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ABSTRACT

With the recent advances of networking, sensors, and storage technologies, many mul-

tidimentional datasets are being generated in various fields. These datasets are often

incomplete or contaminated during the acquisition process. Recovering the missing or

noise-free data from degraded observations thus becomes crucial to obtaining precise

information to refer to. The aim of this thesis is towards restoration of multidimen-

sional (tensor) data. Specifically, we consider three problems: 1) tensor inpainting, 2)

magnetic resonance image denoising and, 3) hyperspectral image denoising.

The theory of tensors has become popular in dealing with multidimensional data, due

to the capability of tensors in exploiting additional structure in comparison with matrix

based alternatives. The most commonly used decomposition of multidimensional data

to date is higher order singular value decomposition (HOSVD). The HOSVD is an ef-

ficient way for eliciting intrinsic structure of multidimensional data. It offers a simple,

adaptive and natural way to exploit sparsity among all dimensions of multidimensional

data. The HOSVD decomposes a particular tensor data into the product of a sparse ten-

sor and a few orthogonal matrices, each of which captures the subspace information

corresponding to one dimension. In this work, we solve the restoration problems by

employing the HOSVD transform and by exploiting the sparsity of the multidimen-

sional signals. We enforce the sparsity using iterative regularization technique, which

is shown to be very effective for our problems.
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The first contribution of this work is employing the iterative regularization scheme for

tensor inpainting. The rationale of this approach is based on an enhanced sparse rep-

resentation in HOSVD domain and it uses the iterative regularization procedure for

inpainting. Improved performances of this algorithm are demonstrated in our exper-

iments on three dimensional tensors, taken from multi-channel (color) images, video

sequences, and magnetic resonance images. The evaluation is made quantitatively in

terms of peak signal-to-noise ratio and structural similarity index, and qualitatively via

visual comparisons.

Despite the success of magnetic resonance imaging techniques in many applications,

acquisition noise is still a limiting factor for the quality and hence the usefulness of

the techniques. Our second contribution is improving the application of the iterative

higher order singular value decomposition framework to denoising the magnetic res-

onance images. The proposed algorithm forms a single tensor from the noisy data.

This tensor undergoes an HOSVD, where its sparse representation coefficients are cal-

culated with respect to a set of directional orthogonal basis matrices. Denoising is

achieved by iteratively applying soft thresholding on the calculated sparse representa-

tion coefficients. The proposed algorithm is further enhanced with a post-process of

Wiener filtering. The performance of the proposed method is evaluated using synthetic

and real magnetic resonance images. Validation results and quantitative comparisons

with the state-of-the-art in magnetic resonance image denoising clearly demonstrate

the advantages of the proposed method.
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The hyperspectral data cube is considered as a three-order tensor that is able to jointly

treat both the spatial and spectral dimensions. Noise in hyperspectral image can de-

grade the visual quality and limit the applicability of computerized analysis processes.

Hence, toward the third contribution we consider the denoising of the hyperspectral

images to improve the performance of the subsequent applications. In this work, not

only we use the proposed iterative higher order singular value decomposition, but also

we go one step further and propose a new iterative denoising method which utilizes the

advantages of the patch-based HOSVD sparse model and the iterative regularization

technique. The experiments with both synthetic noisy data and real hyperspectral data

reveal that the proposed iterative algorithm improves the hyperspectral data quality in

terms of both quality metrics and visual inspection. The subsequent classification re-

sults further validate the effectiveness of the proposed hyperspectral noise reduction

algorithm.

In conclusion, extensive experiments on synthetic and real world datasets have shown

the competitive performance of the proposed algorithms for inpainting, magnetic reso-

nance image denoising, and hyperspectral image denoising over existing state-of-the-

art ones.

Keywords: Denoising, higher order singular value decomposition, hyperspectral, iter-

ative regularization, MR images, patch-based, soft thresholding, sparse representation,

Tucker decomposition.
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ÖZ 

Son zamanlarda ağ oluşturma, sensörler, ve depolama teknolojileri alanında yaşanan 

ilerleme ve gelişmeler ile birlikte farklı alanlarda birçok çok-boyutlu veri seti 

oluşturulmuştur. Bu veri setleri çoğunlukla veri toplama süreci boyunca eksik 

kalmakta veya bozulmaktadır. Bu neden ile parazit içermeyen verilerin eksilen 

gözlemleme verilerinden geriye alınması, atıfta bulunmak üzere dakik bilgilerin elde 

edilmesi açısından oldukça önemlidir. Bu tez çalışmasının amacı çok-boyutlu 

(tensör) verilerin restorasyonu ve yeniden yapılandırılmasından ibarettir. Bu tez 

çalışmasında 3 problem özellikle dikkate alınmaktadır: 1) Tensör içboyaması, 2) 

manyetik yankılama görüntülerinin parazit temizlemesi, 3) aşırı spektral görüntülerin 

parazit temizlemesi. 

Tensör teorisi, tensörlerin matris bazlı alternatifler ile karşılaştırıldığında ek yapıları 

işleme kapasitesi nedeniyle çok-boyutlu verilerin işlenmesi için popüler hale 

gelmiştir. Günümüzde en yaygın olarak kullanılan çok-boyutlu veri ayrıştırma 

yöntemi üst seviye tekil değer ayrıştırmasıdır (ÜSTDA). ÜSTDA, çok-boyutlu 

verilerin içsel yapısının ortaya çıkarılması için etkin bir yöntemdir. Bu yöntem, çok-

boyutlu verilerin tüm boyutları arasında seyrekliğin işletilmesi için sade, 

uyarlanabilir ve doğal bir yöntem sunmaktadır. ÜSTDA belirli bir tensör verisini 

seyrek bir tensör ile her biri tek bir boyuta ait altuzay bilgilerini yansıtan birkaç 

ortogonal matrisin çarpımı halinde ayrıştırmaktadır. Bu çalışmada ÜSTDA 

dönüşümünden yararlanılarak ve çok-boyutlu sinyallerin seyrekliği işletilerek 

çözünürlük problemleri çözülmektedir. Seyreklik, problemlerimiz açısından çok 

etkili olduğu gösterilen tekrarlayan düzenleme tekniği kullanılarak uygulanmaktadır.  
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Bu çalışmanın temel katkısı tensör içboyaması için tekrarlayan düzenleme planının 

kullanımından ibarettir. Bu yöntemin mantığı, ÜSTDA etkinlik alanında gelişmiş bir 

seyrek temsile dayalı olup içboyama için tekrarlayan düzenleme yöntemini 

kullanmaktadır. Bu algoritmanın geliştirilmiş performansı, çok kanallı (renkli) 

görüntüler, video dizinleri, ve manyetik yankılama görüntülerinden alınan üç boyutlu 

tensörler üzerindeki deneylerimizde gösterilmiştir. Değerlendirmeler nicel olarak en 

yüksek sinyal gürültü oranı ve yapısal benzerlik indeksi açısından ve nitel olarak ise 

görsel kıyaslama aracılığı ile gerçekleştirilmiştir. 

Manyetik yankılama görüntülerinin birçok uygulamadaki başarısına rağmen, veri 

toplama parazitleri kalite açısından halen sınırlandırıcı bir faktör olup dolayısıyla bu 

tekniklerin yararlı olmamasına neden olmaktadır. Bu tez çalışmasının ikinci katkısı 

ise manyetik yankılama görüntülerinin parazitlerden arındırılmaları amacıyla 

tekrarlayan üst seviye tekil değer ayrıştırma çerçevesinin uygulamasının 

geliştirilmesinden ibarettir. Önerilen algoritma parazitli veriden tek bir tensör 

oluşturmaktadır. Bu tensör, seyrek temsil katsayılarının bir takım yönlü ortogonal 

taban matrisi bakımından hesaplandığı bir ÜSTDA’ya maruz kalmaktadır. Parazit 

temizleme işlemi, hesaplanan seyrek temsil katsayıları üzerinde yumuşak 

eşiklemenin tekrarlanarak uygulanması yolu ile elde edilmektedir. Önerilen 

algoritma daha sonra Wiener filtreleme ile sağlanan ileri bir işlem ile 

geliştirilmektedir. Önerilen yöntemin performansı sentetik ve gerçek manyetik 

yankılama görüntüleri kullanılarak değerlendirilmektedir. Onaylama sonuçları ve 

manyetik yankılama görüntülerinin parazit temizleme alanındaki en son gelişmeler 

ile yapılan nicel karşılaştırmalar önerilen yöntemin avantajlarını açıkça ortaya 

çıkarmaktadır.  
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Aşırı spektral veri küpü, hem uzaysal hem de spektral boyutları ortaklaşa bir şekilde 

işleme kabiliyeti olan üç dereceli bir tensör olarak dikkate alınmaktadır.  Aşırı 

spektral bir görüntüdeki parazit, görsel kaliteyi düşürüp bilgisayarlı analiz 

işlemlerinin uygulanabilirliğini sınırlandırabilmektedir. Dolayısıyla üçüncü katkı 

olarak bu tez çalışmasında müteakip uygulamaların performansının geliştirilmesi 

amacıyla aşırı spektral görüntülerin parazitten arındırılması dikkate alınmıştır. Bu tez 

çalışmasında yalnızca önerilen tekrarlayan üst seviye tekil değer ayrıştırması dikkate 

alınmamış olup aynı zamanda bir adım ileriye giderek yama bazlı ÜSTDA seyrek 

model ile tekrarlayan düzenleme tekniğinin avantajlarını kullanan yeni bir 

tekrarlayan parazit temizleme yöntemi önerilmiştir. Hem sentetik parazitli veriler 

hem de gerçek aşırı spektral veriler üzerinde gerçekleştirilen deneylerin sonuçları 

önerilen tekrarlayan algoritmanın aşırı spektral veri kalitesini hem kalite ölçüleri hem 

de görsel inceleme açısından geliştirdiğini ortaya çıkarmaktadır. Müteakip 

sınıflandırma sonuçları daha sonra önerilen aşırı spektral parazit azaltma 

algoritmasının etkinliğini onaylamaktadır.  

Sonuç olarak sentetik ve gerçek veri setleri üzerinde gerçekleştirilen kapsamlı 

deneyler, içboyama, manyetik yankılama görüntülerinin parazit temizlemesi ve aşırı 

spektral görüntülerin parazit temizlemesi için önerilen algoritmaların ilgili alanlarda 

mevcut olan en son gelişmeler ile karşılaştırıldığında rekabet edebilir performansa 

sahip olduğunu göstermiştir.  

Anahtar Kelimeler: Parazit temizleme, üst seviye tekil değer ayrıştırması, aşırı 

spektral, tekrarlayan düzenleme, MR görüntüleri, yama bazlı, yumuşak eşikleme, 

seyrek temsil, Tucker ayrıştırması. 
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Chapter 1

INTRODUCTION

1.1 Introduction

In recent years, with advances in networking, sensors, and storage technologies bigger

and bigger data are being emerged in a wide range of fields in science, including medi-

cal imaging, mobile internet, and cloud computing. In order to succeed in this big data

era, it becomes crucial to be able to extract useful information from data for efficient

processing. Most big data are multidimensional and they can often be represented as

multidimensional arrays, which are often referred to as tensors [1, 2].

Since the nineteenth century, tensors which are higher order generalization of matrices

and vectors, have played a major part in applied and theoretical frameworks for math-

ematicians and physicists respectively. In physics, they offer a convenient language

for expressing certain natural laws. A famous example is Einstein’s theory of general

relativity, whose fundamental equations are expressed in terms of tensors. Despite the

successful developments of tensor models and analysis in physics and mathematics,

the tensor models have undergone a lack of interest in many other scientific and en-

gineering communities. This is spurred in part by pioneering works in psychometrics

which applied tensor-based techniques for data analysis purposes [3, 4]. Later in the

twentieth century, blind source separation techniques were developed by researchers to
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exploit the tensor structure of higher-order cumulants [5, 6], and many works employ-

ing tensor models have surfaced in the chemometrics literature [7, 8]. Nowadays, the

ever expanding list of applications of tensors embraces problems in signal processing,

computer vision, telecommunications, dynamical system modeling and identification,

biomedical engineering, and data mining [9, 10, 11, 12, 13, 14, 15].

Nevertheless, the theory of tensors in signal processing should be of great interest

following the recent development of multicomponent modern sensor modalities, es-

pecially in imagery. Indeed, the data generated from these sensors are fundamentally

multidimensional (tensor) objects. Once multidimensional arrays (tensors) have been

employed to store multidimensional data, the application will dictate what type of

manipulation or post-processing of the data is required. In one and two dimensional

(vector and matrix) cases, methodologies have been well established, including sparse

component analysis (SCA), principle component analysis(PCA), independent compo-

nent analysis (ICA), and nonnegative matrix factorization (NMF) [16, 17, 8]. However,

the existing framework of vector and matrix algebra is insufficient. In other words, hid-

den components within multidimensional data cannot be extracted by using the classi-

cal matrix and vector techniques. On the other hand, we can utilize hidden components

within multidimensional data and keep the multidimensional data as a whole entity if

the analysis tools account for the intrinsic multidimensional patterns present, motivat-

ing the development of multilinear techniques. That is to say, multilinear algebra is

adapted to multidimensional data, as it involves two tensor decompositions [19, 20].
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Similar to the popularity of matrix decompositions, tensor decompositions play signif-

icant roles in processing, and analysing the tensor data. The two leading frameworks

of tensor decomposition to reveal the algebraic structure in the data, are the Tucker

decomposition and CANDECOMP/PARAFAC (CP) [2, 21].

Tucker decomposition and the CP decomposition are the most well known tensor de-

composition, originally introduced in Psychometrics and later found many applications

in diverse areas [2, 4, 18, 20, 21, 22, 23, 24, 25]. From theoretical view, one may con-

sider decompositions as higher order extension of matrix singular value decomposition

(SVD). Specifically, CP decomposition decomposes the given tensor as an approxima-

tion of rank-1 tensors by taking their weighted sum. In contrast, in Tucker decom-

position a tensor can be decomposed into a tensor of dense but smaller size which is

represented by the core tensor, while its factor matrices span the subspace occupied by

fibers of the tensor data. CP decomposition can be viewed as a special case of Tucker

decomposition with super-diagonal core tensor. Compared to CP, a Tucker decomposi-

tion has more flexibility due to the core tensor which allows for interactive bases, and

has a better generalization ability than CP decomposition for different type of data.

However, Tucker decomposition may not decompose the tensor uniquely as CP does.

In order to obtain meaningful and unique representation by the Tucker decomposition,

orthogonality, sparsity, and non-negativity constraints are often imposed on the fac-

tors yielding non-negative tensor factorization (NTF) and sparse non-negative tucker

decomposition. Tucker decomposition with orthogonality constraints on the factors,

is also known as higher order singular value decomposition (HOSVD) or multilinear
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SVD. The HOSVD can be computed by unfolding the tensor in each mode and calcu-

lating the singular vectors corresponding to each mode [2, 21, 26, 27].

1.2 Thesis Objective

Most often, in multidimensional data analysis applications, the data is incomplete or

contaminated during the acquisition. Therefore, recovering information of the missing

or noise free data may tend to pose a problem which is easy to describe, yet unfortu-

nately difficult to solve. This has necessitated the availability of high data quality as

essential for several practical applications. To bridge the gap between reality and need,

it is necessary to be able to estimate uncorrupted information which remains hidden

within the available, possibly corrupted and/or incomplete data.

Data restoration is often formulated as an inverse problem. The objective of restoration

is to consider the estimation of the unknown true data T from an observed data defined

by

X = P (T ) + η (1.1)

where η is the noise accumulated in the acquisition process, and P is a linear operator,

a projection in inpainting, or the identity in denoising. However, in many practical

problems, ill-conditioning of P precludes the possibility to use an inverse filtering to

the measurements. In this manner, prior knowledge of the data is required to regularize

the restoration problem. A recently developed approach is to regularize the inverse

problem with the sparse-promoting in some transform domain [28, 29, 30, 31, 32].

Recently, a family of powerful approaches referred to as sparse vector and robust low
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rank matrix modelling have been introduced. Although, the ℓ0-norm, and the rank

minimization have been proven to be strong global constraints and good measures of

sparsity, the optimization problem involving the ℓ0-norm or the rank minimization is

NP-hard in general due to their discrete nature. The ℓ1-norm and the nuclear norm (also

known as the trace norm) are widely used to approximate the ℓ0-norm and the rank of a

matrix, and the resulting problems are convex optimization problems. However, sparse

and low-rank modelling typically treats the multidimensional data in the form of vec-

tors or matrices, which are however inadequate in representing the multidimensional

data. Meanwhile, the extension of the sparse vector and matrix modelling techniques

within the tensorial framework has led to significant performance improvements. This

is due to the fact that the proposed approaches can better preserve and employ informa-

tion about the structure of the multidimensional space the data lie in [20, 33, 34, 35].

To this end, to investigate the possibilities of preserving the multidimensional data

structure, this thesis concerns itself with applications of multilinear algebra in the field

of reconstruction of multidimensional data.

This thesis aims to solve the restoration problem by employing the HOSVD transform

model. We enforce the sparsity using some iterative regularization technique, which

is shown to be quite effective for the restoration problem. The proposed restoration

method encourages the sparsity of HOSVD by thresholding of the HOSVD core. This

thresholding, well adopted since the objective multidimensional data takes the com-

pressible HOSVD model, renders an approximate solution of an ℓ1 regularized least

square problem.
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1.3 Problem Statement

Many real world signals are sparse (or approximately sparse) in a certain transform

domain[16]. Inspired by a recent application of the matrix singular value decompo-

sition in employing the sparsity, the HOSVD is exploited in the current investigation.

The HOSVD is an efficient way for eliciting intrinsic structure of multidimensional

data. It offers a simple, adaptive and natural way to exploit sparsity among all dimen-

sions of multidimensional data. The HOSVD decomposes a particular tensor data into

the product of a sparse tensor and a few orthogonal matrices, each of which captures

the subspace information corresponding to one dimension.

In this thesis, we shall solve the multidimensional data restoration problem. We em-

ploy the tensor transform model and exploit the sparsity of the multidimensional sig-

nals. Specifically, in this work three problems are considered: 1) tensor inpainting, 2)

magnetic resonance image (MRI) denoising, and 3) hyperspectral image (HSI) denois-

ing.

1.4 Thesis Contributions

The main contributions made in this thesis are listed below:

1. In the first contribution of this work we employ the iterative regularization scheme

for tensor inpainting. The rationale of this approach is based on an enhanced

sparse representation in HOSVD domain and it uses the iterative regularization

procedure for inpainting. Improved performances of this algorithm are demon-

strated in our experiments on three dimensional (3D) tensors, taken from multi-

channel (color) images, video sequences, and magnetic resonance images.
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2. Despite the success of magnetic resonance imaging techniques in many appli-

cations, acquisition noise is still a limiting factor for the quality and hence the

usefulness of the techniques. The main goal of the second contribution is in-

vestigating and improving the application of the iterative higher order singular

value decomposition framework to denote the MRIs. The proposed algorithm

forms a single tensor from the noisy data. This tensor undergoes an HOSVD,

where its sparse representation coefficients are calculated with respect to a set

of orthogonal basis matrices. Denoising is achieved by iteratively applying soft

thresholding on the calculated sparse representation coefficients. The proposed

algorithm is further enhanced with a post-process of Wiener filtering.

3. The hyperspectral data cube is considered as a three-order tensor that is able

to jointly treat both the spatial and spectral modes. Noise in HSI can degrade

the visual quality and limit the applicability of computerized analysis processes.

Hence as the third contribution we consider the denoising of the HSIs to improve

the performance of the subsequent applications. In this work, we not only use

the proposed iterative higher order singular value decomposition, but go one step

further and propose the new iterative denoising method which utilizes the advan-

tages of the patch-based HOSVD sparse model and the iterative regularization

technique.

1.5 Thesis Outline

This thesis is organized as follows: Chapter 1 describes the thesis introduction, aims,

and outline of the research. Chapter 2 presents some notations, and an introduction to

tensor definition and tensor decompositions. Chapter 3 introduces an iterative method
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for tensor inpainting based on higher order singular value decomposition. Noise re-

moval from MR images via iterative regularization based on higher order singular

value decomposition is studied in Chapter 4. Furthermore, Chapter 5 considers re-

ducing the noise from HSIs via patch-based higher order singular value decomposition

sparse model. In Chapter 6, conclusions and possible future works are presented.
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Chapter 2

HIGHER ORDER SINGULAR VALUE DECOMPOSITION

SHRINKAGE AND ITS RELATION WITH ITERATIVE

REGULARIZATION

2.1 Introduction

There are various ways to define tensor depending on the context, in which it is used.

In most of the applications, the tensor is employed as a structure for sorting and orga-

nizing data. Therefore, this chapter aligns on providing a foundation to understand the

subsequent chapters. In this chapter, we define the algebraic operation and the notation

used throughout the thesis. The fundamental properties of two of the important tensor

decompositions, the Tucker and the CANDECOM/PARAFAC, are also presented and

discussed.

2.2 Notation

The term tensor refers to a multidimensional array, also known as multiway or multi-

mode array. The modes of the tensor are referred to by the number of its dimensions.

They are also called orders or ways. A vector is a tensor of order one, and is usually

described by one dimensional (1D). A matrix is described by a two-dimensional (2D)

array is a tensor of order two. We use a d dimensional array to describe a d order

tensor. Throughout this thesis, the distinguish between multidimensional tensors, ma-

trices, vectors and scalars will be shown by their representation: d order tensors are
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bold-face upper case letters (T ,S, . . . ), matrices are upper case letters (M,U, . . . ),

vectors are bold-face lower case letters (u,v, . . . ), and scalars are lower case letters

(a, b, . . . ). For instance, Let T be a dth order tensor with entries ti1,i2,...,id .

Fibers are the higher order analogue of matrix rows and columns. The fiber of a ten-

sor can be obtained by fixing all tensor indices except one, i.e, T :,i2,...,id , T i1,:,...,id ,. . . ,

T i1,i2,...,id−1,: respectively. Fibers are always assumed to be column vector. Tensor

slices are two-dimensional sections of a tensor, which can be computed by fixing

all tensor indices except two, i.e, T :,:,i3,...,id ,T i1,:,:,i4,...,id ,. . . ,T i1,i2,...,id−2,:,:. Figure 2.1

shows tensor fibers (column, row, and tube) and slices (horizontal, lateral, and frontal)

of a 3rd order tensor [2, 21].

Figure 2.1: An example of tensor fibers (column, row, and tube; respectively) (row 1)
and slices (horizontal, lateral, and frontal sides; respectively) (row 2).

In order to work with tensors, it is often convenient to transform them to matrices,

a process known as matricisation; also known as unfolding or flattening. A tensor
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of order d can be unfolded in d various ways. The mode-i unfolding of a tensor T

is symbolized by the matrix T(i). The matricisation reorders the entries of the tensor

T into a matrix from a given mode. The dimension of T(i) is Rni×J , where J =

n1, . . . , ni−1, ni+1, . . . , nd. Figure 2.2 shows the way of flattering a 3rd order tensor

T ∈ R3×2×2 into three modes unfolding matrices, i.e. T(1), T(2), and T(3) [2, 21]. In

mathematical terms, the tensor element (i1, . . . , in−1, in, in+1, . . . , id) maps to matrix

element (in, j), given by the expression:

j = 1 +
d∑

l=1,l ̸=n

(il − 1)Jl with Jl =
l−1∏

m=1,m ̸=n

nm (2.1)

Figure 2.2: An example of Tensor unfolding.

Tensors can be multiplied by a matrix, the product between a tensor and a matrix

can be expressed by employing the concept of mode-i product. The mode-i matrix

product between a tensor T ∈ Rn1×n2×···×nd and a matrix U ∈ Rri×ni , denoted by
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T ×i U ∈ Rn1×···×ri×···×nd , returns a new tensor of size n1 × · · · × ri × · · · × nd; the

operator ×i denotes the mode-i product of tensor with the matrix. The scalar or inner

product of two given tensors X,T is the sum of the products of their entries which

is defined as: ⟨X,T ⟩ =
∑n1

i1=1

∑n2

i2=1 · · ·
∑nd

id=1(xi1,i2,...,id) × (ti1,i2,...,id). Based on

the definition of the inner product the Frobenius norm of dth order which is the square

root of the sum of the squared absolute values of the elements of the tensor, is denoted

as [2, 21]

∥T ∥F =
( ∑
i1,i2,...,id

(ti1,i2,...,id)
2
)1/2 (2.2)

2.3 Tensor Decompositions

In recent decays, conception of matrix decomposition has extensively contributed to

development of science and engineering. As a matter of fact, advanced linear alge-

bra provided the researchers with numerical solutions which decompose a matrix into

more representative matrices. Several techniques such as QR, LU and SVD have been

successfully practiced in engineering applications. More recently, multilinear alge-

bra has opened a new horizon to the field by introducing tensors. Although tensor

decomposition has not yet been evolved as much as matrix decomposition has, this

concept has attracted the attention of researcher as a compelling alternative to matrix

decomposition. Particularly, two major tensor decomposition trends namely Tucker

decomposition and CANDECOM/PARAFAC are known as well-developed notions in

modern science [2, 21, 36, 37]. Before continuing, the traditional computation of SVD

will be reviewed and then discussed regarding the Tensor decompositions.
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2.3.1 Matrix Singular Value Decomposition (SVD)

A basic concept in linear algebra is the singular valued decomposition (SVD). The

SVD of a matrix M ∈ Rn1×n2 is a well-known, rank revealing factorization. Consider

the singular value decomposition of a matrix M of rank R [36, 37]:

M = USV T (2.3)

where U ∈ Rn1×n1 , and U ∈ Rn2×n2 are orthogonal matrices (i.e., UUT = I , V V T =

I), S is a non-negative diagonal matrix. The diagonal elements of S, denoted as si are

called the singular values, and are arranged in decreasing order. The columns of U and

V , denoted by ui and vi are called as left and right singular vectors of M respectively.

The number of nonzero singular values is equal to the rank of the matrix, i.e. to the

number of linearly independent columns or rows of the matrix. The SVD enables us

to write the M as the sum of rank-1 terms:

M = s1u1v1
T + · · ·+ sRuRvR

T (2.4)

Note that, the rank R = rank(M) can also be defined as the minimum number of

rank-1 terms whose sum is equal to M . The SVD of a matrix is unique (assuming all

the singular values are distinct) only because it has the orthogonality constraints and

the ordered singular values.

The so called nuclear norm of a matrix M which appears in several problems related

to low rank matrix completion or rank minimization problems, is defined in terms of

singular values [36, 37]:

∥M∥∗ =
R∑
i=1

si (2.5)

Bearing in mind the above discussion, we shall present in the following two principle
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tensor decompositions that can be considered as two different generalizations of the

SVD.

2.3.2 CANDECOMP/PARAFAC

The CP decomposition of a tensor is one of the important notations of tensor decompo-

sition, which leads to the definition of CP rank. The idea of the CP decomposition was

first proposed by Hitchcock (1927) [38, 39]. However, the CP decomposition became

more popular mostly in the psychometrics community with the works of Carrol and

Chang (1970)[40], who introduced this decomposition as the canonical decomposition

(CANDECOM), and parallel factors (PARAFAC) by Harshman (1970) [41]. This de-

composition is currently known as (CP), as the abbreviation of both names. The CP

decomposition is based on the fact that a given tensor can be written as the sum of sev-

eral rank-1 tensors. Given a 3rd order tensor T ∈ Rn1×n2×n3 , the CP decomposition

can be approximated as a sum of R rank-1 tensors,

T ∼=
R∑

r=1

(ar ◦ br ◦ cr) (2.6)

where ar ∈ Rn1 , br ∈ Rn2 , and cr ∈ Rn3 , and ◦ is the tensor outer product. In this

model R is called the rank of T . Since, the CP of a tensor expose its rank, it is said to

be a rank revealing decomposition or rank retaining decomposition. The computation

of the CP decomposition requires knowing the amountR of rank-1 tensors to involve in

the sum (equation (2.6)). Most algorithms calculate many alternative decompositions

to find the one that fits the best. When denoted in element-wise form, equation (2.6)

can be rewritten as follows:

ti1,i2,i3
∼=

∑R
r=1(ai1rbi2rci3r),

i1 = 1, 2, . . . , n1, i2 = 1, 2, . . . , n2, i3 = 1, 2, . . . , n3

(2.7)
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A key feature of this decomposition, which is often considered as its prime advantage

over matrix decompositions, is its uniqueness up to permutation and scaling under the

usually fulfilled conditions [42]. A more general framework for uniqueness has been

recently presented in [43, 44]. Figure 2.3 illustrates the graphical representation of the

CP decomposition.

Figure 2.3: CP decomposition of a 3rd order tensor.

2.3.3 Tucker Decomposition

It is noted that, the CP decomposition can be seen about a tensor generalization of ma-

trix SVD. There is another generalization of the matrix SVD which is named Tucker

decomposition. In 1963, the Tucker decomposition of a higher order tensor is intro-

duced by Tucker that reveals the multilinear rank [3]. As with the CP decomposition,

tensor models based on the Tucker decomposition also find many practical applica-

tions [2, 21].

Tucker decomposition states that each dth order tensor T ∈ Rn1×n2×···×nd can be

expressed in terms of one core tensor S and d factor matrices as follows:

T = S ×1 A1 ×2 A2 · · · ×d Ad (2.8)

where Ai ∈ Rni×ri is factor matrix. The tensor S is called as core tensor. Note that the
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core tensor does not always need to have the same dimensions as T . Without further

restrictions, infinitely many Tucker decomposition of a tensor exist.

Unlike the CP decomposition, the Tucker decomposition is not unique. However, in

the special case where the core tensor has nonzero elements only on the superdiagonal,

the Tucker decomposition is reduced uniquely to the CP under some mild condition.

To obtain meaningful and unique representation by the Tucker decomposition, orthog-

onality, sparsity, and nonnegativity constraints are often imposed on hidden factors and

the core tensor of the Tucker decomposition. Recently, the Tucker model has been fur-

ther developed by a setting constraint of the orthogonality on the factor matrices and on

the slices of the core tensors, which is called as an orthogonal Tucker decomposition.

The purpose of these developments is to generalize the SVD matrix decomposition

to tensor analysis, so it can also be defined as higher order singular value decompo-

sition [2, 21]. In the HOSVD of a tensor T , factor matrices (A1, A2, . . . , Ad), must

be orthogonal and will be from now on represented with letters (U1, U2, . . . , Ud). The

HOSVD mode can be written as:

T = S ×1 U1 ×2 U2 · · · ×d Ud (2.9)

where Ui ∈ Rni×ri is an orthogonal matrix which captures structural information of

T(i), and S ∈ Rr1×r2×···×rd is the so-called core tensor which describes contributions

of T in the structural of all Ui’s. The values (r1, r2, . . . , ri) correspond to the ranks of

the different matrix unfolding of T along the different modes. Furthermore, the core

tensor S possesses the following properties:

1. In multilinear algebra as well as in matrix algebra the Frobenious norm is invari-
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ant, i.e., ∥T ∥F = ∥S∥F .

2. The subtensors Sni=α obtained by fixing the ith index to α, have the properties

of:

(a) all-orthogonality: two subtensors Sni=α and Sni=β are orthogonal for all

possible value of i, α and β subject to α ̸= β, i.e., ⟨Sni=α,Sni=β⟩ = 0

when α ̸= β;

(b) Ordering: The subtensors are ordered decreasingly according to their Frobe-

nius norms as ∥Sni=1∥F ≥ ∥Sni=2∥F ≥ · · · ≥ ∥Sni=d∥F ≥ 0.

Figure 2.4: HOSVD decomposition of a 3th order tensor.

The HOSVD can also be represented as an expansion of mutually orthogonal rank-1

tensors,

T =

r1∑
i1=1

r2∑
i2=1

· · ·
rd∑

id=1

si1,i2,...,id(u
i1
1 ◦ ui2

2 · · · ◦ u
id
d ) (2.10)

where si1,i2,...,in are the entries of the core tensor which show the level of interaction be-

tween the different components, ui1
1 ,u

i2
2 , . . . ,u

id
d are vectors, and ◦ represents vector

outer product. In Figure 2.4 the graphical representation of the HOSVD decomposi-
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tion is given. An interesting characteristic of the HOSVD is that when employed for

tensor of order two, the HOSVD reduces to the traditional SVD.

For tensors, there is not a unique concept of rank. Although the tensor rank is de-

fined as the matrix rank, a particularity of the rank of a tensor is that there is not a

straightforward way of calculation; it is an NP hard problem.

2.4 HOSVD Shrinkage and its Relation with Iterative Regularization

In this work, we enforce the sparsity using iterative regularization technique, which is

shown to be very effective for our inverse problems. Here, the corrupted data is filtered

by using the HOSVD sparse model and iterative regularization technique.

Suppose that Xk(k = 1, 2, . . . , K) stands for the reconstructed result in the kth iter-

ation and K is the number of iterations. Moreover, the first step can be put into the

iterative framework by choosing initial values. Let Y 0 be an initial tensor with the

given measurement X = P (T ) + η. Now, we are proposing the following iterative

regularization procedure:

1. The tensor Y at k−1 iteration is transformed into the HOSVD as equation (2.9),

to obtain the HOSVD coefficients:

Y k−1 = S ×1 U1 ×2 U2 · · · ×d Ud (2.11)

2. A soft shrinkage operator Dτ (S) (with parameter τ ) is applied on every coeffi-

cients of the core tensor. That is, the shrinkage operator is defined via element

operation as follow:

Dτ (S) = ([si1,i2,...,id ]τ ) (2.12)
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in which the soft thresholding is given as

[
si1,i2,...,id

]
τ
=


si1,i2,...,id − sgn(si1,i2,...,id)τ, if |si1,i2,...,id| > τ

0, otherwise.
(2.13)

3. Then, the kth approximate is obtained by

Xk = Dτ (S)×1 U1 ×2 U2 · · · ×d Ud (2.14)

And the tensor on which HOSVD is performed in the next iteration is updated

by

Y k = Y k−1 − δ P (Xk − T ) (2.15)

The parameter δ > 0 is the scalar step size at each iteration k. Thus, the proposed

iterative method for tensor data restoration can be formed as Algorithm 1.

Algorithm 1 The Iterative Regularization Algorithm for Tensor Data Restoration
1: INPUT: step size δ, threshold τ , and the maximum iteration count K.
2: Initialize Y 0 by Y .
3: Repeat

Compute HOSVD of Y k=S×1U1×2U2· · ·×d Ud.
Perform soft thresholding Dτ (S)=([si1,i2,...,id ]τ ).
Construct Xk = Dτ (S)×1 U1 ×2 U2 · · · ×d Ud.
Update Y k = Y k−1 − δ P (Xk − T ).
Until the maximum iteration count K is met.

X̂ ←Xk

4: OUTPUT: The recovered result X̂ .

19



Chapter 3

AN ITERATIVE METHOD FOR TENSOR INPAINTING BASED

ON HIGHER ORDER SINGULAR VALUE DECOMPOSITION

3.1 Introduction

In this chapter, we consider the problem of tensor (i.e., multidimensional array) in-

painting. By using HOSVD, we propose an iterative algorithm that performs soft-

thresholding on entries of the core tensor and then reconstructs via the orthogonal

matrices. An inpainted tensor is obtained at the end of the iteration. Simulations con-

ducted over color images, video frames, and MR images validate that the proposed

algorithm is competitive with state-of-the-art completion algorithms.

3.1.1 Related Work

Inpainting usually refers to the process of reconstructing missing elements or remov-

ing unwanted objects of an image or a video. The key idea is to identify and uti-

lize relationships between the missing elements and the known ones [45, 46]. Ap-

proaches to inpainting can be categorized into local [45, 47, 48] and non-local ap-

proaches [49, 50, 51, 52].

Recently, sparse vector recovery and low rank matrix completion have been widely

used in image inpainting like the other field of image analysis and computer vision [28,

29, 37, 53, 54]. The notion of rank minimizing has been naturally exploited in non-
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local approaches; and the so-called nuclear norm is used as an alternative to the stan-

dard rank in order to render tractable optimization problems for matrix completion [36,

37, 53] and for image restoration [53, 54]. Approximate solutions can be obtained via

iterative soft singular value thresholding.

In many applications, one needs to deal with multi-way data represented by tensors.

During the last several years, there has been a rapidly growing interest in the recovery

of unknown low-rank tensors [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66]. Re-

cent research has addressed tensor completion as a matrix completion problem [56,

58, 59, 60, 61, 62]. This is customarily done by recasting the tensor completion into

minimizing rank(s) of some unfolded matrices. Accordingly, these approaches are

essentially matrix-based, thus do not effectively exploit the structure of a tensor. An-

other line of research in low-rank tensor completion is based on the tensor decomposi-

tions [63, 67, 68, 69, 70].

Recall that with HOSVD, each d-dimensional tensor T can be expressed in terms of

one core tensor (sparse tensor) S and d factorizing matrices Ui of appropriate sizes as

in equation (2.9), where all matrices are orthogonal and carry directional information

of T , and the entries of S represent relative contributions of these matrices. It is noted

that, unlike the case with matrix singular value decomposition, the core tensor S is not

necessarily diagonal and can have negative-valued entries as well. Approaches using

the HOSVD for tensor completion include the works in [57, 60, 61, 64, 66]. Note

that they all involve modifying the orthogonal factorization matrices. As a result, the
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directional structure of the tensor is also altered.

3.1.2 Tensor Completion Methods

Based on unfolding tensors, Liu et al. [56] proposed a low rank tensor completion al-

gorithm for tensor inpainting. This algorithm is considered as the baseline of the tensor

completion methods. It minimizes the nuclear norms of matrices obtained from unfold-

ing along all modes. In a subsequent work, Liu et al. [60] developed three algorithms,

namely simple low rank tensor completion (SiLRTC), fast low rank tensor completion

(FaLRTC), and highly accurate low rank tensor completion (HaLRTC). The SiLRTC

uses a block coordinate descent method which employs a relaxation technique to sepa-

rate the dependent relationships, and guaranteed to achieve a globally optimal solution.

The FaLRTC algorithm, which uses a smoothing scheme to convert the original non-

smooth problem into a smooth one, is developed to improve the convergence speed.

Finally, the HaLRTC algorithm employs the alternating direction method of multipliers

(ADMMs) to the low rank tensor completion problems. It has been shown than HaL-

RTC can achieve higher recovery accuracy, but it is slower than FaLRTC. With the un-

folding scheme, low rank tensor completion is developed by using Douglas Rachford

splitting technique in [58]. In these methods, the rank or rank approximation is used

as a powerful tool to capture the global information. It is noted that these approaches

to completion are essentially matrix approaches rather than tensor ones, which do not

effectively exploit the structure of a tensor.

Along the line of tensor decomposition, Filipovic and Jukic [66] proposed a weighted

Tucker model (WTucker) for low rank tensor completion based on pre-specified mul-
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tilinear rank, in which the rank of the tensor can be over- or underestimated. Chen

et al. [57] presented a completion method named simultaneous tensor decomposition

and completion (STDC) based on Tucker decomposition which employs nuclear norm

minimization for the factor matrices. Furthermore, in STDC method a graph Lapla-

cian term is utilized for characterizing the underlying structure between factor matri-

ces. STDC can be considered as a tensor extension of low-rank and smooth matrix

completion.

On the other hand, Zhao et al. [63] proposed a tensor completion method based on

Bayesian tensor factorization model with mixture prior assumption for the factor ma-

trices under CP framework (FBCP). The FBCP algorithm is characterized as a tuning

parameter-free approach which can effectively avoid parameter selections. The sig-

nificant advantage of FBCP is that it can automatically estimate the tensor rank. In

contrast, other exiting CP algorithms require the tensor rank to be manually specified.

3.2 Proposed Algorithm

In this section, we describe the process of the proposed algorithm in detail [71].

The completion problem studied in this thesis can be stated as follows: consider a

3rd order tensor T ∈ Rn1×n2×n3 . Assume that only a portion of its elements are

known, and the values of the rest elements are unknown (missing or altered). Let Λ ⊂⊗3
i=1{1, 2, 3} denote the set of all locations of corresponding observed elements. Our

problem is to complete tensor T by determining the values of these missing elements.
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We now employ an iterative core tensor thresholding (CTT) algorithm to address this

problem. At each iteration, we first perform the HOSVD; the core tensor obtained is

then modified via soft thresholding. While preserving the structural information and

acknowledging contribution of large entries (in terms of magnitude) in the core tensor,

we further obtain an approximate solution of the inpainting problem by synthesizing

the HOSVD using the modified core tensor.

As in section (2.4), we note that PΛ : Rn1×n2×n3 −→ Rn1×n2×n3 is the orthogo-

nal projection on Λ, i.e., the (i1, i2, i3)th element of PΛ(X) is equal to xi1,i2,i3 if

(i1, i2, i3) ∈ Λ, or is equal to 0 otherwise, and Y 0 is initialized by the measurements

X with missing value elements. Then the iteration scheme can be expressed as:

Xk = Dτ (Y
k−1)

Y k = Y k−1 − δ PΛ(X
k − T )

(3.1)

The pseudo-code and the flowchart of the iterative regularization algorithm for tensor

inpainting are given in Algorithm 2 and Figure 3.1, respectively.

Algorithm 2 The CTT algorithm for Tensor Inpainting
1: INPUT: Sample set Λ, observed entries PΛ(T ), step size δ, threshold τ , tolerance ϵ, and

iteration number K.
2: Initialize Y 0 by PΛ(T ).
3: for k= 0, 2, ..., K do

Compute HOSVD of Y k=S×1U1×2U2×3 U3.
Calculate Dτ (S) by applying soft thresholding on S.
Construct Xk = Dτ (S)×1 U1 ×2 U2 ×3 U3.
If ∥PΛ(X

k − T )∥F /∥PΛ(T )∥F ≤ ϵ then break.
Update Y k = Y k−1 − δ PΛ(X

k − T ).
Until the maximum iteration count K is met.

X̂ ←Xk

4: OUTPUT: The inpainted result X̂ .
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Figure 3.1: Flowchart for tensor inpainting.

In the proposed CTT approach, instead of unfolding or separating the slices of the

tensor, the tensor is projected onto the HOSVD transform. In this approach the iterative

soft thresholding is performed to regularize the result of the inpainting, leading to a

sparse representation of the core tensor. This sparsity is imposed by applying soft

thresholding on the representation coefficients, which were calculated with respect to

a transform basis. This corresponds to the minimization of the ℓ1 norm of the core
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tensor coefficients.

The main step of the proposed approach is to modify the elements of the core tensor via

thresholding. By soft thresholding coefficients of the core tensor and keeping those of

orthogonal matrices, we achieve minimization of tensor T through S and preserving

its directional structure at the same time. As a result, the coherence between the slices

(i.e., the information along all dimensions) is used. This implies that the proposed

approach takes advantage of global property of the observed data properly.

The iteration scheme may be regarded as an extension of the singular value thresh-

olding (SVT) algorithm for matrix completion [37]. Note that this extension is not

straightforward as the core tensor S now is not diagonal and it may contain negative

elements. Nevertheless, we can still consider the following optimization problem in

the framework of sparse regularization:

X̂ = argmin
X

1

2
∥X − T ∥2F + τψ(X) (3.2)

where X̂ is the approximation variable, τ is the regularization parameter, and ψ(X) is

a sparse regularization term. Recall that the Frobenius norm is invariant under HOSVD

(i.e., ∥X∥F = ∥S∥F ), and it is consistent with the ℓ1 norm [34, 35, 68, 72]. Since the

core tensor S is a sparse representation of X in the HOSVD domain [34, 35, 68, 72],

the ℓ1 norm of S can thus be used for regularization. Accordingly, the proposed CTT

algorithm would lead to a tensor with fewer rank-1 terms and yield an approximate

solution to the sparse problem given below [71]:
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minX
1
2
∥X − T ∥2F + τ∥X∥1

such that PΛ(X) = PΛ(T ).

(3.3)

3.3 Experimental Results

In this section, the performance of the proposed CTT algorithm is evaluated and com-

pared with some state-of-the-art inpainting algorithms. These are FaLRTC [65], HaL-

RTC [65], WTucker [66], STDC [57], and FBCP [63]. The FaLRTC, HaLRTC, WTucker,

and STDC algorithms are included in the comparison as it is based on the Tucker de-

composition; the FBCP algorithm is included as the state-of-the-art method based on

CP decomposition.

Barbara Berk159029 Facade

House Flickrd4271 Bungee jumper

Figure 3.2: Test images.

Simulations are conducted over color images, video sequences, and MR images. Per-

formance evaluation is carried out in terms of two error based measures: 1) the peak-
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Figure 3.3: PSNR (dB) comparison of different algorithms on five color images at
various missing ratios.

signal-to-noise-ratio (PSNR) [see Appendix A] and 2) relative squared error (RSE)

[see Appendix B] which are widely used in tensor completion and visual data inpaint-

ing task. The third one is a correlation-based measure, referred to as the structural

similarity index (SSIM) [see Appendix C]. In the experiments, the parameters are set

as follows:
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τ = γ × 3

√
m

n1 × n2 × n3

× ( 3
√
n1 + 3

√
n2 + 3

√
n3) (3.4)

where m is the total number of the available elements, with 1 ≤ γ ≤ 20, δ = 0.4 ×

n1 × n2 × n3/m, ϵ = 10−4, and the maximum iteration count is K = 500.

3.3.1 Color Image Inpainting

In this experiment, the aforementioned algorithms are run on the following color im-

ages of 256 × 256: Barbara, Berk159029, Facade, House, Flickrd4271, and Bungee

jumper of 308 × 206. These images are shown in Figure 3.2. In this setting, each test

image is considered as a 3rd order tensor with d = 3. In this experiment, the per-

formance of the aforementioned algorithms is studied in four different cases: image

completion with randomly missing values, text removal, scratched removal, and object

removal.

In the case of image completion with randomly missing values, the inpainting input

image is obtained by randomly setting ρ% = m/(n1 × n2 × n3) of the overall number

of image pixels to zero. This experiment is conducted for several values of ρ. For

each value, the inpainting experiment is repeated for 10 trials and the average quality

metrics are shown in Figures 3.3–3.5 for comparison, in accordance with the common

practice in the literature. Then the average PSNRs, SSIMs, and RSEs of the all five

images for each algorithm are reported in Table 3.1.

It is seen in Figures 3.3–3.5 and the Table 3.1 that the proposed CTT algorithm gener-

ally out-performs FaLRTC, HaLRTC, WTucker, STDC and FBCP algorithms in terms

of all three metrics. This is particularly valid for missing ratios less than 70% and
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Figure 3.4: SSIM comparison of different algorithms on five color images at various
missing ratios.

for structure-rich images. For missing ratios greater than 70%, STDC and FBCP out-

perform CTT; nevertheless, CTT still out-performs HaLRTC, FaLRTC, and WTucker

in terms of PSNR and RSE.

As a visual comparison, Figures 3.6 and 3.7 show the inpainting reconstructions of
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Figure 3.5: RSE comparison of different algorithms on five color images at various
missing ratios.

Barbara and Facade images obtained with the aforementioned algorithms with ρ = 70.

It is clear that CTT yields the best reconstruction compared to the FaLRTC, HaLRTC,

and WTucker algorithms and comparable to STDC and FBCP algorithms. It is noted

that the reconstruction obtained with the CTT algorithm contains more details and ex-

hibits less visual artifacts compared to the other reconstructions, thanks to the ability of
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Table 3.1: The average RSEs, PSNRs (dB), and SSIMs of all five color-images.
ρ(%) Measure FaLRTC [65] HaLRTC [65] WTucker [66] STDC [57] FBCP [63] CTT

20
RSE 0.0353 0.0352 0.0820 0.0604 0.0708 0.0246

PSNR 36.75 36.76 29.33 32.02 31.05 39.89
SSIM 0.9819 0.9819 0.8866 0.9346 0.9196 0.9849

30
RSE 0.0501 0.0501 0.0847 0.0708 0.0832 0.0360

PSNR 33.74 33.74 29.06 30.58 29.96 36.59
SSIM 0.9645 0.9646 0.8820 0.9135 0.8911 0.9710

40
RSE 0.0668 0.0669 0.0892 0.0798 0.0920 0.0506

PSNR 31.28 31.27 28.65 29.58 29.25 33.65
SSIM 0.9394 0.9393 0.8740 0.8943 0.8709 0.9487

50
RSE 0.0862 0.0862 0.0981 0.0893 0.1059 0.0692

PSNR 29.09 29.09 27.91 28.63 28.13 30.97
SSIM 0.9034 0.9035 0.8604 0.8750 0.8430 0.9123

60
RSE 0.1096 0.1095 0.1312 0.1041 0.1205 0.0943

PSNR 27.01 27.03 26.01 27.48 27.19 28.29
SSIM 0.8522 0.8523 0.8126 0.8481 0.8084 0.8523

70
RSE 0.1399 0.1404 0.1640 0.1306 0.1465 0.1286

PSNR 24.91 24.89 23.49 25.76 25.74 25.63
SSIM 0.7786 0.7783 0.7306 0.8014 0.7489 0.7642

80
RSE 0.1831 0.1833 0.2037 0.1655 0.1728 0.1793

PSNR 22.57 22.57 21.84 23.56 24.19 22.80
SSIM 0.6700 0.6700 0.6380 0.7260 0.6861 0.6357

the CTT to preserve structural coherence of the tensor. This visual comparison result

is in line with the result of Figures 3.3–3.5. To provide a better visual inspection, we

show the magnified subregion of the inpainted images in Figures 3.5 and 3.6. Inspec-

tion of these images show that the proposed CTT algorithm indeed offers improved

reconstructions.

In demonstrating the potential of the proposed algorithm, the experiment is also con-

ducted for text, scratched, and object removal cases. We prepared a text and scratched

images of Barbara and Facade (shown in Figure 3.8). Reconstruction of Barbara im-

age obtained with the aforementioned algorithms are shown in Figure 3.9. Although

the low rank property can characterize random missing entries, the structural missing

entry problem degrades the performance of these approaches. The restoration results
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Corrupted

FaLRTC HaLRTC WTucker

STDC FBCP CTT

Figure 3.6: Visual results and the magnified subregions for Barbara image.

obtained by these algorithms have obvious artifacts. In contrast, these results con-

firm the effectiveness of the CTT completion algorithm. In the case of object removal

(shown in Figure 3.10), the CTT algorithm recovers the image structure with accept-

able visual effects and much better performances. In the CTT algorithm the repaired

large region seems more consistent with the surrounding areas, however, the restoration

results obtained by the state-of-the-art algorithms have visual fractures, and undesired

color appears. The performance of the PSNR, SSIM, and RSE of the whole image

is shown in Table 3.2, where the case of the object removal is not shown since the

ground truth is not available. Accordingly, it can be concluded that the CTT algorithm
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Corrupted

FaLRTC HaLRTC WTucker

STDC FBCP CTT

Figure 3.7: Visual results and the magnified subregions for Facade image.

is comparable to the state-of-the-art algorithms in various image inpainting problems.

3.3.2 Video Sequence Inpainting

In this experiment, the performance of CTT in video inpainting is evaluated over the

Foreman, Coastguard, and Salesman gray-scale benchmark video sequences. These

video sequences are composed of 20, 40 and 50 frames, respectively. Thus, they give

3D tensors of the sizes 288×352×20, 144×176×40 and 288×352×50, respectively.

As in the case of color images, ρ% pixels are randomly selected from all the pixels

in all frames and are set to be zero. These pixels are then recovered with the CTT

algorithms.
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Barbara-scratch Barbara-text

Facade-scratch Facade-text

Figure 3.8: Corrupted images: Barbara-scratch, Barbara-text (row 1), and
Facade-scratch, Facade-text (row 2).

Quantitative performance comparison results are reported in Table 3.3. Examining the

results, we see that CTT is generally superior to the other algorithms. In contrast to

the case of color images, the improvement of CTT over the other algorithms is more

significant with increased missing ratios. This result suggests the advantage of the

CTT algorithm is dealing with tensors of large sizes, where directional structures tend

to be more overwhelming.

Figure 3.11 shows the original and the corrupted of Foreman, Coastguard, and Sales-

man sample frames with ρ = 70. Figure 3.12 represents inpainted and the corre-
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FaLRTC HaLRTC WTucker

STDC FBCP CTT

Figure 3.9: Visual results of algorithms applied to Babara-scratch.

sponding residual images of Foreman sample frame after the reconstruction with the

aforementioned algorithms. It is evident that CTT yields significantly less artifacts

compared to the other algorithms.

3.3.3 MR Image Inpainting

In this experiment, CTT is tested and compared to the aforementioned inpainting al-

gorithms for the case of MR images. The images Spectral, Brain and PNEUMATIX of

the sizes 205× 246× 96, 196× 256× 90, and 192× 256× 25, respectively, are used.

Recovery results are reported in Table 3.4. It is noted that the proposed CTT algorithm
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STDC FBCP CTT

Figure 3.10: Visual results of algorithms applied to Bungee jumper.

Table 3.2: The RSE, PSNR (dB), and SSIM of Barbara and Facade in the case of text
and scratched removal.

Image Measure FaLRTC [65] HaLRTC [65] WTucker [66] STDC [57] FBCP [63] CTT

Facade

scratched
RSE 0.0239 0.0239 0.1392 0.0311 0.0291 0.0182

PSNR 38.17 38.17 22.87 35.89 36.46 40.55
SSIM 0.9853 0.9853 0.7450 0.9767 0.9798 0.9902

text
RSE 0.0298 0.0298 0.1917 0.0377 0.0312 0.0226

PSNR 36.28 36.28 20.09 34.22 35.86 38.67
SSIM 0.9768 0.9768 0.6787 0.9654 0.9749 0.9845

Barbara

scratched
RSE 0.0474 0.0474 0.1807 0.0551 0.0588 0.0274

PSNR 32.72 32.72 21.09 31.40 31.77 37.46
SSIM 0.9447 0.9447 0.5621 0.9286 0.9233 0.9714

text
RSE 0.0569 0.0569 0.2102 0.0598 0.0622 0.0313

PSNR 31.13 31.13 19.78 30.69 31.00 36.32
SSIM 0.9228 0.9229 0.5246 0.9144 0.9056 0.9578

out-performs the other algorithms in terms of the RSE measure even with high miss-

ing ratios. As a visual comparison, Figure 3.13 shows the original and the corrupted

of Spectral, Brain and PNEUMATIX sample frames with ρ = 70. Figure 3.14 rep-

resents inpainted and the corresponding residual images of Spectral sample slice after

the reconstruction with the aforementioned algorithms.
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Table 3.3: Video inpainting comparison in RSE.
Video ρ(%) FaLRTC [65] HaLRTC [65] WTucker [66] STDC [57] FBCP [63] CTT

Foreman

20 0.0158 0.0159 0.0581 0.0304 0.0592 0.0142
50 0.0369 0.0369 0.0589 0.0424 0.0621 0.0273
70 0.0594 0.0595 0.0605 0.0478 0.0688 0.0385
80 0.0791 0.0791 0.0628 0.0590 0.0731 0.0469

Coastguard

20 0.0337 0.0337 0.0626 0.0442 0.0692 0.0202
50 0.0656 0.0659 0.0660 0.0675 0.0726 0.0399
70 0.0934 0.0936 0.0821 0.0849 0.0795 0.0559
80 0.1131 0.1137 0.1236 0.1131 0.0883 0.0670

Salesman

20 0.0344 0.0344 0.1425 0.0675 0.1230 0.0273
50 0.0840 0.0841 0.1438 0.0917 0.1256 0.0535
70 0.1398 0.1395 0.1464 0.1059 0.1282 0.0781
80 0.1855 0.1856 0.1511 0.1419 0.1353 0.0968

Foreman Coastguard Salesman

Figure 3.11: Original images (row 1), corrupted images (row 2).

3.3.4 Complexity Analysis

In terms of computational cost, when compared with the state-of-the-art algorithms,

the proposed inpainting algorithm complexity is

O(K((d
∏d

i=1 ni) + (
∑d

i=1 ri) + (
∑d

i=1 n1 . . . niri . . . rd))),

where the first term is the cost of HOSVD of full tensor [21], the second one comes

from the computational cost of (2.13) and then the last one is for reconstructing the

full tensor. The computational complexity of the algorithms in [65] (FaLRTC and
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STDC FBCP CTT

Figure 3.12: The inpainted and the corresponding residual images of Foreman after
reconstruction by: FaLRTC, HaLRTC, WTucker, STDC, FBCP and CTT.

HaLRTC), [66] (WTucker), [57] (STDC), and [63] (FBCP) are, respectively

O(K((2r1 + r2 + r3)
∏d

i=1 ni +
∑d

i=1 ni

∏d
i=1 ri)), O(K(2(d+ 1)R

∏d
i=1 ni)),

O(K(dR2m+R3
∑d

i=1 ni)), and O(K(dR2m+R3)).

It is observed that the computational cost of the proposed algorithm is comparable

with the FaLRTC and HaLRTC algorithms and may become expensive comparing with

the WTucker, STDC, and FBCP algorithms. This computational cost is required to
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Table 3.4: MR image inpainting comparison in RSE.
MRI ρ(%) FaLRTC [65] HaLRTC [65] WTucker [66] STDC [57] FBCP [63] CTT

Spectral

20 0.0164 0.0164 0.0375 0.0258 0.0282 0.0059
50 0.0332 0.0332 0.0382 0.0383 0.0288 0.0093
70 0.0486 0.0487 0.0385 0.0450 0.0309 0.0111
80 0.0601 0.0601 0.0432 0.0561 0.0342 0.0126

Brain

20 0.0743 0.0742 0.1912 0.1220 0.2391 0.0635
50 0.1612 0.1621 0.1986 0.1670 0.2407 0.1165
70 0.2457 0.2458 0.2192 0.2264 0.2439 0.1579
80 0.3151 0.3138 0.2632 0.2875 0.2504 0.1866

PNEUMATIX

20 0.0412 0.0411 0.0976 0.0711 0.0777 0.0290
50 0.1015 0.1003 0.1017 0.0941 0.0850 0.0503
70 0.1765 0.1775 0.1156 0.1270 0.0952 0.0681
80 0.2474 0.2491 0.2671 0.1869 0.1042 0.0843

Spectral Brain PNEUMATIX

Figure 3.13: Original images (row 1), corrupted images (row 2).

generate the proposed quality improvement.

3.4 Conclusion

In this chapter, an iterative algorithm (referred to as CTT) is proposed for tensor in-

painting. With the use of the higher-order singular value decomposition of tensors,

while restoring the missing data, the algorithm is able to preserve structural coherence

of the tensor in all directions. The CTT algorithm is compared with the state-of-the-art

FaLRTC, HaLRTC, WTucker, STDC, and FBCP algorithms. Improved performances
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of the CTT are demonstrated in our experiments on color images, video sequences,

and MR images.
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Figure 3.14: The inpainted and the corresponding residual images of Spectral after
reconstruction by: FaLRTC, HaLRTC, WTucker, STDC, FBCP and CTT.
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Chapter 4

NOISE REMOVAL OF MR IMAGES VIA ITERATIVE

REGULARIZATION BASED ON HIGHER ORDER SINGULAR

VALUE DECOMPOSITION

4.1 Introduction

Despite the success of magnetic resonance imaging techniques in many applications,

acquisition noise is still a limiting factor for the quality and hence the usefulness of

the techniques. In this chapter, we develop an iterative regularization algorithm for

denoising magnetic resonance images based on higher-order singular value decompo-

sition. The proposed algorithm first forms a single tensor from the noisy data. Next,

higher-order singular value decomposition is applied on this tensor with respect to a

set of learned orthogonal matrices over the corresponding tensor mode. Finally, soft

thresholding is iteratively applied to the calculated coefficients, thereby suppressing

the noise. The proposed algorithm is further enhanced with a post-process Wiener fil-

tering. Experiments are conducted on synthetic and real magnetic resonance images

to compare the performance of the proposed algorithm to state-of-the-art denoising

approaches. The comparison is made quantitatively and qualitatively through visual

comparisons. The results demonstrate the competitive performance of the proposed

algorithm.
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4.1.1 Related Work

MR imaging is one of the most widely-used imaging techniques in clinical diagnosis

and scientific research. It can provide highly detailed images of organs and tissues

in the human body. One key usage of MR images is to reveal pathological or other

physiological alternations in living anatomy. The advantages of this imaging technique

are well-acknowledged. Unfortunately, in addition to the long acquisition time, the

noise accumulated through the acquisition phase remains a major limiting factor. Such

noise can potentially mislead the diagnosis and limit the applicability of computerized

analysis processes, such as classification and registration on MRIs. Therefore, MRI

denoising is of crucial importance to the successful use of the MR technique. In the

context of MRI denoising, and unlike the standard image denoising, a Rician noise

model, instead of a Gaussian model, is usually used. This finding is observed because

an MR image is typically obtained by applying an inverse Fourier transform on the

acquired raw magnitude data. Because the real and the imaginary image noise can be

typically modeled as Gaussians, the MR (magnitude) image, calculated as the square

root of the sum of squares of these two components, can be better described by a Rician

noise model [73, 74, 75, 76, 77, 78].

A trivial way to reduce the MR image noise is to obtain an image as an average of

several acquisitions. However, this will result in lengthening the acquisition time and

degrading the SNR. Therefore, denoising is often performed by post-processing meth-

ods. These denoising methods can be classified into three main categories. The first

category is the filtering-based methods, and based on linear or non-linear filtering on
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the image data to suppress the noise. Note however that filtering inherently blurs im-

ages and tends to be unfaithful to the high frequencies that represent details. Therefore,

filtering is directed towards preserving edges and details [79, 80, 81, 82, 83, 84, 85].

The second category includes transform-domain denoising methods. The methods ma-

nipulate image coefficients calculated with respect to a specific transform basis. Ma-

nipulation comes in line with a certain reconstruction prior, or regularizer. Examples

include using wavelet transforms [86, 87], curvelet transforms [88] and discrete cosine

transforms [89]. The third category is based on statistical and probabilistic denoising

approaches. Examples of such work conducted in [90, 91, 92] use linear minimum

mean square error and maximum likelihood for the estimation of the Rician noise.

More recently, researchers have considered merging the non-local means (NLM) and

the transform-domain approaches [93, 94, 95, 96]. The intent is to combine the ad-

vantages of non-local patch similarity and signal sparsity to better regularize the re-

construction process. This combination has been shown to render an outstanding per-

formance. Along this line, Dabov et al. [93] proposed the block matching in three

dimensions (BM3D) algorithm as an extension to the NLM filtering approach. The

BM3D algorithm is based on grouping similar patches into 3D stacks. These stacks

are assumed to admit sparse representation in the transform domain of certain basis

functions. Hence, sparse regularization is applied on the transformed patches, and a

patch is reconstructed by aggregating several reconstructions at each location. This

sparsity constraint appears to be the reason behind the outstanding performance of this

approach. In [95], Elahi et al. proposed a modification to the BM3D algorithm and ap-
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plied it to magnetic resonance imaging denoising. Maggioni et al. proposed the block

matching in four dimensions (BM4D) algorithm [96] as an extension of the BM3D

filtering to volumetric data. The BM4D algorithm demonstrates the state-of-the-art

performance in 3D MRI denoising [96].

From another viewpoint, the last decade has witnessed the success of tensor factor-

ization in signal processing applications. This success is primarily due to the tensor’s

ability to exploit structural information of signals in an efficient and compact repre-

sentation [2, 21]. This ability is especially valid for multidimensional signals, such

as MR images. In the context of tensor analysis, tensor decomposition offers a natu-

ral means for applying the sparsity regularizer on the coefficients of tensors [97, 98].

Along this line, Rajwade et al. [97] proposed a patch-based image denoising algorithm

using HOSVD. This algorithm forms 3D stacks of similar image patches on which the

HOSVD is performed. Similar to [93], this method offers a simple and elegant means

of exploiting sparsity among similar patches for denoising images. Note that while the

algorithm of [93] uses fixed basis functions, the algorithm of [97] learns the HOSVD

bases over image patches. Learning the basis functions allows for better signal repre-

sentation and promises improved denoising performance. The denoising outcomes can

possibly be further improved at the post-processing stage. For example, it was shown

in [99] that improved denoising results can be achieved by applying a Wiener filter or

a recursive regularization to the MR image.
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4.2 HOSVD-Based Methods and the Proposed Algorithm

Let X with size n1×n2×n3 denote the observed noisy MRI data. If T represents the

underlying noise-free MRI data, then, one can model the relationship between X and

T as follows (as in equation (1.1)):

X = T + η (4.1)

where η is the noise accumulated in the acquisition process. The aim of a denoising

process is to obtain the closest approximation to T based on the information provided

by Y and any other information about the noise. The most commonly used noise

model is the additive independent white Gaussian noise (AWGN) η(0, σ), with zero-

mean and standard deviation σ [see Appendix E].

As mentioned in the introduction of this chapter, an MR image is obtained by using

the magnitude of a single complex raw data. Because the real and imaginary im-

ages are modelled as Gaussian noises, the distribution of noise in the MR (magnitude)

image, calculated as the square root of the sum of squares of these two component

images, can be modeled with a Rician distribution. Specifically, let the individual

value of the complex MRI data be t = p + iq, then x = (p + nre) + i(q + nim),

where the noises nre, nim ∼ η(0, σ) thus, the magnitude of the noisy raw data is

|x| =
√

(p+ nre)2 + (q + nim)2. As a result, the distribution of the |x| is modeled

with the Rician distribution [see Appendix F].

4.2.1 Image Denoising via HOSVD

Inspired by BM3D, several patch-based HOSVD methods for denoising have been

proposed in recent years. The patch-based HOSVD method is designed for images
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that are corrupted by Gaussian noise which is independent of the signal. Patch-based

HOSVD methods, refer to the process that separates several similar patches of small

size from the noisy image into a 3D stack, in which the group patches have similar local

structures. In HOSVD-based methods, the 3D stack is transformed by the HOSVD

transform to compute the HOSVD coefficients. Then, these coefficients are shrunk by

using hard thresholding and the inverse of the transform is performed to produce the

final filtered image. The hard thresholding of the coefficients is represented as follows:

[
si1,i2,i3

]
τ
=


si1,i2,i3 , if |si1,i2,i3 | > τ

0, otherwise
(4.2)

The HOSVD method should not be directly applied to MR images that are generally

corrupted by the Rician noise. Zhang et al. in [99], extended the HOSVD method

to MR image denoising by using the advantages of the optimal forward and inverse

variance stabilizing transformations. Furthermore, the denoising outcome can be fur-

ther enhanced by a post-process, such as Wiener filtering [97]. Similarly, for better

performance, the HOSVD method in [99] is augmented by a recursive regularization.

4.2.2 Proposed Algorithm

The proposed iterative higher order singular value decomposition algorithm (IHSVD)

uses similarity across MRI slices as a regularizer for the reconstruction in addition to

the sparsity of the representation forming the basic regularizer [100]. This sparsity is

imposed by applying soft thresholding on the representation coefficients, which were

calculated with respect to a transform basis. For this purpose, the proposed algorithm

first forms a tensor that is composed of all the MRI slices, taking advantage of mutual

information from different slices. In addition, it does not require patch selection as the
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tensor is naturally formed by the slices. Next, orthogonal basis matrices are extracted

over the tensor modes. We can subsequently apply an iterative soft thresholding to the

HOSVD coefficients calculated with respect to these basis matrices. In a denoising

context, iterative regularization considers the denoising outcome after each iteration

as the input noisy image of the next iteration [31, 32, 101]. Thus, starting with Y 0,

iterative algorithm for denoising is of the form:

Xk = Dτ (Y
k−1)

Y k = Y k−1 − δ (X −Xk)

(4.3)

This iterative procedure is continued until a stopping criterion is met. In this work, the

stopping criterion is chosen to be ∥X−Xk∥F ≤ σ. This stopping criterion is the same

one used in the iterated total variation–based model [31]. In the iteration procedure,

the proposed algorithm transforms the noisy data into the HOSVD domain to compute

the HOSVD coefficients, manipulates the coefficients by soft thresholding, and inverts

the HOSVD transform to get the final filtered data. This thresholding minimizes the

contribution of noise in the HOSVD transform.

The aforementioned procedure represents the basic idea of the proposed algorithm

IHSVD. Similar to other methods, our IHSVD is augmented with an additional stage

to improve performance. In this stage, we apply a nonlocal Wiener filtering post-

processing step to smooth the resulting images. The Wiener Filtering has two inputs:

the noisy observation X and the denoised data X̂ . Let the coefficients of X and X̂

on the HOSVD transform be defined as s and ŝ, respectively. The Wiener filtering

replaces the thresholding output and give the final filtered version of the core tensor in
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the following form

ŝ =
ŝ2

ŝ2 + σ2
s (4.4)

We term this augmented algorithm as IHSVD-W. In order to test the performance of

the proposed algorithm, we consider both Gaussian and Rician distributed noise. The

former one is outlined in Algorithm 3, and the flowchart of the respective algorithm is

depicted in Figure 4.1.

Algorithm 3 The Proposed IHSVD Algorithm for Gaussian Noise
1: INPUT: Observed data X , step size δ, shrinkage threshold τ , tolerance ϵ, standard devia-

tion σ, and iteration number K.
2: Initialize Y 0 = X .
3: for k= 0, 2, ..., K do

Compute the HOSVD of Y k as Y k=S ×1 U1×2 U2 ×3 U3.
Calculate Dτ (S) by applying soft thresholding on S.
Construct Xk = Dτ (S)×1 U1 ×2 U2 ×3 U3.

If ∥X −Xk∥F ≤ σ then break.
Update Y k = Y k−1 + δ (X −Xk)

Obtain an improved denoised image Xk as
X̂ ←Xk

4: OUTPUT: The denoised image X̂ .

As Rician noise is the assumed noise model in MRI, a denoising algorithm requires

a noise variance stabilization (VSt) step [102]. This finding is observed because the

variance of Rician noise is dependent on the signal itself. In accordance with the

common practices in MRI denoising, we add a VSt step to remove the dependence

of the noise variance on the raw MR image intensities recorded before applying the

denoising algorithm. One can express the overall outcome of the proposed algorithm

as follows:

V̂ = (VSt)−1(IHSVD(VSt(X, σe), σv), σe) (4.5)
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Figure 4.1: Flowchart of IHSVD algorithm.

where (VSt)−1 denotes the inverse VSt transformation, X is the MR image corrupted

by Rician noise, σe is the estimated standard deviation of the Rician noise, and σv is the

stabilized standard deviation induced by the VSt. The proposed denoising algorithm

for Rician distributed noise is outlined in Algorithm 4, and the relevant flowchart is

shown in Figure 4.2.
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Algorithm 4 The Proposed IHSVD Algorithm for Rician Noise
1: INPUT: Observed data X , step size δ, shrinkage threshold τ , tolerance ϵ, standard de-

viation σ, estimated standard deviation σe, stabilized standard deviation σv, and iteration
number K.

2: Initialize Y 0 = VSt((X, σ), σv).
3: for k= 0, 2, ..., K do

Compute the HOSVD of Y k as Y k=S×1U1×2U2×3 U3.
Calculate Dτ (S) by applying soft thresholding on S.
Construct Xk = Dτ (S)×1 U1 ×2 U2 ×3 U3.

If ∥X −Xk∥F ≤ σ then break.
Update Y k = Y k−1 + δ (X −Xk)

Apply an inverse VSt on the calculated Xk as
X̂ ← (VSt)−1(Xk)

4: OUTPUT: The denoised image X̂ .

4.3 Experimental Results

In this section, the performance of the proposed denoising method is compared to the

HOSVDR [99], BM4D [96] and PES-TV [94] denoising algorithms. The HOSVDR

algorithm is included in the comparison as it is based on the HOSVD transform, the

BM4D and PES-TV algorithms are included as the state-of-the-art methods. Both

versions (IHSVD and IHSVD-W) of the proposed algorithm are included in the com-

parison. Performance evaluation is carried out in terms of the PSNR, and the mean

absolute difference (MAD) [see Appendix D] as error-based measures which are regu-

larly employed in MRI evaluation [94], and the SSIM as a correlation-based measure.

Note that a higher performance corresponds to having a higher PSNR, SSIM and a

lower MAD.

In our experiments, we set the parameter τ to be

τ = σk ×
√

2× log(n1 × n2 × n3) (4.6)

where σk is the updated noise variance, which is calculated as σk = γ×
√
σ − ∥X −Xk∥F
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Figure 4.2: Flowchart of IHSVD-W algorithm.

[103] where a parameter γ ∈ (0, 1) and σ being the noise standard deviation in the

original data X . And we set δ = 1/σ.

In this section we present an assessment of the above-mentioned methods as applied

to synthetic and real MR images. In accordance with the common practice in the liter-

ature, these experiments are made under both Gaussian and Rician distributed noises.
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Figure 4.3: PSNR (dB) comparison on synthetic data under Gaussian noise of various
levels [Numerical results are tabulated in Appendix G].

4.3.1 Synthetic MRI Datasets

In this experiment, the aforementioned test is applied on synthetic data along with four

MR images: T1 weighted (T1w), and T2 weighted (T2w) from the Brainweb phantom

resolution [104]. The parameters of these synthetic images are as follows: the size is

181 × 217 × 181, the voxel resolution is 1mm2 (8 bit quantization). The KNIX data

set of size 256× 256× 26 and PNEUMATIX data set of size 192× 256× 25 from the

OsiriX repository [105] are also used. We synthetically generate the noisy observations

X using different values of standard deviation of the noise σ, ranging from 1% to 9%.

Figures 4.3–4.8 show the PSNR, SSIM, and MAD comparisons of the aforementioned
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Figure 4.4: SSIM comparison on synthetic data under Gaussian noise of various
levels [Numerical results are tabulated in Appendix G].

algorithms at various noise levels for both Gaussian and Rician distributed data, re-

spectively. In PSNR and MAD, the IHSVD is competitive with the three denoising

comparison methods, and the IHSVD-W considerably out-performs those three ap-

proaches. This is especially the case for noise levels of less than 5%. Note however,

that the HOSVDR yields slightly higher SSIM than the proposed IHSVD-W when the

noise level is greater than 5%. The proposed algorithms performed better in the PSNR

and MAD quantitative metrics than in SSIM. In terms of computational cost, com-

pared with state-of-the-art methods, the proposed algorithm spends less time to denote

3D MRI since it is a holistic algorithm dealing with a single cube. It is obvious that

patch-based approaches will have to deal with many localized patches or cubes with
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Figure 4.5: MAD comparison on synthetic data under Gaussian noise of various
levels [Numerical results are tabulated in Appendix G].

higher computational burden. Overall, we can conclude that the proposed algorithms

have competitive performance with the comparison denoising methods in the set of

fabricated noisy images.

Figure 4.9 shows the original T1w, T2w, KNIX and PNEUMATIX MR images and

corrupted images with Gaussian and Rician distributed noise of σ = 9%. To pro-

vide a better visual inspection, we show the denoised images in Figure 4.10 and the

corresponding residual images in Figure 4.11 in Gaussian distributed noise. The cor-

responding results for Rician distributed noise are in the Figures 4.12–4.13. One can

notice that the reconstructions using the HOSVDR, BM4D and PES-TV algorithms
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Figure 4.6: PSNR (dB) comparison on synthetic data under Rician noise of various
levels [Numerical results are tabulated in Appendix H].

exhibit some artifacts. Inspection of these images show that the proposed IHSVD-

W method indeed offers improved denoising. Clearly the proposed algorithm has the

least amount of artifacts. This is particularly visible in the reconstruction of the high

frequency-dependent details.

Therefore, while the IHSVD-W performs comparably with the HOSVDR in terms

of SSIM, it provides better results compared to the other three algorithms in terms

of PSNR, MAD, and visual comparisons. Accordingly, it can be concluded that the

proposed algorithm is competitive with state-of-the-art methods.

57



1 3 5 7 9

0.85

0.9

0.95

1
T1w

Noise level (%)

S
S

IM

 

 

IHSVD−W
IHSVD
HOSVDR
BM4D
PES−TV

1 3 5 7 9
0.8

0.85

0.9

0.95

1
T2w

Noise level (%)

S
S

IM

 

 

IHSVD−W
IHSVD
HOSVDR
BM4D
PES−TV

1 3 5 7 9
0.85

0.9

0.95

1
KNIX

Noise level (%)

S
S

IM

 

 

IHSVD−W
IHSVD
HOSVDR
BM4D
PES−TV

1 3 5 7 9
0.7

0.8

0.9

1
PNEUMATIX

Noise level (%)

S
S

IM

 

 

IHSVD−W
IHSVD
HOSVDR
BM4D
PES−TV

Figure 4.7: SSIM comparison on synthetic data under Rician noise of various levels
[Numerical results are tabulated in Appendix H].

4.3.2 Real MRI Datasets

In this experiment, real MR images are considered. We use a real cross-sectional T1w

MR brain images (OAS1-0112) from the publicly open access series of imaging stud-

ies (OASIS) database [106]. The images were acquired using a Siemens 1.5 T Vision

scanner. The acquisition parameters of these images are as follows: the repetition time

is 9.7ms, the echo time is 4ms, the flip angle is 4o, the inversion time is 20ms, the dura-

tion time is 200ms, the tensor dimension is 256×256×128 and the voxel resolution is

1× 1× 1.25mm3. The noise levels in these images are calculated to be approximately

3%. We used the method in [102] for this noise level estimation. Because the truly

noiseless images are unknown, we compare the reconstructions only visually. Recon-
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Figure 4.8: MAD comparison on synthetic data under Rician noise of various levels
[Numerical results are tabulated in Appendix H].

structions of the four aforementioned algorithms are shown in Figure 4.14. From this

figure, one can conclude that both versions of the proposed algorithms achieve better

reconstructions compared to the others. This is especially visible when comparing the

enlarged insets in Figure 4.14. It is evident that the proposed algorithm is better able to

preserve detail features and boundaries, whereas the HOSVDR, BM4D and PES-TV

algorithms blur the regions and hence reduce the contrast.

4.4 Conclusion
In this chapter, we presented a denoising algorithm for MR images. The proposed al-

gorithm forms a single tensor from the observed noisy MR image slices. This tensor

undergoes an HOSVD, where its sparse representation coefficients are calculated with

respect to a set of orthogonal basis matrices. These matrices are extracted over the
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T1w T2w KNIX PNEUMATIX

Figure 4.9: Original images (row 1), images corrupted by Gaussian noise (row 2) and
Rician noise (row 3) at noise level of σ = 9%.

PES-TV BM4D HOSVDR IHSVD IHSVD-W

Figure 4.10: Denoising results of algorithms applied to T1w (row 1), T2w (row 2),
KNIX (row 3) and PNEUMATIX (row 4) images corrupted by Gaussian noise at

noise level of σ = 9%.
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PES-TV BM4D HOSVDR IHSVD IHSVD-W

Figure 4.11: The residual images after denoising the Gaussian noise: T1w (row 1),
T2w (row 2), KNIX (row 3) and PNEUMATIX (row 4).

PES-TV BM4D HOSVDR IHSVD IHSVD-W

Figure 4.12: Denoising results of algorithms applied to T1w (row 1), T2w (row 2),
KNIX (row 3) and PNEUMATIX (row 4) images corrupted by Rician noise at noise

level of σ = 9%.
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PES-TV BM4D HOSVDR IHSVD IHSVD-W

Figure 4.13: The residual images after denoising the Rician noise: T1w (row 1), T2w
(row 2), KNIX (row 3) and PNEUMATIX (row 4).

tensor data to render improved representational quality. In addition, the composition

of the observed data into one tensor allows better exploitation of image self-similarity

across the slices of the MR image. Denoising is achieved by iteratively applying soft

thresholding on the calculated sparse representation coefficients. With the use of the

HOSVD of tensors, while denoising the data iteratively, the algorithm is able to pre-

serve structure coherence of the tensor in all directions and enhance the computational

cost. The IHSVD algorithm is further enhanced with Wiener filtering. The extended

version IHSVD-W is compared with three recent state-of-the-art algorithms for MR

image denoising. The comparison is made quantitative in terms of PSNR, SSIM, and

MAD as objective quality metrics. The experiments demonstrate the competitive per-

formance of the proposed algorithms in terms of these metrics. Visual comparisons are

in line with the quantitative conclusions.
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Figure 4.14: Denoising results and the corresponding enlarged insets of OAS1-0112.
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Chapter 5

A PATCH-BASED ITERATIVE HYPERSPECTRAL IMAGE

DENOISING METHOD VIA HIGHER ORDER SINGULAR

VALUE DECOMPOSITION

5.1 Introduction

Denoising is the essential task in hyperspectral image (HSI) preprocessing that can

improve the performance of the subsequent applications. In the previous chapter, we

developed an MR image denoising method based on iterative regularization under the

HOSVD framework, which exhibits good performance in denoising MR images. In

this chapter, on the one hand we consider the denoising of the HSIs by employing the

proposed iterative HOSVD to improve the performance of the subsequent applications.

But on the other hand, we go one step further and propose an iterative denoising algo-

rithm which utilizes the advantages of the patch-based HOSVD sparse model and the

iterative regularization technique. The experiments with both synthetic noisy and real

HSI reveal that the proposed iterative algorithm improves the HSI quality in terms of

both quality metrics and visual inspection. The subsequent classification results further

validate the effectiveness of the proposed HSI noise reduction algorithm.
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5.1.1 Related Work

HSI is one of the most widely-used imaging techniques in the field of remote sensing to

observe the earth surface at various contiguous spectral bands using ground, airborne

or spaceborne hyperspectral sensors. With the wealth of spectral information, HSI

provides a large amount of information in wide range of applications such as mineral

detection and exploration, military surveillance, and other related fields [107, 108, 109,

110].

Unfortunately, due to equipment limitation, such as sensor sensitivity, photon effects,

and thermal electronics the HSI is often corrupted by noises in the acquisition process.

Noise in HSI can degrade the visual quality and limit the applicability of computerized

analysis processes such as unmixing, classification, and object detection [111, 112,

113, 114, 115, 116]. Therefore, to improve the image quality prior to data analysis,

HSI denoising is of crucial importance to the successful use of the HSI preprocessing

technique.

The noises in HSI can be grouped into two categories namely: fixed pattern noise and

random noise. Fixed pattern noise such as striping noise can be reduced by a suitable

denoising method. However, random noise due to its stochastic nature cannot be re-

moved entirely. One widely used model for random noise model in HSI is the signal

independent AWGN along both spectral and spatial dimensions which is reasonable

when the thermal noise is dominant. However, with improvement in the new genera-

tion of hyperspectral sensors, in some cases, the dominant noise source is a mixture of
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signal independent, signal dependant noise, and fixed pattern noise [111, 112, 117].

Generally, the signal independent AWGN is the situation found in HSI, many methods

have been proposed based on this model for the denoising of HSI. The traditional HSI

denoising methods adopt the classical 1D and 2D denoising methods to reduce the

noise in HSI pixel by pixel, or band by band [117, 118, 119, 120, 121, 122, 123].

However, these kinds of methods do not deal with the spatial and spectral information

simultaneously and generally cannot reach good performance in real application. In

order to treat the HSI as a whole entity, to remove the noise efficiently, in recent years

tensor algebra is brought to jointly analyze the HSI [124].

In HSI processing, images are modelled as a 3D data, i.e., two spatial dimensions

and one spectral dimension, which can be considered as a tensor on multidimensional

space. Based on the tensor algebra, some recent methods utilize multilinear algebra

to analyze the whole HSI directly [124, 125, 126, 127, 128, 129, 130, 131]. Along

this research line, based on the Tucker decomposition, Renard et al. [125] presented an

effective low rank tensor approximation to obtain the low rank approximation of the

input HSI. In [126] multidimensional Wiener filtering is used for HSI denoising based

on Tucker decomposition. Most recently, Peng et al. [130] presented an effective tensor

based dictionary learning method based on Tucker model with group block sparsity

constraint over the core tensor. Here, each set of grouped similar cubic patches are

estimated by low rank tensor approximation. Apart from Tucker decomposition, Liu et

al. [127] designed the PARAFAC model by utilizing the parallel factor analysis to
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denote the HSI for the first time. Moreover, Guo et al. [128] proposed a method for

HSI noise reduction base on the high order rank-1 tensor decomposition by separating

signal dominant component and noise component.

5.2 Proposed Method

The HSI is composed by many bands of 2D images, which can be naturally regarded

as a 3D tensor. The aim of the HSI denoising is to reconstruct the clean HSI T from

its noisy measurement X (as in equation (1.1)). Suppose measurement X with size

n1 × n2 × n3 is acquired in the presence of noise η(0, σ). In this model, the noise is

assumed to be AWGN, which is the main perturbing noise in HSI.

In the following, the two steps of the iterative HOSVD method are described: First,

the global iterative thresholding step which considers the whole HSI as a single cube,

is explained. Then, the nonlocal iterative HOSVD which exploits the sparsity inside

the grouped similar cubic patches is discussed.

5.2.1 Step One: The Global Iterative Higher Order Singular Value Decompositi-

on

In this section, we employ the proposed iterative regularization method based on the

HOSVD transform for HSI denoising. For this purpose, the proposed method first

forms a single cube which is composed of all the HSI bands that is able to consider both

the spatial and spectral information simultaneously. Similar to the previous chapter for

MR image denoising, the denoising is achieved by iterating a thresholding process on

the HOSVD sparse representation coefficients which are calculated with respect to or-

thogonal matrices. These orthogonal basis matrices are learned over the tensor data to
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render improved representational quality. In this setting, the sparsity of the core tensor

in the HOSVD domain is exploited to reconstruct the denoised HSI. Thus, information

from all the spatial and spectral bands will be contributed to the reconstruction.

A trivial assumption for the AWGN in subspace analysis is that the useful data com-

ponents in HSI are highly correlated between the spectral bands, and the noise is less

correlated due to its random distribution. Coefficients of HOSVD can be employed to

express the correlation between rank-1 tensors and the data components, therefore to

distinguish the dominant component and the noise, we propose to extract the dominant

component from noisy measurements by keeping the largest absolute coefficients in

the core tensor and setting the rest of them to zero rather than finding the tensor rank

of noisy measurement.

The pseudo-code of the global HSI denoising method is like as Algorithm 3 in previous

chapter for MRI denoising, except the Y 0 is initialized by the noisy HSI.

For better denoising performance, similar to the previous chapter, the method is aug-

mented with a second stage. For clarity, in this chapter this augmented method is

referred to as GIHSVD-W. The flowchart of the respective proposed method for HSI

denoising is shown in Figure 5.1.

5.2.2 Step Two: Nonlocal Patch-Based Iterative Higher Order Singular value D-

ecomposition

The advantages of the proposed GIHSVD-W method are that it took the correlation

between spatial and spectral information into consideration, and tries to eliminate the
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Figure 5.1: Flowchart of GIHSVD-W algorithm.

spectral redundancy of HSI. However, it has not used the nonlocal similarity property

of HSI. Therefore, the new method is proposed to estimate the noise free HSI by com-

bining the nonlocal HOSVD sparse model and the iterative regularization framework.

By grouping similar cubic patches together to form 4D stack, it can achieve a more

enhanced sparse representation in HOSVD domain, which ensures its outstanding de-
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noising performance.

The proposed nonlocal iterative HOSVD regularization method scheme based on the

discussions in the previous section has two steps: the first step gets an initial estimation

of the clean HSI T , and the second step further enhances the denoising result of the

first step.

The general idea of iterative regularization is to add a part of filtered noise to the

denoised data, since in each iteration some detail information in HSI is also removed

with the denoising processing; i.e.,

Y k = Y k−1 + δ (X −Xk) (5.1)

where Y k is the noisy data in the kth iteration. Similar to GIHSVD-W method, Y 0

is initialized by the noisy HSI X . The proposed patch-based HOSVD method, refer

to the process that separates t similar cubic patches (including the reference patch) of

size p× p× p from the noisy image into a 4D stack, in which the group patches have

similar local structures [93, 97].

Next, each stack is projected onto the HOSVD domain. The HOSVD sparse coef-

ficients are calculated with respect to orthogonal matrices, different from the other

algorithms [93, 94, 95, 96], the HOSVD bases (factor matrices) is learned from data

which are more adapted to the data content, whereas the other algorithms use fixed

bases. The HOSVD shrinkage exploits the sparsity of the HOSVD coefficients, to esti-

mate the desired denoised stack. The denoised HSI Xk data at kth iteration is achieved
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by aggregating all filtered patches.

As in the previous chapter, this iterative procedure is continued until a stopping crite-

rion is met. The nonlocal HOSVD iterative shrinkage is more general than the nonlocal

HOSVD shrinkage. It provides a principled, iterative restoration method for a better

chance of getting better results. We term this augmented method as NLIHSVD-W. The

complete procedure of the proposed nonlocal HOSVD iterative regularization method

is summarized in Algorithm 5 and depicted as the flowchart in Figure 5.2.

The mentioned denoising method can be formulated as in equation (3.2),

X̂
t
= argmin

1

2
∥X t − T t∥2F + τψ(X t) (5.2)

where X̂
t

is the denoised cubic patches, T t is the original cubic patches corresponding

to X t, ψ(X t) is a sparse regularization term in the HOSVD transform domain, and

τ is the regularization parameter used to balance the relative contribution between the

two terms. Then, equation (5.2) can be formulated for each group as:

X̂
t
= argmin

1

2
∥X t − T t∥2F + τ∥X t∥1 (5.3)

5.3 Experimental Results

In this section, the performance of the proposed denoising methods are evaluated on

both synthetic and real datasets, and compared with several state-of-the-art denoising

methods, including the HOSVDR [99], BM4D [96] and PARAFAC [127]. Perfor-

mance evaluation is carried out in terms of two quantitative measures, the first measure

is the PSNR, and the second measure is the SSIM. Moreover, the parameters (i.e., τ ,
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Algorithm 5 The Proposed NLIHSVD-W Algorithm for HSI
1: INPUT: Observed noisy HSI X , threshold τ , standard deviation σ, step size δ, γ ∈ (0, 1),

and iteration number K.
2: OUTPUT: The denoised HSI X̂ .
3: Initialize Y 0 = X .
4: for k= 0, 2, ..., K do

Update Y k = Y k−1 + δ (X −Xk)
Search for the similar cubic patches from Y k to cluster them and create 4D tensor Y t.

Update the σt as σt = γ ×
√

σ − ∥X −Xk∥F
Calculate the HOSVD of each 4D stack as Y t=S ×1 U1×2 U2 ×3 U3 ×4 U4.
Update the threshold τt as equation τt = σt ×

√
2× log(n1 × n2 × n3 × n4)

Apply soft thresholding on S.
Construct Xt = Dτ (S)×1 U1 ×2 U2 ×3 U3 ×4 U4.
Aggregate all the reconstructed cubic patches to restore clean HSI Xk

If ∥X −Xk∥F ≤ σ
break.

5: end for
Obtain the final denoised HSI after applying Wiener filtering on Xk

X̂ ←Xk.

δ, and γ, K) are set as in chapter 4.

5.3.1 Synthetic HSI Dataset

In this experiment, the performance of the aforementioned methods is evaluated on

two synthetic HSI datasets: Washington DC Mall [132] and RemoteImage [133] with

size of 200×200×160 and 200×200×89, respectively. The experiment is made under

Gaussian distributed noise, and the noisy observations X is generated using different

values of standard deviation of the noise σ, ranging from 1% to 11%.

Tables 5.1 and 5.2 show the PSNR, and SSIM comparisons of the aforementioned

methods at various noise levels. Figure 5.3 illustrates the PSNR and SSIM of each

band at a noise level of σ = 11%.

In view of these tables and figure, as the level of noise increases, it can be observed
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Figure 5.2: Flowchart of NLIHSVD-W algorithm.

Table 5.1: PSNR (dB) and SSIM comparisons of different methods on Washington
DC Mall.

Algorithm 1 3 5 7 9 11
PARAFAC [127] 34.63 0.947 34.28 0.943 33.86 0.937 33.37 0.929 32.84 0.919 32.26 0.907

BM4D [96] 46.51 0.996 39.48 0.979 36.23 0.958 34.12 0.936 32.56 0.913 31.34 0.890
HOSVDR [99] 46.74 0.995 40.15 0.980 36.71 0.958 34.47 0.934 33.37 0.919 32.12 0.898
GIHSVD-W 47.86 0.997 42.03 0.988 38.73 0.976 36.53 0.961 34.80 0.944 33.41 0.925

NLIHSVD-W 48.53 0.997 42.63 0.988 39.31 0.976 37.00 0.962 35.21 0.947 33.72 0.930
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Table 5.2: PSNR (dB) and SSIM comparisons of different methods on RemoteImage.
Algorithm 1 3 5 7 9 11

PARAFAC [127] 31.03 0.870 30.83 0.865 30.74 0.864 30.56 0.859 30.23 0.849 29.96 0.841
BM4D [96] 44.05 0.992 37.26 0.962 34.13 0.921 32.06 0.873 30.58 0.825 29.48 0.781

HOSVDR [99] 44.05 0.991 37.34 0.962 34.12 0.920 32.03 0.872 30.98 0.842 29.84 0.799
GIHSVD-W 44.45 0.992 38.72 0.971 36.62 0.957 34.50 0.932 32.91 0.904 31.65 0.876

NLIHSVD-W 45.26 0.993 39.60 0.977 36.86 0.957 34.95 0.936 33.52 0.913 32.23 0.885
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Figure 5.3: PSNR (dB) and SSIM comparisons of different methods on each band of
Washington DC Mall (row 1) and RemoteImage (row 2) at noise level of σ = 11%.

that the proposed methods gives a promising performance in terms of PSNR and SSIM

when compared to the HOSVDR, PARAFAC, and BM4D methods. Note however

that, the performance of the NLIHSVD-W shows significant improvement over the

GIHSVD-W and the other three denoising methods.

To examine the denoising results visually, Figure 5.4 shows the original and noisy of
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Original (band25) Noisy (band25) Original (band115) Noisy (band115)

Original (band12) Noisy (band12) Original (band52) Noisy (band52)

Figure 5.4: Original and noisy images of Washington DC Mall (band 25 and
band 115) (row 1); Original and noisy images of RemoteImage (band 12 and band 52)

(row 2).

Washington DC Mall, and RemoteImage images. Figure 5.5 illustrates their recon-

structions obtained by using the five aforementioned methods for Gaussian distributed

noise at a noise level of σ = 11%. In terms of visual quality, the proposed HSI denois-

ing methods are comparable and even superior to the state-of-the-art denoising meth-

ods. However, one can easily notice that the reconstructions using the HOSVDR,

BM4D and PARAFAC methods exhibit some blurring artifacts. In contrast, the recon-

structions using the proposed methods does not suffer from that blurring. The detailed

features in the HSIs are well preserved by the GIHSVD-W and NLIHSVD-W methods

compared with other three denoising methods. As can be seen from Figures 5.5, the

results of the NLIHSVD-W are more visually pleasant than those of other compared

methods. To provide a better visual inspection, we opt to compare residual images as

shown in Figure 5.6. The residual images illustrate that the proposed NLIHSVD-W

method offers improved denoising. Overall, we can conclude that the GIHSVD-W and

NLIHSVD-W methods preserve well in details.
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PARAFACE BM4D HOSVDR GIHSVD-W NLIHSVD-W

Figure 5.5: Denoising results of methods applied to Washington DC Mall, band 25
(row 1), band 115 (row 3), and the RemoteImage, band 12 (row 3), band 52 (row 4).

PARAFACE BM4D HOSVDR GIHSVD-W NLIHSVD-W

Figure 5.6: The residual images after denoising of Washington DC Mall, band 25
(row 1), band 115 (row 2), and the RemoteImage, band 12 (row 3), band 52 (row 4).
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5.3.2 Real HSI Dataset

In this experiment, the consistency of the proposed method is verified on real HSI

dataset. The effectiveness of the proposed methods on real HSI dataset is verified on

the Indian Pines dataset which was collected by the AVIRIS sensor over the Indian

Pines region in Northwestern Indiana in 1992. The acquisition parameters of these

images are as follows: the image size is 145 × 145, there are 220 bands in the image,

covering the wavelength range of 0.4− 2.5µm3. The noise level in some bands is high

and there is nearly no useful information in these bands, therefore, the number of bands

is reduced to 200 by abandoning the bands covering the region of water absorption:

104− 108, 150− 163, and 220.
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Figure 5.7: The standard deviation of each band of Indian Pines before and after
preprocessing step.

In real HSI, the noise level in each spectral band is different. However, the proposed

method depends on the assumption that the noise is uniformly distributed in each band.
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In order to apply the proposed denoising method, a preprocessing stage is necessary to

make the noise level uniformly. Here, the preprocessing stage involves the following

steps: 1) The standard deviation of each band is estimated in wavelet domain as [134]

σi =
median(|Wi

(L+1)|)
0.6745

(5.4)

whereW (L+1)
i is the wavelet coefficients for the (L+1)th subband (HH) in the ith band.

Note that we use Daubechies wavelet with 10 coefficients in 3 level decompositions.

2) The uniform σ is obtained by taking the mean value of the all estimated standard

deviations. 3) The standard deviation of each band is changed to σ by the following

formula,

X(:, :, i) =
σ

σi
X(:, :, i) (5.5)

where X(:, :, i) is the intensity in the ith band. 4) At the end, the process is inverted

after applying the proposed denoising method on the data,

X̃(:, :, i) =
σi
σ
X̂(:, :, i) (5.6)

where X̂(:, :, i) is the final recovered result in the ith band, and X̃(:, :, i) is the in-

tensity in each denoised band. The standard deviation of noise in each band before

and after this preprocessing is shown in Figure 5.7. Note that, the truly noiseless

Indian Pines dataset are unknown. Therefore, classification is implemented to evaluate

the performance of the aforementioned denoising methods. Here, the support vector

machine algorithm (SVM) [135] is used as the classifier, and cross validation (CV)

is employed to set the parameters. The SVM has been widely used in HSI classifi-

cation [136, 137, 138]. The main idea is to project the data to a higher dimensional

space and use a hyperplane to get a better separation. This is done by using a kernel
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Table 5.3: Number of total, training, and test samples used in the class-
ification of the Indian Pines dataset.

Name of class Total Training Testing
Alfalfa 46 15 31

Corn-notill 1428 100 1328
Corn-mintill 830 100 730

Corn 237 50 187
Grass-pasture 483 50 433

Grass-trees 730 100 630
Grass-pasture-mowed 28 15 13

Hay-windrowed 478 50 428
Oats 20 15 5

Soybean-notill 972 100 872
Soybean-mintill 2455 150 2305

Soybean-cleantill 593 50 543
Wheat 205 50 155
Woods 1265 100 1165

Buildings-Grass-Trees-Drives 386 50 336
Stone-Steel-Towers 93 50 43

Table 5.4: Classification accuracy (%) for Indian Pines datasets with different
denoising methods.

Name of class Noisy PARAFAC BM4D HOSVDR GIHSVD-W NLIHSVD-W
Alfalfa 74.19 100 93.55 77.42 96.77 87.10

Corn-notill 73.57 80.35 84.04 84.79 83.13 83.06
Corn-mintill 70.14 79.45 86.99 90.14 88.63 91.92

Corn 77.01 90.91 87.17 93.58 95.72 99.47
Grass-pasture 89.38 85.91 94.69 90.99 96.30 96.30

Grass-trees 92.06 99.21 98.25 97.62 97.78 97.94
Grass-pasture-mowed 100 92.31 100 92.31 100 100

Hay-windrowed 97.66 97.43 99.07 99.53 100 99.53
Oats 100 100 100 100 100 100

Soybean-notill 68.35 89.91 81.77 84.06 91.86 92.20
Soybean-mintill 65.03 81.69 85.86 81.74 88.72 90.89

Soybean-cleantill 78.64 72.56 90.42 93.00 93 86
Wheat 95.48 90.32 98.71 98.71 99.35 100
Woods 88.84 94.16 96.82 97.51 96.65 99.14

Buildings-Grass-Trees-Drives 74.11 83.63 82.74 80.65 97.62 95.54
Stone-Steel-Towers 97.67 95.35 97.67 97.67 100 100
Overall Accuracy 76.65 85.82 89.07 88.65 91.51 92.41

function like the quadratic function. To avoid unnecessary deviation, the number of

the training and testing samples are chosen randomly (shown in Table 5.3), and the

classification experiments are repeated 30 times. The efficiency of aforementioned

79



methods is evaluated in term of the overall accuracy. Table 5.4 illustrates the overall

accuracy using the proposed methods and the other three methods. It is evident that

the proposed GIHSVD-W and NLIHSVD-W methods can be better able to improve the

classification performance of HSI than other three algorithms methods. In summary,

the proposed method is better for detail preservation and is more effective than the

other three methods in classification case. Reconstructions of the five aforementioned

methods are shown in Figure 5.8. Thus, from the view of visual effect, it can be seen

that the performance of the proposed methods outperforms the other three methods.

Noisy PARAFAC BM4D

HOSVDR GIHSVD-W NLIHSVD-W

Figure 5.8: Denoising results of Indian Pines (band 2).

5.4 Conclusion

In this chapter, two iterative HSI denoising methods based on HOSVD transform were

proposed. One method is simply an extension of the global iterative regularization

based on HOSVD to HSIs, named as GIHSVD-W. However, due to the curse of di-

mensionality, proposing a global denoising method for the processing the whole 3D

HSI data is often found to be too hard. Therefore, in the second method for further im-
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provement, we presented a simple and efficient method for HSI denoising, which takes

the advantage of the patch-based HOSVD sparse model and the iterative regularization

framework by integrating the proposed global iterative method into the nonlocal simi-

lar cubic patches group. For better denoising performance, the proposed methods are

further enhanced with a post process Wiener filtering.

The proposed denoising methods for HSI are compared with three recent state-of-the-

art methods. The comparison is made in terms of PSNR and SSIM as objective quality

metrics. Experimental results indicate the competitive performance of the proposed al-

gorithms in terms of these metrics. Visual comparisons are in line with the quantitative

conclusions. The real dataset is used to evaluate the denoising and classification results

of the aforementioned methods. The results of the denoised real dataset are classified

by SVM, the classification accuracy shows improvements compared to the results with

the other three state-of-the-art methods in the experiments.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

The aim of this thesis was towards restoration of multidimensional data, including ten-

sor inpainting, MRI denoising and, HSI denoising. In this thesis, we proposed an iter-

ative regularization algorithm by employing the HOSVD transform and exploiting the

sparsity of the multidimensional signals. At each iteration, the HOSVD is performed;

the core tensor obtained is then modified via soft thresholding. While preserving the

structural information and acknowledging contribution of large entries in the core ten-

sor, we further obtain approximate solution of the restoration problem by synthesizing

the HOSVD using modified core tensor. This corresponds to the minimization of the ℓ1

of the core tensor coefficients. Accordingly, the proposed restoration algorithm would

lead to a tensor with fewer rank-1 terms and yields an approximate solution to sparse

problem. The conclusions and future works made through this study will be summa-

rized as follows.

6.1.1 Tensor Inpainting

Chapter 3 developed an iterative sparse HOSVD algorithm (referred to as CTT) to

the problem of tensor inpainting which is quite different in nature. The performance

of the CTT algorithm is evaluated in three applications, inpainting of multi-channel

images, video sequences, and magnetic resonance images (MRI), since they have dif-
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ferent characteristics. The visual and quantitative results are compared with some

state-of-the-art tensor inpainting algorithms and show that the CTT algorithm can be

effective in inpainting applications (especially for large size tensors), thus signifying

the algorithm proposed.

In the proposed CTT approach, instead of unfolding or separating the slices of the

tensor, the tensor is projected onto the HOSVD transform. In this approach the iterative

soft thresholding is performed to regularize the result of the inpainting, leading to a

sparse representation of the core tensor. Accordingly, the advantages of the proposed

CTT algorithm are that it takes the advantages of global property of the observed data

properly and is able to preserve structural coherence of tensor in all directions.

6.1.2 MRI Denoising

Chapter 4 presented the application of iterative sparse HOSVD to denoise a magnetic

resonance (MR) image. Here, the proposed denoising algorithm (named as IHSVD)

combines the noisy image slices into a single tensor, thereby exploiting non-local im-

age similarity across slices; and transforms into the HOSVD domain. The evaluated

HOSVD coefficients are subjected to a soft shrinkage operator to minimize the noise

contribution in MRI. With the use of the HOSVD of tensors, while denoising the data

iteratively, the algorithm is able to preserve structure coherence of the tensor in all

directions. The proposed denoising algorithm is further enhanced with a post-process

Wiener filtering (referred to as IHSVD-W).

In order to test the performance of the proposed algorithm, both Gaussian and Rician

distributed noise were considered. The performance of the proposed algorithm is eval-
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uated on synthetic and real datasets. The experiments demonstrate the competitive

performance of the proposed algorithm with the state-of-the-art denoising approaches.

And, it can be concluded that the proposed algorithm preserves well in details. In terms

of computational cost, compared with the state-of-the-art algorithms, the proposed al-

gorithm spends less time to denoise 3D MRI since it is a holistic algorithm dealing

with a single cube.

6.1.3 HSI Denoising

Chapter 5 considered the denoising of the HSIs by employing the global iterative

HOSVD (named as GIHSVD-W). The advantages of the GIHSVD-W algorithm are

that it took the correlation between spatial and spectral information into consideration,

and tries to eliminate the spectral redundancy. However, due to the curse of dimension-

ality, in this work a new iterative denoising method was proposed which utilizes the

advantages of the patch-based HOSVD sparse model and the iterative regularization

technique (named as NLIHSVD-W).

The experiments with both synthetic noisy data and real HSI reveal that the proposed

iterative algorithm improves the HSI quality in terms of both quality metrics and visual

inspection. The real dataset is used to evaluate the denoising and classification results

of the proposed HSI denoising algorithm. The results of the denoised real dataset are

classified by SVM, the subsequent classification results further validate the effective-

ness of the proposed HSI noise reduction algorithm. In terms of the computational cost,

the proposed NLIHSVD-W requires more computational cost than the other denoising

methods, since both patch-based HOSVD sparse model and iterative regularization
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techniques are time consuming techniques, whereas the GIHSVD-W spends less time

to denoise 3D HSI since it is holistic method dealing with a single cube.

The superior denoising performance of the NLIHSVD-W method can be attributed to

some aspects. First, the iterative nonlocal HOSVD is more general than the nonlo-

cal HOSVD shrinkage. Next, it represents a stack of similar cubic patches by using

learned orthogonal matrices. These matrices are extracted over the tensor data which

are more adaptable to different data types and can achieve a more efficient and sparse

representation than using fixed bases. Lastly, the NLIHSVD-W provides iterative reg-

ularization technique to improve the denoising performance. Similar to GIHSVD-W

it benefits from the manipulation of better orthogonal matrices from the combined im-

aged in each iteration, compared to with orthogonal bases from the original noisy data

in the first iteration.

6.2 Future work

The following is an account for possible future extensions that can be made on the

work conducted in this thesis.

The proposed restoration algorithm can be applied to other medical images such as

positron emission tomography and Fundus images which can be considered a good

future direction. One limitation of the proposed algorithm is that several filtering pa-

rameters are determined heuristically. Automated determination of the parameters will

be studied in our future work.
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The proposed restoration algorithm is based on the assumption of signal independent

noise. Therefore, it is useful for the AWGN. Meanwhile, real MRI and HSI may

contain different types of noise in addition to the AWGN, and the proposed method

can be improved to handle the mixture noise.

The patch-based tensor approaches can be future direction in tensor inpainting [70,

71, 97, 98]. Adaptation of soft thresholding and iterative regularization procedure into

patch-based tensor approaches may help improving reconstruction quality [34, 139].

Moreover, in this direction we would like to show that tensor inpainting is provably

accurate even when the few observed entries are corrupted with a small amount of

noise.

The quality of the proposed restoration algorithm can be improved by using the con-

cept of the tensor block-sparsity, and the hierarchical Tucker (HT) decompositions.

Combination of these special decompositions with patch-based tensor approaches and

iterative regularization may also help improving the reconstruction performance.
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Appendix A: Peak Signal-to-Noise Ratio (PSNR)

The peak signal-to-noise ratio (PSNR) between a vectorized tensor T and its estimated

X is calculated in dB as

PSNR = 10(log10 255
2/MSE) (1)

where MSE is the mean squared error which is calculated as

MSE(X,T ) =
1

N
∥X − T ∥2 (2)

with N being length of the vectorized tensor.

Appendix B: Relative Squared Error (RSE)

The relative squared error (RSE) between a vectorized tensor T and its estimated X is

calculated as

RSE =
∥X − T ∥F
∥T ∥F

(3)

Appendix C: Structural Similarity Index (SSIM)

The structural similarity index (SSIM) between a tensor T and its estimated X , is

calculated as:

SSIM(T ,X) =
(2µTµX + c1)(2σTX + c2)

(µ2
T + µ2

X + c1)(σ2
T + σ2

X + c2)
, (4)

where µT , µX , σT , σX denotes the mean value and the standard deviation. σTX de-

fines the cross covariance between two data. c1 = 0.01 and c2 = 0.03 are two con-

stants [140]. The SSIM is between 0 and 1, where 1 is when the two data are the

same.
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Appendix D: Mean Absolute Difference (MAD)

The mean absolute difference (MAD) between a vectorized tensor T and its estimated

X is calculated as [92]

MAD =
1

N
∥X − T ∥1 (5)

where N is length of the vectorized data.

Appendix E: Gaussian Noise Distribution

Gaussian distribution of a noisy random variable y with µ-mean and standard deviation

σ is defined as the following equation

P (y) =
1

(σ
√
2π)

e
−(y−µ)2

2σ2 (6)

Appendix F: Rician Noise Distribution

Let denote an image intensity in the absence of noise by t and the noisy measured one

by y. The Rician distribution of a noisy intensity y is defined as the following equation

P (y) =
y

σ2
e

y2+t2

2σ2 I0(
yt

σ2
) (7)

where I0 denotes the modified Bessel function of zeroth order, and σ denotes the stan-

dard deviation of the Gaussian noise in the real and the imaginary images (which is

assumed to be equal).
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Appendix G: Numerical Results of PSNR, SSIM and MAD
Comparisons of Different Methods on Synthetic Data under
Gaussian noise of various levels [Figures 4.3-5].

Table 1: Results of T1w.
σ (%) Measure PES-TV [94] BM4D [96] HOSVDR [99] IHSVD IHSVD-W

1
PSNR 42.28 44.09 45.21 46.23 48.02
SSIM 0.987 0.992 0.994 0.993 0.995
MAD 1.48 1.21 0.95 1.04 0.74

3
PSNR 35.81 38.39 39.01 40.07 40.78
SSIM 0.955 0.976 0.979 0.977 0.980
MAD 3.10 2.28 1.83 2.09 1.68

5
PSNR 32.99 35.95 36.48 36.44 37.47
SSIM 0.921 0.961 0.966 0.957 0.964
MAD 4.30 2.99 2.87 2.79 2.28

7
PSNR 31.21 34.38 34.81 34.54 35.74
SSIM 0.888 0.947 0.952 0.934 0.947
MAD 5.30 3.58 3.42 3.39 2.28

9
PSNR 29.87 33.21 33.54 33.13 34.30
SSIM 0.855 0.933 0.938 0.917 0.933
MAD 6.20 4.10 4.36 3.95 3.24

Table 2: Results of T2w.
σ (%) Measure PES-TV [94] BM4D [96] HOSVDR [99] IHSVD IHSVD-W

1
PSNR 40.53 42.44 43.48 44.74 45.78
SSIM 0.987 0.993 0.995 0.993 0.995
MAD 1.79 1.46 1.14 1.27 0.96

3
PSNR 33.56 35.68 36.51 37.05 38.08
SSIM 0.957 0.977 0.982 0.969 0.976
MAD 3.94 3.07 2.63 2.73 2.31

5
PSNR 30.52 32.94 33.68 33.59 34.25
SSIM 0.929 0.962 0.969 0.942 0.957
MAD 5.54 4.14 3.83 3.74 3.28

7
PSNR 28.50 31.23 31.89 31.39 32.72
SSIM 0.900 0.949 0.956 0.920 0.932
MAD 6.94 4.99 4.76 4.57 4.22

9
PSNR 27.01 29.98 30.26 30.05 31.13
SSIM 0.872 0.936 0.942 0.893 0.921
MAD 8.21 5.72 5.64 5.48 5.43
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Table 3: Results of KNIX.
σ (%) Measure PES-TV [94] BM4D [96] HOSVDR [99] IHSVD IHSVD-W

1
PSNR 40.15 42.09 42.15 43.81 44.17
SSIM 0.972 0.987 0.986 0.992 0.992
MAD 1.91 1.58 1.31 1.56 1.22

3
PSNR 35.64 35.87 36.10 37.34 38.87
SSIM 0.948 0.953 0.954 0.962 0.973
MAD 3.19 3.13 2.76 3.03 2.24

5
PSNR 33.46 33.51 33.79 33.62 34.89
SSIM 0.929 0.930 0.933 0.936 0.943
MAD 4.06 4.04 3.88 3.90 3.56

7
PSNR 31.97 32.02 32.28 32.19 33.59
SSIM 0.910 0.911 0.914 0.918 0.933
MAD 4.80 4.74 4.58 4.60 3.94

9
PSNR 30.79 30.92 31.12 31.06 32.37
SSIM 0.890 0.894 0.898 0.906 0.917
MAD 5.50 5.33 5.15 5.20 4.51

Table 4: Results of PNEUMATIX.
σ (%) Measure PES-TV [94] BM4D [96] HOSVDR [99] IHSVD IHSVD-W

1
PSNR 40.54 44.39 44.54 45.29 47.60
SSIM 0.954 0.982 0.982 0.985 0.991
MAD 1.86 1.22 1.09 1.20 0.84

3
PSNR 36.15 39.91 40.16 41.73 42.45
SSIM 0.906 0.955 0.956 0.968 0.972
MAD 3.00 2.03 1.64 1.98 1.52

5
PSNR 33.92 37.95 38.11 38.20 38.95
SSIM 0.866 0.937 0.937 0.926 0.938
MAD 3.81 2.50 2.43 2.47 2.29

7
PSNR 32.35 36.59 36.65 36.62 37.54
SSIM 0.825 0.921 0.920 0.901 0.919
MAD 4.55 2.89 2.86 2.88 2.67

9
PSNR 31.12 35.54 35.88 35.75 36.68
SSIM 0.784 0.906 0.910 0.890 0.909
MAD 5.35 3.24 3.17 3.12 2.92

115



Appendix H: Numerical Results of PSNR, SSIM and MAD
Comparisons of Different Methods on Synthetic Data under Rician
noise of various levels [Figures 4.6-8].

Table 5: Results of T1w.
σ (%) Measure PES-TV [94] BM4D [96] HOSVDR [99] IHSVD IHSVD-W

1
PSNR 41.67 44.22 45.21 46.54 47.87
SSIM 0.986 0.992 0.994 0.993 0.996
MAD 1.56 1.19 0.96 1.04 0.82

3
PSNR 35.30 38.32 38.97 39.79 40.59
SSIM 0.950 0.975 0.979 0.976 0.981
MAD 3.25 2.30 2.06 2.10 1.87

5
PSNR 32.52 35.72 36.38 36.04 37.07
SSIM 0.914 0.959 0.965 0.949 0.964
MAD 4.49 3.10 2.88 2.83 2.76

7
PSNR 30.71 33.89 34.61 34.21 35.37
SSIM 0.879 0.942 0.949 0.927 0.949
MAD 5.56 3.84 3.60 3.48 3.35

9
PSNR 29.38 32.36 33.27 33.08 33.92
SSIM 0.845 0.924 0.933 0.917 0.934
MAD 6.51 4.63 4.46 4.09 3.96

Table 6: Results of T2w.
σ (%) Measure PES-TV [94] BM4D [96] HOSVDR [99] IHSVD IHSVD-W

1
PSNR 39.50 42.63 43.48 44.16 46.13
SSIM 0.984 0.993 0.995 0.991 0.995
MAD 1.97 1.42 1.26 1.27 0.98

3
PSNR 32.22 35.68 36.48 37.05 38.97
SSIM 0.949 0.977 0.982 0.963 0.975
MAD 4.47 3.06 2.56 2.74 2.27

5
PSNR 29.17 32.75 33.61 33.42 34.09
SSIM 0.917 0.961 0.968 0.933 0.957
MAD 6.29 4.24 3.82 3.77 3.48

7
PSNR 27.01 30.87 31.78 31.07 32.04
SSIM 0.882 0.944 0.954 0.912 0.938
MAD 8.02 5.26 4.85 4.65 4.54

9
PSNR 25.30 29.45 30.06 29.45 30.77
SSIM 0.845 0.928 0.938 0.903 0.921
MAD 9.76 6.20 6.27 5.64 5.53
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Table 7: Results of KNIX.
σ (%) Measure PES-TV [94] BM4D [96] HOSVDR [99] IHSVD IHSVD-W

1
PSNR 39.29 41.42 42.14 43.91 44.35
SSIM 0.966 0.983 0.986 0.991 0.992
MAD 2.09 1.69 1.29 1.56 1.20

3
PSNR 35.20 35.71 36.06 37.02 38.45
SSIM 0.943 0.951 0.954 0.964 0.972
MAD 3.32 3.18 2.80 3.04 2.34

5
PSNR 33.06 33.26 33.70 33.59 34.17
SSIM 0.924 0.928 0.932 0.937 0.943
MAD 4.18 4.15 4.04 3.95 3.77

7
PSNR 31.62 31.59 32.11 32.06 32.45
SSIM 0.905 0.908 0.912 0.913 0.924
MAD 4.90 5.00 4.97 4.70 4.55

9
PSNR 30.47 30.26 30.85 30.62 31.15
SSIM 0.885 0.889 0.893 0.889 0.907
MAD 5.60 5.82 5.65 5.38 5.30

Table 8: Results of PNEUMATIX.
σ (%) Measure PES-TV [94] BM4D [96] HOSVDR [99] IHSVD IHSVD-W

1
PSNR 39.60 44.21 44.52 45.81 47.97
SSIM 0.945 0.981 0.982 0.986 0.993
MAD 2.06 1.24 1.04 1.20 0.72

3
PSNR 35.46 39.54 39.98 41.56 42.46
SSIM 0.894 0.953 0.954 0.965 0.971
MAD 3.20 2.12 1.69 2.02 1.52

5
PSNR 33.18 36.58 37.50 36.93 38.22
SSIM 0.847 0.922 0.929 0.913 0.932
MAD 4.08 2.94 2.80 2.65 2.35

7
PSNR 31.42 33.49 35.43 35.21 36.00
SSIM 0.792 0.859 0.897 0.869 0.901
MAD 5.04 4.16 3.47 3.33 3.07

9
PSNR 29.97 30.93 34.38 33.81 34.99
SSIM 0.734 0.776 0.879 0.830 0.887
MAD 6.02 5.66 4.08 3.71 3.58
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