two classes (square and circle). 
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3.2.2 Decision Trees 

3.2.2.1 J48 Algorithm 

The J48 algorithm is an extension of the conventional decision tree algorithm, Iterative 

Dichotomise 3, and an implementation of the C4.5 algorithm by Ross Quinlan, [68]. 

The main advantage of the C4.5 algorithm over other decision trees is its good 

combination of both error rate and speed [69]. Some of the improvements of this 

algorithm are: (1) it generates the rules for the prediction of the target class, (2) it can 

process both numeric and discrete data, (3) it produces easily interpreted rules, (4) it 

prunes trees after they have been created in order to remove branches that are causing 

obstruction from reaching the leaf nodes and (5) it handles missing attribute values 

[68, 70].  

The J48 uses the measure of data disorder called “Entropy”. The Entropy (𝑧) is 

computed as [71]: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑧) =  − ∑
|𝑧𝑖|

|𝑧|

𝑛

𝑖=1
log (

|𝑧𝑖|

|𝑧|
) (3.1) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑖|𝑧) =
|𝑧𝑖|

|𝑧|
 log (

|𝑧𝑖|

|𝑧|
) (3.2) 

This algorithm aims at maximizing the gain, which is computed as:  

𝐺𝑎𝑖𝑛 (𝑧, 𝑖) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑧) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑖|𝑧) (3.3) 

The pruning step in the J48 decision tree, which is an implementation of the C4.5 

algorithm, is performed in order to improve the generalization of the tree and it greatly 

affects the final performance. In order to reduce the error rate, the C4.5 algorithm 

performs pruning by replacing the internal node with a leaf node [72]. This algorithm 

performs an enhanced tree pruning method which reduces the misclassification errors 
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that may occur due to noise, redundant, irrelevant or too much information available 

in the training dataset [73]. It sorts the data at every node, thereby determining the best 

splitting attribute [73]. 

3.2.2.2 Random Forest 

The random forest is a supervised learning algorithm. It is trained using the bagging 

method, which is based on the idea that the combination of learning models improve 

the final performance [74]. It fits a number of decision tree classifiers on multiple sub-

samples of the dataset and uses averaging to enhance the predictive accuracy and to 

control overfitting. In essence, the random forest creates multiple decision trees and 

combines them to produce a more stable and accurate prediction. Another advantage 

of the random forest is its ability to be employed in both classification and regression 

tasks. 

During the growing of the trees, the random forest algorithm adds randomness to the 

model by searching for the node to split among a random subset of features rather than 

choosing the most important feature in the complete set [74]. This approach increases 

diversity, which generally results in a better model. However, the random forest may 

not be the best classifier selection for a real-time classification task as the building of 

large subsets of trees can make the algorithm very slow. 

3.2.2.3 Random Tree 

The random tree is a supervised classifier that can be used for both classification and 

regression problems. The random tree is referred to as an ensemble-learning algorithm 

as it learns through the generation of various individual learner [74]. Just like the 

random forest, it also employs the bagging idea; however, unlike in the random forest 

where every node is split using the best features among the subsets of features chosen 

randomly, the random tree splits every node using the best split among all the features. 
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The classification mechanism for a random tree is as follows: (1) the random tree is 

assigned input vector, (2) it classifies the input vector with every tree in the forest, and 

(3) it gives the class label with the majority vote as the output [74].  

Random trees are a combination of model trees and random forest since the model 

trees are merged with the ideas of random forest. This combination is used for split 

selection; thereby it creates balanced trees where one global setting for the ridge value 

works across all leaves, thus simplifying the optimization procedure [75, 76]. 

3.2.3 Bayesian Classifiers 

The types of Bayesian Classifiers implemented in this work are Naïve Bayes (NB) and 

Bayes Networks (BN). These classifiers both deal with conditional probabilities. 

The NBs methods are supervised learning algorithms and are based on the Bayes’ 

theorem which makes two naive assumptions: (1) conditional independence between 

the predictive attributes given the value of the class variable, and (2) no hidden or 

underlying predictive attributes influence the prediction process [77]. The Naïve 

Bayesian model is simple and easy to build and is useful for very large datasets, as the 

model does not consist of complicated iterative parameter estimations. Despite its 

simplicity, it is still capable of outperforming some more sophisticated classifier 

algorithms, thereby making it a widely used model for classification tasks. 

Considering a random variable C denoting the class of an instance and F denoting a 

feature vector of random attributes denoting the observed attribute values, let c denote 

a given class label and f denote a particular observed attribute value vector. The Bayes’ 

theorem states that the probability of each class given the feature vector, 
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𝑃(𝐶 = 𝑐 | 𝐹 = 𝑓) =  
𝑃(𝐶 =  𝑐) 𝑃(𝐹 = 𝑓 | 𝐶 = 𝑐)

𝑃(𝐹 = 𝑓)
 

(3.4) 

Considering the naive assumption of the conditional independence between features, 

and since the event is a conjunction of the predictor value assignment such that F1 = f1 

˄ … Fm-1 = fm-1 ˄ Fm = fm, then we obtain: 

𝑃 (𝐹 = 𝑓 | 𝐶 = 𝑐) = 𝑃(⋀ 𝐹𝑖 = 𝑓𝑖 | 𝐶 = 𝑐)
𝑖

 
(3.5) 

                                   = 𝑃(∏ 𝐹𝑖 = 𝑓𝑖
𝑖

| 𝐶 = 𝑐) 
(3.6) 

Generally, the distribution of the denominator in Equation (3.4) is not directly 

estimated as it is just a normalizing factor; instead, the denominator is ignored and the 

equation is normalized so that the sum of P(C = c | F = f) is one over all the classes 

[77]. 

The BN combines a powerful knowledge representation and reasoning mechanism to 

represent events and causal relationships between them as conditional probabilities 

involving random variables [78]. Given the values of a subset of these variables, the 

BN can compute the probabilities of another subset of variables [78]. BN builds on the 

same principle as the NB; however, they are not restricted to representing distributions 

based on the strong independence assumptions of the Bayes theorem employed in the 

NB model. The BN gives the flexibility to build a representation of the distribution to 

the independence properties that appear reasonable in the current setting. 
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3.3 Text Processing 

This section relates to the methods of sentence segmentation, tokenization and 

simplification used to process the input text employed in the relation extraction 

methods discussed in Chapter 4 and Chapter 5.  

3.3.1 Sentence Segmentation and Tokenization  

In the BioCreative V dataset, the relation instances can be considered on both the 

abstract and sentence levels [79]. Our methods performed the relation extraction task 

on the sentence-level. As already discussed in Section 2.1.1.1, the irregularities in the 

biological names, decimal values, inline citations, and abbreviations amongst other 

problems make this a non-trivial task and may require the use of external NER toolkits 

to improve efficiency and accuracy. During sentence segmentation, the input data are 

documents containing only titles and abstracts. Normally, a period (.) is used to 

identify the sentence boundaries in a paragraph. However, considering the single 

sentence from the article with PubMed ID (PMID) 20067456: “Total ASEX scores 

were significantly lower, i.e. better, among men who received bupropion than placebo, 

at 15.5 (4.3) vs 21.5 (4.7) (P= 0.002).”, it can be seen that splitting simply at periods 

will result in multiple sentences, thereby, making sentence segmentation a non-trivial 

task. 

Additionally, the process of tokenization also can become a non-trivial one due to 

issues such as entity names with white space (composite tokens) and the inconsistent 

use of hyphenation in the entity names. For example, “Lithium-induced” should return 

two tokens whereas, “alpha-methyldopa” should be treated as a single token. The 

irregularities with biological terminologies (e.g. 1,3-bis-(2-chloroethyl)-1-nitrosourea) 

also make this process more complicated. It is worth mentioning that the errors 
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generated in the tokenization step are transmitted through the subsequent text pre-

processing steps, thereby decreasing the performances of the subsequent tasks [80]. 

3.3.2 Sentence Simplification 

In this section, we discuss the methods utilized for simplifying the sentences after 

sentence segmentation and tokenization stages. The sentences used in this step contain 

at least one entity mention. Due to the irregularities associated with the entity names, 

they are replaced by placeholders, which are unique names. The entity names 

considered during this process are entirely those extracted through the gold standard 

annotation provided in the BioCreative V CDR corpus. 

The corpus consists of both simple and composite entity mentions. A simple entity 

mention consists of either a single token or multiple tokens separated by white space 

(e.g. Suxamethonium, blurred vision). However, a composite entity mention consists 

of multiple tokens mainly combined using white space (e.g. cholestatic hepatitis), 

conjunctive operator (e.g. pleural and pericardial effusion), disjunctive operator (e.g. 

endometrial hyperplasia or cancer) or comma in conjunction with an operator (e.g. a 

decrease in MAP, HR, SV, and CO). The composite entity mentions may contain 

embedded entities, therefore, a set of rules are defined in our system in order to 

efficiently and accurately extract all the embedded entities in the composite mentions 

and replace them with the placeholders. The handling of a composite entity mention is 

non-trivial. For example, consider the excerpt “THE FIELD: Fluoropyrimidines, in 

particular 5-fluorouracil (5-FU), have been the mainstay of treatment for several solid 

tumors, including colorectal, breast and head and neck cancers, for > 40 years.” 

from the article with PMID 20722491. The bold words are entity mentions according 

to the gold standard annotation. The composite entity mentions “colorectal, breast and 

head and neck cancers”, with the composite concept identifier 
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D015179|D001943|D006258 that represents the three embedded entities “colorectal 

cancers”, “breast cancers”, and “head and neck cancers” respectively. 

The placeholders used to replace the entity names are a tag (ARG) with a numeric 

value (0, 1, 2 …) (e.g. ARG0, ARG1). These placeholders are used to replace the entity 

mentions in their order of appearance in order to keep a proper reference for each 

entity. After the entity mentions have been replaced by the placeholders, in the next 

phase of the sentence simplification, all the parentheses not containing any 

placeholders were eliminated (tokens and parentheses) from the text. After the 

sentence simplification process, simplified sentences are generated with the aim of 

improving the generalization ability of the dependency parser employed. After 

simplification, the sample sentence given above becomes “THE FIELD: ARG0, in 

particular ARG1 (ARG2), have been the mainstay of treatment for several solid 

ARG3, including ARG4, ARG5 and ARG6, for > 40 years.” 

The simplified sentences are then passed to the relation instance construction step, 

where the candidate relation instances are extracted. The average lengths of the 

original and simplified sentences are reported in Table 3.1, where it can be seen that 

the average length of the simplified sentence is lesser than the original sentence. 

3.4 Relation Instance Construction 

In this step, we extract the candidate CID relation instances from the input sentence. 

Given a pair of entities expressed as either <chemical, disease> or <disease, 

chemical>, a CID relation can exist in either intra-sentence or inter-sentence mention 

level. As reported in this thesis, the intra-sentence level describes the case where a 

chemical and disease mention occur in the same sentence. Whereas, the inter-sentence 
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level describes the case where the mentions occur within neighbouring sentences. Two 

sets of filtering rules and four-sentence structural forms are employed during the CID 

relation instance construction.  

In order to construct the sentence structural forms, a triplet is built based on the 

candidate relation instances (e.g. <ARGa, REL, ARGb> where ARGa and ARGb are 

placeholders representing the candidate relation instances and a and b being numeric 

values showing the order of appearance of an entity (argument) in the sentence. a < b 

for every triplet). The variable REL in the triplet signifies a word that can be extracted 

from the sentence based on any of the structural forms to provide a clue of a possible 

relation between the instances. Therefore, the variable REL is called a clue word. The 

extracted clue words are either nouns or verbs that exist before, between or after the 

entity pair in a candidate relation instance. In the structural sentence forms listed 

below, token* represents zero or more tokens [65].  

Form 1: ARGa token* REL (verb) token* ARGb  

Example: ARGa-inducing effect of ARGb.  

Form 2: ARGa token* REL (noun/verb) token * ARGb 

Example: ARGa may have an adverse effect on ARGb.  

Form 3: REL (noun) token * ARGa token* ARGb 

Example: interaction between ARGa and ARGb.  

Form 4: ARGa token* ARGb token * REL (noun/verb)  

Example: ARGa following ARGb administration.  

These rules were applied to determine if the CID candidate instances have a higher 

probability of being a true CID relation. The process of sentence construction at the 
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intra- and inter-sentence levels is discussed in detail in Sections 3.4.1. The two set of 

rules are each dependent on the sentence levels been considered as follows:  

Rule 1: For the candidate relation instances (triple) in the intra-sentence mention level:  

i. The total number of tokens existing between the entity mentions in the 

candidate relation instance must not be greater than 10.  

ii. If there exist multiple candidate relation instances describing the same CID 

relation, the instance with the closest distance (token-wise) between the entity 

mentions is selected.  

Rule 2: For the candidate relation instances (triple) in the inter-sentence mention level:  

i. Any candidate relation instance considered at this level must not exist in the 

intra-sentence level,  

ii. Since composite sentences are used to construct a candidate relation instance 

at this level, the number of combined sentences must not be greater than three 

(i.e. two or three),  

iii. As in the intra-sentence level, if there exist multiple candidate relation 

instances at this level describing the same CID relation, the instance with the 

closest distance (token-wise) between the entity mentions is selected.  

3.4.1 Relation Instances on the Intra-sentence and Inter-sentence Levels  

The intra-sentence mention level describes the case where the entity mentions of a 

candidate relation instance are extracted from the same sentence, whereas, the inter-

sentence mention level describes the case where the entity mentions of a candidate 

relation instance that are extracted from neighbouring sentences. In the inter-sentence 

level, the neighbouring sentences considered are merged to form a composite sentence 

consisting of a single sentence boundary.  



31 

 

In order to describe the existence of the candidate relation instances in an input text, 

let us consider an excerpt of the title and abstract of a document (PMID 2234245) as 

shown in Figure 3.2. The abstract is segmented into sentences and as discussed in 

Section 3.3.2, only the sentences with at least one entity mention are considered in our 

approach, therefore, the sentence S3 is eliminated. The sentences with just one entity 

mention are used since they can be a member of a candidate relation instance that spans 

a number of neighbouring sentences. According to the BioCreative V corpus 

annotation, the document given in Figure 3.2 consists of three CID relations between 

the entity mentions <D003676, D014786> <D003676, D012164>, and <D003676, 

D006319>. The first relation occurs in the same sentence, Title, between 

“desferrioxamineD003676” and “OcularD014786 (Ocular toxicity)”. This case is referred to 

as the intra-sentence level. Whereas, the latter two relations between 

“desferrioxamineD003676” and “pigmentary retinal depositsD012164”, and 

“desferrioxamineD003676” and “neurosensorial hearing lossD006319” occur over multiple 

neighbouring sentences, between S4 and S6, and S5 and S6 respectively. These cases 

are referred to as the inter-sentence level. 

 
Figure 3.2. A sample document (PMID 223424) showing CID relations.  

The chemical entities are highlighted in dash lines and the disease entities are 

highlighted in solid lines. The CID relations are between the entities <D003676, 

D014786> <D003676, D012164>, and <D003676, D006319>. 
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The construction of a candidate CID relation instance depends on the two set of defined 

rules as described above. Rule 1 is employed if the candidate instances are on the intra-

sentence level, otherwise, Rule 2 is employed.  

3.4.2 Relation Instances on the Joint Level  

In this thesis, we develop a case called the “joint level” where the candidate relation 

instances from both the intra- and inter-sentence levels are combined after they are 

extracted before the classification. Since the relation instances from the intra- and 

inter-sentence levels are non-overlapping, their combination only leads to the 

generation of the complete relation instances in the dataset. The construction of the 

candidate relation instances on the three sentence levels generates three subsets of 

given datasets namely; intra-sentence level dataset, inter-sentence level dataset and 

joint level dataset. Table 3.2 reports the statistics on candidate relation instances 

extracted across the three datasets from the BioCreative V corpus. The positive 

instances are those entity pairs that have been annotated by the corpus to possess a true 

CID relation between them, while the negative instances are the entity pairs not 

annotated as such. This table shows that the similar distribution of the positive and the 

negative instances across the datasets are similar. 

Table 3.2. Candidate relation instances from the BioCreative V corpus 
Datasets Intra-sentence 

level 

Inter-sentence 

level 

Joint level Total 

Positive Negative Positive Negative Positive Negative 

Training 277 524 761 3102 1038 3626 4664 

Development 244 622 768 3409 1012 4031 5043 

Test 315 549 751 3426 1066 3975 5041 
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3.5 Feature Extraction 

Feature extraction or selection is the process of extracting a subset of features from the 

complete set through the means of functional mapping [81]. Feature extraction can 

also be seen as the process of generating all possible transformations from the original 

set of features in order to find an optimum subset, which with the lowest possible 

dimensionality can aid in preserving class separability within the space [82]. In the 

recognition field, Duda et al. simply refer to the term “feature extraction” as a process 

of extracting features from data [83]. The process of feature extraction covers a number 

of disciplines such as data mining [84], machine learning [12, 14, 85, 86, 87, 88], and 

pattern recognition [89, 90]. Feature extraction helps in reducing computational 

complexity and dimensionality as well as solving the problem of overfitting [81]. 

Overfitting is experienced when a classifier model can correctly classify data points 

that are very closely related to the training data but then performs poorly with the data 

which are not closely related to the training data [91]. Little knowledge exists on 

describing features that would be relevant for a classification task, therefore, many 

subsets of candidate features from the original feature set are introduced and this 

creates a case of having the existence of redundant or irrelevant features in a given 

subset [92]. The relevant features are neither redundant nor irrelevant to the task; the 

redundant features add no new information to improve the task, and the irrelevant 

features are not directly associated with the target concept, however, they affect the 

learning process [92]. Therefore, selecting an optimum subset from the original feature 

set is a tough task. For example, let 𝐘 be the original feature space having a cardinality 

of 𝑝, and 𝐘̅ is the selected feature sub-space with a cardinality of 𝑝̅. The criterion for 

the selected feature sub-space 𝐘̅  ⊆  𝐘 is 𝐾(𝐘̅). Without a loss of generality, an 
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assumption can be made that a higher value of K will indicate a better feature space. 

Therefore, difficulty arises in selecting a feature sub-space 𝐘̅  ⊆  𝐘 such that  

𝐾(𝐘̅) = max
𝑊 ⊆ 𝐘,|𝐖|=𝒑̅

𝐾(𝐖) (3.7) 

For an exhaustive approach, all the possible combinations of (𝑝
𝑝̅

) must be considered. 

Due to the exponential increase in the number of possible combinations, this 

exhaustive search is impractical and unfeasible for large p values. It is usually 

intractable to compute the best feature subset [93], and many problems associated with 

feature selection have shown to be nondeterministic polynomial-time hard (NP-hard) 

[94], thereby describing the process as remaining a trial-and-error skill-dependent task 

[9]. 

3.5.1 Features Used 

As discussed in Section 3.4.1, in the intra-sentence level, a relation instance is 

extracted from in a single sentence, whereas, in the inter-sentence level, a relation 

instance is extracted from a composite sentence. Both single sentences and composite 

sentences are used in the same way during feature extraction. The types of feature 

extracted in this thesis have been used successfully in the relation extraction tasks [7, 

9, 10, 12, 95]. The feature sets are grouped into three categories: (1) contextual, (2) 

dependency, and (3) statistical features. 

3.5.1.1 Contextual Features 

The contextual features employed in this thesis consist of the names of the entities in 

a candidate relation instance and a clue, word which describes any relationship present. 

The contextual features are described in Table 3.3. 
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Table 3.3. Description of the contextual features 
No. Description  Format 

1 Chemical mentions String  

2 Disease mentions String 

3 Relation clue words (REL) String  

 

3.5.1.2 Dependency Features 

The dependency features have been employed successfully to provide effective 

information in order to determine CID relations between entity mentions in other 

systems such as [8, 12, 95, 96]. They extracted from a dependency parse tree developed 

using the SpaCy1 dependency parser. The parsed sentences are the simplified sentences 

generated after text processing. Table 3.4 gives the information about the dependency 

features employed in this thesis.  

Table 3.4. Description of the dependency features 
No. Description  Format 

1 POS tags along the path from the root node to the first entity in the candidate 

relation instance (ARG1). 

String  

2 The POS tags along the path from the root node to the second entity in the candidate 

relation instance (ARG2). 

String 

3 The node distance from the root node to ARG1 String  

4 The node distance from the root node to ARG2 String 

 

3.5.1.3 Statistical Features 

The statistical features describe the attributes of the entity mentions or tokens present 

in the considered sentences in either Boolean (binary representation of 1 or 0) or 

                                                 
1 Spacy parser: https://spacy.io/docs/usage/ 
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numeric (frequency of occurrence) formats. For the Boolean representation, 1 denotes 

“true” while 0 denotes “false”. The statistical features are presented in Table 3.5. The 

phrase “around an entity” refers to the defined context window containing four words 

on each side of a given entity mention. 

Table 3.5.Description of the statistical features 
No. Description  Format 

1 Number of REL extracted using the four defined sentence structure forms.  Numeric 

2 The number of verbs in the considered sentence Numeric  

3 The number of verbs between ARG1 and ARG2 Numeric 

4 The number of tokens between ARG1 and ARG2 Numeric 

5 The number of tokens between ARG1 and REL Numeric 

6 The number of tokens between REL and ARG2 Numeric 

7 The number of chemical mentions in the sentence Numeric 

8 The number of disease mentions in the sentence Numeric 

9 The number of both the chemical and disease mentions in the sentence Numeric 

10 Does the title contain ARG1 Boolean 

11 Does the title contain ARG2 Boolean  

12 Does the title contain both ARG1 and ARG2 Boolean  

13 Are the words “increase” or “decrease” around the chemical mention Boolean  

14 Are the words “increase” or “decrease” around the disease mention Boolean  

15 Are nouns representing persons like 'infant', 'adult', or 'patient', around the chemical 

mention 

Boolean  

16 Are nouns representing persons like 'infant', 'adult', or 'patient', around the disease 

mention 

Boolean  

17 Are keywords like ‘mg/kg’, ‘mmol/l’, or ‘mg/dl’ around the chemical Boolean  

18 The absence of a token between ARG1 and ARG2 Boolean  

19 The presence of only a single token between ARG1 and ARG2 Boolean  

20 The existence of a verb between ARG1 and ARG2 Boolean  
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3.6 Evaluation Methods 

The relation extraction systems described in Chapter 4 and Chapter 5 are evaluated 

using Recall (R), Precision (P), and the F-score (F1) metrics. In order to calculate these 

metrics, the variables true positives (TP), false positives (FP) and false negatives (FN) 

are used. These variables are numbers returned by the system after classification. For 

the CID relation extraction task, TP denotes the number of the CID relation instances 

that are correctly predicted, FP denotes the number of relation instances that are 

incorrectly predicted as CID and FN denotes the number of CID relation instances that 

are unidentified as such by the classifier. F1 is used to evaluate the systems reported 

in this thesis and it is computed using recall and precision. 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅)  =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

(3.8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃)  =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

(3.9) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 (𝐹1) =  
2𝑅𝑃

(𝑃 + 𝑅)
 

(3.10) 
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Chapter 4 

4 CID RELATION EXTRACTION TASK USING 

GENETIC ALGORITHM WITH TWO VOTING 

METHODS FOR CLASSIFIER SUBSET SELECTION 

Relation extraction has become an important forerunner for text-mining problems. In 

this chapter, we report a novel framework to facilitate the development of a multi-

classifier system for CID relation extraction task. The system utilizes the GA 

optimization technique. The classifier ensembles are represented as chromosomes 

where each bit represents the participation of a classifier in the ensemble as reported 

in [97]. The genetic framework employed in this work contains three important design 

features: (1) Each chromosome contains an extra bit called the voting bit to determine 

the voting algorithm used for the combination of the classifiers in the ensemble, (2) 

Two different selection algorithms and two types of crossovers are used randomly 

during the evolution process, and (3) Two decision-making under uncertainty 

techniques are used as the voting methods. The third feature is an important 

contribution to the current work. 

The system developed using this framework aims at producing a good combination of 

classifiers by utilizing the diversity of the classifiers in an ensemble. During the 

validation of our system, nine (9) experimental settings were employed. All the 

settings produced good results comparable to the state-of-the-art systems, thereby, 

justifying our approach. Although candidate relation instances are generated to form 
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three sentence levels as discussed in Section 3.4, only the dataset subset on the joint 

level is applied in this framework. 

4.1 Background 

There has been an increase in the scientific effort dedicated to improving knowledge 

discovery in biomedical texts. The relation extraction task has seen multiple systems 

developed to propose unique approaches and produce better performances. The single 

classier-based systems are predominant for classification tasks [11, 12, 14, 98], 

however, an MCS has also been considered [36, 99, 100]. In the classification tasks of 

multiple non-trivial pattern recognition problems, the MCS reportedly provides better 

performances [101, 102, 103]. The performance of an MCS is determined by the 

diversity or complementarity of the base classifiers [104].  

One of the core modules of an MCS is the Classifier Subset Selection (CSS). In the 

CSS module, a subset of classifiers is selected in an ensemble from the base classifiers 

such that the performance of the ensemble is better than that of the ensemble of all the 

base classifiers and the best individual classifier [100, 104, 105, 106]. The research on 

classifier diversity and classifier selection has been aimed at investigating the reasons 

behind the different performance levels associated with the CSS approaches [100, 103, 

105, 107, 108].  

In general, in order to achieve good performance, MCSs are constructed with well 

performing and diverse base classifiers. Therefore, the overall performance of an MCS 

heavily depends on the selection of the base classifiers and their individual 

performances [109, 110]. The selection and combination of features for training 

influences the performance of the individual base classifiers [105]. 
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In this framework, the relation extraction method described employs a 

multidimensional classifier selection approach through GA. GA, which is an 

optimization technique, provides a variety of options to deal with the complexity 

between the search algorithm used and the solution found [105]. Complementarity or 

diversity among the base classifiers in an MCS can be improved through the variations 

of the parameters of the classifiers, the use of different subsets of training dataset, and 

feature subsets [104, 111]. We implemented the novel use of two decision-making 

under uncertainty techniques as our voting methods for the classifier combination and 

the use of two randomly selected classifier selection techniques. Diversity within the 

base classifiers is increased through the use of different classifiers and classifiers tuned 

to different parameter settings in the base classifier, and the use of different feature 

subsets for training. Additionally, we added some variation during evolution by using 

two different randomly selected selection techniques and two types of crossovers. 

4.2 Methods 

This chapter continues in the direction of Chapter 3, where we discussed the 

experimental setup used for our relation extraction methods. The dataset used in this 

framework which is the joint level dataset, the base classifiers, the stages of text 

processing (sentence segmentation and sentence simplification), the construction of 

candidate relation instances, and feature extraction have been discussed in details in 

Section 3.1. Based on the extracted features described in Section 3.5.1, we developed 

four feature sets based on the three different feature categories as described in Table 

4.1. For example, Set A contains the three feature categories. 
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Table 4.1. Feature sets used for training 
Sets Contextual Dependency Statistical 

A X X X 

B X X  

C X  X 

D  X X 

 

4.2.1 Classifiers  

The base classifiers employed include the SVM, three implementations of the Decision 

Trees (the J48, random forest (R4) and random tree (R3)), and two implementations 

of the Bayesian Classifiers (Naïve Bayes and Bayes Network). Table 4.2 presents the 

complete detail on the base classifiers and their individual parameter settings. 

Table 4.2. Base classifiers and their parameter settings 
S.NO Classifiers Settings 

1.  Bayes 

Network 

Search Algorithms:  

1) HillClimber (as BN Hill) 

 Initial network: True  

 Number of parents per nodes: 2 

 Score type: Bayes 

2) K2 (as BN K2): similar to BN Hill but it is restricted by an order on variables 

 Initial network: True  

 Number of parents per nodes: 2 

 Score type: Bayes 

3) TAN (as BN TAN): determines the maximum weight spanning tree and 

returns a Naive Bayes network augmented with a tree. 

 Use Markov Blanket correction: false 

 Score type: Bayes 

2.  J48 4) J48 

 Confidence factor: 0.25 

 Batch size: 100 

 Minimum number of instances per leaf: 2 

3.  Naïve Bayes 5) NB 

 Kernel estimator: inactive 

6) NBK 

 Kernel estimator: active 

4.  Random tree 

(R3) 

7) R3 

 Batch size: 100 

 Number of randomly chosen attributes: 0 

 Minimum proportion variance: 0.001 

 Seed: 1 

5.  Random 

forest (R4) 

8) R4 

 Batch size: 100 

 Maximum depth: 0 

 Number of randomly chosen attributes: 0 

 Number of iteration: 100 

6.  SVM 9) SVM1 

 Complexity: 0.6 

 Kernel: polynomial 

10) SVM2 

 Complexity: 0.0 

 Kernel: polynomial 
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The base classifiers are trained using the feature sets A, B, C and D. The initial 

performances of the base classifiers are determined when evaluated using the feature 

set A. The other three feature sets, Sets B, C and D, which are subsets of Set A are 

used for training in order to increase the diversity among the base classifiers. This 

process led to different levels of classification success.  

The six different ML classifiers shown in Table 4.2 are used in either different 

parameter settings or implementations to produce an initial number of 10 base 

classifiers. An introduction of the four different feature sets for training the initial base 

classifiers increased the number of the base classifiers to 40, as each of the classifiers 

was trained separately on the four feature sets. Therefore, a total of 40 classifiers were 

used as our base classifiers. The base classifiers are trained using the joint level 

training data and the outputs of the base classifiers from the joint level development 

dataset are used during the evolution process of our system. The optimum ensemble 

generated after the evolutionary process is used to evaluate the performance of our 

system on the joint level test dataset. The statistics of the joint level datasets are 

reported in Table 3.2. 

4.2.2 Genetic Algorithm Framework 

In the MCS settings for the GA framework, a subset of classifiers is represented by a 

string of binary values called chromosomes, with ‘1’ or ‘0’ at a location i denoting the 

presence or absence of classifier i. A group of chromosomes is termed a population 

and the population evolves in every generation through the application of selection, 

crossover and mutation processes. These processes are employed to generate possibly 

better chromosomes in every generation while aiming for an eventual convergence 

towards an optimal solution.  
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During selection, some of the chromosomes are randomly selected for reproduction. 

This selection is performed mainly using the fitness level of the chromosomes, such 

that the fittest ones have a greater probability for reproduction. The chromosomes 

selected for reproduction are called parents and the products of their reproduction are 

called offspring. In our approach, the two selection methods employed are the Roulette 

Wheel and the Tournament selection methods.  

i. Roulette Wheel Selection: The parents are selected based on their relative 

fitness within the population. Therefore, the chromosomes with better fitness 

have more chances to be selected. The probability 𝑝𝑟𝑜𝑏𝑖 of selecting an 

individual i is given by,  

𝑝𝑟𝑜𝑏𝑖 = ∑ 𝑓𝑖

𝑁𝑗

𝑖=𝑗
 

(4.1) 

where fi is the fitness of the individual and N is the population size.  

ii. Tournament Selection: This method selects the chromosome with the highest 

fitness from a randomly selected subset of the population. The size of the subset 

controls the selection pressure as a bigger subset size causes an increase in the 

selection pressure. 

The processes of crossover and mutation are performed after the selection of the 

parents. These two operations are performed to increase the variety of individuals in 

the population, thus, increase the chances of avoiding a convergence towards the local 

optimum [54]. When the termination condition is met or after a predefined number of 

generations, the fittest chromosome in the population is considered as the optimal 

MCS solution. Figure 4.1 describes the flowchart of our GA system. 
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Figure 4.1. Flowchart of Genetic Algorithm  

For a population of size N, Ci (where 1 ≤ i ≤ N) are the chromosomes representing 

classifier ensembles where each chromosome contains M bits such that the first M-1 

bits represented by 0 or 1 in location i denotes the absence or presence of a classifier 

respectively and the last bit shows the voting method used in the ensemble as shown 

in Figure 4.2. The choice of voting method depends on the voting bit where the bits 0 

and 1 represents “Minimax Regret” and “Hurwicz Criterion” methods respectively. 
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For chromosome C1 in Figure 4.2, the classifiers 1, 2, … , 38 and 40 are selected in 

the classifier ensemble and the voting method used is Minimax Regret algorithm. 

 
Figure 4.2. Description of population and voting bit 

The population size in this study is N = 100 chromosomes, each represented by binary 

strings of length M = 41 including the voting bit. The number of generations for the 

GA evolution is set at 100. For every generation, the selection of the pair of 

chromosomes to partake in reproduction take place through a Tournament or Roulette 

Wheel selection as described in Figure 4.1. The pair of chromosomes selected is then 

passed through a process of crossover and mutation at a rate of 0.9 and 0.01 

respectively. For a crossover, the system randomly chooses between a 1-point or 2-

point crossover based on a split decision. After the crossover, the offspring are 

considered for mutation. The voting bit in an individual chromosome is subjected to 

mutation at a rate of 0.2. The fitness, which is the F-score, of each chromosome in the 

population is calculated by combining the classifier ensemble and the chromosomes 

are ranked according to their fitness. We employed elitism where 5% of the best 

individuals from the previous generation are propagated to the new generation as long 

as they are not already present in the new generation. This is to avoid the fittest 

chromosomes from quickly taking over the entire population.  
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There exist different voting methods used to compute the performance of a classifier 

ensemble including the simple majority, the weighted majority, percentage majority 

etc. However, in this thesis, we introduce the novel use of two decision-making under 

conditions of uncertainty techniques to calculate the fitness of chromosomes. These 

two voting methods are employed as they overcome the limitations of the conventional 

methods where decisions are made from a single opinion of either the strength, weight 

or percentage of the alternatives considered. They consider multiple opinions from all 

the alternatives considered before making a decision. 

i. Hurwicz Criterion (HC): is a pessimistic approach suggested by Leonid 

Hurwicz in 1951. It selects the maximum and minimum payoff from each 

alternative and tries to find a middle ground between the extremes of the 

optimist and pessimist criteria. It also employs a measure of assigning a given 

percentage weight to optimism and the balance to pessimism in a bid to avoid 

an assumption of total optimism or pessimism. This percentage weight is called 

the coefficient of realism (α) and the balance is called the coefficient of 

pessimism (1 - α) where 0 ≤ α ≤ 1. In our implementation of this method, due 

to the pessimism about the actual outcome, we set α at 0.6, which is slightly in 

favour of the optimistic alternative. The subsets of classifiers are grouped into 

the two alternatives. The best and worst F-score from both alternatives are 

selected and used to calculate an HC weighted average for both alternatives 

Yes (AY) and No (AN) as follows: 

HC (AY) = α (AY max) + (1-α) (AY min) (4.2) 

HC (AN) = α (AN max) + (1-α) (AN min) (4.3) 
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The best HC (Aj) such that HC= max (HC (AY), HC (AN)) where j signifies one 

of the two alternatives is chosen as the decision of the ensemble. However, in 

cases of a tie in the decision-making, we apply the reverse of the process to the 

same value of α, such that: 

HC (Aj) = (1-α) (Aj max) + α (Aj min) (4.4) 

ii. Minimax Regret (MR): seeks to minimize the maximum regret and it is useful 

in executing a risk-neutral decision-making. The subset of classifiers are 

grouped into two alternatives of “Yes” and “No” and the best and worst F-

scores from both alternatives are selected as Aj max and Aj min where j signifies 

one of the two alternatives. This method selects the alternative with the least 

opportunity loss using the formula:  

𝑀𝑅 = min[max  ((𝐴𝑌,𝑁 𝑚𝑎𝑥) − 𝐴𝑗 𝑚𝑎𝑥 , (𝐴𝑌,𝑁 𝑚𝑖𝑛) − 𝐴𝑗 𝑚𝑖𝑛)] (4.5) 

where AY,N max or AY,N min represents the maximum or minimum from both 

alternatives. In this method, in cases of a tie, we break the tie by the use of a 

coin toss. 

The major components of the CSS used in this thesis are shown in Figure 4.3. In the 

“Data” component, the entity mentions and extracted features are labelled and 

represented as token instances for sampling. In “Feature Categories”, the instances 

used as features for training the classifiers are grouped into four (4) different sets as 

shown in Table 4.1. In the “Classifiers” component, the individual classifiers are 

trained separately using these different feature categories and their results are used 

during the CSS process in the “Classifier Subset Selection”. In the CSS process, GA 

is employed and after a series of evolution and a number of generations, a solution is 

found as the best classifier ensemble. 
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Figure 4.3. Description of the CSS components. 

We performed the experiments using the 9 different settings in order to determine 

which of the settings generates the best classifier ensemble adaptable to the test sample 

in the last stage of our experiment. The initial population of chromosomes is generated 

randomly. However, the same set of randomly generated chromosomes is used as the 

initial population throughout the experiment for proper comparison on the evolution 

and results of the different settings employed. This initial population consists of unique 

chromosomes. Table 4.3 shows the settings used in this experiment.  
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Table 4.3. Experimental settings 
S.NO  Settings Selection Algorithm Voting Method 

  Roulette Wheel Tournament Hurwicz Criterion Minimax Regret 

1 RTHM X X X X 

2 RTH X X X  

3 RTM X X  X 

4 RHM X  X X 

5 RH X  X  

6 RM X   X 

7 THM  X X X 

8 TH  X X  

9 TM  X  X 

 

The names used to describe each setting are coined using the first character of the 

selection algorithm and voting method employed in the setting. For example, the 

setting RTHM denotes the use of the roulette wheel and tournament selection 

algorithms along with Hurwicz Criterion and Minimax Regret voting methods. 

Additionally, in Settings 1-3, where the two selection algorithms are available, one of 

them is chosen to select all pairs of chromosomes to be considered for reproduction in 

each generation based on a coin toss. The main objective for using different selection 

methods is to create more variations in the chromosome selection process for 

chromosomes selected for reproduction. Additionally, in Settings 1, 4 and 7 where the 

two voting methods are employed for classifier combination, the choice of voting 

method used depends on the voting bit on the individual classifier. Since the fitness of 

a given chromosome can be affected by the quality of the voting method used, this 

seeks to achieve the best possible combination solution over time during the evolution. 

The classifier results obtained from the development dataset is used throughout the 

GA evolution process.  
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4.3 Results Evaluation 

Table 4.4 presents the performances of the individual classifiers on the BioCreative V 

development dataset when the four different feature sets described in Table 4.1 are 

applied.  

Table 4.4. Results obtained from the individual classifiers using the development set 
S.NO Classifier Feature subsets P (%) R (%) F1 (%) 

1 

BN Hill 

A 62.25 52.47 56.94 

2 B 48.84 6.23 11.05 

3 C 65.12 48.52 55.61 

4 D 61.39 52.47 56.58 

5 

BN K2 

A 62.31 52.27 56.85 

6 B 48.84 6.23 11.05 

7 C 65.12 48.52 55.61 

8 D 61.69 52.67 56.82 

9 

BN TAN 

A 78.95 40.02 53.12 

10 B 47.45 6.42 11.31 

11 C 87.68 35.18 50.21 

12 D 79.11 40.42 53.5 

13 

J48 

A 72.73 50.59 59.67 

14 B 54.82 26.98 36.16 

15 C 83.55 37.65 51.91 

16 D 71.19 49.8 58.6 

17 

NB 

A 74.49 36.07 48.6 

18 B 41.26 14.23 21.16 

19 C 73.76 32.21 44.84 

20 D 80.75 31.92 45.75 

21 

NBK 

A 74.25 43.87 55.15 

22 B 49.59 17.98 26.39 

23 C 76.16 37.25 50.03 

24 D 69.79 47.04 56.2 

25 

R3 

A 40.92 34.98 37.72 

26 B 35.81 26.68 30.58 

27 C 42.37 42.79 42.58 

28 D 53.95 51.98 52.95 

29 

R4 

A 94.67 35.08 51.19 

30 B 79.17 9.39 16.79 

31 C 93.55 28.66 43.88 

32 D 89.54 46.54 61.25 

33 

SVM1 

A 57.67 49.8 53.45 

34 B 43.18 35.38 38.89 

35 C 47.66 34.19 39.82 

36 D 68.84 37.55 48.59 

37 

SVM2 

A 72.28 42 53.13 

38 B 66.05 28.06 39.39 

39 C 71.35 37.15 48.86 

40 D 68.5 44.27 53.78 



51 

 

 In order to evaluate the performance of the ensemble produced by GA, a classifier 

ensemble containing all the classifiers is combined using the HC and MR voting 

methods. This full classifier ensemble produced F-scores of 48.78% and 45.39% when 

combined using the HC and MR respectively. After 100 generations, the two fittest 

chromosomes produced in each of the 9 settings are presented in Table 4.5. 

Table 4.5. The fittest chromosomes from the 9 settings on the development dataset 
S.NO Settings Chromosomes P (%) R (%) F1 (%) 

1 RTHM 
00000100010000000000000000001101000001000 78.94 54.45 64.45 

00000100010000010000000000001101000001000 68.57 59.29 63.59 

2 RTH 
00000100110001000100000011001101000010001 76.38 55.93 64.57 

00000100110001000100010011001101000010001 76.38 55.93 64.57 

3 RTM 
01000000010001000000110010001101000010000 47.99 65.02 62.58 

01000000010001000000110000001101000011000 61.99 62.06 62.58 

4 RHM 

00000100001000000100010001001101000011000 71.53 58.10 64.12 

00000100001000000100000001001101000011000 71.36 58.10 64.05 

5 RH 

01000100110001000100000010000001000010001 76.42 56.03 64.66 

01000100110001000100010011000001000011001 76.42 56.03 64.66 

6 RM 

01000000010010001010010000000101010011000 50.97 67.29 60.68 

01000000010010001010010000000101010001100 50.71 67.19 60.20 

7 THM 
01000100010101000100000001001101000010000 71.09 58.79 64.52 

01000100010101000100000001001101000010001 76.08 55.93 64.47 

8 TH 
01000100110001000100010010000111000011001 75.68 55.34 63.93 

01000100110001000100010010000111010011001 75.68 55.34 63.93 

9 TM 
01000000110001000100010001000001000010000 71.7 59.58 64.66 

01000000110001000100010001000001000011000 69.44 60.18 64.66 

 

Table 4.5 shows that the fittest classifier ensembles (chromosomes) are produced in 

Setting 5 (RH) where the roulette wheel selection and HC voting method are employed 

and in Setting 9 (TM) where the Tournament selection and MR voting method are 

employed. 
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The fittest classifier ensembles reported in Table 4.5 are employed for validation using 

the joint level test dataset. The validation is performed in order to determine the 

performance of our evolution system and the ability of the classifier ensemble to 

handle generalization task on the test dataset and the results are reported in Table 4.6.  

Table 4.6. Results obtained by applying the fittest classifier ensembles on the test 

dataset 
S.No Settings Chromosomes P (%) R (%) F1 (%) 

1 RTHM 

00000100010000000000000000001101000001000 88.93 48.97 63.16 

00000100010000010000000000001101000001000 73.91 57.13 64.45 

2 RTH 

00000100110001000100000011001101000010001 84.79 50.19 63.06 

00000100110001000100010011001101000010001 84.79 50.19 63.06 

3 RTM 

01000000010001000000110010001101000010000 49.03 63.7 55.41 

01000000010001000000110000001101000011000 63.05 62.1 62.57 

4 RHM 

00000100001000000100010001001101000011000 75.79 53.75 62.9 

00000100001000000100000001001101000011000 85.12 49.91 62.92 

5 RH 

01000100110001000100000010000001000010001 84.54 50.28 63.06 

01000100110001000100010011000001000011001 53.09 59.66 56.18 

6 RM 

01000000010010001010010000000101010011000 52.38 68.11 59.22 

01000000010010001010010000000101010001100 49.97 71.29 58.76 

7 THM 

01000100010101000100000001001101000010000 75.65 54.22 63.17 

01000100010101000100000001001101000010001 84.54 50.28 63.06 

8 TH 

01000100110001000100010010000111000011001 51.11 62.57 56.26 

01000100110001000100010010000111010011001 44.49 67.45 53.62 

9 TM 

01000000110001000100010001000001000010000 75.93 53.85 63.01 

01000000110001000100010001000001000011000 65.58 60.23 62.79 

* FullM 11111111111111111111111111111111111111110 31.67 84.9 46.13 

* FullH 11111111111111111111111111111111111111111 32.61 81.52 46.58 

 

The best performing classifier ensemble was generated from the RTHM setting when 

the MR voting method was employed. It produced an F-score of 64.45%.The settings 

(*) shows that the complete base classifiers are employed and combined using the MR 

(FullM) and the HC (FullH) voting methods. The combinations produced F-scores of 
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46.13% and 46.58% for MR and HC respectively. The individual performances of the 

base classifiers on the test dataset are reported in Table 4.7. 

Table 4.7. Results obtained from the individual classifiers using the test set 
S.NO Classifier Feature subsets P (%) R (%) F1 (%) 

1 BN Hill A 52.53 62.64 57.14 

2 B 7.13 61.29 12.77 

3 C 49.34 67.61 57.05 

4 D 52.53 62.29 57.0 

5 BN K2 A 52.25 63.22 57.21 

6 B 7.13 61.29 12.77 

7 C 49.44 67.48 57.07 

8 D 52.44 62.67 57.1 

9 BN TAN A 40.9 79.85 54.09 

10 B 7.6 57.86 13.44 

11 C 36.21 90.4 51.71 

12 D 41.18 80.11 54.4 

13 J48 A 52.25 76.83 62.2 

14 B 28.71 61.32 39.11 

15 C 39.02 86.85 53.85 

16 D 53.38 75.17 62.43 

17 NB A 38.74 79.73 52.14 

18 B 14.92 47.46 22.7 

19 C 34.24 77.49 47.49 

20 D 35.37 82.14 49.45 

21 NBK A 46.06 76.72 57.56 

22 B 23.83 61.8 34.4 

23 C 39.12 81.45 52.85 

24 D 47.37 70.73 56.74 

25 R3 A 39.02 42.15 40.52 

26 B 25.89 33.99 29.39 

27 C 44.28 42.29 43.26 

28 D 52.44 51.71 52.07 

29 R4 A 35.74 97.69 52.33 

30 B 10.6 81.88 18.77 

31 C 30.68 95.61 46.45 

32 D 48.41 88.81 62.66 

33 SVM1 A 50.47 56.87 53.48 

34 B 39.4 46.56 42.68 

35 C 39.49 51.28 44.62 

36 D 38.27 71.2 49.78 

37 SVM2 A 9.38 38.31 15.07 

38 B 0.38 100 0.76 

39 C 39.59 71.77 51.03 

40 D 10.23 23.8 14.31 
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4.4 Analysis and Discussion 

4.4.1 Analysis 

The classifier ensembles in Table 4.6 reveals that they compose of different classifier 

algorithms trained on different feature sets. For example, the second classifier 

ensemble “00000100010000010000000000001101000001000” from RTHM with 

MR employed as the voting method shows that the classifiers are selected from three 

different feature sets which are Set A, B and D and comprises of BN K2, BN TAN, 

R4 and SVM2 classifier algorithms. The individual classifiers in the ensemble 

produced average performances on the test dataset in terms of recall and F-score as 

reported in Table 4.7. However, by employing the classifier combination method, this 

classifier ensemble produced the best F-score of 64.45% on the test dataset as shown 

in Table 4.6. The improved performance of the classifier ensembles from the average 

performances of the individual classifiers is due to the voting methods employed. 

These voting methods help to improve the complementarity in the classifiers and 

maximizes the strengths of the best performing classifiers in the ensemble. 

Furthermore, unlike the conventional methods, these voting methods handle the 

diversity of classifiers in an ensemble better in order to make a more accurate decision. 

Although these voting methods show good decision-making ability and efficiency in 

classifier combination, they also have some drawbacks. Consider the first classifier 

ensemble from setting RTH presented in Table 4.6, the chromosome 

“00000100110001000100000011001101000010001”, shows that the classifiers are 

selected from feature sets A, B and D and comprises of 7 different classifiers (BN K2, 

BN TAN, J48, NB, R3, R4 and SVM2). The ensemble, when applied to the test dataset, 

is used to discuss the limitations of combining the two voting methods employed in 



55 

 

our approach. This classifier ensemble is a collection of classifiers 6, 9, 10, 14, 18, 25, 

26, 29, 30, 32 and 37 reported in Table 4.7.  

From the test dataset, consider the abstract excerpts from the documents with PubMed 

ID: 23433219 and 24100257 respectively. 

Excerpt 1: “…for methamphetamine-induced psychosis and other Axis I psychiatric 

disorders.” 

Excerpt 2: “…Extensive literature search revealed multiple cases of coronary artery 

vasospasm secondary to zolmitriptan.” 

The classifier ensemble aims at deciding whether there are CID relations between the 

entity mentions in bold or not. In excerpt 1 there exist no true CID relation between 

the chemical “methamphetamine” and the disease “psychiatric disorders” mentions 

with concept identifier D008694 and D001523 respectively. However, based on the 

HC and MR methods, the decision to this relation instance differ between the two 

methods. This scenario is explained by applying Equations (4.2), (4.3), and (4.5). From 

the classifier ensemble, only classifier 25 with an F-score of 37.72% predicted “Yes”, 

while the others predicted “No”. The best and worst F-scores of the classifiers that 

predicted “No” are 61.25% and 11.05% respectively. Applying Equations (4.2) and 

(4.3) for the HC method where α = 0.6 gives;  

HYes = 0.6 (37.72) + 0.4 (37.72) = 37.72 

HNo  = 0.6 (61.25) + 0.4 (11.05) = 41.17 

Since HNo is better than HYes, the decision from HC is “No”. 

However, when applying Equations (4.5), the MR method gives: 
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MRY = max [max (37.72, 61.25) – 37.72), (max (37.72, 11.05) – 37.72)] = 23.53 

MRN = max [max (37.72, 61.25) – 61.25), (max (37.72, 11.05) – 11.05)] = 26.67 

MR = min (MRY, MRN) = 23.53 = MRY 

The decision from MR is “Yes” since MRY gives a lesser opportunity cost compared to 

MRN.  

Furthermore, in excerpt 2, there exist a true CID relation exists between the chemical 

“zolmitriptan” and the disease “coronary artery vasospasm” mentions with concept 

identifier C089750 and D003329 respectively. Only classifier 14 predicted “Yes” to 

these entities having a relationship. When calculating the decisions of the HC method 

using Equations (4.2), (4.3) and the MR method using Equation (4.5), HC predicted 

“No”, while MR predicted “Yes”. These examples show the limitations of HC 

handling the scenarios where an alternative has only a single option (classifier) and 

MR handling the scenarios where an alternative produces both the best and the worst 

performances. We handled these limitations during the evolution by allowing the 

classifiers chosen in a chromosome to be combined using one of the two voting 

methods over the course of the evolution. The voting bit on the chromosome is mutated 

with a probability of 0.2 and this helps to improve the performance of the ensembles 

generated during the evolution. 

4.4.2 Comparison of Results 

In Table 4.8, we compare the best performing ensemble produced by our GA 

framework with those of other state-of-the-art systems that used the BioCreative V 

corpus test dataset. Zheng et al. [9] used the Convolutional Neural Network (CNN) 

and integrated the Long-Short Term Memory Units (LSTM) to extract high-level 

semantic relation representations between the chemical and disease mention and 

achieved an F-score of 54.30%. Zhou et al. [112] used the shortest dependency path 
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tree to capture the most direct syntactic and semantic relationship between chemical 

and disease and achieved an F-score of 55.05%. Alam et al. [23] extracted features 

from the CTD [113] together with other linguistic features. Their system produced an 

F-score of 56.60%. Xu et al. [114] used numerous drug-side-effect resources in order 

to extract KB features like the ngram word features used to train SVM classifier. 

During the training of the classifier, they made good use of relation labels of chemical 

and disease pairs present in CTD, which is the main source for the corpus generation. 

They achieved an F-score of 57.03%. 

Table 4.8. Performance comparison with other systems 
System Description F-score (%) 

Zheng et al. [9] CNN + LSTM 54.30 

Zhou et al. [112] Tree kernel, Three parsers 55.05 

Alam et al. [23] Knowledge approach 56.60 

Xu et al. [114] SVM + KB features 57.03 

Gu et al. [8] CNN + ME 60.20 

Lowe et al. [115] Heuristic rules 60.80 

Peng et al. [10] SVM + KB 63.10 

Our system MCS using GA 64.45 

 

Gu et al. [8] used an ML-based system that also used the CNN and linguistic features 

to extract CID relations with Maximum Entropy (ME) models and achieved an F-score 

of 60.20%. Lowe et al. [115] achieved good results (an F-score of 60.80%), but the 

computational cost, as well as the huge amount of time their system requires for this 

task, makes their system limited. Peng et al. [10] used a set of linguistic knowledge 

and statistic features to achieve an F-score of 63.1%. However, they trained their 

system with an additional 500 BioCreative development dataset and 18,410 CTD-

Pfizer documents from [64] to improve the performance of their system to 71.83%. 



58 

 

4.5 Conclusion 

In this section, we highlighted the efficient application of a novel approach for 

classifiers combination in our MCS framework. This was the application of two 

decision-making under uncertainty techniques as voting methods (Minimax Regret 

and Hurwicz Criterion) in order to overcome the major drawbacks associated with the 

implementation of the conventional classifier combination methods in GA. The 

implementation of these voting algorithms for classifier combination in our system 

produced good results that are comparable to the current state-of-the-art systems in 

CID relation extraction. These two techniques consider multiple opinions about every 

alternative before carefully making a decision, unlike the conventional ones that 

normally make decisions from a single opinion of either the strength, weight or 

percentage of the alternatives. Due to the critical nature of the decisions to be made, 

their decision-making is pessimistic as they try to avoid making costly decisions at 

every point. These methods also showed that the literature requirement for the 

individual classifiers considered in the MCSs to be well performing could be enhanced 

by increasing the diversity and the complementarity of the classifiers to make up the 

MCS, however, without importantly sacrificing efficiency and result. 

Despite the success of this approach, there is a need for further improving the system. 

For instance, this can be achieved by increasing the pool of classifiers to determine the 

effect a larger pool can have and also, to apply a control function to the voting methods 

in other to help them overcome their limitations and to further improve their 

performances. 
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Chapter 5 

5 RELSCAN+: IMPROVING CHEMICAL DISEASE 

RELATION EXTRACTION THROUGH THE 

COMBINATION OF MULTIPLE MENTION LEVELS 

In this chapter, we introduce a two-classifier ML-based relation extraction architecture 

using the same setup described in the previous chapters. In this architecture, the 

relation instances on all three-sentence levels, that are referred to as ‘Intra-sentence 

level’, ‘Inter-sentence level’ and ‘Joint level’, are employed. The ‘Intra-sentence level’ 

refers to the mention of the chemical and disease entities in the same sentence, the 

‘Inter-sentence level’ refers to the mention of the chemical and disease entities in 

neighbouring spanning sentences, while the ‘Joint level’ is the combination of the 

intra- and inter-sentence levels. The features used in this system are the three feature 

categories discussed in Section 3.5.  

The biomedical relation extraction system discussed in this chapter is made of a three-

phase architecture. In Phase 1, the input sentence undergoes text processing and then 

the construction of relation instances at the intra- and inter-sentence levels, which are 

subsequently merged to form the joint level as discussed in Section 3.4. In Phase 2, 

features are specifically extracted for each relation instance at the three levels. At each 

of these levels, three classifier models that consist of the combination of two ML 

classifiers, SVM and J48 decision tree were trained using the training dataset and then 

applied on the test dataset to classify the CID relation instances. Phase 3 consists of 
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two steps; in Step 1, the classifier outputs from both the intra- and inter-sentence levels 

are merged and in Step 2, the results from Step 1 are combined with the results from 

the classifier trained at joint level using a prediction probability-based voting 

algorithm to determine the final result. Using the BioCreative V corpus for validation, 

we obtained an F-score of 64.2% and 65.32% for the development and test dataset 

respectively. Based on the validation on test dataset, this leads to a 0.87% increase 

from the 64.45% F-score of the system in Chapter 4. 

5.1 Background 

Relation extraction in other domains [12, 17] as well as in the CID task [10, 23, 98, 

116] is normally treated as a classification problem and most of the proposed 

approaches employed ML methods. During the CDR BioCreative V challenge, the 

participating teams employed several ML techniques such as logistic regression [116], 

maximum entropy [6, 117], Support Vector Machine (SVM) [66], LIBSVM [114] and 

Naïve Bayes [4].  

The CID task has been generally expressed as a binary classification task that predicts 

the presence of an induction relation between a chemical and disease pair in an article 

[6, 7, 8, 10, 118]. Although the BioCreative V corpus provides CID relations only at 

the document level, some CID systems limit their CID relation extraction tasks to intra-

sentence level [115, 119]. However, this leads to the loss of some inter-sentence level 

CID relations as they account for one-third of the total CID relations present in the 

corpus [63]. This has motivated some systems to perform relation extraction on a 

document-level in order to extract the CID relations on both the intra- and inter-

sentence levels [9, 10, 98]. Furthermore, some systems perform the CID relation 
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extraction separately on both levels and then merge the results to get the full CID 

relation [6, 7, 8, 9, 120]. 

The reported system in this chapter utilizes the constructed candidate relation instances 

on the intra- and inter-sentence level datasets in two ways. Firstly, they are individually 

employed during classification and the outputs of the classifiers from the two levels 

are then combined to generate the complete relation instances and secondly, they are 

combined to form the joint level dataset before classification. These processes are 

discussed in details in Section 5.2. 

5.2 Method 

5.2.1 RelSCAN+  

The architecture of this relation extraction system consists of three phases. In phase 1 

as shown in Figure 5.1, the text processing module transforms the input data into 

sentences. This is followed by the construction of candidate relation instances using 

the predefined entities in the input data. In Phase 2, features are extracted for all 

candidate relation instances. Subsequently, a label (YES or NO) is added to each 

candidate relation instance indicating the existence of a true relationship between the 

two entities paired according to the gold standard data. In Phase 3, in order to obtain 

the final CID predictions from the relSCAN+, we merge the outputs from the intra- and 

inter-sentence levels and then combine them with the outputs from the joint level 

obtained in Phase 2 by using a voting algorithm. 
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Figure 5.1. RelSCAN+ architecture 

In testing stage, Setting 1 shows the architecture used for presenting results from 

merging the outputs from the intra- and inter-sentence levels; Setting 2 shows the 

architecture used for presenting the results of the joint level and Setting 3 is the section 

of the architecture that combines results from both Settings 1 and 2 using a voting 

algorithm. 

5.2.1.1 Phase 1 

The input to Phase 1 is documents, each consisting of only a title and an abstract. In 

the text processing step, we segment the abstracts and titles into sentences and then 

replace all entity mentions with placeholders. After the text processing stage, the 

relation instances are constructed at two different mention levels, which are the intra- 

and inter-sentence levels. During the construction of the relation instances, the number 

of sentences used to generate a given relation instance is different at the two sentence 

levels. For constructing relation instances at the intra-sentence level, only a single 

sentence that contains the two entity mentions is used. However, at the inter-sentence 

level, since the entity mentions may span multiple sentences, two to three neighbouring 
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sentences are used to generate a given relation instance. These multiple sentences used 

to generate a relation instance in the inter-sentence level are then combined to form a 

composite sentence. Figure 5.2 presents an example to illustrate the construction of the 

relation instances across the intra-sentence, inter-sentence and joint level datasets. 

 

 
Figure 5.2. An illustration of the construction of candidate relation instances at 

different levels. 

As represented in Figure 5.2, Sent1, Sent2 and Sent3 denote the sentences extracted 

from a document. E1, E2… denote the entity mentions present in a given sentence and 

E1` denotes the appearance of the entity E1 in another sentence Sent3, in the modules 

of the Intra- and Inter-sentence levels. The paired entities are the candidate relation 

instances extracted at those levels. Finally, the combination of these two sentence 

levels produces the joint level. Thus, we create three datasets where the candidate 

relation instances at the intra- and inter-sentence levels are non-overlapping sets and 

the joint level, which is the union of the first two datasets. The pair of chemical and 

disease mentions is unordered, indicating that their order of appearance in the text does 

not affect the possibility of a CID relation between them. The three different datasets 

are individually passed to Phase 2. The details on the text processing, construction of 
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the candidate relation instances and feature extraction have been discussed in Chapter 

3. 

5.2.1.2 Phase 2 

Each of the three datasets (intra-sentence, inter-sentence and joint levels) that consist 

of the candidate relation instances and their extracted feature sets are employed for 

training using a combination of two different ML algorithms namely SVM and J48 

decision tree. Thus, three classifier models are formed as shown in Figure 5.1. The 

robustness of the learning method and computational efficiency can be improved if the 

features extracted per relation instance are distinguishing enough [12]. Therefore, even 

though the feature types used for all three mention levels are exactly the same, the 

features extracted per relation instance are particular to the individual entity and the 

collective relation information of both entities present in the sentences considered. In 

the inter-sentence case, the composite sentences as discussed in Section 3.4 are used 

for feature extraction in the same manner as the single sentences in the intra-sentence 

level. Details of the ML algorithms or base classifiers and features employed in this 

system are discussed in Section 3.2 and 3.5 respectively. 

5.2.1.3 Phase 3 

Firstly, the outputs of the classifiers from the intra- and inter-sentence levels are 

merged to form the dataset that has the same set of candidate relations as the joint level 

dataset. Since there are no overlapping of the candidate relation instances in both 

mention levels, this operation is used to produce the complete relation instances in the 

dataset. Aside from the merging of the outputs from both sentence levels, no post-

processing or filtering of the results is performed. The results obtained after the 

merging process are then combined with the results from the joint level by using a 

voting algorithm to produce the final CID prediction of our system. Figure 5.3 presents 
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a graphical description of the processes involved in Phase 3 using the same example 

given in Figure 5.2. 

 
Figure 5.3. Generation of the final CID predictions 

In Figure 5.3, the documents labelled Intra-sentence level, Inter-sentence level and 

Setting 2 are the classifier outputs of the three classifiers as shown in Figure 5.1. In all 

documents given in Figure 5.3, the third columns represent the actual labels that show 

the presence or absence of a true CID relation between the candidate relation instances 

and the fourth columns represent the classification prediction labels. For the Intra-

sentence level, Inter-sentence level, Setting 1 and Setting 2 documents, the additional 

fifth column shows the prediction probabilities of the classifiers employed. The Final 

CID predictions document is formed by the voting algorithm that combines the outputs 

from Settings 1 and 2 using the prediction probability per relation instance. 
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5.2.1.3.1 Voting algorithm 

The voting algorithm used in this system is a type of decision-making technique, which 

is based on the prediction probability generated from a classification output. The 

voting algorithm considers every instance from the output separately and it uses a 

simple but effective approach for finding the maximum prediction probability based 

on the confidence of the decision made for each instance between the two settings. 

During the combination of the results from both settings, the voting algorithm is only 

applied when the classification predictions for a given relation instance from both 

settings are different. After the combination process, the final set of CID predictions 

by relSCAN+ is generated and evaluated. Algorithm 1 describes the voting algorithm 

process during the combination of Settings 1 and 2. 

Algorithm 1. Algorithm for the voting algorithm 
PSet1, PSet2: predictions of Settings 1 and 2 respectively 

PrSet1, PrSet2: prediction probabilities of Settings 1 and 2 respectively 

F1Set1, F1Set2: F-scores of Settings 1 and 2 respectively 

Dp: the prediction decision of the system 

N: the number of candidate relation instances. 

1: For each relation instance k=1 to N  

2:      If PSet1(k) == PSet2(k) 

3:           Dp(k) = PSet1(k) 

4:      Else  

5:           If PrSet1(k)  >= PrSet2(k) 

6:                If PrSet1(k) > PrSet2(k) 

7:                     Dp(k) = PSet1(k)  

8:                Else  

9:                    If F1Set1(k) > F1Set2(k) 

10:                         Dp(k) = PSet1(k)  

11:                    Else 

12:                         Dp(k) = PSet2(k) 

13:                    End if 

14:                End if 

15:           Else  

16:                Dp(k) = PSet2(k) 

17:           End if 

18:      End if 

19: End for 
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5.2.1.4 Classifiers Used 

The two ML classifiers (SVM and J48) used in this system have been previously 

discussed in Section 3.2, however, their parameter settings and implementation as to 

this system are reported in this section. The implementations of these classifiers in the 

Waikato Environment for Knowledge Analysis (WEKA2) toolset is employed for 

training the classifiers. We combine both the SVM and J48 decision tree classifiers by 

using the ‘class vote’ option (weka.classifiers.meta.Vote.classifiers) and the ‘average 

of probabilities’ combination rule. The SVM classifier is used with default polynomial 

kernel and the complexity parameter C is tuned to 0.6 by using CVParameterSelection 

function. The J48 is used in its default settings with a confidence factor of 0.25, batch 

size of 100 and the minimum number of instances per leaf set at 2. 

5.3 Results and Discussion 

5.3.1 Results  

The numbers of candidate relation instances in the three datasets have been previously 

presented in Table 3.2. This table shows a similar distribution of the positive and the 

negative instances across the datasets. The positive instances are the entity pairs 

annotated by the corpus as having a CID relation, whereas the negative instances are 

the entity pairs not annotated as such. 

The system was trained on the training dataset and evaluated on the development and 

test datasets of the BioCreative V corpus. For the performances of the ML algorithms 

when they are used separately and combined as Setting 1 on the intra- and inter-

sentence levels on both datasets are shown in Table 5.1. Note that the set of relation 

                                                 
2 WEKA: https://www.cs.waikato.ac.nz/~ml/weka/ 
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instances in the intra- and inter-sentence level datasets are non-overlapping. 

Furthermore, their combination contains the complete set of relations in the dataset. 

Table 5.1. Results for Setting 1 on the development and test datasets 
Classifier Dataset Development Test 

P R F1 P R F1 

SVM Intra-sentence level 51.5 43.8 47.5 47.1 41.8 44.3 

Inter-sentence level 80.7 80.3 80.5 90.5 79.0 84.4 

Intra + Inter sentence levels 59.4 52.6 55.8 63.3 56.5 59.7 

J48 Intra-sentence level 64.4 41.1 50.2 61.9 39.5 48.3 

Inter-sentence level 100 93.4 96.6 100 92.1 95.9 

Intra + Inter sentence levels 75.7 53.8 62.9 76.2 55.1 63.9 

SVM + J48 (Setting 1) Intra-sentence level 66.2 42.1 51.4 63.7 41.3 50.1 

Inter-sentence level 97.5 95.1 96.3 98.6 92.7 95.6 

Intra + Inter sentence levels 76.5 54.8 63.9 76.9 56.5 65.1 

 

The results reported in Table 5.1 show that at the intra-sentence level SVM produce a 

better recall compared to the J48 decision tree on both the development and test 

dataset. However, J48 produced a better recall on the inter-sentence level and a better 

precision on the sentence levels individually and when they are combined. The J48 

decision tree in general outperformed SVM on both the development and test datasets, 

however, their combination produced an improved performance compared to when 

they are used individually.  

Additionally, on both datasets, the results obtained on the inter-sentence levels highly 

outperform those on the intra-sentence levels. Some systems that performed the CID 

relation extraction task on both the intra- and inter-sentence levels [7, 8, 118, 121] 
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have reported the performance of the intra-sentence level to greatly outperform that of 

the inter-sentence level. Gu et al. attributed this to the complex structure of the 

sentences on the inter-sentence level limiting the extraction of traditional features [8]. 

In this system, we developed an approach that handles the sentences on the inter-

sentence level properly, with exceptional performance on this level. However, on the 

intra-sentence level, the system did not produce the same performance. One of the 

reasons for this is that the system is able to extract more productive features on the 

inter-sentence level as compared to the intra-sentence level thereby producing a better 

classification result for the inter-sentence level. Another reason for this is attributed to 

the limited number of CID relation instances that span over multiple sentences as 

shown in Table 3.2, which leads to a smaller sample size in the inter-sentence level 

that in turn reduces the chances of overfitting and overgeneralization that may lead to 

errors during classification. The result for Setting 1 is obtained from evaluating the 

result produced after merging the classifier outputs from the intra- and inter-sentence 

levels. 

Table 5.2 presents the performances of the SVM and J48 classifiers individually and 

when they are combined in the classifier model to generate the results for Setting 2 on 

both the development and train datasets. As in Setting 1, the J48 decision tree 

outperforms SVM on both datasets, and the performance when they are combined is 

better than their individual performances. 

Table 5.2. Results for Setting 2 on the development and test datasets 

Classifier Dataset  Development Test 

P R F1 P R F1 

SVM Joint level 57.7 49.8 53.4 56.9 50.5 53.5 

J48 Joint level 72.7 50.6 59.7 76.8 52.3 62.2 

SVM + J48 (Setting 2) Joint level 72.7 52.1 60.7 74.0 55.2 63.2 
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The performance of Setting 3 (relSCAN+) for the development dataset when Settings 

1 and 2 are combined is presented in Table 5.3. The performance in Setting 1 is better 

than Setting 2, however, relSCAN+
,
 which combines both Settings 1 and 2 improves 

the precision and the F-score despite the fact that it produces a slight decrease in the 

recall as reported in Table 5.3. 

Table 5.3. Results from relSCAN+ on the development dataset 
Architecture TP FP FN P R F1 

Setting 1 555 171 457 76.5 54.8 63.9 

Setting 2 527 198 485 72.7 52.1 60.7 

relSCAN+ 546 143 466 79.25 53.95 64.2 

 

In Table 5.4, the performance of relSCAN+ on the test dataset is presented. Based on 

the reported results, Setting 1 outperforms Setting 2. RelSCAN+ causes a slight 

decrease of 0.31% in the recall, however, it produces a decrease in the number of FP 

by 6.63% and improves the precision and F-score by 1.09% and 0.22% respectively. 

Table 5.4. Results from relSCAN+ on the test dataset 
Architecture TP FP FN P R F1 

Setting 1 602 207 464 76.9 56.5 65.1 

Setting 2 588 207 478 74.0 55.2 63.2 

relSCAN+ 599 169 467 77.99 56.19 65.32 

 

In combining Settings 1 and 2 only 5.87% of the total relation instances utilized the 

voting algorithm and for these cases, the decision was made by Setting 1 52.36% of 

the times and in general, a correct decision is made 59.80% of the times. 
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5.3.2 Discussion 

5.3.2.1 Impacts of features 

Table 5.5 compares the effects of the three different feature categories for both Settings 

1 and 2 on the BioCreative V test dataset. In order to determine the impacts of the 

different feature categories, we applied different sets of the feature categories in turns 

and retrained the model. In both settings, the first row shows that when all the three 

feature categories are employed, the best performances were achieved at 65.1% and 

63.1% F-scores for Settings 1 and 2 respectively. 

Table 5.5. Impacts of the features on the test dataset 
Feature Sets Setting 1 Setting 2 

Contextual Dependency Statistical F1 (%) F1 change (%) F1 (%) F1 change (%) 

X X X 65.1 - 63.2 - 

X X  42.3 -22.8 42.4 -20.8 

X  X 57.6 -7.5 53.6 -9.6 

 X X 64.6 -0.5 62.8 -0.4 

X   23.0 -42.1 17.9 -45.3 

 X  31.7 -33.4 31.4 -31.8 

  X 56.1 -9.0 48.5 -14.7 

 

Table 5.5 shows that the effects of the feature categories for both Settings 1 and 2 have 

identical patterns. In both settings, the most significant drop in performance (Setting 

1: -42.1% and Setting 2: -45.3%) occurred when the only the contextual features are 

used. The second biggest drop in performance (Setting 1: -22.8% and Setting 2: -

20.8%) occurred when the statistical features were removed. When the three feature 

categories were used individually, the statistical features produced the least drop in 

performance (Setting 1: -9.0% and Setting 2: -14.7%). Additionally, the statistical 

features proved to complement the other two feature categories better as its 

combination with the contextual (Setting 1: -7.5% and Setting 2: -9.6%) and 
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dependency (Setting 1: -0.5% and Setting 2: -0.4%) features produced the two least 

drop in performances. This shows that although the statistical features produced the 

smallest decrease in performance when the feature categories were used individually, 

the classification performances at both settings are improved when it is combined with 

any other feature categories. Nonetheless, the combination of all feature categories 

produced the best classification performances in both settings. 

5.3.2.2 Comparison with other systems 

A comparison of relSCAN+ with the other state-of-the-art systems on the BioCreative 

V test dataset can be seen in Table 5.6. All the systems reported are evaluated using 

the gold standard annotated entities. 

Table 5.6. Comparison with related work 
Systems P (%) R (%) F1 (%) 

Xu et al. [120] 60.86  53.10  56.71 

Panyam et al. [118] 53.2 69.7 60.3 

Zhou et al. [119] 55.56 68.39 61.31 

Zhou et al. [121] 60.19 58.16 61.35 

relSCAN+ 77.99 56.19 65.32 

 

Xu et al. [120] performed the CID relation extraction task by employing a CRF-based 

named entity recognition approach for biological entity names into their ML-based 

system. Their system produced an F-score of 56.71%. However, in order to improve 

the performance of their system, they extracted extra domain knowledge features from 

the knowledge-based biomedical database CTD [64]. This enhanced their system’s 

performance by producing an improved F-score of 67.16%. RelSCAN+ does not utilize 

any external knowledge; however, it produced results comparable to [120] after their 

system applied the external information. Panyam et al. [118], utilized the all path graph 
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(APG) kernel which has the ability to work with arbitrary graph structures to attain an 

F-score of 65.1% for the intra-sentence level, 45.7% for the inter-sentence level and 

60.3% for the full CID relation extraction task. Compared to [118], our system utilized 

more extensive feature categories hence why it vastly outperforms theirs. Zhou et al. 

[119], performed their CID relation extraction task on only the intra-sentence level 

where they integrated three models: feature-based, kernel-based and neural network 

models into their system. These models were combined to form a uniform framework 

that produced an F-score of 61.31%. Unlike the system proposed by Onye et al [119], 

relSCAN+ utilized a voting algorithm in its feature-based and classifier ensemble 

system but achieves a better result of 65.32% F-score. Zhou et al. [121], performed the 

CID relation extraction task on both the intra- and inter-sentence levels. Their system 

utilized the CNN model, which employed a sequence-based and a dependency-based 

model at the intra-sentence level and just a sequence-based model at the inter-sentence 

level. The results of these models are merged to produce an F-score of 59.16%. Their 

system further applied some post-processing rules on the merged results to achieve an 

F-score of 61.35%. Compared to [121], the worst performing component (Setting 2) 

of relSCAN+, where we merged the two-sentence levels before classification without 

any post-processing produced a better result than theirs. 

The main findings from relSCAN+ can be summarized as: 

i. The inter-sentence level substantially outperforms the intra-sentence level on 

the CID relation extraction task, 

ii.  The combination of the candidate relation instances from both the intra- and 

inter-sentence levels after classification produced a better performance 

compared to when they are combined before classification (Setting 1: 65.1% 

vs Setting 2: 63.2% F-scores), however, 
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iii. The use of a maximum prediction probability-based voting algorithm to 

combine the results from Settings 1 and 2 further improved the performance of 

relSCAN+ on the CID relation extraction task from 65.1% F-score for Setting 

1 to 65.32% F-score, 

iv. To the best of our knowledge, RelSCAN+ outperforms all CID relation 

extraction architectures, which do not utilize additional resources aside from 

the corpus itself. 

5.3.2.3 Error analysis 

We performed error analysis to detect the reasons for the FN and FP in the results from 

relSCAN+ on the test dataset as shown in Table 5.4. 

i. Incorrect classification in Setting 1: The majority of the false classifications 

occurs at the intra-sentence level producing 95% and 98% of the total FN and 

FP respectively. This may be attributed to the extractable information at both 

levels. At the intra-sentence level, features are extracted from a single sentence, 

which limited the extraction of sufficient informative and distinct features 

whereas at the inter-sentence level two to three sentences could be employed, 

thereby increasing the amount of informative and distinct features available for 

extraction.  

ii. Incorrect classification in Setting 2: In the joint level, the number of FN and 

FP increased compared to Setting 1 by 14.36% and 3.02% respectively which 

resulted in a drop in the system’s recall. This may be due to the increase in the 

complicated structure of the relation instances from the two different sentence 

levels degrading generalization performance of the classifier used in the 

system. 
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iii. Voting algorithm misclassification: The number of FN and FP detected 

during the tiebreaking constituted 11.13% and 39.64% of the total FN and FP 

respectively detected when combining Settings 1 and 2. The reason for this is 

mainly due to the limitation of the voting algorithm employed as its decision-

making ability is simply based on identifying and selecting the maximum 

prediction probability between the two settings. 

5.4 Conclusion 

This system implements an ML-based classifier ensemble system that automatically 

extracts CID relations from three mention levels: intra-sentence, inter-sentence and 

joint levels. This study shows that the combination of the inter- and intra-sentence 

level relations after classification (Setting 1) produces a better performance compared 

to when they are combined before classification (Setting 2: joint level). In relSCAN+, 

in order to determine the final CID predictions, we merged the outputs of the two 

settings using a maximum prediction probability-based voting algorithm. Thus, the 

precision and F-score were improved compared to the better results achieved in Setting 

1.  

RelSCAN+ does not utilize any external data and relies on features extracted solely 

from the given dataset. The evaluation benchmark on the BioCreative V corpus has 

shown that relSCAN+ performs better than the current systems, which do not require 

any additional knowledge from outside sources during the CID relation extraction. 

Despite the success of relSCAN+, it can still be improved. Firstly, we aim to find a 

balance in which we can develop an improved set of features that would be more suited 

to the intra-sentence case whilst not weakening the performances of the inter-sentence 
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case and the overall system. Secondly, we aim to utilize a more adaptive and flexible 

decision-making voting algorithm that is not limited to prediction probability but has 

the ability to compare multiple variables per relation instance in both Settings 1 and 2 

during the combination process. 
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Chapter 6 

6 CONCLUSION AND FUTURE WORK 

This thesis is based on the observation that relations between chemicals and diseases 

may be described using one sentence that mentions both entities, a disease and a 

chemical, explicitly or in some cases two or more neighbouring sentences that mention 

the disease and/or chemical and the challenges of extracting these relation mentions 

across multiple sentence levels. Given the task of extracting CID relations from 

abstracts, all candidate relations mentioned in a single sentence (intra-sentence level) 

or in multiple neighbouring sentences (inter-sentence level) must be considered since 

both levels are expected to contain more informative and in many cases distinctive 

information. The final decision of relation extraction should be based on both sentence 

levels. This thesis implements two ML systems based on novel approaches for the CID 

relation extraction task. This chapter contains a summary of the contributions of the 

thesis and the directions for future work. 

6.1 Thesis Contributions 

The main contributions of this thesis are the two novel relation extraction approaches 

implemented to extract and predict CID relation instances across multiple mention 

levels and the improvement to the relation extraction tasks in terms of performance. 

The contributions are discussed in more details through the following steps: 

1. We described a GA optimization system for biomedical relation extraction, 

which uses a novel approach of employing two decision-making under 

uncertainty techniques for MCS. The two decision-making under uncertainty 
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techniques (Minimax Regret and Hurwicz Criterion) are employed in our 

system to overcome the limitations of the conventional classifier selection 

techniques. In GA, the development of a base classifier traditionally requires 

the use of only high performing individual classifiers as one way to guarantee 

the generation of classifier ensembles through the evolution process that a 

better performance than the ensemble with all the base classifiers or the best 

performing individual classifier. In contrast, our system implemented the use 

of both high and average performing classifiers in the base classifier. 

Additionally, in order to introduce more variations in the evolution process 

with an aim of avoiding the local optimum, the system utilized the random 

selection of a classifier selection technique per generation and a type of 

crossover per chromosome. The selection techniques implemented are the 

Roulette Wheel and Tournament selections, and the types of crossover used are 

the 1-point or 2-point crossover. Mutation is performed firstly after crossover, 

where the chromosomes are considered for mutation at a rate of 0.01 and then 

on the voting bit which is considered for mutation at a rate of 0.2. 

2. We implemented an ML-based system that uses a voting algorithm to predict 

relations across multiple sentence mention levels. In relSCAN+, the candidate 

relation instances over three sentences mention levels (intra-sentence, inter-

sentence and joint levels) are used to predict the final CID relations. This is an 

improvement from [122]. In this system, relSCAN+, the relation instances are 

firstly created on both the intra- and inter-sentence levels, then they are merged 

to create the joint level. In the past, CID relation extraction has been performed 

on either the intra-sentence or inter-sentence levels or both, however, to the 

best of our knowledge, no system has applied the CID relation extraction task 
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using the intra- and inter-sentence mention levels in multiple combinations. In 

relSCAN+, the relation instances on the intra- and inter-sentence levels are 

classified individually, then their outputs are merged (reported as Setting 1 in 

Chapter 5) [122], and then, the relation instances on the intra- and inter-

sentence levels are merged (joint level) before classification (Setting 2).  

Although both settings reported impressive results, in order to generate the 

final CID prediction of the system, relSCAN+, a maximum prediction 

probability-based voting algorithm is employed to combine the two outputs 

from the two settings. The implementation of the voting algorithm was efficient 

in improving the system [122] and it outperforms all CID relation extraction 

architectures, which do not utilize additional knowledge. 

6.2 Future Work 

In addition to the two relation extraction methods presented in this thesis, our study 

opens up several opportunities for future work. 

1. Incorporation of external knowledge dictionary into our system. The 

performance of our system, relSCAN+, on the intra-sentence compared to 

the outstanding performance on the inter-sentence level shows that more 

work needs to be done on this level to improve the performance. We aim to 

implement a form of transfer learning by incorporating an external database 

with prior knowledge about chemicals and diseases such as [123] for 

chemical concept identification and Peregrine [124] for disease concept 

identification. The external database is aimed at improving the level of the 

extracted features from the intra-sentence level and not to extract features 

particular to this level. This is because we employed the same set of features 
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at both levels, as we had to combine the different sentence levels to form 

the joint level. In the joint level, classification would be a problem if: (1) 

the number of features is not the same for the combined sentence levels and 

(2) the attributes or types of features are not matching. 

2. Implementation of more robust voting algorithms for decision-making. The 

voting algorithms utilized in both of GA-based system and relSCAN+
 

showed that there is room for improvement with them. The Hurwicz 

Criterion and Minimax Regret voting methods showed that although they 

considered the decision of all the alternatives involved, they showed that 

they will most likely tend to lean towards a certain class based on their 

combined performance and in some rare cases as discussed in Section 4.4.1, 

lean towards the decision of the most impressive class alternative even if it 

consists of just one classifier. The maximum probability-based voting 

algorithm implemented in relSCAN+ which makes a decision per relation 

instance solely on just the probability of predictions between the combined 

outputs showed that the performance of the system can be improved if the 

voting algorithm is expanded to make decisions on multiple variables per 

relation instance. 
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