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ABSTRACT

Facial emotion recognition is one of the prospective fields which can have various

applications in many different areas. However, there is a huge difference between a

personalized  and  non-personalized  emotion  recognition.  In  facial  expression

analysis, learning process starts with person’s facial structure. A person-dependent

system will receive person specific features during training which is advantageous

compared to  a  person-independent  system.  Hence,  with  the  addition  of  ethnicity,

cultural  background  or  gender  differences,  gathering  results  on  non-personalized

system of emotion recognition becomes a challenge.

In  this  thesis,  models  for  person-dependent  and  person-independent  emotion

recognition are proposed. Experiments are carried out using SAVEE and RML facial

video databases. Initially, frames and corresponding landmark features are extracted

from the videos.  K-means clustering algorithm is applied to the extracted landmark

features in order to get the k most significant frames. After representing each video

sequence with k keyframes, Support Vector Machine classifier is used for the training

and  testing  of  the  proposed  system.  Experimental  results  show  that recognition

performance of person-dependent model is higher than person-independent model.

Keywords: Machine  Learning;  Image  Analysis;  Emotion  Recognition;  Facial

Emotion Recognition; Support Vector Machine
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ÖZ

Yüz duygularının tanınması, birçok farklı alanda çeşitli uygulamaları olan potansiyel

alanlardan biridir. Bununla birlikte, kişiye bağımlı ve kişiden bağımsız duygu tanıma

arasında büyük bir fark vardır. Yüz ifadesi analizinde, öğrenme süreci kişinin yüz

yapısı ile başlar.  Bireye bağımlı bir  sistem,  bireyden bağımsız  bir sisteme kıyasla

bireysel özellikleri  eğitim  aşamasında  tanıyacabileceğinden  dolayı  daha  avantajlı

konumdadır. Bu nedenle, etnik köken, kültürel geçmiş veya cinsiyet farklılıklarının

eklenmesiyle,  kişiselleştirilmemiş  duygu  tanıma  sistemi  üzerinde  sonuçların

toplanması zorlaşır.

Bu  araştırmada,  kişiye  bağımlı  ve  kişiden  bağımsız  duygu  tanıma  modelleri

önerilmiştir.  Deneyler,  SAVEE ve  RML yüze  ait  video veritabanları  kullanılarak

gerçekleştirilmiştir.  İlk  olarak,  görüntüler ve  görüntülerdeki  yüzlere  karşılık gelen

dönüm noktası özellikleri videolardan çıkarılmıştır. K-en önemli kareleri elde etmek

için çıkarılan özelliklere K-means kümeleme algoritması  uygulanmıştır. Her video

dizisini k anahtar kareleriyle temsil ettikten sonra, önerilen sistemin eğitimi ve test

edilmesi  için  Destek  Vektör  Makinesi  sınıflandırıcısı  kullanılmıştır.  Deneysel

sonuçlar, kişiye bağlı modelin tanınma performansının, kişiden bağımsız modelden

daha yüksek olduğunu göstermektedir.

Anahtar  Kelimeler: Makine  Öğrenme;  Görüntü  Analizi;  Duygu  Tanıma;  Yüz

Duygusu Tanıma; Destek Vektör Makinası
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Chapter 1 

INTRODUCTION

1.1 Introduction

Modern  technology  is  improving  each  and  every  day  without  our  notice.  From

personal  usage  to  private  businesses  Biometric  Recognition  (BR)  which  is  also

known as biometrics has become one of the prospective topics of modern technology.

Automatic identification of the individual from their physiological and/or behavioral

characteristics  is  the  process  of  BR  [1].  Pattern  Recognition  (PR)  system which

implements a feature vector based on a persons characteristics to identify the person

is another way of describing a biometric system [2]. Usage of biometrics allows the

confirmation  of  one’s  identity  based  on  his/her  personal  traits  rather  than  using

external verification tools(such as an ID card).

Humans intuitively use physical characteristics such as face, voice or body language

to recognize each other. This ideology is the basis for biometrics as well as Emotion

Recognition (ER) which is a field evolving around BR and PR. Some features and

relationships are closely related to identifying emotional state, separating them from

other states and not recognizing them as an emotional state at all. When it comes to

automatic  ER  simple  understanding  of  the  nature  of  an  emotional  state  is  not

sufficient.  A framework for  ER is  created  when the  rigid  structure  of  emotional

1



states,  the features required for confirmation of the states and the type of output

which will be delivered by the recognizer are combined together [3]. 

In human interaction, two communication channels have been identified  [4] in the

form of explicit and implicit messages. Explicit messages are about anything where

the speaker is expressing their thoughts in a particular topic. Implicit messages on the

other hand are about the speaker itself. The implicit channel has strong association to

the speaker’s emotions  [3].  ER takes the implicit  channel  as input stream. When

these inputs are person’s facial features then the process is called Facial Emotion

Recognition (FER) [5].  

1.2 Facial Expression Analysis

In  1994,  J.  A.  Russel  [6] published  his  article  on  universality  of  recognition  of

emotion which is based on cross-cultural analysis of ER through facial expressions.

Later, P. Ekman [7] and C. E. Izard [8]  discussed the weaknesses found in Russel’s

work such as recognition of emotion depends more than just the facial expressions.

Due to the opposition, J. A. Russel published another work collecting arguments of

others and readjusting his own thesis in 1995 [9]. In this latest work, joint resolution

on existence of minimal universality have been met. People, without differentiating

their location, can sense others emotions from their facial expressions. Additionally,

three  crucial  points  for  ER  has  been  established  in  terms  of  identifying  facial

emotions; patterns of facial muscle movements, expressiveness of facial movements

and universality of acknowledging same emotion everywhere. Integration of these

ideas  into  a  Machine  Learning  (ML)  system  is  the  definition  of  FER.  From

physiological point of view, when a human was in an intense emotional situation
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there was six basic emotions that stood out. Bloch et al.  [10] identified that these

basic emotions are anger, disgust, fear, happiness, sadness and surprise. Mainly, the

research in ER is based either on these 6 basic emotions or with an addition of 7 th

neutral  state  [11]–[17].  Bartlett  et  al.  [15] have  compared  ML methods  such  as

AdaBoost, Support Vector Machine (SVM) and linear discriminant analysis in terms

of recognition of facial emotions. They identified that subset selection with AdaBoost

followed  by  SVM  classification  yielded  the  best  result.  Z.  Yu  and  C.  Zhang

[16] established  their  FER  system  by  applying  facial  detection  algorithm  static

images to gather facial features. Then, classification between 7 emotion states using

multiple  deep convolutional  neural  networks  (CNN) was carried  out.  Their  work

proved minimization in log likelihood loss and hinge loss kept recognition rate above

average compared to their target baselines. These two studies were based on person-

dependent  scenarios  of  FER.  A  person-independent  study  was  carried  out  on

spontaneous facial expressions in a dynamic environment [17]

From the works explained above, it is clear that there are many applications of FER.

Automatic  recognition  of  facial  expressions  is  a  challenge  in  two  models  of

personalized  ER. Main aim of  this  research is  to  distinguish difficulties  between

person-dependent  and person-independent  models  of  FER. Focus of  this  thesis  is

optimizing the two models in feature extraction process to provide a better learning

experience for the machine.

1.3 Problem Definition

The challenge of using video clips in ER is to maintaining a healthy learning process.

A video consists  of  vast  number of frames and naturally  not  all  of  these frames
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consist  of useful information for the classifier. For the purpose of identifying the

most  discriminant  keyframes,  clustering  algorithms  are  employed.  In  a  multi-

dimensional classification environment it is crucial to ensure that the data consists of

only from beneficial information. Multiple studies have been carried out in terms of

multi-dimensional  FER systems  [15],  [17]–[19].  Feature  extraction  and  selection

process is imperative part of an ML application. A multi-dimensional classification

system  can  be  optimized  in  terms  of  speed  and  accuracy  rate  by  introducing

improvisation to the learning model. The main problem in such an ER application is

choosing  right  amount  of  clusters.  In  this  study,  a  varying  number  of  sets  of

clustering was performed in order to come up with the best performing cluster to

solve the problem of multi-dimensional learning process of person-dependent and

person-independent FER.

1.4 Proposed Methodology

Initially, static facial expression images from various databases are gathered. Facial

expression detection is carried out by using facial landmarks. These landmarks are

located  around  the  face  of  the  person  for  recognition  of  facial  regions.  Feature

selection and extraction is proceeded by using landmarks. In order to reduce the cost

of processing, clustering algorithm with changing variable is employed. Learning is

carried out  by using clustered sets  of data  both in  person-dependent  and person-

independent models.  K-Fold Cross-Validation technique is also used for artificially

increasing the number of test samples found in the system.

1.5 Thesis Contributions

A FER application is  a  multi-dimensional  classification problem. In a  non-binary

learner system, size of the dataset and hence the speed of learning process becomes
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an issue. A solution for tackling these issues in a FER application is given by using a

k-means based dimensionality reduction. First contribution of this study is the use of

k-means clustering algorithm to reduce each video into keyframes. With this each

video is represented by  k number of keyframes which results in lower dimensional

classification data and faster simulation speed. In this study, Cross Validation (CV)

technique has been utilized. CV has been used as a way to use datasets uniformly

through training and testing without introducing any bias to the system. This also

allows artificial  enlargement  of  the dataset.  Finally,  a  score fusion  method using

score averaging method is introduced for calculation of the prediction results for each

video rather than each keyframe which is the final contribution of the study.

1.6 Thesis Overview

This thesis consists of 6 chapters which are arranged as follows: Chapter 1 introduces

a  short  introduction  to  FER,  problem definition,  methodology  and  contributions.

Chapter  2  contains  recent  literature  studies  about  FER.  Chapter  3  describes  the

methodology, FER framework, databases, landmarks, feature descriptors, clustering

into keyframes, clustering and CV, sensitivity and specificity, description of accuracy

and  loss  and  receiver  operating  characteristic.  Chapter  4  and  chapter  5  includes

person-dependent and person independent FER models,  respectively.  Additionally,

these chapters describe the implementation details and results of the corresponding

model simulations. Finally, conclusion and discussion about available future works

are presented in chapter 6.
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Chapter 2 

LITERATURE REVIEW ON FACIAL EMOTION

RECOGNITION

2.1 Introduction

ER is the task of labeling given input samples into emotion categories. From human

point of view ER is done automatically however computational methodologies are

being developed. ER is a classification problem and is closely related to sub-areas of

computer science such as signal processing, machine learning and computer vision.

Initial step in a classification problem such as ER is data preparation and feature

selection.

Pre-processing is  generally a step carried out during or after  the data preparation

process.  Smart  implementation  of  pre-processing  techniques  can  provide  better

platform for feature extraction. For instance, in FER image pre-processing techniques

are  divided  into  four  categories;  pixel  brightness  transformations,  geometric

transformations, pre-processing using local neighborhood of the processed pixel and

image restoration methods. These pre-processing techniques have been materialized

from  the  radius  of  pixel  coverage  which  will  be  used  in  new  pixel  brightness

calculation  [20].  Multiple  exemplary  studies  performing  image  resolution

enhancement was carried out using discrete and stationary wavelet decomposition
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[21]–[23]. Similarly, in other branches of ER such as speech or text based ER, pre-

processing techniques can have a crucial role in maintaining a level of consistency in

information.

A feature is an individual physical or non-physical property in a given observable

[24].  In  general,  features  are  divided  into  two  categories,  numeric  features  and

structural features. A collection of features is called a feature vector. Feature vectors

are the building blocks in any classification problem since all  the computation is

based on them. Feature extraction is a step where the raw or pre-processed data is

transformed into features which represents a pattern for the learning algorithms. In

any  data  representation  type  (image,  audio,  text  etc.),  there  are  large  number  of

different features that can be used by the system. However,  when the number of

chosen feature vectors kept high, accuracy of the algorithm will drop causing over-

fitting. Similarly, if the number of selected features are low then the system will fail

on capturing the underlying trend of the data which will cause under-fitting [25]This

is  particularly  why  the  most  appropriate  features  must  be  selected  in  a  feature

selection step.
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Figure 2.1 illustrates a block diagram of a classification system. It can be observed

from the diagram that the feature extraction and selection will effect both training

and testing phases of classification process. The designing of the algorithm is the

next step following feature selection process. During the training phase, designated

algorithm will  generate  a  predicting  model  which  afterwards  will  be  used in  the

testing phase for classification of the data.

2.2 Applications on Facial Expressions

There  are  large  number  of  studies  carried  out  in  FER containing  many different

approaches  [26]–[32].  For  instance,  one  of  the  work  considered  dominant  and

complementary emotion recognition using head-pose estimation and micro emotions

as  features  [33].  Another  study  was  carried  out  in  3D  convolutional  neural

networking platform to analyze speech emotion recognition. In this study, authors

have  using  K-Means  clustering  algorithm  and  spectograms  to  improve  their

recognition results  [34]. Similarly, Kwon et al.  [35] performed emotion recognition

using  speech  signals.  They  have  divided  their  work  into  three  stages;  feature

extraction,  feature  selection  and  classification.  Their  work  concluded  that  on

8
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variable-length  utterances,  classification  using  Gaussian  SVM  and  for  short

utterances,  HMM-based  classification  did  perform  the  best.  Face  and  facial

expression  recognition  are  closely  related  to  FER.  In  2014,  K.  Yurtkan  and  H.

Demirel studies entropy-based feature selection for improving 3D facial expression

recognition  [36].  In  their  study,  they  were  able  to  outperform the  latest  feature

selection methods in the literature. Some of the studies also consider using different

classification  techniques  in  order  to  improve  their  results.  In  a  study  of  facial

expression recognition,  different Bayesian network classifiers were introduced for

classification of image sequences from videos [37].

2.3 Feature Selection Methods

Feature extraction and selection has become an exacting step for machine learning

applications. Considering the volume of the database and vast number of features

present, feature selection gives the opportunity to optimize the pre-learning stage of

the application. If work will be done on huge quantities of data, one should be able to

differentiate  between  irrelevant  and  redundant  information  than  the  useful  and

important ones [38].  At this stage, the importance of identification of useful features

comes up. 

Claude Shannon’s information theory provides a path for measuring the relativity of

the  information  gathered  from a  random variable  compared  to  the  output  of  the

application. This is introduced with concepts of entropy and mutual information. The

term entropy stands for the amount of uncertainty a random variable carries. Formula

for this uncertainty or in other words the entropy is
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(2.1) H (X )=−∑
x∈X'

p(x ) log (p (x)) (2.1)

where  X has  X’ alphabets and   is  the probability density

function (pdf). The log is of base 2 and the entropy unit is in bits. If another discrete

random variable was introduces as Y, than the joint pdf of X and Y is p(x , y )  and the

joint entropy function of X and Y is defined as

(2.1) H (X ,Y )=−∑
x∈X '

∑
y∈Y '

p (x , y ) log (p (x , y )) . (2.2)

This  formulation  leads  to  the  information  shared  between  two  random variables

which has a great importance in identification of the reliable features. Below formula

is defined as the mutual information between two variables

(2.1)
I(X ;Y )=∑

x∈X '
∑
y∈Y '

p( x , y) log(
p( x , y)

p(x ) p( y )
) . (2.3)

As  mutual  information  between  two  random  variables  gets  close  to  zero,  the

variables  are  concluded as  independent  from each other.  However,  if  the  mutual

information of variables is large, than this proves a greater relativity between them

[39], [40].

This is a common theory behind most of the feature selection methods. Commonly

used feature selection methods in machine learning divide into three categories, filter

methods, wrapper methods and embedded methods.  Figure  2.2 illustrate the three

selection methods. 
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(a) (b) (c)
Figure 2.2: Filter (a), Wrapper (b) and Embedded (c) feature selection block diagram.

Filter methods perform selection process with no connection to classification model

while  wrapper  methods  work  inline  with  classification  model  and  check  the

prediction data to decide the faith of features. On the other hand, feature selection

process  is  integrated  to  the  classification  model  in  embedded  methods.  Below

subsections describes the three methods for feature selection and discuss some of the

underlying algorithms.

2.3.1 Filter Methods 

Pre-processing is generally where filter methods are utilized. Filter feature selection

techniques  bind  a  score  to  each  feature  by  using  statistical  measurements.  The

features are than ranked according to the scores accordance to their relationship with

the  outcome  variable.  Final  rankings  decide  whether  a  feature  is  to  be  kept  or

removed  from  the  dataset.  RELIEF,  correlation  based  feature  selection,  fast

correlated  based  filter,  INTERACT,  Chi-Square,  linear  discriminant  analysis  and

ANOVA are some of the filter feature selection methods that are discussed below.

2.3.1.1 RELIEF

Kira et al. [41]describes original RELIEF algorithm as a way to estimate the relative

quality of two feature. This is done with the idea of how one instance stands out in

comparison to the others that are close to each other. RELIEF looks for the nearest

11



two neighbors from a randomly selected instance. If the randomly selected instances

are given as x i={x ' 1 i , x ' 2 i , ... , x 'n i } , than the neighbor which is from the same class

is called the nearest hit H and the neighbor which is from a different class is called

nearest miss M. It then continuously works the relative quality of each feature with

respect to xi, M and H. This original RELIEF algorithm can work on both continuous

features and discrete features however, it is limited to two-class properties. Later, an

enhanced algorithm was invented with a new name called ReliefF [42]. ReliefF was a

robust algorithm which had the capability of working on noisy and incomplete data.

At  this  stage  limitations  for  multi-class  problems  were  also  removed.  RReliefF

algorithm was the final and third version which was adapted to work on regression

type problems as well as having the previous capabilities of its ancestors [43].  Relief

algorithms are generally preferable due to the way they communicate with features

and their low bias.

2.3.1.2 Correlation Based Feature Selection

Correlation  based  Feature  Selection  (CFS)  ranks  the  subsets  considering  their

correlation  to  the  classification.  If  a  feature  subset  has  high correlation  with  the

classification then it must be recognized as related feature subsets and yet must not

related to the others. CFS employs a correlation based heuristic evaluation function.

Due to their low correlation to the class, unrelated features will be ignored while

features that are highly correlated to the remaining ones are marked as redundant and

are  discarded.  Ranking  of  a  feature  is  determined  by  to  which  extent  predicted

classes are in the area that is not predicted for other features.

(2.1)
M S=

k rcf

√k+k (k−1)r ff

(2.4)

12



Above formula describes how heuristically merit, Ms, a feature subset consisting of k

features  is. rcf  is  the  mean  value  of  correlation  between  all  feature  and

classifications and  r ff  is the mean value for correlation between all features. The

amount  of  redundancy  there  is  between  the  features  is  the  denominator  and  the

amount of how predictive a feature subset is of the class is the nominator in this

equation [44], [45]. 

2.3.1.3 Fast Correlated Based Filter

Symmetrical  uncertainty  (SU)  is  the  proportion  of  information  gain  and  entropy

between two features, x and y.

(2.1)
SU (x , y )=2

IG( x/ y )
H (x)+H ( y)

, (2.5)

where H(x) and H(y) are the entropy and IG is the information gain described as:

(2.1) IG(x / y)=H ( y)+H (x )−H (x , y ) , (2.6)

where H(x,y) is the joint entropy.

The fast correlated-based filter (FCBF) is based on SU. This method is suitable for

multi-dimensional data which has been proven to be efficient at filtering of redundant

and unwanted features. But it cannot deal with interactions between features.

2.3.1.4 INTERACT

In terms of ranking measurements, INTERACT algorithm is similar to FCBF filter

however INTERACT also contains consistency contribution (c-contribution).  This

new parameter decides how impactful the discarding of a feature could impact the

stability.  This  algorithm has two significant  parts.  Initially,  ranking of  features is

carried on according to their SU values in descending order. Then, in the second part,
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evaluation is done starting from the bottom of the ranking list of the features. When

the c-contribution is less than a predetermined value, feature is removed, otherwise,

feature is added to the pool. Zhao et al. [46]  mentions that this algorithm is capable

of dealing with feature interaction and effectively choose desired features with the

newly developed method.

2.3.1.5 Chi Squared

Chi-square  is  a  method  commonly  found  in  testing  of  relationships  between

categorical variables.  When chi-square test  results  in null  value,  the result  is that

there is no existing relationship for the categorical variables in the current context, in

other words, variables are independent. The scoring for chi-square test is given by:

(2.1)
X2=∑ ( f 0−f e )

2

f e
, (2.7)

where f0 is the number of occurrences of the feature in the set and fe is the expected

number  of  occurrences  without  any relationship  to  the  variables  [47].   It  can be

observed from the formula that chi-square method is based on ratio of the frequency

of actual  observations  of  the variable  and the expectation of  no true relationship

between variables.

2.3.1.6 ANOVA

ANOVA is shorthand for analysis of variance and is closely related to LDA where a

variable  is  tried to  be expressed by linear  combination of other  features.  Test  of

ANOVA is carried out by computation of means and variances and comparing the

ratios of two variances to the previously chosen value to get a statistical significance.

Definition of variance is given by:

14



(2.1) s2= 1
(n−1)∑ ( y i− y)2 , (2.8)

where  (n-1) is the degree of freedom (DF) and  ∑ ( y i− y )2  is called the sum of

squares (SS). ANOVA computes a total variance, an error variance and a treatment

variance. Crucial step in the algorithm is to partition the SS and DF into components.

In a model for simplified version of ANOVA following approaches are used:

(2.1) SSTotal=SS Error+SSTreatments , (2.9)

(2.12)  DFTotal=DFError+DFTreatments . (2.10)

Next, f-test is used for the comparison of total deviations. For instance, in a single-

factor ANOVA, statistical factors are tested by using test statistic, F, as:

(2.01)
F= variancebetween treatments

variancewithin treatments
=

MSTreatments

MSError

=
SSTreatments /( I−1)
SSError /(nT−I)

, (2.11)

where MS stands for mean square, I is the treatment count and nT is the total amount

of cases. ANOVA F-test is optimal for lowering false negative faults. This algorithm

can be used for single factor or multiple factors [48], [49]. 

2.3.1.7 Linear Discriminant Analysis

When there are more than two classes involved in a classification problem, Linear

Discriminant Analysis (LDA) is the preferable linear classification algorithm. LDA

computes statistical information of the data for each present class. For instance, in a

single input variable, the result is a single mean and variance value for each class. In

a  multi  variable  scenario,  similar  calculation  is  carried  out  over  the  means  and

covariance matrix. LDA assumes that the given data is Gaussian or in other words

when plotted, the graph looks like a bell curve. LDA also assumes that each sample

has the same variance and on average, each variable is similarly close to the mean.
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Algorithm, with these assumptions estimates a probability for a new subset of inputs

of each class predicting the highest probability class as the output class [50]. 

2.3.2 Wrapper Methods

Wrapper methods deal with the feature selection as a search problem. Idea behind

these  types  of  methods  is  to  look  in  the  space  of  feature  subsets  by  utilizing  a

learning algorithm in order  to guide the search.  For  each feature,  an estimate of

accuracy is calculated on the learning algorithm. This accuracy is gathered from a

cross-validation process over the training dataset. Then a comparison between the

estimated accuracy on current feature and selected feature subset is carried on. If

current feature is estimated to be lower than the selected features, then the feature is

dropped  [51].  This is the main idea behind a wrapper method. Some examples to

wrapper feature selection algorithms are Genetic Algorithm, Simulated Annealing

and Iterated Local Search for which the explanations can be found below.

2.3.2.1 Genetic Algorithm

Genetic Algorithm (GA) is developed from the concept of evolution and it is a search

algorithm.  Initially,  a  collection  of  feature  subsets  are  formed.  This  collection

contains randomly selected k1 feature subsets out of total n feature subsets. For each

feature  subset  in  this  collection,  their  fitness  level  is  computed.  Fitness  level

describes how fit a feature subset is compared to the other. With the help of fitness,

subsets are ranked against each other resulting in an ordered list of feature subsets.

Subsets with better fitness level are chosen for crossover and mutation procedures.

Algorithm: Genetic Algorithm

Begin:
Let: S = { collection of initial feature subset population }
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F = ComputeFitness( S )
While population is no more converging

S = SelectBest( S, F )
S = Crossover( S )
S = Mutate( S )
F = ComputeFitness( S )

End;

Crossover is a process of combining two features (parents) to produce single feature

(child). Crossover process results in a new population. However, a child may result

in a useless generation considering the evolution of the population. For tackling this

problem, parents could be altered slightly so that their offspring is no longer useless.

This  is  the  process  of  mutation.  Finally,  child  subsets  from  these  procedures

combined  with  better  feature  subsets  from  the  population  and  make  a  new

population.  This  procedure  is  carried  on  iteratively,  usually  resulting  in  a  lower

number of population than the previous iterations until a breaking point is hit which

results in a collection of best feature subsets for feature selection [52], [53]. 

2.3.2.2 Simulated Annealing

Simulated Annealing (SA) similar to GA is a stochastic search algorithm. Essentially,

SA creates non-homogeneous Markov chain from an objective function which moves

towards the optimal point of the function. Algorithm starts from an initial starting

string S0 assuming a set of binary strings S such that S={(S1 ,... , Sn)'  | S i∈{0 ,1}} .

Si is  used  to  take  a  random  neighboring  string  which  is  denoted  as  S*
i+1.  The

algorithm is as follows:

Algorithm: Simulated Annealing

Begin:
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Let: S={(S1 ,... , Sn)'  | S i∈{0 ,1}}
For each S

Let: S*
i+1 = random neighbor

if F̂(S i)> F̂ (S i+1
* )

then S i+1=S i+1
*

else
Let: c = random(0, 1)

if c ≥ ea where a = −( F̂ (S(i+1)
* )−F̂(S i))  /  T i  then

S i+1=S i+1
*

else ( c < ea  )
S i+1=S i

End;

In the above algorithm  [54],  F̂( )  is  the objective function and  T stands  for  the

hypothetical  number  of  steps  or  it  can  be  seen  as  a  timer  function  which  is

decreasing. As the algorithm proceeds, T gets smaller and it becomes harder for F̂( )

to choose a point that does not get smaller. Finally, when F̂( )  is not getting a useful

result, the algorithm stops [54], [55]. 

2.3.2.3 Iterated Local Search

Iterated Local Search (ILS) deals with optimization of discrete problems. In local

search functions, there could be point where a local minimum is stuck if there are no

neighbors to be improved. A change is introduced in the name of iterating calls to the

searching function where the algorithm looks for a different starting point on each

iteration. Using the same terminology from SA, below is the algorithm for ILS.

Algorithm: Iterated Local Search

Begin:
Let: S0 = { initially generated solutions set }
S* = LocalSearch( S0 )
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While termination condition is not met
\* Perturbation *\
if S* is weak compared to previous result 

then set back the local minimum 
else if S* is strong compared to previous result

then set randomize the local minimum and restart
\* Perturbation *\
S*’ = LocalSearch( S’ )
S* = CheckAcceptance( S*, S*’, previous_results )

End;

With  the  perturbation  step,  the  algorithm avoids  imprisonment  and restarts  from

another  random point.  If  there  is  no  imprisonment,  then  the  corresponding local

search function is run and acceptance rules are checked similar to a non-iterative

local search [56]. 

2.3.3 Embedded Methods

Since filter methods are designed for use before learning and wrapper methods do

not take structure of classification or regression functions into the consideration, a

bridge methodology was introduced. Compared to the other two, embedded methods

do  not  separate  the  pre-learning  and  learning  part  of  the  process.  In  a  sense,

embedded feature  selection  methods  connect  filter  and wrapper  methods  [57].  A

common  embedded  method  is  Least  Absolute  Shrinkage  and  Selection  Operator

(LASSO). 

2.3.3.1 Least Absolute Shrinkage and Selection Operator

The process of finding affinity between variables is called regression analysis. This is

highly related to machine learning topics such as supervised learning, clustering and

classification  [24].  LASSO  was  introduced  by  Robert  Tibshirani  in  1996.  This

method uses fixed upper bound value as a constraint to the sum of absolute values of
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the model parameters. To do this, algorithm uses a regulatory function which as a

result transforms some of the vectors of regression to zero. As a result, variables that

have non-zero coefficients will survive the feature selection process. The aim of the

LASSO regularization process is to optimize the accuracy of the predictions [58],

[59].

2.4 Learning and Classification Algorithms

In machine learning, supervised learning is a term used for the process of generating

a mapping between input and output pairs using sample input-output relationships

[60].  Specifically, these input-output relationships are group of training examples in

a  labeled data form. These data are the features gathered from the feature selection

and extraction phase.  There are also other learning algorithms which do not take

labels  as  precursor,  unsupervised and reinforcement  learning  [61].   Unsupervised

learning partitions the features into groups by finding previously unknown patterns.

On the other hand, reinforcement learning makes use of some external information

provided by trainer. This given information is in the form of scalar reinforcement

signals which indicates how well the system is operating. Learner tries each action

one by one to find the best outcome. The problem of classification is considered to be

a part of supervised learning area. A classification model tries to solve the problem of

predicting the category of an observed information by using generated set of rules

from the training algorithm and applying these rules to an observation in the light of

finding the most appropriate category [62]. 

In the field of ER, labeling guides the classification process. Without this crucial

information there would be no exact way to know which set of features belong to
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what  emotion.  As  humans,  our  cognitive  consciousness  and  instincts  let  us

differentiate different emotions. However, this is not the case for machines. Thus,

supervised learning algorithms are the most appropriate choice when compared to a

human consciousness. Not to mention that not just in ER but also in general, majority

of practice in ML is carried out using supervised learning algorithms. Some of the

most commonly seen algorithms for supervised machine learning are given below.

2.4.1 Decision Tree

Decision  Tree (DT) is  a  collection  of  binary classification tools.  A DT sculpts  a

training model using a prediction class or a given set of learning rules. The algorithm

uses tree structure as the base data structure model. Each non-leaf node represents a

question where the answers are in binary format. After answering a question, either

another non-leaf node with a different question is encountered or a leaf node with a

final prediction for the leaf to root path is made [63].  Following is the DT algorithm.

Algorithm: Decision Tree

Begin:
Let: F = { set of features }
T = { root of the tree with best applicable feature }
While termination condition has not met

Split(T)
LabelLeafNodes(T, S)
Predict(T)

End;

Split function, splits the leaf nodes that are labeled for splitting as the name suggests.

Then the leaf nodes are labeled either for more splitting or for predicting a result.

Predict  function  gives  a  resulting  prediction  for  the  leaf  node  according  to  the
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corresponding labeling.  Finally,  the function is  terminated when none of  the leaf

nodes contain a split command and all leaf nodes contains a prediction [64]. 

2.4.2 Random Forest

When multiple DTs are incorporated together at training phase a Random Forest (RF)

learning method is formed. The final prediction set  of RF is the overall  outcome

taken from the incorporated trees. In the work of Kleinberg [65], it has been stated an

ideal mathematical analysis is required to tackle the over-fitting in a PR problem.

Due to the construction of how the prediction model is created in RF the problem of

over-fitting has been overcome.

Algorithm: Random Forest

Begin:
Let: F = { set of features }
For i to n

R = { k number of random features from F }
Ti = DecisionTree( R )

P = FinalizePredictions( T ) /* calculating prediction target from all trees
according to the combining rule*/

End;

The algorithm takes k random number of the features from the initial feature set and

employs DT algorithm to create  n number of trees. After the designated number is

reached, RF proceeds to create a final tree composed of predictions. For a single

prediction target, votes are counted for different results and the prediction with the

highest vote is counted as final prediction. The final tree is formed from these final

predictions. When a test data is given, final tree in RF predicts the result. In a sense,
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by passing through this final tree, test data has been tested on all iterations of DTs

[65], [66]. 

2.4.3 Support Vector Machine

SVM tries to compute the optimal hyperplane for the given labeled training data.

This output hyperplane defines the fine line between categories. When the space is in

two dimensions, the hyperplane becomes a line dividing the plane into two parts

which  results  in  binary  classification  model.  The  separation  of  classes  is

demonstrated in the figure 2.3:

Thus, on a plane involving only x and y dimensions, given data is separated into two

classes with a line. However, when given data is multi-dimensional, a simple straight

line will not be sufficient. Lets assume that in addition to x and y axes, we also have

z-axis. Demonstration for the three dimensional plane is given in the figures 2.4 and

2.5.
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Figure 2.4: 3D Class separation on the y and z axes [67].

Figure 2.5: 3D Class separation on the x and y axes [67].

In this case, a circular line is required for the separation. These transformations in the

SVM are done by kernels. Kernel function calculates inner products between given

input vectors. This way of computation allows kernels to work in multi-dimensional

plane without actually performing calculations on the coordinate plane itself. This

bypassing  of  mapping  approach  is  called  the  kernel  trick  [67].   A kernel  could
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employ linear,  Gaussian,  polynomial  or  any  given  type  of  formulation.  A kernel

function is denoted as:

(2.11) K (x , y )=<Φ(v1) ,Φ(v2)> , (2.12)

which is the inner product of input vectors. Using this description, linear, polynomial

and Gaussian kernels are defined respectively as:

(2.12) K (v1, v2)=v1
T v2+c , (2.13)

(2.1)3 K (v1 , v2)=(av1
T v2+c)

d , (2.14)

(24.1)
K (v1 , v2)=e

(
−‖v 1−v 2‖

2

2σ 2 )
. (2.15)

Simplest  kernel  function  is  the  linear  kernel  where  there  is  only  an  additional

constant  c is  involved.  Polynomial  kernel  functions  are  suitable  for  normalized

training data since there is an addition of gradient a and polynomial degree d. Third

kernel  function,  Gaussian,  has  adjustable  parameter  of  σ.  This  parameter  must

carefully tuned. In case of underestimation, the function will be highly sensitive to

noisy data and in case of overestimation, the function will act as a linear function

[67]–[69]. 

Without  discrimination,  on  any  kernel  function,  there  will  be  the  problem  of

overlapping of  data  between classes.  Margins  determine  the  level  of  separability

between the classes. A hyperplane can be written in the form  w v−b=0  and the

margin  of  distance  between  the  two hyperplanes  becomes  2  /  ‖w‖ .  In  order  to

maximize the distance between the hyperplanes,  ‖w‖  must be minimized. This is

demonstrated in the following figure with perpendicular lines to the separation of

classes.
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Observing from the figure 2.6, SVM maximizes the distance between green separator

line and the data points as much as possible with equal margin, black arrow lines.

Final hyperplane is drawn when maximum number of data points are touching to the

margin lines. Finally, there is the concept of minimum and maximum margins. This

introduces breathing space for margins. Data points are not expected fall exactly on

the tip of the arrow but rather could fall into a range of distance between minimum

and maximum margins. This approach is used for optimizing the hyperplane position.

Lastly, in each iteration of the learning process, SVM uses loss function to improve

predictions  in  the  next  steps.  Loss  function  is  an  error  calculation  method.  The

amount of difference between classifiers prediction score and actual result is the error

interval. By using this error interval, classifier adjusts the values of margin for the

next iteration. This is continued until there is no longer any minimization on total

error.
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Chapter 3 

FACIAL EMOTION RECOGNITION METHODOLOGY

3.1 Facial Emotion Recognition Framework

A FER application consists of pre-processing, feature extraction and classification

phases.  Initially,  static  images  are  gathered  either  directly  from databases  or  by

extracting from video clips.  Then,  feature selection and extraction is  carried out.

Finally, clustering and classification is done. Pre-processing is a non-compulsory step

which is usually carried out either before or during feature extraction phase.

Generalized flowchart of a FER application is included in figure 3.1. Clustering is a

step  which reduces  the size of  the  dataset  while  containing  valuable information

required during the learning process. During classification, smaller sized data sets are

preferable since classification is highly time consuming process and this is directly

proportional to the amount of data at  hand. Also, in a sense clustering filters the

unnecessary information which may lead to redundancy in learning.
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3.2 Facial Databases

For a FER system to work accurately, databases that are wealthy in terms of features

and that are applicable in the context must be chosen. Surrey Audio-Visual Expressed

Emotion  (SAVEE)  database  [70] and  Ryersan  Multimedia  Lab  emotion  database

(RML)  [71]  are  highly  suitable  for  FER  experiemnts.  SAVEE  and  RML are

databases consisting of various number of videos for each basic emotion category.

Each database had different number of subjects demonstrating a role of an emotion.

Videos  are  structured  such  that  the  face  of  the  person  who  is  performing  the

corresponding emotion category was captured. In addition to visual act, audio is also

a part of these videos where in some cases actor demonstrates the emotion using a

sentence.

In SAVEE there are 480 total number of videos and each video has 60 frames per

second while in RML there are 720 samples each captured with a frame rate of 30

frames per second. For each dataset, number of actors for each subject is varying.

Table  3.1 and  3.2 illustrates number of samples found on each category from each

subject.

Table 3.1: Subject distribution per emotion category in SAVEE
Subject Angry Disgust Fear Happiness Sadness Surprise

1 15 15 15 15 15 15
2 15 15 15 15 15 15
3 15 15 15 15 15 15
4 15 15 15 15 15 15
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Table 3.2: Subject distribution per emotion category in RML
Subject Angry Disgust Fear Happiness Sadness Surprise

1 3 4 5 3 5 5
2 3 5 4 4 5 4
3 8 16 11 18 15 12
4 33 25 31 23 29 31
5 19 17 16 25 13 15
6 16 15 17 18 17 17
7 24 23 23 17 24 22
8 14 15 13 12 12 14

3.3 Landmark Detection

Facial Action Code System (FACS) is an observer-based system for measuring facial

expressions [72]. With the help of this system, visually identifiable facial movements

which are action units (AU) can be decomposed [73]. Thus with the help of AUs, a

machine learning algorithm can differentiate fairly specific facial behaviors. The first

internationally accepted standard for multimedia communication is  MPEG-4  [74].

MPEG-4 is a standard introduced for group of audio, video and 3d graphics in order

to identify a synthetic or natural head and body animations. Facial expressions are

the source communication channel for human interaction. The study of automatic

recognition of facial motions is called facial expression analysis  [75]. MPEG-4 has

been the basis for work in facial expression analysis. Crucial step in identifying the

facial features is to detect feature points such as corner of the eyes or peak points of

lips.  These points  located on the surface of  the face are  called facial  landmarks.

Landmarks  are  the  basis  for  detection  of  facial  features.  OpenFace  [76] is  a

framework used for facial expression analysis. This framework can pick out frames

from the videos while extracting facial landmarks.
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OpenFace calculates landmark points that are located strategically on 68 different

points of the human face. This is based on  Locations of each landmark allows the

machine to portray facial structure of the face in vector form. In the figure 3.2, blue

dots represent the landmarks. The areas covered by the landmarks are left eyebrow,

right eyebrow, left eye, right eye, upper mouth, lower mouth, nose and chin.

3.4 Distance and Angle Descriptors

In  a  geometric  based  facial  feature  selection,  distance  and  angle  geometric

descriptors  are  used.  This  approach  is  seen  on the  work  of  Noroozi  et  al.  [77].

Visualization of distances and angles can be found in figure  3.2. Distances are the
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straight lines and angles are the curved lines between straight or dashed lines. Full

list of distance descriptors ei and angle descriptors ai are found in the table 3.3.

Table 3.3: Distance and angle descriptors found in each facial region.
Facial Region Distances Angles
Left Eyebrow e1,e2,e3,e4 a1

Right Eyebrow e5,e6,e7,e8 a2

Left Eyebrow and Eye e9,e10,e11 -
Right Eyebrow and Eye e12,e13,e14 -
Left Eye e15,e16,e17,e18,e19,e20 a3,a4,a5

Right Eye e21,e22,e23,e24,e25,e26 a6,a7,a8

Upper Mouth e27,e28,e29,e30,e31,e32 a9

Lower Mouth e33,e34,e35,e36,e37,e38 a10

Nose e39,e40,e41,e42,e43,e44 -
Chin e45,e46,e47,e48,e49,e50 -

The distance descriptors are calculated as Euclidean distances e(li, lj)  between the

selected landmarks where li and lj represent the corresponding landmarks.

(2.1) e (li , l j)=√(l j , x−li, x )
2+(l j , y−li , y )

2 (3.1)

Following with a normalization of each individual distance descriptor. Normalization

is done via the division of each descriptor by the amount of region belonged to each

corresponding distance.

(2.1)
ê (li , l j)=

e (li , l j)

∑ e (lm ,ln)
, (3.2)

where ∑ e (lm , ln)  belongs to the corresponding distance region. For instance, if the

distance e (li , l j)  is in the eyebrow region, then it is normalized by the total length

covered in left and right eyebrow regions with points covered by { l18 ,l19 ,l20 ,l21 ,l22}

and  { l23 ,l24 ,l25 ,l26 , l27}  respectively. Similarly, points used for left eye, right eye,
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nose, mouth and chin are { l37 ,... , l41} , { l43 ,... , l46} , { l32 , ... ,l36 } , { l49 ,... , l60}  and

{ l6 ,... , l12}  respectively.  Thus, 50 distance features are calculated.

Angle descriptors are defined as the angle between two lines sharing one common

landmark  point.  Accordingly,  for  a  triplet  of  points  { li ,lk , l j }  following  angle

formulation was used:

(2.1)
a j=arccos

e(li , lk)
2+e (li , l j)

2−e (lk ,l j)
2

2e(li , lk)e (li , l j)
. (3.3)

10  angle  descriptors  have  been  calculated  as  a  result  from  triplets  of  eyebrow

regions;  { l18 ,l22 , l20} ,  { l23 ,l27 ,l25 } ,  eye  regions;  { l38 ,l42 ,l37 } ,  { l37 ,l40 , l38 } ,

{ l38 ,l42 ,l40 } ,  { l45 ,l 47 , l46} ,  { l43 ,l 46 , l45} ,  { l45 ,l 47 , l43}  and  mouth  region;

{ li ,l j , lk } , { l52 , l58 , l55} .

3.5 Clustering into Keyframes

The k-means clustering algorithm captures the most significant frame of the video.

These frames are called keyframes. Clustering is a process of collecting the data into

groups by a certain similarity. KMA is a hill climbing clustering algorithm. Simply

put,  hill  climbing  algorithms  use  local  search  optimization  technique  where

algorithm starts by choosing a random solution node to the problem and performs

incremental local search through neighboring nodes to try find a better solution [78]. 

For the description of KMA, let N be the number of data points, x be the data vector

from x1 to xn, I is the components of each vector xi and d(a, b) is a function defining

the distances between the points a and b. Initially in KMA, k means {m1, …, mk} are

initialized as random values from the set.  Then,  the algorithm works in two-step
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iterations. First step is the assignment step where each data point is assigned to a

nearest  mean  while  also  calculating  an  indicator responsibility  value.  This  is

formulated as:

(2.1) k̂n=argmin
k

{d (mk , xn)} , (3.4)

(2.1)  rn
k={ 1if k̂n=k ,0otherwise} , (3.5)

where, the data point is clustered to the nearest mean with  rn
k responsibility value.

This is followed by the second step of the KMA, updating of the centroids. In each

iteration of the algorithm, adjustment of the centroids or means are carried out since

they  match  match  the  sample  means  of  the  corresponding  data  points.  This  is

calculated as;

(2.1)

mk=
∑
n

rn
k xn

Rk

, (3.6)

where the total responsibility value Rk of centroid k is;

(2.1) Rk=∑
n

rn
k . (3.7)

Assignment and update steps are carried out until there is no room for improvements.

In other words, KMA converges when there is no change resulting in k number of

clusters [18]. 

In a ML application, speed is a difficult problem to overcome. Other than the main

goal of getting the keyframes, by clustering the feature sets, the size of the input is

reduced as well. This is a positive side effect since a smaller input set results in faster
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computation. Sweet spot for clustering can be found by carrying the experiment for

varying number of k and choosing the best performing k during learning process.

3.6 Classification, Cross Validation and Testing

Cross Validation (CV) is a technique used in classification process. Purpose of CV in

prediction  problem  is  to  test  the  algorithms  prediction  ability  of  testing  newly

unknown data and capturing any over-fitting or selection bias issues. In other words,

CV is used for testing the test results. When the data are in multi-dimensional format,

instead of binary classifier, learner is modified as multi-modal classifier. In general,

two strategies are widely used for training multi-modal classifiers. First strategy is

one-vs-one strategy where each dataset is divided into pairs and each category of

dataset is classified separately with other categories. Second strategy is one-vs-all

(OvA) strategy which is  the strategy used in this  study. In strategy of OvA, one

category is classified with comparison to every other class of categories [24]. 

For  partitioning  of  feature  sets,  K-fold  cross-validation  technique  is  used.  This

approach allows artificial enlargement of the dataset by randomly partitioning the

original set of features into K equal sized subsets [79]. Thus, the number of data in

each subset would be same as the original set but each subset will have different

partitioning in terms of train, test and CV allocation. The partitioning is carried out

as; out of K subsets, one is used for testing, one is used for CV and the rest is used

for training. As a general constraint, CV set is assigned to a constant fold for each

partition  in  order  to  ensure  an  equal  judgment  of  testing  phase.  Following  this

ideology, figure 3.3 shows how a 5-fold configuration would look like.
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Number of partitions is K-1 instead of K since last fold is dedicated to CV. Note that,

each partition has the same number of data-sets as original data-set. After K-fold

partitioning is complete, classifier is trained.

In the final step of the learning and classification process, classifier is tested with test

samples. Testing phase is where predictions are made for given sample and label

pairs. When given a test sample, each learner in the classifier calculates scores for

each category. Higher the score for an emotion category, higher the chance of sample

belonging  to  the  category.  Predictions  are  carried  out  according  to  these  scores.

Lastly,  from  all  learners,  one  learner  for  each  state  of  emotion,  predictions  are

combined and resulting predicted label is given to the sample. Classifier is evaluated

by comparing predicted labels with true labels. Yet there is an issue about combining

results  from the classifiers.  Assume that  for a given sample,  classifier  gets  equal

votes from learners for two emotion category. In order to surpass this problem, score

results  from all  6 learners  are added together  and normalized.  This means that 6

learners are combined to act like a single learner. Final prediction is made according

to this combined score. The operation for getting combined scores is called score
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averaging. This being said, there could still be a case where emotions contain same

score however this is a very unlikely scenario. In such a scenario, category is picked

by alphabetical order of emotion states. 

3.7 Sensitivity and Specificity

In statistical  analysis, terms sensitivity and specificity are commonly used. These

terms are used to quantitatively describe how good or bad the system is performing

during the tests. Sensitivity is a term defining a learners ability to correctly predict

samples from the dedicated category. On the other hand, specificity defines how well

learner rules out samples that did not belong to the learner itself.

A binary learner can only predict if the sample belongs to the category or not. Thus

the result from a binary learner is in binary format. Assume a binary learner is trying

to distinguish a given sample if it belongs to angry emotion or not. Then, if given

sample is  angry and the prediction is  correct,  the result  is  a  True Positive  (TP).

However, if the prediction was wrong then the result would be False Negative (FN).

Now, let the sample be from another category. If the learner predicts the sample as an

angry state,  then the result  is a False Positive (FP) while learner did not put the

sample into the angry category, result would be True Negative (TN). This concept is

illustrated in the table 3.4. 

Table 3.4: Terms used to define sensitivity, specificity and accuracy [80].
Predicted Label True/False Label

Positive Negative Row Total
Positive TP FP TP+FP
Negative FN TN FN+TN
Column Total TP+FP FP+TN N=TP+TN+FP+FN
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Sensitivity is found as the number of true positive results over the number of all

samples belonging to that category and  specificity is calculated as number of true

negative predictions over number of all samples not belonging to that category [80].

(2.14)
Sensitivity=

(TP)
(TP+FN )

=
(Number of true positive predictions )

(Number of all samples in thecategory )
(3.8)

(2.14)
Specificity=

(TN )
(TN+FP)

=
(Number of true negative predictions )

(Number of all samples not in the category)
(3.9)

3.8 Accuracy and Loss

In a  prediction based machine  learning system, recognition  rate  of  the  system is

calculated by the correctness of the predictions in comparison to true labels [80]. 

(2.1)0
Accuracy=

(TN+TP)
(TN+TP+FN+FP)

=( Number of Correct Predictions
Total Number of Samples

) (3.10)

This gives a percentage value for systems ability to label samples. For each binary

learner, a separate accuracy calculation is performed. Mean accuracy of all binary

learners  give  overall  accuracy  of  the  multi-modal  learner  system.  In  addition  to

accuracy results, loss function is calculated. This function is an essential part of SVM

algorithm however it can be used to visualize the total error made during the learning

and prediction processes. For each prediction, there is cost of error which is defined

as the weight of samples inside the margin of hyperplane which contributes to the

overall  error.  Total  loss  is  calculated  by  division  of  cost  of  error  by  total  error.

Learning process is evaluated by this distribution of loss function over each iteration

of learning.

(3.11) Total Loss= Total Error
Cost of Error

(3.11)
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3.9 Receiver Operating Characteristic

Receiver Operating Characteristic (ROC) is used to diagnose healthy and unhealthy

decisions  taken  over  the  curse  of  a  performing  simulation.  In  a  classification

problem,  this  diagnosis  corresponds  to  decision  making  ability  of  the  learners.

Relationship between sensitivity and specificity is graphically shown in ROC curve

diagram. 

With the help of true positive rate (TPR) and false positive rate (FPR), ROC curve is

plotted. In a ROC plot, closer the cut point is to the ideal coordinate (0, 1), better the

accuracy while if the curve gets closer to diagonal line, then the system becomes less

accurate.  Area  under  the  curve  (AUC)  and  shape  of  the  curve  helps  reader  to

comprehend learners performance. AUC is calculated as:
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(2.122
AUC=∫

1

0

ROC (x )dx (3.12)

where x = (1-specificity) and ROC(x) is the sensitivity [81]. One can observe that an

AUC value of closer to 1 points to a good learning process as AUC value is between

0 and 1.

Table 3.5: Diagnosis of AUC [80].
AUC Range Classification

0.9 - 1.0 Perfect
0.8 - 0.9 Very Good
0.7 - 0.8 Good
0.6 - 0.7 Satisfactory
0.5 - 0.6 Poor

< 0.5 Invalid

Table  3.5 summarizes the diagnosis of AUC. Although, it gives an idea about how

well the tests went, AUC is not a definitive answer to diagnosis of a classification

problem. Two same AUC results could be obtained due to two different reasons, high

sensitivity and high specificity.
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Chapter 4 

PERSON DEPENDENT EMOTION RECOGNITION

USING FACIAL INFORMATION

4.1 Person-Dependent Model

Person-dependent FER is where a person is found both in training and testing stages

of the learning. For both of the databases, a person acts on various emotions more

than once. From this information we can deduce that it is possible for each emotion

category to give at least one video of a person in training stage and testing stages.

Figure 4.1: Person-dependent block diagram.

4.2 Implementation Details

Keyframes gathered from KMA are out of order compared to their corresponding

video-frame sequence. Assume that k is assigned as arbitrary number in KMA. The

result  of  clustering will  be  k keyframes,  however  algorithm does  not  necessarily

40



return these keyframes in any order. To respect features as videos, keyframes are

ordered manually corresponding to the video they are extracted from. Form this point

onward, each k-tuple keyframe set corresponding to the same video is treated as one.

After  getting  the  ordered  sets,  K-fold  partitioning  is  applied  so  that  there  are  K

number of folds with equal number of keyframe sets from each emotion category. At

this  point,  list  of  keyframe  sets  in  each  fold  starts  with  sets  of  angry  emotion

category,  then  continuing  with  disgust,  fear,  happiness,  sadness  and  surprise

categories in order.  This list  pattern is not suitable for training of classifier  since

learning will be done on angry emotion category first which will create a bias inside

the  classification  process.  With  the  aim  of  tackling  the  bias  of  selection  before

training of classifier, sets of keyframes are shuffled in each fold.  Finally, folds are

distributed into train, test and CV sets and the classification is carried out.

4.3 Results

Judgment of how well classifier performed is done by analyzing the accuracy of test

results. This analysis is carried out for each different  k  value. Final test results are

picked by corresponding highest validation accuracy on obtained. Accuracy result

distributions over  k  keyframes for SAVEE and RML databases are given in Figure

4.2.
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Person-dependent approach yielded very high accuracy results. This was expected

since the classifier is given information about facial features of the person. Since

SAVEE database contains less number of persons with higher frames per second in

their  videos,  accuracy  results  surpass  the  RML database  in  general.  Percentage

accuracy of the system goes higher as k increases. 

Table 4.1: Person-dependent accuracy and loss table for SAVEE.
SAVEE: Person Dependent

Cross Validation Test Train
k Accuracy Loss Accuracy Loss Loss
1 0.8549 0.1451 0.8704 0.1296 0.0212
3 0.9815 0.1029 0.929 0.1368 0.027
5 0.9136 0.1661 0.9352 0.129 0.0387
7 0.9753 0.1124 0.9599 0.116 0.0301
9 0.9877 0.0971 0.9691 0.1067 0.0314
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11 0.9661 0.1044 0.9599 0.1066 0.0303
13 0.9444 0.1011 0.9722 0.1045 0.028
15 0.9352 0.1274 0.9784 0.094 0.0279
17 0.9969 0.1022 0.9722 0.0968 0.0283
19 0.9537 0.1202 0.9753 0.088 0.0233
21 0.9938 0.1067 0.9691 0.0947 0.0265
23 0.9661 0.1027 0.9691 0.084 0.0247
25 0.9784 0.0757 0.9753 0.0847 0.0223
27 0.9722 0.074 0.9815 0.0861 0.0216
29 0.929 0.0939 0.9784 0.0896 0.0226
31 0.9506 0.0987 0.9877 0.0858 0.0192
33 0.9938 0.0734 0.9784 0.0874 0.0217
35 0.9938 0.0784 0.9753 0.0848 0.02
37 0.9938 0.0715 0.9784 0.0883 0.0203
39 0.9722 0.0722 0.9784 0.0781 0.0183
41 0.9691 0.0713 0.9877 0.0793 0.0179
43 0.9846 0.0676 0.9815 0.082 0.0177

Table 4.2: Person-dependent accuracy and loss table for RML.
RML: Person Dependent

Cross Validation Test Train
k Accuracy Loss Accuracy Loss Loss
1 0.6574 0.3426 0.6821 0.3179 0.0338
3 0.7948 0.3247 0.8256 0.3082 0.0657
5 0.804 0.2954 0.8673 0.2793 0.0696
7 0.8704 0.2753 0.8611 0.2725 0.0726
9 0.8874 0.2205 0.8719 0.2701 0.0708
11 0.875 0.2458 0.8704 0.2614 0.069
13 0.838 0.2843 0.9028 0.2442 0.0638
15 0.8781 0.2538 0.8843 0.2524 0.0643
17 0.8457 0.283 0.892 0.2385 0.0602
19 0.8997 0.2147 0.8951 0.2445 0.0591
21 0.8411 0.2786 0.8904 0.2362 0.0578
23 0.9583 0.2036 0.8935 0.2434 0.0532
25 0.9367 0.1873 0.892 0.247 0.0553
27 0.9275 0.213 0.8966 0.2459 0.054
29 0.875 0.2582 0.8904 0.2342 0.0505
31 0.8611 0.2483 0.892 0.2385 0.0496
33 0.875 0.2623 0.8951 0.2359 0.048
35 0.8688 0.2738 0.9043 0.2294 0.0444
37 0.9228 0.2163 0.9012 0.2349 0.0473
39 0.9383 0.2074 0.8997 0.2377 0.0473
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41 0.8827 0.2179 0.9074 0.236 0.0458
43 0.892 0.2571 0.8966 0.2341 0.0456

Tables 4.1 and 4.2 give the resulting accuracy and loss data for CV, test and training

phases  for  both  SAVEE  and  RML respectively.  The  highest  accuracy  for  each

datasets are %99.7 for SAVEE in k=17 and %95.8 for RML in  k=23. Confusion

matrices for the corresponding keyframes are in  figures  4.3 and  4.4.  ROC graph

together  with  AUC calculations  for  the  mentioned  accuracy  results  are  given  in

figures 4.5 and 4.6. In case where there are more than one same accuracy result for

different keyframes, the lowest keyframe is chosen.

Figure 4.3: SAVEE, person-dependent confusion matrix for k = 17.
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Figure 4.4: RML, person-dependent confusion matrix for k = 23.
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Similarly,  due to the composition of SAVEE database,  learning process was very

smooth. Classifier was very quick at optimizing the hyperplane near to the perfect

precision as the graph is quickly approaching to the optimal point seen in figure 4.5.

This is also observed from the AUCs of each emotion category which are between

0.98 and 1.00.

In  RML database,  number  of  videos  per  person  is  varied.  From tables  3.1 it  is

observed  that  SAVEE  has  a  very  straightforward  structure  in  person  to  video

distributions over each emotion categories. However table  3.2 shows that for RML

there was no uniform distribution on person to number of emotion  categories let

alone total number of each person changes greatly as well. For instance, person 1 and
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2 has 25 total  number of videos while person 4 has 172 videos. This affects the

learning process which is seen in figure 4.6. A simple realization of the situation is

that classifier is given a chance to learn about person 4 about 6 times more than

person 1 or 2.

Table 4.3: Person-dependent results for best representative number of keyframes.
dataset k accuracy loss AUC
SAVEE 17 0.97 0.1 0.99

SAVEE [82] - 0.88 - -
RML 23 0.88 0.24 0.94

In table  4.3 it can be observed that compared to literature our model outperformed

accuracy results  in  SAVEE however  there  were  no study carried out  for  person-

dependent FER on RML.
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Chapter 5 

PERSON INDEPENDENT EMOTION RECOGNITION

USING FACIAL INFORMATION

5.1 Person-Independent Model

Second personalized model in this study is person-independent model. This model is

defined by either using a persons videos during training or testing phase. Classifier is

asked to predict samples of a person without learning anything about them. For this

purpose, there are some implementation difference to person-dependent model and

results are significantly different. 

Figure 5.1: Person-independent block diagram.

5.2 Implementation Details

Initially,  keyframe  ordering  according  to  video-frame  sequence  is  carried  out

similarly to the person-dependent model.  After getting the ordered keyframe sets,
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shuffling  is  carried  out.  However,  before  K-fold  partitioning is  carried  out,  each

individuals’ videos are grouped together and these videos are shuffled within each

group. Before the shuffling process, sequence of videos of a person was in uniform

order from starting from angry emotion to surprise emotion category. The purpose of

this  process  is  to  break  this  uniformity  and mix  videos  from emotion  categories

together. 

Finally, when there are groups of videos of each person, K-fold partitioning is carried

out.  Since, SAVEE has 4 individual and RML has 8 individuals in their datasets,

different K values are used in this step. For SAVEE value of K is 4 and for RML

value of K is 8. Structure of partitioning is such that for each fold all of the videos of

a single person was given. In the case of RML database, this means that for each fold

there are different number of videos. Thus, folds 1 to 7 are used as train and test sets

in each partition interchangeably and fold 8 is used as the CV set. Number of videos

in fold 8 is 80 out of 720 total videos which is sufficient enough to carry CV process.

Partitioning in SAVEE database is simple, K is set to 4. In each partition, there are 2

training sets, 1 test set and 1 CV set. Resulting in 50% of the dataset being assigned

to training and other 50% is divided in half over test and CV phases.

5.3 Results

Person-independent accuracy results are within the 40-20% band which is given in

figure  5.2.   Accuracy and loss  results  are  given in  tables  5.1 and  5.2,  confusion

matrices for the best accuracy results are included in  and ROC curve graphs are

illustrated in figures  5.5 and  5.6 and for SAVEE and RML respectively for both

tables and figures.
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For the most part, SAVEE datasets overrule RML in terms of accuracy. The reason

for this is that SAVEE dataset had 4 subjects with same number of videos performing

the emotions while in RML 8 subjects with varying number of videos are found.

Having greater number of subjects results in greater challenge since during testing

phase classification becomes a higher complexity job.

Table 5.1: Person-independent accuracy and loss table for SAVEE.
SAVEE: Person Independent

Cross Validation Test Train
k Accuracy Loss Accuracy Loss Loss
1 0.237 0.763 0.3 0.7 0.0222
3 0.2704 0.7519 0.3519 0.6728 0.0247
5 0.3296 0.7304 0.3482 0.6756 0.0333
7 0.3444 0.7101 0.3852 0.646 0.0315
9 0.2963 0.7198 0.363 0.672 0.028
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11 0.3296 0.7162 0.3926 0.6512 0.0311
13 0.3222 0.7131 0.3889 0.6524 0.0289
15 0.3222 0.7146 0.3926 0.6536 0.0272
17 0.3074 0.7185 0.3815 0.6505 0.0261
19 0.3222 0.6979 0.4111 0.6423 0.023
21 0.3037 0.7106 0.3852 0.6667 0.0217
23 0.3259 0.7039 0.3778 0.6623 0.0271
25 0.3185 0.7084 0.3889 0.653 0.023
27 0.3296 0.7096 0.3926 0.6435 0.0213
29 0.3111 0.7157 0.3815 0.6579 0.0222
31 0.3444 0.6906 0.3778 0.6645 0.0229
33 0.3222 0.7115 0.3741 0.6608 0.0205
35 0.3148 0.6985 0.3926 0.6544 0.0199
37 0.337 0.7039 0.3556 0.6683 0.0197
39 0.3259 0.7071 0.3852 0.6604 0.0204
41 0.3407 0.6985 0.3852 0.6565 0.0186
43 0.3222 0.7138 0.3704 0.6617 0.0199

Table 5.2: Person-independent accuracy and loss table for RML.
RML: Person Independent

Cross Validation Test Train
k Accuracy Loss Accuracy Loss Loss
1 0.275 0.3426 0.3047 0.3179 0.0338
3 0.2571 0.3247 0.3266 0.3082 0.0657
5 0.2571 0.2954 0.3844 0.2793 0.0696
7 0.2625 0.2753 0.3875 0.2725 0.0726
9 0.2536 0.2205 0.3703 0.2701 0.0708
11 0.2821 0.2458 0.3922 0.2614 0.069
13 0.2804 0.2843 0.3609 0.2442 0.0638
15 0.2821 0.2538 0.3766 0.2524 0.0643
17 0.2625 0.283 0.3859 0.2385 0.0602
19 0.2893 0.2147 0.3719 0.2445 0.0591
21 0.2679 0.2786 0.3813 0.2362 0.0578
23 0.2786 0.2036 0.3781 0.2434 0.0532
25 0.2839 0.1873 0.3766 0.247 0.0553
27 0.2643 0.213 0.3797 0.2459 0.054
29 0.2607 0.2582 0.3625 0.2342 0.0505
31 0.2625 0.2483 0.3641 0.2385 0.0496
33 0.2857 0.2623 0.3609 0.2359 0.048
35 0.2607 0.2738 0.3641 0.2294 0.0444
37 0.2571 0.2163 0.3688 0.2349 0.0473
39 0.2625 0.2074 0.3688 0.2377 0.0473
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41 0.2696 0.2179 0.3688 0.236 0.0458
43 0.2625 0.2571 0.3688 0.2341 0.0456

Figures  5.5 and  5.6 are the ROC curves given for SAVEE k = 7 and RML k = 19

respectively.  For  SAVEE,  curves  are  very  unstable.  This  is  due  to  the  fact  that

SAVEE dataset consisted of low number of video clips. Also, when one emotion was

learned quickly, others were lacking behind. For instance, emotion categories sadness

and fear have a lower AUC in both databases.

Figure 5.3 SAVEE, person-independent confusion matrix for k = 7.
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Figure 5.4 RML, person-independent confusion matrix for k = 19.

Figure 5.5: SAVEE, person-independent ROC chart for k = 7.
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Figure 5.6: RML, person-independent ROC chart for k = 19.

When  considering  feature  vectors,  learner  is  essentially  looking  for  distinct

differences between categories. If there is no such differences between one category

and others, then learner will struggle in classification. Another reason for low AUC is

when there is similarity between categories in terms of features. In fear and sadness

categories, this is observed. Facial structure during these emotions are similar to each

other  and  the  distance  and  angle  descriptors  are  not  sufficient  to  identify  the

differences between the two categories. However, for the most part, AUCs are mostly

above 0.5 which is  a decent result  considering that  facial  structure of the person

tested is not given during learning phase.

Table 5.3: Person-independent results for best representative number of keyframes.
dataset k accuracy loss AUC
SAVEE 7 0.39 0.65 0.65

SAVEE [77] 4 0.36 - -
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RML 19 0.37 0.67 0.65
RML [77] 4 0.32 - -

Observing from table  5.3, results gathered in this study outperformed compared to

the  results  from  literature  found  in  person-independent  models  for  both  of  the

databases.
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Chapter 6 

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this study, person-dependent and person-independent models of FER was studied.

The focus was to improve the learning phase in terms of speed and efficiency by

introducing the concept of keyframes. The experiments were performed on facial

databases of SAVEE and RML. For the purpose of FER, facial landmarks were used

as a basis for extraction of distance and angle feature descriptors. The features were

extracted from 68 landmark points located on the face of the subject. These features

were then clustered into keyframes. In order to preserve the integrity of the original

videos, the keyframes were ordered similar to the videos and are used as a whole

during classification. CV technique was employed in classification phase. This was

optimized for both of the model structures. CV provided a larger sample space to

work with during learning and prediction stages. Finally when the test results were

gathered,  it  has  been  observed  that  for  some  k number  of  keyframes,  classifier

performed better compared to others. The corresponding k are chosen to be the best

performing keyframe sets. 

Experimental  results  show  that  mid-range  k clustering  performance  was  best

compared to lower and upper  k values. Observing from simulations, it is clear that

person-dependent  approach  outperformed  person-independent  approach.  However,
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this study proved outstanding results in person-dependent model while also resulting

decent results for person-independent model. In addition, it is possible to optimize

the classification process by adjusting the number of keyframes used.

6.2 Future Work

This research revealed multiple improvements in terms of both models of ER. While

person-dependent analysis did perform sufficiently high in terms of accuracy, person-

independent model was behind. To improve recognition rates, a better selection of

features can be performed. Also, since the topic of the study was focused on FER,

voice counterparts of the emotion categories were not considered. However, there is

a potential for improvement if both voice and image counterparts of emotions were

used together to create a better platform for classification. This would be a closer

approach to real life human to human communication. 
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Appendix A: Charts for test and loss results

Figure 6.1: Person-dependent accuracy graph on test data.

Figure 6.2: Person-independent accuracy graph on test data.
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Figure 6.3: Person-dependent loss graph on RML dataset.

Figure 6.4: Person-dependent loss graph on SAVEE dataset.
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Figure 6.5: Person-independent loss graph on RML dataset.

Figure 6.6: Person-independent loss graph on SAVEE dataset.
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Appendix B: Confusion matrices (SAVEE, Person-Dependent)

   

    



   

   



   

   



   



Appendix C: Confusion matrices (RML, Person-Dependent)









Appendix D: Confusion matrices (SAVEE, Person-Independent)









Appendix E: Confusion matrices (RML, Person-Independent)









Appendix F: ROC Graph (SAVEE, Person-Dependent)

Figure 6.7: Person-dependent ROC graph for SAVEE k = 1.

Figure 6.8: Person-dependent ROC graph for SAVEE k = 3.
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Figure 6.9: Person-dependent ROC graph for SAVEE k = 5.

Figure 6.10: Person-dependent ROC graph for SAVEE k = 7.
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Figure 6.11: Person-dependent ROC graph for SAVEE k = 9.

Figure 6.12: Person-dependent ROC graph for SAVEE k = 11.
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Figure 6.13: Person-dependent ROC graph for SAVEE k = 13.

Figure 6.14: Person-dependent ROC graph for SAVEE k = 15.
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Figure 6.15: Person-dependent ROC graph for SAVEE k = 17.

Figure 6.16: Person-dependent ROC graph for SAVEE k = 19.
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Figure 6.17: Person-dependent ROC graph for SAVEE k = 21.

Figure 6.18: Person-dependent ROC graph for SAVEE k = 23.
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Figure 6.19: Person-dependent ROC graph for SAVEE k = 25.

Figure 6.20: Person-dependent ROC graph for SAVEE k = 27.
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Figure 6.21: Person-dependent ROC graph for SAVEE k = 29.

Figure 6.22: Person-dependent ROC graph for SAVEE k = 31.
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Figure 6.23: Person-dependent ROC graph for SAVEE k = 33.

Figure 6.24: Person-dependent ROC graph for SAVEE k = 35.
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Figure 6.25: Person-dependent ROC graph for SAVEE k = 37.

Figure 6.26: Person-dependent ROC graph for SAVEE k = 39.
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Figure 6.27: Person-dependent ROC graph for SAVEE k = 41.

Figure 6.28: Person-dependent ROC graph for SAVEE k = 43.
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Appendix G: ROC Graphs (RML, Person-Dependent)

Figure 6.29: Person-dependent ROC graph for RML with k = 1.

Figure 6.30: Person-dependent ROC graph for RML with k = 3.
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Figure 6.31: Person-dependent ROC graph for RML with k = 5.

Figure 6.32: Person-dependent ROC graph for RML with k = 7.
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Figure 6.33: Person-dependent ROC graph for RML with k = 9.

Figure 6.34: Person-dependent ROC graph for RML with k = 11.

103



Figure 6.35: Person-dependent ROC graph for RML with k = 13.

Figure 6.36: Person-dependent ROC graph for RML with k = 15.
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Figure 6.37: Person-dependent ROC graph for RML with k = 17.

Figure 6.38: Person-dependent ROC graph for RML with k = 19.
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Figure 6.39: Person-dependent ROC graph for RML with k = 21.

Figure 6.40: Person-dependent ROC graph for RML with k = 23.
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Figure 6.41: Person-dependent ROC graph for RML with k = 25.

Figure 6.42: Person-dependent ROC graph for RML with k = 27.
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Figure 6.43: Person-dependent ROC graph for RML with k = 29.

Figure 6.44: Person-dependent ROC graph for RML with k = 31.
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Figure 6.45: Person-dependent ROC graph for RML with k = 33.

Figure 6.46: Person-dependent ROC graph for RML with k = 35.
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Figure 6.47: Person-dependent ROC graph for RML with k = 37.

Figure 6.48: Person-dependent ROC graph for RML with k = 39.

110



Figure 6.49: Person-dependent ROC graph for RML with k = 41.

Figure 6.50: Person-dependent ROC graph for RML with k = 43.
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Appendix H: ROC Graphs (SAVEE, Person-Independent)

Figure 6.51: Person-independent ROC graph for SAVEE with k = 1.

Figure 6.52: Person-independent ROC graph for SAVEE with k = 3.
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Figure 6.53: Person-independent ROC graph for SAVEE with k = 5.

Figure 6.54: Person-independent ROC graph for SAVEE with k = 7.
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Figure 6.55: Person-independent ROC graph for SAVEE with k = 9.

Figure 6.56: Person-independent ROC graph for SAVEE with k = 11.
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Figure 6.57: Person-independent ROC graph for SAVEE with k = 13.

Figure 6.58: Person-independent ROC graph for SAVEE with k = 15.
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Figure 6.59: Person-independent ROC graph for SAVEE with k = 17.

Figure 6.60: Person-independent ROC graph for SAVEE with k = 19.
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Figure 6.61: Person-independent ROC graph for SAVEE with k = 21.

Figure 6.62: Person-independent ROC graph for SAVEE with k = 23.
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Figure 6.63: Person-independent ROC graph for SAVEE with k = 25.

Figure 6.64: Person-independent ROC graph for SAVEE with k = 27.
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Figure 6.65: Person-independent ROC graph for SAVEE with k = 29.

Figure 6.66: Person-independent ROC graph for SAVEE with k = 31.
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Figure 6.67: Person-independent ROC graph for SAVEE with k = 33.

Figure 6.68: Person-independent ROC graph for SAVEE with k = 35.
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Figure 6.69: Person-independent ROC graph for SAVEE with k = 37.

Figure 6.70: Person-independent ROC graph for SAVEE with k = 39.
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Figure 6.71: Person-independent ROC graph for SAVEE with k = 41.

Figure 6.72: Person-independent ROC graph for SAVEE with k = 43.
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Appendix I: ROC Graphs (RML, Person-Independent)

Figure 6.73: Person-independent ROC graph for RML with k = 1.

Figure 6.74: Person-independent ROC graph for RML with k = 3.

123



Figure 6.75: Person-independent ROC graph for RML with k = 5.

Figure 6.76: Person-independent ROC graph for RML with k = 7.
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Figure 6.77: Person-independent ROC graph for RML with k = 9.

Figure 6.78: Person-independent ROC graph for RML with k = 11.
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Figure 6.79: Person-independent ROC graph for RML with k = 13.

Figure 6.80: Person-independent ROC graph for RML with k = 15.
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Figure 6.81: Person-independent ROC graph for RML with k = 17.

Figure 6.82: Person-independent ROC graph for RML with k = 19.
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Figure 6.83: Person-independent ROC graph for RML with k = 21.

Figure 6.84: Person-independent ROC graph for RML with k = 23.
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Figure 6.85: Person-independent ROC graph for RML with k = 25.

Figure 6.86: Person-independent ROC graph for RML with k = 27.
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Figure 6.87: Person-independent ROC graph for RML with k = 29.

Figure 6.88: Person-independent ROC graph for RML with k = 31.
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Figure 6.89: Person-independent ROC graph for RML with k = 33.

Figure 6.90: Person-independent ROC graph for RML with k = 35.
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Figure 6.91: Person-independent ROC graph for RML with k = 37.

Figure 6.92: Person-independent ROC graph for RML with k = 39.
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Figure 6.93: Person-independent ROC graph for RML with k = 41.

Figure 6.94: Person-independent ROC graph for RML with k = 43.

133


	Chapter 1
	1.1 Introduction
	1.2 Facial Expression Analysis
	1.3 Problem Definition
	1.4 Proposed Methodology
	1.5 Thesis Contributions
	1.6 Thesis Overview

	Chapter 2
	2.1 Introduction
	2.2 Applications on Facial Expressions
	2.3 Feature Selection Methods
	2.3.1 Filter Methods
	2.3.1.1 RELIEF
	2.3.1.2 Correlation Based Feature Selection
	2.3.1.3 Fast Correlated Based Filter
	2.3.1.4 INTERACT
	2.3.1.5 Chi Squared
	2.3.1.6 ANOVA
	2.3.1.7 Linear Discriminant Analysis

	2.3.2 Wrapper Methods
	2.3.2.1 Genetic Algorithm
	2.3.2.2 Simulated Annealing
	2.3.2.3 Iterated Local Search

	2.3.3 Embedded Methods
	2.3.3.1 Least Absolute Shrinkage and Selection Operator


	2.4 Learning and Classification Algorithms
	2.4.1 Decision Tree
	2.4.2 Random Forest
	2.4.3 Support Vector Machine


	Chapter 3
	3.1 Facial Emotion Recognition Framework
	3.2 Facial Databases
	3.3 Landmark Detection
	3.4 Distance and Angle Descriptors
	3.5 Clustering into Keyframes
	3.6 Classification, Cross Validation and Testing
	3.7 Sensitivity and Specificity
	3.8 Accuracy and Loss
	3.9 Receiver Operating Characteristic

	Chapter 4
	4.1 Person-Dependent Model
	4.2 Implementation Details
	4.3 Results

	Chapter 5
	5.1 Person-Independent Model
	5.2 Implementation Details
	5.3 Results

	Chapter 6
	6.1 Conclusion
	6.2 Future Work
	Appendix A: Charts for test and loss results
	Appendix B: Confusion matrices (SAVEE, Person-Dependent)
	Appendix C: Confusion matrices (RML, Person-Dependent)
	Appendix D: Confusion matrices (SAVEE, Person-Independent)
	Appendix E: Confusion matrices (RML, Person-Independent)
	Appendix F: ROC Graph (SAVEE, Person-Dependent)
	Appendix G: ROC Graphs (RML, Person-Dependent)
	Appendix H: ROC Graphs (SAVEE, Person-Independent)
	Appendix I: ROC Graphs (RML, Person-Independent)


