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ABSTRACT 

Randomness and uncertainty are deeply entangled with bioinformatics. Indeed, both 

concepts are inherited characteristics of biological systems that essentially affect 

interactions between biological components. Although there exist numerous stochastic 

and fuzzy methods dealing with these problems, it is not quite sure when which method 

can be used. In the present work, we model random timing of biomolecular events and 

uncertainty of biomolecular reaction rates in terms of stochastic Petri nets with fuzzy 

parameters.  The approach is demonstrated through the case study of identification of 

optimal drug combinations for Spinal Muscular Atrophy. The model of the problem 

has been created in accordance with deterministic, pure stochastic and fuzzy stochastic 

approaches. Comparison of deterministic, pure stochastic and fuzzy stochastic 

approaches shows that all three approaches lead to significantly different results. Since 

fuzzy stochastic model leads to the best approximation of underlying biological 

network, it has been concluded that fuzzy stochastic model is the most appropriate 

modelling approach for the present case study.  

Keywords: SMN2 expression, fuzzy stochastic Petri nets, quantitative modelling, 

simulation, validation.  
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ÖZ 

Rastgelelik ve belirsizlik, biyolojik bileşenler arasındaki moleküler etkileşimlerin 

modellenmesinde dikkate alınması gereken biyolojik sistemlerin kalıtsal özellikleridir. 

Bu problemlerle ilgilenen çok sayıda stokastik ve bulanık yöntem bulunmasına 

rağmen, hangi yöntemin ne zaman kullanılacağı tam olarak belli değildir. Bu 

çalışmada, biyomoleküler olayların rasgtele zamanlamasını ve bulanık parametreli 

stokastik Petri ağları açısından biyomoleküler reaksiyon oranlarının belirsizliğini 

modelliyoruz. Yaklaşım Spinal Müsküler Atrofi için optimal ilaç kombinasyonlarının 

tanımlanması olgu çalışması için gösterilmiştir.Problemin modeli belirleyici, saf 

stokastik ve bulanık stokastik yaklaşımlara uygun olarak oluşturulmuştur. 

Deterministik, saf stokastik ve bulanık stokastik yaklaşımların karşılaştırılması, her üç 

yaklaşımın da temelde farklı sonuçlara yol açtığını göstermektedir. Bulanık stokastik 

model, biyolojik ağın en iyi yaklaşımına yol açtığından, mevcut olgu çalışması için 

bulanık stokastik modelin en uygun modelleme yaklaşımı olduğu sonucuna 

varılmıştır. 

Anahtar Kelimeler: SMN2 gen ifadesi, bulanık stokastik modelleme, niceliksel 

modelleme, simülasyon, validasyon. 
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Chapter 1 

INTRODUCTION 

Over the past two decades, there has been a growing interest in application of 

quantitative modelling of metabolic pathways, gene regulatory networks and signal 

transduction networks. Analysis of biological networks based on quantitative 

description of molecular interactions has proven to be an effective approach to predict 

the major molecular actors circumstancing biological processes. This modelling 

approach can particularly be used to predict potential drug candidates or their 

combinations. Once a drug candidate is in silico identified, then researchers perform 

wet lab experiments to investigate consistency of the recognized drug candidate. This 

stage is usually accomplished in tight collaboration with pharmacogeneticists. This is 

the way how potential drug candidates or their combinations are determined in line 

with target-based drug discovery.  

A successful quantitative model is expected to be the closest approximation of the 

biological system, reproducing its structure and dynamic behavior to the desired level 

of detail. Important stages of quantitative modelling of biological systems are: (i) 

reproduction of the biological network on the base of rigorous study of biological 

databases and literature, (ii) creation of the quantitative model using techniques of 

computer science, (iii) validation of the model based on biological observations, (iv) 

in silico identification of potential drugs or drug combinations. 
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Randomness is an inherited feature of evolutionary biology and genetics. What we 

know is that Darwinian selection principles and combinatorial genetic lottery leading 

to fertilization rely on probabilistic laws. Intercellular mechanisms driving protein-to-

protein interactions are characterized by a high degree of randomness. Molecular 

density, intrinsic random nature of phenomena and noise in an experiment are among 

factors triggering randomness in biological networks. A biological phenomena is 

subject to stochastic time delays due to external and internal conditions, e.g. 

availability of biological components, level of energy, temperature and pressure. This 

is why biological events occur randomly but not according to a predefined order. 

Research methods used for random processes include Chapman-Kolmogorov equation 

[1], stochastic differential equations [2], Gibson-Bruck algorithm [3], stochastic Pi-

calculus [4], Gillespie algorithm [5], stochastic process algebra [6] and SPNs [7]. 

It is quite often that multiple wet lab experiments conducted under identical internal 

and external conditions lead to different observations. This is due to the inexactness of 

measurements and other parameters affecting biochemical reactions that are 

commonly summarized under the term “technical noise”. It is customary to use 

qualitative nature of linguistic approximation techniques to express biological as 

qualitative information. “Transcription of DNA sequence of a gene occurs faster than 

translation of its mRNA into protein” and “Cyclin D is almost disrupted by proteasome 

mediated “ubiquitination” are just two examples on how knowledge of biological 

nature is approximated by linguistic techniques. Expressed more precisely, imprecise 

and incomplete knowledge is often expressed by qualitative descriptions of 

parameters. Fuzzy logic is an effective way to model biological systems involving 

qualitative knowledge. 
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Mutations in the SMN1 gene result in the absence or insufficient production of SMN 

protein – the main cause of SMA. In Human genome, there is a copy of SMN1, namely 

SMN2, which could potentially be used for SMA treatment. But, unfortunately, SMN2 

cannot fully compensate for the absence of SMN1. This is because SMN2 results in 

only 5-15% of the full length protein production, and 85-95% of the dysfunctional 

SMNΔ7 protein production. The idea of getting more SMN produced from SMN2 has 

attracted the researchers’ interest. Numerous drug candidates tested for the treatment 

of SMA or at least decreasing its severity by increasing SMN levels by only 1.3- to 5-

folds, were not enough to treat SMA.  

In the present thesis, we predict the most efficient combinations of existing drug 

candidates/chemicals that theoretically result in maximum SMN concentrations 

produced from SMN2. We apply SPNs and fuzzy sets to create a quantitative model of 

SMN protein production network, then computationally validate the model to known 

biological observations, and finally conduct simulations to identify combinations of 

potential drugs that lead to the highest levels of SMN concentration. Based on 

computer simulations, we identify combinations of drug candidates which increase 

SMN levels up to 149.9-folds over untreated samples, which keeps hope for 

determination of prominent combination of potential drugs to be used for the treatment 

of SMA.  
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Chapter 2 

MATERIALS AND METHODS 

2.1 Petri nets 

Petri nets were originally invented in the beginning of 1960s by Carl Adam Petri as 

expandable asynchronous computer architecture which does not require long wires. 

Several other sources claim that he developed Petri nets in August 1939 at early ages 

for the purpose of describing chemical processes [48]. Whichever may have been the 

truth, his invention was destined to live for very long life, expressed more precisely, 

live forever. Because of “easy to explain”, “easy to understand” and “easy to use” 

features, Petri nets have attracted many researchers’ attention and gained numerous 

applications from concurrent and asynchronous computer and flexible manufacturing 

systems to intriguing and biomolecular networks. Theoretical investigations expanded 

breadth and depth of the scope of knowledge in Petri nets. Nowadays, Petri nets have 

turned into a well-established theory and a popular modelling technique. Petri nets are 

the correlation between practical and theoretical areas. The relationship between the 

theoreticians and the practitioners is that the practitioners demonstrate the regularity 

of the model from the theoreticians, and the theorists can pass on the fact that the 

practitioners are close to reality. 

Over the years, Petri nets have been enriched and expanded by adding various 

extensions and generalizations to facilitate development of appropriate models. Petri 

nets can be discrete to model discrete event systems, can be timed to learn dynamic 
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behaviour, can be coloured to represent large and cumbersome systems in a compact 

form, can be hierarchical to enable modular environment, can be continuous to keep 

track of changes in a well-grained mode, can be stochastic to cope with randomness, 

can be fuzzy to deal with uncertainty, etc. This is not the complete list of extensions 

and generalizations, but even this list makes impression about expressive power of 

Petri nets as a modelling tool. In what follows below, how Petri net types were used in 

the present research is briefly outlined. 

A Petri net is a 5-tuple 𝑅 = (𝑃, 𝑇, 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡, 𝑚0) such as 

 𝑃 = {𝑝1, … , 𝑝𝑛} is a finite and non-empty set of places; 

 𝑇 = {𝑡1, … , 𝑡𝑚} is a finite and non-empty set of transitions; 

 𝑃𝑟𝑒 ∶  𝑃 × 𝑇 →  ℕ is weight function which assigns a natural number to arc from 

𝑝 to 𝑡 if (𝑝, 𝑡) ∈ 𝑃 × 𝑇 and 0 otherwise; 

 𝑃𝑜𝑠𝑡 ∶  𝑇 × 𝑃 →  ℕ is the weight function which assigns a natural number to arc 

from 𝑡 to 𝑝 if (𝑡, 𝑝) ∈ 𝑇 × 𝑃 and 0 otherwise; 

 𝑚0: 𝑃 → ℕ is the initial marking. 

A Petri net, which is also referred to as basic or regular Petri net or simply P/T-net, 

consists of nodes of two types: transitions and places. In this sense any Petri net can 

be represented by a bipartite graph. Arcs are between different typed nodes and run 

from places to transitions or vice versa, but not from place to place or from transition 

to transition. 

Interpretation of places and transitions can change from application to application. It 

is typical to use input places for modelling preconditions, input data, input signals, 
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resources needed, conditions, input buffers, while output places for modelling post 

conditions, output data, resources released, output buffers. Actions are associated with 

transitions. A transition may simulate event, computation step, signal processor, task 

for job, clause in logic, processor, etc. 

In Petri nets, information is represented by tokens and flow of information by 

relocation of the tokens. Flow of information is simulated by firing action. A transition 

𝑡 is said to be enabled if each input place 𝑝 of 𝑡 contains at least as much tokens as 

weight of the corresponding arc. A firing (or occurrence) of 𝑡 removes tokens from its 

input places and adds tokens to its output places according to corresponding weight 

functions.  

Over the years, basic Petri nets have been applied to discrete event systems, but these 

nets are not powerful enough to model dynamic systems with smoothly occurring 

sequence events. Continuous Petri nets are used instead to model structure and 

dynamics of systems where events occur continuously. 

A continuous Petri net is a 5-tuple 𝑅 = (𝑃, 𝑇, 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡,𝑚0)  such as 

 𝑃 = {𝑝1, … , 𝑝𝑛} is a finite and non-empty set of places; 

 𝑇 = {𝑡1, … , 𝑡𝑚} is a finite and non-empty set of transitions; 

 𝑃𝑟𝑒 ∶  𝑃 × 𝑇 →  ℚ+ is weight function which assigns a positive rational number 

to arc from 𝑝 to 𝑡 if (𝑝, 𝑡) ∈ 𝑃 × 𝑇 and 0 otherwise; 

 𝑃𝑜𝑠𝑡 ∶  𝑇 × 𝑃 →  ℚ+ is the weight function which assigns a positive rational 

number to arc from 𝑡 to 𝑝 if (𝑡, 𝑝) ∈ 𝑇 × 𝑃 and 0 otherwise; 

 𝑚0: 𝑃 → ℕ is the initial marking. 
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In a continuous Petri net, tokens are turned into marks and we use rational numbers 

rather than natural numbers to represent amounts in places.  

In dynamic systems time is an important parameter. Time Petri nets can be applied to 

monitor or screen deterministic time dependent behavior of dynamic systems.  

A time Petri net is a 6-tuple (𝑃, 𝑇, 𝐹, 𝑉,𝑚0, 𝐼) such as: 

 (𝑃, 𝑇, 𝐹, 𝑉,𝑚0) is a basic Petri net; 

 𝐼: 𝑇 → ℚ0
+ × (ℚ0

+ ∪ {∞}) and for each 𝑡 ∈ 𝑇 with 𝐼(𝑡) = (𝐼1(𝑡), 𝐼2(𝑡)) it holds 

that 𝐼1 ≤ 𝐼2.  

It is quite often that simply time Petri nets are not sufficient to describe dynamic system 

having random characteristics. In a stochastic Petri net time from enabling of a 

transition to its next occurrence is a random variable with negative exponential 

probability distribution function 

𝐹(𝑡) = 1 − 𝑒−𝜆𝑡 if 𝑡 ≥ 0 and 𝐹(𝑡) = 0 otherwise, 𝜆 > 0. 

In the present research we use stochastic Petri nets for modelling SMN production 

network. 

2.2 Fuzzy sets 

Fuzzy logic has been originally invented by Zadeh in the beginning of 60s [8]. Since 

then this concept is extensively applied in scientific, engineering areas such as 

mathematics, artificial intelligence, sociology, robotics, mechatronics and medicine.  

According to Zadeh's theory, a fuzzy set 𝜁 defined on universal set 𝑋 is represented by 

its membership function 𝜇�̃�: 𝑋 → [0,1]. There exist several ways that one can define 
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fuzzy numbers. The rectangular, triangular and trapezoid types are the most frequently 

referred ones among them. In the current thesis we use triangular fuzzy sets, according 

to which crisp number 𝑐 is represented by three numbers 𝑎, 𝑏 and 𝑐 such that 𝑎 ≤ 𝑏 ≤

𝑐. 𝑎 and 𝑐 are respectively defined as the left and right borders of fuzzy interval and 

fuzzy interval [𝑎, 𝑐] itself is called the base, while 𝑏 is called as the vertex of the fuzzy 

interval. Fuzzy number is monotonically increasing in the interval [𝑎, 𝑏]  and its 

monotonically decreasing in interval [𝑏, 𝑐]. Fuzzy number reaches its peak value at the 

point 𝑏. A triangular fuzzy number has the following general form: 

𝜇𝜁(𝑥) =

{
 
 

 
 

0              𝑖𝑓            𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
        𝑖𝑓       𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
       𝑖𝑓       𝑏 ≤ 𝑥 ≤ 𝑐

0            𝑖𝑓              𝑥 ≥ 𝑐

 

2.3 Software tools 

Software tools used to conduct this research include Snoopy [9], Möbius [10], 

Stochastic Petri Net Package [12] and GreatSPN [13], while 

https://www.informatik.uni-hamburg.de/cgi-bin/TGI/tools/ collects links to 23 Petri 

net tools and software supporting SPNs. We used Snoopy software for stochastic 

modelling of SMN protein production networks and conduct simulations, which is 

available free of charge at https://www.informatik.uni-

hamburg.de/TGI/PetriNets/tools/db/snoopy.html [11]. 

Most of Petri net software and tools cannot handle with fuzzy numbers. Once SPN 

model is created using one of the Petri net software such as Snoopy [9] it can be further 

fuzzified using Matlab or similar software. 

https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db/snoopy.html
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db/snoopy.html
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Deterministic, stochastic and fuzzy stochastic models of SMN protein production 

network were compared in SPSS software, which is licensed to Eastern Mediterranean 

University. 
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Chapter 3 

BIOLOGICAL CONTEXT 

3.1 Spinal Muscular Atrophy 

Motor neurons are neuronal cells in the central nervous system that control various 

downstream targets [14]. The degeneration and cell death of motor neurons may cause 

several diseases. Motor neuron diseases include Amyotrophic Lateral Sclerosis, 

Primary Lateral Sclerosis and SMA. SMA, which is on focus the in the present 

research, is divided into three clinical subgroups based on the disease severity. Type I 

SMA is the most severe type. Patients of this group have severe muscle weakness in 

the first months after birth. Patients cannot sit, stand or walk unaided. They usually die 

before the age of two years. Type II SMA patients have muscle weakness before 18 

months of age. They usually cannot stand up or walk unaided. They usually die before 

the age of four years. Type III SMA is the mildest form. The patients are able to walk. 

They usually survive into adulthood [16]. 

SMA is caused by mutations in the SMN1 gene that results with the loss of the α-motor 

neurons of the spinal cord, which in turn leads to progressive atrophy of the limb and 

trunk muscles. SMA is one of the most common genetic causes of infant mortality, 

which affects 1 in 6,000-10,000 newborns. Let us take a look at how SMA is spread 

over the generations. Our bodies are made up of millions of cells. With the some 

expectations, nearly all cells have a structure called as the nucleus, which contains the 

chromosomes. SMN is involved in the cell pathway, including a well-characterized 
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role in the assembly of the spliceosome (a big complex molecule in nucleus) and 

biogenesis of ribonucleoproteins [15]. In the cells, there are usually two copies of each 

chromosome and there are two copies of each gene on each chromosome pair: one 

inherited from each parent. For instance, if both parents are carriers of SMA (one copy 

of SMN1 is faulty while another one is healthy), then their children can be normal in 

25% of the cases, carrier of disease in 50% of the cases, affected /sick in 25% of the 

cases. Table 1 shows the chances of a child to be non-carrier, carrier and affected/sick 

in different families.  

Table 1: Inheritance of SMA. 

  P A R E N T 1 

   Non-carrier Carrier SMA 

P 

A 

R 

E 

N 

T 

2 

Non-carrier 100% non-carrier 
50% non-carrier 

50% carrier 
100% carrier 

Carrier 
50% non-carrier 

50% carrier 

25% non-carrier 

50% carrier 

25% SMA 

50% carrier 

50% SMA 

SMA 100% carrier 
50% carrier 

50% SMA 
100% SMA 

 

Humans are the only species that contain a nearly identical copy of SMN1, which is 

the SMN2 gene. Unfortunately, SMN2 cannot fully compensate for the loss of SMN1 

because SMN2 produces low levels of the full-length SMN protein and high levels of 

an aberrantly spliced SMNΔ7 protein. This alternative splicing event is caused by a 

silent ‘C’ to ‘T’ transition, which disrupts an exon splicing enhancer site, six 

nucleotides into SMN exon 7.  
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Figure 1: Difference between SMN1&SMN2.  

SMN2 cannot fully compensate for the loss of SMN1 because SMN2 produces low 

levels of the full-length SMN protein and high levels of an aberrantly spliced SMNΔ7 

protein. This alternative splicing event is caused by a silent ‘C’ to ‘T’ transition, which 

disrupts an exon splicing enhancer site, six nucleotides into SMN exon 7.  

 

3.2 Treatment strategies 

SMN2 is an important modifier of disease severity although SMN2 cannot directly 

compensate for the loss of SMN1. It is known that the number of SMN2 copies 

generally correlates with disease severity: disease severity decreases with increase of 

SMN2 copies [16]. The main idea behind the native SMN2 gene and its transcripts has 

been perceived as ideal candidates for therapeutic intervention. 

There are several therapeutic approaches for the treatment of SMA or decreasing its 

severity. HDAC is known to inhibit SMN2 transcription and therefore, increase of 

SMN2 transcription through the inhibition of HDAC is proposed as a therapeutic 

method. Another therapeutic approach is based on the increase of SMN2 transcript via 

correcting alternative splicing which occurs after exon 7. Upregulating promoter 

activity of SMN2 and DNA demethylation are two more approaches to increase SMN2 

activity. The present work combines all four approaches together to identify efficient 

combinations of potential drugs on the disease. 

6 7 8 SMN1 

6 7 8 SMN2 

C 

T 
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3.2.1 Inhibition of the inhibitor 

One way to treat SMA is through the inhibition of HDAC activity that is known to 

suppress the SMN2 expression FDA approved drugs chemicals VPA, TSA, Dacinostat 

and Resveratrol which have earlier been studied in other diseases. VPA, TSA, 

Dacinostat and Resveratrol are the only HDAC inhibitors reported, so far, in the 

biological literature for which there are available qPCR and protein data on increased 

levels of SMN produced from SMN2. 

Brichta et al. [17] observed 2- to 4-fold increase of SMN levels in fibroblast cultures 

derived from SMA patients treated with 0.5-–500 µM of VPA. VPA is a well-known 

drug that has regularly used in a long-term epilepsy treatment, and has recently been 

shown to yield therapeutic effects in mood disorders and migraine.  

Avila et al. [18] observed that TSA treatment in SMA model mice results in 1.5- to 2-

fold increase of SMN protein levels in the brain, liver, spinal cord and muscles 2 hours 

after the treatment. 

Dayangaç-Erden et al. [19] noticed 1.3-fold increase in SMN protein levels relative to 

untreated cultures after treatment with 100 µM of Resveratrol. Resveratrol has been 

used as a drug for reducing cholesterol levels. Resveratrol is also known for its cancer 

preventive characteristics. Dayangaç-Erden et al. [19] reported about the effect of 

Resveratrol on the SMA patients. SMA type I cells were treated with Resveratrol to 

see its effect on SMN2 expression. Experiments showed that treatment with 100 

milligrams Resveratrol increases SMN mRNA and protein levels produced from 

SMN2 by 1.2- to 1.3-fold. 
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Dacinostat is a new hydroxamate-based HDAC inhibitor with potential anticancer 

activity. With the exception on the effect of Dacinostat in Type II cells, it has been 

reported that Dacinostat increases SMN2 transcript and protein levels and promoted 

demethylation of the SMN2 gene [20]. Low doses of Dacinostat are generally more 

potent than other hydroxamic acids. Dacinostat also shows fewer toxic effects to 

normal human cells. After results of viability using different concentrations of 

Dacinostat, it was observed that 32nM of this chemical increased SMN protein levels 

by 2.54 fold. 

3.2.2 Regulating pre-mRNA splicing 

While all the genetic information for functional SMN protein is present in the SMN2 

gene, a translationally silent C to T change in SMN2 exon 7 results in exon skipping. 

This causes the production of a truncated, unstable SMNΔ7 protein. Hastings et al. 

[21] showed that treatment with the tetracycline derivative PTK-SMA1 in type III 

SMA mice promotes the inclusion of exon 7 into SMN2 mRNA during the splicing 

step, eliciting nearly 5-fold increase in SMN protein concentrations compared to 

untreated animals. Hastings et al. [21] reported that PTK-SMA1 is the only chemical 

identified to date that has been demonstrated to alter splicing by directly targeting the 

splicing reaction to promote a specific splicing pathway. 

3.2.3 Upregulating promoter activity 

Jarecki [22] suggested to enhance SMN transcription arising from SMN2 through the 

manipulation of the SMN2 promoter activity. It is reported in the same study that 

treatment with indole in patient-derived cells demonstrates direct effect on SMN2 

promoter activity, increasing SMN transcription by 3-fold over the controls. 
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3.2.4 Targeting DNA methylation 

Hauke et al. [23] demonstrated that SMN2 is subject to gene silencing by DNA 

methylation. In this sense, inhibition of SMN2 silencing conferred by DNA 

methylation represents a promising strategy for pharmacologic SMA therapy. AZA is 

a potential drug that positively affects SMN protein production by inhibiting 

methylation of SMN2 gene transcription factors. Hauke et al. [23] reported on 2-fold 

increase of SMN protein levels in SMA patients treated with AZA. 
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Chapter 4 

QUANTATIVE MODELING WITH PETRI NETS 

4.1 Related work 

4.1.1 Stochastic Petri nets for modeling biological systems 

SPN has a modeling power of standard PNs realizes fundamental results in stochastic 

molecular dynamics obtained by Gillespie [5]. SPNs can be used to represent structure 

and analyze inherited stochastic dynamics of biological systems. This is the reason 

why SPNs have attracted much of researchers’ attention since 1990s. Many case 

studies of biological nature have been investigated over the last two decades. Below 

we review these applications. 

Goss et al. [24] created model of plasmid ColE1 replication used SPNs. To the best of 

author’s knowledge, this is the first case of application of SPNs for biological systems. 

Srivastava et al. [25] used SPNs to demonstrate that it is conceptually easy and simple 

to develop a model of Escherichia coli stress circuit, a gene regulatory network. 

Tsavachidou et al. [26] utilized stochastic activity network methodology to represent 

the key components of the female reproductive system. Bahi-Jaber et al. [28] applied 

colored SPNs to create and analyze complex stochastic epidemic models. Marwan et 

al. [27] used hierarchical structured SPNs to reconstruct the gene regulatory pathway 

controlling the commitment and sporulation on example of Physarum polycephalum. 

Mura et al. [29] developed model cell cycle in yeast using SPNs, and Napione et al. 

[30] created SPN model of signal transduction pathway for the angiogenesis process. 
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Lamprecht et al. [31] applied SPNs to develop model of Ca2+ release sites consisting 

of a number of intracellular Ca2+ channels that exhibit stochastic Ca2+ excitability, and 

Marwan et al. [27] used SPNs to investigate enteric bacteria phosphate regulation. 

Castaldi et al. [32] used SPNs to develop model of the tissue factor induced 

coagulation cascade, and Liu et al. [33] used fuzzy SPNs to develop a yeast 

polarization model having an infinite state space. Bashirov et al. [34] used SPNs to 

simulate, validate and analyze the p16-mediated pathway, disruption of which is 

among major causes of human cancers. Duranay et al. [35] created deterministic model 

of SMN production network for restricted set of SMA drug candidates and determined 

combination which increases up to 3.84-fold SMN protein levels. 

4.1.2 Fuzziness in modeling biological systems 

Because information on kinetic parameters is more vague than crisp, it is customary to 

represent corresponding information in the form of natural language based qualitative 

knowledge. Fuzzy logic is known to be a good method to cope with vagueness in 

biological systems. Here is a short review of biological models developed in terms of 

Petri nets with fuzzy sets: 

Sokhansanj et al. [36] developed an algorithm that allows to create a model of 

intergenetic interactions introducing fuzzy sets. Gintrowski [37] modified this 

algorithm to essentially reduce the search time in gene network. In a quantitative model 

of a gene network suggested by Hamed [38] imperfect kinetic data is reproduced using 

the theory of fuzzy logic. Valette et al. [39] and Ding et al. [40] used fuzzy timed Petri 

nets and Tüysüz et al. [41] used fuzzy logic and SPNs for modeling manufacturing 

systems. Mehraei [42] exploited fuzzy stochastic hybrid Petri nets in modelling of 

mood disorder treatment. Liu et al. [33] combined SPNs and fuzzy logic to create a 
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quantitative model of biological systems in which reaction rates are fuzzy numbers. 

Bordon et al. [Bordon2018] use of fuzzy logic and Petri nets to deal with unknown or 

imprecise data arising in gene regulatory processes. Liu et al. [33] suggested a class of 

colored fuzzy Petri nets bringing together colored Petri nets and fuzzy sets. But so far, 

SPNs and fuzzy logic have not been widely used in biological systems. Perhaps, the 

present paper is one of the first attempts [42, 43] to represent reaction rates and 

concentrations of genes, mRNAs, proteins and their complexes with fuzzy numbers. 

4.2 Developing and validating the model 

SPN model of SMN protein production model consists of 7 discrete places (Dacinostat, 

TSA, Resveratrol, VPA, AZA, PTKSMA1 and Indole), 11 continuous places 

(HDAC_premRNA, HDAC, Methyl, TF_producer, TF, SMN2_gene, 

SMN2_premRNA, SMN2_mRNA, SMN2, SMNDelta7mRNA, SMNDelta7), 25 

transitions (T1-T19, d1-d6), 2 read, 7 inhibitory and 32 regular arcs. Discrete places 

represent drug candidates, while continuous places stand for biological components 

whose concentration changes continuously over the time.  Treatment by a drug 

candidate is modelled by an inhibitory arc directed from a discrete place to a transition. 

Treatment by a drug candidate is enabled if discrete place is empty and it is disabled 

otherwise. To model treatment by a combination of drug candidates we consequently 

keep empty related discrete places. A Boolean variable is associated to keep track of 

absence/presence of a drug treatment. In this model, transitions represent biological 

phenomena e.g., transcription, translation, binding, gene activation, methylation and 

degradation. Figure 2 illustrates Snoopy snapshot of the model. In this figure read arcs 

and inhibitor arcs are respectively represented by a black dot and hollow dot as arc 

head. Read arcs enable continuous expression of SMN2 gene and production of 

transcription factor, while inhibitory arcs simulate enabling/disabling a drug treatment. 
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We validate the model for TSA, VPA, Dacinostat and Resveratrol that inhibit HDAC, 

PTK-SMA1 which modulates pre-mRNA splicing, Indole which upregulates promoter 

activity and AZA which targets DNA methylation. To run application for a 

combination of drug candidates we initialize data by placing tokens in corresponding 

places. All parameters of biological components and biological phenomena used in 

deterministic, stochastic and fuzzy stochastic models of SMN protein production 

network are shown in Table 1, Table 2, Table 3 and Table 4.  

 

Figure 2: The complete model of SMN production network. 

 

The model is computationally validated in accordance with knowledge derived from 

biological literature. We adjust rates of transitions T7, T10, T12, T13, T17, T18 and 

T19 so that to strike the balance between two protein types produced from SMN2, 

which is 85 percent SMNΔ7 and 15 percent SMN. To calibrate the model for each 

chemical, we turn rates of T3, T4, T5, T6, T8, T11 and T15 until reaching desired level 

of SMN concentration for treatment with specified drug candidate. We set the rates of 

transitions representing degradations to those used in [44, 45, 46, 47 ]. The reaction 

rates are calibrated in terms of stochastic replications by further averaging obtained 

results. 



20 

 

Table 2: Description of the model components. 

Entity name Entity type Variable Value 
Initial 
value 

VPA Discrete VPA 0 Boolean 

Dacinostat Discrete Dacinostat 0 Boolean 

TSA Discrete TSA 0 Boolean 

Resveratrol Discrete Resveratrol 0 Boolean 

PTMK-SMA1 Discrete PTMK-SMA1 0 Boolean 

AZA Discrete AZA 0 Boolean 

Indole Discrete Indole 0 Boolean 

HDAC Continuous HDAC 0 Double 

HDAC mRNA Continuous HDAC_mRNA 0 Double 

SMN2 Gene 

Transcription Factor Producer 

Continuous 

Continuous 

SMN2_gene 

T.F. producer 

1 

1 

Double 

Double 

SMN2  mRNA Continuous SMN2_mRNA 0 Double 

SMN Protein Continuous SMN 0 Double 

Methyl Continuous METHYL 0 Double 

Transcription Factor 

SMN∆7 mRNA 

Continuous 

Continuous 

T.F. 

delta7mRNA 

0 

0 

Double 

Double 

SMN∆7 Protein Continuous SMNdelta7 0 Double 

 

Table 3: Degradation transition rates. 
 
Process name 

 
Process type 

 
Transition 

 
Calculation of 
the rates 

mRNA degradation Continuous d1-d3 mi*0.05 

Protein degradation Continuous d4-d6 mi*0.01 

 

Table 4: Biological processes in stochastic model. 

Process name 
Process 
type 

Transition  Calculation of the rates 

Transcription of HDAC Stochastic T1 2 

Translation of HDAC Stochastic T2 HDAC_premRNA*0.1*0.147 

Binding of SMN2 premRNA and 

Indole 
Stochastic T3 HDAC_premRNA*0.1*0.147 

Binding of  Dacinostat and HDAC Stochastic T4 HDAC*0.0108 

Binding of TSA and HDAC Stochastic T5 HDAC*0.0058 

Binding of resveratrol  and HDAC Stochastic T6 HDAC*0.0028 

Binding of  HDAC and  SMN2 

premRNA 
Stochastic T7 HDAC*SMN2_premRNA*5 

Binding of VPA and HDAC Stochastic T8 HDAC*0.012 

Activation of SMN2 Gene Stochastic T9  SMN2_gene*1 

Translation of SMN Protein 

Binding of SMN2 premRNA and 

PTMK-SMA1 

Stochastic 

Stochastic 

T10 

T11 

SMN2mRNA*0.1 

delta7mRNA*0.41 

Activation of Transcription Factor Stochastic T12 TF_producer*1 
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Binding of Transcription Factor and 

SMN2 premRNA 
Stochastic T13 TF*1 

Binding of Transcription Factor and 

Methyl (DNA Methylation) 
Stochastic T14 TF*METHYL*1 

Binding AZA and Methyl Stochastic T15 methyl*0.22 

Activation of Methyl Stochastic T16 3 

Transcription of  SMN2 premRNA Stochastic T17 SMN2_premRNA*0.15 

Transcription of  SMN∆7 mRNA Stochastic T18 SMN2_premRNA*0.85 

Translation of  SMN∆7 protein Stochastic T19 delta7mRNA*0.1 

 

Table 5: Biological processes in fuzzy stochastic model. 

Process name Transitions 
Rate function f(T, 

K) 
Kinetic parameter K 

Transcription of HDAC T1 K1 K1 = (1.9, 2, 2.1) 

Translation of HDAC T2 
HDAC_premRNA*K

2 
K2 = (0.095, 0.1, 0.105) 

Binding of SMN2 

premRNA and Indole 
T3 K3 K3 = (0.145, 0.147, 0.15) 

Binding of Dacinostat and 

HDAC 
T4 HDAC*K4 

K4 = (0.0105, 0.0108, 

0.011) 

Binding of TSA and 

HDAC 
T5 HDAC*K5 

K5 = (0.0055, 0.0058, 

0.0061) 

Binding of resveratrol and 

HDAC 
T6 HDAC*K6 

K6 = (0.0025, 0.0028, 

0.003) 

Binding of HDAC and 

SMN2 Gene 
T7 

HDAC*SMN2_prem

RNA*K7 
K7 = (4.95, 5, 5.05) 

Binding of VPA and 

HDAC 
T8 HDAC*K8 K8 = (0.01, 0.012, 0.015) 

Activation of SMN2 Gene T9 SMN2_gene*1 K9 = (0.95, 1, 1.05)  

Translation of SMN 

Protein 
T10 SMN2mRNA*K2 K2 

Binding of SMN2 

premRNA and PTMK-

SMA1 

T11 delta7mRNA*K10 K10 = (0.4, 0.41, 0.42) 

Activation of 

Transcription Factor 
T12 TF_producer*K9 K9 

Binding of Transcription 

Factor and SMN2 

premRNA 

T13 TF*K9 K9 

Binding of Transcription 

Factor and Methyl (DNA 

Methylation) 

T14 TF*METHYL*K9 K9 

Binding AZA and Methyl T15 methyl*K11 K11 = (0.2, 0.22, 0.25) 

Activation of Methyl T16 K12 K12 = (2.95, 3, 3.05) 

Transcription of SMN2 

premRNA 
T17 

SMN2_premRNA*K

13 
K13 = (0.1, 0.15, 0.2) 

Transcription of SMN∆7 

mRNA 
T18 

SMN2_premRNA*K

14 
K14 = (0.8, 0.85, 0.9) 

Translation of  SMN∆7 

protein 
T19 delta7mRNA*K2 K2 
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Switch to the fuzzy stochastic model is done in the following way: After the model is 

validated, for each transition kinetic parameter in the hazard function is changed from 

a crisp value 𝑏 to a fuzzy number(𝑎, 𝑏, 𝑐). Then 38000 separate stochastic runs for 𝑎, 

𝑏 and 𝑐 are performed. At the end of procedure average mean for each parameters with 

the confidence level of 95% and the accuracy of 10-2 were measured. 

4.3 Simulation results and their analysis 

For each of deterministic, pure stochastic and fuzzy stochastic models and for each of 

the seven drug candidates and their 120 possible combinations separate replications 

were performed and the sample mean was automatically calculated and thereby SMN 

concentration was measured. Let 𝐶𝑛 be a set of all possible combinations of 𝑛 drugs 

for 𝑛 = 2,… ,6, where each 𝑐 ∈ 𝐶𝑛 is recognised by fuzzy interval, (𝑥𝑐, 𝑦𝑐). The 

following algorithm creates a set of effective combinations of 𝑛 drugs, 𝐸𝑛. 

algorithm create set of effective drug combinations 

input: set of 𝑛-combinations, 𝐶𝑛 

output: set of effective 𝑛-combinations, 𝐸𝑛 

for 𝑛:= 2 to 6 do 

set 𝐸𝑛 = 0; 

remove 𝑐 with the maximum 𝑦𝑐 from 𝐶𝑛 and add it in 𝐸𝑛 

set 𝑦𝑚𝑎𝑥 = 𝑦𝑐 and 𝑥𝑚𝑖𝑛 = 𝑥𝑐 

while 𝐸𝑛 does not contain all effective 𝑛-combinations 

if 𝑦𝑐 > 𝑦𝑚𝑎𝑥 then 

remove 𝑐 from 𝐶𝑛 and add it in 𝐸𝑛 
𝑦𝑚𝑎𝑥 = 𝑦𝑐 
if 𝑥𝑐 < 𝑥𝑚𝑖𝑛 then 𝑥𝑚𝑖𝑛 = 𝑥𝑐 

return 𝐸𝑛 

This algorithm constructs the set of effective 𝑛-combinations having the property: the 

lower limit of any effective 𝑛-combination is greater than the upper limit of any other 

𝑛-combination for all 𝑛. This algorithm allows us to separate potentially beneficial 

drug combinations from those that not having this property. Fuzzy intervals of any two 

effective 𝑛-combinations are either overlapping or one of them contains the other. For 

instance, this algorithm finds six 3-combinations that span the interval (16.1, 46) (see 



23 

 

Figure 3). Only 35 out of 120 possible 𝑛-combinations were founded to be effective. 

Simulation results for all 𝑛-combinations and effective ones conducted in 

deterministic, stochastic and fuzzy stochastic models are respectively shown in Table 

5, Table 6 and Table 7.  

Figure 3: There are six effective 3-combinations out of 35 possible ones. Folds of SMN 

variation of effective 3-combinations span the interval (16.1, 46). 

 

Table 6: Protein fold figures in deterministic and stochastic models. 

Drug Name or Combination 
Protein Fold 

(deterministic) 

Protein Fold 

(stochastic) 

Control 1 1 

AZA 2 2.06 

PTMK-SMA1 5 5.02 

Indole 3 2.972 

VPA 2.69 2.73 

Dacinostat 2.542 2.589 

TSA 1.702 1.785 

Resveratrol 1.303 1.354 

VPA+Dacinostat 4.106 4.639 

VPA+AZA 5.044 5.605 

VPA+Indole 7.024 7.124 

VPA+PTKSMA1 13.442 14.263 

VPA+TSA 3.3408 3.794 

VPA+Resveratrol 2.972 3.256 

Indole+AZA 11.893 7.62 

Indole+PTKSMA1 15.03 15.367 

Indole+Dacinostat 6.707 6.632 

Indole+TSA 4.787 5.126 

Indole+Resveratrol 3.8103 3.989 
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PTKSMA1+Dacinostat 12.716 13.278 

PTKSMA1+AZA 9.926 11.007 

PTKSMA1+TSA 8.509 9.071 

PTKSMA1+Resveratrol 6.515 6.756 

AZA+Dacinostat 4.795 5.228 

AZA+TSA 3.306 3.81 

AZA+Resveratrol 2.575 2.998 

Dacinostat+TSA 3.198 3.514 

Dacinostat+Resveratrol 2.833 3.065 

TSA+Resveratrol 1.996 2.184 

VPA+Dacinostat+TSA 4.738 5.668 

VPA+Dacinostat+AZA 7.41 8.396 

VPA+Dacinostat+Indole 9.918 10.201 

VPA+Dacinostat+PTKSMA1 20.621 23.971 

VPA+ Dacinostat+Resveratrol 4.391 5.146 

VPA+ Resveratrol+TSA 3.614 4.264 

VPA+ Resveratrol+Indole 7.619 8.065 

VPA+ Resveratrol+ PTKSMA1 14.847 16.858 

VPA+ Resveratrol+AZA 5.520 6.364 

VPA+TSA+Indole 8.417 8.827 

VPA+ TSA+ PTKSMA1 16.699 19.257 

VPA+TSA+AZA 6.136 7.028 

VPA+Indole+PTKSMA1 35.101 36.522 

VPA+Indole+AZA 17.38 13.023 

VPA+PTKSMA1+AZA 25.217 28.69 

Dacinostat+TSA+ Resveratrol 3.475 4.035 

Dacinostat+TSA+Indole 8.091 8.407 

Dacinostat+TSA+ PTKSMA1 15.995 18.424 

Dacinostat+TSA+AZA 5.902 6.799 

Dacinostat+Resveratrol+Indole 7.328 7.664 

Dacinostat+Resveratrol+ PTKSMA1 14.135 15.793 

Dacinostat+Resveratrol+AZA 5.279 5.907 

Dacinostat+ Indole+PTKSMA1 33.571 34.58 

Dacinostat+Indole+AZA 16.979 6.769 

Dacinostat+PTKSMA1+AZA 23.977 26.689 

TSA+Resveratrol+ Indole 5.482 6.073 

TSA+Resveratrol+PTKSMA1 9.974 11.397 

TSA+Resveratrol+AZA 3.837 4.583 

TSA+Indole+AZA 14.465 10.567 

TSA+Indole+ PTKSMA1 23.936 25.822 

TSA+AZA+PTKSMA1 16.532 19.614 

Resveratrol+Indole+ PTKSMA1 19.015 20.683 

Resveratrol+Indole+AZA 13.086 9.152 

Resveratrol+PTKSMA1+AZA 12.874 14.996 

Indole+PTKSMA1+AZA 59.523 39.111 

VPA+Dacinostat+TSA+Resveratrol 4.998 6.131 

VPA+Dacinostat+TSA+ AZA 8.373 9.78 

VPA+Dacinostat+TSA+Indole 11.058 11.817 

VPA+Dacinostat+TSA+PTKSMA1 23.696 29.199 

VPA+Dacinostat+ Resveratrol+ AZA 7.83007 9.093 

VPA+Dacinostat+ Resveratrol+ Indole 10.413 11.0831 

VPA+Dacinostat+ Resveratrol+ PTKSMA1 21.945 26.455 

VPA+Dacinostat+Indole+AZA 20.88 16.743 

VPA+Dacinostat+Indole+PTKSMA1 49.557 52.891 

VPA+Dacinostat+PTKSMA1+AZA 37.045 43.312 

VPA+TSA+Resveratrol+AZA 6.586 7.778 

VPA+TSA+Resveratrol+ PTKSMA1 18.071 22.011 

VPA+TSA+Resveratrol+ Indole 8.922 9.658 
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VPA+Resveratrol+Indole+ PTKSMA1 38.095 41.023 

VPA+Resveratrol+AZA+ PTKSMA1 27.611 32.733 

VPA+Resveratrol+AZA+Indole 18.115 14.1 

VPA+Indole+PTKSMA1+AZA 86.877 67.669 

Dacinostat+TSA+Resveratrol+ PTKSMA1 17.376 21.012 

Dacinostat+TSA+Resveratrol+Indole 8.646 9.358 

Dacinostat+TSA+Resveratrol+AZA 6.357 7.636 

Dacinostat+TSA+AZA+Indole 18.698 14.393 

Dacinostat+TSA+ AZA+ PTKSMA1 29.515 35.135 

Dacinostat+TSA+ PTKSMA1+Indole 40.452 43.963 

Dacinostat+ Resveratrol+ AZA+Indole 17.742 13.666 

Dacinostat+ Resveratrol+ AZA+ PTKSMA1 26.397 31.159 

Dacinostat+ Resveratrol+ PTKSMA1+Indole 36.586 39.217 

Dacinostat+ PTKSMA1+AZA+Indole 84.907 64.852 

TSA+Resveratrol+ AZA+Indole 15.444 11.855 

TSA+Resveratrol+ AZA+ PTKSMA1 19.184 23.894 

TSA+Resveratrol+Indole+PTKSMA1 27.415 31.101 

TSA+ PTKSMA1+AZA+Indole 72.328 54.683 

Resveratrol+PTKSMA1+Indole+AZA 65.444 47.090 

VPA-TSA-AZA-Indole 19.042 15.111 

VPA-TSA-AZA-PTKSMA1 30.682 36.712 

VPA-TSA-Indole-PTKSMA1 41.891 45.556 

VPA+Dacinostat+TSA+Resveratrol+AZA 8.775 10.378 

VPA+Dacinostat+TSA+Resveratrol+Indole 11.527 12.3 

VPA+Dacinostat+TSA+Resveratrol+PTKSMA1 24.99 31.562 

VPA+Dacinostat+TSA+Indole+AZA 22.214 18.28 

VPA+Dacinostat+TSA+Indole+PTKSMA1 55.276 60.427 

VPA+Dacinostat+TSA+PTKSMA1+AZA 41.874 50.427 

VPA+ Dacinostat+Resveratrol+Indole+PTKSMA1 52.068 56.24 

VPA+ Dacinostat+Resveratrol+Indole+AZA 21.468 17.618 

VPA+ Dacinostat+Resveratrol+AZA+PTKSMA1 39.150 46.747 

VPA+Dacinostat+Indole+PTKSMA1+AZA 104.399 86.02 

VPA+TSA+Resveratrol+ Indole+PTKSMA1 44.773 49.285 

VPA+TSA+Resveratrol+ PTKSMA1+AZA 33.044 40.492 

VPA+TSA+Resveratrol +Indole+AZA 19.77 16.662 

VPA+TSA+PTKSMA1+Indole+AZA 95.532 77.82 

VPA+ Resveratrol+ PTKSMA1+Indole+AZA 90.895 72.717 

Dacinostat+TSA+ Resveratrol +Indole+PTKSMA1 43.384 48.289 

Dacinostat +TSA+ Resveratrol + PTKSMA1+AZA 31.901 39.057 

Dacinostat +TSA+ Resveratrol + Indole+AZA 19.423 15.804 

Dacinostat +TSA+ PTKSMA1+Indole+AZA 93.782 75.767 

Dacinostat+ Resveratrol+ PTKSMA1+Indole+AZA 89.016 39.016 

TSA+Resveratrol+ PTKSMA1+Indole+AZA 77.251 60.768 

VPA+Dacinostat+TSA+Resveratrol+Indole+AZA 23.804 19.063 

VPA+Dacinostat+TSA+Resveratrol+ 

Indole+PTKSMA1 
57.601 63.841 

VPA+Dacinostat+TSA+Indole+ 

PTKSMA1+AZA 
111.086 94.647 

VPA+Dacinostat+TSA+Resveratrol+ 

PTKSMA1+AZA 
43.876 53.701 

VPA+TSA+ Resveratrol+Indole+ 

PTKSMA1+AZA 
98.842 82.862 

Dacinostat+TSA+Resveratrol+Indole+ 

AZA+ PTKSMA1 
97.15 80.664 

VPA+Dacinostat+Resveratrol+ Indole+PTKSMA1+AZA 107.707 90.298 

VPA+Dacinostat+TSA+Resveratrol+ 

Indole+PTKSMA1+AZA 
113.799 98.142 
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Table 7: Protein fold figures in fuzzy stochastic model. 
Drug candidate / combination of drug 
candidates 

SMN concentration 
(with fuzzy parameters) 

Protein 
fold 

Control (0.0398421,0.0722368,0.122658)  (1, 1) 

AZA (0.0626684,0.158737,0.352395) (1.5,2.9) 

PTMK-SMA1 (0.282211,0.374737,0.553395) (4.3,7.1) 

Indole (0.0977895,0.226921,0.420842) (2.4,3.4) 

VPA (0.101026,0.204684,0.382368) (2.5,3.1) 

Dacinostat (0.104368,0.192211,0.314026) (2.5,2.6) 

TSA (0.070437,0.135289,0.229421) (1.8,1.9) 

Resveratrol (0.0530789,0.0996316,0.176) (1.3,1.4) 

VPA+Dacinostat (0.183789,0.347395,0.571447) (4.6,4.7) 

VPA+AZA (0.183763,0.414105,0.801974) (4.6,6.5) 

VPA+Indole (0.268579,0.532079,0.881184) (6.7,7.2) 

VPA+PTKSMA1 (0.697079,1.06079,1.60526) (13.1,17.5) 

VPA+TSA (0.143211,0.2805,0.488132) (3.6,4) 

VPA+Resveratrol (0.118026,0.239895,0.430158) (3,3.5) 

Indole+AZA (0.241184,0.571474,1.04516) (6,8.5) 

Indole+PTKSMA1 (0.678974,1.14903,1.78834) (14.6,17) 

Indole+Dacinostat (0.273763,0.515605,0.783289) (6.4,6.9) 

Indole+TSA (0.188974,0.382816,0.416184) (3.4,4.7) 

Indole+Resveratrol (0.137684,0.297605,0.533237) (3.5,4.3) 

PTKSMA1+Dacinostat (0.723368,0.997421,1.32445) (10.8,18.2)  

PTKSMA1+AZA (0.466053,0.810421,1.48471) (11.7,12.1) 

PTKSMA1+TSA (0.487263,0.680105,0.950711) (7.7,12.2) 

PTKSMA1+Resveratrol (0.366711,0.507289,0.733447) (6,9.2) 

AZA+Dacinostat (0.184921,0.388368,0.700895) (4.6,5.7) 

AZA+TSA (0.123684,0.286211,0.55) (3.1,4.5) 

AZA+Resveratrol (0.0909737,0.217816,0.451605) (2.3,3.7) 

Dacinostat+TSA (0.144342,0.265237,0.420526) (3.4,3.6) 

Dacinostat+Resveratrol (0.123605,0.227263,0.3695) (3,3.1) 

TSA+Resveratrol (0.0871053,0.168289,0.280763) (2.2,2.3) 

VPA+Dacinostat+TSA (0.236632,0.421579,0.671684) (5.5,5.9) 

VPA+Dacinostat+AZA (0.321974,0.623921,1.04663) (8.1,8.5) 

VPA+Dacinostat+Indole (0.437974,0.772158,1.45834) (11,11.9) 

VPA+Dacinostat+PTKSMA1 (1.29237,1.79253,2.95082) (23.3,32.4) 

VPA+ Dacinostat+Resveratrol (0.206605,0.386,0.613237) (5,5.2) 

VPA+ Resveratrol+TSA (0.164105,0.317474,0.539921) (4.1,4.4) 

VPA+ Resveratrol+Indole (0.299368,0.599658,0.965263) (7.5,7.9) 

VPA+ Resveratrol+ PTKSMA1 (0.829526,1.25089,1.82858) (14.9,20.8) 

VPA+ Resveratrol+AZA (0.216132,0.475868,0.864842) (5.4,7) 

VPA+TSA+Indole (0.356579,0.667263,1.04105) (8.5,8.9) 

VPA+ TSA+ PTKSMA1 (1.00053,1.45629,2.06637) (16.8,25.1) 

VPA+TSA+AZA (0.256395,0.542895,0.931816) (6.4,7.6) 

VPA+Indole+PTKSMA1 (1.83468,2.76484,3.7435) (30.5,46) 

VPA+Indole+AZA (0.502289,0.981132,1.59061) (12.6,13) 

VPA+PTKSMA1+AZA (1.27189,2.15482,3.35466) (27.3,31.9) 

Dacinostat+TSA+ Resveratrol (0.168342,0.309342,0.464105) (3.8,4.2) 

Dacinostat+TSA+Indole (0.363026,0.632605,0.938921) (7.6,9.1) 

Dacinostat+TSA+ PTKSMA1 (1.01929,1.39082,1.77234) (14.4,25.6) 

Dacinostat+TSA+AZA (0.254421,0.512842,0.854368) (6.4,7) 

Dacinostat+Resveratrol+Indole (0.316474,0.576237,0.869026) (7.1,7.9) 

Dacinostat+Resveratrol+ PTKSMA1 (0.843974,1.19045,1.54808) (12.6,21.2) 

Dacinostat+Resveratrol+AZA (0.224553,0.448605,0.772763) (5.6,6.3) 

Dacinostat+ Indole+PTKSMA1 (1.89692,2.58679,3.31529) (27,47.6) 

Dacinostat+Indole+AZA (0.504921,0.939026,1.47224) (12,12.7) 

Dacinostat+PTKSMA1+AZA (1.31074,2.0721,2.88245) (23.5,32.9) 

TSA+Resveratrol+ Indole (0.232947,0.446974,0.5065) (4.1,5.8) 
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TSA+Resveratrol+PTKSMA1 (0.602974,0.8435,0.85) (6.9,15.1) 

TSA+Resveratrol+AZA (0.154579,0.353895,0.446184) (3.6,3.9) 

TSA+Indole+AZA (0.388579,0.792579,0.965) (7.9,9.7) 

TSA+Indole+ PTKSMA1 (1.30716,1.95368,1.97) (16.1,32.8) 

TSA+AZA+PTKSMA1 (0.882842,1.48968,1.55355) (12.7,22.2) 

Resveratrol+Indole+ PTKSMA1 (0.965974,1.54842,1.56) (12.7,24.2) 

Resveratrol+Indole+AZA (0.309632,0.683184,0.824) (6.7,7.8) 

Resveratrol+PTKSMA1+AZA (0.639868,1.12137,1.17113) (9.2,16.1) 

Indole+PTKSMA1+AZA (1.65682,2.93816,2.94) (24,41.6) 

VPA+Dacinostat+TSA+Resveratrol (0.2535,0.466842,0.606842) (4.9,6.4) 

VPA+Dacinostat+TSA+ AZA (0.393658,0.733927,0.995947) (8.1,9.9) 

VPA+Dacinostat+TSA+Indole (0.521421,0.874368,1.09182) (8.9,13.1) 

VPA+Dacinostat+TSA+PTKSMA1 (1.61763,2.19761,2.38984) (19.5,40.5) 

VPA+Dacinostat+ Resveratrol+ AZA (0.348789,0.694774,0.932289) (7.6,8.7) 

VPA+Dacinostat+ Resveratrol+ Indole (0.467237,0.822921,1.02476) (8.3,11.7) 

VPA+Dacinostat+ Resveratrol+ PTKSMA1 (1.44384,2.00645,2.152) (17.5,36.2) 

VPA+Dacinostat+Indole+AZA (0.717395,1.24437,1.6505) (13.5,19.9) 

VPA+Dacinostat+Indole+PTKSMA1 (3.0425,3.94924,4.09034) (33.3,76.4)  

VPA+Dacinostat+PTKSMA1+AZA (2.24297,3.25663,3.68353) (30,56.3) 

VPA+TSA+Resveratrol+AZA (0.293447,0.793158,0.806711) (6.6,7.4) 

VPA+TSA+Resveratrol+ PTKSMA1 (1.13939,1.65105,1.82563) (14.9,28.6) 

VPA+TSA+Resveratrol+ Indole (0.399079,0.721921,0.903263) (7.4,10) 

VPA+Resveratrol+Indole+ PTKSMA1 (2.13611,3.06782,3.23418) (26.4,53.6) 

VPA+Resveratrol+AZA+ PTKSMA1 (1.50487,2.44432,2.85724) (23.3,37.8) 

VPA+Resveratrol+AZA+Indole (0.551868,1.06711,1.402) (11.4,13.8) 

VPA+Indole+PTKSMA1+AZA (3.48118,5.06432,5.61658) (45.8,87.4) 

Dacinostat+TSA+Resveratrol+ PTKSMA1 (1.16208,1.56755,1.58) (12.9,29.2) 

Dacinostat+TSA+Resveratrol+Indole (0.400421,0.695026,0.809816) (6.6,10) 

Dacinostat+TSA+Resveratrol+AZA (0.298526,0.569342,0.721895) (5.9,7.5) 

Dacinostat+TSA+AZA+Indole (0.620921,1.12289,1.37247) (11.2,15.6) 

Dacinostat+TSA+ AZA+ PTKSMA1 (1.81934,2.63718,2.80297) (22.8,45.7) 

Dacinostat+TSA+ PTKSMA1+Indole (2.54266,3.29211,3.34) (27.2,63.8) 

Dacinostat+ Resveratrol+ AZA+Indole (0.566053,1.03066,1.25911) (10.3,14.2) 

Dacinostat+ Resveratrol+ AZA+ PTKSMA1 (1.54476,2.31971,2.44126) (19.9,38.8) 

Dacinostat+ Resveratrol+ 

PTKSMA1+Indole 
(2.19368,2.94668,2.96) (24.1,55.1) 

Dacinostat+ PTKSMA1+AZA+Indole (3.54045,4.89997,4.98655) (40.6,88.9) 

TSA+Resveratrol+ AZA+Indole (0.447763,0.882842,1.08992) (8.9,11.2)  

TSA+Resveratrol+ AZA+ PTKSMA1 (0.157211,1.79192,1.88676) (3.9,15.4 

TSA+Resveratrol+Indole+PTKSMA1 (0.226605,2.304,2.43) (5.7,19.8) 

TSA+ PTKSMA1+AZA+Indole (0.391447,4.06421,4.12605) (9.8,33.6) 

Resveratrol+PTKSMA1+Indole+AZA (0.310158,3.52687,3.53387) (7.8,28.8) 

VPA-TSA-AZA-Indole (0.628132,2.76821,2.85) (12.3,23.2) 

VPA-TSA-AZA-PTKSMA1 (1.78384,1.1515,3.18129) (25.9,44.8) 

VPA-TSA-Indole-PTKSMA1 (2.48484,3.43655,3.57416) (29.1,62.4) 

VPA+Dacinostat+TSA+Resveratrol+AZA (0.427395,0.780795,1.05824) (8.6,10.7) 

VPA+Dacinostat+TSA+Resveratrol+Indole (0.551553,0.934421,1.15513) (9.4,13.8) 

VPA+Dacinostat+TSA+Resveratrol+PTKSM

A1 
(1.77745,2.383,2.57545) (21,44.6) 

VPA+Dacinostat+TSA+Indole+AZA (0.822842,1.38026,1.80203) (14.7,20.6) 

VPA+Dacinostat+TSA+Indole+PTKSMA1 (3.62592,4.52205,4.7) (38.3,91) 

VPA+Dacinostat+TSA+PTKSMA1+AZA (2.72432,3.77921,4.67139) (38.1,68.4) 

VPA+ Dacinostat+Resveratrol+Indole+ 

PTKSMA1 
(3.29897,4.20755,4.36826) (35.6,82.8) 

VPA+ Dacinostat+Resveratrol+Indole+AZA (0.765895,1.32855,1.71426) (14,19.2) 

VPA+ 

Dacinostat+Resveratrol+AZA+PTKSMA1 
(2.46945,3.49639,3.98684) (32.5,62) 



28 

 

VPA+Dacinostat+Indole+PTKSMA1+AZA (5.0055,6.47526,7.04818) 
(57.5,125.

6) 

VPA+TSA+Resveratrol+ 

Indole+PTKSMA1 
(2.77284,3.73742,3.88621) (31.7,69.6) 

VPA+TSA+Resveratrol+  

PTKSMA1+AZA 
(2.01413,3.02179,3.5025) (28.5,50.5) 

VPA+TSA+Resveratrol +Indole+AZA (0.669895,1.20445,1.57397) (12.8,16.8) 

VPA+TSA+PTKSMA1+Indole+AZA (4.33379,5.87832,6.39953) 
(52.2,108.

8) 

VPA+ Resveratrol+ PTKSMA1+ 

Indole+AZA 
(3.89,5.48205,6.01101) (49,97.6) 

Dacinostat+TSA+ Resveratrol 

+Indole+PTKSMA1 
(2.82255,3.61439,3.8) (31,70.8) 

Dacinostat +TSA+ Resveratrol + 

PTKSMA1+AZA 
(2.05305,2.91111,3.09866) (25.3,51.5) 

Dacinostat +TSA+ Resveratrol + 

 Indole+AZA 
(0.6875,1.17937,1.46121) (11.9,17.3) 

Dacinostat +TSA+ 

PTKSMA1+Indole+AZA 
(4.41121,5.70256,5.90547) 

(48.1,110.

7) 

Dacinostat+ Resveratrol+ 

PTKSMA1+Indole+AZA 
(3.963,5.28974,5.4975) (44.8,99.5) 

TSA+Resveratrol+ 

PTKSMA1+Indole+AZA 
(3.15203,4.54568,4.638) (37.8,79.1) 

VPA+Dacinostat+TSA+Resveratrol+Indole+ 

AZA 
(0.854158,1.43597,1.88129) (15.3,21.4) 

VPA+Dacinostat+TSA+Resveratrol+Indole

+ 

PTKSMA1 

(3.87884,4.79786,4.96605) (40.5,97.3) 

VPA+Dacinostat+TSA+Indole+ 

PTKSMA1+AZA 
(5.7315,7.12171,7.71276) 

(62.9,143.

8) 

VPA+Dacinostat+TSA+Resveratrol+ 

PTKSMA1+AZA 
(2.96466,4.01726,4.55024) (37.1,74.4) 

VPA+TSA+ 

Resveratrol+Indole+PTKSMA1+AZA 
(4.67176,6.21579,6.80258) 

(55.5,117.

3) 

Dacinostat+TSA+Resveratrol+Indole+AZA

+ PTKSMA1 
(4.75916,6.07034,6.27084) 

(51.1,119.

4) 

VPA+Dacinostat+Resveratrol+ 

Indole+PTKSMA1+AZA 
(5.33632,6.78187,7.35992) (60,133.9) 

VPA+Dacinostat+TSA+Resveratrol+Indole

+PTKSMA1+AZA 
(5.97258,7.38063,8.02611) 

(65.4,149.

9) 

 

Table 8: Protein fold figures for effective drug combinations in fuzzy stochastic model. 

Drug Name or Combination 
SMN concentration 

(with fuzzy parameters) 
Protein fold 

PTMK-SMA1 (0.282211,0.374737,0.55339) (4.3,7.1) 

PTKSMA1+Dacinostat (0.723368,0.997421,1.32445) (10.8,18.2)  

PTKSMA1+AZA (0.466053,0.810421,1.48471) (11.7,12.1) 

Indole+PTKSMA1 (0.678974,1.14903,1.78834) (14.6,17) 

VPA+PTKSMA1 (0.697079,1.06079,1.60526) (13.1,17.5) 

TSA+Indole+ PTKSMA1 (1.30716,1.95368,1.97) (16.1,32.8) 

Indole+PTKSMA1+AZA (1.65682,2.93816,2.94) (24,41.6) 

VPA+Dacinostat+PTKSMA1 (1.29237,1.79253,2.95082) (23.3,32.4) 

Dacinostat+PTKSMA1+AZA (1.31074,2.0721,2.88245) (23.5,32.9) 
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VPA+PTKSMA1+AZA (1.27189,2.15482,3.35466) (27.3,31.9) 

VPA+Indole+PTKSMA1 (1.83468,2.76484,3.7435) (30.5,46) 

Dacinostat+TSA+ AZA+ PTKSMA1 (1.81934,2.63718,2.80297) (22.8,45.7) 

Dacinostat+ Resveratrol+ PTKSMA1+Indole (2.19368,2.94668,2.96) (24.1,55.1) 

VPA-TSA-AZA-PTKSMA1 (1.78384,1.1515,3.18129) (25.9,44.8) 

VPA+Resveratrol+Indole+ PTKSMA1 (2.13611,3.06782,3.23418) (26.4,53.6) 

Dacinostat+TSA+ PTKSMA1+Indole (2.54266,3.29211,3.34) (27.2,63.8) 

Dacinostat+ PTKSMA1+AZA+Indole (3.54045,4.89997,4.98655) (40.6,88.9) 

VPA+Indole+PTKSMA1+AZA (3.48118,5.06432,5.61658) (45.8,87.4) 

VPA+TSA+Resveratrol+ Indole+PTKSMA1 (2.77284,3.73742,3.88621) (31.7,69.6) 

Dacinostat+TSA+ Resveratrol 

+Indole+PTKSMA1 
(2.82255,3.61439,3.8) (31,70.8) 

VPA+ 

Dacinostat+Resveratrol+AZA+PTKSMA1 
(2.46945,3.49639,3.98684) (32.5,62) 

VPA+ 

Dacinostat+Resveratrol+Indole+PTKSMA1 
(3.29897,4.20755,4.36826) (35.6,82.8) 

TSA+Resveratrol+ PTKSMA1+Indole+AZA (3.15203,4.54568,4.638) (37.8,79.1) 

VPA+Dacinostat+TSA+PTKSMA1+AZA (2.72432,3.77921,4.67139) (38.1,68.4) 

Dacinostat +TSA+ PTKSMA1+Indole+AZA (4.41121,5.70256,5.90547) (48.1,110.7) 

Dacinostat+ Resveratrol+ 

PTKSMA1+Indole+AZA 
(3.963,5.28974,5.4975) (44.8,99.5) 

VPA+TSA+PTKSMA1+Indole+AZA (4.33379,5.87832,6.39953) (52.2,108.8) 

VPA+Dacinostat+Indole+PTKSMA1+AZA (5.0055,6.47526,7.04818) (57.5,125.6) 

VPA+Dacinostat+TSA+Resveratrol+Indole+

PTKSMA1 
(3.87884,4.79786,4.96605) (40.5,97.3) 

VPA+Dacinostat+TSA+Resveratrol+PTKSM

A1+AZA 
(2.96466,4.01726,4.55024) (37.1,74.4) 

VPA+TSA+ 

Resveratrol+Indole+PTKSMA1+AZA 
(4.67176,6.21579,6.80258) (55.5,117.3) 

Dacinostat+TSA+Resveratrol+Indole+AZA+ 

PTKSMA1 
(4.75916,6.07034,6.27084) (51.1,119.4) 

VPA+Dacinostat+Resveratrol+ 

Indole+PTKSMA1+AZA 
(5.33632,6.78187,7.35992) (60,133.9) 

VPA+Dacinostat+TSA+Indole+PTKSMA1+

AZA 
(5.7315,7.12171,7.71276) (62.9,143.8) 

VPA+Dacinostat+TSA+Resveratrol+Indole+ 

PTKSMA1+AZA 
(5.97258,7.38063,8.02611) (65.4,149.9) 

 

Comparison of simulation results showed that combination of seven drug candidates 

results in 149.9-fold increase over the control, which is the maximum increase of SMN 

concentration produced from SMN2. All seven chemicals examined in this research 

are compatible. However, they can cause serious side effects when used in 

combination. If this is the case then next combination of drug candidates can be 

examined for the same purpose. This is why no specific drug combinations were 

pointed at, but instead, a wide range of effective drug combinations were proposed. If 
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any combination causes unavoidable side effect there are still many other effective 

drug combinations that can be examined by pharmacogeneticsists. 

Another interesting fact is that increase in number of drugs does not directly correlate 

with increase of SMN levels. As an example, it was that the most effective 5-

combination PTK-SMA1&Dacinostat&Indole&VPA&AZA yields from 57.5- to 

125.6-fold of SMN levels which is more than in case of many 6-combinations. The 

most effective 4-combination PTK-SMA1&Dacinostat&AZA&Indole is just another 

example which leads to from 40.6- to 88.9-fold increase of SMN levels. This is more 

than in case of five effective 5-combinations. 

It was also observed that PTK-SMA1 is the most promising among seven chemicals 

as PTK-SMA1 is present in all 35 effective combinations. Indole is present in 23, AZA 

in 21, Dacinostat in 20, VPA in 19, TSA in 16 and Resveratrol in 14 effective 

combinations. 

4.4 Comparison of modelling frameworks 

To determine the most appropriate modelling framework it is necessary to find a way 

to compare simulation results obtained in deterministic, pure stochastic and fuzzy 

stochastic environments. Generally speaking, it is hard to select or determine the most 

suitable modelling environment based on simulation results. This is partially because 

simulation data may be not distributed according to a specific distribution rules. In this 

research, statistical methods were aapplied to compare samples obtained in three 

modelling environments.  

Figures 4-8 graphically compare the simulation results for deterministic, pure 

stochastic, and fuzzy stochastic models. The solid curves superimposing on the data 
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for the fuzzy stochastic model were obtained by fitting interval (𝑥, 𝑦) in the linear 

regime. 

 

 

 

 

 

 

 

 

Figure 4: Distribution of the most effective 2-combinations of drug candidates in all 

three modelling environments. 

 

For all 𝑛-combinations, both deterministic and stochastic simulations result in the 

same most effective drug combination while fuzzy stochastic case in general 

demonstrates different behavior. For instance, Indole&PTK-SMA1 is the most 

efficient 2-combination in deterministic and stochastic models, respectively resulting 

in 15.03- and 15.367-fold increase of SMN levels. But it turns out that PTK-

SMA1&Dacinostat is the most efficient in fuzzy stochastic case, leading to 18.2-fold 

increase of SMN concentration (see Figure 4). 
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Figure 5: Distribution of the most effective 3-combinations of drug candidates in all 

modelling environments. 

 

 

Similarly, deterministic and stochastic models agree that Indole&PTK-SMA1&AZA 

is the most efficient 3-combination, respectively resulting in 39,523- and 39.111-fold 

increase of SMN levels, with 46-fold over the control group VPA&Indole&PTK-

SMA1 is the most efficient in fuzzy stochastic case (see Figure 5). 
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Figure 6: Distribution of the most effective 4-combinations of drug combinations in 

all modelling environments. 

Statistical Package for Social Sciences determine if the deterministic, stochastic and 

fuzzy stochastic models agree or differ. For all three models, normality tests for all 

data sets were performed. It was found that none of the data sets were normally 

distributed. Then nonparametric statistical tests were conducted to pairwise compare 

data sets. These tests are based on the following hypotheses: 

𝐻𝑜:𝑀𝑒𝑑𝑖𝑎𝑛 (𝑥) = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑦) 

𝐻1:𝑀𝑒𝑑𝑖𝑎𝑛 (𝑥) ≠ 𝑀𝑒𝑑𝑖𝑎𝑛 (𝑦) 

where 𝑥 and 𝑦 are variables created for deterministic, pure stochastic and fuzzy 

stochastic data sets such that 𝑥 ≠ 𝑦. 

 

Deterministic 

Stochastic 

Fuzzy stochastic (minimum) 

Fuzzy stochastic 

(maximum) 

86.877-fold 

88.9-fold 

67.669-fold 

4-

combinatons 

Model

s 

VPA+Indole+PTKSMA1+AZA 

Dacinostat+ PTKSMA1+AZA+Indole 



34 

 

 

 

 

 

 

 

 

Figure 7: Distribution of the most effective 5-combinations of drug candidates in all 

modelling environments. 

Friedman test was applied to compare deterministic, stochastic and fuzzy data sets 

which resulted with the rejection of the null hypotheses, 𝐻0, with a 𝑝 < 0.001. This 

indicates that medians of deterministic, pure stochastic and fuzzy stochastic data sets 

differ essentially. This is a bit surprising result, since simulation results for 

deterministic and pure stochastic models agree on the same the most effective 

combinations of drug candidates. 
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Figure 8: Distribution of the most effective 6-combinations of drug candidates in all 

modelling environments. 

Wilcoxon Signed Rank Test was also conducted as a further post-hoc analysis, a paired 

difference test, which compares two related data sets on a single sample to assess 

whether data sets have the same distribution. Pairwise comparisons of data sets yielded 

a 𝑝 −  𝑣𝑎𝑙𝑢𝑒 <  0.001, which results the same outcome as Friedman test. Based on 

the results of statistical tests it was concluded that deterministic, stochastic and fuzzy 

stochastic models lead to substantially different results. Moreover, statistical analysis 

reveals that values in stochastic case are significantly higher compared to deterministic 

one, and that values in fuzzy stochastic case are essentially higher than in stochastic 

model. All these observations lead to the conclusion that fuzzy stochastic model is the 

111.086-fold 

143.8-fold 
94.647-fold 

Deterministic 

Stochastic 

  Fuzzy stochastic (minimum) 

Fuzzy stochastic (maximum) 

6-combinatons 

Model 

Folds of SMN variation 
 

VPA+Dacinostat+TSA+Indole+ 

PTKSMA1+AZA 
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most adequate model for the case study as this model creates the closest approximation 

of underlying biological network. 
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Chapter 4 

CONCLUSION 

In the present thesis, based on rigorous mathematical foundations, the closest 

approximation of SMN protein production network was created and computer 

simulations were conducted to determine theoretically most effective combinations of 

known drug candidates. As a result of computer simulations, effective combinations 

of drug candidates that lead up to 149.9-fold increase of SMN protein produced from 

SMN2 gene were identified, though this figure for known drug candidates does not 

exceed 5-fold, thereby holding promise for beneficial effects on SMA patients.  

Three modelling approaches for appropriateness to the present case study: 

deterministic, pure stochastic and fuzzy stochastic were compared. Statistical 

comparison of the data sets obtained for three approaches reveals that deterministic, 

pure stochastic and fuzzy stochastic modelling approaches lead in substantially 

different results which, together with the fact that fuzzy stochastic model successfully 

copes not only with randomness but also uncertainty, suggests that fuzzy stochastic 

model is the most appropriate choice for the present case study. The proposed approach 

can be easily adapted or extended to other biological networks. 
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