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ABSTRACT 

In any data collection process, regardless of the sampling method, missing data values 

are encountered due to many different reasons. Depending on the amount of missing 

data the results to be obtained from the analysis of such data will somehow be affected. 

Therefore, starting from 1950s an increasing interest is shown by statisticians on one 

hand how to minimize the missing data values and also how to impute the missing 

values.  

In this thesis the theory and methods employed so far for the imputation of missing 

values in a data set are studied in detail. This is followed by the introduction of a new 

concept in the imputation of missing data using the support variables as part of 

multivariate regression process. Conversion of the units of support variables to that of 

the response variable is very important and is studied in detail via the imputation of 

missing values in a barley grain yield data set. Application results of the support 

variable concept is comepared with the results obtained from Markov Chain Monte 

Carlo (MCMC), Gaussian and Epanechnikov Kernel regression and found to be better 

performer in terms of lower error levels and in terms of robustness. The robustness of 

the results of all methods are checked using the Relative Aitchison Distance (RDA) 

concept.   

Keywords: Missing Value, Imputation, Support Variables, Mean Squared Error 

(MSE), Regression, Correlation, Kernel Regression. 
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ÖZ 

Veri toplama yöntemine bakılmaksızın, herhangi bir veri toplama işleminde çok 

değişik nedenlerden kaynaklanan veri eksiklikleri oluşmaktadır. Eksik verilerin az 

veya çok oluşuna göre, böyle bir veri tabanını kullanarak yapılacak herhangi bir veri 

analizinin sonuçlarıda etkilenecektir. Bu nedenle, veri toplama işleminde eksik 

verilerin minimuma indirgenmesi veya eksik verilerin tahmin edilmesi konularında 

istatistikciler 1950li yıllardan bu yana giderek artan oranda konuyla ilgili 

araştırmalarına devam etmektedir.  

Bu tez çalışmasında bugüne kadar konuyla ilgili yapılan birçok teorik ve pratik çalışma 

detaylı olark incelenmiştir. Bunu takip eden aşamada eksik verilerin tahmin işleminde, 

desetek değişkenlerinin çok değişkenli regresyonda kullanımı önerilmiştir.  Destek 

değişkenlerine ait birimlerin bağımlı değişken birimine dönüştürülmesi çok önemli 

olduğundan, detaylı olarak incelenmiş ve arpa verimliliği verisi kullanılarak 

uygulaması yapılmıştır. Destek verileri kullanılarak yapılan uygulamadan elde edilen 

sonuçlar, Markov Chain Monte Carlo (MCMC), Gaussian ve Epanechnikov Kernel 

regresyon metodlarından elde edilen sonuçlarla, tahmin hataları, ve tahminlerin 

güçlülüğü açısından kıyaslanmıştır. Elde edilen sonuçlara göre önerilen destek verileri 

ile tahmin yöntemi daha düşük hatalı va daha güçlü tahminler vermiştir. Tahminlerin 

gücü Relative Aitchison Distance (RDA) yöntemi ile hesaplanmıştır. 

Anahtar kelimeler: Eksik Değer, Veri Atama, Destek Değişkeni, Hata Karelerinin 

Ortalaması (HKO), Regresyon, Korelasyon, Kernel Regresyonu. 
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Chapter 1 

INTRODUCTION 

Data analysis is one of the corner stones in statistical science as it enables the testing 

of many statistical theory developed for various purposes or aims. Analysing large data 

volumes is becoming more efficient in terms of processing time parallel to the 

developments in computer technology. On the other hand, data itself is extremely 

important in the sense that any errors in the data will undoubtedly lead to incorrect 

analysis results. This in turn will most of the time cause grave consequences while 

using such results in decision making.  

One other frequently encountered problem is in the collection of data. In a data set 

with time or space coordinates, collection of certain data values at certain locations 

may not be possible due to many different reasons. Such cases will result in incomplete 

data sets, sometimes rendering the data unusable, or severely reducing the use of such 

data depending on the proportion of missing values. The missing data problem has 

drawn the attention of researchers and serious research results started appearing from 

the middle of 20th century onwards. Increasing amount of research has gone into this 

topic in order to alleviate the impact of missing values in the analysis results.  Earlier 

work dated to 1956 Edgett [14] attempted to estimate population parameters via 

multivariate regression when missing observations exist in the independent variables.  

Anderson (1957) [6] proposed an estimation method for population means μ , 
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variances 2σ , and correlations ρ  for the k variate normal distribution via Maximum 

Likelihood Estimation (MLE), when missing values exists in the response variable. 

His work can be summarized in the bivariate case where 1 2( , )f x x  being normally 

distributed with means
1 2,  μ μ , variances 2 2

1 2,  σ σ , and correlation
1 2x xρ . Out of N total 

data n are tuples belonging to 1 2( , )x x  pairs and N-n observations belonging to 
1x  only, 

meaning N-n missing observations in
2x . Maximum likelihood estimates are obtained 

for the distribution parameters by employing the n tuples with complete data and 

ignoring the tuples with missing values. Then goes on to generalize the concept to 

multivariate case. The works of Edgett and Anderson correspond to what is now 

known as “missing values at random”. Trawiski and Bergmann (1964) [52] worked on 

estimation and testing methods on hypothesis testing in the multivariate case. In their 

study missing values are systematically introduced into the system. In the absence of 

current computation power of computers, they attempted to show their case by some 

artificial data and manual computations. Obtained results were claimed to be 

satisfactory. Afifi and Elanshoff (1966) [2] have worked on the simplification of 

estimation problems when the missing data fits into certain patterns, as well as the 

statistical properties of such estimators.  In their work they employed multivariate 

regression, and maximum likelihood methods to estimate the population parameters.  

Rubin (1976) [40] examined the case when data is missing at random and observations 

are observed at random by making direct likelihood or Bayesian inferences about the 

population parameter , ignoring the process that caused the missing data. It is pointed 

out that inferences made about population parameters are conditioned on the pattern 

of missing data. This is possible when the parameter of missing data process is not the 
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same as  . Under such conditions correct inference is possible by ignoring the process 

that caused missing data. In his work Little (1992) [30] reviewed six different 

procedures that are used in imputation process. Namely these are complete case, 

available case, least squares, maximum likelihood, Bayesian and multiple imputation 

methods. The methods are compared for the missing data one independent variable, 

and the logic developed is extended to more general patterns. The likelihood methods 

are preferred over the least square methods, as they utilize both the dependent and 

independent variables. Copt and Feser (2003) [10] compared different robust 

estimators using a simulation study to determine their efficiency when missing data 

exists. They proposed faster algorithms to compute robust estimators with missing data 

and compared obtained results. The Orthogonalized Gnanadesikan-Kettenring 

estimator was applied in the case of missing data Zamar and Maronna  (2002) [57]. 

Toutenburg et. al. (2005) [51] offered some modification to the linear regression model 

when missing observations exist in the independent variables. The standard first order 

regression is modified to enable the imputation of missing values. Under the proposed 

modification asymptotic properties of the estimators for the regression coefficients are 

derived. Zhang et. al. (2008) [58] proposed a sequential local least squares imputation 

approach to deal with missing values in the gene microarray data. Imputation proceeds 

sequentially starting with the gene with least missing values. Imputed values are then 

utilized in the estimation of subsequent missing values together with existing values. 

Also, an automatic parameter selection and estimation algorithm is introduced. 

Robbins et. al (2013) [41] in their study of the high dimensional data of the US 

Agricultural Resource Management Survey, they transformed the data using skewed 

marginal densities, under the assumption that they can be linked using a Gaussian 

copula. This in turn facilitate the obtaining a joint model. Imputation is based on these 
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joint models. Parameter estimation and imputation are estimated using the Markov 

Chain Monte Carlo sampling approach. Yozgatlıgil et. al. (2012) [56] compare six 

imputation methods and together with their proposed algorithm applied the 

methodologies to impute missing values in a spatio – temporal meteorological time 

series. Criteria such as accuracy, robustness, precision, and efficiency are considered 

in the comparison process. In a more recent research Jinubala and Lawrance (2016) 

[25] an analysis of Predictive Mean Matching Method has been used to determine and 

impute missing values for crop pest data. This method is similar to the regression 

method with the exception that missing value, it imputes a value randomly from a set 

of observed values are estimated and the estimate is compared with the estimates for 

the same data obtained from a simulated regression model.  

In this study the barley grain yield data in t/ha from Northern Cyprus covering the 

years 1996 – 2012 and split into 17 production areas is taken as an example for the 

application of the proposed “Use of Support Variables in Imputing Missing Data”. 

From the obtained complete data set two new data sets are generated with 10% and 

40% missing values. Values are deleted on a random basis to obtain the new data sets 

satisfying the “completely missing at random” process. 3 support variables are selected 

from amongst many variables affecting the barley grain yield, such that they have high 

or significant effect on grain yield. Namely, these are Rain ( 2/mm m ), temperature (

0C ), and soil organic matter ratio. Efficient use of these variables in estimating the 

missing values for the grain yield data, their units were converted into the same unit 

as grain yield (t/ha). For this purpose, an extensive literature survey was undertaken in 

developing the suitable algorithm for the conversion of each support variable’s unit 

into t/ha.  
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Most useful research work that contributed in converting rain figures from  2/mm m  

to t/ha are briefly given below.  

Cantero et. al. (1995) [8] studied the barley grain yield performance of two barley 

cultivars with different phenology for 4 years, in the Ebro valley of Spain which has 

similar semi-arid conditions as Cyprus.   Factors such as growth, yield and yield 

components, water use and root development were taken into consideration. For the 

period of study with rainfall below average, yields ranged from 1.2 to 3.0 t/ha.  It is 

determined that there is 0.75 correlation between the total water use by the crop and 

evapotranspiration during the flowering (pre-anthesis) period.  Number of ears per 

square meter is the determining factor for final grain yield. It was found that the Dobla 

cultivar’s grain filling period was less adversely affected compared with the Tina 

cultivar, with respective yields 3.0 and 2.3 t/ha. Water use and water use efficiency 

figures given in the study were useful in the conversion of rainfall figures to grain yield 

in t/ha. Lopez and Arrue (1997) [31] studied the efficiency of different tillage methods 

in terms of barley and wheat production in the semi – arid climate of Aragon in NE 

Spain. In order to determine the feasibility of conservation tillage 3 locations with soil 

type loam to silt loam soils (Xerollic Calciorthid) and at one location with silty clay 

loam (Fluventic Ustochrept) were utilized, where annual average rainfall ranged 

between 300 to 600 mm.  Grain yield under both continuous cropping and cereal-

fallow rotation, when conventional tillage (mouldboard plough), reduced tillage 

(chisel plough) and no-tillage were implemented were studied for winter barley 

(Hordeum vulgare). Growth, grain yield and water use efficiency were taken into 

consideration. No tillage treatment was found to exhibit a poor performance, with 53% 

loss in grain yield. Under no tillage condition the water usage was lower and 
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evapotranspiration at 69% was much higher than the tilled treatments being at 50%. 

On the other hand, water use efficiency for grain production was 0.7-17.0 kg/ha/mm, 

and transpiration efficiency was 7.4 to 23.8 kg/ha/mm, being typical values for the 

semi-arid regions of Mediterranean environments. Samarah (2005) [42] compared 

barley grain yield under well irrigated conditions at 100% field capacity, mildly 

stressed at 60% field capacity, and severely stressed at 20% field capacity conditions 

for semi-arid climate in Jordan. It was determined that grain dry weight under severe 

drought conditions reached their maximum value earlier than those subjected to mild 

drought stress or well-watered plants. It was also observed that sever drought-stress 

resulted in shorter duration for grain filling.  This in turn caused low grain yield for 

plants subjected to sever stress conditions. Ebrahimian and Playan (2014) [13] studied 

the efficiency and uniformity of water and fertilizer application for optimum 

management of irrigation and fertigation systems. Variables monitored for decision 

making were inflow discharge, irrigation cut off, start times and duration of fertilizer 

injection.  During the experiments soil water content, soil nitrate concentration, 

discharge and nitrate concentration in runoff, advance and recession times were 

recorded in order to enable the calibration of the models.  Observed water and nitrate 

application efficiencies ranged from 72% to 88%.  

In transforming the effect of heat to barley grain yield, research carried out by Nahar 

et. al. (2010) [13] and Hossein et. al. (2012) [23] have contributed to the development 

of the transformation algorithm. In their study Nahar et. al. considered 5 varieties of 

wheat grown under normal and under heat stress conditions in order to assess the effect 

of heat on grain yield. Those subjected to heat stress were significantly affected in 

terms of days required to germination, booting, anthesis, maturity and grain yield 
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compared to cultivars treated with normal conditions from sowing to harvest. For the 

normal seeding case temperature during the grain filling or maturing period was 

around 23°C for the late seeding case temperature in the range 28°C to 30°C or even 

above this range in the later occasions.  Hence it was observed that grain yield was 

significantly lowered in all 5 varieties of wheat as compared to those grown under 

normal conditions. Average loss in grain yield for all 5 varieties subjected to heat stress 

was about 62%.  

A study carried out in the southern arid region of Russia by Hossein et. al. assessed the 

performance of four spring barley and two spring wheat genotypes under two stress 

(early and late) conditions. In order to determine the optimum sowing time for specific 

genotypes of crops, it is observed that late sown crops were affected by high 

temperature and a deficit of soil moisture in all stages from germination through to 

harvest substantially reducing the grain yield. Early sown crops were affected by low 

temperature, resulting in deficiencies in germination and stand establishment of crop 

resulting in lower grain yield. From this study it is estimated that for every   increase 

in the long term monthly average temperature, an average of 3% to 6% loss in grain 

yield will occur. 

The Soil Organic Matter Ratio (SOMR) is also a very important variable that has 

significant contribution to grain yield. SOMR is a unitless quantity and its conversion 

into grain yield in t/ha necessitates careful consideration of the factors involved in its 

determination. For this purpose, the research work undertaken by different researcher 

have been very useful.  
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In his study Tiessen, et. al.  (1994) [50] point out to the fact that the effect of 

fertilization is not inconsistent due to leaching or fixation of inorganic nutrients. An 

attempt is made to quantify the effects of organic matter on the fertility of soils in 

temperate prairie, and tropical semi-arid climate zones. Carbon turnover was estimated 

from ecological measurements and 14°C dating and determine Relation between the 

soil carbon and nutrient budgets is also determined. It is also found that on temperate 

prairie, without supplementary fertilization agriculture was economical for 65 years, 

but only for six years in a tropical semi-arid thorn forest. 

In a study Reeves (1997) [39] took the Soil organic carbon (SOC) as the attribute to 

investigate as it is an indicator of soil quality and agronomic sustainability. It is a 

known fact based on long term experience manures, adequate fertilization, and crop 

rotation, can increase SOC when coupled with intensive cropping. Good rotation 

practice is necessary to achieve agronomic productivity and economic sustainability. 

Stine & Weil (2002) [45] investigated the relation between SOM and grain yield under 

3 tillage systems. They determined that there is a linear relation soil organic matter 

ratio and grain yield. This is a useful tool in converting SOMR to grain yield in t/ha.   

Quiroga et. al. (2005) [36] defines the SOMR as he ratio of SOM (g/kg) to clay + silt 

content (g/kg) and uses it as an indicator for soil quality. They determined that 51% of 

grain yield is attributable to SOMR. Almost 68% grain yield prediction was due to 

combining the SOM to clay + silt indicator and initial nitrate (N) content of the soil at 

seeding. High proportion of water use efficiency can be explained by this indicator. 

They concluded that SOMR is a better tool for estimating grain yield compared to 

nutrient availability or SOM alone.  
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Based on a very long term study that dates back to 1852 which started by enriching 

loam type soils with Nitrate (N), Phosphorus (P), and Potassium (K) as well as 

farmyard manure Johnston (2011) [27] studied the role of soil organic matter (SOM) 

on grain yield. Soils following such a long-term treatment with fertilizers are now 

showing SOM values ranging between 1.74% to 6.16%. Interaction between N and P 

with SOM and its effects on crop yield are illustrated, at different SOM levels, over 4 

different harvesting periods during the 1980s and 1990s.    

The main objective of this thesis is the study of imputing missing values in a given 

data set. Along this line a new imputation method is proposed where the estimation of 

missing values in a certain variable (response variable) will utilize the existing data 

from that variable, as well as data from other variables that have a strong influence in 

the realization of the values of the response variable. This approach is named as 

“Imputation Using Support Variables”. The idea is applied to the barley grain yield 

data from North Cyprus for the years 1996 – 2012. This is a complete data set 

representing 17 production areas. Data values were deleted at random from this data 

set to obtain two new ones, one with 10% and the other 40% missing values.  In general 

support variables do not have the same unit as the repose variable. Therefore, an in-

depth study is necessary to establish a relationship that will transform the unit and 

quantity of the data from support variables to the same unit of the response variable. 

As a result, extensive research is conducted to develop the necessary algorithms for 

transforming the support variables’ (rain, heat, and SOMR) units into barley grain 

yield unit (t/ha). Upon successful transformation of the SV units into t/ha, they were 

employed in multivariate regression for the imputation process of missing values for 

the 10% and 40% missing cases. For the comparison of the performance of the 
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proposed SV method, other well-known estimation methods were also used. Namely, 

these were simple linear regression, multivariate regression, univariate kernel 

regression, and Markov Chain Monte Carlo (MCMC) methods.  

In Chapter 2 concepts and theory related with the mechanism of missing data and its 

imputation are explained. Important theory and theorems related with multivariate 

regression are explained in detail. In kernel regression the most important point is the 

determination of band width, and the proper use of Nadaraya Watson estimator. 

Theory and some relevant theorems are explained in detail. Similarly, a fair 

explanation of the theory related with Chain Monte Carlo (MCMC) method is given. 

In this chapter an interesting method called the Relative Atchison distance is also 

explained, as it provides some idea about the robustness of estimated made by any 

estimation method. Analysis of variance (ANOVA) related theory is also summarized, 

as it is employed in testing the means of the different estimation methods used in the 

study. 

Chapter 3 is devoted to the proposed idea of using support variables for imputation of 

missing data. Determination of SVs is explained and their transformation to the same 

unit as the response variable is given in detail for the SVs used for barley grain yield. 

In Chapter 4 the necessary background i.e. climatic conditions, mainly rain and heat 

variables soil related conditions (SOMR) are examined for the area of study from 

where barley grain yield data is obtained. Algorithms developed in Chapter 3 for the 

transformation of SV units into the same unit as the response variable are employed to 

convert rain, temperature, and SOMR data into t/ha. Then all methods mentioned in 
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Chapter 3 are used for imputation. For each method error levels computed and 

compared to determine the best performing imputation method. The proposed 

multivariate regression using support variables was the best performer in terms of 

errors committed. Table 3 in Chapter 4 summarizes the mean square error expressed 

as a percentage of observed and imputed values (MSE%). Robustness of the estimates 

are also determined using the Relative Aitchison Distance method, where the proposed 

method turned out to be the most robust one.  
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Chapter 2 

INCOMPLETE DATA SETS AND IMPUTATION OF 

MISSING DATA 

Missing values are frequently encountered in many fields during data collection, 

resulting in incomplete data sets. In many applications missing data is encountered due 

to many different reasons. This may lead to difficulties in the estimation process or 

results that are not reliable. Therefore, an increasing interest amongst researchers to 

the topic has led to the development of different methodologies contributing to more 

accurate imputation of missing values. 

Conceptually it is assumed that missing values can occur as completely at random and 

at random. It is obvious that any missing value occurs as a function of some unknown 

process. Given a data matrix n pX
 
with some missing values, the mechanism that 

results in missing data can be defined as follows. Define matrix n pR
 
as an indicator 

matrix where 1ijr 
 
, if the corresponding ijx

 
element from the n pX

 
matrix is 

observed, and ijr 0
 
when the ijx

 
element is missing. Then the conditional 

distribution f ( )R X
 can be used to distinguish between the mechanisms leading to 

missing values.  
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If    f ( ) f( ), R X R X , mechanism is called missing completely at random 

(MCAR). 

If    
* *f ( ) f( ), R X R X X  , mechanism is missing at random (MAR). 

*

n pX
 
is the matrix with missing values. 

The pattern of missing data is also important and can be categorised as Rao [26] 

 Monotone missing pattern. If rows and columns of the data matrix n pX
 can be 

rearranged such that  ; j 1X j 1, , p 1  
 
exists for all cases where jX

 

exists. A special case of this pattern is the when missing values exist in any one 

variable jX
 
only. 

 Special missing pattern. When any two variables jX
 
and 

kX
 
are never 

observed together. This pattern may be encountered when two data sets are 

merged.  

 General missing pattern. This is the case where any specific pattern cannot be 

observed or attributed to the variables in terms of missing values. 
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2.1 When missing values are in the response variable 

Missing values can in general exist both in the dependent (response) and independent 

(predictor) variables. In this study as multivariate regression is extensively used, it is 

deemed appropriate to mention some of the important theoretical background related 

to this topic. 

2.1.1 Multivariate linear regression model 

Given a data set with p variables also considered as predictor variables and n 

observations is to be used in estimating a response variable Y that also has n 

observations. In general, assume Y is a function of p variables ;  1, ,iX i p
 
plus an 

error term given as 

1 pY f ( X , ,X ) e 
 

f  may be a linear or non-linear function. In the linear case we can write 

0 1 1 p pY X X e      
 

called the linear regression model. In the multivariate case let the response vector be

1ny
 and predictor matrix n pX . Then the multivariate regression model can explicitly 

be written as Johnson [15] 

11 12 1 01 1

21 22 2 12 2

1 ( 1) ( 1) 1 1

1 2

1

1

1

p

p

n n p p n

n n np pn n

x x xy

x x xy

x x xy

 

 

 

     

      
      
          
      
      
         

y X β ε
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Here ε  is the error vector with
2( )   and ( ) ( )E Cov E   ε 0 ε εε I . Information 

regarding the unknown parameter 2  is contained in
ˆˆ ε y -Xβ .  and β ε  are unknown 

parameters. The estimator of the coefficient vector β is 
1ˆ ( )β XX Xy . This is 

given in detail in Theorem 1. 

Theorem 1: The least squares estimate of β  can be written as 
1ˆ ( )
 β XX Xy , when 

X has full rank 1p n  . 

Proof: To show that 
1ˆ ( )
 β XX Xy ; 

 
1ˆˆ
       

 
ε y y y Xβ I X XX X y

 . 

The matrix  
1

  
 
I X X X X  satisfies the following three conditions; 

i) It is symmetric:    
1 1 

        
   
I X X X X I X X X X , 

ii) Satisfies the idempotent condition:

     

     

1 1 1

1 1 1

2

,

  

  

        

       

   
   

 
 

I X X X X I X X X X I X X X X

X X X X X X X X I X X X X
 

iii) Uniqueness condition:  

 
1        

 
X I X X X X X X 0

. 

As a result  

 
1

ˆ( )
         

 
Xε X y y X I X XX X y 0

 



  

 

16 

 

can be written. Hence, 

ˆˆ ˆ ˆ   y ε β X ε 0
. 

Further,
 

   

 

1 1

1

ˆ ˆ

ˆ

 



         
   

        
 

ε ε y I X XX X I X XX X y

y I X X X X y y y y Xβ .

 

Let ˆ ˆ ˆ ˆ( )       y Xb y Xβ Xβ Xb y Xβ X β b= , and ( )S b  the sum of the squares of 

the differences 0 1 11
( )

n

j j p jpj
y b b x b x


    .  

Then 

   

         

       

(

ˆ ˆ ˆ ˆ ˆ ˆ2 ( )

ˆ ˆ ˆ ˆ

S  

  
        

 
     

b y Xb y Xb

y Xβ y Xβ β b XX β b y Xβ X β b

y Xβ y Xβ β b XX β b

) =

. 

As  ˆ    y Xβ X εX 0 .  

Note the following points 

i. The first term in ( )S b  does not depend on b . Second is the squared length of

 ˆ X β b . 

ii. As X  is full rank,  ˆ  X β b 0
 
if  ˆ β b

 , meaning the minimum sum of squares is 

unique occurring when  
1ˆ 

  b β XX Xy
 .
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iii. X X  has rank 1p n   means  
1

X X  exists. Assuming X X  is not full rank,

X Xa = 0  for some a 0 .But   a X Xa = 0  or Xa = 0  , contradicts X  having full 

rank 1p  . Q. E. D. 

Relationship between theoretical least squares and classical least squares estimators 

should be mentioned to appreciate the meaning of the application of regression theory. 

Sampling properties of least squares estimators for β̂  and for the residuals  ε̂  are 

given in the following theorem. 

Theorem 2: The least squares estimator of β , in the general linear regression model 

1ˆ ( )
 β XX Xy

 has expectation  ˆE β β
 
and    2 1ˆ ( )Cov  β XX . 

Similarly, the residuals  ε̂   have  ˆ( )E ε 0  and  
  1

ˆ( ) σCov
   

  

2
ε I X XX X

. 

Then 

 
1

ˆ ˆ

( 1) 1
s

n p n p

     
   

2
y I X X X X yε ε

=

 

leading to  2E s  2 . Further β̂  and ε̂  are uncorrelated. 

Proof: Theoretically   y Xβ ε  is a random vector. Then, 

       
1 1 1ˆ   

         β XX Xy XX X Xβ ε β XX Xε
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       
1 1 1

ˆ
                  

     
ε I X XX X y I X XX X Xβ ε I X XX X ε

, 

 Since 

 
1     

 
I X X X X X X X 0

. 

     
1ˆE E


    β β I X XX X ε β
 
as ( )E ε 0  

       

     

1 1

1 1 1

ˆCov Cov

 

 

  

  

    2 2

β XX X ε X XX

X X X X X X X X X

 

     
1

ˆE E
    

 
ε I X XX X ε 0 ,

 

       

 

ˆ

.

   

 

   
   

 
 

'
-1 -1

-12

Cov ε = I - X XX X Cov ε I - X XX X

= I - X X X X

 

This equality follows the idempotent property of  
1  

 
I X X X X . Also, 

         

   

ˆ ˆˆ ˆ

.

E



        
  

    
 

-1 -1

-1 -12

Cov β,ε = E β -β ε = XX X εε I - X XX X

= X X X I - X X X X = 0
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Since  

    
 

-1
X I - X X X X = 0

 . 

From the definition of ε̂  and remembering given a square matrix k kA  

 and vector 1kx  ,  

( ) ( )tr tr   x Ax x Ax Axx  

holds. Then, 

     

     

ˆ

.

               
     

           
   

-1 -1 -1

-1 -1

ε ε ε I X XX X I - X XX X ε ε I - X XX X ε

tr ε I X XX X ε tr I X XX X εε
 

For any arbitrary n n  random matrix W  ,  

             11 22 11 22 .nn nnE tr E E E E trW = W + W + + W = W + W + + W = E W
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Keeping in mind that for a square  matrix  A, ( ) ( )tr c ctrA A   we  have  

       
           

2

2 2 2 2 2

1 1

ˆ ˆ

- - -1
p p

E tr E tr

tr tr n tr n p



    
  

        
   

 

-1 -1

-1

ε ε = I - X XX X (εε ) = I - X XX X

= I - X X X X = I =
 

 leading to the result  

 

ˆ ˆ
.

- -1
s

n p

2 ε ε
=   Q.E.D.. 

Since the least square technique plays a major role in linear regression, it is considered 

necessary to mention the theorem that explains the concept of the technique. 

Theorem 3: (Gauss least square theorem.) In the multivariate regression model

 Y Xβ ε , with  E ε = 0
 ,  

  2Cov ε = I
 , 

and X  having full rank 1p  , for any 

c,  the  estimator  

0 0 1 1 p p
ˆ ˆ ˆ ˆ      c β c β c β c β

 

of  c β  has the minimum variance among the linear estimators 1 1 n n
a Y a Y   a Y

 

that are unbiased for c β . 

Proof: Let any unbiased estimator of c β  be a Y , where a and c are the same size. 

Then  E  a Y c β , independent of β .   
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   E E     a Y a Xβ a ε a Xβ
 
. 

Then 

 a Xβ c β  →    c a X β 0  for all β . 

 This includes the choice    β c a X
, implying that  c a X  for all unbiased 

estimators.  

Now  
1 'ˆ      c β c XX XY a Y

 with  
1 a X X X c

. From Theorem 2,   ˆE β β
 

so 
'ˆ  c β a Y  becomes an unbiased estimator of c β . Thus, for any a  satisfying the 

unbiased requirement   c a X ,  

     Var Var Var   a Y = a Xβ a ε aε  

                                 2 2 * 
       * *

aI a a a a a a a  

                        2 .
       
 

* * * *
a a a a a a  

Since  

     
1     * * *

a a a a a X X X c 0
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based on  

  .
         * *

a a X a X a X c c 0    

Because *a  is fixed and    
 * *

a a a a
 is positive,  Var a Y

 is minimized by 

choosing 

 
1 ˆ     *

a Y c X X X X Y c β  . Q.E.D. 

According to Theorem 3, substitution of β̂  for β  leads to the best estimator of c β  for 

any c . In statistical terminology, ˆc β  is called the best (minimum-variance) linear 

unbiased estimator (BLUE) of c β . 

2.1.2 Kernel Regression 

In multivariate data when missing values for each observation of 

1 2,  ,   ;  1,  2, ,  i i ipX X X i n  occur at random, kernel regression appears as an 

optimal technique to help impute the missing values. In the univariate case the use of 

kernel smoothing assumes that the random sample 1 2,  ,   nX X X  consisting of 

independent and have identical distribution (i.i.d) random variables with a certain p.d.f. 

The kernel estimator of the unknown p.d.f  f  is f̂ . f̂  is obtained using available data 

that utilizes the kernel function K. As
ˆ ( )f x   depends of 1 2,  ,   nX X X  it can be 

considered as a random variable. Difference between  f̂  and f  forms the error and 

Mean Squared Error (MSE) or the Mean Integrated Squared Error (MISE) can be used 

to measure this error.  MSE is given as 
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2ˆ ˆ( ) {[ ( ) ( )] }MSE f E f x f x  . 

MSE consists of two components, namely Bias and Variance. Decomposing MSE into 

Bias and Variance is essential to be able to maintain the balance between the two 

components. Bandwidth that is the basis of the kernel function is very sensitive in 

determining the bias – variance balance.  

Decomposing MSE into bias - variance components is explained below.   

Let 1 2,  ,   nx x x
 be the data. Based on this data ( ) εy f x   will be estimated. Here

  is random error or noise. It has ( ) 0E    and 
2( )Var    ). f(x) will be estimated 

using the ˆ ( )f x  . Obviously the smaller the difference between ˆ ( )f x  and  f(x), the 

more accurate the estimation will be. Achieving a minimum MSE using the sample 

1 2,  ,   nx x x
 , is aimed and this will also be valid for observations that are not part of 

the sample. Expectation of the squared  error is made up of the 3 components as given 

below 

        
2 2 2ˆ ˆ ˆ{[ ( )] } [ ( )] [ ( )]E y f x Bias f x Var f x                                              (2.1) 

where 

ˆ ˆ[ ( )] [ ( ) ( )]Bias f x E f x f x   , and 
2 2ˆ ˆVar[ ( )] [ ( ) ] [( )]f x E f x f x  . 
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Approximating f(x) by its estimator ˆ ( )f x obviously have functional effect on the 

square of the bias element. The Var( ˆ ( )f x )  is also important as it has a major effect 

on bias – variance relation. Therefore, the more sophistication put into ˆ ( )f x  towards 

reducing the bias, will lead to higher ˆ[ ( )]Var f x . 

Equation (2.1) is to be obtained. 

It is worth remembering, given a random variable its variance is 

1. 
2 2 2 2 2 2[( ) ] ( ) ( ) ( ) ( ) ( ) ( )E X Var X E X E X E X Var X E X         . 

Then 

2.  [ ( ) ] [ ( )] ( )E f x E f x f x    but f(x) being deterministic and ( ) 0E   . 

3. 

2 2 2

2 2 2

( ) [( ( )) ] [( ( )) ] [( ( ) ( )) ]

( ) ( ) ( ) .

Var y E y E y E y f x E f x f x

E Var E



   

      

   
 

Based on the independence of   ˆ and ( )f x   

2 2 2

2 2

2 2

2

2 2

ˆ ˆ ˆ[( ( )) ] [ ( ) 2 ( )]

ˆ ˆ ˆ( ) E( ) ( ( )) ( ) 2 ( ) ( ( ))

ˆ ˆ ˆ( ) ( ( )) ( ( ) 2 ( ) ( ( )) ( ( )) )

ˆ ˆ( ) ( ( )) ( ( ) ( ( )))

ˆ ˆ( ( )) ( ( )) .

E y f x E y f x yf x

Var y y Var f x E f f x E f x

Var y Var f x f x f x E f x E f x

Var y Var f x f x E f x

Var f x Bias f x

   

    

    

   

  
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It should be remembered that in ( )y f x   , the error term   has ( ) 0E   . Hence,  

2 2 2ˆ ˆ ˆ[( ( )) ] ( ( ) ) ( ( ) )E y f x bias f x Var f x    

 can be shown to be valid as below. 

For brevity f̂  will be used in place of ˆ ( )f x   

2 2

2 2

2

ˆ ˆ ˆ ˆ{[ ] } {[ ( ) ( ) ] }

ˆ ˆ ˆ ˆ ˆ ˆ{[ ( )] } {[ ( ) )] } 2 {[ ( ) )][ ( )]}

ˆ ˆbias( ) var

E y f E y E f E f f

E y E f E E f f E E f f y E f

f f

    

      

 

 

As it can be shown that ˆ ˆ ˆ2 {[ ( ) )][ ( )]} 0E E f f y E f    as follows. 

2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 {[ ( ) )][ ( )]} 2{ ( ( )) ( ( ) ( ) ( ( ))}E E f f y E f E yE f E E f E fy Ef E f      . 

 Each term inside the brace bracket can be expressed as 

ˆ ˆ( ( )) ( )E yE f yE f , 

since y is deterministic. 

2 2ˆ ˆ( ( ) ) ( )E E f E f  , since ( ( )) ( )E E E . 

ˆ ˆ( ) ( )E fy yE f  , and 
2ˆ ˆ ˆ( ( )) ( )E fE f E f . 
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Then 

2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2{ ( ( )) ( ( ) ( ) ( ( ))} 2[ ( ) ( ) ( ) ( ) ] 0.E yE f E E f E fy Ef E f yE f E f yE f E f       

 

Various kernel functions are available for the computation of kernel values. Properties 

such as variance, roughness, and efficiency associated with each kernel function are 

also given, where variance  

2 2 ( )k u k u du




 
 

,

 

roughness  

 
2

( )kR k u du





   

,

 

and efficiency  

2

2

( )

( )

u k u du

E
k u du

K













  

.

 

Variance, roughness, and efficiency for some commonly used kernel functions are 

Hansen [20].   
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Table 2.1: Roughness, variance and efficiency values for different kernel functions 

Kernel  Roughness 

  kR  

Variance 

 2

k  

Efficiency 

Uniform 1
2

( ) 1( 1)k u u 
 

½ 1/3 1.155 

Epanechnikov 23
4

( ) (1 )1( 1)k u u u  
 

3/5 1/5 0.745 

Biweight 2 215
16

( ) (1 ) 1( 1)k u u u  
 

5/7 1/7 0.529 

Triweight 2 335
32

( ) (1 ) 1( 1)k u u u  
 

350/429 1/9 0.408 

Gaussian 2
1

22
( ) exp( )uk u


 

 
1/ 2   

1 3.545 

 

2.1.2.1 Bandwidth Selection 

Level of smoothing in a kernel smoother is governed by the bandwidth h. Various 

methods used in theoretically determining the bandwidth are available, but none is 

providing the optimum value in terms of the sensitive issue of bias – variance balance.  

Hence the establishment of the Kernel density relies on the choice of h. The Gaussian 

Kernel is given by 
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   
2 21

2

uK u u e


 

. 

This is based on the normal density expressed as  

 2 1
( , )

μ
μ σ φ

σ σ

 
   

 

x
N f x . 

If oh  is the optimum, for its determination, let  

 
2 22 21 1 1 1

.
2 2 2 2

u uK x dx e du e du        
; 

and 2 be the second moment of the standard normal distribution (0,1)N  . Then  

2 1  . 

  3

1 x
f x




 

 
   

  . 

 Hence,  

     
2

2 2

6 5 5

1 1 3

8

x
f x dx dx y dy


 

   

   
      

  
  

 

therefore, 
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1/5

1/5

0
ˆ

4
1.06

3
ˆ .h n

n
   

  
 

                  (2.2) 

Outliers are easily detected from Equation (2.2) Silverman [44], but not a desired case. 

Instead the interquartile range of the data can be substituted in place of 
2̂ . 

Interquartile range is defined as 

0.75 0.25R X X  . 

Substituting into equation (2.2), 

1/5

0
ˆ 0.79R̂nh 

                              (2.3) 

is obtained. 

Utilizing equations (2.2) and (2.3) leads to a better estimate for h. 

1/5

0 1.06 min ,  
1

ˆ
ˆ

.34

R
h n 

 
  

   . 

Bandwidth obtained via theoretical approach does not lead to the smoothing. Very 

small h value reduces the bias, and a large h value leads to  an increase of the variance. 

Then a trial and error approch is recommended for achieving the optimum ballance 

between bias – variance.  Hence, the minimization of the MSE or Average of the Sum 
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Squared Errors (ASSE) nececitates a simulation process where the variation of MSA 

and ASSE values are monitored based on changes given to h values. pp 58 – 86 [53]. 

2.1.2.2 Nadaraya–Watson Estimator 

Nonparametric regression smooths a process based on some weighting system. The 

estimator ˆ ( )hm x  of the smooth average function ( )hm x  is estimated  

1

1

ˆ ( ) ( ) y
n

h hi i

i

m x n w x



 
 

Here y  is the response variable, hw
 is the weight function determined as a function of 

distance between x and iX
 the thi  observed value within the bandwidth h. 

A weighting system is employed in Nadaraya – Watson estimator. 

( )hm x  can be expressed as the conditional expectation based on n observations coming 

from i.i.d. r.v.s 1{( , )}n

i i iX Y  ,
,  i iX Y   , as  

( ) ( ) ( , ) / ( )xm x E Y X x yf x y dy f x                  (2.4) 

Kernel density estimator is used to estimate ( )f x . Multiplicative kernel can be used 

to estimate the joint density ( , )f x y  in the numerator of equation (2.4) as  

1 2 1 2

1

,

1

ˆ ( , ) ( ) ( )
n

h h h i h i

i

f x y n K x X K y Y



  
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The numerator of equation (2.4) is estimated  as follows, 

1 2 1 2

1

,

1

ˆ ( , ) ( ) ( )
n

h h h i h i

i

yf x y dy n K x X yK y Y dy



   
 

1 2

1

1 2 2

( )
n

i
h i h

i

y Yy
n K x X K dy

h h





 
   

 
 

 

1

1

2

1

( ) ( ) ( )
n

h i i

i

n K x X sh Y K s ds



   
 

        
1

1

1

( )
n

h i i

i

n K x X Y



 
                         (2.5) 

pp 120 – 140 [52]. 

Ratio of the result obtained in equation (2.5) and the kernel estimate of f(x) are used to 

obtain an estimate for the conditional expectation ( )m x  (2.4). This gives the 

Nadaraya-Watson estimator as follow; 

                         
 

 

1

1

.

n

h i i

i
h n

h j

j

K x X Y

m x

K x X














                          (2.6) 
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The non-parametric regression smoother can be expressed as  

1

1

ˆ ( ) ( ) .
n

h hi i

i

m x n W x Y



   

 Where the weights ( )hiW x are 

                          

1

( )
ˆ ( )

i

hi

h

x X
h K

h
W x

f x

  
 
 

                                   (2.7). 

The whole sample  
1

n

j j
X

  plays a major role in determining the weights in equation 

(2.7) via 
ˆ ( )hf x

 .  

For sparse iX
 higher weights are assigned to iY

 are assigned.  

When the denominator is zero, so is the numerator leading to an estimated value zero.  

When 0h , 
( )hiW x n

 if ix X . Estimated value iX
 converges to iY .  

When h  , ( ) 1 
hi

W x x  .  Therefore, ( )m x Y   

Once again it must be stressed that bandwidth h plays a major role on  the level of 

smoothness in the estimation process.  
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2.1.2.3 Mean and Variance of the Nadaraya – Watson Estimator 

Numerator and denominator of Nadaraya – Watson estimator can be considered as 

r.v.s.  Hence, for each separate calculations can be done. this statistic are both random 

variables, they can be dealt with separately. The numerator is,   

1

1

ˆ( ) ( , ) ( ) ( ) and ( ) ( )
n

h h i i

i

r x yf x y dy m x f x r x n K x X Y



   
. 

Regression estimate is 

ˆ ( )
ˆ ( )

ˆ ( )

h
h

h

r x
m x

f x
 .

 

Theorem 2.2: Nadaraya-Watson smoother’s numerator ˆ ( )
h

r x  is asymptotically 

unbiased. 

Proof: ˆ( )hE r   is 

1

1

ˆ[ ( )] [ ( ) ] [ ( )]
n

h h i i h

i

E r X E n K x X Y E K x X Y



     

 ( ) ( ) ( ) ( ) ( ) ( )h hyK x u f y u f u dydu K x u f u yf y u dy du      
 

( ) ( )( [ ]) ( ) ( ) ( ) ( ) r( )  .  (2.8)h h hK x u f u E Y X u du K x u f u m u du K x u u du           
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Analogically to the density estimate using kernels, if 2r C  , then 

2
2

2
ˆ[ ( )] ( ) ( ) ( ) ( )

2
h

h
E r x r x r x YK o h   

 

meanig ( )hr x
 is asymptotically unbiased as 0h  . 

Theorem 2.3: Nadaraya-Watson smoother’s denominator ˆ ( )hr x  is asymptotically 

consistent. This can be shown using its variance.  

Proof: Let 
2 2( )s x E Y X x     , then 

  1

1

ˆ ( ) ( )
n

h h i i

i

Var r x Var n K x X Y



 
  

 


 

 1 ( )hn Var K x X Y 
 

  
2

1 2 2( ) ( ) ( ) ( ) ( )h hn K x u s u f u du K x u r u du    
 

1 1 2 2 1( ) ( ) (( ) )hn h K s x uh f x uh du o nh       

21 1 2 1

2
( ) ( ) (( ) )      ( ).n h f x s x K o nh nh                              (2.9) 
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Putting equations (2.8), (2.9) together when 0,h nh   the MSE of ˆ ( )hr x
 

becomes 

     
4

2 22 4 1

22

1
ˆ ( ) ( ) ( ) ''( ) ( ) ( ) ( )

4
h

h
MSE r x f x s x K r x K o h o nh

nh
    

. 

If nh ,  ˆMSE ( ) 0
h

r x   . It means  ˆ ( )hr x
 is a consistent estimator of ( )r x . That 

is for any 0c   and 0c  ,  

0
ˆlim ( ) ( ) 1.h

h
nh

P r x r x c



       
 

Briefly, ˆ ( ) ( )P

hr x r x
. 

Theorem 2.4: Nadaraya-Watson smoother’s  denominator ˆ ( )hf x is asymptotically 

unbiased. 

Proof: Since ;  1, ,iX i n
 are i.i.d.  

 
1

1ˆ ( ) ( )
n

h h i

i

E f x E K x X
n 

   
  

 

      
 ( )hE K x X 

 

      
( ) ( )hK x u f u du   
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      ( ) ( ) .K s f x sh ds   

When 0h  gives   

ˆ ( ) ( ) ( ) ( ) .hE f x f x K s ds f x   
    

For 0h h , ˆ ( )hE f x 
   

is asymptotically unbiased. Q.E.D. 

Taylor expansion of  ( )f x sh  in x based on the assumption that  f is twice 

continuously differentiable  2f C can be used to analize the bias.. 

ˆBias ( ) ( ) ( ) ( )hf x K s f x sh ds f x    
    

                     

2 2
2( ) ( ) ( ) ( ) ( ) ( )

2

h s
K s f x shf x f x o h ds f x

 
      

 


 

                      
2

2

2( ) ( ) ( ) ( ) ( ).
2

h
f x f x K o h f x                                  (2.10) 

Proof of equation (2.10) see [14]. 

Because of the symmetry property of K around 0, the term ( ) ( ) 0sK s hf x ds   
. Then 

the bias of kernel density becomes 
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2
2

2
ˆBias ( ) ( ) ( ) ( ) , 0

2
h

h
f x f x K o h h    

 
                  (2.11). 

Due care must be given to the bandwidth to avoid large bias values as equation (2.11) 

contains 2h . It is worth mentioning that bias is proportional to f   in x. As a result 

ˆ ( ) ( )
h

E f f x     
wile estimating points close to local minimum ( ( ) 0)f x   , and 

ˆ ( ) ( )
h

E f f x     when estimated points are around a local maximum ( ( ) 0)f x  .  

Theorem 2.5: The variance of Nadaraya-Watson smother’s denominator ˆ ( )hf x  is 

used to show that ˆ ( )hf x asymptotically consistent.   

Proof: As ;  1, ,iX i n
 are i.i.d. 

2

1

ˆVar ( ) Var ( )
n

h h i

i

f x n K x X



 
     

 


 

 2

1

Var ( )
n

h i

i

n K x X



 
 

 1Var ( )hn K x X 
 

   21 2 ( ) ( )h hn E K x X E K x X      
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 
21 2 2 ( ) ( ) ( )

x u
n h K f u du f x o h

h

    
    

  


 

  21 1 2( ) ( ) ( ) ( )n h K s f x sh ds f x o h    
 

    2 21 1

2
( ) ( ) ( ) ( )n h K f x o h f x o h    

. 

Equation (2.13) leads to  ( ) ( ) ( )hE K x X f x o h  
 and 

   
22 2

2
( ) ( ) ( ) ( ) ( ) ( ) ( )K s f x sh ds K s ds f x o h K f x o h       

Then 

   
21 1

2

ˆVar ( ) ( ) ( )  , .hf x nh K f x o nh nh
     

                            (2.12) 

Clearly 
1( )nh 

 exerts significant influence on variance, resulting in bigger values of h 

and reduced variance. But small h value is preferred for lower bias. Combining MSE, 

the variance and square of the bias of 
ˆ ( )hf x

 , as 0 and h nh   gives  

   
4

2 2 1 4

22

1ˆMSE ( ) ( ) ( ) ( ) ( ) ( )
4

h

h
f x f x K f x K o nh o h

nh
      

 
 

This means the kernel density estimate is consistent and satisfies ˆ ( ) ( ).P

hf x f x   

Q.E.D. 
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MSE plays a significant role in balancing variance and bias such that  

i. Decreased variance leads to under smoothing. 

ii. Decreased bias gives way to over smoothing. 

It should be mentioned that using the MSE optimal bandwidth for kernel density can 

be written as  

   

1/5
2

2
0 2 2

2

( )

( ) ( )

f x K
h

f x K n

 
 
   . 

See reference [22], p 59 [ 7]. 

2.1.3 Markov Chain Monte Carlo (MCMC) 

In very simple terms Markov chain is some set of random elements 1 2, ,X X
 , where 

the conditional distribution of  1nX   given  1, , nX X
  depends on nX

 only. That is  

1 1 1( , , ) ( )n n n nf X X X f X X 
. 

The state space of the Markov chain is defined as the set in which iX
 take values. If 

the conditional distribution of 1nX   given nX
 does not depend on n, then the Markov 

chain has stationery transition probabilities, on which MCMC concepts are based.   
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When the state space is finite  1 2, , , nx x x , the initial distribution obtains values 

defined by 

1 1( ) ,   1, , ( , , )i i nP X x λ i n λ λ    λ
. 

Transition probabilities forms a matrix T, with elements given by 

1( ) ,    , 1, ,n j n i ijP X x X x t i j n    
. 

A stochastic or random process is defined as a collection [ : ]tX t T
 of random 

variables on a probability space ( , , )F  . T is time, can be discrete T=[1,2,…]  or 

continuous [0, )T    . A stochastic process is said to be stationary if for any positive 

integer k the joint probability distribution of k random variables 1( , , )n n kX X   does 

not depend on n or does not change under any time shift. That is the stochastic process 

 tX  and 
1

( , , )
nX t τ t τF x x   be the cumulative distribution of  tX , then  tX

 is 

strictly or strongly stationary if 

1 1 1( , , ) ( , , )   , , ,  and .
n nX t τ t τ X t t nF x x F x x τ t t n        

A Markov chain is also stationary, if it fits into the definition of a stationary stochastic 

process. That is in a Markov chain 2 1( , )n n k nf X X X    does not depend on n. It 

becomes evident that a Markov chain is stationary if ( )
nx nf x

 does not depend on n. 
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Stationarity of a Markov chain implies stationary transition probabilities, but vice 

versa is not true. 

Ordinary Monte Carlo is a special case of MCMC when 1 2, ,X X
 are i.i.d., leading 

to a stationary and reversible MCMC. In the following section the Monte Carlo method 

is explained in more detail [48], pp 8 – 25 [7]. 

2.1.3.1 Monte Carlo Method 

The Simple Monte Carlo (SMC) method is a special case of Markov chain with 

 1 2, ,X XX
 being i.i.d. If    1 2, ,X XX is a stochastic process and g a real 

valued function on the state space of  1 2, ,X XX , then 1 2( ),g( ),g X X
 is a 

functional of  1 2, ,X X
  with state space .  The mean and variance of this functional 

g( )Y X  are 
2 2

( ) ( ) ( )( ( )) and [( ( ) ) ]g g gE g Var g  X X XX X    respectively. As 

these are theoretical definition, their computation is not possible when the distribution 

functions are not available. Instead a random sample from the stochastic process 

 1 2, ,X XX
 can be obtained.  Then the sample mean of the functional 

1 2( ),g( ),g X X
 or the sample mean of  iY  is defined as 

1

1

ˆ ( )
n

i

i

μ n g X



 
 

̂  is called the Monte Carlo approximation of   . 
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According to Central Limit Theorem (CLT) the sample mean  ̂  is approximately 

normally distributed with mean   and variance 2 / n  , 
2

ˆ ( , ).σμ μ nN  

Similarly, the variance can be estimated by 

2 1 2

1

ˆ ˆ( ( ) ) .
n

i

i

σ n g X μ



   

Then ˆ / n  is the Monte Carlo Standard Error (MCSE). 

Based on the simple statistics it is obvious that the accuracy of estimating   is 

inversely proportional to the square root of the sample size. This leads to the difficulty 

of necessitating very large sample sizes for improving the accuracy of the Monte Carlo 

method. For instance; ten times increase in the accuracy of the estimate will require an 

increase of 100 times in the sample size.  

The Markov Chain Monte Carlo concept is similar to SMC but the variables involved 

in the stochastic process  1 2, ,X XX
 are dependent.  

Assume  1 2, ,X XX
 is a stationary Markov chain, with initial distribution being 

the same as that of the state space X. According to the Markov chain CLT [29] MCMC 

will be 
2

ˆ ( , ).σμ μ nN  , and variance will be 

2

1

[ ( )] 2 cov[ ( ), ( )]i i i k

k

σ Var g X g X g X






  
  (2.13). 
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For example; let us consider a toy problem where an autoregressive process or Markov 

chain is given by 1n n nX bX Y  
 where nY

 are normally distribute with mean 0 and 

variance 2θ  . r.v. 1X
 also should have a finite variance. Then 

1cov( , ) cov( , )n k n n k nX X b X X   
 

                    1

1cov( , ) cov( , ) var( ),k k n

n n n n nb X X b X X b X

    

Under stationary condition 

2 2 2

1var( ) var( ) var( ) var( ) var( ) var( )n n n n n n nX X bX Y b X Y b X θ      
 

2
2 2

2
var( ) var( ) var( )

1
n n n

θ
X b X θ X

b
   

 .    (2.14) 

Here 2b  must be less than 1 ( 2 1b  ) as variance cannot be negative. Since the linear 

combination of independently distributed normal r.v.s is also normal, here we have a 

linear combination with mean zero and variance given by equation (2.14).  

Let 

2
2

2
var( )

1
n

θ
X ω

b
 

  
. Then the invariant distribution is 

2(0, )ωN . 
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Then Markov chain follows the CLT as shown below, 

2
2

2
1 1

2 2
2

2 2

[ ( )] 2 cov[ ( ), ( )] 1 2
1

2 1 1
1 .

1 1 1 1 1

k

i i i k

k k

θ
σ Var g X g X g X b

b

θ b θ b b
ω

b b b b b

 



 

 
    

  

    
       

       

 
         (2.15) 

Equation (2.15) shows that the Markov chain given by 1n n nX bX Y  
 is normally 

distributed with parameters 
2(0, )ωN  with finite variance.  

Here it must be pointed out that the obtained expression for the variance is not a general 

one, but it is specific to the given Markov chain as a specific example. 

It is also visible that as 1b  equation (2.15)  goes to infinity. This is meaningless as 

2σ  in general is unknown. But it is a fact that obtaining a close approximation of 

ˆ  to μ μ  with an error level /σ n ε  means increasing the sample size. However, 

there is a limit to which sample size can be increased in a real-life problem. 

In the multivariate case the mean vector μ  is approximated by   

1ˆ ( , ).μ μ ΣN n  
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The functional g(X) becomes a vector ( )g x  with components ( )lg x
. Σ  is the 

covariance matrix given as 

1

var{g( )} 2 cov{ ( , ( )}.i i i k

k

X g X g X






  Σ            (2.16). 

The difference between the equations (2.13) and (2.16) is that, in equation (2.16) 

var( ( )) cov{ ( ), ( )}i l i m ig X g X g X
 makes up the components of a variance matrix, 

while cov{ ( ), ( )}i i kg X g X   forms a matrix with components cov{ ( ), ( )}l i m i kg X g X   

pp 8 – 11 [7].  

2.1.4 Relative Atchison Distance 

One other way of assessing the quality of the imputed values or the loss of information 

is to compute the differences between the imputed and the observed data. This gives a 

measure of robustness of the imputation process and is named as the Relative Atchison 

Distance (RDA). It can be used for the comparison of the accuracy of estimates 

between different imputation methods. Main contribution to the topic comes from 

Atchison. J (1982). This mainly deals with the Simplex sample space where positive 

simplex covers the major component or the whole sample space can be defined as  

 1 1( , , ) : 0( 1, , ), 1d

d i dS x x x i d x x    
        (2.17) 

Based on the limitations of dS , data types that are ratio of two components or data that 

can be expressed between zero and one are suitable.  
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Concepts of independence and scarcity of parametric class of distributions on the 

simplex are still an area of research. However, Atchison has made major contributions 

towards this goal. Especially in the transformation of normal classes from d
 to dS via 

an appropriate transformation ( , ) ( , ).μ Σ μ Σ
d dN fN Some additive logistic 

transformations are given below.  

Table 2.2: Logistic transformations from d
 to dS  

Type Specification Inverse 

Additive da
 

1

1, ,
1

1 1

i

i

yd
y

i

i

e i d
x e

i d

  
   

   


 

ln
1

i
i

d

x
y

x


  

Multiplicative  

dm
 

 
1

1, ,
1

1 1

i

i

yi
y

i

j

e i d
x e

i d

 
  

 


 
1

ln

1

i
i i

j

j

x
y

x





 

Hybrid dh
 

1 1

1

1

1 1

1

1

/ (1 )

1 1 ,   2, ,

1

1

i i i

j

y y

i i
y y y

i

j j

d d
y

j

x e e

x e e e i d

x

e



 





 

  
     

  


 
 

 

 



 

1

1

ln
1

i

x
y

x



 

  1

1 1

ln ,  
1 1

 1, ,

i
i i i

j jj j

x
y

x x

i d



 


 



 
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Compositional invariance, and sub - compositional independence concepts are also 

investigated in this matter [3].   

Based on the fundamentals of data compositions [49] the computation of RDA is  

1 ˆ( , )
M A i in

i M

RDA d x x

, 

where {1, , }M n , and Mn
 is the number of cells with missing values in a variable, 

ˆ( , )A i id x x
 is the Aitchison distance. In this sense the quality or statistical robustness of 

estimation can be measured by the magnitude of RDA [49], [4].  

2.1.5 Analysis of Variance 

ANOVA is used in cases when the number of populations to be compared is more than 

2 (k>2). That is k samples of size n will be selected at random, one from each 

population to be used in testing the hypothesis 

0 1 2

1

:  

:  2 or more of means not equal

kH μ μ μ

H

  
    (2.18) 

 Then the variation within each sample, and variation between samples play a major 

role on the results to be obtained from the analysis. Within sample variation depends 

on chance or it is considered random. Variation between sample means may be due to 

chance or may also depend on the characteristics of the populations.  

Points such as the sample sizes to be used, the size of the variation within samples 

being large enough to obscure systematic differences are points to be addressed.   
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Classification of k different populations using a single criterion is undertaken in a one-

way analysis of variance. Treatment is used to express the various classifications 

criteria implemented in classifying the populations.  

Assumption is that the k populations are independent with means 
1 2, , , kμ μ μ  and 

variance 2σ .  

Design of the model to be used in testing the hypothesis is given in Table 2.3  

Table 2.3: k Random Samples 

 Treatment  

 1 2  i   k   

 
11y  21y   

1iy   
1ky   

 
12y  22y   

2iy   
2ky   

        

 
1ny  2ny   

iny   
kny   

Total 
1Y  2Y   

.iY   
.kY  Y  

Mean 
1y  2.y   

.iy   
.ky  y  
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In the table  

ijy : Denotes the thj observation from the thi  treatment.   

iY : Sum of the data values from the thi  treatment.  

iy : Mean of all observations in the sample from the thi  treatment, 

Y : Total of all nk observations, 

y : mean of all nk observations. 

2.1.5.1 One-Way ANOVA Model 

Each observation can be expressed as 

,ij i ijY                 (2.19) 

here 
ij  is the deviation of the thj  observation of the thi  sample from the 

corresponding treatment mean. Then ij  is called the random error. 

Alternately substituting ,i i     into Eq. (2.19) subject to the constraint  

1

0.
k

i

i




  

Gives  

,ij i ijY       
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where   is mean of all the ,i  that is, 
1

1
,

k

i

ik
 



   and i  is the effect of the thi  

treatment or the deviation of
i  from the overall mean  . 

Then the null hypothesis of the k population means can be written 

0 1 2

1

: 0,

: Minim  one um   is  zero.

k

i n t

H

H o

   



  
                         (2.20). 

2.1.5.2 Splitting the Total Variability into Components 

The test is based on the comparing of the two estimates of the common variance 2 . 

These estimates are required to be independent of each other and obtainable by 

dividing the total variation into two sections as given below 

Total variability =  
2

1 1

k n

ij

i j

y y
 

  

is split into two components as 

     
2 22

1 1 1 1 1

.
k n k k n

ij i ij i

i j i i j

y y n y y y y
    

        

For convenience the Sum of Squares can be expressed as:  

i) The total sum of squares.   
2

1 1

k n

ij

i j

SST y y
 

  , 

ii) The treatment sum of square (between treatment variation). 

 
2

1

k

i

i

SSA y y


  , 
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iii) The error sum of squares (within treatment variation). 

 
2

1 1

k n

ij i

i j

SSE y y
 

  . 

Then 

SST SSA SSE  . 

Expected values E(SSA) and E(SSE) are worth investigating. 

Theorem 1:     21 .E SSE k    

Proof: SSE is given as,  

   
2 2

2 2

1 1 1 1 1 1

.
k n k n k n

ij i ij i ij i

i j i j i j

SSE y y n
     

 
      

 
        

Hence  

   
2

2 2 2 2

1 1 1

( ) ( ) 1 .
k n k

ij i

i j i

E SSE E nE n n k n
n


   

  

   
        

  
    QED. 

Division by ( 1)k n  yields 

 

 

 

2

2
1

.
1 1

k nSSE
E

k n k n




  
  

  
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Theorem 2: Show that     2 2

1

1 .
k

i

i

E SSA k n 


     

 
2 2 2

. .. . ..

1 1

,
k k

i i

i i

SSA y y n y kny
 

      

 2; , ,ij iy n y     

hence  

. ; ,i iy n y
n


 

 
 

 
 and ; , ,y n y

kn


 

 
 

 
 

then  

       
2

2 22

. . . ,i i i iE y Var y E y
n


         

And because of constraints on  ’s. 

   
2 2

22 2 ,E y
kn kn

    
 

    

can be written. Therefore, 
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         
22 2 2 2 2

. ..

1 1

k k

i i

i i

E SSA n E y knE y k n kn    
 

         

                                          2 2

1

1 .
k

i

i

k n 


     Q.E.D. 

When 
0H  is true 

2

1
1

SSA
s

k



 

becomes an estimate of 2σ  with k − 1 degrees of freedom. This is called the Treatment 

Mean Square.  

In equation (2.20) if 0H  is true and then i s are equal to zero leads to  

2

1

SSA
E

k

 
 

 
 . 

Then 2

1s  is an unbiased estimate of 2.  However, when 1H  is true 

2 2

1

,
1 1

k

i

i

SSA n
E

k k
 



 
  

  
  

meaning 2

1s  estimates 2  and the additional term measures the variation resulting 

from systematic effects.  
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Based on  1k n  degrees of freedom a second estimate of 2  is obtained as  

 
2 .

1

SSE
s

k n



 

This is called the Error Mean Square.   

2.1.5.3 Use of F-Test in ANOVA 

The expectations 2 2

1( ) and (s ) E s E worth commenting on. When 1H  is true and 

   2 2

1  E s E s is satisfied a right tailed F test can be used. The error mean square 

(sample variance) 2s  is an unbiased estimator of the population variance 2 and this 

is not affected by the validity or invalidity of the null hypothesis given in equation 

(2.19). It can be shown that for ANOVA the mean square error 2

( 1)

SSE
s

k n



 in a one-

way classification, is an unbiased estimate of 2 . It is also worth noting that while the 

partitioning of SST as SST SSA SSE   leads to the partitioning of the degrees of 

freedom as  1 1 1 .nk k k n      

When 0H is true, the ratio 2 2

1 /f s s  is the  F  value of the random variable with the  

F  distribution having 1k   and  1k n  degrees of freedom.  

The P value defined as { [ 1, ( 1)] }P P f k k n f     can also be used for the decision 

making about 0H . 
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Table 2.4: Shows how the analysis of variance computations are summarized 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 

Mean Square Computed 

Treatments SSA  1k   2

1
1

SSA
s

k



 

2

1

2

s

s
 

Error SSE   1k n  

 
2

1

SSE
s

k n



 

 

Total SST  1kn    

 

For the clarification of the point the following example is given. 

Example: In order to determine how the mean absorption of moisture in concrete 

varies, 5 different concrete aggregates were exposed to moisture for 48 hours. 6 

samples are tested from each aggregate. Obtained results are given in Table 2.5.  

The purpose is to see whether there is a significant difference between the population 

means based on the sample data.  
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Table 2.5: Aggregate types to determine how the mean absorption of moisture in 

concrete varies 

Aggregate type 

 1 2 3 4 5  

 551 595 639 417 563  

 457 580 615 449 631  

 450 508 511 517 522  

 731 583 573 438 613  

 499 633 648 415 656  

 632 517 677 555 679  

Total 3320 3416 3663 2791 3664 16854 

 

1 553.33x  , 2 569.33x  , 3 610.5x  , 4 465.17x  , 5 610.67x  . 
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The null and alternative hypothesis are 

0 1 2 3 4 5

1

:

: 2 or more of means not equal

H

H

       
 

 Using a significance level 0.05  the hypothesis will be tested. 

For the degrees of freedom 1 21 4,  ( 1) 25ν k ν k n      , the critical f value is 2.76. 

Using the model sum of squares 2 85356
1 1 4

21399.1SSA
k

s


    and error sum of squares 

2 124021
( 1) 25

4960.8SSE
k n

s


    are obtained. Then the test statistics is 
2
1

2

21339.1
4960.8

4.3
s

s
f     

leading to the rejection of the null hypothesis. This indicates the sample statistics does 

not provide sufficient evidence to support the equality of population means. It means 

at least two of the population means are not equal. To determine which aggregate has 

the lowest mean, the box and whisker diagram is a good tool.  

ANOVA is also used in Chapter 4 to show that the mean of the different estimation 

methods can not be considered to be the same. Once this fact is accepted based on 

ANOVA results, then the box and whisker diagrams are produced and given in Figure 

4.8. It is evident that the proposed MRSV yields the lowest RDA statistics indicating 

the methods robustness over the other methods employed. 
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Chapter 3 

SUPPORT VARIABLES 

The concept of support variable (SV) is proposed by [47] as part of the research 

undertaken during the course of this PhD study. The concept involves the inclusion of 

different variables that are part of the process where missing values are encountered in 

one variable. The SVs are employed in determining the multivariate regression 

equation to be used for the imputation of missing values. However, the inclusion of 

such variables into the estimation process will result in incorrect estimated values due 

to inhomogeneity of the data coming from SVs that are part of the process. This may 

be due to different units of different variables, or significant difference in the 

magnitude of values taken by different variables. Interpretation of the results of 

analysis obtained from the inclusion of such variables will lead to unforeseen error 

levels. 

To overcome this problem the following should be adhered to:  

1. Determine the variables that are closely correlated to the variable with 

missing values, and ensure that they are part of the same process under 

study. Use the scatter diagram between the variable with missing values 

and the presumed SV, compute correlation coefficient between the variable 

with missing values and each of the SVs to help in deciding the 

acceptability of a variable as SV. 
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2. Establish a logical model that will convert the unit of each SV, to the unit 

of the variable with missing values. This requires a detailed research based 

on past work, as well as novice proposals with proofs to reach at an 

acceptable model. 

Following these two steps, the SVs are ready to be included into the multivariate 

regression process.  

The concept of SVs is a general one and their determination will entirely depend on 

the process under study.    

In this study the imputation of missing values was considered for the barley (Hordeum 

vulgare) grain production in tons/hectare (t/ha) over 17 years from 17 different regions 

of North Cyprus. Grain yield is a complicated multivariate process that starts with 

germination and ends with harvest. Its accurate modelling is well beyond the scope of 

the research undertaken in a PhD study, and requires a multidisciplinary approach. 

However, in this study only an attempt is made to introduce the concept of SV, and in 

the specific case of barley grain yield only the most obvious variables that have 

undeniably strong influence on barley grain yield are considered. These are monthly 

average rain 1X  ( 2/mm m ), monthly average temperature 2X  ( C ), and soil organic 

matter ratio 3X  (unitless). Since the units of the SVs are not in t/ha, a careful study of 

the literature related with this topic is undertaken to determine a conversion algorithm 

for each SV into t/ha.  
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3.1  Converting Rain to Grain Equivalent Yield 

Without rain life in the way that it exists on Earth would be impossible. Therefore, rain 

is one of the essential components for the existence of plant and animal life forms. 

Hence, one of the main factors to be considered for the determination of grain yield is 

rain. It has a direct and major influence on the yield expected from any plant type.  

Here, an attempt is made to establish a relationship between the water used from 

germination to harvest, based on research undertaken by various researchers, to enable 

the conversion of average rain data into equivalent average grain yield in t/ha.   

A significant contribution comes from Cantero et. al. [8] from their study of two types 

of barley cultivars. They compared their yields under prevailing soil structure, and 

climatic conditions by considering as many variables as possible that influence the 

yield. 180 kg/ha of barley was used in sowing, 45 kg/ha 2 2P O  and 2K O , and 100 kg/ha 

nitrogen (N) fertilizer was applied during sowing. Following careful assessment of 

input water (rain water) during the period sowing to harvesting, water use considered 

as equivalent to evapotranspiration, is formulated as  

( )n n iET w w P D R       (3.1) 

where ET: evapotranspiration, w: volumetric water content, P: rainfall, D: Drainage 

below 120 cm, R: Surface run off. According to Eq. (3.1) any drop of the ET value 

below the wilting point till a few weeks before the crop is ready for harvesting, or at 

least till the end of the grain filling period, is undesirable. If this happens plants will 

lose water to the point that even extra rain will not result in rejuvenation of the plant, 

meaning loss of production. Therefore, the concept “water use efficiency (WUE)” 
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becomes important. This is defined by Cantero et. al. [8] as grain yield produced per 

unit area per unit of water evapotranspiration by the crop (kg/ha/mm). Water used by 

the plant for the period from germination to harvest is considered to be equal to the 

evapotranspiration during this period. Based on research carried out by Lopez and 

Arrue [32] conventional tillage ploughing 30 to 40 cm depth and cereal – fallow 

rotation type cropping tends to maximize the water retained in soil as moisture, hence 

contributing in achieving higher grain yield. Traditionally this is the kind of cereal 

production method (cereal – fallow rotation) used in Cyprus for decades, and it is the 

current practice also supported by state subsidies. 

For the purpose of this study the conversion of rain data ( 2mm/m ) to grain yield in 

t/ha is computed by applying the proposed average values to the rain data, since the 

climatic conditions where Cantero et. al. [8], and Lopez and Arrue [32] carried out 

their research are very similar to those in Cyprus. Time from October to April, the 

period from germination to harvest is taken as basis for the computations. Water use 

efficiency figures for grain (
gWUE ) given by Cantero et. al. [8] and Lopez [32] are 

considered to be highly representative of conditions in Cyprus, having an average 

value 8 kg/ha/mmgWUE  .  Average evapotranspiration for the study area for the 

months November to April is taken as 188 mm. Tandoğdu & Camgöz [46]. This is 

equivalent to 55% of annual average precipitation (AAP) for the area ( 0.55)trE  .  

Then the rain equivalent yield (REY) in t/ha can be computed by

/1000  tr gREY AAP E WUE .  
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3.2 Temperature Equivalent Grain Yield 

Among the main factors adversely affecting grain yield are drought combined with 

heat stress.  

Hossain et.al. [23], carried out a set of experiments with four spring barley and two 

spring wheat genotypes under early, optimal and late sowing conditions in a southern 

arid region of Russia to determine wheat and barley genotypes suitable for prevailing 

climatic conditions as well as optimum sowing time. It is reported that this part of 

Russia has a semi-arid climate similar to the Mediterranean climate.  High temperature 

results in deficiency of soil moisture resulting in the loss of grain yield. Similarly, low 

temperature also affects germination and stand establishment of crop sown early 

resulting in lower grain yield [34].  

In a study to assess the grain yield the following important factors are generally 

considering. 

i. Adjusted moisture content. In general, an ideal moisture content of 12% is 

assumed for grain yield assessment. For prevailing different moisture 

contents, the following formula is used for adjustment [24];  

1
2 1

2

100
( ) ( )

100

m
y m y m

m





  (3.2) 

where 1( )y m  grain weight at current moisture level. 2( )y m  grain weight at 

ideal moisture level. 1m  current moisture level.  2m  ideal moisture level.  

Equation (3.2) gives an idea on how close the current moisture level is to the ideal or 

expected moisture level. 
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ii. Harvest index. It is defined as the ratio of grain yield to grain yield plus 

straw yield [12], 

 

  

Grain yield
HI

Grain yield Straw yield



   (3.3) 

Harvest index given in Eq. (3.3) can be used in comparing the grain yield of different 

genotypes. 

iii. Relative Yield Performance is a useful tool to compare the heat 

performance of different genotypes [5]. It is given by  

  

 

Heat stress performance
RYP

Optimum performance
    (3.4) 

RYP can be used as a measure of grain yield to be expected, depending on the heat 

stress performance of a particular genotype.  

iv. Stress susceptibility index is defined as the ratio of minimum yield under 

tolerable stress conditions to yield under favourable conditions [18]. 

1 /

1 /

s

s

y y
SSI

x x





                           (3.5) 

where sy  is mean yield under stressed conditions for one genotype, y is 

mean yield under stress free conditions for the same genotype, sx  mean 

yield for all studied genotypes under stressed conditions, and x mean yield 

for all studied genotypes under stress free conditions.  The tolerance of a 

genotype to stress (high temperature and drought) is measured by its SSI. 

If SSI<0.5 very tolerant, 0.5<SSI<1 moderately tolerant, and SSI>1 poorly 

tolerant. Hence, Eq. (3.5) gives an idea about the heat stress tolerance of 

particular genotype.  
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Hossain et.al. (2012) reports that grain yield loss ranges between 43 to 82% for crops 

subjected to high heat and drought stress compared to crop grown under optimum 

conditions.  

According to a study by Nahar et.al. [34] carried out in Bangladesh, heat stress caused 

between 53% to 73% loss in 5 different types of wheat grain. This is a clear indication 

of the importance of heat stress on grain yield.  

On the other hand, Hasan [21] reported that about 2.6% to 5.8% reduction in grain 

yield was observed in heat tolerant and 7.2% reduction in heat sensitive genotype for 

every 1°C temperature above the average air temperature assumed for normal growing 

conditions during anthesis to maturity. An analysis of the findings of a study by 

Karahan. T., and Sabancı. C. O. (2010) on 8 different barley genotypes in Diyarbakır 

and Ceylanpınarı areas in the South Eastern part of Turkey, with similar climatic 

conditions to those in the study area of North Cyprus, has also led to around 11% 

reduction in grain yield per 1°C increase in air temperature.  

Based on research done on the matter and given the local semi-arid climatic conditions 

prevailing in the study area, it is estimated that for every 1 C  increase in the long term 

monthly average temperature, an average of 3% to 6% loss in grain yield will occur. 

To develop a factor to be used in converting heat stress into equivalent yield the 

following logic is proposed.  
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Let ;  1, ,ix i n  be the annual grain yield (t/ha), n the number of production years.  

it  the average temperature for the grain maturing period (March, April) for the thi  

year. For the area of study this is shown in Figure 3.1. 

 

Figure 3.1: Average temperature for the grain maturing period (March, April), and for 

the period October to March the period from germination to maturing in the area of 

study.   

Annual averages from October to April, and t  the overall average temperature for the 

17 years from October to April (the period from germination to harvest) are also seen 

in Figure 3.1. When the barley grain yield versus March – April average temperatures 

is examined, it turned out that for temperature above the long-term average of 15 0C  

a negative correlation of -0.52 is observed. This confirmed the idea of grin maturing 

period high temperature has a negative effect on grain yield. Figure 3.2 shows this 

clearly. 
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Figure 3.2: Adverse effect of high temperature during grain maturing period that is 

above the long-term global average from germination to harvest.  

While fluctuations in daily weekly or monthly temperature has some effect on grain 

yield, in the local conditions it is expected that a drop of a few degrees C  in the 

average temperature during the grain maturing period to below the long-term average 

from germination to harvest period does not have a major effect on the grain yield 

under optimum conditions (GYOC). On the other hand, if the average temperature for 

grain maturing period is above the long-term average will result in some loss on the 

grain yield. Hence, the temperature equivalent grain yield (TEGY) for a certain year, 

is proposed to be 

( )
i

t
TEGY GYOC

t
  
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 A higher than long term average temperature for the maturing period ( / 1it t  ) will 

result in some loss in grain yield. The amount of loss obviously depends on / it t  ratio. 

On the other hand, for / 1it t   it is assumed that grain yield will not be affected when 

the average temperature during the maturing period is below the long-term average 

temperature for the periods from germination to harvest. The scatter diagram, in Figure 

3.3 supports this idea, where annual average temperature during the maturing period 

is drawn against the average annual grain yield. Linear correlation coefficient is also 

between the two variables at 0.14 is very low indicating no correlation between the 

two variables. That is grain yield is not affected by temperatures during grain maturing 

period when it is below the germination to harvest average temperature. 

 

Figure 3.3:  No significant effect on grain yield when the temperature during grain 

maturing period is below the germination to harvest average temperature. 
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3.3 Equivalent grain yield as a function of soil organic matter 

Fertility of any soil type is depending on organic matter contained in the soil [50], [39].  

This is measured by the Soil Organic Matter (SOM) which is defined as the fraction 

of the soil consisting of plant and/or animal tissue in various stages of breakdown or 

decomposition levels. Most productive agricultural soils have a SOM value between 3 

and 6% organic matter.  

One way of measuring the SOM value of soil is the method called Loss on Ignition 

(LOI).  In this method the soil is exposed to 105 0C  for 1.5 hours to remove soil 

moisture. The weight of the de-moisturized soil is recorded and then the temperature 

is increased 500 0C  for 2 hours.  Difference between the final weight and the de-

moisturized weights is used to determine LOI giving the SOM value [17].  

SOM has significant benefits for grain yield, which can be classified into Physical, 

Chemical, and Biological categories. Physical benefits include factors that improve 

water infiltration, water holding capacity, reducing run off, soil aeration, reducing 

surface crusting.  

Some of the chemical benefits can be listed as increased ability to hold essential 

nutrients such as calcium, magnesium, and potassium. It also includes the creation of 

resistance to changes in the pH level of soil, contributing to the decomposition of 

nutrients in minerals.  
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Biological benefits are providing food for living organisms in the soil, suppressing 

disease and pests via enhanced soil microbial biodiversity, increasing the pore space 

thus contributing to increased infiltration.  

Soil Organic Matter Ratio (SOMR) is defined as the ratio of SOM to clay + silt content. 

SOMR can be used as an indicator for soil conditions that limits grain yield. Based on 

a study carried out in the semi-arid Pampa region in Argentina with varying SOMR 

values over 3 years Quiroga et. al. [36] found that the contribution of SOMR to grain 

yield can be as high as 51%. However, when only SOM is considered, its contribution 

to grain yield is about 32%. This indicates that SOMR is a better indictor to be used in 

measuring the grain yield.  

Stine. M. A and Weil R. R. [45] studied the relation between grain yield and soil 

productivity indicators under 3 different tillage methods. Through standard soil tests 

the pH level of soil, availability of Phosphorus (P), Potassium (K), Magnesium (Mg), 

Calcium (Ca), total nitrogen (N), and active carbon (C) levels, as well as porosity, 

aggregate stability of the soil was determined. Chemical elements that are useful part 

of the SOM were found to be in a linear relation with productivity or grain yield. Based 

on the data and graphs presented in their studies it is estimated that 1% increase in 

SOM value results in between 1.7% and 2.8% increase in grain yield.   

According to Johnston [27] a long-term program started in 1852 to determine SOM 

values as part of the Hoosfield Continuous Barley experiment at Rothamsted USA on 

a silty clay loam soil applying Nitrogen Phosphorus Potassium (NPK) fertilizer or 

Farmyard manure (FYM) at 35t/ha resulted in SOM values of 1.74% and 6.16% 
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respectively. Starting from 1968 different plots were treated with 0, 48, 96, and 144 

kg/ha N to determine the effect of N on grain yield. Monitoring grain yield results at 

1.74% and 6.16% SOM levels for 3 different barley genotypes for the periods 1976 – 

1979, 1988 – 1991, and 1996 – 1999 periods have shown consistent increase in yield 

and always higher in the high SOM level. On average soils with high SOM value have 

an average yield of 2.5 t/ha more than that of the soil with lower SOM value.  

It is also observed that in the soils where FYM is used, the addition of N above 96 

kg/ha did not result in an increase in the grain yield. However, the use of some N is 

necessary to enable the roots to absorb the nutrients more efficiently. This means some 

N has to be added to compensate for the loss of N from soil due many different factors, 

a topic still open for investigation.  

In a different experiment Johnston [27] highlights the relation of SOM level and 

Phosphorus (P) to grain yield was studied. Following 12 years of preparation on a silty 

clay loam soil to achieve 1.5% and 2.4% SOM levels, for two years for each SOM 

level 24 different P levels were used and grain yield determined.  The study has shown 

that with no N application, the spring and winter barley, coupled with low and high 

organic matter ratio resulted in an average grain yield of 2.78 t/ha. Combined low and 

high organic matter ratio average is recorded as 2.35%. Using linear interpolation, this 

corresponds to 1.18 t/ha increase in grain yield, for a 1% increase in organic matter 

ratio. Then for any SOMR value p, corresponding grain yield can simply be computed 

as  

Gran yield = 1.18p. 
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In a study by Derici et. al. [11] covering all areas cultivated by barley or wheat 

genotypes, the sub areas can be considered as homogenous in terms of SOMR. 

Considering the fact that a significant change in the SOMAR values in an area may 

take decades or even centuries, it is assumed that SOMR values for the study area and 

for the study period are constant. Then major changes in the SOMAR values over short 

periods of a few years or even a few decades are not expected.   
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Chapter 4 

APPLICATION 

4.1 Geography and Climate of Cyprus 

Geographically Cyprus is situated in the North-Eastern corner of the Mediterranean 

Sea. It lies between 32  15  - 34  35  east longitudes and 34  33  - 35  41  north 

latitudes. Total area of Cyprus 9251 km2. Out of the total area of the island of Cyprus, 

3298 km2 forms the Northern Cyprus (TRNC). Of the total area of North Cyprus, 20% 

is declared as forest areas and not used for agricultural activity of any kind, with some 

exceptions subject to special permission of the Department of Agriculture. Area where 

agricultural activity of all kinds takes place is about 57% of the area. Remaining 23% 

is mostly residential, industrial, and other public facilities, as well as areas that are 

currently not used or not suitable to be used for any kind of activity. 

Along the northern part of the country runs the Pentadactylos Mountain Range (Five 

Fingers Range) rising to an altitude of just over 1024 m at Selvili Tepe. The mountain 

range loses altitude beyond the Kantara Castle but extends eastward to from the 

backbone of the Pan-Handle shaped peninsula called Karpas. In the central and 

southern part of the island lies the Trodos Range rising to an altitude of 1951 m at 

Mount Olympus. Between the two mountain ranges lies the Mesarya (Mesaoria) plain 

of which together with narrow alluvial plains along the coast form up the total bulk of 

the agricultural land of the country. The northern part of the island of Cyprus in which 
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the area of study is located, includes the Pentadactylos Mountain Range, the Mesarya 

plain, the Northern coastal plain and the Karpas peninsula.  

Cyprus has a warm and dry Mediterranean climate with the main rainy period being 

November to March, during which barley and wheat agriculture takes place. Long dry 

summers from mid–May to mid–September, preceded by a short spring and followed 

by a short autumn seasons in climatic sense. Amount of rain and temperature varies 

with altitude and distance from the coast [19]. 

Summers are generally under the influence of low-pressure trough extending from 

western Asia leading to high temperatures. In winter the island is on the path of fairly 

frequent depressions crossing the Mediterranean from the west mainly emanating from 

the continental anticyclone of Eurasia and low pressure from Africa. These 

atmospheric activities result in short periods of a few days of rainy spells resulting an 

overall annual average of 500 mm for the whole of the island. However, amount of 

rain varies significantly depending on altitude and distance from coast. Annual average 

rain is above 1000 2/mm m  in the Trodos mountains, around 650 2/mm m  in the 

Beşparmak (Pentadaktilos) range, and a mere 350 2/mm m  in the Mesarya (Mesaoria) 

plains. The overall annual average rain profile for the whole area of study is given in 

Figure 4.1. 
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Figure 4.1: Annual average rain and overall average for the 17 years in the area of 

study. 

Annual average temperature for the area of study is given in Figure 4.2, where years 

of high temperature has a negative effect of barley grain yield.   
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Figure 4.2: Annual average temperature and overall average for the 17 years in the 

area of study. 

 

With hot summers and mild winter, temperatures are rather variable depending on 

elevation and distance from the coast. Temperature difference between mid-summer 

and mid-winter is in the order of 18 0C  inland and about 14 0C  on the coasts. Daily 

difference between maximum and minimum temperature in the agricultural areas in 

winter is around 9 0C  and in summer about 16 0C . The average minimum temperature 

in December, the coldest month of the year is 11.4 0C , while the average maximum 

temperature 30.7 0C  in July. 

Capital city Nicosia geographically is almost in the center of the Mesarya plain. Hence, 

for the period of study rain values are graphed as seen in Figures 4.3. This is on average 

representative for the main central part of the Mesarya plain where more than half of 

barley and wheat production of North Cyprus takes place. 
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Figure 4.3: Annual average rain profile from October to April for Nicosia area from 

1996 to 2012. 

Annual average temperature for the Nicosia area representing central Mesarya for the 

study period is shown in Figure 4.4. 

 

Figure 4.4: Average temperature for central Mesarya for the 7 months period from 

germination to harvest. 
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4.2 Review of the data 

The use of support variables (SV) in the imputation of missing values concept is 

explained in Chapter 3.  For the application of SV concept, it was considered necessary 

to first find a data set that is complete, and randomly cancel certain percentage of the 

data to obtain a new data set with missing values. This will enable the determination 

of the error element following the imputation process carried out based on different 

imputation methods. Records of the Department of Agriculture were considered a good 

source of data for this purpose, as they are keeping crop production records on annual 

basis.  

One agricultural product that has significant impact on the economy of North Cyprus 

is barley. Whole production is utilized as animal feed in livestock or husbandry sector. 

Considering the average annual value of barley being around 11 million USD, is a 

good indication why barley is selected for this study. Therefore, it was decided to use 

the annual barley production figures in t/ha as raw data.  

Agricultural land in Northern part of Cyprus from where the data is collected is divided 

into 17 production areas by the DA, based on administrative structure of DA.  

Production areas with their geographic name are given in Table 4.1.  Boundaries of the 

areas are shown in Figure 4.5. 
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Table 4.1: Geographic names of production areas 

1 Lefkoşa Merkez 10 Girne Batı 

2 Değirmenlik 11 Boğaz 

3 Ercan 12 Çamlıbel 

4 Gazi Mağusa A 13 Güzelyurt 

5 Gazi Mağusa B 14 Lefke 

6 Akdoğan 15 Yeniİskele 

7 Geçitkale 16 Mehmetçik 

8 Gönendere 17 Yeni Erenköy 

9 Girne Doğu   

 

Overall area of the 17 regions amounts to a total of 1880 km2 used for agricultural 

activities. Average area where barley is grown is 592313 donum that is equivalent to 

78825 hectares, using the conversion factor 1 Donum =0.13308 hectare.  
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Barley yield data in t/ha for the 17 regions covering the years from 1996 to 2012 are 

given in Appendix A. The 17 17  square data matrix represents a total of 289 data 

values, where rows represents production areas and columns are the years.  

 

Figure 4.5: Map of North Cyprus showing the boundaries of 17 production areas or 

regions. 
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Figure 4.6: Land cover map of Cyprus showing the boundaries of 17 production 

areas or regions. 

In addition to the barley data set, data related with rain, temperature and soil organic 

matter for the same period and production areas had to be collected, since these were 

selected to be used as support variables in the imputation process.   

Annual average rainfall figures obtained from the department of Meteorology [33].  In 

Appendix C annual average temperature data for the last 17 years is presented, that is 

obtained from the Statistical Information Office. Appendix D shows the soil organic 

matter ratio data according to the production areas and years [11].  

The rain between November and April (germination to harvest period) has a major 

impact on barley yield, as explained under section 3.1. Hence the average rainfall 

values for November to April are given in Appendix B.          
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4.3 Computations  

In this study the imputation of missing data values using some existing methods are 

compared with the proposed support variables concept.  For this end the complete data 

set on barley production given in Appendix A consisting a total of 289 data values was 

used to generate two new tables with missing values. Data values from Appendix A 

were deleted at random to create two new data sets with 10% and 40% missing values. 

That is 260 data values in the 10% missing case represented by the matrix 
1

m
X , and 

173 data values in the 40% missing case denoted by 
2

m
X  were retained for analysis.  

See Appendices H and I.  

As part of the proposed support variables, in the process of barley production rain (

2/mm m ), temperature in 0C , and soil organic matter ratio (unitless), were considered 

as the most important variables and used as SVs.  Raw data related with these variables 

are presented in Appendix B, Appendix C, and Appendix D respectively.  

4.3.1 Converting units of the support variables to that of the raw data (t/ha) 

Conversion of data on S.Vs to the same unit as the data with missing values was 

undertaken, as explained in Chapter 3 for each S.V. Raw rain data converted to 

equivalent t/ha is given in Appendix E. Computation of t/ha values is done according 

to logic explained under section 3.1 and using the proposed conversion equation. 

  

Temperature related raw data from Appendix C is converted into t/ha following the 

logic given in section 3.2 employing the proposed formula ( )
i

t
TEGY GYOC

t
 . 

Converted temperature data from 0C  to t/ha are shown in Appendix F. Raw data 
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related to soil organic matter (see Appendix D) also converted to t/ha according to the 

logic given under section 3.3, and given in Appendix G. 

4.3.2 General approach followed in the imputation process  

Following the formation of data files with 10% and 40% missing values, and the 

conversion of support variables data into t/ha in units according to methodologies 

explained in Chapter 3. Bivariate linear regression, Multivariate Linear Regression 

Employing Support Variables (MRSV), kernel regression, and Markov Chain Monte 

Carlo (MCMC) methods using available data only to predict missing values are used 

and results compared. In each case error levels were computed by using the complete 

data set and the imputed values. Mean absolute error, mean square error and root mean 

square deviation values are used as measures to compare the performance of each 

imputation method.  

In principal the column with minimum number of missing data values is taken as 

dependent variable, and imputation is carried out based on the equation determined by 

the method used for this purpose. Then, the next column with minimum number of 

missing data values is processed accordingly. Once the imputation process is 

completed with the individual method in application, determination of error levels was 

carried out.  

4.3.3 Simple Linear Regression.           

Average figures for the 17 years and for each production area was taken as independent 

(X) and each year’s figures where missing values exists taken as dependent or response 

variable (Y). Obtained simple linear regression equation is used to estimate one of the 

missing values for that year and production area, then the corresponding average for 

that area recalculated. If there are more missing values under that year, the process is 
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repeated until all missing values for that year are imputed. Then same steps followed 

for the imputation of missing values for all years and production areas. 

4.3.4 Multivariate Linear Regression 

Multivariate linear regression is applied when p response variables iY  depend on k 

predictor variables 1, , kX X . The multivariate regression for the thi variable is then 

expressed as 0 1 1i i k ki iy b b x b x e , where ;  0, ,ib i k  are regression 

constants and ;  1, ,ie i p are the random errors that are identically distributed with 

mean zero and variance 2 . Minimization of 
2

ie  results in a set of equations from 

where of constants 0 1,  , ,  kb b b  can be computed. 

In 
1

m
X  and 

2

m
X  the matrices representing the 10% and 40% missing values, the 

existing value are denoted by 
ijx , 1, ,    1, ,i n j p   and the missing values 

denoted by 
m

ijx , 1, ,    1, ,i n j p  . In both matrices the indices i and j have the 

same range respectively, but observed values denoted by x , missing values denoted by

mx , while their positions in are defined by i and j. Theoretically imputation of missing 

values can either be done on column by column or row by row basis. This may lead to 

some differences in the imputed values. However, the process under study may require 

either of these approaches. In the case of the barley yield example it is wise to start 

imputation based on column wise approach, as the support variables, especially rain 

and temperature are susceptible to annual climatic changes, and row by row approach 

will result in larger fluctuations in the data values, reflecting on the estimates as well. 

 



  

 

84 

 

Column by column imputation can be performed using regression as follows. 

1. Determine the thl  column (1 l p  )  in which the minimum number of 

missing values ( lk ) is. 

2. Missing values in column l  are ;  1, ,  where m

i l lx i k k n  . 

3. Compute the ln k  row averages ( ;  1, ,m

j lx j n k  ) for the rows 

corresponding to existing data in column l. Do not include the values of the 

thl  column. Obtained averages forms the values of the first independent 

random variable 1aX .  Assume the thl  column is the dependent variable lX .  

Then ln k  tuples can be formed between the existing values of the 

dependent variable lX  and the corresponding values of the independent 

variable 1 1{ , }
l

m m

a n kX x x  . 

4. Similarly, the variables 2 3 4 5 6,  ,  ,  ,  a a aX X X X X  can be defined to have the 

same number of rows ( ln k ) as the dependent variable lX , as below. 

4.1.   2aX : Average of the ln k  rows of rain equivalent data excluding the thl  column. 

4.2.   3aX : Average of the ln k  rows temperature equivalent data excluding the thl  

column. 

4.3.   4aX : Average of the ln k  rows soil organic matter equivalent data excluding 

the thl  column. 

4.4.   5X : Rain equivalent data of the thl  column. 

4.5.   6X : Temperature equivalent data of the thl  column. 
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Inclusion of the variables 5X  and 6X  in the regression process will provide useful 

information in the imputation process as they represent available data for the year 

imputation is undertaken. 

5. Undertake multivariate regression for the column l  

0 1 1 2 2 3 3 4 4 5 5 6 6l a a a ax b b x b x b x b x b x b x . 

6. Estimate the first missing value and impute in the thl  column. Then 1lk   

missing values remains in the thl  column. 

7. Repeat the process for the thl  column until all missing values are imputed 

in this column. 

8. Then repeat steps 1 to 7, for each column till all missing values in all 

columns are imputed. 

 

Following this algorithm imputation of missing values were undertaken and obtained 

results for the 40% missing data are given in Appendices J, K and N.  

For the comparison of error levels for different imputation methods, expressing the 

Mean Square Error (MSE) as a percentage of the row data average is considered as a 

suitable method. 

Mean square error for one row or column of the data matrix  (MSER) computed from 

k estimated and corresponding observed values is given by  

2

1

( )lk

i i

i l

x x
MSER

k


  

Expressing MSER as a percentage of the row or column average 

2

1

n

i

İ

x

n
RCA 


  (n: 

Number of observations in a row or column), is given as 
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% 100
MSER

MSE
RCA

 
  
 

. 

 

For the whole data that is made up of n rows and p colums, the overall MSE% can be 

written as 

1

1

% 100
n

i i

MSER
MSE n

RCA





 
  

 
  

 

 

This enables the fair comparison of MSE values of different variables. 

For the 10% missing data imputed values are given in Appendix L. In the case of 10% 

missing data, estimation errors are found to be very low (see Appendices M and O). 

The overall average MSE% obtained from 5 splits in 10% missing case using MRSV 

turned out to be 1.24% indicating the superiority of MRSV.  Due to very low error 

levels subsequent work concentrated on the 40% missing case. This is done to assess 

the performance of the proposed imputation method MRSV when the missing value 

are a high percentage of overall data. 

4.3.5 Using kernel regression for imputation 

Kernel regression is a nonparametric method where local weights are used in the 

process of estimation. An estimate of a certain point is done by taking a linear 

combination of neighbouring observations. Estimation in kernel regression is 

undertaken using the Nadaraya – Watson estimator 
1 1

ˆ( ) ( ) / ( )n n

i i ig x w k u k u     where 

iw  represents local weights and k the kernel function. u which is defined as

( ) /iu x X h  , h being the band width. The weights w is estimated such that 

2ˆ( )i iSSE x x    is minimum. On the other hand, the level of smoothing is an 

important point and as explained in Chapter 2, Section 2.6, it depends on the size of 

bandwidth used. Kernel values at data point X and within its neighbourhood, such that 
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on the left and right of X at locations ix , at distances equivalent to some multiples of a 

small increment dx are taken and kernel values at these points are computed. Over 

smoothing occurs if the bandwidth h is too big obscuring the structure under study. If 

h is too small, then not appreciable smoothing will take place, not giving any idea 

about the variable representing the process. Then the optimum bandwidth has to be 

determined such that over or under smoothing does not occur. There are various 

formulae proposed by different researchers, amongst which 

1/5
54

3

s
h

n

 
  
 

is given in 

[44] p. 45 for the Gaussian kernel has some application areas, but never satisfactory. 

In various references including [9], [44] p.53 - 54, [38] pp. 96-98, and [22] p. 254, it 

is suggested that the cross validation method be used for fine tuning of the theoretically 

computed band width. This is based on optimizing the h value such that the average 

error is minimum. 

In this study the Epanechniko
2( ) 0.75(1 ) ; 1k u u u   , and Gaussian 

1/2 2( ) (2 ) exp( u / 2)k u     kernel functions are used. 

Epanechnikov and Gaussian kernel estimation techniques were applied to the 10% and 

40% missing cases with band width values 2, 4, and 6. Then MSE% values computed 

and given in Table 4.1 below for comparison. It is clearly evident that Epanechnikov 

kernel produced estimates with lower error levels than the Gaussian kernel method for 

the %10 missing data matrix. On the %40 missing data matrix Epanechnikov kernel 

produced estimates with lower error levels than the Gaussian kernel method for 

bandwidth values 2 and 6. For bandwidth value 4 Gaussian kernel estimates have lower 
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error levels than the Epanechnikov kernel. This may happen when working with data, 

but in general Epanechnikov performed better than the Gausian method. 

Table 4.2: A summary of average MSE% values for various bandwidths with dx=2. 

10% missing at random 40% missing at random 

h Epanechnikov Gauss Epanechnikov Gauss 

2 7.2 15.7 16.1 30 

4 17.6 25.2 35.8 26.5 

6 20.8 30.2 40.9 42.2 

 

4.3.6 Application of Markov Chain Monte Carlo Technique to imputation of 

missing values 

Markov Chain Monte Carlo concept assumes that the conditional distribution of 1nX   

given nX  does not depend on n, and has stationery transition probabilities.  In 

application this leads to an iterative simulation concept for imputation. Conditioning 

information is used for the estimation of unknown parameters. 

Assume X  represents the data set with missing values, where missing values are 

denoted by
mX , observed values by

oX , and   is the set of parameters to be estimated. 
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Then the posterior distribution of the parameter values conditioned on the observed 

data is given by [43] as 

( ) ( , ) ( )
m

o o m m o m

X

f x f x x f x x dx  . 

Here ( , )o mf x x  is the conditional density of   conditioned on the complete data X, 

and ( )m of x x is the predictive density of missing values conditioned on observed data. 

An iterative approach is proposed by Tanner [48] which considers the imputed values 

together with the observed values for updating the distribution parameter . At the 

beginning the posterior values to be imputed are determined using some suitable 

algorithm considering the observed data. 

The below given steps are followed in imputing missing values using MCMC. 

i. Determining a suitable dx value to be used as an increment or decrement 

starting from an observed value say 1

o

ix  neighboring a location with 

missing value 
m

ix  until the next observed value 1

o

ix  is reached. This 

generates dummy data values between the two existing data values, in 

between which one or more locations with missing values exists. 

ii. In a row or column for all locations with missing values 
m

ix  are subjected 

to this process. On the other hand the difference between two cells 
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neighboring a 
m

ix cell may not be the same for all 
m

ix cells, leading to 

different number of iterations for different 
m

ix locations. 

iii. Following the generation of dummy data values as explained in steps i and 

ii then the average of this row or column is computed and compared with 

the average of the corresponding row or column from the complete data. 

The row or column with imputed values that has an average closest to the 

average of the complete data of the same row or column is then selected as 

the imputed row or column. 

 

The process given in steps i to iii is repeated for each row or column until the 

imputation process is complete. 

Imputation results obtained from MCMC method are given in Appendix R. MSE% 

error levels obtained from imputation carried out using 5 different methods are 

summarized in Table 4.3. Clearly the proposed MRSV outperformed all other 

methods, indicating the importance of support variables in the estimation or imputation 

process. 

Table 4.3: MSE% values obtained in different methods. 

 MRSV Bivariate 

regression 

Epanechnikov 

kernel 

Gaussian 

kernel 

MCMC 

MSE% 3 16 16 30 27 
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4.3.7 The Relative Aitchison Distance (RDA) 

RDA is methodology that determines the robustness of estimates as explained under 

section 2.1.4. Hence can be used as a measure to compare of the accuracy of the 

estimates obtained from different estimation methods. RDA can be computed using 

the equation proposed by Templ M. et.al. [49]. 

1 ˆ( , )
M A i in

i M

RDA d x x  

where {1, , }M n , Mn is the number of locations with missing values in a variable, 

ˆ( , )A i id x x is the Aitchison distance. 

The lower the RDA value the better or more robust is the estimator. RDA values 

computed for each of the methods used in this study are given in Table 4.3, Appendix 

P and also shown in Figure 4.7 Again 
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Figure 4.7 RDA performance of the methods used in imputation. 

From Figure 4.7 it is clearly evident that the MRSV method performs better than the 

other methods as its RDA graph is much below the others. 

The significance of the difference between the RDA values obtained from different 

methods can be checked using ANOVA and the F test. Mean and standard deviation 

values for RDA obtained from different methods are given in Table 4.4. 
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Table 4.4: Average and standard deviation of the RDA values obtained from each 

estimation method. 

 MCMC 

Method 1 

Gauss-Krnl h2 

Method 2 

Epan Krnl 

Method 3 

MRSV 

Method 4 

Mean 2.0343 3.0882 3.6726 0.6026 

Std. Dev. 0.5111 0.8772 1.1873 0.2658 

 

Based on these RDA sample statistics the null and alternative hypothesis set as below 

are to be tested at 0.05 significance level. 

0 1 2 3 4

1

:

: 2 or more of the means not equal

H μ μ μ μ

H

  
 

As within group variance 2

1 30.867s  is much greater than between groups variance 

2 0.6278s  an upper or right-hand tailed F test is appropriate. 

Critical f value with 1 20.05,  1 3,  ( 1) 64 2.75α ν k ν k n f         . 

Test statistics f  value 2 2

1 / 30.867 / 0.6278 49.17s s    is much greater that the critical 

f value leading to the rejection of 0H . It means the mean RDA values cannot be 

accepted as being the same for all estimation methods. 

To show that the proposed MRSV method’s RDA values are better than other methods, 

a glance at the box and whisker diagrams given in Figure 4.8 is enough. 
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Figure 4.8: Box and whisker diagrams of RDA values for the estimation methods used 

in this study. 

From Figure 4.8 it is evident that the proposed MRSV method upper limit for outlier 

values is below the lower limit for outliers of other methods. This is a good indication 

of the robustness of the MRSV method. 
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Chapter 5 

CONCLUSION 

Imputation of missing values is handled from a different perspective, such that the 

estimation of missing values in a certain variable is supported by other variables that 

are closely related with this variable. The concept developed is thus called imputation 

using support variables (SVs). In a data matrix of size n p  with missing values, 

imputation is carried out starting with the column with minimum number of missing 

values. In addition to the SVs other variables as explained under section 4.3.4 are 

included into the multivariate regression for the estimation of missing values (MRSV). 

This approach proved to be a better method for the imputation of missing values, 

compared with other methods implemented (bivariate regression, kernel regression, 

MCMC) in terms of errors (MSE%). The robustness of estimates measured using the 

relative Aitchison distance where the proposed method proved to be superior to other 

methods. When the RDA values for each method are used in an ANOVA test, the 

proposed MRSV method was the best performer.  

It must be stressed that the units of the support variables to be used in the estimation 

of the missing values, must be converted to the same unit as the variable with missing 

values. This is a formidable task to be overcome and require the clear understanding 

of the process under study. Any ill designed algorithm for the conversion of the units 

will certainly result in high error margins in the estimation process.    
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Strengths of the proposed MRSV method compared with other methods used in this 

study is worth mentioning.  

i. The MCMC method has two main disadvantages, namely time consuming, 

and obtaining optimum solution is not guaranteed.  

ii. In kernel estimation uncertainty on the optimum value of bandwidth 

necessitates some kind of iterative simulation.  

iii. In the MRSV method the only difficulty relates to the conversion of the 

units of SVs to that of the dependent variable. 

The MRSV method handles imputation problems very efficiently, mainly due to the 

support variables introduced into the system. This is evident when the error levels are 

compared. 

Considering the broadness in content and detail of implementing the support variables 

concept in imputation of missing values, there remains a vast field of research to find 

a generalized approach on how to handle the support variables. The methodology used 

in this study from the agricultural sector proved to be a success, providing 

encouragement for the application of the concept in different fields. 
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APPENDICES 



  

 

 

Appendix A: Barley Yield t/ha 

 

 

 

Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 AreaAver

1 1.121 0.448 0.374 1.868 0.149 1.308 1.831 1.868 1.868 1.682 1.390 1.345 0.112 0.867 1.413 1.555 1.592 1.223

2 1.001 0.448 0.448 1.868 0.149 1.898 1.824 2.025 2.138 1.756 1.345 1.345 0.142 0.755 1.898 1.868 1.106 1.295

3 1.166 0.553 0.874 1.868 0.149 2.182 1.719 1.525 2.227 1.682 1.345 0.897 0.120 0.755 1.129 1.143 1.143 1.205

4 1.248 0.471 0.336 0.792 0.538 0.972 2.220 2.093 1.861 1.390 1.121 0.747 0.179 0.583 1.495 1.868 1.868 1.164

5 1.248 0.456 0.650 0.879 0.411 0.972 2.434 1.876 1.562 0.904 1.001 1.016 0.247 0.247 1.472 1.495 1.883 1.103

6 0.807 0.478 0.336 0.673 0.318 1.001 1.867 2.280 1.846 1.510 1.181 1.353 0.284 0.426 1.712 1.854 1.981 1.171

7 0.755 0.516 0.762 0.785 0.164 1.592 2.960 2.294 2.317 1.121 1.031 1.016 0.105 0.695 0.889 1.375 1.861 1.191

8 0.770 0.433 0.747 1.226 0.433 1.353 2.982 2.287 2.309 1.121 0.112 0.598 0.082 0.695 1.487 1.495 1.943 1.181

9 1.308 1.114 1.353 1.854 1.570 1.644 1.704 1.413 1.465 1.405 1.196 1.495 0.450 0.859 1.667 1.495 1.315 1.371

10 1.495 1.129 1.495 1.988 1.868 1.300 1.868 1.495 1.868 1.868 1.166 1.312 0.392 1.734 2.078 1.495 1.495 1.532

11 0.800 0.037 0.792 1.868 0.673 1.891 1.487 2.242 2.317 2.242 2.145 2.317 0.508 1.801 2.332 2.227 1.532 1.601

12 1.061 0.404 1.330 1.868 1.084 1.517 1.868 1.868 1.278 1.308 1.308 1.129 0.359 0.957 1.061 1.129 1.218 1.220

13 0.845 0.120 0.568 1.868 0.419 1.854 1.712 2.175 1.487 1.188 1.166 0.859 0.426 1.360 1.338 0.777 1.637 1.165

14 1.248 0.366 1.129 2.377 1.704 1.196 1.547 2.235 2.033 1.659 1.076 0.904 0.433 1.428 1.450 1.001 2.182 1.410

15 1.495 0.396 0.852 1.061 0.531 1.278 2.123 1.405 1.188 1.106 1.286 0.486 0.202 0.389 0.889 1.868 1.928 1.087

16 1.779 0.277 1.136 1.353 0.972 1.532 2.623 1.764 1.495 1.360 1.129 0.897 0.538 1.263 0.949 1.868 1.129 1.298

17 2.250 0.194 1.786 1.203 1.674 1.368 1.323 1.495 1.383 1.405 1.495 1.024 0.605 1.241 1.166 1.121 1.121 1.286

YrlyAver 1.200 0.461 0.881 1.494 0.753 1.462 2.005 1.902 1.803 1.453 1.205 1.102 0.305 0.944 1.437 1.508 1.584 1.265



  

 

 

Appendix B: Raw Rain Data in 2/mm m  

 

 

 

 

Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 AreaAver

1 275.6 248.9 199.3 258.8 220.3 316.4 324.5 470.6 359.0 296.0 233.2 226.2 97.5 205.3 408.2 200.6 244.2 269.7

2 284.9 259.9 224.8 359.6 294.7 379.2 424.9 356.7 381.2 339.9 363.4 255.5 73.3 266.4 510.6 238.5 265.6 310.5

3 251.8 270.5 218.3 232.1 221.2 352.4 393.3 475.3 363.8 257.8 243.0 300.0 71.6 230.3 377.5 238.6 277.9 280.9

4 256.4 174.7 230.1 252.5 208.9 338.2 400.3 370.6 458.9 338.2 307.9 307.3 157.0 287.0 409.3 337.8 426.2 309.5

5 276.0 181.8 196.8 250.8 225.9 377.3 345.4 388.8 379.2 280.9 267.3 333.8 138.5 327.7 453.1 325.9 369.3 301.1

6 261.6 145.0 184.4 208.4 189.4 368.1 337.3 420.3 298.2 241.4 223.5 353.9 133.5 419.4 536.5 264.9 306.7 287.8

7 310.0 225.6 175.9 291.6 279.6 425.7 298.7 375.6 380.6 263.2 270.5 340.3 125.1 276.9 413.7 375.2 375.2 306.1

8 336.0 209.5 229.1 259.7 269.2 372.3 348.9 340.8 381.2 263.5 212.2 274.7 100.9 218.8 378.1 231.4 309.2 278.6

9 434.8 290.5 290.4 442.9 301.5 590.7 509.6 764.8 485.1 488.6 315.1 453.0 206.1 343.3 748.4 367.2 490.2 442.5

10 391.7 279.2 273.5 416.3 305.6 525.9 493.2 612.0 426.1 415.5 278.9 373.0 196.9 330.3 640.1 399.6 612.1 410.0

11 348.6 267.9 256.6 389.7 309.6 461.1 476.7 459.2 367.1 342.4 242.6 293.0 187.6 317.2 531.7 432.0 733.7 377.5

12 367.7 302.1 427.9 493.8 366.8 400.8 563.3 680.4 593.7 375.0 398.9 464.5 299.7 480.4 807.2 422.7 567.3 471.3

13 279.0 179.9 255.5 324.1 215.3 290.0 300.1 482.0 299.7 265.0 232.7 208.9 128.6 278.9 406.2 241.2 328.8 277.4

14 255.7 228.8 188.2 300.8 198.2 269.3 402.9 418.4 300.8 300.6 236.6 471.7 226.7 294.1 386.8 238.6 406.4 301.4

15 340.3 231.3 198.3 271.9 269.9 319.0 400.7 386.8 457.1 418.4 268.9 322.7 143.7 194.9 368.9 229.0 430.2 308.9

16 434.8 307.0 255.3 300.3 359.8 408.8 488.6 467.3 664.2 397.5 647.3 302.3 195.6 456.6 507.6 321.9 633.6 420.5

17 434.3 216.0 363.2 334.0 282.3 376.7 547.5 539.6 665.9 390.2 472.3 353.0 264.1 391.8 598.5 315.5 482.8 413.4

YrlyAver 325.8 236.4 245.2 316.9 265.8 386.6 415.1 471.1 427.2 333.8 306.7 331.4 161.6 312.9 499.0 304.7 427.0 339.2



  

 

 

Appendix C: Raw Temperature Data 0C   

 

 

 

 

Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 AreaAver

1 14.210 13.890 15.270 15.010 13.610 14.590 14.790 14.160 14.580 15.410 14.900 15.360 14.570 14.430 15.270 13.510 13.740 14.547

2 13.985 13.515 14.905 14.825 13.655 14.615 14.450 13.880 14.335 14.640 14.270 14.735 14.740 14.625 15.465 13.625 13.965 14.366

3 13.760 13.140 14.540 14.640 13.700 14.640 14.110 13.600 14.090 13.870 13.640 14.110 14.910 14.820 15.660 13.740 14.190 14.186

4 15.240 14.990 16.020 15.900 14.640 15.390 15.010 14.930 15.270 15.290 15.290 15.300 16.380 16.470 17.660 15.750 16.060 15.623

5 14.820 14.195 15.610 15.550 14.270 14.745 14.455 15.215 15.135 15.345 15.395 14.850 15.215 15.685 16.910 15.025 15.480 15.171

6 14.290 13.668 15.075 15.095 13.985 14.693 14.283 14.408 14.613 14.608 14.518 14.480 15.063 15.253 16.285 14.383 14.835 14.678

7 14.400 13.400 15.200 15.200 13.900 14.100 13.900 15.500 15.000 15.400 15.500 14.400 14.050 14.900 16.160 14.300 14.900 14.718

8 14.400 13.400 15.200 15.200 13.900 14.100 13.900 15.500 15.000 15.400 15.500 14.400 14.050 14.900 16.160 14.300 14.900 14.718

9 17.200 16.210 17.010 17.660 16.570 17.600 17.100 16.330 16.430 16.130 16.510 16.920 17.310 16.990 17.880 16.190 16.480 16.854

10 17.200 16.210 17.010 17.660 16.570 17.600 17.100 16.330 16.430 16.130 16.510 16.920 17.310 16.990 17.880 16.190 16.480 16.854

11 14.630 13.000 15.540 14.830 14.310 15.830 15.470 14.630 14.400 13.860 14.160 14.760 14.910 14.930 15.520 13.380 13.730 14.582

12 15.395 14.890 15.675 15.910 15.080 16.095 15.615 15.095 15.270 15.045 15.185 15.605 15.980 15.745 16.590 14.850 15.150 15.481

13 13.590 13.570 14.340 14.160 13.590 14.590 14.130 13.860 14.110 13.960 13.860 14.290 14.650 14.500 15.300 13.510 13.820 14.108

14 13.590 13.570 14.340 14.160 13.590 14.590 14.130 13.860 14.110 13.960 13.860 14.290 14.650 14.500 15.300 13.510 13.820 14.108

15 15.240 14.990 16.020 15.900 14.640 14.860 13.830 13.990 15.400 14.600 14.670 15.510 14.750 14.700 15.200 14.200 14.500 14.882

16 14.900 14.780 15.595 15.785 14.745 15.785 14.485 14.695 15.795 15.285 15.835 16.610 15.680 15.270 16.050 14.635 14.835 15.339

17 14.560 14.570 15.170 15.670 14.850 16.710 15.140 15.400 16.190 15.970 17.000 17.710 16.610 15.840 16.900 15.070 15.170 15.796

YrlyAver 14.789 14.235 15.442 15.480 14.447 15.325 14.818 14.787 15.068 14.994 15.094 15.309 15.343 15.326 16.246 14.480 14.827 15.059



  

 

 

 

Appendix D: Raw Soil Organic Matter Ratio Data 

 

 

 

Area AreaAver

1 0.7 1.96 1.5 1.89 1.53 1.516

2 1.92 1.96 1 1.35 2.54 1.754

3 2.6 1.67 1.73 1.44 1.18 1.724

4 1.53 2.25 1.74 1.99 1.878

5 1.66 1.94 1.99 1.26 1.713

6 1.44 2.05 2.06 1.74 1.16 1.18 1.605

7 1.28 1.95 3.18 1.66 1.22 1.16 2.5 1.15 1.763

8 1.76 1.55 1.96 2.18 1.86 1.78 1.848

9 3.3 2.8 3.14 4.15 3.348

10 2.02 1.44 2.19 2.02 2.21 2.69 1.79 5 1.93 2.366

11 1.58 1.94 3.31 6.13 2.43 3.078

12 1.51 1.5 5 2.27 2.5 1.13 1.16 2.153

13 1.12 1 1.41 2 2.03 2.5 4 1.07 2.91 1.41 1.15 1.06 2.43 1.853

14 1.6 1.5 2.43 2.16 3.53 2.45 1.57 2.69 1.44 2.152

15 2.76 1.97 2.67 0.51 1.67 0.71 1.71 1.714

16 1.74 3.11 2.8 1.75 2.350

17 1.32 1.73 2.16 2.91 1.79 2.03 2.86 2.56 2.170



  

 

 

 

Appendix E: Rain Equivalent Barley Grain Yield in t/ha 

 

 

Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 AreaAver

1 1.213 1.095 0.877 1.139 0.969 1.392 1.428 2.071 1.580 1.302 1.026 0.991 0.429 0.903 1.796 0.883 1.074 1.186

2 1.254 1.144 0.989 1.582 1.297 1.668 1.870 1.569 1.677 1.496 1.599 1.124 0.323 1.172 2.247 1.049 1.169 1.366

3 1.108 1.190 0.961 1.021 0.973 1.551 1.731 2.091 1.605 1.134 1.069 1.320 0.315 1.013 1.661 1.050 1.223 1.236

4 1.128 0.769 1.012 1.111 0.919 1.048 1.761 1.631 2.019 1.488 1.355 1.352 0.691 1.263 1.801 1.486 1.875 1.336

5 1.140 0.703 0.912 1.014 0.876 1.334 1.623 1.740 1.666 1.275 1.169 1.455 0.639 1.554 2.081 1.326 1.612 1.301

6 1.151 0.638 0.811 0.917 0.833 1.620 1.484 1.849 1.312 1.062 0.983 1.557 0.587 1.845 2.361 1.166 1.349 1.266

7 1.364 0.993 0.774 1.283 1.230 1.873 1.754 1.653 1.675 1.158 1.190 1.497 0.550 1.218 1.820 1.651 1.651 1.373

8 1.478 0.922 1.008 1.143 1.184 1.638 1.535 1.500 1.677 1.159 0.934 1.209 0.444 0.963 1.664 1.018 1.360 1.226

9 1.913 1.278 1.278 1.949 1.327 2.599 2.242 3.365 2.134 2.150 1.386 1.993 0.907 1.511 3.293 1.616 2.157 1.947

10 1.583 1.329 1.883 2.173 1.614 1.764 2.479 2.994 2.612 1.650 1.755 2.044 1.319 2.114 3.552 1.860 2.496 2.072

11 1.534 1.179 1.129 1.715 1.362 2.029 2.097 2.020 1.615 1.507 1.067 1.289 0.825 1.396 2.339 1.901 3.228 1.661

12 1.583 1.329 1.883 2.173 1.614 1.764 2.479 2.994 2.612 1.650 1.755 2.044 1.319 2.114 3.552 1.860 2.496 2.072

13 1.228 0.787 1.124 1.426 0.947 1.276 1.320 2.121 1.319 1.166 1.024 0.919 0.566 1.227 1.787 1.061 1.447 1.220

14 1.125 1.007 0.828 1.324 0.872 1.185 1.773 1.842 1.324 1.323 1.041 2.075 0.997 1.294 1.702 1.050 1.788 1.326

15 1.497 1.018 0.873 1.196 1.188 1.404 1.763 1.702 2.011 1.841 1.183 1.420 0.632 0.858 1.623 1.008 1.893 1.359

16 1.931 1.351 1.123 1.321 1.583 1.799 2.150 2.056 2.922 1.749 2.848 1.330 0.861 2.009 2.233 1.416 2.788 1.851

17 1.911 0.950 1.607 1.470 1.242 1.657 2.409 2.374 2.930 1.717 2.078 1.553 1.162 1.724 2.633 1.388 2.124 1.819

YrlyAver 1.420 1.040 1.122 1.409 1.178 1.624 1.876 2.092 1.923 1.460 1.380 1.481 0.739 1.422 2.244 1.340 1.867 1.507



  

 

 

 

Appendix F: Temperature Equivalent Barley Grain Yield In t/ha  

 

 

 

Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 AreaAver

1 1.206 0.515 0.361 1.851 0.155 1.216 1.768 2.054 1.781 1.481 1.239 1.274 0.099 0.900 1.338 1.747 1.653 1.214

2 1.099 0.534 0.442 1.860 0.155 1.746 1.804 2.302 2.087 1.623 1.272 1.343 0.124 0.781 1.789 2.030 1.154 1.303

3 1.305 0.683 0.881 1.870 0.155 1.986 1.743 1.794 2.228 1.634 1.355 0.946 0.103 0.777 1.058 1.202 1.199 1.231

4 1.333 0.510 0.327 0.780 0.544 0.892 2.199 2.267 1.820 1.325 1.062 0.745 0.160 0.574 1.286 1.804 1.863 1.146

5 1.333 0.528 0.648 0.863 0.420 0.920 2.476 2.032 1.503 0.843 0.934 1.024 0.222 0.246 1.320 1.486 1.903 1.100

6 0.904 0.590 0.339 0.673 0.330 0.911 1.893 2.682 1.847 1.467 1.189 1.428 0.246 0.439 1.605 1.949 2.077 1.210

7 0.806 0.642 0.781 0.767 0.170 1.557 3.095 2.486 2.194 1.023 0.947 1.034 0.095 0.702 0.832 1.409 1.906 1.203

8 0.822 0.539 0.766 1.199 0.447 1.323 3.118 2.478 2.187 1.023 0.103 0.608 0.075 0.702 1.391 1.531 1.991 1.194

9 1.239 1.141 1.265 1.652 1.459 1.368 1.492 1.355 1.345 1.290 1.066 1.348 0.383 0.784 1.442 1.381 1.246 1.250

10 1.416 1.156 1.398 1.771 1.737 1.082 1.636 1.434 1.716 1.716 1.039 1.183 0.334 1.582 1.798 1.381 1.416 1.400

11 0.836 0.049 0.790 2.084 0.708 1.665 1.357 2.412 2.406 2.266 2.168 2.311 0.456 1.750 2.195 2.430 1.672 1.621

12 1.098 0.439 1.309 1.839 1.077 1.340 1.770 1.954 1.238 1.243 1.231 1.096 0.315 0.951 0.990 1.114 1.252 1.192

13 0.963 0.139 0.590 2.054 0.447 1.744 1.765 2.500 1.524 1.170 1.163 0.905 0.386 1.484 1.352 0.824 1.839 1.226

14 1.424 0.424 1.172 2.612 1.820 1.125 1.596 2.569 2.082 1.633 1.073 0.952 0.393 1.558 1.465 1.062 2.452 1.495

15 1.596 0.429 0.828 1.045 0.536 1.195 2.189 1.706 1.140 1.082 1.265 0.512 0.183 0.412 0.911 1.954 2.089 1.122

16 1.970 0.302 1.118 1.336 0.982 1.349 2.590 1.960 1.368 1.272 1.027 1.015 0.472 1.289 0.913 1.888 1.184 1.296

17 2.586 0.214 1.781 1.192 1.692 1.138 1.253 1.531 1.211 1.259 1.265 1.254 0.515 1.221 1.058 1.096 1.141 1.259

YrlyAver 1.290 0.520 0.870 1.497 0.755 1.327 1.985 2.089 1.746 1.373 1.141 1.116 0.268 0.950 1.338 1.546 1.649 1.262



  

 

 

 

Appendix G: Soil Organic Matter Equivalent Yield Data in t/ha  

 

 

Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 AreaAver

1 1.704 0.682 0.568 2.840 0.227 1.988 2.783 2.840 2.840 2.556 2.113 2.045 0.170 1.318 2.147 2.363 2.420 1.859

2 1.753 0.785 0.785 3.270 0.262 3.322 3.191 3.544 3.741 3.074 2.354 2.354 0.249 1.321 3.322 3.270 1.936 2.267

3 2.005 0.951 1.504 3.214 0.257 3.754 2.957 2.622 3.831 2.892 2.314 1.543 0.206 1.298 1.941 1.967 1.967 2.072

4 2.346 0.885 0.632 1.489 1.012 1.827 4.173 3.934 3.499 2.613 2.108 1.405 0.337 1.096 2.810 3.513 3.513 2.188

5 2.134 0.780 1.112 1.504 0.703 1.661 4.162 3.208 2.671 1.546 1.713 1.738 0.422 0.422 2.518 2.556 3.221 1.886

6 1.300 0.770 0.541 1.083 0.511 1.612 3.005 3.670 2.972 2.431 1.901 2.178 0.457 0.686 2.756 2.984 3.189 1.885

7 1.329 0.908 1.342 1.381 0.289 2.802 5.209 4.038 4.078 1.973 1.815 1.789 0.184 1.223 1.565 2.420 3.275 2.095

8 1.424 0.802 1.383 2.268 0.802 2.503 5.517 4.231 4.272 2.074 0.207 1.106 0.152 1.286 2.751 2.765 3.595 2.185

9 4.382 3.731 4.532 6.209 5.258 5.508 5.709 4.732 4.907 4.707 4.006 5.007 1.509 2.879 5.583 5.007 4.407 4.593

10 3.543 2.675 3.543 4.712 4.428 3.082 4.428 3.543 4.428 4.428 2.763 3.109 0.930 4.109 4.924 3.543 3.543 3.631

11 2.463 0.115 2.440 5.755 2.072 5.824 4.581 6.906 7.136 6.906 6.607 7.136 1.565 5.548 7.182 6.860 4.719 4.930

12 2.282 0.868 2.860 4.017 2.330 3.262 4.017 4.017 2.748 2.812 2.812 2.426 0.771 2.057 2.282 2.426 2.619 2.624

13 1.562 0.221 1.051 3.457 0.774 3.429 3.166 4.024 2.751 2.198 2.157 1.590 0.788 2.516 2.475 1.438 3.028 2.155

14 2.683 0.787 2.426 5.110 3.664 2.571 3.326 4.805 4.371 3.567 2.314 1.944 0.932 3.069 3.117 2.153 4.692 3.031

15 2.556 0.677 1.457 1.815 0.907 2.185 3.630 2.403 2.032 1.891 2.198 0.831 0.345 0.665 1.521 3.195 3.297 1.859

16 4.180 0.650 2.670 3.179 2.283 3.601 6.165 4.145 3.513 3.197 2.652 2.108 1.265 2.968 2.231 4.391 2.652 3.050

17 4.882 0.422 3.876 2.611 3.633 2.968 2.871 3.244 3.000 3.049 3.244 2.222 1.314 2.692 2.530 2.433 2.433 2.790

YrlyAver 2.502 0.983 1.925 3.171 1.730 3.053 4.052 3.877 3.694 3.054 2.546 2.384 0.682 2.068 3.039 3.134 3.206 2.653



  

 

 

 

 

Appendix H:  Barley Yield Data With 40% Missing Values 

 

 

Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 AreaAver

1 1.121 0.374 1.868 1.308 1.868 1.868 1.682 1.345 0.112 0.867 1.413 1.592 1.285

2 0.448 0.149 1.824 2.138 1.756 1.345 0.755 1.898 1.868 1.354

3 1.166 0.553 0.874 2.182 1.719 1.525 0.897 0.120 1.143 1.143 1.132

4 1.248 0.336 0.792 0.538 2.220 2.093 1.861 1.390 1.121 0.583 1.868 1.277

5 1.876 0.904 1.016 0.247 1.472 1.495 1.168

6 0.807 0.336 0.673 1.001 1.510 1.181 0.284 1.712 1.981 1.054

7 0.516 0.762 0.164 1.592 2.960 2.294 2.317 1.031 1.016 0.695 0.889 1.375 1.861 1.344

8 1.226 2.982 2.309 1.121 0.112 0.082 1.487 1.331

9 1.308 1.114 1.353 1.854 1.570 1.644 1.704 1.413 1.405 1.495 0.859 1.495 1.315 1.425

10 1.495 1.129 1.868 1.495 1.868 1.166 1.734 2.078 1.495 1.592

11 0.792 1.868 1.891 2.317 2.242 2.145 2.317 0.508 1.801 2.227 1.532 1.786

12 1.061 0.404 1.330 1.084 1.517 1.278 1.308 1.308 0.359 0.957 1.129 1.067

13 1.868 0.419 1.712 2.175 1.487 0.859 1.360 1.338 1.637 1.428

14 1.248 0.366 1.129 2.377 1.704 1.196 1.547 2.235 1.659 1.076 0.904 0.433 1.428 1.450 1.001 1.317

15 1.061 1.278 1.188 1.106 1.286 0.486 0.389 1.928 1.090

16 1.779 0.277 1.136 0.972 2.623 1.764 1.360 0.897 0.538 0.949 1.868 1.288

17 2.250 1.786 1.674 1.368 1.323 1.383 1.495 0.605 1.241 1.166 1.121 1.401

YrlyAver 1.348 0.601 0.928 1.510 1.014 1.498 2.061 1.874 1.820 1.454 1.206 1.123 0.338 0.993 1.441 1.511 1.589 1.314



  

 

 

 

Appendix I:  Barley Yield Data With 10% Missing Values

 

 

 

Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 AreaAver

1 1.121 0.448 0.374 1.868 0.149 1.308 1.831 1.868 1.868 1.682 1.390 1.345 0.112 0.867 1.413 1.555 1.592 1.223

2 1.001 0.448 0.448 1.868 0.149 1.898 1.824 2.025 2.138 1.756 1.345 1.345 0.142 0.755 1.898 1.868 1.106 1.295

3 1.166 0.553 0.874 1.868 0.149 2.182 1.719 1.525 2.227 1.682 1.345 0.897 0.120 0.755 1.129 1.143 1.143 1.205

4 1.248 0.336 0.792 0.538 0.972 2.220 2.093 1.861 1.390 1.121 0.747 0.583 1.495 1.868 1.868 1.276

5 1.248 0.972 1.876 1.562 0.904 1.001 1.016 0.247 1.472 1.495 1.883 1.243

6 0.807 0.336 0.673 1.001 2.280 1.510 1.181 1.353 0.284 0.426 1.712 1.854 1.981 1.184

7 0.755 0.516 0.762 0.785 0.164 1.592 2.960 2.294 2.317 1.121 1.031 1.016 0.105 0.695 0.889 1.375 1.861 1.191

8 0.770 0.747 1.226 0.433 2.982 2.287 2.309 1.121 0.112 0.598 0.082 0.695 1.487 1.495 1.943 1.219

9 1.308 1.114 1.353 1.854 1.570 1.644 1.704 1.413 1.405 1.196 1.495 0.859 1.667 1.495 1.315 1.426

10 1.495 1.129 1.495 1.988 1.868 1.300 1.868 1.495 1.868 1.868 1.166 1.734 2.078 1.495 1.495 1.623

11 0.037 0.792 1.868 0.673 1.891 2.242 2.317 2.242 2.145 2.317 0.508 1.801 2.332 2.227 1.532 1.662

12 1.061 0.404 1.330 1.084 1.517 1.868 1.868 1.278 1.308 1.308 1.129 0.359 0.957 1.061 1.129 1.218 1.180

13 0.845 0.120 0.568 1.868 0.419 1.712 2.175 1.487 1.188 1.166 0.859 0.426 1.360 1.338 0.777 1.637 1.122

14 1.248 0.366 1.129 2.377 1.704 1.196 1.547 2.235 1.659 1.076 0.904 0.433 1.428 1.450 1.001 2.182 1.371

15 0.852 1.061 1.278 2.123 1.405 1.188 1.106 1.286 0.486 0.202 0.389 0.889 1.868 1.928 1.147

16 1.779 0.277 1.136 0.972 1.532 2.623 1.764 1.495 1.360 1.129 0.897 0.538 0.949 1.868 1.129 1.296

17 2.250 0.194 1.786 1.203 1.674 1.368 1.323 1.495 1.383 1.405 1.495 1.024 0.605 1.241 1.166 1.121 1.121 1.286

YrlyAver 1.207 0.467 0.895 1.521 0.825 1.443 2.022 1.902 1.807 1.453 1.205 1.089 0.301 0.924 1.437 1.508 1.584 1.291



  

 

 

 

 

Appendix J:  Imputed Barley Yield Data With 40% Missing Values 

 

 

 

Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 AreaAver

1 1.121 0.570 0.374 1.868 0.820 1.308 2.271 1.868 1.868 1.682 1.159 1.345 0.112 0.867 1.413 1.404 1.592 1.273

2 1.432 0.448 0.959 1.471 0.149 1.501 1.824 1.890 2.138 1.756 1.345 1.109 0.364 0.755 1.898 1.868 1.588 1.323

3 1.166 0.553 0.874 1.151 0.405 2.182 1.719 1.525 1.600 2.217 1.080 0.897 0.120 0.570 1.386 1.143 1.143 1.161

4 1.248 0.386 0.336 0.792 0.538 1.434 2.220 2.093 1.861 1.390 1.121 0.988 0.305 0.583 1.421 1.344 1.868 1.172

5 1.335 0.460 0.895 1.345 0.915 1.485 2.387 1.876 1.649 0.904 1.122 1.016 0.329 0.247 1.472 1.495 1.683 1.213

6 0.807 0.207 0.336 0.673 0.326 1.001 2.918 2.124 1.376 1.510 1.181 0.341 0.284 0.415 1.712 1.080 1.981 1.075

7 1.405 0.516 0.762 1.438 0.164 1.592 2.960 2.294 2.317 1.539 1.031 1.016 0.354 0.695 0.889 1.375 1.861 1.306

8 1.275 0.518 0.925 1.226 0.807 1.465 2.982 1.933 2.309 1.121 0.112 0.972 0.082 0.959 1.487 1.357 1.623 1.244

9 1.308 1.114 1.353 1.854 1.570 1.644 1.704 1.413 1.870 1.405 1.282 1.495 0.407 0.859 1.473 1.495 1.315 1.386

10 1.495 1.129 1.108 1.903 1.868 1.638 1.369 1.495 1.868 1.842 1.166 1.676 0.494 1.734 2.078 1.869 1.495 1.543

11 2.055 1.391 0.792 1.868 2.138 1.891 0.846 1.589 2.317 2.242 2.145 2.317 0.508 1.801 1.598 2.227 1.532 1.721

12 1.061 0.404 1.330 1.349 1.084 1.517 2.593 2.033 1.278 1.308 1.308 0.626 0.359 0.957 1.368 1.129 1.736 1.261

13 1.496 0.658 0.996 1.868 0.419 1.526 1.712 2.175 1.487 1.642 1.300 0.859 0.395 1.360 1.338 1.592 1.637 1.321

14 1.248 0.366 1.129 2.377 1.704 1.196 1.547 2.235 1.774 1.659 1.076 0.904 0.433 1.428 1.450 1.001 1.607 1.361

15 1.202 0.313 0.799 1.061 0.691 1.278 2.569 2.044 1.188 1.106 1.286 0.486 0.282 0.389 1.356 1.278 1.928 1.133

16 1.779 0.277 1.136 1.467 0.972 1.459 2.623 1.764 1.703 1.360 1.157 0.897 0.538 0.873 0.949 1.868 1.640 1.321

17 2.250 0.870 1.786 1.761 1.674 1.368 1.323 1.830 1.383 1.608 1.495 1.303 0.605 1.241 1.166 1.636 1.121 1.436

YrlyAver 1.393 0.599 0.935 1.498 0.955 1.499 2.092 1.893 1.764 1.547 1.198 1.073 0.351 0.925 1.438 1.480 1.609 1.309



  

 

 

 

Appendix K:  Absolute Error for 40% Missing Values

 

 

Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 AreaAver

1 0.122 0.670 0.440 0.231 0.151 0.323

2 0.431 0.511 0.397 0.397 0.136 0.236 0.222 0.482 0.351

3 0.718 0.255 0.628 0.535 0.266 0.185 0.258 0.406

4 0.085 0.462 0.240 0.126 0.073 0.525 0.252

5 0.087 0.004 0.245 0.466 0.504 0.514 0.047 0.087 0.121 0.082 0.200 0.214

6 0.271 0.008 1.051 0.155 0.470 1.011 0.011 0.773 0.469

7 0.650 0.653 0.418 0.249 0.492

8 0.506 0.084 0.178 0.373 0.112 0.354 0.374 0.264 0.138 0.320 0.270

9 0.405 0.086 0.043 0.194 0.182

10 0.386 0.085 0.338 0.499 0.026 0.364 0.102 0.375 0.272

11 1.255 1.354 1.465 0.641 0.653 0.734 1.017

12 0.520 0.725 0.165 0.503 0.306 0.518 0.456

13 0.652 0.539 0.428 0.328 0.453 0.134 0.031 0.815 0.422

14 0.259 0.576 0.418

15 0.293 0.083 0.053 0.161 0.446 0.639 0.080 0.467 0.591 0.313

16 0.115 0.073 0.208 0.029 0.390 0.511 0.221

17 0.675 0.558 0.335 0.203 0.279 0.515 0.428

YrlyAver 0.553 0.357 0.300 0.439 0.491 0.318 0.550 0.348 0.343 0.327 0.144 0.430 0.117 0.212 0.339 0.485 0.434 0.383



  

 

 

Appendix L:  Imputed Barley Yield Data With 10% Missing Values

 

 

Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 AreaAver

1 1.121 0.448 0.374 1.868 0.149 1.308 1.831 1.868 1.868 1.682 1.390 1.345 0.112 0.867 1.413 1.555 1.592 1.223

2 1.001 0.448 0.406 1.868 0.149 1.898 1.824 1.971 2.138 1.756 1.345 1.345 0.142 0.755 1.804 1.868 1.106 1.284

3 1.166 0.553 0.874 1.868 0.011 2.182 1.719 1.525 2.163 1.682 1.320 0.897 0.120 0.755 1.129 1.143 1.143 1.191

4 1.248 0.471 0.336 0.792 0.538 0.972 2.220 2.093 1.861 1.390 1.105 0.747 0.179 0.583 1.495 1.868 1.868 1.163

5 1.248 0.456 0.650 0.879 0.411 0.972 2.434 1.876 1.562 0.904 1.001 1.016 0.247 0.479 1.472 1.434 1.883 1.113

6 0.807 0.478 0.336 0.775 0.318 1.001 1.867 2.280 1.846 1.510 1.181 1.305 0.284 0.426 1.712 1.854 1.981 1.174

7 0.755 0.516 0.762 0.785 0.164 1.418 2.878 2.294 2.317 1.121 1.031 1.016 0.105 0.695 0.889 1.375 1.861 1.175

8 0.770 0.433 0.747 1.283 0.433 1.353 2.982 2.287 2.309 1.121 0.112 0.598 0.082 0.695 1.487 1.495 1.943 1.184

9 1.308 1.114 1.353 1.854 1.777 1.644 1.704 1.713 1.465 1.405 1.196 1.495 0.450 0.859 1.691 1.495 1.315 1.402

10 1.495 1.129 1.495 1.988 1.868 1.300 1.868 1.495 1.868 1.868 1.166 1.312 0.392 1.734 2.078 1.495 1.495 1.532

11 0.800 0.037 0.784 1.868 0.673 1.891 1.487 2.242 2.373 2.196 2.145 2.317 0.508 1.789 2.332 2.227 1.532 1.600

12 1.061 0.404 1.330 1.868 1.084 1.612 1.868 1.868 1.278 1.308 1.308 1.129 0.359 0.957 1.061 1.114 1.218 1.225

13 0.845 0.120 0.568 1.868 0.419 1.854 1.712 2.175 1.487 1.188 1.166 0.859 0.426 1.360 1.338 0.777 1.675 1.167

14 1.248 0.366 1.276 2.377 1.704 1.196 1.547 2.235 2.033 1.659 1.076 0.904 0.440 1.428 1.450 1.001 2.182 1.419

15 1.495 0.396 0.852 1.061 1.305 1.278 2.123 1.405 1.188 1.106 1.286 0.486 0.202 0.389 0.931 1.868 1.928 1.135

16 1.779 0.277 1.136 1.353 0.972 1.532 2.623 1.764 1.495 1.360 1.129 0.897 0.538 1.263 0.949 1.868 1.129 1.298

17 2.250 0.194 1.786 1.203 1.674 1.368 1.323 1.495 1.383 1.405 1.495 1.024 0.605 1.241 1.166 1.121 1.121 1.286

YrlyAver 1.200 0.461 0.886 1.504 0.803 1.458 2.001 1.917 1.802 1.451 1.203 1.100 0.305 0.957 1.435 1.504 1.587 1.269



  

 

 

Appendix M:  Absolute Error for 10% Missing Values

 

 

 

Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 AreaAver

1

2 0.042 0.055 0.094 0.064

3 0.139 0.064 0.025 0.076

4 0.001 0.016 0.008

5 0.232 0.061 0.146

6 0.102 0.048 0.075

7 0.174 0.082 0.128

8 0.057 0.057

9 0.207 0.300 0.024 0.177

10

11 0.008 0.057 0.047 0.012 0.031

12 0.095 0.015 0.055

13 0.039 0.039

14 0.148 0.006 0.077

15 0.775 0.042 0.408

16

17

YrlyAver 0.066 0.080 0.374 0.134 0.041 0.178 0.061 0.047 0.021 0.048 0.006 0.122 0.053 0.038 0.039 0.087



  

 

 

Appendix N:  Absolute Error Square for 40% Missing Values

 

 

Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 AreaAver

1 0.015 0.449 0.193 0.053 0.023 0.147

2 0.186 0.261 0.158 0.158 0.018 0.056 0.049 0.232 0.140

3 0.515 0.065 0.394 0.286 0.071 0.034 0.066 0.204

4 0.007 0.214 0.058 0.016 0.005 0.275 0.096

5 0.007 0.000 0.060 0.217 0.254 0.264 0.002 0.008 0.015 0.007 0.040 0.079

6 0.074 0.000 1.105 0.024 0.221 1.023 0.000 0.598 0.381

7 0.422 0.427 0.174 0.062 0.271

8 0.256 0.007 0.032 0.139 0.013 0.125 0.140 0.070 0.019 0.102 0.090

9 0.164 0.007 0.002 0.038 0.053

10 0.149 0.007 0.114 0.249 0.001 0.133 0.010 0.140 0.100

11 1.576 1.833 2.147 0.411 0.426 0.539 1.155

12 0.270 0.526 0.027 0.253 0.094 0.268 0.240

13 0.425 0.290 0.183 0.108 0.206 0.018 0.001 0.664 0.237

14 0.067 0.332 0.199

15 0.086 0.007 0.003 0.026 0.199 0.409 0.006 0.218 0.349 0.145

16 0.013 0.005 0.043 0.001 0.152 0.261 0.079

17 0.456 0.311 0.112 0.041 0.078 0.265 0.211

YrlyAver 0.422 0.299 0.115 0.240 0.440 0.125 0.384 0.163 0.150 0.142 0.027 0.248 0.019 0.064 0.160 0.292 0.206 0.225



  

 

 

Appendix O:  Absolute Error Square for 10% Missing Values

 

 

Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 AreaAver

1

2 0.042 0.055 0.094 0.064

3 0.139 0.064 0.025 0.076

4 0.001 0.016 0.008

5 0.232 0.061 0.146

6 0.102 0.048 0.075

7 0.174 0.082 0.128

8 0.057 0.057

9 0.207 0.300 0.024 0.177

10

11 0.008 0.057 0.047 0.012 0.031

12 0.095 0.015 0.055

13 0.039 0.039

14 0.148 0.006 0.077

15 0.775 0.042 0.408

16

17

YrlyAver 0.066 0.080 0.374 0.134 0.041 0.178 0.061 0.047 0.021 0.048 0.006 0.122 0.053 0.038 0.039 0.087



  

 

 

Appendix P:  Relative Aitchison Distance (RDA) for The 40% Missing Data for Each Method of Imputation

 

MCMC GausKrnl_h=2 EpanKrnl MRSV

Area RDA=UsingImputedvals RDA compFrmİmptdOnly RDAimpt RDA=UsingImputedOnly

1 1.858 4.217 5.121 0.179

2 2.114 3.921 4.221 0.482

3 2.582 3.507 4.330 0.365

4 1.868 3.056 3.256 0.436

5 3.049 2.662 2.676 0.327

6 2.548 2.777 2.561 0.681

7 2.154 3.521 3.956 0.233

8 2.112 2.868 3.968 0.768

9 1.595 2.889 3.905 0.627

10 1.273 1.628 2.532 0.521

11 2.001 3.353 2.391 0.976

12 1.499 3.508 4.365 0.954

13 2.708 3.717 4.707 0.621

14 1.271 4.091 5.706 1.087

15 2.499 3.666 4.914 0.457

16 1.714 0.916 1.306 0.652

17 1.740 2.202 2.518 0.880



  

 

 

Appendix Q:  Imputed Barley Yield Data With 40% Missing Values (MCMC)

 

 

Area 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 AreaAver

1 1.121 0.570 0.374 1.868 0.820 1.308 2.271 1.868 1.868 1.682 1.159 1.345 0.112 0.867 1.413 1.404 1.592 1.273

2 1.432 0.448 0.959 1.471 0.149 1.501 1.824 1.890 2.138 1.756 1.345 1.109 0.364 0.755 1.898 1.868 1.588 1.323

3 1.166 0.553 0.874 1.151 0.405 2.182 1.719 1.525 1.600 2.217 1.080 0.897 0.120 0.570 1.386 1.143 1.143 1.161

4 1.248 0.386 0.336 0.792 0.538 1.434 2.220 2.093 1.861 1.390 1.121 0.988 0.305 0.583 1.421 1.344 1.868 1.172

5 1.335 0.460 0.895 1.345 0.915 1.485 2.387 1.876 1.649 0.904 1.122 1.016 0.329 0.247 1.472 1.495 1.683 1.213

6 0.807 0.207 0.336 0.673 0.326 1.001 2.918 2.124 1.376 1.510 1.181 0.341 0.284 0.415 1.712 1.080 1.981 1.075

7 1.405 0.516 0.762 1.438 0.164 1.592 2.960 2.294 2.317 1.539 1.031 1.016 0.354 0.695 0.889 1.375 1.861 1.306

8 1.275 0.518 0.925 1.226 0.807 1.465 2.982 1.933 2.309 1.121 0.112 0.972 0.082 0.959 1.487 1.357 1.623 1.244

9 1.308 1.114 1.353 1.854 1.570 1.644 1.704 1.413 1.870 1.405 1.282 1.495 0.407 0.859 1.473 1.495 1.315 1.386

10 1.495 1.129 1.108 1.903 1.868 1.638 1.369 1.495 1.868 1.842 1.166 1.676 0.494 1.734 2.078 1.869 1.495 1.543

11 2.055 1.391 0.792 1.868 2.138 1.891 0.846 1.589 2.317 2.242 2.145 2.317 0.508 1.801 1.598 2.227 1.532 1.721

12 1.061 0.404 1.330 1.349 1.084 1.517 2.593 2.033 1.278 1.308 1.308 0.626 0.359 0.957 1.368 1.129 1.736 1.261

13 1.496 0.658 0.996 1.868 0.419 1.526 1.712 2.175 1.487 1.642 1.300 0.859 0.395 1.360 1.338 1.592 1.637 1.321

14 1.248 0.366 1.129 2.377 1.704 1.196 1.547 2.235 1.774 1.659 1.076 0.904 0.433 1.428 1.450 1.001 1.607 1.361

15 1.202 0.313 0.799 1.061 0.691 1.278 2.569 2.044 1.188 1.106 1.286 0.486 0.282 0.389 1.356 1.278 1.928 1.133

16 1.779 0.277 1.136 1.467 0.972 1.459 2.623 1.764 1.703 1.360 1.157 0.897 0.538 0.873 0.949 1.868 1.640 1.321

17 2.250 0.870 1.786 1.761 1.674 1.368 1.323 1.830 1.383 1.608 1.495 1.303 0.605 1.241 1.166 1.636 1.121 1.436

YrlyAver 1.393 0.599 0.935 1.498 0.955 1.499 2.092 1.893 1.764 1.547 1.198 1.073 0.351 0.925 1.438 1.480 1.609 1.309


