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ABSTRACT 

In this study, two novel filter feature selection approaches are proposed as 

alternatives to state-of-the-art. The first proposed approach is a greedy-based feature 

selection method where redundancy is replaced by diversity to quantify the 

complementarity of a candidate feature with respect to the already selected subset. 

Both relevance and diversity are computed in terms of the ranks of positive 

instances, which is analogous to the computation of the area under the receiver 

operating characteristic curve (AUC). In the second approach, a novel dissimilarity 

metric based on Feature-to-Feature (F2F) scatter frequencies is proposed for 

clustering-based filter feature selection. The proposed metric is computed by 

obtaining feature-dependent ranks of samples and identifying the features which 

assign close ranks to each sample. Samples are represented as a set of affinity sets 

containing features having rank differences within a predefined proximity window 

size. The F2F dissimilarity of a pair of features is computed using the frequency of 

their appearance in different affinity sets. Features are then clustered into distinct 

groups using F2F dissimilarity metric. From each cluster, the feature having the 

highest relevance score is selected. The experiments conducted on 10 UCI and 

microarray gene expression data sets have confirmed that the proposed feature 

selection approaches provide better performance scores when compared to other 

competing methods. The proposed method outperforms the widely-used mutual 

information-based schemes in terms of classification accuracy, AUC and stability. 

Keywords: feature selection, ranks of instances, relevance, diversity, dissimilarity, 

scatter frequency, representative feature. 
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ÖZ 

Bu çalışmada, en son teknolojiye alternatif olarak iki yeni öznitelik yaklaşımı seçme 

önerilmiştir. Önerilen ilk yaklaşım, seçilmiş olan alt kümeye göre bir aday 

özniteliğin tamamlayıcılığını ölçmek için artıklığı  çeşitleme ile değiştiren özyineli 

bir öznitelik seçim yöntemidir. Hem ilgililik hem de çeşitlilik, alıcı çalışma 

karakteristik eğrisi (AUC) altındaki alanın hesaplanmasına benzer olan pozitif 

örneklerin sıralarına göre hesaplanır. İkinci yaklaşımda, kümeleme tabanlı filtre 

öznitelik seçimi için özniteliklar arası (F2F) dağılım frekanslarına dayanan yeni bir 

benzemezlik metriği önerilmektedir. Önerilen metrik, özniteliğe bağlı örnek grupları 

elde edilerek ve her bir örneğe yakın düzeyler atanan özniteliklerin tanımlanmasıyla 

hesaplanır. Örnekler, önceden tanımlanmış bir yakınlık penceresi boyutu içinde sıra 

farklılıklarına sahip öznitelikler içeren bir yakınlık kümesi olarak temsil edilir. Bir 

çift özniteliğın F2F benzemezliği, farklı benzesim kümelerinde görünümlerinin 

sıklığı kullanılarak hesaplanır. Özniteliklar daha sonra F2F benzemezlik metriği 

kullanılarak farklı gruplara kümelenir. Her kümeden, ilgililik düzeyi en yüksek olan 

öznitelik seçilir. 10 UCI ve mikrodizi gen ekspresyon veri setleri üzerinde yapılan 

deneyler, önerilen öznitelik seçim yaklaşımlarının diğer rakip yöntemlere kıyasla 

daha iyi performans skorları sağladığını göstermiştir. Önerilen yöntem, sınıflandırma 

doğruluğu, AUC ve kararlılık açısından yaygın olarak kullanılan karşılıklı bilgi 

tabanlı tekniklerdan daha iyi performans göstermektedir. 

Anahtar Kelimeler: öznitelik seçimi, örnek sıraları, ilgililik, çeşitlilik, farklılık, 

benzemezlik dağılım frekansı, temsilcisi öznitelik.  
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Chapter 1 

1 INTRODUCTION 

1.1 Background  

Recent advances in data acquisition and storage have generated huge amount of data 

in a wide range of domains such as bioinformatics [1], [2], computer vision [3], text 

categorization [4], [5] and natural language processing [6]. The resulting high 

dimensional data sets pose big challenges in the very first stage of data analysis, 

information retrieval, clustering, classification, data mining, and decision making. To 

address the issue, dimensionality reduction approaches namely, feature extraction 

and feature selection are applied [7]. Feature extraction approaches such as principal 

component analysis (PCA) or linear discriminant analysis (LDA) project the original 

feature space into a lower dimensional space. A drawback of these methods is that 

features in the new subspace are not interpretable for the domain experts [8], [9]. 

Unlike feature extraction techniques which transform the feature space, feature 

selection methods preserve the original feature space by selecting a compact subset 

of discriminative attributes. In general, feature selection not only reduces the 

computational load of underlying machine learning algorithm, but also enhances the 

performance of the classifier [10], [11].  

There are various feature selection methods proposed in the literature that are 

generally grouped into three main categories as wrapper, embedded and filter 

approaches [12]. Wrapper methods are classifier-dependent and the attributes are 
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selected to minimize a specific classifier's predictive error. The weaknesses of this 

category of feature selection methods are the computational overhead and over-

fitting [12]. In embedded methods, feature selection and classification are interlocked 

in the learning algorithm. Embedded feature selection methods are efficient but the 

excessive computational burden restricts their application in high dimensions. They 

are also known to suffer from limited generalization capability [2]. On the other 

hand, in filter approaches, the evaluation criterion is totally independent from the 

learning algorithm. In particular, the features are evaluated in terms of their 

individual discriminative powers and pairwise redundancies [13]–[15]. Filter feature 

selection methods are generally characterized by scalability, low computational 

complexity, and high levels of generalization [8], [12]. Because of these reasons, 

they are more suitable in high dimensional spaces than wrappers and embedded 

methods [16], [17].  

1.2 Problem Definition  

Filter feature selection algorithms are generally distinguished by the relevance and 

redundancy metrics. The relevance of a feature quantifies its individual ability to 

predict the class labels. Univariate feature selection methods only rely on the 

relevance of features [18] and thus fail in addressing the redundancy among features 

[19]. In multivariate feature selection methods, similarity (or, dissimilarity) of 

features is also considered to address redundancy in the selected subset. Vast 

majority of feature filtering methods employ information theory-based metrics, 

namely mutual information (MI) for both relevance and redundancy. However, these 

metrics suffer from some inherent presumptions [20]. Continuous features are 

required to be discretized so that the samples are grouped into bins. These 

approaches are criticized for being negligent about the orders of the samples in the 
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bins which can lead to loss of information, specifically when the number of samples 

is small [21]. Moreover, reliable estimation of mutual information is challenging in 

high dimensional spaces [13]. There is an indisputable fact that feature selection is 

principally aimed at improving the classification performance while reducing the 

dimensionality of the feature space. For the case of MI-based feature selection 

methods, given a specific value for MI, just lower and upper bounds for Bayesian 

error rate (or classification accuracy) can be defined [22]. Hence, it can be argued 

that these MI-based feature selection approaches are susceptible to fail in ranking the 

features for optimized classification performance. 

1.3 Motivation 

Alternative relevance measures based on area under the ROC curve (AUC) which 

can be computed using ranks of instances has been considered very effective in 

estimating the relevance of features [18], [19], [23]. For instance, the feature 

assessment by sliding threshold algorithm directly exploits the classification 

performance metric, AUC, as a measure of relevance [23]. However, it fails to 

address redundancy due to being univariate. Spearman's rank correlation coefficient 

is another rank-based measure used for quantifying the redundancy between different 

features by considering the dissimilarities in the ranks assigned to the training 

samples [18]. As a matter of fact, the rank-based metrics have been strongly 

advocated in data analysis for discovering associations among features [19], [24], 

[25].  Rank-based measures are of high reliability as ranks are less sensitive to 

outliers and measurement noise [24]. Estimating dissimilarity of the features using 

ranks is known to be almost independent from probability distributions and capable 

of capturing nonlinear relationships among features [26]. It should be noted that 

adapting an objective function for feature selection entails compatible relevance and 
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redundancy metrics. Having adapted consistent relevance and redundancy metrics, 

there are two general strategies for searching the feature space [27]–[29]. The first 

technique is the conventional forward search or generally speaking, greedy search 

which has a long history in feature selection [30], [13], [14], [27]. The second one is 

the clustering-based feature selection which recently attracted the interest of 

researchers [31]–[34].    

These facts motivated us to develop two feature selection methods using novel rank-

based relevance and redundancy (more precisely diversity or dissimilarity) measures. 

AUC is exploited as the relevance measure and computed using ranks of positive 

instances. Two compatible rank-based metrics are adapted to measure 1) diversity of 

features in the proposed greedy-based method and 2) dissimilarity of features in the 

proposed clustering-based method.    

1.4 Contributions 

In this study, two novel multivariate filter approach are proposed. The first is a 

greedy-based that is method emerged from the widely-used performance measure for 

classification, namely area under receiver operating characteristic curve (AUC). The 

algorithm is based on the ranks of positive instances which is motivated by the fact 

that AUC can be determined by those ranks. Additionally, for a given pair of 

features, differences in ranks of the positive instances is considered as an indicator of 

complementarity between these features, that is highly valuable for classification. 

The proposed score includes two terms: relevance and diversity. The former 

estimates the discriminative ability of an individual feature while the latter 

determines its complementarity to the already selected subset. The maximum-
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relevance and maximum-diversity (MRMD) feature selection algorithm proposed in 

this study aims to maximize the sum of these two. 

The second proposed method utilizes a novel rank-based dissimilarity metric that 

employs feature-to-feature scatter frequencies for clustering-based feature selection. 

Firstly, the local feature similarity information in each sample is captured by 

applying a proximity window on the ranks assigned by different features. More 

specifically, using the differences of the ranks and the size of proximity window, 

feature affinity sets of each sample are computed. For instance, if the ranks assigned 

to a sample by two different features are close, the features are expected to co-occur 

in an affinity set of that sample. The size of the proximity window can be adjusted 

based on data characteristics such as the number of samples. Using the affinity sets, 

the Feature-to-Feature (F2F) scatter frequencies of all feature pairs are calculated in 

the following phase to define the F2F dissimilarity matrix that represents global 

dissimilarity between each feature pair. Having utilized F2F dissimilarity matrix for 

clustering features, a representative feature is selected from each cluster. 

1.5 Outline 

The  rest of this thesis is organized as follows. In Chapter 2, related studies are 

reviewed. Proposed methods are described in Chapter 3. Chapter 4 represents 

experimental results. The thesis is concluded in Chapter 5. 
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Chapter 2  

2 RELATED WORK 

2.1 Introduction 

Feature selection methods are generally categorized as filter methods, wrapper 

methods and embedded methods [12]. Filter approaches rank features by using a 

predefined measure. These methods do not interact with the classifier and thus have 

the lowest computational complexity. Nevertheless, filter approaches do not take into 

account the level of interactions between the features and the classifier. Wrappers are 

based on evaluating the predictive performance of different feature subsets for a 

given classifier. In other words, these approaches compute the best-fitting feature set 

for the selected classifier. They may suffer from over-fitting. Wrappers are also the 

most computationally demanding ones. On the other hand, embedded methods 

employ an internal learning algorithm to find the optimal subset of features. 

Although they suffer less form computational complexity compared to wrappers, 

they do not have an acceptable generalization capability [12]. Obviously, a feature 

selection method needs to be efficient and at the same time simple and fast, 

specifically when it is supposed to handle high dimensional data sets [2]. 

2.2 Overview of Filter Methods 

Filter feature selection methods typically perform by searching the feature space to 

optimize an objective function that is based on the relevance and the redundancy of 

features [13], [14], [27]–[29]. To solve the corresponding combinatorial problem, 

conventional greedy search methods such as forward and backward selection are 
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generally used. Forward selection is the most popular algorithm which sequentially 

ranks the features according to a predefined quality measure [7], [13], [28], [29], 

[35]. Greedy search-based feature selection approaches are very effective in high 

dimensional feature spaces. A vast majority of greedy-based methods have utilized 

information theory-based measures to determine the objective function [14], [27]–

[29], [36]–[41]. 

Feature selection based on mutual information has been criticized for some of its 

inherent presumptions [13], [20]. Firstly, continuous features which comprise 

majority of real world data sets are required to be discretized for entropy calculation 

and it is generally challenging to identify the best discretization method [21]. 

Discretization may lead to loss of information when simple unsupervised discretisers 

such as equal-width or equal frequency are used [21]. On the other hand, finding the 

optimal supervised discretization technique is NP-complete [42], which may highly 

increase the computational complexity. 

Greedy-based search methods although very popular suffer from nesting problem 

[27], [43]. More precisely, each step of the search algorithm in estimating feature 

interactions highly relies on the result of previous steps. In the kth iteration of 

forward search, the algorithm searches for the next best feature with respect to the 

already selected subset of (k-1) features. Thus, the search strategy is rather atomistic 

than holistic, generating nested ranks of features. Moreover, forward or backward 

selection algorithms perform poorly for non-monotonic objective functions which is 

almost always the case for filter feature selection methods [43]. These issues can lead 

to a sub-optimal solution [27], [43]. It should be noted that floating search, an 
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alternative for forward or backward search, addresses these issues to some extent but 

at the cost of increased computational load. 

An alternative to greedy search-based feature selection is clustering-based one, 

which has recently attracted the interest of researchers in pattern recognition and data 

mining [31]–[34], [44]. The general framework of clustering-based feature selection 

is to firstly group the attributes into a set of distinct clusters including highly 

correlated features and then select a representative feature from each cluster. The key 

advantage of clustering-based approaches over greedy search methods is that features 

are grouped in a holistic manner as the similarity or dissimilarity measures are 

estimated through a global scheme [31]. The asset of this holistic approach in 

estimating feature interactions is two-fold. It not only addresses the nesting problem 

arisen by greedy search, but also benefits the domain experts for further 

investigations. In other words, by grouping features, salient patterns of associations 

among them are discovered, allowing for better interpretation of the results [7], [17], 

[45]. Cluster analysis is in fact one of the most widely-used approaches for data 

analysis, visualization and inspection, specifically in exploratory analysis of high 

dimensional gene expression data sets [7], [46]. Moreover, feature selection methods 

which employ clustering have been proved to be more stable than greedy search-

based approaches [47], [48]. 

2.2.1 Mutual Information-based Feature Selection Methods 

Information theory has been the keystone of filter approaches for feature selection in 

recent decade [14], [27]–[29], [36]–[41]. The mutual information (MI) between two 

variables is widely used as an effective measure for correlation. More specifically, 

MI is defined as the reduction in the level of uncertainty of the dependent variable, 
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given an independent variable. Assuming two variables   and  , the mutual 

information between them is calculated as  

                                                                                                       (2.1) 

 where      is entropy of the variable and        denotes the conditional entropy. 

Typically, discriminative potential of a feature, that is also named as relevance, is 

approximated as the mutual information between the feature and the class label. In 

addition, mutual information between the feature and the previously selected feature 

subset is considered as the redundancy measure. The basic paradigm of MI-based 

feature selection methods is to maximize an objective function that is defined as the 

difference of relevance and redundancy [13]. 

In recent years, several variations of MI-based feature selection methods have been 

proposed. The well-known minimum redundancy-maximum relevance (mRMR) 

feature selection method maximizes the objective function that is defined as [40] 

              
 

   
∑  

    
                                                                              (2.2) 

where    is the     candidate feature,   is the class label,   is the already selected 

subset and     is the cardinality operator.  

The first term quantifies the relevance of    whereas the second represents its 

redundancy. It is argued that cumulative averaging of redundancies may result in 

overestimation of the significance of the features which are correlated with a fewer 

number of features in selected subset [28]. Conditional mutual information 

maximization (CMIM) has been proposed to address this problem [49]. CMIM 

ensures that the selected features are both individually discriminative and weakly 
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dependent in a pairwise manner. The objective function to be maximized in CMIM is 

defined as 

         
    

                                                                                                 (2.3) 

On the other hand, the concept of variable complementarity [50] suggests another 

definition for the relevance as the predictive information a feature adds on to the 

already selected subset. Variable complementarity has been the motivation for the 

double input symmetrical relevance (DISR) method proposed by Meyer and 

Bontempi  [51]. The objective function is the cumulative sum of the pairwise joint 

symmetrical relevances. In fact, it searches for the maximal value of 

      ∑  
    

          

          
                                                                                            (2.4) 

where            is a measure of relevance in the context of selected feature subset, 

 ,  that is calculated as 

                                                                                                   (2.5) 

Variable complementarity has also been the motivation for Bennaser et. al [28] who 

have proposed a maximum of minimum approach for feature selection. Their method 

has two variants named joint mutual information maximization (JMIM) and 

normalized joint mutual information maximization (NJMIM). The criterion for 

JMIM is defined as 

         
    

                                                                                                (2.6) 

Obviously, JMIM can be viewed as a modification of CMIM that is made by adding 

the standard relevance term to the objective function. NJMIM is very similar to 
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JMIM except that it is defined using normalized joint mutual information given in 

Equation 2.7. It should also be noted that NJMIM is a modification of DISR where 

accumulative sum is replaced by minimum operator as 

         
    

 
          

          
                                                                                            (2.7) 

More recently, there have been ongoing attempts to modify MI-based filter 

approaches aiming at improved classification performance using linear and nonlinear 

classifiers. Wang et. al. [27] have conducted a comprehensive set of experiments on 

a wide range of data sets to prove that their maximum-relevance maximum-

independence (MRI) method is superior to the state-of-the-art MI-based and non-MI-

based filter approaches. Dynamic relevance and joint mutual information 

maximization (DRJMIM) is another variant of MI-based filter approaches, affirmed 

to function competitively in comparison to standard feature selection methods [29]. 

Nonetheless, no matter how efficiently these approaches are claimed to perform, the 

foundation of all of them is mutual information. 

2.2.2 Clustering-based Feature Selection Methods 

Clustering-based feature selection methods are characterized by the dissimilarity 

metric, clustering algorithm and relevance metric. The general framework of these 

techniques is as illustrated in Figure 2.1. In recent years, these methods have 

attracted the interest of researchers as an alternative to conventional greedy search-

based methods which suffer from nesting problems. For instance, FAST is a 

clustering-based feature selection technique which applies minimum spanning tree to 

create feature clusters [31]. The similarity of features is estimated by pairwise 

symmetrical uncertainty (SU). From each cluster, a feature with maximum SU value 

with respect to class labels is selected. 
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Original Feature Set

(Compute Dissimilarities)

Clustered Features

(Apply a Clustering 

Algorithm)

Select a Representative 

Feature from each Cluster 

(Compute Relevance) 

Selected Feature Subset

 
Figure 2.1: The general framework of clustering-based feature selection methods [52] 

Yu et al. have investigated utilizing distinct peaks in the distributions of feature 

values [47]. They suggest that features close to the core region of the density 

function are highly correlated, forming a feature group. F-statistic is then used as the 

relevance measure to discard irrelevant groups and consequently select the 

representative features from the remaining groups. Relevance of the features in each 

group is obtained as the average relevance across the members of the group. Sotoca 

and Pla employed hierarchical clustering (HC) to group features using a similarity 

metric based on the conditional mutual information (CMI) [43]. From each cluster, 

the feature which has the maximum mutual information (MI) value with respect to 

the class labels is used to form the selected subset.  
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Another clustering-based feature subset selection (CFSS) is proposed in [34] which 

employs agglomerative HC for clustering and MI as similarity metric. The clustering 

algorithm starts by assuming all features as distinct clusters and then merging them 

in a bottom-up manner until a preselected number of clusters are obtained. MI 

between each feature and class labels is then used to select the most relevant feature 

from each cluster. Feature clustering is also claimed to improve the performance of 

the well-known support vector machine recursive feature elimination (SVM-RFE) 

algorithm in classifying gene expression data sets [33]. Feature clustering by SVM-

RFE performs by k-means clustering of genes using Euclidean distance. 

Representative gene of each cluster is the closest one to the cluster center. These 

representative features are then ranked using SVM-RFE. In [44], clusters are formed 

by a community detection algorithm which employs Pearson's correlation coefficient. 

Having formed the feature correlation network from each subgraph of the network, 

the feature corresponding to the maximum MI with the class labels is added to the 

feature subset. 

2.3 Conclusions 

Filter feature selection plays a critical role in a wide range of applications of machine 

learning and pattern recognition, specifically in high dimensional spaces. The review 

of related literature reveals the potential drawbacks of popular MI-based feature 

selection methods and suggests that there is still a huge room for studying alternative 

feature selection approaches. It can be argued that performance improvements can be 

achieved by considering novel relevance and redundancy measures as well as 

alternative searching strategies.  
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Chapter 3 

3 PROPOSED FEATURE SELECTION METHODS 

Two of the most widely-used metrics to assess the predictive performance of 

learning algorithms are accuracy and AUC. AUC is defined as the area under the 

curve of true positive rate versus false positive rate. The intuitive interpretation of the 

AUC is the probability that a randomly chosen positive sample is ranked higher than 

a randomly chosen negative one [53]. Although accuracy is known as the 

conventional classification performance metric in machine learning and pattern 

recognition, since its shortcomings were highlighted, scholars have convinced that 

AUC is a more reliable measure [54]. Accuracy depends on the decision threshold 

and it ignores the way samples above or below the threshold are ranked. On the other 

hand, AUC is independent from the decision threshold and it considers the ranking of 

the output scores given by the learning algorithm. Unlike accuracy, AUC is also 

insensitive to the class distribution which makes it the most-widely used classifier 

evaluation measure in the case of imbalanced data sets [55], [56]. 

Inspired by the fact that AUC can be computed using ranks of positive instances and 

the effectiveness of rank-based measures in data analysis, we propose two feature 

selection methods named as maximum relevance and maximum divesity of ranks of 

positives (MRMD), and clustering-based feature selection using feature-to-feature 

(F2F) scatter frequencies. Both proposed techniques employ the same relevance 

measure which resembles AUC computation. MRMD is a greedy earch-based 
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technique with a diversity measure obtained from difference of ranks of positive 

instances. In the proposed clustering-based technique, F2F scatter frequencies are 

utilized as the dissimilarity measure for feature clustering.  

3.1 MRMD 

In greedy search-based filter approaches, the feature subsets are iteratively computed 

by evaluating the candidate features in terms of their relevance with the target class 

and pairwise redundancies. MRMD is a novel filter approach based on ranks of 

positive instances. In this approach, redundancy is replaced by diversity to quantify 

the complementarity of a candidate feature with respect to the already selected 

subset.  

3.1.1 Relevance Measure  

Consider a two-class classification problem where the positive and negative classes 

include   and   samples, respectively. The feature values can be undertaken as the 

probability scores of a hypothetical classifier as practiced in [19].  For a particular 

feature   , assume that   
  denotes its numerical value for the  th positive sample. 

Similarly, let   
   denote the value of the feature for the  th negative sample. Under 

the assumption that the higher decision values are produced for positive instances, in 

overall, the maximum likelihood estimate of AUC can be obtained from the ROC 

curve as [57], [58] 

     
∑   

   ∑   
       

     
   

  
                                                                                   (3.1) 

 where  

         (

      

      

        

                                                                             (3.2) 
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Assuming no ties for simplicity,  ∑   
            can be interpreted as the number of 

negative instances having lower feature values than the value of the  th positive 

instance. 

Consider a ranking system which assigns higher ranks to the samples having larger 

feature values and lower ranks to those with smaller feature values. The rank ( ) of 

the sample having the largest feature value is       whereas it is     for the 

sample with the smallest value. Let the positive and negative samples also be 

numbered separately. More specifically, the   value of the positive sample that has 

the highest feature value is set as   and the sample having the smallest feature value 

has    . Table 3.1 presents an exemplar feature, including the feature values and   

values of all ten samples and   values of five positive instances. It should also be 

noted that the   value of  th positive sample is represented as   
 . Using this 

notation, the inner summation term in Equation 3.1 can be rewritten as [56]  

      ∑   
       

    
     

               .                                             (3.3) 

 Replacing Equation 3.3 in Equation 3.1, the expression for AUC becomes [56]                                  

     
∑   

        

  
 

∑   
     

   

  
 

∑   
     

  
      

 

  
.                                                     (3.4) 

Thus, AUC is a function of ranks of positives biased by a fixed term determined by 

the total number of positives. Using Equation 3.4, AUC of the exemplar feature 

presented in Table 3.1 can be computed as 
         

   
     . 
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Table 3.1: Example decision values and related terms 

                     

0.10 - 1 NA - 

0.20 - 2 NA - 

0.29 + 3 1 2 

0.30 - 4 NA - 

0.40 + 5 2 3 

0.58 + 6 3 3 

0.71 + 7 4 3 

0.81 - 8 NA - 

0.95 - 9 NA - 

0.00 + 10 5 5 

Equation 3.4 shows that ranking the features according to their AUC values is 

equivalent to ranking them according to the sum of ranks of positive samples. Based 

on this, the relevance score of the     feature,    is defined as  

        ∑   
     

                                                                                                 (3.5) 

where      is the rank of     positive instance in the     feature.  

It should be noted that for some features, the positive class may be assigned larger 

values than negatives whereas the opposite might be the case for some others. In 

order to have compatible ranking among features, the ranking system is defined to be 

feature-dependent. This dependency is determined in the context of AUC and its 

relationship with the ranks of instances using Wilcoxon-Mann-Whitney test as 

    
 

  
 [56]. This test checks if one of the two random variables is stochastically 

larger than the other one [59]. AUC estimation using Equation 3.4 is thus under the 

assumption that ranks assigned to the positive class are generally higher than the 
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ones assigned to the other class. This assumption is valid only if a larger feature 

value corresponds to a higher probability of belonging to the positive class. 

Otherwise, feature values need to be converted into probability scores to ensure that 

they represent the degree of being from the positive class. This conversion requires 

pre-processing of features as practiced in [18], [19]. The assumption of Wilcoxon-

Mann-Whitney test will be valid if the AUC given in Equation 3.6 is greater than 0.5 

and accordingly, the relevance value determined by Equation 3.5 is correct only if  

         ∑   
     

           
      

 
 ∑   

     
  

        

 
            (3.6) 

is satisfied. Otherwise, both the ranking system and the numbering system should be 

switched to perform the opposite.  

Another important issue to be addressed in computing ranks of samples is ties. One 

general practice which is also undetaken in this study is to assign the average rank to 

all the samples in a tie set [60]. It is worth mentoning that Equation 3.4 is the precise 

estimate of AUC provided that there are no ties in the ranks. Although this limitation 

has been ignored in some of the previous studies [18], [19], it is well-known that the 

estimated AUC would be affected by the way ties are treated [60]. Considering 

average rank in case of ties implies that AUC is estimated as the area under a ROC 

curve with diagonal moves.  

As discussed in Chapter 2, MI-based feature selection methods apply an initial 

discretization process that merges some instances into a single bin. Hence, the ranks 

of instances inside each bin are inevitably ignored. Similarly, the orders of the bins 

do not influence the score assigned to the feature. In other words, MI-based feature 

selection methods exhibit the same characteristics if the order of samples inside the 
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bins or the orders of bins are randomly changed. However, taking into account the 

orders of instances as in         in computing the relevance of each feature is 

expected to result in more accurate evaluation of discriminative potential of different 

features. 

3.1.2 Diversity Measure  

As it can be seen in Equation 2.2 in the general form of the objective function of 

feature selection methods, another important component is redundancy. In the 

proposed approach, MRMD, this term is estimated as the diversity of ranks of 

positives. Consider the two dimensional space constructed by features    and    and 

a hypothetic decision boundary. We assume that the feature    contains 

classification-complementary information with respect to    if the low-ranked 

instances in    are the high-ranked instances in   . It should be mentioned that the 

ranks of positives are identified by the orders of both positive and negative instances 

and consequently, considering positive instances in calculations does not mean 

ignoring the negative class. Diversity is approximated as the sum of the absolute 

differences of the ranks of positives in    and   . The larger this value is, the more 

scattered instances appear in the two dimensional space. Thus, diversity of ranks of 

positives can be utilized to assess the complementarity of a pair of features. Diversity 

score between two features is computed as 

           ∑   
      

    
 
                                                                                (3.7) 

where     stands for absolute value. Note that the   values assigned to positive 

instances are determined from the first selected feature and they remain unchanged 

during the rest of feature selection procedure. 
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3.1.3 MRMD Algorithm 

The objective function to be maximized in MRMD is the combination of relevance 

and diversity terms. As discussed in Chapter 2, there are two schemes in MI-based 

feature selection methods for defining the redundancy term: average and minimum. 

The avg scheme, as in mRMR, computes the redundancy as the total/average mutual 

information between the candidate feature and all of the already selected features. On 

the other hand, the min scheme utilizes the minimum mutual information value when 

all previously selected features are considered. In this study, we similarly adapted 

two variants of MRMD. However, unlike redundancy which is a competing term to 

relevance, diversity is a contributing factor. Hence, either average or minimum of the 

diversity is added to the relevance. The objective functions of MRMD
avg

 and 

MRMD
min

 are given in Equations 3.8 and 3.9, respectively. 

                   
 

   
∑  

    
                                                                  (3.8) 

                      
    

                                                                      (3.9) 

where   refers to the already selected subset of features which is initialized as an 

empty set and     is the cardinality of the  , i.e. the number of already selected 

features.  

The proposed method searches for the maximal value the objective function. The 

overall algorithm used for MRMD
avg

 is presented in Algorithm I. The greedy search-

based MRMD
avg

, iteratively searches for the candidate feature which maximizes the 

summation of relevance to the class label and average diversity with respect to the 

previously selected features. MRMD
min

 can be obtained by replacing            

with           .  
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Algorithm I. MRMD
avg

 Feature Selection 

Inputs:  

F: feature set 

d: data set dimension 

 : target dimension  

P: number of positives  

Output:  

 : selected subset  

Begin:  

     

        

Assign   
  to satisfy Equation 3.6   

Compute         ∑   
     

    

          
    

          

         

Compute   values according to     

while       

        

        

           ∑   
      

    
 
     

                   
 

   
∑  

    
             

          
      

              

           

endwhile 

Return   

3.1.4 Artificial Example 

 In order to demonstrate the efficiency of proposed algorithm, an artificial example 

of selecting a two-dimensional feature subspace is considered. The feature subspace 

computed using MRMD is compared with that of mRMR. The artificial data set is 

given in Table 3.2 with 20 samples identified         .   refers to the class label 

where the positive samples are labeled using    . The data set comprises   

features,        . For simplicity,    positive and    negative instances are 
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employed. Without loss of generality, we assumed the same range of values for all of 

the features to simplify the discretization procedure and the calculations of entropies 

for mutual information.  We firstly conduct MRMD feature selection on this data set 

to select a subset of two features. The selected subset is initialized as    . 

According to Equation 3.6, the instances need to be ranked appropriately to satisfy 

∑    
         . When higher ranks are assigned to larger values, the relevance 

scores of the features are computed as 

R(x1;y) = 136,    R(x2;y) = 129,    R(x3;y) = 1113,    R(x4;y) = 99.   

Except for   , the relevance scores satisfy the condition. For   , the higher ranks 

should be assigned to smaller values which returns            . Since the 

maximum relevance score belongs to   , the selected subset is updated to        in 

the first stage. Table 3.3 shows the final ranks of positive instances and the 

corresponding   values for all features. Note that    is the reference feature to 

number positive instances since it is the first feature added to the subset. 
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Table 3.2: Artificial data set 

             y 

   0.05 0.05 0.45 0.35 0 

   0.10 0.10 0.05 0.20 0 

   0.15 0.15 1.00 0.65 0 

   0.20 0.20 0.85 1.00 0 

   0.25 0.25 0.70 0.40 0 

   0.30 0.45 0.65 0.55 0 

   0.45 0.50 0.50 0.60 0 

   0.65 0.65 0.25 0.15 0 

   0.70 0.75 0.30 0.90 0 

    0.85 0.95 0.10 0.75 0 

    0.35 0.30 0.95 0.05 1 

    0.40 0.35 0.90 0.10 1 

    0.50 0.40 0.80 0.25 1 

    0.55 0.55 0.75 0.30 1 

    0.60 0.60 0.60 0.45 1 

    0.75 0.70 0.55 0.50 1 

    0.80 0.80 0.40 0.70 1 

    0.90 0.85 0.35 0.80 1 

    0.95 0.90 0.20 0.85 1 

    1.00 1 0.15 0.95 1 

Table 3.3: Ranks of positive instances and relevance values 

     
    

    
    

  

1  7   6   19   20  

2  8   7   18   19  

3  10   8   16   16  

4  11   11   15   15  

5  12   12   12   12  

6  15   14   11   11  

7  16   16   8   7  

8  18   17   7   5  

9  19   18   4   4  

10  20   20   3   2  

   136   129   113   111  
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In the second step, diversity values with respect to    are to be computed. In this 

example, MRMD
avg

 is considered. However, it should be noted that there is no 

difference between the two variants of MRMD i.e. MRMD
avg

 and MRMD
min

, when 

two features are selected. The reason is that diversity part is employed only in 

selecting the second feature, where      . Table 3.4 shows 

(  
    

 ) values and diversity scores,            of the candidate features,   ,    

and   . The overall scores of these features are calculated as  

Javg(x2;y) = 129 +  7 = 136 

Javg(x3;y) = 113 + 87 = 200 

Javg(x4;y) = 111 + 75 = 186 

According to MRMD,    carries the most complementary information to the selected 

subset,       . For visual interpretation of the discrimination potential of the three 

possible feature subsets, scatter plots of samples are illustrated in Figures 3.1, 3.2 and 

3.3. Notice that the subset selected by MRMD (i.e          ) constructs a linearly 

separable subspace.   

Table 3.4: Differences of ranks of positives with respect to    and diversity values 

        
    

        
    

        
    

    

1  1   12   13  

2  1   10   11  

3  2   6   6  

4  0   4   4  

5  0   0   0  

6  1   4   4  

7  0   8   9  

8  1   11   13  

9  1   15   15  

10  0   17   18  

             7   87   75  
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mRMR is also applied to the artificial data set for comparison. In the first step, 

feature values are discretized into   equally frequency bins. In Table 3.5, distribution 

of positive and negative samples in each bin is shown for all features. In the table, 

1‟s denote positives and 0‟s denote negatives. For instance, in bin1, there are three 

positives and one negative where, the negative sample has the smallest feature value. 

The mutual information between the class label and the features are computed as 

follows:  

I(x1;y) = H(y) – H(y|x1) = 1 – 0.72 = 0.28 

I(x2;y) = H(y) – H(y|x2) = 1 – 0.72 = 0.28 

I(x3;y) = H(y) – H(y|x3) = 1 – 1 = 0 

I(x4;y) = H(y) – H(y|x4) = 1 – 1 = 0 

 
Figure 3.1: Scatter plot of samples in         subspace 
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  Figure 3.2: Scatter plot of samples in         subspace 

 
 Figure 3.3: Scatter plot of samples in         subspace 
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Table 3.5: Distribution of positive and negative instances in bins for each feature 

bin#             

bin1 

1 1 0 0 

1 0 1 1 

1 1 1 0 

0 1 0 1 

bin2 

1 1 1 1 

1 0 1 0 

0 1 0 1 

0 0 0 0 

bin3 

1 1 1 0 

1 1 1 0 

1 0 0 1 

0 0 0 1 

bin4 

1 1 1 0 

1 1 1 0 

0 1 0 1 

0 0 0 1 

bin5 

0 0 1 0 

0 0 1 0 

0 0 0 1 

0 0 0 1 

Although the features have different AUC values, mutual information between the 

class labels is not representative for the differences in their discriminative potential. 

This may foster the generalization capability of MI-based feature selection 

approaches and add some levels of nonlinearity, but it may result in a suboptimal 

feature subset for classification. 

Assume that    is added to the subset. The next step of mRMR is to calculate 

redundancies with respect to   . Using the contingency tables of pairs of features, the 

mutual information between each candidate feature and    can be calculated as  
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Then, the scores are obtained using mRMR are as follows:  

                     

                     

                     

Consequently,    is added to the feature subset as it achieves the maximum score. In 

fact, from Figures 3.1, 3.2 and 3.3, we know that this is not the best-fitting subspace. 

It should be noted that this example is not considered as an unconditional proof to 

superiority of the proposed method over mRMR, but it clarifies the procedure of 

MRMD and elucidates probable deficiencies of MI-based methods. 

3.2 Clustering-based Feature Selection using F2F Scatter 

Frequencies 

One of the well-known rank-based similarity measures proposed in the literature is 

Spearman‟s Correlation Coefficient [26]. In computing the similarity of features, the 

Spearman's rank correlation coefficient takes into account the squared differences of 

ranks over all training samples. While computing this metric, the samples whose 

ranks are highly different may dominate the redundancy score. Consider a set of five 

training samples. Let the ranks be {1,2,3,4,5} using the feature x1, {2,1,4,3,5} using x2 

and {5,2,3,4,1} using x3. When the squared differences of ranks are considered, the 

dissimilarity between x1 and x3 is found to be much higher than the dissimilarity 

between x1 and x3. However, most of the instances are assigned the same rank by x1 

and x3. It can be argued that smoothing the rank differences may help to define a 

more reasonable metric. One way to achieve this is to set an upper limit for the 
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differences in ranks. In other words, the differences above a certain upper threshold 

will be set to a constant value that depends on the number of the training samples. 

Alternatively, the dissimilarity may be defined to take into account the number of 

times that the training samples are closely ranked by the features. 

The proposed dissimilarity metric for feature clustering, Feature-to-Feature (F2F) 

scatter frequencies is based on the assumption that the difference between ranks 

assigned by two features to an arbitrary sample is proportional to their dissimilarity. 

In order to quantify the dissimilarity between a pair of features, each sample is 

encoded in terms of affinity sets. Affinity sets are in fact the local clusters of features 

containing features with rank differences smaller than a predefined value. 

Considering all affinity sets, the global dissimilarity is obtained as the pairwise 

scatter frequencies of features. The more a pair of features co-occur in the affinity 

sets, the more similar they are. Correspondingly, the fewer two features co-occur, the 

more dissimilar they are. 

3.2.1 Formulation of F2F Scatter Matrix 

Let        be a matrix representing the data set of   samples in  -dimensional 

feature space. Each row of   is a sample denoted by    (           ) and each 

column is a feature denoted by    (           ). The first step to compute the 

dissimilarity of two features is to convert the sample values into ranks to obtain the 

rank matrix,       . For each feature   , the samples are firstly ranked based on 

their feature values. As mentioned above, a good feature is expected to assign larger 

scores to one class when compared to the other class. 
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Assume that the number of positive and negative samples are   and  , respectively. 

For a particular feature   , the ranks are denoted by    where the sample having the 

largest feature value is assigned        and the sample with the smallest feature 

value is assigned     . We call this rank ordering ascending. Let   
        

denote the feature-dependent rank of sample    when all samples are ranked using 

the feature value of   . The data matrix S is converted to the rank matrix R where   
  

is the  th row and  th column of  .  

The formulation of F2F is based on the presumption that the rank ordered values of 

each feature are generally higher for the positive class than that of the negative class. 

This concept resembles the assumption of Wilcoxon-Mann-Whitney test as given in 

Equation 3.6. Thus, the following condition is to be satisfied for each feature   . 

   ∑   
     

  
        

 
                                                                                     (3.10) 

Otherwise, the ranking system is reversed to descending by assigning higher ranks to 

samples having smaller values and lower ranks to samples with larger values [58]. 

This strategy guarantees the consistency of rank matrix among all features. 

After computing  , the affinity sets of features are constructed. In order to identify 

the affinity sets of sample   , a proximity window of size   (   ) is applied on 

  
           . The window captures the neighboring features denoted by    and 

   by letting the value    
  

    
    

 
  be always less than  . It is worth mentioning 

that for ties, average rank is used to ensure that the proximity window captures the 

neighboring features on both sides of a tied set. However, the average is truncated to 

the closest integer since the size of the proximity window is integer.  
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The  th affinity set derived from    is defined as  

  
  ⋃     

                                                                                                       (3.11) 

where                . The number of sets obtained from each sample 

depends on the total number of samples and the window size. It should be noted that 

some affinity sets of a given sample may be empty and each feature may appear in 

multiple affinity sets of the same sample. The empty affinity sets are discarded. 

The dissimilarity of features can be quantified by taking into account their scatter 

frequencies among different affinity sets. Frequencies of features and their co-

occurrences are firstly computed for this purpose. Let    be the number of sets which 

contain feature    and     be the number of sets in which    co-occurs with   . Then, 

the dissimilarity of    and    is computed as their F2F scatter frequency using  

    {
                         

                                             
                                                                   (3.11) 

where        . The F2F scatter frequency of    and    is the total number of 

affinity sets containing either of them and not both.     corresponds to the  th row 

and  th column entry of the F2F dissimilarity matrix,       . 

3.2.2 Artificial Example 

In order to clarify the steps of calculating F2F dissimilarity matrix, an artificial 

example is provided. Assume a sample data set with 5 samples (     and 10 

features (    ) as 

  

[
 
 
 
 
                     
                     
                     
                     
                     ]

 
 
 
 

                                       (3.12) 
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 In order to obtain  , the class labels are required to determine the direction of 

ranking (descending or ascending). According to Equation 3.10, the rank matrix is 

consistent among all features if the sum of ranks of positive instances is not smaller 

than 
        

 
. This is to assure that negative and positive correlations among 

features are represented identically. Suppose that the labels are             . The 

   values (Equation 3.10) of positive samples (i.e. first three) should be greater than 

or equal to 
        

 
  . For each feature, the ranks are firstly computed by 

assigning the largest rank (     ) to the sample having the largest feature value. 

Note that this choice has no effect on the final result. The preliminary form of the 

rank matrix denoted by  ̃ is  

 ̃  

                     

[
 
 
 
 
                          
                          
                          
                          
                          ]

 
 
 
 

                                      (3.13) 

Then,    value of each feature is computed as presented in Table 3.6. The order of 

ranking is reversed in cases where the condition in Equation 3.10 is violated. In the 

given example, the only case is   .  

Table 3.6: The sum of ranks of positives and validity of Equation 3.10 

                                  

   10 11 9 7 9 10 10 10 10 12 

                
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Accordingly, the ranking of    is reversed and the fourth column of  ̃ is updated to 

obtain the consistent rank matrix   as  

  

                     

[
 
 
 
 
                          
                          
                          
                          
                          ]

 
 
 
 

                                         (3.14) 

Based on  , the updated       and other    values are remain as given in Table 

3.10. In order to obtain the F2F dissimilarity matrix, affinity sets,   
 s are firstly 

formed assuming a window size of    . In other words, each affinity set includes 

features with rank differences equal to   or  . Table 3.7 shows the affinity sets 

obtained from the artificial data set. 

Table 3.7: The affinity sets extracted from the toy example. (The empty sets are 

discarded) 

 Sample   Affinity sets  

                  ;                             

                  ;              ;                       

                     ;            ;             

                            ;                  ;             

                   ;              ;                 ;             

Elements of matrix   are computed by simply counting all    and     values and 

replacing them in Equation 3.11 to compute the F2F scatter frequencies. For 

instance,     ,      and       , resulting in       . Note also that for    

and    which are highly correlated, we get       . 
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3.2.3 Extension to Multi-class 

The proposed F2F scatter metric structurally requires the labels of positive and 

negative samples. However, it can be easily adapted for the case of multi-class 

problems by means of one-versus-all approach. Consider a data set with   samples, 

  features and   classes Let    denote the number of samples in class  ,   

         . We decompose the problem into   one-versus-all subproblems. Consider 

the  th subproblem where the instances in the  th class are defined to belong to the 

positive class and the remaining instances form the negative class. The rank matrix, 

   for this subproblem is first obtained. From   , only the    rows belonging to 

class   are retained. Having obtained    for all classes, they are concatenated to form 

the final rank matrix       . Accordingly, affinity sets and the F2F dissimilarity 

matrix,  , are obtained from  . In multi-class problems, the    of a feature is 

computed by averaging the corresponding values obtained from   subproblems. 

3.2.4 Clustering-based Feature Selection using F2F Measure 

 The proposed clustering-based feature selection method using F2F dissimilarity 

matrix is described in Algorithm II. It starts by finding feature-dependent rank 

matrix. In this phase, in addition to  , the    values are obtained. These values are 

not only employed in computing a proper rank matrix, but also used as the relevance 

measure to find the representative feature of each cluster. The affinity sets are 

captured using   and F2F scatter matrix is computed from affinity sets. In the 

clustering phase, feature clusters are formed based on F2F dissimilarity metric. 

The choice of clustering algorithm is crucial in obtaining meaningful clusters of 

features [45], [61]. There are several clustering algorithms proposed in the literature 

[45], [61]. However, according to the short guideline developed via a comprehensive 
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investigation of the performance of several clustering methods for data analysis, it 

has been suggested that partitioning around medoid (PAM), and hierarchical 

clustering (HC) are amongst the best performing clustering methods [61]. Therefore, 

these two clustering approaches are considered as the alternatives for implementing 

proposed clustering-based feature selection method.  

Algorithm II. Clustering-based Feature Selection using F2F Scatter Frequencies 

 Input:  

   - data matrix of   samples and   features  

   - proximity window size 

   - cardinality of the selected feature subset   

Output:  

   - selected feature subset  

Begin:   

Compute the feature-dependent rank matrix   

for        

find all   
  in      

discard empty   
   

endfor 

for        

for            

compute     using   
  and Equation 3.11 

endfor  

endfor    

cluster features into   distinct clusters using    

for        

find the representative feature of cluster    using    

         
     

    
 

    ⋃         

endfor  

Return   

Partitioning around medoids (PAM) is the most popular realization of  -medoids 

clustering [62] that is a modified form of  -means clustering. Given   as the number 

of clusters,  -means starts by assigning each data point to the cluster with nearest 
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mean. The algorithm iterates by recomputing cluster means and reassigning cluster 

members until a stopping criterion is met.  -medoids algorithm, on the other hand, 

selects one of the cluster members called medoid as the center. This algorithm is less 

sensitive to outliers and noise than  -means [63]. In PAM implementation of  -

medoids, the cost function is defined as the sum of distances of data points to their 

corresponding medoids. In searching for optimum solution which minimizes the cost 

function, data points and medoids are swapped and the cost function is recalculated. 

If the swap reduces the cost, it will be kept. Otherwise, the algorithm redoes the swap 

and continues as long as the cost function is decreased. Since PAM algorithm is 

based on greedy search, it is faster than conventional  -means [63].  

In hierarchical clustering (HC), a series of nested clusters are generated that represent 

a hierarchical structure [64]. This hierarchy portrays a dendrogram representing how 

clusters are formed at different levels. By cutting the dendrogram at some specific 

height,   clusters are obtained. There are two approaches for forming the 

dendrogram namely, agglomerative and divisive [45]. Agglomerative approach is 

bottom-up which considers each single data point as a distinct cluster at the 

beginning and merges pairs of close clusters at each level until one cluster containing 

all data points is obtained. Divisive approach is top-down which initially regards all 

data points as a single cluster. Moving down to the hierarchy at each level, clusters 

are split until each data point forms a cluster. In this study, HC is implemented by 

using agglomerative approach based on complete linkage for merging clusters [65]. 

Having formed the feature clusters,    is used as the relevance metric to select the 

representative feature of each cluster. As mentioned above, in computing the 
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dissimilarity matrix and    scores of the features, the ranks of ties are computed by 

truncating average ranks.  

3.3 Conclusions 

In this chapter, the two proposed feature selection methods, namely MRMD and 

clustering-based feature selection using F2F scatter frequencies are explained in 

details. The metrics adopted in the proposed methods are principally developed 

based on ranks of instances. The relevance metric in both methods is the same and 

the feature ranking it offers is identical to that of AUC. MRMD employs greedy 

search to maximize an objective function defined as the summation of the relevance 

and relative diversity. The compatible relevance and diversity terms are formulized 

based on ranks of positive instances to address the shortcomings of the popular MI-

based feature selection techniques. In clustering-based feature selection method 

using F2F scatter frequencies, a novel dissimilarity measure related to the co-

occurrence of features captured by closeness of ranks is utilized.  
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Chapter 4 

4 EXPERIMENTAL RESULTS 

4.1 Data Sets 

The experiments are conducted on four data sets from UCI machine learning 

repository and six Microarray gene expression data sets. Table 4.1 lists the data sets 

considered in this study. The number of features, samples, classes, and the source of 

each data set are also given in the table. These data sets are amongst the popular ones 

in feature selection literature. The number of features in data sets varies between 44 

and 12533 which cover a wide range of dimensions. It should be noted that 

computing the best-fitting feature subsets of Microarray data sets is very challenging 

due to having small number of samples and large number of features.  

Table 4.1: Datasets used in the experiments 

No. Data set #Features #Samples #Classes Source 

1 SPECTF 44 267 2 UCI 

2 Sonar (Connectionist) 60 208 2 UCI 

3 Plant Leaf 64 1599 100 UCI 

4 Urban Land Cover 147 675 9 UCI 

5 Musk (Musk1 and Musk2) 166 7074 2 Microarray 

6 Colon Cancer 2000 62 2 Microarray 

7 Breast Cancer (NIH) 2905 168 2 Microarray 

8 Leukemia (NIH) 3571 72 2 Microarray 

9 Lymphoma 7129 77 2 Microarray 

10 Lung cancer 12533 181 2 Microarray 
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4.2 Experimental Setting 

In all experiments, 10-fold cross validation is applied for generating train and test 

splits. For each fold, given a predefine feature subset size,  , the best-fitting feature 

subset is firstly obtained by using the corresponding training set. Then, classifier 

models are trained to predict the labels of the test samples. In order to reduce the 

classifier bias, two classifiers namely, 3 nearest neighborhood ( NN) and linear 

support vector machines (SVM) are employed. These two classifiers are widely-used 

in the state-of-the-art [27], [28] for evaluating feature selection techniques. All 

experiments are performed using different number of feature subsets ranged from 2 

to 50 (             ). In cases where the data set have less than 50 features, 

experiments continue until d (the total number of features in the data set).  

The performance of each classifier is measured using both AUC and accuracy, 

separately for all feature subsets. AUC and accuracy are averaged across the two 

classifiers to reduce the bias. Both performance metrics are reported as the average 

across all subsets. For instance, for    , the average performance of 3NN and 

SVM is computed for subsets of size  ,  ,   and  . The reported performances are 

the averages of all subsets. Thus, the comparisons make based on these values 

correspond to the relative effectiveness of the competing methods for different sizes 

of the feature subset. 

Another important criterion for assessing feature selection methods is stability. In 

this study, Kuncheva's stability index [66] is utilized to measure the stability of the 

feature subsets. This measure is computed as follows. Assume that two feature 
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subsets of the same size,  , from two folds named as    and    are obtained. 

Kuncheva‟s stability index is obtained for    and    as  

          
      

      
                                                                                                (4.1) 

where   is the total number of features and   is the cardinality of the intersection set 

         . The larger the    value is, the more stable the feature selection is 

considered. In this study, stability index is computed for             for each 

data set. Stability index of all possible pairs of feature subsets for all folds is 

obtained. Average    values across all 45 pairs of    and    and then over the folds of 

10 fold cross validation are calculated to report the total stability index of each 

feature selection method for each data set. 

4.3 Experimental Results of MRMD 

The performance of the proposed method is compared with five MI-based feature 

selection methods, namely NJMIM [28], JMIM [28], CMIM [49], DISR [51], and 

mRMR [13], and a conventionally used non-MI-based filter, namely Relief [67]. 

These methods are implemented using R package, „praznik‟. For MI-based feature 

selection algorithms, numerical attributes are discretized into 10 equally-spaced bins. 

In MRMD, categorical attributes are converted into probabilities to obtain the ranks 

of training instances. In the case of multi-class problems, the features are ranked in 

terms of the average MRMD scores computed using multiple binary one-versus-all 

problems.  

The average accuracies and AUC scores of SVM and 3-NN classifiers are presented 

in Table 4.2 and Table 4.3, respectively. The maximum value obtained on each data 

set is shown in boldface which corresponds to the best performing method or briefly, 

best. To test the paired significant difference between the best and the others, 
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Wilcoxon signed ranked test [68] is applied between the filter resulting in the highest 

average value and all the other filters. The cases where null hypothesis is not rejected 

         are marked with an asterisk    . Hence, the cases marked with   

correspond to ties with the winner. The average AUC scores and the numbers of 

wins, ties and losses are given in the last two rows of the tables. 

 Table 4.2: Average accuracy of classifiers (in percentage) across all feature subsets 

Data MRMD
avg

 MRMD
min

 NJMIM JMIM CMIM DISR mRMR Relief 

1 78.21 77.97* 77.82* 76.69 76.78 77.87* 77.44 77.92* 

2 77.72* 77.13 78.38* 78.46 77.99 77.90 76.08 77.83 

3 86.50 86.15* 85.93 85.90 85.93 85.95 86.35* 85.96 

4 77.13 76.89 79.45 80.38 79.46 77.34 82.74 76.71 

5 91.83 91.70 92.16 91.91 91.69 92.07* 89.64 89.93 

6 79.81 78.23 75.68 72.74 77.03 78.15 76.10 77.32 

7 78.22 76.90* 73.02 71.01 73.11 71.36 71.34 72.20 

8 96.99 96.43* 93.43 94.33 93.64 92.60 93.57 93.39 

9 98.05 94.48 91.75 90.21 90.01 90.22 89.60 91.22 

10 99.03 98.96* 97.77 98.92* 98.66 97.55 98.17 98.30 

AVG. 86.35 85.48 84.54 84.06 84.43 84.10 84.10 84.08 

W/T/L 7/1/2 0/5/5 1/2/7 1/1/8 0/0/10 0/2/8 1/1/8 0/1/9 

* corresponds to p>0.05 

The results confirm that both versions of MRMD outperform the reference methods 

both in terms of average accuracy and AUC. Specifically, there is a remarkable 

improvement in AUC. Among the reference schemes, CMIM provides the highest 

average AUC value (84.20%). MRMD
avg

 improves this AUC to 86.85%. 

Considering that AUC is the foundation of the proposed method, these results are 
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consistent with the theoretical basic of MRMD approach. Similarly, the highest 

average accuracy achieved by the competing method NJMIM is improved from 

84.54% to 86.35% MRMD
avg

. When the average accuracies achieved for each data 

set are evaluated, it can be seen that MRMD
avg

 is the best or tied with the best on 7 

data sets out of 10. Similarly, it is the best or tied with the best on 6 data sets when 

average AUC is considered while the second best performing method is Relief with 

only 2 wins. MRMD
avg

 surpasses all reference schemes in total numbers of wins and 

losses as well. 

Table 4.3: Average AUC of classifiers (in percentage) across all feature subsets 

Data MRMD
avg

 MRMD
min

 NJMIM JMIM CMIM DISR mRMR Relief 

1 79.30 78.84 77.49 76.84 77.51 78.63 77.08 77.66 

2 84.82 84.13 84.69 84.81 85.55 84.34 83.34 85.15 

3 68.77 68.73 68.59 68.54 68.55 68.61 68.60 68.60 

4 72.12 72.21 72.58 72.19 71.27 72.81* 71.70 72.87 

5 91.07 91.00* 90.75 90.57 90.01 90.85 84.27 86.39 

6 86.53 84.40* 61.38 65.13 76.75 58.81 72.38 67.50 

7 87.79 85.92* 78.89 71.62 79.60 78.94 68.48 71.35 

8 99.08 98.94 99.70* 99.87* 99.57* 99.70* 99.73* 100.00 

9 99.50 96.65 95.67 97.46 93.63 87.17 94.25 90.58 

10 99.50 99.34 99.34 99.74 99.58 99.34 99.49 99.64 

AVG. 86.85 86.02 82.91 82.68 84.20 81.92 81.93 81.97 

W/T/L 6/0/4 0/3/7 0/1/9 1/1/8 1/1/8 0/2/8 0/1/9 2/0/8 

* corresponds to p>0.05 

Although the second variant of proposed method, MRMD
min

 performs better than 

other feature selection methods in terms of average accuracy and AUC, it is not as 
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efficient as MRMD
avg

. It can be concluded that, contribution of diversity term in 

feature score is more consistent with relevance term when it is averaged over the 

selected subset. 

As stated in Chapter 2, estimation of mutual information is not reliable in high 

dimensional spaces. Relief also suffers in high dimensions with limited number of 

samples. Because of this, MRMD
avg

 is expected to achieve significantly better scores 

on microarray data sets, especially on the ones having a few number of samples (i.e. 

data sets numbered as 6 to 10). Referring to Table 4.2, it can be seen that the 

proposed method achieves remarkable improvements in terms of accuracy scores on 

these data sets. It also provides the highest AUC values on majority of these data sets 

as given in Table 4.3. It can be argued that the proposed method is a strong candidate 

to be considered for high dimensional data sets having a limited number of samples 

compared to the number of features.  

In order to have a clearer insight, the average accuracy and AUC scores for some 

data sets are presented for different numbers of selected features in Figures 4.1 to 

Figure 4.10. Accuracy values in the plots are obtained by adding 5 more features to 

the feature subset in each step. The accuracy curves of Sonar, Urban Land Cover, 

Musk, Colon and Lymphoma are shown in Figure 4.1 to 4.5. These data sets 

correspond to a case of ties (Sonar), two cases of loses (Urban Land Cover and 

Musk), and two cases of wins (Colon and Lymphoma) for MRMD
avg

. Similarly, 

average AUC of SVM and 3-NN classifiers for the same data sets are shown in 

Figure 4.6 to 4.10. On Sonar data set, Relief provides better accuracy and AUC 

scores on some feature subsets. However, when averaged over all 50 feature subsets, 

it performs poor compared to JMIM in terms of average accuracy as it can be seen in 
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Table 4.2. Similarly, its performance is worse than that of CMIM when average 

AUC scores are considered. On the other hand, MRMD
avg

 hits the highest accuracy 

and AUC scores for a subset of 30 features. 
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Figure 4.1: Average classification accuracy (in percentage) of SVM and 3-NN on 

Sonar data set 
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Figure 4.2: Average classification accuracy (in percentage) of SVM and 3-NN on 

Urban Land Cover data set 
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Figure 4.3: Average classification accuracy (in percentage) of SVM and 3-NN on 

Musk data set 
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Figure 4.4: Average classification accuracy (in percentage) of SVM and 3-NN on 

Colon data set 
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Figure 4.5: Average classification accuracy (in percentage) of SVM and 3-NN on 

Lymphoma data set 

The Urban Land Cover is a multi-class data set with uneven distribution of samples 

over classes. The proposed algorithm is fundamentally defined for two-class 

problems where multi-class problems are addressed using one-versus-all approach as 

mentioned before. This may be the main reason for achieving poor performance on 

this data set. As an alternative approach, the use of one-versus-one should be 

investigated for such cases. The second case for which MRMD
avg

 performs poor is 

the Musk data set for which NJMIM and DISR provide significantly better results 

than the other methods when average accuracy using 50 feature sets (as given in 

Table 4.2) is considered. However, referring to Figures 4.3 and Figure 4.8, it is 

revealed that MRMD
avg

 is top-ranked for some feature subsets. For the two 

microarray data sets namely, Colon and Lymphoma, both accuracy and AUC curves 

confirm that the proposed algorithm functions superior to the reference methods. 
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Figure 4.6: Average classification AUC (in percentage) of SVM and 3-NN on Sonar 

data set 

 
Figure 4.7: Average classification AUC (in percentage) of SVM and 3-NN on Urban 

Land Cover data set 
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Figure 4.8: Average classification AUC (in percentage) of SVM and 3-NN on Musk 

data set 
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Figure 4.9: Average classification AUC (in percentage) of SVM and 3-NN on Colon 

data set 

69

74

79

84

89

94

5 10 15 20 25 30 35 40 45 50

A
U

C

Number of Features

MRMDᵃᵛᵍ NJMIM JMIM CMIM

DISR mRMR Relief

10 11 12 13 14 15



49 

 

57

62

67

72

77

82

87

92

97

5 10 15 20 25 30 35 40 45 50

A
U

C

Number of Features

MRMDᵃᵛᵍ NJMIM JMIM CMIM

DISR mRMR Relief

1 2 3 4 5 6

 
Figure 4.10: Average classification AUC (in percentage) of SVM and 3-NN on 

Lymphoma data set 

In addition to the performance of the classifiers, the stability is also computed for 

each data set on feature subsets with cardinalities 10, 20 or 50. The main reason is 

the fact that there is a notable difference among the data sets in terms of their total 

number of features. Because of this, the cardinality of the original feature set is taken 

into consideration in determining the cardinality of the feature subsets. More 

specifically, subsets of   features are considered where   is 10 for data sets with less 

than 50 features (data set 1), 20 for data sets with more than 50 but less than 100 

features (data sets 2 and 3) and 50 for data sets with more than 100 features (data sets 

4 to 10). Figure 4.11 illustrates the box plot of stabilities representing maximum, 

median and minimum values as well as the first and the third quartiles. Both versions 

of the proposed approach provide stability scores comparably better than benchmark 

filters. Specifically, MRMD
avg

 is the most stable feature selection method. 
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Figure 4.11: Box plots of stability scores obtained for different filters 

The performance of MRMD
avg

 is also compared with three widely-used univariate 

filters, namely t-test, Chi square (  ) and mutual information maximization (MIM). 

The feature selection method proposed in [23] which is based on attributes‟ AUC 

obtained from the training data is also implemented. Both SVM and 3-NN are 

applied on different groups of feature subsets and performance metrics are averaged 

across classifiers and feature subset groups. Table 4.4 presents the average accuracy 

and AUC scores for different feature subsets. The cardinality of the feature subsets 

are given as   in the table.  
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Table 4.4: Average AUC and ACC (in percentage) of classifiers on different feature 

subset groups (in percentage) 

  Metric MRMD
avg

 t-test    MIM AUC 

10 

AUC 84.58 82.35 82.45 83.12 83.70 

ACC 83.70 77.89 78.21 78.27 78.65 

20 

AUC 85.29 83.41 83.68 83.64 84.21 

ACC 84.06 78.70 80.03 79.86 80.01 

30 

AUC 85.90 84.33 84.00 83.87 84.36 

ACC 84.78 79.83 80.34 80.47 80.45 

40 

AUC 86.11 84.41 84.41 84.03 84.71 

ACC 85.40 80.75 80.65 80.75 81.14 

50 

AUC 86.85 84.63 84.15 84.21 84.97 

ACC 86.35 81.31 81.22 80.90 81.50 

AVG 

AUC 85.75 83.83 83.74 83.77 84.39 

ACC 84.86 79.70 80.09 80.05 80.35 

The proposed algorithm outperforms the univariate filter methods both in terms of 

accuracy and AUC for all feature subsets. Moreover, among the univariate filters, 

AUC outperforms t-test,    and MIM. Specifically, recalling that MIM is based on 

mutual information, it can be concluded that MI is not as effective as AUC in 

estimating the relevance of features. This provides another evidence on the 

competence of the proposed method which is principally an AUC-based alternative 

to MI-based feature selection approaches. 
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4.4 Experimental Results of Clustering-based Feature Selection 

using F2F Matrix 

The proposed method is evaluated for different number of clusters denoted by  . For 

a given   value, the clustering algorithms are run for all numbers of clusters in the set 

          and the average performance over all subsets is reported. In the first stage 

of experiments, the proposed methods namely, PAM-    and HC-    are compared 

with the reference clustering-based feature selection methods. It is worth mentioning 

that in these experiments, irrelevant features are firstly discarded by applying a 

threshold on the corresponding relevance measure (  ) on the train data to ensure 

that totally irrelevant clusters are not created. Moreover, the window size ( ) is set 

as one tenth of the number of samples in the data set (i.e.  
 

  
 ), which is truncated 

to the closest integer.  

The clustering-based feature selection methods are characterized by three assets: the 

dissimilarity (distance) metric they rely on for finding clusters, the clustering 

algorithm and the relevance metric employed to capture the representative features 

from clusters. Proposed clustering-based method utilizes the novel F2F scatter 

frequencies as the dissimilarity measure and the AUC-like relevance measure 

computed by means of ranks of positives. In order to evaluate the effectiveness of the 

proposed method, different scenarios are taken into account by considering 

alternative dissimilarity metrics and different clustering algorithms.  

The performance of the proposed dissimilarity metric is compared with some popular 

metrics namely, Pearson‟s correlation coefficient ( ), Spearman‟s rank correlation 

coefficient (  ), and symmetric uncertainty (SU). All these similarity measures are 
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utilized for clustering features using either PAM or HC algorithm resulting in six 

alternative scenarios of clustering-based feature selection. It should be noted that for 

each reference approach, the same metric is used for both relevance and redundancy. 

We name these clustering-based feature selection methods as PAM- , PAM-  , 

PAM-SU, HC- , HC-  , and HC-SU, respectively. A brief description of these 

methods is given below. Note that the number of clusters   is known in advance 

since it is equal to the target number of features to be selected. 

PAM- , HC- : The similarity between the features    and    is computed using 

absolute value of Pearson‟s correlation coefficient as  

         
            

    
                                                                                             (4.2) 

where          is the covariance,    and    are the standard deviations of    and   , 

respectively. After clustering features by applying PAM/HC algorithm, Pearson‟s 

correlation coefficient between each feature and class label   denoted by         is 

calculated. From each cluster, the feature having the maximum         value is 

selected as the most relevant. 

PAM-  , HC-  : The formula for Spearman‟s rank correlation coefficient is very 

similar to that of Pearson‟s but, it is calculated using ranks instead of values. The 

similarity between    and    is computed using absolute value of Spearman‟s 

correlation coefficient as  

          
        

    
  

    
    

                                                                                         (4.3) 

 where the ranks of feature values i.e.    
 and    

 are used in computing covariance 

and standard deviations. Having clustered the features using this similarity measure, 
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the feature with maximum relevance value i.e.          is selected as the 

representative feature. 

PAM-SU, HC-SU: Symmetric uncertainty is a normalized version of mutual 

information (MI), a widely-used correlation measure in information theory. This 

measure computes the amount of information shared between two features. Unlike 

MI which is ranged      , SU lies in       and thus can be used as a similarity 

measure for clustering. Symmetric uncertainty between features    and    is defined 

as  

          
         

           
                                                                                          (4.4) 

where          is the mutual information between features and      stands for 

entropy. It should be noted that the representative features of clusters are identified 

using        . 

The accuracy rates achieved using different feature subsets are given in Table 4.5. 

The maximum values in each row are shown in bold and considered as the winners. 

The ties with the winner are marked by a „*‟. It can be observed from the table that 

the proposed method, HC-   , outperforms the reference approaches on average. 

More specifically, the accuracy achieved using HC-    is        while, by using 

the second best method, PAM-   ,        accuracy is achieved. This method also 

provides superior accuracy scores for 7 data sets out of 10 and only loses 2 times 

without being tied with the winner. Among all methods it can be argued that HC 

clustering provides relatively higher scores when compared to PAM. Among the 

dissimilarity measures, SU seems to be superior to the other two alternatives   and 

  . Nonetheless, the numbers in each row of the table imply that even in the cases 
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when HC-    is not the winner method, it takes a place above the average among all 

8 competing schemes.  

Table 4.5: Average accuracy of classifiers (in percentage) across all feature subsets 

Data PAM-    PAM-  PAM-   PAM-   HC-    HC-  HC-   HC-   

1 78.09 76.57 78.13 76.96 79.82 78.75* 77.31 77.20 

2 77.33 76.05 76.16 77.19 78.99 76.94 77.38 78.13 

3 85.93 82.25 83.27 84.41 87.16 84.98 84.08 87.15* 

4 78.99 80.35 80.74* 79.50 83.34 79.94 82.04 80.72* 

5 90.80 85.27 87.59 87.51 90.25* 82.77 89.64* 90.33 

6 79.81 78.23* 75.68 72.74 77.16 78.15* 76.10 77.32 

7 70.22 67.46 68.28 68.94 72.00 69.64 70.53 73.02 

8 89.65 88.90 90.07 89.11 91.46 86.64 87.81 90.52* 

9 80.28 84.84 81.24 84.38 87.21* 87.40 84.47 86.22* 

10 93.09* 89.99 91.37 92.92 94.56 93.83* 91.89 91.30 

AVG. 82.42 80.99 81.25 81.37 84.21 81.90 82.13 83.19 

W/T/L 2/1/7 0/1/9 0/1/9 0/0/10 6/2/2 1/3/6 0/1/9 1/4/5 

* corresponds to p>0.05 

Table 4.6 shows the average AUC scores for different data sets averaged across all 

subsets. Numbers typed in boldface are the maximum values of each row in the table. 

It can be seen that AUC values obtained by HC-    are superior to other methods. 

The second best method is HC-SU with average AUC equal to 83.13%. Proposed 

HC-    improves this AUC by 1% on average reaching 84.17%. When referring to 

the number of wins, losses and ties, HC-    stands higher than competing 

approaches by losing only once. The other methods are not very satisfactory in terms 

of wins. The table shows that proposed dissimilarity measure is generally more 
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effective than the other three alternatives. In other words, the highest average AUC 

for the methods based on PAM is acheived by PAM-   . This is also the case for the 

methods based on HC as HC-    is superior to the competing methods. Another 

important consequence of the results given in Table 4.5 and 4.6 is that HC is more 

successful as a clustering algorithm for clustering-based feature selection. Accuracy 

and AUC scores of the methods based on HC are relatively higher than their 

counterparts using PAM. 

Table 4.6: Average AUC of classifiers (in percentage) across all feature subsets 

Data PAM-    PAM-  PAM-   PAM-   HC-    HC-  HC-   HC-   

1 77.52 75.87 78.11* 77.76 78.44 76.46 78.05 77.98 

2 85.30* 84.41 85.43* 85.41 86.58 86.13* 84.06 86.17* 

3 71.22 68.21 69.41 70.37 69.40 68.19 68.77 73.63 

4 72.99 73.08 73.45 73.06 75.73 73.00 74.12* 73.57 

5 83.98 84.23 85.34 82.38 85.22* 84.94 83.06 84.43 

6 76.36 75.20 71.87 67.56 78.08 74.15 74.64 77.46* 

7 80.83* 81.12* 79.74 79.19 80.42 78.42 81.18 79.24 

8 94.10 94.97* 93.28 93.37 93.78 94.82 94.49 95.17 

9 93.57 93.98 96.82 89.60 96.08* 94.27 95.26* 92.75 

10 92.77 91.19 93.54 95.60 98.01 94.61 90.43 90.92 

AVG. 82.86 82.23 82.70 81.43 84.17 82.50 82.41 83.13 

W/T/L 0/2/8 0/2/8 2/2/6 0/1/9 5/2/3 0/1/9 1/2/7 2/2/6 

* corresponds to p>0.05 

In addition to the alternative clustering-based methods, HC-    feature selection 

method is also compared with some univariate filter appraoches including t-test,   , 

MIM and AUC. Table 4.7 represents accuracy and AUC scores for different sizes of 
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feature subsets given as  . This table shows that clustering-based feature selection is 

more effective on the data sets of small sizes. In fact, feature selection using AUC 

generally outperforms proposed HC-    in terms of AUC for all feature subset sizes. 

Although the highest AUC in the table (84.97%) belongs to feature selection by 

using AUC score of individual features at     , HC-    achieves comparable AUC, 

i.e. 84.85%  at     . It can be argued that if HC-    provides a good trade-off between 

the size of the subset, AUC and accuracy. 

Table 4.7: Average AUC and ACC (in percentage) of classifiers on different feature 

subset groups 

  Metric HC-    t-test    MIM AUC 

10 

AUC 83.55 82.35 82.45 83.12 83.70 

ACC 83.20 77.89 78.21 78.27 78.65 

20 

AUC 84.14 83.41 83.68 83.64 84.21 

ACC 83.91 78.70 80.03 79.86 80.01 

30 

AUC 84.85 84.33 84.00 83.87 84.36 

ACC 84.69 79.83 80.34 80.47 80.45 

40 

AUC 84.53 84.41 84.41 84.03 84.71 

ACC 84.33 80.75 80.65 80.75 81.14 

50 

AUC 84.17 84.63 84.15 84.21 84.97 

ACC 84.20 81.31 81.22 80.90 81.50 

AVG 

AUC 84.25 83.83 83.74 83.77 84.39 

ACC 84.07 79.70 80.09 80.05 80.35 

For the low dimensional data sets with relatively larger number of samples, 

clustering-based methods provide superior results as also observed in Table 4.5 and 

4.6. For the high dimensional data sets however, it can be argued that univariate 
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methods are superior to clustering-based approaches specifically in terms of AUC. 

The seemingly inconsistent scores in Table 4.7 when accuracy and AUC are taken 

into account can also be explained by referring to the data set characteristics. Note 

that HC-    performs better on small data sets for which both AUC and accuracy 

can be assumed as reliable measures. On the other hand, the high dimensional data 

sets considered in this study are microarray data sets having small number of samples 

per class. Thus, even a slight difference in the number of samples per class results in 

remarkable changes in the interpretation of accuracy and AUC. It can be argued that 

for those data sets, AUC is a more reliable performance measure.  

To provide a clearer insight, the HC-based feature selection approaches are 

compared with 4 MI-based methods in terms of accuracy, AUC and stability. Table 

4.8 represents the average accuracy and AUC across all data sets. The test of 

significance is applied to check if the winner method (shown in bold) meaningfully 

outperforms the competing ones. This table reveals that, when both AUC and 

accuracy are considered, proposed clustering-based approach performs comparable 

to CMIM.  

Table 4.8: Average accuracy and AUC of classifiers (in percentage) across all data 

sets and all feature subsets 

 HC-    HC-  HC-   HC-   mRMR CMIM JMIM NJMIM 

AUC 84.17* 82.50 82.41 83.13 81.97 84.20* 82.68 82.91 

ACC 84.21* 81.90 82.13 83.19 84.10* 84.43* 84.06 84.54 

* corresponds to p>0.05 
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Figure 4.12 illustrates the box plots of stability index. Referring to the figure, it can 

be seen that the proposed method HC-    and mRMR are the most stable 

approaches. It is also worth mentioning that CMIM which performs well in terms of 

performance metrics accuracy and AUC, is not satisfactory in terms of stability 

index. It is in fcat one of the least stable feature selection methods in Figure 4.12. 

 
Figure 4.12: Stability measure for different feature selection methods. 

4.4 Discussions 

The experimental results are summarized in Table 4.9 and 4.10 for accuracy and 

AUC respectively. The aim is to shed light on the overall performance of MRMD
avg

 

and HC-    compared to one another and also compared to the best performing 

methods implemented for comparison. An alternative MI-based method and a 

clustering-based method are taken into account in these tables. The selected methods 

for concluding the results are the best performing methods in terms of average 

accuracy and AUC for Table 4.9 and 4.10 respectively. In the tables, the number of 
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features (dimensionality) of the data sets is also given. The highest accuracy and 

AUC of each row is marked in bold. 

Table 4.9: Average accuracy of classifiers for each data set across all feature subsets 

(comparing the best performing methods) 

Data #Features MRMD
avg

 HC-    NJMIM HC-   

1 44 78.21 79.82 77.82 77.20 

2 60 77.72 78.99 78.38 78.13 

3 64 86.50 87.16 85.93 87.15 

4 147 77.13 83.34 79.45 80.72 

5 166 91.83 90.25 92.16 90.33 

6 2000 79.81 77.16 75.68 77.32 

7 2905 78.22 72.00 73.02 73.02 

8 3571 96.99 91.46 93.43 90.52 

9 7129 98.05 87.21 91.75 86.22 

10 12533 99.03 94.56 97.77 91.30 

AVG. 2862 86.35 84.21 84.54 83.19 

Table 4.9 reveals that the method resulting in the highest accuracy is one of the 

proposed methods for 9 data sets out of 10. As stated before, it can be argued that for 

lower dimensional data sets, i.e. data set 1 to 5, proposed HC-    is superior to the 

competing methods. For the high dimensional data sets however, MRMD
avg

 performs 

significantly better than other methods. On average, MRMD
avg

 is the best performing 

method in terms of accuracy. 
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Table 4.10: Average AUC of classifiers for each data set across all feature subsets 

(comparing the best performing methods) 

Data #Features MRMD
avg

 HC-    CMIM HC-   

1 44 79.30 78.44 77.51 77.98 

2 60 84.82 86.58 85.55 86.17 

3 64 68.77 69.40 68.55 73.63 

4 147 72.12 75.73 71.27 73.57 

5 166 91.07 85.22 90.01 84.43 

6 2000 86.53 78.08 76.75 77.46 

7 2905 87.79 80.42 79.60 79.24 

8 3571 99.08 93.78 99.57 95.17 

9 7129 99.50 96.08 93.63 92.75 

10 12533 99.50 98.01 99.58 90.92 

AVG. 2862 86.85 84.17 84.20 83.13 

Considering AUC scores in Table 4.10 reveals that a similar pattern exists for the 

AUC. Note that NJMIM is replaced by CMIM since CMIM provides higher AUC 

scores when compared to NJMIM. It can be seen that, for the low dimensional data 

sets, HC-    provides the highest AUC scores and as the dimensionality increases, 

MRMD
avg

 takes the winner part resulting in superior results. On average terms, 

however,  MRMD
avg

 outperforms the alternative approaches. 

The average accuracy and AUC for 3NN and SVM are shown in Table 4.11 for 

MRMD
avg

, HC-   , and the three competing methods considered in Tables 4.9 and 

4.10. This table represents a clear picture of how the two proposed methods 

contribute to the performance improvement for each individual classifier. MRMD
avg
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is the best performing method for both 3NN and SVM in terms of accuracy and 

AUC. In general, 3NN results in higher accuracy and SVM in higher AUC. It can be 

explained by the nonlinear characteristics of AUC which may result in an 

inappropriate order of classification scores and degraded AUC. In addition, since the 

some of the data sets considered in this study are not linearly separable, accuracy of 

SVM in general is lower than that of 3NN.  

Table 4.11: Average accuracy and AUC of classifiers across all data sets and across 

all feature subsets for 3NN and SVM (comparing the best performing methods) 

Metric Classifier MRMD
avg

 HC-    NJMIM CMIM HC-   

ACC 
3NN 88.11 85.68 86.39 86.18 84.89 

SVM 84.58 82.74 82.68 82.73 81.50 

AUC 

3NN 83.74 82.54 81.22 81.31 81.05 

SVM 89.95 85.80 84.60 87.08 85.22 
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Chapter 5  

5 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

In this study, novel feature selection approaches based on the ranks of positive 

instances are proposed. In MRMD, feature score is defined as the summation of two 

terms namely, relevance and diversity. Analogous to the calculation of AUC, both 

relevance and diversity terms are based on ranks of positive instances. Relevance is 

an absolute term indicating the discriminate power of an individual feature. On the 

other hand, diversity is a relative term measuring the complementarity of each 

candidate feature with respect to the already selected feature. The so-called 

maximum-relevance and maximum-diversity (MRMD) algorithm searches for the 

maximal feature score in a greedy scheme similar to the other multivariate MI-based 

feature selection methods. We proposed two variants called MRMD
avg

 and 

MRMD
min

. In MRMD
avg

, diversity of a feature is computed as the average of the 

diversities between the feature and the already selected feature set. MRMD
min

 

computes the diversity score as the minimum diversity between the candidate and the 

already selected set of features. 

Experiments are conducted on 10 widely-used data sets from UCI machine learning 

repository and microarray gene expression data sets. In order to explore the 

efficiency of the proposed method, SVM and 3-NN are applied on various feature 

subsets selected by each of the feature selection methods and average values of both 
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accuracy and AUC are reported. Proposed method is compared with 6 different 

multivariate (NJMIM, JMIM, CMIM, DISR, mRMR and Relief) and 3 different 

univariate filters (t-test,   , and MIM). Experimental results confirm that MRMD
avg 

generally outperforms other algorithms, especially on data sets having high 

dimensional feature vectors and small number of samples. In addition, the proposed 

algorithm achieves the highest level of stability when compared to other multivariate 

filters. 

The second approach proposed in this study is a new dissimilarity metric for 

clustering-based feature selection. The metric aims to reduce the dominance of 

highly different ranks to the overall dissimilarity score by focusing on similarities of 

the features in a smaller range of rank differences. The notion of F2F scatter matrix 

is adapted by creating local clusters of neighboring features at the sample level and 

then obtaining scatter frequencies. After clustering features using the proposed 

metric, the feature having the highest AUC score (measured in terms of ranks of 

positive samples) is selected from each cluster. Two clustering algorithms, namely 

PAM and HC are taken into account in the experiments. Alternative dissimilarity 

measures include Pearson‟s correlation coefficient, Spearman‟s rank correlation 

coefficient and symmetric uncertainty. Proposed method is also compared with 

mRMR, CMIM, JMIM and MJMIM. Experimental results have verified the 

effectiveness of the proposed metric when compared to state-of-the-art measures in 

terms of average accuracy and AUC of 3NN and SVM classifiers. 

The two schemes proposed in this study are also compared to one another 

considering the accuracy and AUC achieved for each data sets. The comparisons 
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reveal that for lower dimensional data sets HC-    is preferred to MRMD
avg

. 

However, as the number of features increases, MRMD
avg

 outperforms HC-   . 

5.2 Future Work 

There are different paths which can be taken as the future research. Firstly, the 

proposed F2F dissimilarity metric can be combined with a consistent relevance 

measure to estimate its performance when it is used in greedy search-based selection 

schemes. The major issue that needs to be addressed will be normalization of the 

metric such that it becomes compatible with the range of relevance, i.e.   . Similarly, 

the diversity measure in MRMD objective function can be used as dissimilarity 

metric in a clustering-based feature selection method.  

Another path that is going to be followed in the future studies is to develop 

dimensionality reduction methods by encoding neighborhood information. By 

employing the context of proximity in terms of ranks, neighborhood information can 

be encoded into specific patterns. These patterns will represent the neighboring 

samples within a proximity window. By adopting a proper coding, a learning method 

then can be applied to learn a mapping which projects neighboring samples into close 

coordinates in the reduced subspace.       
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