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ABSTRACT 

In this study, the ratio between the end depth and the upstream depth which is known 

as the end depth ratio (EDR), is computed for the exponential (rectangular, 

triangular, and parabolic), the generalized trapezoidal (rectangular, triangular, semi-

triangular, trapezoidal, semi-trapezoidal, inverted triangular and semi-inverted 

triangular) and the generalized circular (without horizontal base, with horizontal base 

at 4 different heights) channel cross-sections using different analytical methods for 

both sub- and super critical flow regimes, since these selected cross-sections are 

widely used in practice and also having experimental data sets for the comparison. 

Apart from that, based on the previously suggested theories for both sub- and super 

critical flow regimes the EDR and the end depth discharge (EDD) relationships for 

the above-mentioned cross-sections are as well obtained. 

As a novelty, two new approaches as well suggested as a part of this study that were 

only requiring the continuity and the energy equations; the three velocity point 

approach and the infinite number velocity points approach. These suggested 

approaches eliminate the need of the end pressure coefficient that was expected to be 

determined experimentally. These computed EDR and EDD values of the different 

theoretical approaches and the experimental data set of relevant cross-sections were 

statistically compared. Subsequently, using the brink depth, the direct discharge 

simple empirical relationships are generated for both flow regimes being a part of the 

main aim of this study, based on 4 different approaches that would be a toolkit for 

the engineers in practice in the relevant field. These proposed relationships are as 
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well compared with their theoretically obtained results through the proper statistical 

measuring indices for their accuracies. 

Keywords: Brink, Circular, EDD, EDR, End depth, Exponential, Trapezoidal  
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ÖZ 

Bu çalışmada, farklı analitik yaklaşımlar kullanılarak, hem nehir hem sel rejimi 

akımlar için pratikte çokca kullanılan ve deneysel verileri de mukayese için mevcut 

olan üssel (dikdörtgen, üçgen ve parabolik), genel ikizkenar trapez (dikdörtgen, 

üçgen, trapez, yarı-trapez, ters üçgen ve yarı-ters üçgen) ve genel dairesel (tabansız 

ve 4 farklı seviyede düz tabanı olan) geometrik enkesitler seçilmiş ve uç derinlik ile 

menba derinlik orantıları (EDR) hesaplanmıştır. Ayrıca, nehir rejimi ve sel rejimi 

akımlar için önceki yaklaşım yöntemleri de kullanılarak yukarıda belirtilen enkesitler 

için EDR ve uç derinliğe bağlı debi (EDD) bağıntıları da elde edilmiştir. Yenilik 

olarak, ayrıca, bu çalışmanın bir parçası olarak sadece süreklilik ve enerji 

denklemleri kullanılarak iki yeni çözüm yöntemi önerilmiştir; üç hız noktası ile 

sonsuz sayıda hız noktası yaklaşımları. Önerilen yaklaşımlar için uç derinlikteki 

basınç katsayısının deneysel olarak belirlenmesi gereksinimine ihtiyaç 

duyulmamaktadır. Hesaplanmış EDR ve EDD bağıntıları, benzer enkesitler için, 

mevcut teorik ve deneysel verilerle istatistiksel olarak karşılaştırılmıştır. Daha sonra, 

sahada ilgili konularda uygulama yapan mühendislere yönelik, her iki akış rejimi 

için, uç derinliğe bağlı olarak debiyi doğrudan hesaplayabilecek basit amprik 

bağıntılar, 4 farklı yaklaşım yöntemi ile bu çalışmanın esas hedefi olarak 

türetilmiştir. Bu bağıntıların doğrulukları, teorik olarak üretilen değerlerle uygun 

istatistiksel endeksler yardımıyla karşılaştırılmıştır.     

Anahtar kelimeler: Dairesel, EDD, EDR, Trapez, Uç derinlik, Üssel  
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Chapter 1 

1 INTRODUCTION 

1.1 General 

In open channels flow, a free over-fall as one type of the drop structures is a 

phenomenon where the flow separates at the sharp edge and forms a free nappe due 

to an abrupt end (drop) in the channel bottom. This occurrence offers the use of the 

free over fall as a flow measuring structure that eliminates the need of any 

calibration. The depth of flow at the location where the sudden drop occurs is known 

as the brink depth section or the end-depth section. This brink depth value depends 

on the shape of the channel cross-section, the longitudinal slope of the channel bed 

and the characteristics of the free nappe. The critical flow depth (yc) being a driving 

parameter as a control section in open channels so as to determine the flow discharge 

amount, since there exists a unique relationship between the critical flow depth (yc) 

and the discharge (Q). Therefore, it can be used to estimate the discharge through the 

rivers, streams, flumes and irrigation channels as well. Knowing that, the exact 

location of the critical flow depth along the longitudinal channel cross-section is 

depending on the discharge amount and the channels transversal cross-section 

characteristics, it is not easy to determine it. To overcome this problem, the pivotal 

experimental work by Rouse (1936) for rectangular channel cross-section in sub-

critical flow regime enlightens the researchers to relate the end depth to the critical 

depth since the end depth (brink) location never changes. Since then, this feature 

attracted the interest of the researchers where they apply the concept of free over-fall 
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in their theoretical studies and experimental observations to measure the discharge 

values for both sub- and super critical flow regimes. 

1.2 Hydraulic Characteristics of Free Over-fall 

Measuring the flow discharge (Q) in open channels is crucial, but adequate 

instruments are needed, usually making the measurement costly and time-consuming. 

In open channel flow, a free over-fall is followed by an abrupt channel end where the 

flow separates at the sharp edge and forms a free nappe. The free surface profile in 

the immediate vicinity of a free over-fall is schematically illustrated in Figs. 1.1(a) 

and 1.1(b) for general channel cross-sections along longitudinally mild and steep 

slopes, respectively. Line (e-e) refers to the transversal cross-section at the end of the 

channel (called the brink) where the free over-fall occurs. The depth of water at the 

brink depends on the shape of the channel cross-section, the slope of the channel and 

the characteristics of the free nappe. The rapidly varied flow (RVF) zone that occurs 

within the region between the brink/end section (e-e) and the upstream cross-section 

(u-u) is called the brink zone. As shown in Fig. 1.1(a), the critical flow depth (yc) 

occurs at the upstream flow section (u-u) along the mildly sloping channel and forms 

a gradually varied flow (GVF) zone since the flow regime is sub-critical. Further 

upstream from this GVF zone, uniform flow characteristics prevail. Fig. 1.1(b) shows 

the location of the RVF zone along the steeply sloping channel where the flow 

regime is super critical, as GVF never occurs. As this figure implies, normal depth 

(yn) forms at the upstream flow section (u-u) provided that the longitudinal length of 

the channel is sufficiently long.  

From the upstream section to the brink where the RVF zone occurs, the water surface 

curvature gradually decreases forming a control section. At the upstream section 
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where the RVF starts, the vertical component of the acceleration is weak, and the 

pressure distribution can safely be assumed to be hydrostatic. However, at the end 

section (brink), the pressure at the upper and the lower points of the free nappe is 

zero, ensuring a strong departure from the hydrostatic pressure distribution that 

prevails in open channel. Previous theoretical and experimental studies at the RVF 

zone have found a relationship between the depth of the water at the end section (ye) 

and the upstream water depth (yc or yn) and defined this relationship as the end depth 

ratio (EDR). The gravity affects the curvature of the free nappe that extends a short 

distance upstream of the end section, leading to flow acceleration that causes the 

water depth at the brink to be the minimum, hence causing the EDR always to be less 

than unity.  

A typical free over-fall with free nappe at sub- and super critical flow regime for 

uniform and non-uniform zones are detailed in Fig. 1.2 where n-n (x=-l) is 

representing the end of the uniform zone (i.e. the beginning of the non-uniform zone) 

and e-e (x=0) representing the end of the non-uniform flow zone (i.e. the brink). 

Once the non-uniform flow zone starts, the pressure distribution differs from the 

hydrostatic one and transforms gradually within this zone along the flow direction 

and at the brink a pattern of a non-symmetric parabola with a maximum occurring 

not at the middle but closer to the channel bottom is assumed to be formed as shown 

in Fig. 1.2. This figure also details how the uniform velocity (v) and the pressure (p) 

distribution along the flow direction within the non-uniform flow zone deviates. 
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Figure 1.1: (a) Sketch of a free over-fall along the longitudinally mild slope; (b) the 
longitudinally steep slope, for general channel cross-section with the proposed 

pressure distribution over the control volume between the upstream section (u-u) and 
the end section (e-e) with the transversal cross-section 
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Figure 1.2: A typical sketch of the velocity (v) and the pressure (p) profiles 
deviations along the non-uniform flow zone that is occurring between the cross-

sections n-n (x=-l) and e-e (x=0) 

By coupling the EDR with the upstream Froude number, another relationship 

between the depth of water at the end section and the flow discharge (Q) can be 

obtained and is referred to as the end depth discharge (EDD). This enables the free 

over-fall to be used as a flow metering device in open channels (laboratory flumes, 

irrigation channels, etc.). Since the critical depth (yc) bears a unique relationship with 

the discharge (Q) through a critical Froude number (Frc=1), a relationship between 

the end depth (ye) and the critical depth (yc), the discharge (Q) can eventually be 

related to the end depth (ye)in a free over-fall in a sub-critical flow regime. However, 

in super critical flow regimes, since the normal depth (yn) is less than the critical 

depth (yc), the discharge (Q) can be given by a relationship between the end depth 

(ye) and the channel bed slope (S). 
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Due to that, various practically in use cross-sectional shapes were studied 

theoretically and experimentally to predict the EDR from which the end depth 

discharge (EDD) relationships can be computed without applying the critical Froude 

number approach. Most of the analytical methods are based on the application of 

either the momentum equation and/or the continuity equation with different 

assumptions, especially regarding the velocity and the pressure distributions at the 

end section. In momentum approach, the accuracy of the prediction of the EDR and 

the EDD values depends upon the precision of the measurement of the end pressure 

coefficient that should be determined experimentally or assumed theoretically.  

The situation of the free over-fall is analogous to the flow over a sharp-crested weir 

without sill. Therefore, the continuity equation based on the sharp-crested weir 

theory can be used to determine the EDR and the EDD relationships of the same 

section with zero brink pressure effect. Many experimental works on free over-falls 

with various cross-sectional shapes by different researchers with different 

assumptions as discussed above have been performed to enlighten the characteristics 

of this phenomenon and show the degree of accuracy of different analytical methods 

as well. Even rare, there are some theoretical studies attempting to apply the energy 

equation coupled with the streamline curvature for the determination of the EDR and 

the EDD values. 

1.3 Aim of the Study 

Due to the difficulties faced while performing experiments at super critical flow 

regimes and complexity of the theoretical mathematical expressions, most of the 

studies dealt mainly with the theoretical application of the governing equations in 

sub-critical flow regimes (i.e. inserting Froude number as unity). However, this is not 
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a normal condition in practice. In addition, measuring the flow depth at the critical 

section is not an easy task since its occurring location is not known exactly. Yet, 

there are limited numbers of free over-fall studies on steep slopes. Therefore in this 

study, the ratio between the end depth and the upstream depth which is known as the 

end depth ratio (EDR) is computed for those cross-sections that are widely used in 

practice. To ease the derivation calculations, the selected cross-sections are grouped 

into three broad categories. The exponential channel cross-section category 

represents the rectangular, the triangular and the parabolic cross-sectional shapes. 

The generalized trapezoidal channel cross-section category represents other than the 

rectangular and the triangular, the trapezoidal, the semi-trapezoidal, the inverted 

triangular and the semi-inverted triangular cross-sectional shapes. The generalized 

circular channel cross-section category represents circular channel cross-sections 

with no flat base and with flat base at four different heights (Z). For the above 

mentioned cross-sections, different analytical methods for both sub- and super 

critical flow regimes were studied. These selected cross-sections are widely used in 

practice and most of them are having experimental data sets (obtained by previous 

relevant studies) hence used for the comparison. This study not only solves the free 

over-fall based on the previously suggested theories for both sub- and super critical 

flow regimes; the energy method, the sharp-crested weir theory and the free vortex 

theory in order to generate the EDR and the EDD relationships for the above-

mentioned cross-sections, but also offers two new approaches; the three velocity 

points method and the infinite number velocity points method (n-velocity points) that 

are only utilizing the continuity and the energy equations. These two suggested 

approaches eliminate the need of the end pressure coefficient that was expected to be 

determined experimentally. Subsequently, the direct discharge simple empirical 
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relationships being a part of the main aim of this study are computed by four 

different approaches (the energy method, the free vortex theory, the three velocity 

points method and the infinite number velocity points method) that would be a 

toolkit for the engineers in practice in the relevant field. The results of this study are 

compared with the relevant existing experimental data sets and the other relevant 

theoretical results available in the literature so as to check their accuracies through 

the statistical measuring indices namely the linear regression ‘R2’ and the percentage 

mean absolute relative error ‘MARE’.   
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Chapter 2 

2 LITERATURE REVIEW  

2.1 General 

This chapter presents an overview of flow characteristics of the free over-fall 

problems in open channel for the generalized prismatic channel cross-sections. These 

generalized prismatic cross-sections not only represent the different cross-sectional 

shapes, but are also representative of the geometries that are often approximated for 

the modeling of the natural rivers and/or directly used in flumes. The details 

provided in this chapter intentionally kept as brief as possible, since all of the 

relevant topics discussed here can be found in different textbooks and/or relevant 

review papers like Chow, 1959; Henderson, 1966; Subramanya, 1997; Dey, 2002. 

This chapter is not only reviewing the computation of the end depth ratio (EDR) and 

the end depth discharge (EDD) relationships, but also discusses the application of the 

different theoretical methods and experimental works of the various researchers for 

different channel cross-sections in mildly and steeply sloping longitudinal channel 

beds. The chapter is sub-sectioned into three broad categories based on prismatic 

channel cross-sectional shapes where different theoretical methods and experimental 

works of various researchers are detailed briefly for the determination of the EDR 

and EDD values. 

In the first sub-section, the review of the generalized exponential channel cross-

section for both sub- and super critical flow regimes (flowing over mild or steep 
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slopes) are discussed based on the previous theoretical and experimental studies. The 

successive sub-section details the review of the generalized trapezoidal channel 

cross-section whereas, the last sub-section reviews the generalized circular channels 

cross-section for both sub- and super critical flow regimes based on the previous 

relevant theoretical and experimental studies.  

2.1.1 Exponential Channel Cross-sections 

The free surface profile depends upon the discharge (Q) amount and the critical 

depth (yc), but the exact location of the critical flow depth is not known for the free 

over-falls. In order to overcome this difficulty, the pivotal experimental work by 

Rouse (1936) for rectangular channel cross-section in sub-critical flow regime, 

enlightens the researchers to create the relationship between the end depth and the 

critical depth from which the discharge can be estimated, since the end depth (brink) 

location never changes and being easy to measure. He related the critical flow depths 

of certain discharges to their end depths that were occurring within the mildly 

sloping rectangular channel cross-sections and referred to it as an end depth ratio 

(EDR) which is the ratio of the water depth at the brink (ye) to the critical water 

depth (yc). For sub-critical flow regimes in rectangular channel cross-sections, he 

found EDR to be 0.715. Since then, this feature attracted the interest of the 

researchers where they apply the concept of free over-fall in their theoretical studies 

and experimental observations in order to determine the end depth ratio and the end 

depth discharge (EDD) of the free over-fall in different channel cross-sections for 

both sub- and super critical flow regimes.  

Jaeger (1948) coupled the momentum and the energy equations using the Boussinesq 

approximation to compute the EDR in horizontal rectangular channels and obtained a 

value of 0.725 for sub-critical flows. Delleur et al. (1956) solved the momentum 
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equation in order to compute the EDR of the rectangular free over-falls by assuming 

the pressure over the brink is a dependent variable of hydrostatic pressure. They also 

carried out the experimental work to investigate the effects of slope and channel 

wetted perimeter roughness on the free over-fall. They observed that, the EDR value 

is influenced by the relative slope which is the ratio of the channels longitudinal bed 

slope (S) to the fictitious critical slope (Sc) but it is independent on the wetted 

perimeter roughness in super critical flow regimes. In sub-critical flows, the value of 

the EDR was found to be 0.706 for the rectangular channel cross-sections. Diskin 

(1961) used the momentum equation by assuming the zero brink pressure effect and 

obtained the EDR values of 0.667, 0.731 and 0.775 for rectangular, parabolic and 

triangular channel cross-sections at sub-critical flow regime, respectively. 

Rajaratnam and Muralidhar (1964a) studied the flow over mildly sloping channel 

beds where, they applied the momentum equation to the exponential (power-law) 

channel cross-sections and derived a theoretical equation for the EDR. They 

conducted various experiments in order to verify their theoretical approach and they 

found the EDR values to be 0.795 and 0.772 for triangular and parabolic channels, 

respectively. They also studied the exponential cross-sections of the free over-fall on 

steep slope channel beds and they expressed the EDR as a function of relative slope 

(S/Sc)) where the variation of the end pressure coefficients to the relative slopes was 

as well presented graphically. Then on, Rajaratnam and Muralidhar (1968) 

performed experimental studies on smooth rectangular cross-sections of the free 

over-falls in more detail. They measured the bed pressures and the bed shear stresses 

of the brink (end section) for different channel bed slopes (zero, adverse, mild and 

steep). 
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Ali and Sykes (1972) applied the free vortex theory to compute the EDR of free 

over-fall in sub-critical flow regime for exponential channel cross-section. The 

computed values of the EDR were found to be 0.678, 0.798 and 0.747 for 

rectangular, triangular and parabolic channel cross-sections, respectively. Rajaratnam 

et al. (1976) presented the results of an experimental study in order to assess the 

effect of slope and roughness on EDR for rectangular channel cross-sections. In sub-

critical flow regimes, the EDR values decrease with the increase in relative 

roughness (the ratio of the Nikuradse equivalent sand roughness (ks) to the critical 

depth (yc)). However, in super critical flow regimes, the magnitude of the EDR 

decreases with the increase in relative slope (S/Sc). Kraijenhoff and Dommerholt 

(1977) experimentally study the effect of the longitudinal bed slope (mild) and the 

wall roughness of the rectangular cross-sections of the free over-fall. Their result 

yielded that, the EDR value was not effective on the slope and the roughness, since 

the average value of the EDR was found to be 0.714.   

Hager (1983) for the computation of the EDR in rectangular channel cross-sections 

utilized the momentum and the extended energy equations and also took into account 

the curvature of the streamlines. He obtained an equation for the ratio of the end 

depth (ye) to the critical depth (yc) with respect to the upstream Froude number (Frn) 

for super critical flow regimes as: 

                                                                                                            (2.1)4
9

e n

c
n

y Fr
y Fr

=
+

 

The above-mentioned equation yields the value of EDR to be 0.696 in sub-critical 

flow regimes with unconfined nappe. The free surface profile was analyzed on the 
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control volume between the upstream and downstream of the end section as well 

within this work. 

Montes (1992) numerically computed the pressure distribution at the end (brink) 

section of the rectangular channels, based on the potential flow solution. He found 

that, the pressure is zero at the channel bed and the free surface with a maximum 

value of pressure 0.18 ep yγ=  at 0.16 ey y= . His computed curve was in good 

agreement with the experimental data sets of Rouse (1932), Veronese (1948), 

Replogle (1962) and Rajaratnam and Muralidhar (1968).  

Ferro (1992) experimentally presented that, the value of the EDR is not influenced 

due to the width changes of the rectangular channel cross-sections of the free over-

fall at sub-critical flow regimes. He reported the EDR value of 0.760 for five 

different widths. Based on the computed EDR values, around 90% of the calculated 

discharge values were within 5% of his experimental obtained date set. Subramanya 

(1997) extended Anderson’s (1967) work based on the theoretical application of the 

energy equation to compute the EDR value for exponential channel cross-section in 

both sub- and super critical flow regimes. The computed EDR values were found to 

be 0.694, 0.734 and 0.762 for rectangular, parabolic and triangular channel cross-

sections respectively. Also the variation of the EDR with the upstream normal 

Froude number (Frn) was presented graphically for super critical flow regimes. Davis 

et al. (1998) have performed several experiments in order to investigate the effect of 

the longitudinal channel bed slope (S) and the Manning-Strickler roughness 

coefficient (n) for the rectangular channel cross-section of the free over-fall. They 

found out that, the EDR value is dependent on the above mentioned channel 
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characteristics. They were in fact the first researchers whom obtained the EDR 

equations as a function of S and n. 

2 134.84 12.66 0.778                                                                              (2.2)e

c

y S S
y

= − +

 

 0.846 0.219                                                                                             (2.3)e

c

y S
y n

= −

 

For the zero slopes, by substituting 0S = into Eq. (2.3), gives the EDR value of 0.846 

which is well above the experimental and theoretically obtained values of the other 

researchers.  

Dey (2000) used the momentum equation based on the Boussinesq approximation 

and theoretically obtained the EDR relationship in steeply sloping rough rectangular 

channels cross-sections. The effect of the streamline curvature at the free surface was 

also used to calculate the flow profile of the upstream of the end section. The 

computed results obtained by Dey (2000) were within the acceptable range of the 

experimental data of Rajaratnam et al. (1976). Ahmad (2002) also carried out an 

experimental study of the free over-fall in sub-critical flow regimes for the triangular 

channel cross-sections and obtained the value of the EDR to be 0.802. Ahmad (2003) 

applied the sharp-crested weir theory by inserting a brink pressure coefficient in 

order to establish higher accuracy for the discharges in both sub- and super critical 

flow regimes for the rectangular channels. The EDR values found by him to be 0.780 

and 0.758 in sub-critical flow regime for confined and unconfined nappes, 

respectively. In super critical flow regimes, the relationship between the end depth (
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ey ) and the critical depth ( cy ), determined from the continuity equation and was 

given as: 

( ) ( )

1
3

3 3
2 22 2

3                                                                 (2.4)
2(1 ) 2

e n

c
n n

y Fr
y Cp Fr Fr Cp

=
− + − −

   

where Cp represents the end pressure distribution coefficient that should be evaluated 

through experiments. He also found that, e cy y value decreases with the increase in 

relative slope ( cS S ). The predicted results obtained by Ahmad (2003) in fact agreed 

well with the experimental datasets in the literature. 

Tigrek et al. (2008) experimentally studied the rectangular free over-fall at sub- and 

super critical flow regimes, both in smooth and rough surface channels. The effect of 

the longitudinal channel bed slope and the channel bed roughness on the ratio of

e cy y  was investigated for both flow regimes. They concluded that, the slope and 

the roughness did not change the average value of e cy y  being 0.683 in sub-critical 

flow regime. However, unlike the sub-critical flow regimes, for super critical flow 

regimes, they found that, the longitudinal channel bed slope (S) and the roughness 

coefficient (n) do affect the ratio of e cy y similar to the earlier researchers. Using the 

curve fitting technique, they suggested the following equation: 

 0.773 0.018                                                                                             (2.5)e

c

y S
y n

= −

 

Vatankhah (2015) applied the sharp-crested weir theory for the exponential (power-

law) channel cross-sections for sub-critical flow regimes and obtained the EDR 

values to be 0.715, 0.777 and 0.817 for rectangular, parabolic and triangular channel 
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cross-sections, respectively. He also obtained a generalized EDD relationship of the 

free over-fall in sub-critical flow regimes only. 

2.1.2 Generalized Trapezoidal Channel Cross-sections 

Diskin (1961) performed the earliest theoretical research and derived a general 

equation for the end depth (ye) of the free over-fall for trapezoidal cross-sections in 

sub- and super critical flow regimes. He applied a theoretical approach based on the 

momentum equation and derived a general equation for the end depth of free over-

fall by assuming zero pressure at the brink section. He also carried out series of 

experiments in trapezoidal channel cross-section and concluded that, the theoretical 

results based on this approach were not sufficiently accurate so as to be used for the 

flow discharge measurements.  

Rajaratnam and Muralidhar (1970) used momentum equation to obtain the EDR 

relationship of the trapezoidal free over-fall in mildly and steeply sloping channels. 

The pressure coefficient was measured experimentally and incorporated in this 

theoretical analysis. They performed some experiments as well for a wide range of 

the longitudinal bed slopes, in order to validate their theoretical approach for both 

flow regimes. In sub-critical flow regimes, they obtained the EDR value ranging 

from 0.705 to 0.758. Whereas, in super critical flow regimes, their EDR values were 

expressed as a function of the relative slope ( cS S ). Furthermore, within their 

studies, the free surface profiles, the bed shear stresses, the velocity and the pressure 

distributions in the vicinity of the end section were investigated. 

Keller and Fong (1989) theoretically studied the trapezoidal free over-fall for sub-

critical flow regime and they were the first that comprised the contribution of the 
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brink depth pressure effect in the momentum equation based on Replogle (1962) 

measurements, where they super impose the effect of the pressure to the rectangular 

and the triangular channel cross-sections. They also conducted experiments on 

horizontal slopes for trapezoidal channel cross-sections so as to validate their 

computed equation of the EDR based on the theoretical approach.  

Murty Bhallamudi (1994) theoretically investigated the EDR in the trapezoidal and 

the exponential channel cross-sections of free over-falls based on the momentum 

equation and the Boussinesq approach for sub- and super critical flow regimes and 

presented a methodology for estimating the discharge (Q) from the given value of the 

end depth. Water surface profiles were also computed based on the momentum 

equation for different channel cross-sections that were carrying flows in sub- and 

super critical regimes.  

Anastasiadou-Partheniou and Hatzigiannakis (1995) studied the free over-fall in 

symmetric sided trapezoidal channel cross-sections using the sharp crested weir 

without crest and demonstrated a general equation of the EDR where the curvature of 

the streamline at the brink was considered for both sub- and super critical flow 

regimes. The predicted discharges were also presented graphically and compared 

with the experimental data sets of Keller and Fong (1989) for flows in the sub-

critical regime and also experimental data sets of Diskin (1961) for flows in super 

critical regime. They also suggested an approach for computing the free surface 

profile between the upstream section and the brink section using the energy equation. 

Ferro (1999) assumed that, the flow over a free over-fall simulates the flow over a 

sharp-crested weir without a crest and deduced the end depth discharge (EDD) 
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relationships for rectangular, triangular channel cross-sections for both sub- and 

super critical flow regimes. Furthermore, by super imposing the flow discharge of 

the rectangular and the triangular channel cross-sections, the EDD relationship of the 

trapezoidal channel cross-section was obtained by him. Ahmad (2001) applied the 

sharp-crested weir theory and obtained the discharge values in sub-critical flow 

regimes for trapezoidal channel cross-sections with symmetric sides by considering 

the quadratic pressure distribution at the brink. The computed values of the EDD 

were compared with various experimental data sets of previous studies. Dey and 

Ravi Kumar (2002) applied the continuity equation based on the sharp-crested weir 

theory and also the momentum equation coupled with the Boussinesq approximation 

so as to determine the EDR values for the inverted symmetric sided triangular (∆) 

cross-sections in sub-critical regime. The estimation of the discharges from the 

known end depth was presented for both methods and were verified through the 

relevant experiments.  

Ramamurthy et al. (2004) formulated a precise relationship between the end depth 

(yb) and the discharge (Q) for the trapezoidal channel cross-sections in a sub-critical 

flow regime only. Ramamurthy et al. (2006) also developed a VOF (Volume of 

Fluid) model for the free over-fall to predict the pressure distribution, the velocity 

distribution and the water surface profile in the horizontal bed slope of the 

trapezoidal channel cross-sections.  

Beirami et al. (2006) solved the momentum equation based on the free vortex theory 

and determined the EDR relationships for the flows in different channel cross-

sections at sub-critical flow regimes only. They constructed various monograms to 

facilitate the prediction of the flow discharges from the given values of the end 
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depths for those different channel cross-sections. They also found the pressure 

coefficients at the end section using the free vortex theory.  

Ahmad and Azamathulla (2012) extended the theoretical method based on the sharp-

crested weir theory for sub-critical flow regimes of the trapezoidal free over-falls to 

compute the EDR and the EDD relationships for the super critical flow regimes. The 

experimental data sets of Diskin (1961) were used in order to verify their theoretical 

study. Furthermore, direct solution for discharge was provided graphically for 

different values of side slopes. Vatankhah (2013) as well presumed that, the flow 

over a free over-fall simulates the flow over sharp-crested weir (with zero crest 

height), so using the continuity equation obtained the EDD relationship only for the 

trapezoidal and the inverted triangular channel cross-sections in sub-critical regimes 

only. He also proposed direct discharge equations in terms of the end depth for these 

two cross-sections, separately. 

2.1.3 Generalized Circular Channel Cross-sections 

Rohwer (1943) carried out some experiments in horizontal slopes for circular 

channel cross-sections in order to obtain a direct discharge relationship for the 

known values of the end depth ( ey ) and the channel cross-sections diameter ( D ) 

where he obtained an empirical relationship as: 

0.62 1.828.58                                                                                                    (2.6)eQ D y=
 

In this equation, ey and D are in inches, and Q is in gallon per minute. He limited the 

validity of this equation to benup to 0.5 D , since he reported that the flow depth 

became unstable when it was more than the half of the channel cross-section 

diameter. Using momentum equation by assuming the zero pressure at the end 
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section, Smith (1962) generated an equation for the EDR in circular channel for sub-

critical flow regimes. He conducted the experiments in order to validate his 

generated theoretical equation. Rajaratnam and Muralidhar (1964b) used momentum 

equation to get the EDR relationship for the circular channel cross-section in both 

sub- and super critical flow regimes. In sub-critical flow regimes, the value of EDR 

was found to be 0.725. However, in super critical flow regimes, they reported the 

value of the EDR as a function of the relative slope ( cS S ). They also carried out a 

large number of experiments in order to verify their theoretical approach. 

Ali and Ridgway (1977) applied the free vortex theory to get the relationship of the 

EDR for horizontal slope for circular channel of the free over-fall. Also Subramanya 

and Kumar (1993) applied the energy approach in order to compute the EDR and the 

EDD relationships of the circular channel cross-section of the free over-fall for sub-

critical flow regimes. Clausnitzer and Hager (1997) used momentum equation for the 

circular channel cross-sections at super critical flow regimes and obtained the 

following dimensionless equation for the ratio of the end depth to the critical depth 

as: 

2
2 3

1
2

1

2                                                                                                       (2.7)
1 2

e

c

y F
y F

 
=  + 

 

where 0.54
1 ( )nF Q gDy= .  

Dey (1998) analyzed the free over fall for circular channel cross-sections in order to 

compute EDR relationship, by applying the momentum equation based on 

Boussinesq approximation for both sub- and super critical flow regimes. In sub-

critical flow regime, the value of the EDR was found to be around 0.750 for a critical 
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flow depth to diameter ratio (yc/D) up to 0.82. However, in super critical flow 

regimes, the EDR was expressed as a function of the longitudinal bed slope (S). The 

prediction of the discharge was presented for both flow regimes. Furthermore, the 

streamline curvature of the free surface was utilized to compute the flow profile 

upstream of the end section of the free over fall.  

Sterling and Knight (2001) experimentally studied the circular channel cross-sections 

with and without a horizontal bed (flat bed) in order to obtain the EDR and the EDD 

values for both sub- and super critical flow regimes. Their experiments were carried 

out in PVC channel of having a length of 21.26 m. In order to investigate the 

influence of the flat bed with different heights of Z with a range of 0 Z D≤ < , upon 

the EDR, five different values of flat base (bed) were examined (

/ D 0.00,  0.25,  0.33,  0.50,  0.66Z = ) for both flow regimes. They found that, the 

EDR for a given cross-section geometry is 0.743 for sub-critical flow regimes. 

However, in super critical flow regimes, the EDR value was expressed as a function 

of the relative slope ( / cS S ) and the flat bed height ( Z ) of the channel cross sections.  

Dey (2001) used sharp-crested weir theory by assuming zero pressure at the end 

section to calculate the EDR and the EDD relationships of the circular channel cross-

sections only for sub-critical flow regimes. The computed EDR varies linearly from 

0.72 to 0.74 for a critical depth diameter ratio ( cy D ) up to 0.82. Dey (2002b) also 

presented a comprehensive review of the important experimental and theoretical 

studies of the free over-falls in various channel cross-sections of different 

researchers. Dey (2003) used the momentum equation based on Boussinesq approach 

in order to calculate the end depth ratio (EDR) and the end depth discharge (EDD) 
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relationships of the inverted semi-circular channel cross-section for sub- and super 

critical flow regimes. He conducted some experiments on mild and steep longitudinal 

slopes in order to validate his proposed theoretical attempt. According to the 

Anderson’s (1967) work, Dey et al. (2003) applied the energy equation based on the 

Boussinesq assumption to compute the end depth ratio and the discharge for the 

inverted semi-circular channel at sub-critical flow regimes. They also conducted 

experiments in order to verify their theoretical approach.  

Raikar et al. (2004) applied the artificial neural network (ANN) to determine the 

EDR value for smooth inverted semi-circular channels in both sub- and super critical 

flow regimes. The experimental data sets of Dey (2003) were used for training and 

validating their work.  

Ahmad (2005) applied the theoretical procedure to get the EDD relationships for the 

inverted semi-circular channel in both sub- and super critical flow regimes using 

sharp-crested weir theory. Direct prediction for discharge in super critical flow 

regimes was provided graphically as a part of his study.  

Pal and Goel (2006) applied a support vector machine based modeling technique to 

determine the end depth ratio and discharge of a free over-fall for inverted semi-

circular and circular channels with flat bases at different heights for both sub- and 

super critical flow conditions. Their computed results were verified using the 

relevant previous studies.  

Nabavi et al. (2011) applied the free vortex theory to predict the end pressure 

distribution of the free over-fall. This method was then coupled with the momentum 
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equation to determine the EDR relationship from which the EDD relationship for the 

flat-based circular and the U-shaped channel cross-sections in sub-critical flow 

regimes were estimated only.  

Ahmad (2012) used sharp-crested weir theory with zero height to get the EDD 

relationship for circular channel in both sub- and super critical flow regimes. The 

computed discharges agreed well with the experimental data sets in sub-critical flow 

regime.  
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Chapter 3 

3 USE OF DIFFERENT ANALYTICAL METHODS FOR 

DEFINING THE FLOW AROUND THE BRINK DEPTH  

3.1 General 

To establish a theoretical relationship between the flow depth and the brink depth, in 

literature for different channel cross-sections, fundamental theories (the conservation 

of mass, the conservation of momentum and the conservation of energy) are either 

applied separately or coupled with the secondary (auxiliary) theories like the 

streamline equations, the sharp crested weir approach, the free vortex theory, the 

pressure distribution equation of the flow, etc. The brief details of these approaches 

that are available in literature are given below. Furthermore, two new approaches 

(three velocity points and infinite number velocity points), as a novelty, are as well 

introduced and detailed.    

3.2 Existing Methodologies 

3.2.1 The Momentum Approach 

Referring to Fig. 3.1 (a), the control volume; which is occurring between the normal 

section (n-n) and the end section (e-e) where the free nappe forms, the water surface 

elevation rapidly decreases in a very short longitudinal distance. The detailed 

investigations of this flow profile suggested that, in the vicinity of the end section, 

the streamline curvature is considerable at the free water surface due to the strong 

vertical component of the flow acceleration, though it is zero at the channel bed. At 
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the downstream (end) section, the pressure above and below the dropping free nappe 

is atmospheric. Hence, the pressure distribution in fact differs from the hydrostatic 

one and is generally assumed to have a shape resembling a non-symmetric parabola 

with a maximum occurring not at the middle but closer to the channels bottom part 

(Replogle 1962).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: (a) Sketch of a typical channel cross-section (transversal) of the free over-
fall at sub- and supercritical flow regime where the region between n-n and e-e are 

representing the suggested control volume; (b) the streamline patterns of a free over-fall 
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Applying one-dimensional momentum equation over the control volume between the 

normal and the end sections of the free over-fall for different channel cross-sections 

having a longitudinal bed slope S (Fig. 3.1 (a)), yields: 

sin(arctan ) ( )                                          (3.1)n e e e n nF F dx W S Q V Vτ ρ β β− − + = −∫
 

where Fn  = the pressure force at the normal section; Fe  = the pressure force at the 

end section; τ = the wall and the bed shear stresses; dx = the infinitesimal distance 

along x-direction; W = the gravity force of water within the control volume; ρ = the 

mass density of water; Q = the flow rate (discharge); βn = Boussinesq coefficient at 

the normal section; βe = Boussinesq coefficient at the end section; Vn = the mean flow 

velocity at the normal section; and Ve = the mean flow velocity at the end section.   

The subscripts ‘n’ and ‘e’ denoting the flow conditions at the upstream normal 

section where x=-l and the downstream end section where x=0, respectively. For 

simplicity, βe and βn are assumed to be unity (Dey 2003; Nabavi et al. 2011). 

To simplify the theoretical analysis, a state of pseudo-uniform flow is assumed 

within the control volume where, by definition, the wall and the bed shear stresses 

are compensated by the stream-wise component of the gravity force of water. Hence, 

the pressure force difference becomes equal to the rate of change of momentum 

within the control volume. In sub-critical flow regimes, an error of around 1% in 

estimation of the EDR is obtained due to exclusion of the wall and bed shear stresses 

(Henderson 1966). Since in super critical flow regimes, the stream-wise component 

of the gravity force is considerable, the accuracy of the theoretical results depending 

on, how the wall and the bed shear stresses were balanced by the longitudinal 

component of the gravity force of water. Nevertheless, the assumption of pseudo-
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uniform flow for super critical flow regimes are yielding acceptable results (Dey 

1998; and Murty Bhallamudi 1994). Hence, the simplified form of Eq. (3.1) is: 

( )                                                                                         (3.2)n e e nF F Q V Vρ− = −  

Introducing n n nF y Aγ= ,  e e e eF K y Aγ= , Ve=Q/Ae, Vn=Q/An into Eq. (3.2), yields: 

2 1 1 ( )                                                                     (3.3)n n e e e
e n

y A K y A Q
A A

γ γ ρ− = −

 

where γ = the specific weight of water; An = the flow area at the normal section; Ae = 

the flow area at the end section; Q  = the flow rate (discharge); Ke = the pressure 

coefficient at the end section. While generating the equation, a pressure coefficient 

( )eK  at the end section has to be introduced. This pressure coefficient should be 

determined either by experimental data sets or by application of the Boussinesq 

approach or by applying the free vortex theory (as detailed below), since there exists 

a relationship between the pressure coefficient with these approaches. 

3.2.2 The Boussinesq Approximation Theory 

Fig. 3.1 (a) details a free surface flow with a convex upward water surface over a 

free over-fall, where the radius of curvature of the free surface (rs) is given by: 

2

2

3 22

1                                                                                               (3.4)

1
s

d y
dx

r dy
dx

=
  +  

   
 

The free surface curvature at the vicinity of the brink varies from a finite value at the 

free surface to zero at the channel bed as given in Fig. 3.1 (b) (Dey 2003; Dey et al. 

2003; Murty Bhallamudi 1994; Subramanya 1997). So, for the infinitesimal length of 
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the free surface, the radius of this streamline curvature (rs) can be simplified and 

approximated as: 

2

2

1                                                                                                               (3.5)
s

d y
r dx

=

 

where rs = the radius of curvature of the streamline and y = the flow depth at any 

distance x within the control volume measured from the brink.  

Noting that, the convex upward water surface 
2

2

d y
dx

 yielding negative values. 

According to Boussinesq appproximation (Dey 2002b; Dey 2003; Jaeger 1957), a 

linear variation of the streamline curvature with depth is assumed. Hence, the radius 

of curvature of the streamline at any point at a height y above the channel bottom is 

given by: 

2

2

1 .                                                                                                            (3.6)d y h
r dx y

=

 

where h = the coordinate normal to channel bottom.   

The normal acceleration (ay) based on this assumption is given as: 

2

                                                                                                        (3.7)y
Va ky
r

= =

  

where: 
2 2

2.                                                                                                          (3.8)V d hk
h dx

=
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and V  =  the mean flow velocity at the distance x within the control volume.  

On curvilinear flows with the normal acceleration (ay), the general pressure 

distribution (p) using the integration of the Euler equation, can be expressed as: 

2

  + constant                                                                                  (3.9)p Vz dr
rgγ

+ = ∫
  

where Z  = the elevation measured above the datum; and g  = the acceleration due to 

gravity.      

Using Eqs. (3.7) and (3.8), Eq. (3.9) is integrated so as to determine the effective 

piezometric head (yep) at the end section: 

2 2

2

1 .                                                                                       (3.10)
3

e e
ep e

V y d yy y
g dx

= +

 

3.2.3 The Conservation of Energy Approach 

Referring to Fig. 3.1 (a), the specific energy (E) at section x=0 (denoted by suffix 

‘e’) is obtained as: 

2

                                                                                                (3.11)
2

e
e ep e

VE y
g

α= +

  

where eα = the velocity correlation coefficient at the end section; and eV =  the mean 

flow velocity at the end section (x = 0).  

Inserting Eq. (3.10) and substituting e eV Q A=  into Eq. (3.11), the following 

equation for the specific energy at the end section is generated: 
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2 2 2

2 2 2

1 . +                                                                      (3.12)
3 2

e
e e e

e e

Q y d y QE y
gA dx gA

α= +

 

where  ey = the flow depth at the end section.  

According to Subramanya (1997), the water surface is a continuously failing curve 

along the flow direction that starts within the channel somewhere upstream of the 

brink (end), passes through the brink and ends up as a trajectory of a gravity fall. 

Therefore, the rate of change of slope of the free surface at the end section is 

expressed as: 

22

02 2 2 = - = -                                                                                      (3.13)e
x

e

gAd y g
dx V Q=

 

The upstream Froude number (Frn) is defined as: 

1 2

1 2 3 2                                                                                                    (3.14)n
n

n

QTFr
g A

=

 

where nT  = the top width of the flow at the normal section. 

Substituting Eqs. (3.13) and (3.14) into Eq. (3.12) and normalizing this computed 

equation with respect to the upstream normal depth (yn), yields: 

3 2

2

2                                                                                     (3.15)
3 2

e e n n
e

n n n n e

E y A Fr
y y T y A

α= +

 

where  ny = the flow depth at the normal section. 
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In a similar way, referring to Fig. 3.1 (a), the specific energy at the normal section 

(x=-l) is obtained and then, by substituting Eq. (3.14) into this computed equation 

and normalizing it with the upstream normal depth (yn), gives: 

2

1                                                                                              (3.16)
2

n n n
n

n n n

E A Fr
y T y

α= +

 

where nα = the velocity correlation coefficient at the normal section. 

In accordance with Anderson (1967) and Subramanya (1997), since the frictional 

head losses along the short distance on the control volume of the free over-fall are 

negligible, the specific energy between the upstream normal section and the 

downstream end section can be safely assumed to be equal. Therefore, by equating 

Eqs. 3.16 and 3.17, gives:  

3 2 2

2

2 1 =0                                                              (3.17)
3 2   2   

e n n n n

n n e n n n

y A Fr A Fr
y T A y T y

+ − −

  

Noting that, both eα  and nα are assumed to be unity. 

3.2.4 The Free Vortex Theory 

As previously pointed out and detailed in Fig. 3.1 (b), the streamline curvature is 

substantial at the vicinity of the end section of the free over-fall. In order to insert the 

effect of the streamline curvature into the above mentioned fundamental equations, 

the substantial streamline curvature has been considered by utilizing the free vortex 

theory. According to this theory, the approximate centrifugal pressure head at any 

streamtube was obtained through the Newton’s law of acceleration as hiui
2/(rig) 

(Chow 1959). Therefore, at the end section, the pressure head corresponding to any 

streamtube i can be given as: 
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2

1                                                                                                  (3.18)i
i i

i

ud y
r g

 
= − 

 
   

where di = the pressure head of the streamtube i; yi = the flow depth of the streamtube 

i; ui = the flow velocity of the streamtube i; ri = the radius of curvature of the 

streamtube i; and g = the acceleration due to gravity. Since the pressure head at the 

bottom of the end section is zero, the radius of streamline curvature at the channel 

bottom of the end section (reb) can be expressed as: 

2

                                                                                                           (3.19)eb
eb

ur
g

=

  

where ebu = the flow velocity at the channel bottom of the end section.  

 

 

 

 

 

According to Ali and Sykes (1972), the velocity head at the upper and the lower 

nappe can be obtained by applying the Bernoulli’s theorem: 
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Figure 3.2: Sketch of a typical channel cross-section (transversal) of the free over-
fall on a mild or steep (longitudinal) slope 
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2

                                                                                                    (3.20)
2

et
n n

u H y
g

= −

  

2

                                                                                                           (3.21)
2

eb
n

u H
g

=

 

where etu = the flow velocity at the top of the channels end section, ebu = the flow 

velocity at the bottom of the channels end section. Note that, the subscripts ‘et’ and 

‘eb’ denote the flow conditions at the channel top of the end section and the channel 

bottom of the end section, respectively. Therefore, the general velocity head at any 

flow depth of the end section yi can be expressed as:
  

2

n( )                                                                                      (3.22)
2

i i
n n

e

u yH y y
g y

= − +

 

where  ny = the flow depth at the normal section. Noting that 2 (2 )n n nH y V g= +  is 

the total energy head at the upstream normal section.  

Solving Eqs. (3.19) and (3.21) simultaneously, yields 2eb nr H= . Then, by applying 

Bernoulli’s equation between the upstream and the downstream sections and using 

the Free Vortex theory as ui ri = ueb reb = constant, the radius of the curvature of the 

streamtube i at the end section is computed as:  

2 2
                                                                             (3.23)

2 ( )

n n
i

i
n n n

e

H gH
r

yg H y y
y

=
 

− + 
 
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If ye is divided into ‘n’ number of parallel streamlines, by substituting Eqs. (3.22) 

and (3.23) into Eq. (3.18), the pressure head ( id ) for each streamline is obtained: 

3 2

3 2

( )
                                                                      (3.24)

i
i n n n

e
i i

n

yy H y y
y

d y
H

 
− + 

 = −

 

For general case, when y = yi, the pressure force at the end section is: 

3 2

3 20

( )
                                                        (3.25)

n n n
he e

e
n

yy H y y
y

F y dy
H

γ

  
 − + 
  = − 
 
 
 

∫

 

A coefficient of pressure force Ke at the end section is given as: 

2                                                                                                       (3.26)
0.5

e
e

e

FK
hγ

=

 

3.2.5 Sharp-Crested Weir Approach 

The flow over a free over-fall in different channel cross-sections can be assumed to 

be similar to the flow over a sharp-crested weir of the same section with zero height 

(Anastasiadou-Partheniou and Hatzigiannakis 1995; Ferro 1999; Ahmad 2003; 

Vatankhah 2013; Vatankhah 2015) as detailed in Figs. 3.3 (a) and (b). Therefore, the 

theoretical procedure applied for computing the discharge over a sharp-crested weir 

without sill can also be used for free over-falls so as to obtain the end depth ratio 

(EDR). It should be noted that, the discharge coefficient of the weir (Cd = Cf  . Cc . Cv) 

depends on the longitudinal head loss correction coefficient (Cf), the contraction 

coefficient (Cc) and the velocity head correction coefficient (Cv) (Vatankhah 2015). 

As discussed in the previous section, the pressure distribution at the brink section 
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resembles slightly skewed parabolic shape with its mean value considerably less than 

the hydrostatic one (Replogle 1962); so, the curve for the actual pressure distribution 

profile is expected to lie under the linearly hydrostatic pressure profile. In order to 

apply the fundamental equations (the conservation of mass, momentum, or energy), 

the pressure distribution at the brink is either assumed to be zero all over the end 

section or a correction factor with a positive value has to be inserted to the 

hydrostatic pressure distribution (Rajaratnam and Muralidhar 1964; Keller and Fong 

1989; Dey 2002b).  

Therefore, an elemental infinitesimal discharge (dQ) equation for the different 

channel cross-sections of the free over-fall is generated as: 

0.5

2                                                                               (3.27)e
f c v n

PdQ C C C g H y dA
γ

  
= − −  

  
 

where dQ = the elemental infinitesimal discharge; g = the acceleration due to gravity; 

γ  = the specific weight of water; Pe = the mean pressure value at the end section; Hn 

= the total energy head at the upstream normal section; y = the flow depth at the 

distance x within the control volume measured from the brink towards upstream; and 

dA =  the elemental infinitesimal flow area. 
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The longitudinal head losses along the relatively short sloping distances of the free 

over-falls are negligible. Hence, the longitudinal head loss correction coefficient (Cf) 

can be safely assumed to be unity. Due to the contraction of the failing nappe, the 

contraction correction coefficient is introduced so as to take into account the 

convergence of the streamline as Cc = Ae/Au. As previously pointed out, the 

streamlines are considerably inclined towards the brink section along the flow 

direction; thus, the importance of the streamline curvature effect is either considered 

by some researchers like Murty Bhallamudi (1994), Dey (1998) and Dey (2003) or 

completely neglected as in the studies of Ahmad (2005), Ahmad (2012) and 

Vatankhah (2013). Hence in this study, a correction coefficient (Cv) is introduced 

into the sharp-crested weir equation. So, the equation of the discharge (Q) for an 

elemental tape of thickness dy at a height y measured from the channel bottom is 

given as: 

0.5

0
2                                                                              (3.28)nye e

v n
n

A PQ C g H y Tdy
A γ

  
= − −  

  
∫

 

Figure 3.3: (a) Sketch of a free over-fall at sub- and supercritical flow regime; (b) 
flow over a sharp-crested weir with a sill ‘w’ 
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where Q = the flow discharge; Ae = the flow area at downstream the end section; An = 

the flow area at the upstream normal section; yn = the upstream normal flow depth 

and T  = the top width of water in contact with atmospheric pressure (the free 

surface flow width). 

It should be noted that, if the end pressure effect and the streamline curvature at the 

vicinity of the brink are both neglected, the above equation reduces to: 

( )0.5

0
2 ( )                                                                                            (3.29)nye

n
n

AQ g H y Tdy
A

= −∫
 

3.3 Suggested Solution Methodologies  

3.3.1 The Three Velocity Points Method 

In order to eliminate the use the pressure effect in the solutions, a new method is 

proposed so as to generate the end depth ratio (EDR) relationship using the mass 

balance (continuity) equation between the upstream and the downstream sections. As 

shown in Fig. 3.4, to obtain a closer EDR value, the velocity distribution profile at 

the brink section is considered by sub-sectioning the end section into two parts at its 

geometric center (centroid). Hence, having 3 different velocity values at 3 different 

respective depths at the end section. Applying Bernoulli equation between the 

upstream section and the brink section for the three different velocity locations (at 

the top, at the geometric center and at the bottom) at the brink section, these velocity 

values are computed. The frictional head losses along the longitudinal cross-section 

within the examined portion which is short in comparison, are assumed negligible 

and also all the streamlines at the brink section are assumed to be parallel to each 

other. 
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Referring to Fig. 3.4, based on the Bernoulli equation, the selected velocity equations 

at the brink section can be expressed as:   

 = 2 ( )                                                                                                 (3.30)et n nv g H - y
 

 = 2 ( )                                                                                                  (3.31)ec nv g H - y
 

 = 2                                                                                                          (3.32)eb nv gH
 

where EGL = the energy grade line, Hn = the total energy head with respect to the 

channels bottom, yn = the flow depth at the upstream normal section, 𝑦𝑦� = the 

centroidal depth at the end section, measured from the channel bottom to the centroid 

of that relevant cross-section, vet = the average velocity at the top of the end section, 

vec = the average velocity at the centroidal depth of the end section, veb = the average 

velocity at the bottom of the end section and  g  = the acceleration due to gravity. 

Note that the subscripts ‘n’ and ‘e’ denote the flow conditions at the upstream normal 

section and at the end section (brink), respectively. Similarly, the subscripts ‘et’, ‘ec’ 

and ‘eb’ refers to the top, the center and the bottom of the end section, respectively. 
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According to continuity equation, the average discharge (Q) is determined as: 

+ +  = +                                                                  (3.33)
2 2

et ec ec eb
et-ec ec-eb

v v v vQ A A   

  

where Aet-ec is the sub-sectional flow area between the top and the centroid of the end 

section and Aec-eb is the sub-sectional flow area between the centroid and the bottom 

of the end section. 

Using Eqs. (3.30), (3.31) and (3.32), incorporating the upstream normal Froude 

number (Frn) based on Eq. (3.14) and inserting the proper equations of each sub-

sectional flow area based on the defined channel cross-section into Eq. (3.33), the 

generalized end depth ratio (EDR) relationship can be computed. 

3.3.2 The Infinite Number Velocity Points Method (n-Velocity Points Method) 

The three velocity points method is mathematically expanded for infinite (pre-

assumed) number of velocity points (np) so as to achieve more accurate results and 

 

  
 

 Energy grade line (EGL) 

Hn yn ye 

veb 

vec 

vet 

 

Mild or steep slope 

ye 

Te 

  

Figure 3.4: Sketch of a typical channel cross-section (transversal) of the free over-fall on a 
mild or steep (longitudinal) slope with the proposed three velocity locations for the 

velocity distribution profile at the brink ‘ye’ 
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referred as n-velocity points method. As shown in Fig. 3.5, in order to have infinite 

(pre-assumed) number of velocity points, the velocity distribution profile at the brink 

section is sub-sectioned into np-1 parts. Applying the Bernoulli equation between the 

upstream section and the brink section for np number of velocity locations over the 

brink section, the respective velocity values are computed. 

 

 

 

 

 

 

Referring to Fig. 3.5, based on the Bernoulli equation, the selected velocity equations 

at the brink section can be written as:   

2
1

0 = 2                                                                                    (3.34)
2 1
n

n
vv g + y

g np

 
  − 

 

2
2

1 = 2                                                                                    (3.35)
2 1
n

n
vv g + y

g np

 
  − 

 

ye/(np-1) 

ye/(np-1) 

vn
2/2g 

 

  
 

 Energy grade line (EGL) 

Hn yn ye 

v1 

 

Mild or steep slope 

ye 

Te 

v2 

vnp-1 

vnp 

vi 

Figure 3.5: Sketch of a typical channel cross-section (transversal) of the free over-fall 
on a mild or steep (longitudinal) slope showing the representative sub-section (np-1) 
and how the velocity locations are established to form the velocity distribution profile 

at the brink ‘ye’ 
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2 1 = 2                                                                                    (3.36)
2 1
n

i n
v iv g + y

g np

 −
  − 

 

2
1

2 =  2                                                                             (3.37)
2 1
n

np- n
v npv g + y

g np

 −
  − 

 

2 1 =  2                                                                                 (3.38)
2 1
n

np n
v npv g + y

g np

 −
  − 

 

where EGL = the energy grade line, Hn = the total energy head with respect to the 

channels bottom, yn = the flow depth at the upstream normal section, v1 = the 

velocity at the top of the end section, vnp = the velocity at the bottom of the end 

section and  g  = the acceleration due to gravity. Note that the subscripts ‘n’ and ‘e’ 

denote the flow conditions at the upstream normal section and at the end section 

(brink), respectively.  

According to continuity equation, the generalized average discharge (Q) is obtained 

as: 

12 31 2
(1) (2) (2) (3) ( ) ( ) ( -1) ( )

( ) ( +1)

++ ++ = +  
2 2 2 2
+=                                                                                        
2

np- npi i+1
to to i to i+1 np to n

i i+1
i to i

v vv v v vv vQ A A  +...+ A +... + A  

v v A
1

1
 (3.39)

np

i

−

=
∑
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where (1) (2)toA  = the sub-sectional flow area between the top and the second points 

of the end section, (2) (3)toA  = the sub-sectional flow area between the second and the 

third points of the end section, and ( -1)  ( )np to npA  = the sub-sectional flow area 

between the np-1th point and the bottom of the end section. 

Using Eqs. (3.34), (3.35),  (3.36), (3.37), and (3.38), incorporating the upstream 

Froude number based on Eq. (3.14) and inserting proper equations of each sub-

sectional flow area based on the defined channel cross-section into Eq. (3.19), the 

end depth ratio (EDR) can be expressed mathematically as a series expansion. 

 

 

 

 

 

 

 

 



 

43 
 

Chapter 4 

4 DIFFERENT ANALYTICAL SOLUTIONS OF THE 

END DEPTH RATIO (EDR) FOR VARIOUS CHANNEL 

CROSS-SECTIONS  

4.1 General 

This chapter presents both the previously applied different theoretical methods and 

the two proposed approaches for computing the end depth ratio (EDR) relationships 

of the free over-fall for the exponential, the generalized trapezoidal and the 

generalized flat base circular channel cross-sections for both sub- and super critical 

flow regimes.  

The exponential channel is a general channel cross-section which is defined 

mathematically with a single exponential equation where three widely known 

prismatic shapes can be generated (rectangular, parabolic, and symmetric sided 

triangular).  

The generalized trapezoidal channel cross-section is a geometric shape that is defined 

mathematically with a 2nd degree equation where six widely known prismatic 

channel cross-sectional shapes can be generated (rectangular, symmetric sided 

triangular, symmetric sided trapezoidal, semi-trapezoidal, symmetric sided inverted 

triangular (∆) and semi-inverted triangular).  
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Similarly, the generalized circular channel cross-section having a flat base is a 

geometric shape that reduces to the circular, semi-inverted circular and partially full 

circular channel with varying flat base cross-sections (both for less than half full and 

more than half full). 

4.2 The Channel Cross-sections 

4.2.1 Exponential Channel Cross-sections 

The exponential (power-law) channel cross-section on mild or steep slope shown in 

Fig. 4.1, is a channel of which its cross-section is defined mathematically with a 

single exponential equation (Eq. (4.1)) where, by changing the coefficient η1 and the 

exponent η2, three widely known prismatic channel cross-section shapes can be 

generated (rectangular, parabolic, and triangular (symmetric)). The general flow 

cross-sectional area is expressed in such a way that, the flow depth ‘y’ becomes 

directly proportional to this area and is given as: 

21 =                                                                                                                 (4.1)ηA η y
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ye  

  

Longitudinal cross-section  Transversal cross-section  

Figure 4.1: Sketch of the exponential channel cross-section (transversal) of the free 
over-fall on a mild or a steep (longitudinal) slope 
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The coefficient η1 and the exponent η2 are the parametric constants used for defining 

the channel cross-sectional shapes and their details are given in Table 4.1. 

Table 4.1: The coefficient η1 and the exponent η2 constants that are used for 
generating the relevant cross-sections 
Cross-sections Type Cross-sections Shape η1 η2 

Rectangular 
 

  

B 

 

1 

 

Parabolic 

 

 
 

 

 

2T/(3y0.5) 

 

 

1.5 

 

 

Triangular (symmetric) 

 
 
  

m 

 

2 

 

 

4.2.2 Generalized Trapezoidal Channel Cross-sections 

The generalized trapezoidal channel cross-section is defined mathematically with 2nd 

degree equation (Eq. (4.2)) where, by changing the coefficients η3 and η4 and the 

exponent η5, six widely known prismatic channel cross-sectional shapes can be 

generated (rectangular, triangular (symmetric), trapezoidal (symmetric), semi-

trapezoidal, inverted triangular (∆) (symmetric) and semi-inverted triangular). This 
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equation is based on the general flow area that is directly proportional to the flow 

depth ‘y’. The sketches of the two distinct generalized trapezoidal channel cross-

sections with symmetric sides slopes ‘m’ (1 Vertical: m Horizontal) on mild or steep 

slope are shown in Figs. 4.2 (a) and (b). 

5 2
3 4 =  + (-1)                                                                                              (4.2)ηA η y η y

 

 

 
 

 

 

 

 

 

 

 

 

      Sufficiently long     
Mild or steep slope 

Transversal cross-section  Longitudinal cross-section  

(a) 

 

   

 

 

EGL 
 

Hn yn ye ye 
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      Sufficiently long     
Mild or steep slope 

Transversal cross-section  Longitudinal cross-section  

(b) 
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Hn yn ye ye 

B 

m 
1 

 

Figure 4.2: Sketch of the free over-fall at (a) the trapezoidal cross-section with 
symmetric sides; (b) the inverted-triangular (∆-shaped) cross-section with symmetric 

sides (transversal) on mild or steep (longitudinal) slope 
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The coefficients η3 and η4 and the exponent η5 are the parametric constants used for 

defining the channel cross-sectional shapes and their details are given in Table 4.2. 

Table 4.2: The coefficients η3 and η4 and the exponent η5 constants that are used for 
generating the relevant cross-sections 
Cross-sections Type Cross-section Shape η3 η4 η5 

Rectangular 

  

B 
 
 
 
 

0 
 
 
 
 

 
 
- 

 
 
 
 

Triangular (symmetric) 
 
 
 
  

 
 
 
0 
 
 
 
 

m 
 
 
 
 

 
 
 

0 

 

Trapezoidal (symmetric)  
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Semi-trapezoidal 
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Semi-inverted triangular 
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m/2 
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4.2.3 Generalized Circular Channel Cross-sections 

A generalized circular channel cross-section with flat base on mild or steep slope is 

shown in Fig. 4.3. This generalized circular channel represents a group of widely 

existing geometric cross-sectional shapes (the circular, the inverted semi-circular and 

partially full circular channel with varying flat base cross-sections (both for less than 

half full and more than half full)) where the flow cross-sectional area is related to the 

flow depth (y), the diameter (D), and the depth of the flat base from lower extremity 

of the generalized circular channel cross-section ( Z ), and defined as: 

( )
2

ˆ ˆ( ) ( )                                                                                              (4.3)
4

DA I Zϕ ϕ= −   

-1 2 0.5ˆ ˆ ˆ ˆ ˆ( )  sin  (2 1) 2(2 1)( )                                                                (4.4)I I I I Iϕ = − + − −
 

-1 2 0.5ˆ ˆ ˆ ˆ ˆ( )  sin  (2 1) 2(2 1)( )                                                            (4.5)Z Z Z Z Zϕ = − + − −  

ˆ ˆˆ;  ;                                                                            (4.6)I y ZI y Z I y Z
D D D

= + = + = +   
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4.3 End Depth Ratio (EDR) for Various Channel Cross-sections 

4.3.1 Previously Applied Theories 

4.3.1.1 The Energy Method 

Using Eq. (3.17) along with the appropriate expressions for An, Tn and Ae for each 

cross-section, the generalized end depth ratio (EDR) which is the relationship 

between the end depth and the upstream depth (normal depth or critical depth), is 

computed for the exponential (Eq. (4.7)), the generalized trapezoidal (Eq. (4.9)) and 

the generalized circular channel cross-sections (Eq. (4.12)) separately, as follows: 

( )2

2
2

2

2 EDR 1 1 0                                                                         (4.7)
3 2

nFr EDR η

η
−+ − − =

  

where  

EDR                                                                                                                 (4.8)e

n

y
y

=

 

Figure 4.3: Sketch of free over-fall on the generalized circular channel cross-section 
(transversal) having flat base of the free over-fall on a mild or a steep (longitudinal) 

slope 
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Note that, Eq. (4.7) was already solved and presented in Subramanya (1994).  

5 5

5 5 5

3 2 2 2

2 2

(1 ( 1) ) (1 ( 1) )2 EDR 1 0   (4.9)
3 (2 4( 1) )(EDR ( 1) EDR ) (2 4( 1) )

n n n n

n n n

N Fr N Fr
N N N

η η

η η η

+ − + −
+ − − =

+ − + − + −
  

where  

EDR                                                                                                     (4.10)e e

n n

y N
y N

= =

  

3 3

4 4

;                                                                                             (4.11)n e
n e

y yN Nη η
η η

= =

  

( )
( )

( )3 2 2

2 2 0.52 0.5

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )2 EDR 1 0               (4.12)ˆ ˆ3 ˆ16( )ˆ ˆ ˆ ˆ ˆ16( ) ( ) ( )

n n n n

n n nn n e n

I Z Fr I Z Fr

I I yI I I Z y

ϕ ϕ ϕ ϕ

ϕ ϕ

− −
+ − − =

−− −

  

where  

ˆ
EDR                                                                                                      (4.13)

ˆ
e e

n n

y y
y y

= =

 

ˆˆ ˆ;  ;                                                                                        (4.14)n e
n e

y y Zy y Z
D D D

= = =

 

ˆ ˆ ˆ ˆˆ ˆ;                                                                                           (4.15)e e n nI y Z I y Z= + = +
  

Eqs. (4.7), (4.9), and (4.12) are the general relationships and can be applied to either 

sub-critical or supercritical flow regime. In the case of sub-critical flow regimes,
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1n cFr Fr= = , c
n c

myN N
B

= = , and ˆ ˆ ˆˆ  n c cI I y Z= = + . It should be noted that, the 

subscripts ‘e’, ‘c’ and ‘n’ are referring to the flow conditions at the end section, the 

critical section and the normal section, respectively. 

4.3.1.2 Momentum Equation Coupled with the Free Vortex Theory  

By inserting Eqs. (3.14), (3.25), and (3.26) into Eq. (3.3) and replacing the 

appropriate relationships for An, Tn and Ae of each channel cross-section type, the 

generalized EDR relationships are calculated for the exponential (Eq. (4.16)), the 

generalized trapezoidal (Eq. (4.17)) and the generalized circular channel cross-

sections (Eq. (4.18)) as: 

2

2

3.52

2 2
(2 1)22

1.52
2 2

2

2 2
2 2

2 2

24 81 (1 ) (1 ) EDR
5 2 35 2

1
2

( 1) ( 1)1 EDR 0                                                 

n

ηn n

n

ηn n

Fr
ηFr Fr

η η Fr
η

η Fr η Fr
η η

+

      
   − + + + −     +      

   + +
− + + =   

   
     (4.16)
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3.52 1ˆ ˆ ˆ4 81 1 1                                                     (4.19)
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4.3.1.3 The Sharp Crested Weir Theory 

4.3.1.3.1 The Continuity Equation 

Fig. 4.4 shows a schematic representation of the free surface flow profile of the 

symmetric sided trapezoidal channel cross-section of the free over-fall. As discussed 

earlier, the flow over a free over-fall in any channel cross-section can be assumed to 

be similar to the flow over a sharp-crested weir of the same section with zero height 

(without a sill) (Anastasiadou-Partheniou and Hatzigiannakis 1995; Ferro 1999; 

Ahmad 2003; Vatankhah 2013; Vatankhah 2015). Therefore, the theoretical 

procedure that is applied to compute the discharge over a sharp-crested weir without 

a sill can also be used for the free over-fall to obtain the EDR relationships. From 

previous studies (Fathy & Shaarawi 1954, and Reploigle 1962) it is known that, the 

pressure distribution at the brink section forms a slightly skewed parabolic shape 

with its mean value considerably less than the hydrostatic one; therefore, the formed 

curve area of the actual pressure distribution is definitely smaller than the hydrostatic 

pressure profile area. Hence, contradictory to a sharp-crested weir, where the 

pressure distribution all over the end section (at the weir) is assumed to be zero 

(Ahmad 2003), a linear pressure distribution is proposed to form a right angle (but 

not isosceles) triangle having its height equal to the brink depth (ye) and having its 

maximum value (Cpye) at the channel bed as shown in Fig. 4.4 (Delleur et al. 1956). 

Noting that, Cp is the brink pressure distribution coefficient which is less than a unity 

and was evaluated from experimental dataset of Rajaratnam and Muralidhar (1970). 

In accordance with the above proposed approach, the flow velocity at any depth at 

the brink section of the free over-fall can be computed by applying the energy 

equation between the upstream section and the brink section (see the Appendix for 

further mathematical details). Therefore using Eq. (A-2), an elemental infinitesimal 
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discharge (dQ) equation for an elemental tape of thickness dhE at a height hE below 

the energy grade line (EGL) for the trapezoidal free over-fall is generated as follows: 

( ) ( ){ } ( )

2

2

2 0.5

2

1 2 1 2  (4.21)
1

n
n n

n

vH y
g

e
p E p n e n E E

n v
g

AQ g C h C H y B m H h dh
A k

= +

 = − + − + −   + ∫

 

where Q = the flow discharge; Ae = the flow area at the brink;  An = the flow area at 

the upstream; k = the local energy loss coefficient due to the streamline curvature at 

the vicinity of the brink; yn = the upstream flow depth;  vn = the flow velocity at the 

upstream; Cp = the pressure coefficient; hE = the vertical distance measured from the 

total energy head; Hn = the total energy head at the upstream section; ye = the brink 

depth;  B = the bottom width; m = the side slope (m:1; horizontal : vertical); and dhE 

=  the elemental infinitesimal depth. Note that the subscripts ‘n’ and ‘e’ denote the 

flow conditions at the upstream section and the end section, respectively. 

      

 

  

 

 

   

     Comprehensive research of the flow reveals that, the streamline curvature is  
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Figure 4.4: Sketch of a free over-fall along the longitudinal symmetric sides 
trapezoidal channel cross-section with the proposed brink pressure distribution and its 

transversal (cross-sectional) details 
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substantial at the free surface profile and zero at the bottom of the channel (Sharifi et 

al. 2009). Hence, the effect of the streamline curvature at the brink section is 

considered by introducing a correction factor only to the free-water surface. 

Subsequently, the following equation can be established to give the value of the 

discharge at the free over-fall as: 

( )

( )
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21
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     − + − − + 
   
   +  =   + − +  −     
  − − − − −    
                                                                                                  (4.22)

 

By equating and simplifying Eqs. (4.22) and (3.14), an EDR equation for the 

generalized trapezoidal free over-fall is obtained as: 
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( )2
2

2 4( ) 1 (EDR)                                                            (4.26)
1
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Eq. (4.23) can be simplified for rectangular and triangular channel cross-sections by 

taking Nn = 0 and Nn = ∞, respectively. So, substituting Nn = 0 and Nn = ∞ separately 

into Eq. (4.23) and simplifying, the EDR equation for the rectangular (Eq. (4.28)) 

and for the triangular (Eq. (4.29)) channel cross-sections are generated. 

1.5 1.52 2

3(1 )
EDR  = 0                              (4.28) 12(1 EDR) 2 (1 EDR)

1

p n

n p n p

C Fr

Fr C Fr C
k

−
−

   + − − + −   +
 

2
2

2.52

1.52
2

30(1 )
EDR 0   (4.29)

4(1 EDR)

4 (1 EDR)
4 (1 EDR) 10(1 )

1

p n

n p

n p
n p p

C Fr

Fr C

Fr C
Fr C C

k

−
− =

  + −   
  + −   − + − + −  + 

      

 

Since, the magnitude of the local energy loss coefficient (k) is not known, EDR 

cannot be computed for the given values of Cp and Nn, implying that the Eqs. (4.23), 

(4.28) and (4.29) are not sufficient to solve these equations at this step. 

4.3.1.3.2 The Energy Equation 

By applying the energy equation on the streamline at the vicinity of the brink section 

(between the upstream and the downstream sections), another independent equation 
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is generated that considers the local energy head loss (hl) by taking into account the 

effect of the streamline curvature and given as:  

2

                                                                                                  (4.30)
2

e
n e l

vH d h
g

= + +  

 

where de = the hydrostatic pressure head at the brink, ve = the flow velocity at the end 

section (brink); and hl = the local energy head loss. 

Inserting Eq. (3.14) and hl = kve
2/2g into Eq. (4.30) and simplifying leads to: 

2 3 2
2 2(1 ) (1 )(1 )1 (  EDR EDR) 0                       (4.31)

2 4 2 4
e n n n n

n
n n n

d N Fr k N FrN
y N N

  + + + − + + + =  + +   
  

 To obtain a relationship for an imaginary equivalent hydrostatic pressure head at the 

brink (de) based on Cpye by using the experimental data of Rajaratnam and 

Muralidhar (1970), the suggested volume of the linearly varying pressure distribution 

as detailed in Fig. 4.4 is equated with the volume of the hydrostatic pressure 

distribution with the depth de. Hence, Eq. (4.32) is obtained for the generalized 

trapezoidal channel cross-sections.  

3 2
3 22  EDR 3  EDR 0                                          (4.32)e e

n p p
n n

d dN C C
y y

      
   − + − =   
         

      

Eqs. (4.31) and (4.32) are reduced to a single 3rd degree polynomial, for the 

rectangular channel cross-sections by substituting Nn= 0. 
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( )
1 2 2

3 22  EDR 1 EDR 1 0                                                   (4.33)
2 2

n n
p

Fr FrC k
 

− + + + = 
 

      

Similarly, for the triangular channel cross-sections, a single 5th degree polynomial is 

obtained by substituting Nn = ∞. 

( )
1 2 2

5 43  EDR 1 EDR 1 0                                                   (4.34)
4 4

n n
p

Fr FrC k
 

− + + + = 
 

      

Since, an independent equation is established using the energy equation, the 

aforementioned equations (Eqs. (4.23), (4.28) and (4.29)) can be solved by using the 

pressure coefficient (Cp) values suggested by Rajaratnam and Muralidhar (1970) 

where,  

0.281- 0.1184                        0  < 0.79  
 0.1875                                     0.79   2.34
0.2136 - 0.01116             2.34 1  0.00
0.102                                         

c c

c

c c

pC
N N

N
N N< ≤

=
≤ 

≤ ≤                     

 

      

10  

   (

 

)

 

4.35

cN< ≤

 
 
 
 
 
 
 ∞ 

 

where Nc = myc/B. 

4.3.2 The Suggested Approaches 

4.3.2.1 Three Velocity Points Method 

Using Eqs. (3.30), (3.31), and (3.32) and substituting the upstream Froude number 

nFr  from Eq. (3.14) and the proper relationships of the flow area for each cross-

section into Eq. (3.33), the generalized EDR relationships are obtained based on this 

new approach for the exponential (Eq. (4.36)), the generalized trapezoidal (Eq. 

(4.37)) and the generalized circular channel cross-sections (Eq. (4.40)) as: 
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2 2
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η ηη

η η

 
 
 =    + + + + −   + +  

  

1.5
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1 0.5
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where 
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3 4 2 3 2
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2 2
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where 

( )2 1.5 2 1.5ˆ ˆ ˆ ˆ( ) ( )1 8ˆˆ                                                              (4.41)ˆ ˆ2 3 ( ) ( )
e e

e e
e

Z Z I I
y I

I Zϕ ϕ

− − −
= − −

−
 

4.3.2.2 Infinite Number (n-) Velocity Points Method 

Using Eqs. (3.34), (3.35), (3.36), (3.37), and (3.38) and substituting the upstream 

Froude number nFr  from Eq. (3.14) and the proper relationships of the flow area for 

each cross-section into Eq. (3.39), the generalized EDR relationships are expressed 

based on this new approach as series expansion for the exponential (Eq. (4.42)), the 

generalized trapezoidal (Eq. (4.43)) and the generalized circular channel cross-

sections (Eq. (4.44)) as: 
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Chapter 5 

5 RESULTS AND DISCUSSION 

5.1 Introduction 

In this chapter, the variation of the end depth ratio (EDR) and the end depth 

discharge (EDD) values for different channel cross-sections are investigated through 

the proposed methodologies and presented within four main sections. The first 

section deals with the solution of the proposed methodologies for computing the 

EDR and the EDD of the exponential channel cross-sections for both sub- and super 

critical flow regimes. The second section details the solution of the suggested 

methodologies for the EDR and the EDD relationships of the generalized trapezoidal 

channel cross-sections for both regimes (Abrari et al, 2018). In this section, also the 

results of semi-trapezoidal and inverted semi-triangular channel cross-sections based 

on different approaches (energy (Abrari et al, 2017b), free vortex theory (Abrari et 

al, 2016), three velocity points (Abrari et al, 2017a) and infinite number velocity 

points) are determined since they were not studied earlier. The third section deals 

with the solutions of the computed EDR and EDD relationships for the circular 

channel cross-sections with flat base for both sub- and super critical flow regimes. 

This chapter ends with the direct prediction of the discharges from the known values 

of the end depths for all the above-mentioned channel cross-sections in both flow 

regimes. As previously stated, in sub-critical flow regimes, the end depth value is 

related to the critical depth, since the critical section occurs somewhere upstream of 

the end section. However in super critical flow regimes, due to the lack of the critical 
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depth occurrence within the studied control volume of the approaching flow, the 

water depth at the end section has been correlated to the longitudinal channel bed 

slope (S) and the channel bed roughness (n) through the semi-empirical Manning-

Strickler equation. 

5.2 Exponential Channel Cross-sections 

5.2.1 EDR for Sub-critical Flow Regimes 

When the approaching flow is in sub-critical regime, the critical section exists at the 

upstream of the end section provided that the channel is longitudinally long enough. 

Using Eq. (4.36), the end depth ratio (EDR), being the ratio of the end depth to the 

critical depth, can be determined based on the three velocity points method for the 

rectangular, the parabolic, and the triangular channel cross-sections by inserting 

1n cFr Fr= =  and incorporating with the appropriate value of the exponent 2η  as 

shown in Table 4.1. Therefore, by substituting η2 = 1, 1.5, and 2, EDR values of 

0.719, 0.772, and 0.806 for the rectangular (unconfined nappe), the parabolic and the 

triangular (symmetric sides) channel cross-sections are obtained respectively. Also, 

substituting 1n cFr Fr= =  and number of point (np) = ∞ for the infinite number 

velocity points method into Eq. (4.42), the EDR values are found to be 0.715, 0.777, 

and 0.817 for the rectangular, the parabolic, and the triangular channel cross-sections 

respectively. 

5.2.2 EDD for Sub-critical Flow Regimes 

Similarly, the discharge relationship of the exponential channel based on the Froude 

number of the normal depth ( nFr  ) can be written as: 
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2( +0.5)0.5
1

0.5
2

 =                                                                                         (5.1)
η

n
n

g η yQ Fr
η

 

Substituting ny  from Eqs. (4.16), (4.36), and (4.42) into Eq. (5.1), the following 

general end depth discharge (EDD) relationships which are the direct prediction of 

the discharge for the given end depth (ye) based on the three velocity points method 

(Eq. (5.2)), the infinite number velocity points method (Eq. (5.3)), and the free vortex 

theory (Eq. (5.4)), for flows in sub- and super critical regimes at free over-fall in 

exponential channel cross-section are obtained only since the solution based on 

energy method is available in the literature: 

2

2

2

0.5 - (1+ )

0.5
1

0.5
2 2 22 2

2
2 2

( 1)

 =  
2 2

1 1

.                                                                                             

η

n n

n n n n

η
e

g η Fr FrQ
η

Fr Fr Fr Fr

y

η
η ηη

η η
+

 
 
 
 

   + + + + −   + +   

                      (5.2)    
                                                                                                                                           
 

( )

2

2

2 2

2

0.5 - (1+ )

0.5
1

0.5 1 1 2 22 22
2 21

( 1)

2( 1) =  
1 ( ) ( 1)

2 1 2 1

.                                                       

η

n n
np

n n

i

η
e

g η Fr n FrQ
η Fr Fri i np i np i

np np

y

η

η ηη
η η

−

=

+

 
 
 

− 
   −   + + + − − − −  − − 
    

∑

                                                                                       (5.3)
                                                                                                                                          
 



 

65 
 

( ) ( )

2

2

3.52
1

22 2
(2 1)21 1

1.52
2 2 1

2

2 2
2 1 2 1

2 2

24 81 1 1 EDR
5 2 35 2

1
2

1 1
              1 EDR 0                         

n

ηn n

n

n nη

η Fr
ηη Fr η Fr

η η η Fr
η

η η Fr η η Fr
η η

+

            − + + + −           +      
 + +

− + + = 
 

             (5.4)

 

where 

2 0.50.5

0.5 1.5 =                                                                                        (5.5)
η

n c
n

n n

QT yFr
g A y

+
 

=  
 

 

Substituting 1n cFr Fr= = , the defined values of the exponent 2η  for the rectangular, 

the parabolic and the triangular sections and inserting np = ∞ into these general 

equations, the EDD relationships for the above mentioned cross-sections were 

computed from the two above mentioned suggested methodologies and detailed as 

well in Table 5.1, since Beirami et al. (2006) computed the EDR and the EDD 

relationships of the exponential channel cross-sections for sub-critical flow regimes. 

Table 5.1: Computed EDR values and EDD relationships based on the two suggested 
methods of this study for the exponential channel cross-section 
Cross-section 

 
Methods 

 

 Nappe 
Type 

EDR 
(ye/yc) 

EDD 
(m3/s) 

Rectangular 
n-velocity points method  U 0.715 1.654 g0.5η1ye

1.5 

Three velocity points method U 0.719 1.639 g0.5η1ye
1.5 

Parabolic 
n-velocity points method  U 0.777 1.351g0.5η1ye

2 

Three velocity points method U 0.772 1.370g0.5η1ye
2 

Triangular 
n-velocity points method  U   0.817 1.171 g0.5η1ye

2.5 
Three velocity points method U   0.806 1.212g0.5η1ye

2.5 
U: unconfined nappe 
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5.2.3 EDR for Super Critical Flow Regimes 

In super critical flow regime where the longitudinal channel slope is steep, the 

critical water depth ‘yc’ does not exist at the control volume (between the upstream 

(normal) section and the downstream (end) section), since the critical depth it is 

greater than the uniform (normal) water depth. So, the water level at the end depth 

‘ye’ depends on the upstream Froude number ‘Frn’ instead of the critical flow depth 

and ‘Frc’. As the upstream Froude number is a function of the channel bed slope ‘S’, 

the functional relationship of ye can be written as: 

( , )                                                                                                           (5.6)e e cy y y S=
 

Note that, the ratio of ye/yc is related to the EDR and the upstream Froude number 

‘Frn’ by the following equation:  

2( 0.5)
EDR=                                                                                                  (5.7)e

e η
c n

y
y Fr

ε +=

 

The upstream Froude number ‘Frn’ in the Eq. (5.5) is divided by the Froude number 

of the fictitious critical cross-section to obtain as: 

0.5 1.5

                                                                                                (5.8)n c
n

c n

T AFr
T A

   
=    

   
  

where Tc = the top width of the flow at the fictitious critical water depth section and 

Ac = the cross-sectional area of the flow at that fictitious section. Since the critical 

water depth does not exist within the control volume section, to overcome this, the 

semi-empirical equation suggested by Manning-Strickler for open channels is 

introduced that gives the following relationship as: 
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c c c n
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S T A P

       
=        

       
 

where Pn = the channels wetted perimeter at the normal depth section, Pc = the 

channels wetted perimeter at the fictitious critical depth section, Sc = the fictitious 

critical slope of the channels, and S = the channels bed slope as defined earlier. 

Equating Eqs. (5.8) and (5.9), gives: 

10 4
3 3

                                                                                         (5.10)c n

c n c

A PSS
S A P

   
= =    

   


 

Replacing the corrected form of the foregoing parameters into Eq. (5.10), S for the 

rectangular (Eq. (5.11a)), the parabolic (Eq. (5.11b)), and the triangular (Eq. (5.11c)) 

channel cross-sections are given in a simplified form as: 
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5.2.3.1 EDR of Rectangular Channel Cross-sections 

To evaluate yn for the given values of yc, B and ,S  Eq. (5.11a) was solved 

numerically. Subsequently Frn is calculated from Eq. (5.5) and ye numerically 

determined from Eqs. (4.16), (4.36), and (4.42) for free vortex theory (to strengthen 

the suggested new methods), the three velocity points method, and the infinite 

number velocity points method, respectively. Then, the ratio of ye/yc ‘ eε ’ is 

estimated from Eq. (5.7) for the rectangular channel cross-sections by using the 

relevant value of 2η . The result of eε compared with the theoretical study of 

Anderson, (1967) based on the energy method, Murty Bhallamudi, (1994) using the 

Boussinesq approach, and Ferro, (1999) through the sharp-crested weir theory are 

shown graphically in Fig. 5.1(a), (b), and (c) for the rectangular channel cross-

section in super critical flow regimes, respectively. These graphical representations 

involve number of curves since the effect of different bed slopes ‘S’ are coupled in 

the solution; unlike the sub-critical flow regime cases where the critical slope 

interferes only. In order to show the accuracy of the suggested methods, the two 

statistical measuring indices (Mean Absolute Relative Error (MARE) and 

Correlation coefficient (R2)) were determined and shown as well in these figures. For 

best relationship, the value of MARE should be close to zero and the value of R2 

should approach to unity. As shown in Fig. 5.1(c), the curve for infinite number 

velocity points method are overlapping with the study of Ferro (1999), since as the 

number of points ( np ) approaches to an infinity number, the series expansion 

equation converges to the equation of the sharp-crested weir theory. 

A comparison of the computed results of the EDR values for the rectangular channel 

cross-sections obtained from the suggested theoretical methods of the current study 
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with the relevant experimental study by Jagannadha Rao, (1961) is given in Fig. 5.2. 

The verification of this study with the relevant experimental data sets varies slightly 

from the observations. 
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Figure 5.1: Comparison between the variation of eε  on S for 0.08 (m) ≤ yc ≤ 0.2 (m)  
(m) and B = 0.2 (m) of the two suggested theoretical approaches and the theoretical 
solution of the free vortex theory with the study of (a) Anderson (1967); (b) Murty 

Bhallamudi (1994); and (c) Ferro (1999) in rectangular channel cross-sections 
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Figure 5.2: Comparison between the computed EDR values of the two suggested 

theoretical approaches and the free vortex theory with the experimental data set of 
the EDR of Jagannadha Rao (1961) in rectangular channels 

 

5.2.3.2 EDR of Parabolic Channel Cross-sections 

Similarly, in order to evaluate yn for the given values of yc, Tc and ,S  Eq. (5.11b) was 

solved numerically. Subsequently Frn is calculated from Eq. (5.5) and the value of ye 

numerically determined from Eqs. (4.16), (4.36), and (4.42) for the free vortex 

theory, the three velocity points method, and the infinite number velocity points 

method, respectively. Then, eε  is calculated from Eq. (5.7) for the parabolic channel 

cross-sections by inserting the relevant value of 2η . The result of eε compared with 

the theoretical study of Anderson, (1967) based on the energy method, Murty 

Bhallamudi, (1994) using Boussinesq approach, and the sharp-crested weir theory 

(solved by the authors for strengthening the suggested methods) are shown 

graphically in Figs. 5.3(a), (b), and (c) respectively. These graphical representations 
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involve number of curves since the effect of different bed slopes ‘S’ are coupled in 

the solution; unlike the sub-critical flow regime cases where the critical slope 

interferes only. In order to investigate the correctness of the suggested methods, the 

two statistical measuring indices (Mean Absolute Relative Error (MARE) and 

Correlation coefficient (R2)) are provided in these figures as well. As shown in Fig. 

5.3(c), the curves of the infinite number velocity points method are overlapping with 

the sharp-crested weir theory, since as the number of points ( np ) approaches to 

infinity, this series expansion method converges to the sharp-crested weir theory. 
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Figure 5.3: Comparison between the variation of eε  on S for 0.08 (m) ≤ yc ≤ 0.2 (m) 

and Tc = 0.2 (m) of the two suggested theoretical approaches and the theoretical 
solution of free vortex theory with the study of (a) Anderson (1967); (b) Murty 

Bhallamudi (1994); and (c) the theoretical solution of the sharp-crested weir theory 
in parabolic channel cross-sections 
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5.2.3.3 EDR of Triangular Channel Cross-sections 

In a similar way, to evaluate yn for the given values of yc and ,S  Eqs. (5.11c) was 

solved numerically. Subsequently Frn is calculated from Eq. (5.5) and ye numerically 

determined from Eqs. (4.16), (4.36), and (4.42) for the free vortex theory, the three 

velocity points method, and the infinite number velocity points method, respectively. 

Then, eε  is estimated from Eq. (5.7) for the triangular channel cross-sections by 

using the relevant values of 2η . The result of eε compared with the theoretical study 

of Anderson, (1967) based on the energy method, Murty Bhallamudi (1994) using 

the Boussinesq approach, and Ferro, (1999) through the sharp-crested weir theory are 

shown in Figs. 5.4(a), (b) and (c) for triangular channel cross-sections in super 

critical flow regimes, respectively. In order to show the accuracy of the suggested 

methods, the two statistical measuring indices (Mean Absolute Relative Error 

(MARE) and correlation coefficient (R2)) were provided as well in these figures. As 

shown in Fig. 5.4(c), the curve for infinite number velocity points method are 

overlapping with the study of Ferro (1999), since as the number of points ( np ) 

approaches to infinity, due to the same reasoning discussed in the earlier section. 
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Figure 5.4: Comparison between the variation of eε  versus S  for any value of m and 

yc=0.2 and the theoretical study of (a) Anderson, (1967); (b) Murty Bhallamudi 
(1994); and (c) Ferro (1999) in triangular channel cross-sections 

 

The experimental data of Rajaratanm and Muralidhar (1964) is considered for 

verifying the computed EDR of the suggested method of this study for the triangular 

free over-falls and is presented in Fig. 5.5. The verification of this study with the 

relevant experimental data sets varies slightly from the observations. This variation is 

probably due to the fluctuation of the measured data set of Rajaratanm and 

Muralidhar (1964) since, the studied cross-sectional shape characteristics at very low 

discharges are forming very shallow water depths where the occurred wetted 

perimeter at different discharge values due to the inner wall roughness effecting the 

measurements significantly.  
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Figure 5.5: Comparison of the computational EDR values of the two suggested 

theoretical approaches and the free vortex theory of this study with the experimental 
data set of the EDR value by Rajaratnam and Muralidhar, (1964) in triangular 

channel cross-sections 
 

5.2.4 EDD of Super Critical Flow Regimes 

To utilize the free over-fall as a flow measuring device, it is essential to estimate the 

discharge value only by using the flow depth at the end section. Therefore, by 

substituting /n ey y EDR=  into Eq. (5.1), the generalized equation of the EDD is 

obtained: 

2

2

( 0.5)0.5
1

( 0.5)0.5
2

                                                                                       (5.12)
EDR

η
e

nη

g η yQ Fr
η

+

+

 
=  

 
  

In super critical flow regimes, as the discharge is dependent on ye and Frn, so it is not 

explicitly possible to estimate the discharge from the given value of the end depth 

measurement only (unlike to sub-critical flow regimes). Hence, a second 
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measurement at the upstream is unavoidable. In essence, if both ye and yn are known, 

the upstream Froude number at the normal section ‘Frn’ can be calculated directly 

using Eqs. (4.16), (4.36), and (4.42). Subsequently, ye and Frn may be used to 

estimate the discharge from Eq. (5.12). Since, it is difficult to determine the location 

of the normal section properly, the known values of the relative channel bed slope (

S ) using Eqs. (5.11a), (5.11b), and (5.11c), the semi-empirical Manning-Strickler 

equation is coupled with the end depth measurements.  

5.2.4.1 EDD of Rectangular Channel Cross-sections 

Therefore, to evaluate cy , ny , and nFr  for the given value of ey  and S ,   Eqs. (5.5), 

(5.11a), and (4.36) for the three velocity points method, Eqs. (5.5), (5.11a), and 

(4.42) for the infinite number velocity points, and Eqs. (5.5), (5.11a), and (4.16) for 

the free vortex theory method were solved numerically. Eventually by substituting 

the appropriate value of 2η , the discharge ( Q ) values for the rectangular channel 

cross-sections were computed using Eqs. (5.2), (5.3), and (5.4) for the three velocity 

points method, for the Infinite number velocity points method, and for the free vortex 

theory respectively.  

5.2.4.2 EDD of Parabolic Channel Cross-sections 

Since no earlier experimental data are available in the literature, the generated 

relevant theoretical equations for this cross-section were not validated. 

5.2.4.3 EDD of Triangular Channel Cross-sections 

For the triangular channel cross-sections, in order to investigate cy , ny , and nFr  for 

the given value of ey  and S , Eqs. (5.5), (5.11c), and (4.36) for the three velocity 

points method, Eqs. (5.5), (5.11c), and (4.42) for the infinite number velocity points 

method and Eqs. (5.5), (5.11c), and (4.16) for the free vortex theory were solved 
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numerically. Finally by inserting the relevant value of 2η , for the triangular channel 

cross-sections the discharge ( Q ) values were computed using Eqs. (5.2), (5.3), and 

(5.4) for the three velocity points method, for the infinite number velocity points 

method, and for the free vortex theory respectively.  

In order to verify the calculated discharge values, a comparison has been made for 

the exponential channels with relevant experimental results existing in the literature. 

In Figures 5.6(a) and 5.6(b), the observed data sets of Jagannadha Rao (1961) for the 

rectangular channels and the experimental data of Rajaratnam and Muralidhar (1964) 

for the triangular channels are compared with the calculated discharge values of the 

generated equations. Figures 5.6(a) and 5.6(b) reveal that, the calculated values of 

the discharge giving little discrepancies with the experimental data sets due to the 

same reason discussed earlier. 
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Figure 5.6: Comparison between the experimentally determined non-dimensional 
discharge values with the computed non-dimensional discharge values of the two 

suggested approaches and the free vortex theory for (a) rectangular; and (b) 
triangular channel cross-sections 

  

5.3 Generalized Trapezoidal Channel Cross-sections 

5.3.1 EDR for Sub-critical Flow Regimes 

As previously stated, in sub-critical flow regimes the EDR is the ratio between the 

end depth ‘ye’and the upstream critical depth ‘yc’. Hence, by measuring the end 

depth, the discharge ‘Q’ value can be computed, since there is a unique relationship 

between the critical depth and the discharge value based on Froude number at that 

critical depth ‘Frc’. 

5.3.1.1 EDR of Trapezoidal Channel Cross-sections  

By substituting 1n cFr Fr= =  and n cN N=  into Eqs. (4.9), (4.37) and (4.43) 

separately, the EDR equations of the generalized trapezoidal channel cross-sections 

for sub-critical flow regimes other than the two proposed methods (the three velocity 



 

81 
 

points Eq. (5.15) and the infinite number velocity points Eq. (5.18)), the energy 

method Eq. (5.13) is also computed (since this approach was not applied in earlier 

studies for this cross-section type, so as to strengthen the above mentioned two 

proposed methods) are generated: 

5 5

5 5 5

3 2

2 2
2 (1 ( 1) ) (1 ( 1) )EDR 1 0              (5.13)
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Since the equations defining the generalized trapezoidal channel cross-sections for 

the energy, the three velocity points and the infinite number velocity points methods 

(Eq. (5.13), Eq. (5.15), and Eq. (5.18) respectively) are revealing no single 

representative EDR value, unlike to the rectangular, the parabolic and the triangular 

channel cross-sections, other than the flow depth at the brink section ‘ye’, the 

channels side slopes ratio (m) and the channels bed width (B) were also introduced as 

dependent (influencing) parameters so as to achieve a group of mathematical 

solutions. Using these effective channel parameters (ye, m, and B), a comparison of 

the computed EDR values of the theoretical studies of Murty Bhallamudi (1994), 

Beirami et al. (2006), and Vatankhah (2013) and the experimental data sets of Diskin 

(1961), Keller and Fong (1989), and Pagliara and Viti (1995) were used by applying 

the appropriate values of 3η , 4η , and 5η  that are given in Table 4.2 and detailed in 

Figs. (5.7, 5.8a, and 5.8b).  

As depicted in Fig. 5.7, comparison of the computed EDR values for this study with 

the above mentioned theoretical approaches revealed that, there is a close agreement 

with the theoretical study of Murty Bhallamudi (1994) and Beirami et al. (2006) 

since to some extent, the effects of the streamline curvature and the pressure 

coefficient at the end section were considered in these studies. The computed low 

correlation values (R2) in the theoretical studies compared with the experimental data 



 

83 
 

set are probably due to the fluctuations of the measured data set as discussed earlier 

sections since, the studied cross-sectional shape characteristics at very low 

discharges are forming very shallow water depths and the formed wetted perimeter at 

different discharge values due to the inner wall roughness is effecting the 

measurements significantly.  

Similar computations were carried out in order to check the accuracy of the 

computed EDR values of the two proposed methods (the three velocity points and the 

infinite number velocity points) and presented in Figs 5.8 (a) and (b) respectively. It 

is clearly observed that, there is a close agreement with the theoretical study of 

Vatankhah (2013), since to some extent; the application of the continuity equation is 

used in both studies. As the statistical measure indices indicates, the slight deviations 

of the EDR values computed by Murty Bhallamudi (1994) and Beirami et al. (2006) 

are probability due to the effects of the streamline curvature and the assumed 

negligible effect of the pressure coefficient at the end section.  
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Figure 5.7: Comparison between the relevant theoretical and experimental EDR 

results of the previous studies and the computed EDR results of the energy method of 
the trapezoidal channel cross-section with symmetric sides at sub-critical flow 

regime 
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Figure 5.8: Comparison between the relevant theoretical and experimental EDR 

results of the previous studies and the computed EDR results of the (a) three velocity 
points method; and (b) infinite number velocity points method of the trapezoidal 

channel cross-section with symmetric sides at sub-critical flow regime 
 

5.3.1.2 EDR of Inverted Triangular Channel Cross-sections  

Due to the similar reason as discussed for the trapezoidal channel cross-section case, 

for the inverted-triangular (∆-shaped) channel cross-section, the effective channel 

parameters (ye, m, and B) were introduced so as to compute the EDR values based on 

three different theoretical methods. For their comparisons, the experimental study of 

Dey and Ravi Kumar (2002) and the theoretical study of Beirami et al. (2006) based 

on the free vortex theory were used and are tabulated in Table 5.2. As can be seen, 

the computed EDR values of the suggested methods are in well agreement with the 

observed data set of Dey and Ravi Kumar (2002) and the theoretical study of 

Beirami et al. (2006). 
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Table 5.2: Comparison between the computed EDR values of the different suggested 
methods of this study with the observed data of Dey and Ravi Kumar (2002) and the 
theoretical study by Beirami et al. (2006)  

B (m) 
 

m 
 

ye (m) 
 

EDRobs 
(Dey & Ravi 

Kumar) 

EDRcom 
(Beirami 

et al.) 

EDR       
(3 v p) 

 

EDR       
(n-v p) 

 

EDR 
(energy) 

 
0.18 0.57735 0.073952 0.7112 0.6903 0.7040 0.7024 0.7050 
0.18 0.57735 0.070242 0.7195 0.6879 0.7025 0.7007 0.7012 
0.18 0.57735 0.065035 0.7053 0.6858 0.7014 0.6992 0.6971 
0.18 0.57735 0.060889 0.6892 0.6849 0.7012 0.6986 0.6946 
0.18 0.57735 0.056118 0.7155 0.6846 0.7015 0.6986 0.6925 
0.18 0.57735 0.053437 0.6812 0.6847 0.7019 0.6988 0.6916 
0.18 0.57735 0.048153 0.7051 0.6853 0.7030 0.6996 0.6904 
0.18 0.57735 0.044256 0.7011 0.6861 0.7040 0.7004 0.6899 
0.18 0.57735 0.039657 0.6832 0.6873 0.7054 0.7016 0.6896 
0.18 0.57735 0.037677 0.6999 0.6879 0.7060 0.7022 0.6895 
0.18 0.57735 0.035417 0.7041 0.6886 0.7069 0.7028 0.6895 
0.18 0.57735 0.033422 0.6855 0.6892 0.7075 0.7034 0.6896 
0.18 0.57735 0.031083 0.6921 0.6900 0.7083 0.7042 0.6897 
0.18 0.57735 0.027888 0.6991 0.6911 0.7094 0.7052 0.6900 
0.18 0.57735 0.024334 0.7122 0.6924 0.7107 0.7064 0.6904 
0.18 0.57735 0.021481 0.6961 0.6934 0.7117 0.7074 0.6908 
0.18 0.57735 0.019314 0.6988 0.6942 0.7125 0.7082 0.6910 
0.18 0.57735 0.015853 0.7012 0.6956 0.7137 0.7094 0.6915 
0.18 0.57735 0.012206 0.7057 0.6969 0.7150 0.7107 0.6921 
0.18 0.57735 0.008745 0.6911 0.6983 0.7163 0.7119 0.6927 
0.12 0.57735 0.052824 0.6922 0.6951 0.7074 0.7062 0.7115 
0.12 0.57735 0.050226 0.7057 0.6914 0.7047 0.7033 0.7065 
0.12 0.57735 0.045207 0.6878 0.6867 0.7019 0.6998 0.6992 
0.12 0.57735 0.044167 0.7191 0.6861 0.7016 0.6994 0.6980 
0.12 0.57735 0.042432 0.6927 0.6854 0.7013 0.6989 0.6962 
0.12 0.57735 0.041393 0.6971 0.6851 0.7012 0.6987 0.6953 
0.12 0.57735 0.039491 0.7019 0.6847 0.7013 0.6986 0.6938 
0.12 0.57735 0.037236 0.7123 0.6846 0.7016 0.6986 0.6924 
0.12 0.57735 0.035677 0.6811 0.6846 0.7019 0.6988 0.6916 
0.12 0.57735 0.033339 0.7181 0.6850 0.7026 0.6993 0.6907 
0.12 0.57735 0.03126 0.6821 0.6855 0.7033 0.6999 0.6902 
0.12 0.57735 0.029098 0.7044 0.6862 0.7042 0.7006 0.6898 
0.12 0.57735 0.027623 0.7163 0.6868 0.7049 0.7011 0.6896 
0.12 0.57735 0.025025 0.7011 0.6879 0.7061 0.7022 0.6895 
0.12 0.57735 0.023123 0.6921 0.6888 0.7070 0.7031 0.6896 
0.12 0.57735 0.021221 0.7151 0.6898 0.7080 0.7039 0.6897 
0.12 0.57735 0.018363 0.6824 0.6912 0.7095 0.70534 0.6900 
0.12 0.57735 0.016285 0.7052 0.6923 0.7106 0.7064 0.6903 
0.12 0.57735 0.013946 0.6911 0.6936 0.7119 0.7076 0.6908 
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5.3.1.3 EDR of Semi-trapezoidal and Semi-inverted Triangular Channel Cross-

sections  

Since no earlier experimental data are available in the literature, the generated 

relevant theoretical equations for these cross-sections were not validated. 

5.3.2 EDD for Sub-critical Flow Regimes 

The discharge ‘Q’ relationship of the generalized trapezoidal channel cross-section 

based on the definition of the normal (uniform) flow depth of the Froude number 

(Frn) for both sub- and super critical flow regimes can be written as: 

1.50.5 2
4

0.5

4

+ (-1)
 =                                                                                    (5.19)

 + 2(-1)
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By substituting 1n cFr Fr= =  and n cy y=  into Eq. (5.19), the discharge can be 

computed for sub-critical flow regimes as: 

1.50.5 2
4

0.5

4

+ (-1)
 =                                                                                         (5.20)

 + 2(-1)

5

5

η
3 c c

η
3 c

g η y η y
Q

η η y

  
  

 

To estimate the discharge ‘Q’ from the known end depth, the direct discharge 

equations in terms of the end depth values were proposed for the flows at sub-critical 

regimes. To have common parameters for comparison; due to different ‘B’ and ‘m’ 

values; after the determination of the upstream critical depth (yc), a general 

dimensionless discharge (Q*) value was obtained by substituting Nc = η4yc /η3 into 

Eq. (5.20) that yields: 
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Since in most of the practical problems, the end depth is known and it is desirable to 

compute the discharge directly with respect to this end depth, Nc = Ne/EDR was 

inserted to Eq. (5.21) so as to generate a dimensionless discharge value (Q*) in terms 

of Ne: 
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5.3.2.1 EDD of Trapezoidal Channel Cross-sections 

Inserting the calculated EDR Eq. (5.13) into Eq. (5.22) for η3=B, η4=m and η5=0, the 

EDD relationship was obtained for the trapezoidal channel cross-sections with 

symmetric sides at sub-critical regime based on the energy method. Using the non-

dimensional discharge values Q* = Qm1.5/(g0.5B2.5), the theoretical results obtained 

from the energy method and the experimental data sets of Diskin (1961), Keller and 

Fong (1989), and Pagliara and Viti (1995) and the theoretical studies of Murty 

Bhallamudi (1994), Beirami et al. (2006), and Vatankhah (2013) for the trapezoidal 

channels with symmetric sides were compared with the two statistical measuring 

indices (MARE and R) as detailed graphically in Fig. 5.9. It is clearly observed that, 

there is a high correlation among these studies.   
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Figure 5.9: Comparison between the non-dimensional discharge (Q*) values 

obtained from the energy method and the other relevant theoretical and experimental 
results for the trapezoidal channel cross-section with symmetric sides at sub-critical 

flow regimes 
 

To assess the correctness of the three velocity points method and the infinite number 

velocity points methods of the predicted non-dimensional discharge (Q*) values, 

Eqs. (5.15). (5.18), and (5.22) were used. Figures 5.10(a) and (b) are presenting the 

comparison of this non-dimensional discharge values in sub-critical flow regime for 

both the experimental data sets of Diskin (1961), Keller and Fong (1989), and 

Pagliara and Viti (1995) and the theoretical studies of Murty Bhallamudi (1994), 

Beirami et al. (2006), and Vatankhah (2013). Similarly, the same statistical 

measuring indices are used for their correctness evaluations and shown in Figures 

5.10(a) and (b). It is also observed that, there exists a close agreement between the 

computed non-dimensional discharge (Q*) values and the other theoretical and 

experimental studies results for both proposed approaches. 
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Figure 5.10: Comparison between the non-dimensional discharge (Q*) values 
obtained based on the (a) three velocity points method; and (b) infinite number 

velocity points method and the other relevant theoretical and experimental results for 
the trapezoidal channel cross-sections with symmetric sides at sub-critical flow 

regimes 
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5.3.2.2 EDD of Inverted Triangular Channel Cross-sections 

Inserting the calculated EDR of Eq. (5.13) into Eq. (5.22) for η3=B, η4=m and η5=1, 

EDD relationship was obtained for the inverted triangular channel cross-sections 

with symmetric sides at sub-critical regime based on the energy method, the three 

velocity points method, and the infinite number velocity points method. For on the 

non-dimensional discharge (Q*) values Q*= Qm1.5/(g0.5B2.5), the theoretical results of 

the above mentioned approaches and the relevant experimental data sets of Dey and 

Ravi Kumar (2002) and the thoretical studies of Murty Bhallamudi (1994), Beirami 

et al. (2006), and Vatankhah (2013) were used to investigate the accuracy with the 

same statistical measuring indices as detailed earlier and presented in Figures 5.11 

(a), (b), and (c). The proposed methods results are showing very small deviations 

with the other theoretical and experimental findings.  
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Figure 5.11: Comparison between the non-dimensional discharge (Q*) values with 

(a) the energy method; (b) the three velocity points method; and (c) the infinite 
number velocity points and the other relevant theoretical and experimental results for 

the inverted-triangular channel cross-sections at sub-critical flow regimes 
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5.3.2.3 EDD of Semi-trapezoidal and Semi-inverted Triangular Channel Cross-

sections  

Since no earlier experimental data are available in the literature, the generated 

relevant theoretical equations for these cross-sections were not validated. 

5.3.3 EDR for Super Critical Flow Regimes 

As previously stated, in super critical flow regimes, the normal depth is always less 

than the critical depth, and the critical section never exists within this reach 

(upstream of the end section). Therefore, to express a relationship for the flow depth 

at the end section (ye), the upstream Froude number (Frn), which is a function of the 

channel bed slope (S), must be used. 

The ratio between the flow depth at the end section (ye) and the critical depth (yc) is 

defined as: 

                                                                                                                      (5.23)e e
e

c c

y N
y N

ε = =

    

Dividing the upstream Froude number (Frn) of Eq. (3.14) by the critical Froude 

number (Frc = 1) gives the following ratio: 

1 2 3 22

2

1 2                                                                                        (5.24)
1 2

n c c
n

c n n

N N NFr
N N N

   + +
=    + +   

  

Substituting the upstream Froude number (Frn) from Eq. (3.14) into Manning’s 

equation and then dividing by the critical Froude number (Frc = 1) yields:  
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2 31 2 1 2 1 62 2

2 2

1 2 1 2 1                                           (5.25)
1 2 1 2 1

n n n n
n

c c c c c

N N N N mSFr
S N N N N m

      + + + +
=       + +  + +       

      

Equating Eqs. (5.24), and (5.25) yields the relative slope ( S ): 

4 310 32 2

2 2

1 2 1                                                                     (5.26)
1 2 1

c c n

c n n c

X X X mSS
S X X X m

  + + +
= =   +  + +   



      

5.3.3.1 EDR of Trapezoidal Channel Cross-sections  

To evaluate nN  for the given values of cN  and S , Eq. (5.26) is solved numerically 

and Frn is calculated from Eq. (5.24). Then, a numerical method is used to compute 

eN  separately from Eq. (4.9) for the energy method (since this approach was not 

available in the literature for these cross-sections), from Eq. (4.17) for the free vortex 

theory (since this approach was not available in the literature for these cross-

sections), from Eq. (4.37) for the three velocity points method, and from Eq. (4.39) 

for the infinite number velocity points method. Subsequently, the ratio between the 

flow depth at end section and the critical depth ( eε ) is obtained by inserting Eq. 

(5.23) to each method. The theoretical studies of Murty Bhallamudi (1994) and the 

sharp-crested weir theory are graphically compared with the predicted values of eε . 

Variations in eε  with respect to the relative slope ( S ) for different values of cN  is 

presented in Figs. 5.12 (a) and (b). As a general trend, it is clearly observed that, as 

the relative slope ( S ) increases, the magnitude of the eε  decreases. Also as can be 

seen from Fig. 5.12 (a), a close agreement with Murty Bhallamudi (1994) was 

observed for the energy method and the free vortex theory since, somehow, the 

streamline curvature and the end pressure effects were considered while deriving 
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these studies. Also, the statistical measuring indices are showing that, the computed 

curves based on the three velocity points method and the infinite number velocity 

points method are agreeing well with the sharp-crested weir theory, since to some 

extent, the continuity equation is used in these all studies as given in Fig. 5.12 (b).  
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Figure 5.12: Comparison between the eε  values obtained based on four theoretical 
methods and the eε  values of the (a) Boussinesq approach by Murty Bhallamudi 

(1994); and (b) sharp-crested weir theory for the trapezoidal channel cross-sections at 
supercritical regimes 
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Similar comparisons are made with the relevant experimental data sets of 

Pagliara and Viti (1995) and shown in Fig. 5.13. The results obtained by four of 

the theoretical methods are varying slightly from the observations of the data of 

Pagliara and Viti (1995). This discrepancy is probably due to the effect of the 

streamline curvature that was not encountered while deriving in relevant theories. 

Furthermore, a comparison of the computed EDR values of the suggested four 

methods with the theoretical studies of Murty Bhallamudi (1994) and the sharp-

crested weir theory in the range of data sets of Pagliara and Viti (1995) are also 

presented in Figs. 5.14 (a) and (b), respectively. Good agreements can be seen 

based on the earlier mentioned statistical measuring indices. 

 
Figure 5.13: Comparison between eε  values based on four suggested methods and eε  
values based on the experimental data sets of Pagliara and Viti (1995) in trapezoidal 

channel cross-sections at super critical flow regimes 
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Figure 5.14: Comparison between eε  values based on four suggested methods and eε  
values obtained based on the theoretical study (a) of Murty Bhallamudi (1994); and 

(b) the sharp-crested weir theory in trapezoidal channel cross-sections in super 
critical regimes 
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5.3.3.2 EDR of Inverted Triangular Channel Cross-sections 

In a similar way for the inverted triangular channel cross-sections, the ratio between 

the flow depth at end section and the critical depth ( eε ) is obtained using Eq. (5.23) 

for the four suggested methods. Variation of eε  with respect to the relative slope ( S ) 

for different values of cN  is presented in Figs. 5.15(a) and (b). As a general trend, it 

is easily observed that, as the relative slope ( S ) increases, the magnitude of the eε  

decreases. Since no experimental data sets are available in the literature for this 

channel cross-section, the theoretical study of Dey and Ravi Kumar (2002) are 

generated and graphically compared with the predicted values of eε  and presented in 

Figs. 5.15 (a) and (b). Based on the statistical measuring indices, there exists close 

agreements with both of the theoretical studies of Dey and Ravi Kumar (2002). 
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Figure 5.15: Comparison between eε  and S  values based on the suggested four 

methods for the range of 0.1 0.45cN≤ ≤  and m = 1 with the (a) Boussinesq approach 
by Dey and Ravi Kumar (2002); and (b) sharp-crested weir theory by Dey and Ravi 

Kumar (2002) for inverted triangular channel cross-sections in super critical flow 
regimes 

 

5.3.3.3 EDR of Semi-trapezoidal and Semi-inverted Triangular Channel Cross-

sections  

Since no earlier experimental data are available in the literature, the generated 

relevant theoretical equations for these cross-sections were not validated. 

5.3.4 EDD for Super Critical Flow Regime  

The EDR values varying with respect to Nn for the generalized trapezoidal channel in 

both sub- and super critical flow regimes. By substituting 4 3/n nN yη η=  and 

n eN N EDR=  into Eq. (5.20), the dimensionless discharge (Q*) in a generalized 

trapezoidal channel cross-section is determined. 
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( )
( )

5

5

5
5

1.52

1.521.5
* 4

0.5 0.50.5 2.5
3

( 1)
EDR EDR( 1)

 =                      (5.27)
1 2( 1) 1 2( 1)

EDR

e e
n

n n n

en

N N Fr
N N FrQ ηQ

g η NN

η
η

η
η

  + −  + −    = =
 + − + − 
 

 

      

To evaluate nN  for the given values of cN and S , Eq. (5.26) is solved numerically 

and Frn is calculated from Eq. (5.24). Then, a numerical method is used to compute 

eN  separately from Eq. (4.9) for the energy method, Eq. (4.17) for the free vortex 

theory, Eq. (4.37) for the three velocity points method, and Eq. (4.39) for the infinite 

number velocity points method.  

5.3.4.1 EDD of Trapezoidal Channel Cross-sections 

As expressed in Eq. (5.27), the discharge (Q) value is related to the end depth (ye) 

and the upstream Froude number (Frn) in a super critical flow regime. Hence, an 

explicit solution of the discharge (Q) is not possible. To overcome this problem, Eqs. 

(4.9), (5.23), (5.25), and (5.26) for the energy method, Eqs. (4.17), (5.23), (5.25), and 

(5.26) for the free vortex theory, Eqs. (4.37), (5.23), (5.25), and (5.26) for the three 

velocity points method and Eqs. (4.39), (5.23), (5.25), and (5.26) for the infinite 

number velocity points method are solved simultaneously to evaluate Frn and nN  

values for the given values of eN and S . Then, Eq. (5.27) is used to compute the 

non-dimensional discharge (Q*) values for each method, separately.  

To evaluate the correctness of these four approaches graphically, a comparison 

between the computed values of Q* and the relevant experimental results of Pagliara 

and Viti (1995) is used and presented in Fig. 5.16. The results indicate that, most of 
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the Q* values predicted by these suggested approaches having a high correlation 

coefficient with the observed data sets of Pagliara and Viti (1995). 

 
Figure 5.16: Comparison between the computed non-dimensional discharges (Q*) of 
the proposed four methods and the experimental data sets of Q* by Pagliara and Viti 

(1995) for the trapezoidal channel cross-sections at super critical flow regime 
 

In order to check the correctness of the proposed methods of these methods, the 

computed discharge in the range of the experimental data sets of Pagliara and Viti 

(1995) and the theoretical study of Murty Bhallamudi (1994) based on Boussinesq 

approach were statistically studied and presented in Fig. 5.17 (a). To strengthen the 

results of these suggested methods, the sharp-crested weir theory was also applied for 

this cross-section (since this approach were not applied previously for this cross-

section at super critical regime) and the generated relationship was also compared 

graphically with the relevant data sets as detailed in Fig. 5.17 (b). Figs. 5.17 (a) and 
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(b) indicating the correctness of the proposed methods with the other theoretical 

approaches based on the two statistical measuring indices (R2 and MARE). 
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Figure 5.17: Comparison between the computed non-dimensional discharges (Q*) of 

the suggested four methods and the theoretical Q* results of the (a) Boussinesq 
approach of Murty Bhallamudi (1994); and (b) sharp-crested weir theory for the 

trapezoidal channel cross-sections at super critical flow regimes 
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5.3.4.2 EDD of Inverted Triangular, Semi-trapezoidal and Semi-inverted 

Triangular Channel Cross-sections   

Since no earlier experimental data are available in the literature, the generated 

relevant theoretical equations for these cross-sections could not be validated. 

5.4 Generalized Circular Channel Cross-sections with Flat-base 

As discussed in Chapter 4, for the generalized circular channel cross-sections with 

flat base as the value of the height of the flat base (Z) changes, different types of 

circular channel cross-section with flat-base can be generated. In this study, the 

values of Ẑ Z D=  are selected to be 0 (circular cross-section without a flat-base), 

0.25, 0.33, 0.5 (inverted semi-circular cross-section), and 0.66. For comparison, 

experimental data sets of Sterling and Knight (2001) were gathered due to the 

personal communication with Dr. Mark Sterling which is acknowledged. 

5.4.1 EDR for Sub-critical Flow Regimes 

For the circular channel cross-sections also the EDR is the ratio between the end 

depth flow and the upstream critical depth for sub-critical regimes. Therefore, by 

substituting 1n cFr Fr= = , ˆ ˆn cy y= , ˆ ˆ
n cH H= , and ˆ ˆ

n cI I=  into Eqs. (4.12), (4.18), 

(4.40), and (4.44) separately, the EDR equations of the generalized circular channel 

cross-sections with flat base in sub-critical flow regimes based on the energy method 

(Eq. (5.28)), the free vortex theory (Eq. (5.29)), the three velocity points method (Eq. 

(5.32)), and the infinite number velocity points (Eq. (5.34)) were obtained. 

( )
( )

( )3

2 22 0.5

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )2 EDR 1 0                       (5.28)ˆ ˆ3 ˆ16( )ˆ ˆ ˆ ˆ ˆ16( ) ( ) ( )

c c

c c cc c e c

I Z I Z

I I yI I I Z y

ϕ ϕ ϕ ϕ

ϕ ϕ

− −
+ − − =

−− −
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( ) ( ) ( )

( ) ( )

2 1.5 2 1.5

2

2 1.5 2 1.5
2 0.5

1 8 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3 2

ˆ ˆ( ) ( ) ˆ ˆ8 ( ) ( )ˆ ˆ ˆ ˆ( ) ( ) 1 0                (5.29)ˆ ˆ ˆ ˆ3 8( ) ( ) ( )

c c c c e e e

c c
e e e

c c e

I Z I Z Z I I k I Z I

I Z I Zk Z Z I I
I I I Z

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
ϕ ϕ

− − − − − − − − −

−  −
+ − − − − − − = 

− − 
 

where 

3.52 1ˆ ˆ ˆ4 81 1 1                                                      (5.30)
ˆ ˆ ˆ5 35

c c c
e

c c c

H H Hk
y y y

−       = − + − −    
       

 
 

( )
2 0.5

ˆ ˆ( ) ( )ˆ
1                                                                                        (5.31)ˆ ˆˆ ˆ16( )

cc

c c c c

I ZH
y I I y

ϕ ϕ−
= +

−
 

( ) ( ) ( )

( )
( ) ( )

2 1.5 2 1.5

2 0.5 2 0.5

2 0.5 2 0.5

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )1 8ˆ
ˆ ˆ ˆ ˆ ˆ ˆ2 316( ) 16( ) ( ) ( )

ˆ ˆ ˆ. ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ˆˆ ˆ ˆ ˆ ˆ16( ) 16( )

c c c c
c

c c c c c

e e e

c c
c

c c c c

I Z I Z Z Z I I
I

I I I I I Z

I I y

I Z I Z
y

I I I I

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ

  − − − − −  + + − −  − − −   

− − +

− −
+ + +

− −

( )

( ) ( )

2 1.5 2 1.5

1.5

2 0.25

ˆ ˆ ˆ ˆ( ) ( )1 8
ˆ ˆ2 3 ( ) ( )

ˆ ˆ( ) ( )ˆ ˆˆ. ( ) ( ) 0                                                        (5.32)ˆ ˆ2( )

c c
c

c

c
e e fb

c c

Z Z I I
I

I Z

I Z
I y Z

I I

ϕ ϕ

ϕ ϕ
ϕ ϕ

  − − −  − −  −   

−
− − − =

−

 

where 

( )2 1.5 2 1.5ˆ ˆ ˆ ˆ( ) ( )1 8ˆˆ                                                           (5.33)ˆ ˆ2 3 ( ) ( )
fb fb e e

e e
e fb

Z Z I I
y I

I Zϕ ϕ

− − −
= − −

−
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( ) ( )
( )1.5

2 0.5 2 0.51

2 0.25
1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )1
ˆ ˆˆ ˆ ˆ ˆ ( ) ( )1 116( ) 16( )

0          (5.34)ˆ ˆ2( )
1ˆ ˆˆ ˆ. ( ) ( )

1 1

c c

np
cc c c c

i c c

e e

I Z I Zi i
I Znp npI I I I
I I

n i np iy Z y Z
np np

ϕ ϕ ϕ ϕ
ϕ ϕ

ϕ ϕ

−

=

  − −−  + + +   −− −− −   − = 
  −

 − − − + − +  − −  

∑

      

To evaluate the EDR values of the above mentioned channel cross-sections based on 

different suggested methods, Eq. (5.28) for the energy method, Eq. (5.29) for the free 

vortex theory, Eq. (5.32) for the three velocity points method and Eq. (5.34) for the 

infinite number velocity points were solved separately for the given values of the ˆey

and presented in Figs. 5.18 (a), (b), (c), (d), and (e) respectively. It is easily observed 

from these figures that, the proposed methods are in close agreement for different 

flat-base values of the channel cross-sections. Note that for infinite number velocity 

points method the value of 50 was used as the upper limit of the series expansion.  
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Figure 5.18: EDR values based on the proposed methods of circular channel cross-
section with flat-base for (a) ˆ 0Z = ; (b) ˆ 0.25Z = ; (c) ˆ 0.33Z = ; (d) ˆ 0.5Z = ; and (e) 

ˆ 0.66Z =  at sub-critical flow regimes 
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5.4.2 EDD for Sub-critical Flow Regimes 

The non-dimensional discharge ( Q̂ ) relationship of the circular channel cross-

sections with flat-base based on the definition of the normal Froude number ( nFr  ) 

for both sub- and supercritical flow regimes can be written as: 

( )1.5

0.5 2.5 2 0.25

ˆ ˆ( ) ( )ˆ                                                                       (5.35)ˆ ˆ8 2( )
n

n
n n

I ZQQ Fr
g D I I

ϕ ϕ−
= =

−
  

By substituting 1n cFr Fr= =  and ˆ ˆ
n cI I=  into Eq. (5.35), the discharge for sub-

critical flow regimes is computed as: 

( )1.5

0.5 2.5 2 0.25

ˆ ˆ( ) ( )ˆ                                                                             (5.36)ˆ ˆ8 2( )
c

c c

I ZQQ
g D I I

ϕ ϕ−
= =

−
 

In order to obtain the ĉI values using different suggested methods, Eq. (5.28) for the 

energy method, Eq. (5.29) for the free vortex theory, Eq. (5.32) for the three velocity 

points method, and Eq. (5.34) for the infinite number velocity points were computed 

separately for the given values of the ˆey based on Sterling and Knight (2001) data 

sets. Then, the non-dimensional discharges ( Q̂ ) were computed from Eq. (5.36) for 

these methods separately and presented in Figures 5.19 (a), (b), (c), (d), and (e). The 

results of these different methods showing small deviations with the experimental 

data sets of Sterling (1998) for ˆ 0Z = , ˆ 0.25Z = , and ˆ 0.33Z = . However, the 

computed discharges values have a lack of compatibility with the experimental 

observations of Sterling (1998) for ˆ 0.5Z = , and ˆ 0.66Z =  due to the assumption of 

the suggested approaches and the small cross-section flow depth ratio.  
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Figure 5.19: Comparison between the non-dimensional discharges ( Q̂ ) values of the 

suggested methods for the circular channel cross-section with flat-base and the 
experimental data set of Sterling (1998) for (a) ˆ 0Z = ; (b) ˆ 0.25Z = ; (c) ˆ 0.33Z = ; (d) 

ˆ 0.5Z = ; and (e) ˆ 0.66Z =  at sub-critical flow regimes 
 

5.4.3 EDR for Super Critical Flow Regimes 

Similar to the exponential and the generalized trapezoidal channel cross-sections, the 

ratio between the flow depth at the brink (ye) and the critical depth (yc) is defined as: 

ˆ
                                                                                                          (5.37)

ˆ
e e

e
c c

y y
y y

ε = =

    

Dividing the upstream Froude number (Frn) of Eq. (3.14) by the critical Froude 

number (Frc = 1) the following ratio is generated: 

1 2 3 22

2

ˆ ˆ ˆ ˆ( ) ( )                                                                       (5.38)ˆ ˆ ˆ ˆ( ) ( )
n n c

n
c c n

I I I ZFr
I I I Z

ϕ ϕ
ϕ ϕ

   − −
=    

− −   
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Substituting the upstream Froude number (Frn) from Eq. (3.14) into Manning’s 

equation and then dividing by the critical Froude number (Frc = 1) yields:  

1 2 1 31 2 2

2

2 3
2 1 1

2 1 1

ˆ ˆ ˆ ˆ( ) ( )
ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ2 cos (1 2 ) cos (1 ).                                                     
ˆ ˆ ˆ ˆ2 cos (1 2 ) cos (1 )

n n n
n

c c c c

n

c

I I I ZSFr
S I I I Z

Z Z I Z

Z Z I Z

ϕ ϕ
ϕ ϕ

− −

− −

     − −
=     

− −     

 − + − − − 
 − + − − − 

  (5.40)

      

Equating Eqs. (5.39), and (5.40) yields the relative slope ( S ): 

4 310 3 2 1 1

2 1 1

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) 2 cos (1 2 ) cos (1 )            (5.41)ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) 2 cos (1 2 ) cos (1 )
n c

c c n

I Z Z Z I ZSS
S I Z Z Z I Z

ϕ ϕ
ϕ ϕ

− −

− −

  − − + − − − = =    − − + − − −   



      

To evaluate ˆny  for the given values of ˆcy and S , Eq. (5.41) is solved numerically for 

different value of ˆ 0,  0.25, and 0.5Z = . Then, Frn is calculated from Eq. (5.40). 

Subsequently, a numerical method is used to compute ˆey  separately from Eq. (4.12) 

for the energy method, Eq. (4.18) for the free vortex theory, Eq. (4.40) for the three 

velocity points method, and Eq. (4.44) for the infinite number velocity points 

method. Eventually, the ratio between the flow depth at end section (ye) and the 

critical depth (yc), eε  is obtained using Eq. (5.37) for each approach. Comparison of 

eε  with respect to the relative slope ( )S for different values of cN  and Ẑ  and the 

theoretical study of Dey (2002) based on the Boussinesq approach and the sharp-

crested weir theory are presented in Figs. 5.20 (a) and (b) for ˆ 0Z = , Figs. 5.21 (a) 

and (b) for ˆ 0.25Z = , and Figs. 5.22 (a) and (b) for ˆ 0.5Z = . As a general trend, it is 

observed that, as the relative slope ( S ) increases, the magnitude of the eε  decreases. 
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Also, based on statistical measuring indices, close agreements can be seen among the 

compared curves within the figure. Note that for infinite number velocity points 

method the value of 100 was used as the upper limit of the series expansion. 

In order to evaluate ˆny , ˆcy , and Frn for the given values of ˆey , S  , and Ẑ  Eqs. 

(5.28), (5.37), (5.38), and (5.41) for the energy method, Eqs. (5.29), (5.37), (5.38), 

and (5.41) for the free vortex theory, Eqs. (5.32), (5.37), (5.38), and (5.41) for the 

three velocity points method, and Eqs. (5.34), (5.37), (5.38), and (5.41) for the 

infinite number velocity points method were solved separately. Then, the ratio 

between the flow depth at end section and the critical depth ( eε ) is obtained using 

Eq. (5.37) for each method in the range of experimental data sets of Sterling and 

Knight (2001) study for ˆ 0 and 0.5Z = . As shown in Figs. 5.23 (a) and (b) and Figs. 

5.24 (a) and (b), the two statistical measuring indices (R2 and MARE) were 

indicating close agreements implying the correctness of the proposed methods. 
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Figure 5.20: Comparison between eε versus S values based on the proposed four 

methods and (a) Dey (2002) by the Boussinesq approach; and (b) Dey (2002) by the 
sharp-crested weir theory of the circular channel cross-section for ˆ 0Z = , D = any 

value, and ˆ0.3 0.8cy≤ ≤  
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Figure 5.21: Comparison between eε  versus S values based on the proposed four 
methods and (a) Dey (2002) by the Boussinesq approach; (b) Dey (2002) by the 

sharp-crested weir approach of the circular channel cross-section for ˆ 0.25Z = , D = 
any value, and ˆ0.1 0.6cy≤ ≤  
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Figure 5.22: Comparison between eε  versus S values based on the proposed four 
methods and (a) Dey (2002) by the Boussinesq approach; (b) Dey (2002) by the 

sharp-crested weir approach of the circular channel cross-section for ˆ 0.5Z = , D = 
any value, and ˆ0.1 0.4cy≤ ≤  
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Figure 5.23: eε  values based on the suggested methods of this study versus (a) eε  

values based on the theoretical study of Dey (1998) using Boussinesq approach; and 
(b) eε  values based on the theoretical study of Ahmad (2012) using sharp-crested 

weir theory in circular channel with ˆ 0Z =  
 
 



 

120 
 

 

 
Figure 5.24: eε  values based on the suggested methods of this study versus (a) eε  

values based on the theoretical study of Dey (2003) using Boussinesq approach; and 
(b) eε  values based on the theoretical study of Ahmed (2005) using sharp-crested 

weir theory in circular channel with ˆ 0.5Z =  
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5.4.4 EDD for Super Critical Flow Regimes 

In super critical flow regimes, since the discharge is dependent on ˆny  and Frn, so it is 

not explicitly possible to estimate the discharge from the given value of the end 

depth measurement only (Eq. (5.36)). On the other hand, it is difficult to determine 

the location of the normal section properly, hence, the known values of the relative 

channel bed slope ( S ) using Eq. (5.41) in the semi-empirical Manning-Strickler 

equation is coupled with the end depth measurements. To overcome this difficulty 

Eqs. (5.28), (5.37), (5.38), and (5.41) for the energy method, Eqs. (5.29), (5.37), 

(5.38), and (5.41) for the free vortex theory, Eqs. (5.32), (5.37), (5.38), and (5.41) for 

the three velocity points method, and Eqs. (5.34), (5.37), (5.38), and (5.41) for the 

infinite number velocity points method were solved, separately. Therefore ˆny , ˆcy , and 

nFr  were calculated for the given values of ˆey , S  , and Ẑ . Then, Eq. (5.35) is used 

to compute the non-dimensional discharge ( Q̂ ) values for each method, separately. 

In order to show the accuracy of the suggested methods, a comparison between the 

computed values of Q̂  of the proposed approached and the experimental 

observations of Sterling and Knight (2001) is listed in Table 5.3 for the energy 

method, Table 5.4 for the free vortex theory, Table 5.5 for the three velocity points 

method, and Table 5.6 for the infinite number velocity points method. As can be 

seen, the computed values of Q̂  have a slight deviation from the observed data sets 

of Sterling and Knight (2001) for the different derivations of the generalized circular 

channel cross-sections. 

To evaluate the better performance of the proposed approaches of this study 

graphically for the circular channel cross-sections ( ˆ 0Z = ), a comparison between 
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the computed values of Q̂  for this study and the theoretical study of  Dey (1998) and 

Ahmad (2012) is presented in Figs. 5.25(a) and (b). Also for the inverted semi-

circular channel cases ( ˆ 0.25Z = ), a comparison between the computed values of Q̂  

for this study using different proposed methods and the theoretical study of Dey 

(2003) and Ahmad (2005) is shown  in Figs. 5.25(a) and (b). As depicted in these 

figures, the two statistical measuring indices (R2 and MARE) revealed that, the 

suggested approaches are in well agreement with the other theoretical studies. 
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Table 5.3: Comparison of observed data of Q̂  by Sterling and Knight (2001) with the 
computed data of Q̂  of the energy method 

Ẑ  ˆey  ˆcy  S  obsQ̂  EnergyQ̂  
0 0.124 0.081 2.242 0.0163 0.014057 
0 0.233 0.155 2.487 0.0565 0.05194 
0 0.332 0.215 2.509 0.1118 0.09932 
0 0.474 0.321 2.347 0.2226 0.215693 
0 0.386 0.236 4.279 0.1501 0.140086 
0 0.495 0.299 4.002 0.2412 0.221051 
0 0.608 0.36 3.548 0.3571 0.310441 
0 0.666 0.397 3.253 0.4264 0.369513 

0.25 0.206 0.149 1.575 0.0865 0.094081 
0.25 0.246 0.175 1.214 0.1138 0.117668 
0.25 0.45 0.325 1.958 0.2984 0.348093 
0.25 0.478 0.345 1.775 0.3296 0.375136 
0.25 0.529 0.38 1.47 0.3911 0.422099 
0.25 0.497 0.357 1.657 0.3477 0.390464 
0.25 0.323 0.232 3.167 0.1753 0.230128 
0.25 0.361 0.261 2.713 0.2092 0.265802 
0.33 0.169 0.124 1.824 0.0673 0.077209 
0.33 0.193 0.144 1.484 0.0825 0.094052 
0.33 0.228 0.172 1.162 0.1064 0.120844 
0.33 0.281 0.213 1.849 0.1477 0.179972 
0.33 0.307 0.227 1.638 0.1694 0.193977 
0.33 0.312 0.234 1.602 0.1737 0.20267 
0.33 0.241 0.175 2.294 0.1162 0.139184 
0.33 0.303 0.22 1.667 0.1661 0.185234 
0.5 0.193 0.143 1.939 0.0847 0.101608 
0.5 0.318 0.24 1.451 0.1824 0.215976 
0.5 0.354 0.269 1.264 0.2171 0.25328 
0.5 0.067 0.041 3.162 0.0172 0.017155 
0.5 0.206 0.121 3.086 0.0934 0.089916 
0.5 0.287 0.164 2.59 0.1553 0.137946 
0.66 0.082 0.049 3.283 0.0236 0.021576 
0.66 0.101 0.065 3.34 0.0321 0.033514 
0.66 0.12 0.069 3.356 0.042 0.036837 
0.66 0.137 0.084 3.343 0.0507 0.050152 
0.66 0.146 0.09 3.326 0.056 0.055921 
0.66 0.154 0.095 3.309 0.0606 0.060938 
0.66 0.168 0.105 3.27 0.0687 0.071611 
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Table 5.4: Comparison of observed data of Q̂  by Sterling and Knight (2001) with the 
computed data of Q̂  of the free vortex theory 

Ẑ  ˆey  ˆcy  S  obsQ̂  Free vortexQ̂  
0 0.124 0.081 2.242 0.0163 0.013503 
0 0.233 0.155 2.487 0.0565 0.050322 
0 0.332 0.215 2.509 0.1118 0.096541 
0 0.474 0.321 2.347 0.2226 0.210217 
0 0.386 0.236 4.279 0.1501 0.139142 
0 0.495 0.299 4.002 0.2412 0.219784 
0 0.608 0.36 3.548 0.3571 0.308632 
0 0.666 0.397 3.253 0.4264 0.367273 

0.25 0.206 0.149 1.575 0.0865 0.093653 
0.25 0.246 0.175 1.214 0.1138 0.11587 
0.25 0.45 0.325 1.958 0.2984 0.3529 
0.25 0.478 0.345 1.775 0.3296 0.37967 
0.25 0.529 0.38 1.47 0.3911 0.42524 
0.25 0.497 0.357 1.657 0.3477 0.394524 
0.25 0.323 0.232 3.167 0.1753 0.234551 
0.25 0.361 0.261 2.713 0.2092 0.270594 
0.33 0.169 0.124 1.824 0.0673 0.077543 
0.33 0.193 0.144 1.484 0.0825 0.093729 
0.33 0.228 0.172 1.162 0.1064 0.119299 
0.33 0.281 0.213 1.849 0.1477 0.181498 
0.33 0.307 0.227 1.638 0.1694 0.194838 
0.33 0.312 0.234 1.602 0.1737 0.203473 
0.33 0.241 0.175 2.294 0.1162 0.141081 
0.33 0.303 0.22 1.667 0.1661 0.186108 
0.5 0.193 0.143 1.939 0.0847 0.103039 
0.5 0.318 0.24 1.451 0.1824 0.219794 
0.5 0.354 0.269 1.264 0.2171 0.257895 
0.5 0.067 0.041 3.162 0.0172 0.017486 
0.5 0.206 0.121 3.086 0.0934 0.091966 
0.5 0.287 0.164 2.59 0.1553 0.141276 
0.66 0.082 0.049 3.283 0.0236 0.022051 
0.66 0.101 0.065 3.34 0.0321 0.034305 
0.66 0.12 0.069 3.356 0.042 0.037722 
0.66 0.137 0.084 3.343 0.0507 0.051437 
0.66 0.146 0.09 3.326 0.056 0.057394 
0.66 0.154 0.095 3.309 0.0606 0.062584 
0.66 0.168 0.105 3.27 0.0687 0.073657 
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Table 5.5: Comparison of observed data of Q̂  by Sterling and Knight (2001) with the 
computed data of Q̂  of the three velocity points method 

Ẑ  ˆey  ˆcy  S  obsQ̂  Three velocity pointsQ̂  
0 0.124 0.081 2.242 0.0163 0.013874 
0 0.233 0.155 2.487 0.0565 0.051717 
0 0.332 0.215 2.509 0.1118 0.099184 
0 0.474 0.321 2.347 0.2226 0.215855 
0 0.386 0.236 4.279 0.1501 0.142169 
0 0.495 0.299 4.002 0.2412 0.224604 
0 0.608 0.36 3.548 0.3571 0.315741 
0 0.666 0.397 3.253 0.4264 0.376087 

0.25 0.206 0.149 1.575 0.0865 0.093788 
0.25 0.246 0.175 1.214 0.1138 0.114154 
0.25 0.45 0.325 1.958 0.2984 0.357336 
0.25 0.478 0.345 1.775 0.3296 0.384097 
0.25 0.529 0.38 1.47 0.3911 0.428393 
0.25 0.497 0.357 1.657 0.3477 0.398662 
0.25 0.323 0.232 3.167 0.1753 0.237318 
0.25 0.361 0.261 2.713 0.2092 0.274016 
0.33 0.169 0.124 1.824 0.0673 0.077996 
0.33 0.193 0.144 1.484 0.0825 0.093547 
0.33 0.228 0.172 1.162 0.1064 0.117023 
0.33 0.281 0.213 1.849 0.1477 0.182963 
0.33 0.307 0.227 1.638 0.1694 0.195772 
0.33 0.312 0.234 1.602 0.1737 0.204321 
0.33 0.241 0.175 2.294 0.1162 0.14259 
0.33 0.303 0.22 1.667 0.1661 0.187079 
0.5 0.193 0.143 1.939 0.0847 0.103804 
0.5 0.318 0.24 1.451 0.1824 0.220449 
0.5 0.354 0.269 1.264 0.2171 0.257377 
0.5 0.067 0.041 3.162 0.0172 0.017663 
0.5 0.206 0.121 3.086 0.0934 0.09288 
0.5 0.287 0.164 2.59 0.1553 0.142721 
0.66 0.082 0.049 3.283 0.0236 0.022263 
0.66 0.101 0.065 3.34 0.0321 0.034624 
0.66 0.12 0.069 3.356 0.042 0.03807 
0.66 0.137 0.084 3.343 0.0507 0.0519 
0.66 0.146 0.09 3.326 0.056 0.057905 
0.66 0.154 0.095 3.309 0.0606 0.063138 
0.66 0.168 0.105 3.27 0.0687 0.0743 
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Table 5.6: Comparison of observed data of Q̂  by Sterling and Knight (2001) with the 
computed data of Q̂  ofr the infinite number velocity points method 

Ẑ  ˆey  ˆcy  S  obsQ̂  Infinite number velocity pointsQ̂  
0 0.124 0.081 2.242 0.0163 0.013706 
0 0.233 0.155 2.487 0.0565 0.051124 
0 0.332 0.215 2.509 0.1118 0.098075 
0 0.474 0.321 2.347 0.2226 0.213468 
0 0.386 0.236 4.279 0.1501 0.140944 
0 0.495 0.299 4.002 0.2412 0.222662 
0 0.608 0.36 3.548 0.3571 0.312898 
0 0.666 0.397 3.253 0.4264 0.37257 

0.25 0.206 0.149 1.575 0.0865 0.094189 
0.25 0.246 0.175 1.214 0.1138 0.114838 
0.25 0.45 0.325 1.958 0.2984 0.357845 
0.25 0.478 0.345 1.775 0.3296 0.384705 
0.25 0.529 0.38 1.47 0.3911 0.429186 
0.25 0.497 0.357 1.657 0.3477 0.399343 
0.25 0.323 0.232 3.167 0.1753 0.237482 
0.25 0.361 0.261 2.713 0.2092 0.27426 
0.33 0.169 0.124 1.824 0.0673 0.078295 
0.33 0.193 0.144 1.484 0.0825 0.094015 
0.33 0.228 0.172 1.162 0.1064 0.117805 
0.33 0.281 0.213 1.849 0.1477 0.183526 
0.33 0.307 0.227 1.638 0.1694 0.196477 
0.33 0.312 0.234 1.602 0.1737 0.205068 
0.33 0.241 0.175 2.294 0.1162 0.142928 
0.33 0.303 0.22 1.667 0.1661 0.187747 
0.5 0.193 0.143 1.939 0.0847 0.104179 
0.5 0.318 0.24 1.451 0.1824 0.221378 
0.5 0.354 0.269 1.264 0.2171 0.258492 
0.5 0.067 0.041 3.162 0.0172 0.0177 
0.5 0.206 0.121 3.086 0.0934 0.093058 
0.5 0.287 0.164 2.59 0.1553 0.143051 
0.66 0.082 0.049 3.283 0.0236 0.022308 
0.66 0.101 0.065 3.34 0.0321 0.034692 
0.66 0.12 0.069 3.356 0.042 0.038144 
0.66 0.137 0.084 3.343 0.0507 0.051999 
0.66 0.146 0.09 3.326 0.056 0.058017 
0.66 0.154 0.095 3.309 0.0606 0.063259 
0.66 0.168 0.105 3.27 0.0687 0.074444 
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Figure 5.25: Comparison between the computed non-dimensional discharges ˆ( )Q of 
the suggested methods of this study with (a) the theoretical Q̂  results of Dey (1998); 

and (b) the theoretical Q̂  results of Ahmad (2012) for the circular channel cross-
section at super critical flow regime with ˆ 0Z =  
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Figure 5.26: Comparison between the computed non-dimensional discharges ˆ( )Q of 
the suggested methods of this study with (a) the theoretical Q̂  results of Dey (2003); 

and (b) the theoretical Q̂  results of Ahmad (2005) for the circular channel cross-
section at super critical flow regime with ˆ 0.5Z =  
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5.5 Direct Discharge Prediction 

As discussed earlier, the free over-fall can be used as a flow measuring hydraulic 

structure in open channels. Hence, in this study, direct equations of the discharge for 

the different channel cross-sections in both sub- and super critical flow regimes were 

computed and presented mathematically based on the end depth and the channel 

geometric characteristics. 

5.5.1 Sub-critical Flow Regimes  

Since one of the main aims of this study is to estimate the discharge from the known 

end depth, the direct discharge equations in terms of the end depth values were 

proposed for flows at sub-critical regimes. 

5.5.1.1 Generalized Trapezoidal Channel Cross-sections    

Inserting the calculated EDR of Eq. (5.13) for the energy method, Eq. (4.17) where 

1nFr = for the free vortex theory, Eq. (5.15) for three velocity points method, and 

Eq. (5.18) for the infinite number velocity points method into Eq. (5.22) and 

incorporating the corrected values of η3, η4 and η5=0 for each cross-section, EDD 

values were computed for the different channel cross-sections at sub-critical regimes. 

Using the curve-fitting technique, non-linear equations were established for the 

engineers in practice for the trapezoidal, the semi-trapezoidal, the inverted triangular, 

and the semi-inverted triangular channel cross-sections and tabulated in Table 5.7 

based on the different theoretical methods of this study. To evaluate their accuracies, 

based on the exact values of Q*, the correlation coefficient (R2) and the root mean 

square errors (RMSE) measures were determined as detailed. Both indices are 

indicating small deviation for the proposed dimensionless discharge (Q*) equation, 

implying highly acceptable level. 
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5.5.1.2 Generalized Circular Channel Cross-sections 

Inserting the calculated EDR of Eq. (5.28) for the energy method, Eq. (5.29) for the 

free vortex theory, Eq. (5.32) for three velocity points method, and Eq. (5.34) for the 

infinite number velocity points method into Eq. (5.36) for the different values of 

ˆ 0,  0.25, 0.5, and 0.66Z = , EDD values were computed for the different channel 

cross-sections at sub-critical regime. Using the curve-fitting technique, a non-linear 

equation was established for the engineers in practice in generalized circular channel 

cross-sections as listed in Table 5.7 for different theoretical methods of this study. To 

evaluate theirs accuracies, based on the exact values of Q̂ , R2 and RMSE measures 

were determined as detailed. Both indices are indicating small deviation for the 

proposed dimensionless discharge ( Q̂ ) equation, implying highly acceptable level.



 

 

Table 5.7: Equation of discharge (Q) based on the end depth (ye) at sub-critical flow regime for different channel cross-sections using different 
theoretical methods 

Cross-section Energy Free vortex Three velocity points n-velocity points 
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 R2 = 1, RMSE = 5.87*10-4 
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    −        

  

R2 = 1, RMSE = 9.38*10-4 
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     =

    −        

 R2 = 1, RMSE = 1.88*10-5 

1.52

0.5 2.5

1.5 0.5

1.38 1.49
2 2

1 2.446
2 2

e e

e

my my
B Bg BQ

m my
B

    −    
     =

    −        

 R2 = 1, RMSE = 5.87*10-4 

Circular ( ˆ 0Z = ) 
( )1.2060.5 2.5 1 0.9105ˆ ˆ3.42sin 2.407e eQ g D y y−= −   

R2 = 0.999, RMSE = 7.29*10-3 
( )1.2050.5 2.5 1 0.9105ˆ ˆ3.599sin 2.625e eQ g D y y−= −  

R2 = 0.999, RMSE = 8.31*10-3 
( )1.2050.5 2.5 1 0.9104ˆ ˆ3.645sin 2.681e eQ g D y y−= −  

R2 = 0.999, RMSE = 6.91*10-3 
( )1.2050.5 2.5 1 0.910ˆ ˆ3.517sin 2.571e eQ g D y y−= −

R2 = 0.999, RMSE = 4.35*10-3 

Circular ( ˆ 0.25Z = ) 
( )1.310.5 2.5 1 0.95ˆ ˆ4.275sin 2.923e eQ g D y y−= −  

R2 = 0.999, RMSE = 4.81*10-3 
( )1.320.5 2.5 1 0.945ˆ ˆ4.673sin 3.292e eQ g D y y−= −  

R2 = 0.999, RMSE = 5.23*10-3 
( )1.350.5 2.5 1 0.94ˆ ˆ4.519sin 3.13e eQ g D y y−= −  

R2 = 0.999, RMSE = 5.80*10-3 
( )1.340.5 2.5 1 0.94ˆ ˆ4.575sin 3.197e eQ g D y y−= −

R2 = 0.999, RMSE = 5.45*10-3 

Circular ( ˆ 0.5Z = ) 
( )1.30.5 2.5 1 2.3ˆ ˆ1.012sin 1.365e eQ g D y y−= +   

R2 = 0.999, RMSE = 9.90*10-4 
( )1.290.5 2.5 1 2.34ˆ ˆ0.9479sin 1.817e eQ g D y y−= +  

R2 = 0.999, RMSE = 1.55*10-3 
( )1.3290.5 2.5 1 2.34ˆ ˆ0.987sin 1.684e eQ g D y y−= +  

R2 = 0.999, RMSE = 3.18*10-3 
( )1.3360.5 2.5 1 2.34ˆ ˆ1.01sin 1.603e eQ g D y y−= +  

R2 = 0.999, RMSE = 1.77*10-3 

Circular ( ˆ 0.66Z = ) 
( )1.3270.5 2.5 1 2.35ˆ ˆ0.98sin 1.678e eQ g D y y−= +  

R2 = 0.999, RMSE = 6.50*10-4 
( )1.330.5 2.5 1 2.526ˆ ˆ0.98sin 2.417e eQ g D y y−= +  

R2 = 0.999, RMSE = 3.30*10-4 
( )1.330.5 2.5 1 2.526ˆ ˆ0.98sin 2.417e eQ g D y y−= +  

R2 = 0.999, RMSE = 3.85*10-4 
( )1.340.5 2.5 1 2.547ˆ ˆ0.977sin 2.396e eQ g D y y−= +

R2 = 0.999, RMSE = 3.50*10-4 
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5.5.2 Super Critical Flow Regimes  

Since part of the outcomes of this study is to obtain a direct discharge solution for the 

different channel cross-sections as detailed earlier, other than the flow depth at the 

end section (ye), the upstream Froude number (Frn) is also an effective parameter for 

the discharge calculations in super critical flow regime. Since Frn can be determined 

with the help of the longitudinal channel bed slope S, the Mannings-Strickler 

channels bed friction coefficient (n), and one of the parameters among the side 

channels vertical to horizontal ratio (m), the channel bed width (B), the channels top 

width at the end depth (Te), (whichever is appropriate for parabolic cross-section), 

and the channel diameter (D) is as well introduced as an influencing parameter for 

generating the empirical discharge relationships.  

To consider the roughness effect along the channel wetted perimeter, Manning’s 

roughness coefficient (n) was selected. Hence, application of Manning’s equation for 

the upstream normal section in exponential, generalized trapezoidal, and the 

generalized circular channel cross-sections gives the non-dimensional discharge (Q*) 

relationships (rectangular (Eq. (5.42)), parabolic (Eq. (5.43)), triangular (Eq. (5.44)), 

trapezoidal and inverted triangular (Eq. (5.45)), semi-trapezoidal and semi-inverted 

triangular (Eq. (5.46)) and generalized circular (Eq. (5.47)) channel cross-sections) 

as follows: 

1 2 5 3
*

2 32

1

                                                                                (5.42)
21

n
rect

n

ySQ
n g y

η

 
=  

  
+ 

 
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1 2 13 6
*

2 32
2 2

                                (5.43)
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                                                                                                (5.44)
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( )5
5 31 2 21 3

* 3
,  2 32 1 3

24
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( 1)
                                                                                      (5.45)
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ˆ ˆ( ) ( )1                                               (5.47)
4 16 ˆ ˆ ˆ ˆ2 cos (1 2 ) cos (1 )

n
gen cir

n

I ZSDQ
n g Z Z I Z

ϕ ϕ

− −

− 
=  

   − + − − −  
 

Note that, for empirical similarity with Mannings-Strickler equation, the root squared 

of this longitudinal channel bed slope ( )S is selected. 

( , ,  ,  ,  ,  ,  )                                                                             (5.48)e eQ Q y S n m B T D=
    

For the exponential and the generalized trapezoidal channel cross-sections, one of the 

empirical equations suggested by Sharifi et al. (2009) was selected and modified due 

to above mentioned reasons so as to obtain these empirically expressed direct 

discharge relationships: 
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32
1                                                                                             (5.49)CC Se

e
BT mQ C e y

n
=

 

However, for the generalized circular channel cross-sections, the suggested equation 

suggested by Dey (2003) was selected in order to generate the direct discharge 

relationships: 

5 6

1 3
C

4 2ˆ , =                                                                                      (5.50)C
e

SDQ C y
n g

z z=

 

5.5.2.1 Exponential Channel Cross-section  

5.5.2.1.1 Rectangular Channel Cross-sections  

Eqs. (4.16), (5.1), and (5.42) for the free vortex theory, Eqs. (4.36), (5.1), and (5.42) 

for the three velocity points method, and Eqs. (4.42), (5.1), and (5.42) for the infinite 

number velocity points method, are solved simultaneously to obtain the direct 

discharge estimation for rectangular channel cross-sections in super critical flow 

regime by inserting 2 1η = . The suggested equations for the direct discharge prediction 

based on the different theoretical methods of this study are tabulated in Table 5.8 

with the statistical measuring indices (R2 and RMSE). To be able to obtain empirical 

direct solutions of discharge in the suggested form of Eq. (5.49), a total of 1260 

relevant data sets, all satisfying 1nFr > , were mathematically generated separately. 

The range of applicability of the channel parameters (S, ye, n, B) and the discharge 

(Q) are also detailed in Table 5.8. 

5.5.2.1.2 Parabolic Channel Cross-sections  

In a similar way, Eqs. (4.16), (5.1), and (5.43) for the free vortex theory, Eqs. (4.36), 

(5.1), and (5.43) for the three velocity points method, and Eqs. (4.42), (5.1), and 

(5.43) for the infinite number velocity points method, are solved simultaneously to 
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obtain the direct discharge estimation for parabolic channel cross-sections in super 

critical flow regimes by inserting 2 1.5η = . The suggested equations for the direct 

discharge prediction based on the different theoretical methods of this study are 

tabulated in Table 5.8 with the statistical measuring indices (R2 and RMSE). To be 

able to obtain empirical direct solutions of discharge in the suggested form of Eq. 

(5.49), a total of 2064 relevant data sets, all satisfying 1nFr > , were mathematically 

generated separately. The range of applicability of the channel parameters (S, ye, n, 

Te) and the discharge (Q) are also detailed in Table 5.8. 

5.5.2.1.3 Triangular Channel Cross-sections  

Similarly, Eqs. (4.16), (5.1), and (5.44) for the free vortex theory, Eqs. (4.36), (5.1), 

and (5.44) for the three velocity points method, and Eqs. (4.42), (5.1), and (5.44) for 

the infinite number velocity points method, are solved simultaneously to obtain the 

direct discharge estimation for triangular channel cross-sections in super critical flow 

regimes by inserting 2 2η = . The suggested equations for the direct discharge 

prediction based on the different theoretical methods of this study are tabulated in 

Table 5.8 with the statistical measuring indices (R2 and RMSE). To be able to create 

empirical direct solutions of discharge in the suggested form of Eq. (5.49), a total of 

1596 relevant data sets, all satisfying 1nFr > , were created separately. The range of 

applicability of the channel parameters (S, ye, n, m) and the discharge (Q) are also 

detailed in Table 5.8. 

5.5.2.2 Generalized Trapezoidal Channel Cross-section  

5.5.2.2.1 Trapezoidal and Inverted Triangular Channel Cross-sections  

Eqs. (4.9), (5.27), and (5.45) for the energy method, Eqs. (4.17), (5.27), and (5.45) 

for the free vortex theory, Eqs. (4.37), (5.27), and (5.45) for the three velocity points 

method, and Eqs. (4.49), (5.27), and (5.45)  for the infinite number velocity points 
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method, are solved simultaneously to obtain the direct discharge estimation in a 

supercritical flow regime by inserting 3 Bη = , 4 mη = , and 5 0η = for the trapezoidal 

and 3 Bη = , 4 mη = , and 5 1η =  for the inverted-triangular channel cross-sections. The 

suggested equations for the direct discharge prediction based on the different 

theoretical methods of this study are tabulated in Table 5.8 for the trapezoidal and 

inverted-triangular channel cross-sections, with the statistical measuring indices (R2 

and RMSE). To be able to obtain empirical direct solutions of discharge in the 

suggested form of Eq. (5.49), a total of 864 relevant data sets for the trapezoidal and 

852 relevant data sets for the inverted-triangular channel cross-sections, all satisfying

1nFr > , were mathematically generated separately. The range of applicability of the 

channel parameters (S, ye, n, m, B) and the discharge (Q) are also detailed in Table 

5.8. 

5.5.2.2.2 Semi-trapezoidal and Semi-inverted Triangular Channel Cross-

sections  

Eqs. (4.9), (5.27), and (5.46) for the energy method, Eqs. (4.17), (5.27), and (5.46) 

for the free vortex theory, Eqs. (4.37), (5.27), and (5.46) for the three velocity points 

method, and Eqs. (4.49), (5.27), and (5.46) for the infinite number velocity points 

method, are solved simultaneously to obtain the direct discharge estimation in super 

critical flow regimes by inserting 3 Bη = , 4 2mη = , and 5 0η =  for the semi-trapezoidal 

and 3 Bη = , 4 2mη = , and 5 1η =  for the semi-inverted-triangular channel cross-

sections. The suggested equations for the direct discharge prediction based on the 

different theoretical methods of this study are tabulated in Table 5.8 for the semi 

trapezoidal and semi inverted-triangular channel cross-sections, with the statistical 

measuring indices (R2 and RMSE). To be able to obtain empirical direct solutions of 

discharge in the suggested form of Eq. (5.49), a total of 840 relevant data sets for the 
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semi-trapezoidal and 852 relevant data sets for the semi-inverted triangular channel 

cross-sections, all satisfying 1nFr > , were mathematically generated separately. The 

range of applicability of the channel parameters (S, ye, n, m, B) and the discharge (Q) 

are also detailed in Table 5.8. 

5.5.2.3 Generalized Circular Channel Cross-section  

Eqs. (4.12), (5.35), and (5.47) for the energy method, Eqs. (4.18), (5.35), and (5.47) 

for the free vortex theory, Eqs. (4.40), (5.35), and (5.47) for the three velocity points 

method, and Eqs. (4.44), (5.35), and (5.47) for the infinite number velocity points 

method, are solved simultaneously to obtain the direct discharge estimation in super 

critical flow regimes by inserting ˆ 0,  0.25,  0.5,  and 0.66Z =  for the generalized circular 

channel cross-sections. The suggested equations for the direct discharge prediction 

based on the different theoretical methods of this study are tabulated in Table8 5.8 

with the statistical measuring indices (R2 and RMSE). To be able to obtain empirical 

direct solutions of discharge in the suggested form of Eq. (5.50), a total of 233 

relevant data sets for the circular channel ( ˆ 0Z = ), a total of 203 relevant data sets for 

the generalized circular channel where ˆ 0.25Z = , a total of 156 relevant data sets for 

the inverted semi-circular channel ( ˆ 0.5Z = ), and a total of 93 relevant data sets for 

the generalized circular channel where ˆ 0.66Z = , all satisfying 1nFr > , were 

mathematically generated separately. The range of applicability of the channel 

parameters (
1 3

2ˆ  and e cir
SDy
n g

ζ = ) and the non-dimensional discharge ( Q̂ ) are also 

detailed in Table 5.8. 



 

 

 
Table 5.8: Equation of discharge (Q) based on the end depth (ye) at super critical flow regime for different channel cross-sections using different theoretical methods with the range of applicability of the 
effective parameters 

Cross-section Energy Free vortex Three velocity points n-velocity points 

Rectangular 

 
- 

2.504 1.250.02874 S
e

BQ e y
n

=  

R2 = 0.998, RMSE = 5.64*10-5 

2.498 1.2490.0288 S
e

BQ e y
n

=  

R2 = 0.998, RMSE = 5.63*10-5 

2.495 1.2490.02887 S
e

BQ e y
n

=  

R2 = 0.998, RMSE = 5.62*10-2 
                                                                                                                        B (m)              ye (m)                        n                                S                               Q (m3/s) 

0.1 - 0.2      0.055 - 0.195         0.010 - 0.013       0.00779 - 0.16046        0.01566 - 0.09396 

Parabolic 

 
- 

3.858 1.6160.04211 Se
e

TQ e y
n

=  

R2 = 0.999, RMSE = 1.24*10-5 

3.82 1.6160.04276 Se
e

TQ e y
n

=  

R2 = 0.999, RMSE = 1.19*10-5 

3.833 1.6160.04253 Se
e

TQ e y
n

=  

R2 = 0.999, RMSE = 1.77*10-5 
                                                                                                                          Te (m)                ye (m)                   n                             S                               Q (m3/s) 

0.237 – 1.039     0.028 - 0.135   0.010 - 0.013    0.007164 - 0.169736     0.008859 - 0.236237 

Triangular 

 
- 

4.055 2.6220.04679 S
e

mQ e y
n

=  

R2 = 0.999, RMSE = 4.49*10-6 

3.985 2.6230.04847 S
e

mQ e y
n

=  

R2 = 0.9989, RMSE = 7.81*10-6 

4.021 2.6220.04747 S
e

mQ e y
n

=  

R2 = 0.999, RMSE = 5.52*10-6 
                                                                                                                    m                ye (m)                         n                                    S                                   Q (m3/s) 

1 - 2     0.0525 - 0.1500         0.010 - 0.013           0.003941 - 0.161915       0.006264 - 0.093963 

Trapezoidal 

4.161 1.960.1627 S
e

BmQ e y
n

=  

R2 = 0.999, RMSE = 8.41*10-4 

4.255 1.9590.1559 S
e

BmQ e y
n

=  

R2 = 0.999, RMSE = 8.70*10-4 

4.213 1.960.1591 S
e

BmQ e y
n

=  

R2 = 0.999, RMSE = 8.68*10-4 

4.231 1.9610.1582 S
e

BmQ e y
n

=  

R2 = 0.999, RMSE = 1.00*10-3 
                                                                                                                      B (m)          m                ye (m)                     n                           S                         Q (m3/s) 

0.1 -  0.2      1 - 2     0.0195 - 0.4230     0.010 - 0.013   0.00371 -  0.34607      0.0070 -  0.0926 

Semi-trapezoidal 

3.848 1.930.1095 S
e

BmQ e y
n

=  

R2 = 0.999, RMSE = 4.91*10-4 

3.99 1.930.1053 S
e

BmQ e y
n

=  

R2 = 0.999, RMSE = 5.03*10-4 

3.99 1.930.1053 S
e

BmQ e y
n

=  

R2 = 0.999, RMSE = 8.03*10-4 

3.945 1.9330.1073 S
e

BmQ e y
n

=  

R2 = 0.999, RMSE = 8.04*10-4 
                                                                                                                        B (m)        m              ye (m)                    n                          S                          Q (m3/s) 

0.1 -  0.3    1 - 2     0.039 - 0.846     0.010 - 0.013     0.0044 - 0.3446      0.00198 -  2.62020 

Inverted triangular 

2.072 1.7820.1504 S
e

BmQ e y
n

=  

R2 = 0.999, RMSE = 5.94*10-5 

2.054 1.7840.1547 S
e

BmQ e y
n

=  

R2 = 0.999, RMSE = 6.18*10-5 

2.054 1.7840.1546 S
e

BmQ e y
n

=  

R2 = 0.999, RMSE = 5.95*10-5 

2.053 1.7840.1549 S
e

BmQ e y
n

=  

R2 = 0.999, RMSE = 6.19*10-5 
                                                                                                                     B (m)             m                    ye (m)                    n                        S                         Q (m3/s) 

0.1 -  0.2      0.5 – 1.0    0.0125 - 0.1360    0.010 - 0.013     0.026 -  0.350     0.00198 -  0.06339 

Semi-inverted 
triangular 

1.906 1.710.1029 S
e

BmQ e y
n

=  

R2 = 0.998, RMSE = 2.46*10-4 

1.88 1.7070.1048 S
e

BmQ e y
n

=  

R2 = 0.998, RMSE = 2.46*10-4 

1.881 1.7060.1046 S
e

BmQ e y
n

=  

R2 = 0.999, RMSE = 1.69*10-4 

1.863 1.710.1062 S
e

BmQ e y
n

=  

R2 = 0.999, RMSE = 1.94*10-4 
                                                                                                                  B (m)             m                ye (m)                    n                               S                              Q (m3/s) 

0.1 -  0.2      0.5 – 1.0    0.025 - 0.272     0.010 - 0.013     0.030416 -  0.370399      0.0056 -  0.1793 

Circular ( ˆ 0Z = ) 

1.832 0.4748ˆ ˆ0.6358 e cirQ y ζ=  
R2 = 0.999, RMSE = 2.37*10-3 

1.83 0.4732ˆ ˆ0.6413 e cirQ y ζ=  
R2 = 0.999, RMSE = 2.19*10-3 

1.83 0.4684ˆ ˆ0.657 e cirQ y ζ=  
R2 = 0.999, RMSE = 2.34*10-3 

1.83 0.4712ˆ ˆ0.6482 e cirQ y ζ=  
R2 = 0.999, RMSE = 2.18*10-3 

                                                                                                                             ˆey                                                                 cirζ                                                  Q̂  

0.082 – 0.740                                            2.47389 – 544.85230                               0.1 – 1.0 

Circular ( ˆ 0.25Z = ) 

1.408 0.466ˆ ˆ0.6169 e cirQ y ζ=  
R2 = 1, RMSE = 1.93*10-3 

1.407 0.4614ˆ ˆ0.6336 e cirQ y ζ=  
R2 = 0.999, RMSE = 2.36*10-3 

1.405 0.4596ˆ ˆ0.6377 e cirQ y ζ=  
R2 = 0.999, RMSE = 2.43*10-3 

1.405 0.4595ˆ ˆ0.6377 e cirQ y ζ=  
R2 = 0.999, RMSE = 2.43*10-3 

                                                                                                                            ˆey                                                                  cirζ                                                   Q̂  

0.043 – 0.580                                             2.70507 – 594.90100                               0.1 – 1.0 

Circular ( ˆ 0.5Z = ) 

1.229 0.4811ˆ ˆ0.4145 e cirQ y ζ=  
R2 = 0.999, RMSE = 2.67*10-3 

1.234 0.4774ˆ ˆ0.4284 e cirQ y ζ=  
R2 = 0.999, RMSE = 3.09*10-3 

1.221 0.4733ˆ ˆ0.4294 e cirQ y ζ=  
R2 = 0.999, RMSE = 2.77*10-3 

1.221 0.4731ˆ ˆ0.43 e cirQ y ζ=  
R2 = 0.999, RMSE = 3.12*10-3 

                                                                                                                            ˆey                                                               cirζ                                                       Q̂  

0.040 – 0.430                                             3.32946 – 579.72720                                   0.1 – 1.0 

Circular ( ˆ 0.66Z = ) 

1.281 0.4396ˆ ˆ0.4264 e cirQ y ζ=  
R2 = 0.986, RMSE = 0.015 

1.264 0.4226ˆ ˆ0.4424 e cirQ y ζ=  
R2 = 0..986, RMSE = 0.015 

1.254 0.418ˆ ˆ0.4425 e cirQ y ζ=  
R2 = 0.986, RMSE = 0.015 

1.264 0.4212ˆ ˆ0.4461 e cirQ y ζ=  
R2 = 0.986, RMSE = 0.015 

                                                                                                                           ˆey                                                                 cirζ                                                     Q̂  

0.030 – 0.240                                             4.92487 – 581.20970                               0.06 – 0.21 
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Chapter 6 

6 CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion  

The flow upstream of a free over-fall has been theoretically investigated to compute 

the end depth ratio (EDR) and the end depth discharge (EDD) relationships of the 

exponential channel cross-sections (rectangular, parabolic, and triangular), the 

generalized trapezoidal channel cross-sections (rectangular, triangular, trapezoidal, 

inverted triangular, semi-trapezoidal, and semi-inverted triangular), and the 

generalized circular channel cross-sections (with and without horizontal flat base 

with different elevations) in both sub- and super critical flow regimes. 

Four different theoretical methods were used to compute the EDR relationships for 

the above-mentioned channel cross-sections including two new suggested 

approaches as: 

1. Energy method 

2. Free vortex theory 

3. Three velocity points method (suggested) 

4. Infinite velocity points method (suggested). 

The first method was based on Anderson’s (1967) work, where the energy equation 

has been used to obtain the EDR and the EDD relationships of the different channel 

cross-sections for both sub- and super critical flow regimes. This approach eliminates 
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the need of an experimental determination of the pressure coefficient at the end 

section (brink), since the pressure effect at the end section was considered based on 

the assumption of the formulation of this method. 

In the second method, the momentum equation has been coupled with the free vortex 

theory to compute the EDR relationships from which the EDD values were 

determined. This approach also eliminates the need of the pressure coefficient at the 

end section (brink) that should be determined experimentally, since the pressure 

coefficient at the end section was incorporated into the momentum equation based on 

the suggested theory. 

In the third method, the energy equation over the control volume between the 

upstream and the downstream sections has been utilized in order to obtain the 

velocity values for three different depths at the end section (at the top, at the 

geometric center and at the bottom). Subsequently, the continuity equation and the 

definition of the upstream Froude number were used to compute the EDR 

relationships for the different channel cross-section in both flow regimes. Finally the 

EDD relationships were calculated based on the relevant EDR values for each cross-

section in both flow regimes. This approach eliminates the need of an empirical 

pressure coefficient at the brink, since the continuity equation was used to compute 

the EDR and the EDD relationships. 

In the fourth method, by expanding the three velocity points method, the velocities 

were computed for infinite depths at the end section. Afterward, using the continuity 

equation and the upstream Froude number, the EDR relationships were obtained for 

the above-mentioned channel cross-sections. This approach also eliminates the need 
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of an empirical pressure coefficient at the brink, since the continuity equation was 

used to compute the EDR and the EDD relationships. 

In this chapter, the obtained relationships by different methods in both sub- and super 

critical flow regimes are yielding: 

1. the EDR values of the exponential channel cross-sections are constant for 

sub-critical flow regimes.  

2. for generalized trapezoidal channel cross-sections, even when the flow is in 

sub-critical regime, the EDR value cannot be expressed as a constant value 

due to the channel characteristics and in fact, varies within the range of lower 

limit (implying rectangular channel cross-sections) and the upper limit 

(implying triangular channel cross-sections). 

3. for the generalized circular channel cross-sections, as the height of the flat 

base increases, the EDR value decreases in sub-critical flow regimes (Figs. 

5.18 (a), (b), (c), (d), and (e)). 

4. the EDR value for super critical flow regimes is a function of the relative 

slope ( cS S ) and the channel characteristics parameters. In super critical 

flow regimes, for any channel cross-section, there is no single (constant) 

value, since the EDR value changes with the increase in the longitudinal 

channel bed slope (S). 

5. in super critical flow regimes, due to the lack of the critical depth occurrence 

within the studied control volume of the approaching flow, the water depth at 

the brink has been correlated to the longitudinal channel bed slope and the 

channel bed roughness through the semi-empirical Manning’s equation. 
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Hence, an explicit equation for discharge cannot be defined for super critical 

flow regimes. 

Furthermore, as one of the outcome of this study, empirical equations were generated 

mathematically for the prediction of discharges from the known values of the end 

depth and the geometric characteristics of the channel cross-sections for different 

channel cross-sections in both flow regimes. In addition to the benefit of accurately 

predicting the flow discharge directly from a known value of the water depth at the 

brink, the suggested empirical equations of the discharges (Q) are also simple.  

The results of this study were verified by comparing the well-known, the widely used 

and the relevant experimental and theoretical studies. The comparisons of the 

analytical approaches with the experimental data and the other relevant theoretical 

studies were examined through widely used statistical measuring indices (R2 and 

RMSE). The verifications of solutions of all suggested approaches have presented 

highly satisfactory results with the relevant theoretical studies and a range of 

acceptable level with the available experimental data set in both flow regimes. The 

agreement between the suggested methods and the observed values of different 

researchers enhances the utility and the validity of the suggested approaches. 

6.2 Recommendations for Future Studies 

Although large number of studies theoretically and experimentally have been done 

on free over-fall with different channel cross-sections, and all the obtained results 

improve the misunderstandings characteristics of the flow on the free over-fall, there 

are some researches remain untouched. Hence, I am suggesting additional works that 

can be done to enlighten untouched topics: 
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1. measuring the appropriate pressure coefficients experimentally for a wide 

variety of cross sectional shapes. 

2. analyzing the free over-fall in compound channel in both sub- and super 

critical flow regimes. 

3. analyzing the free over-fall in composite channel beds for the rectangular and 

the triangular cross-sectional shapes in order to investigate the effect of 

Manning’s roughness coefficient. 

4. establishing the EDR and EDD relationships for the rounded bottom 

triangular, rounded corner rectangular, oval, and horseshoe channel cross-

sections in both sub- and super critical flow regimes. 

5. investigating the inclination of the water surface profile at the vicinity of the 

brink for different channel cross-sections in both sub- and super critical flow 

regimes.  
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Appendix A: The velocity head correction coefficient (Cv) 

Applying the energy equation by considering the local energy loss due to the 

streamline curvature at the vicinity of the brink, over the control volume between the 

upstream (critical or normal) section and the downstream (brink) section, gives: 

2 2

( )                                                                                (A-1)
2 2

e e
n p e

v kvH C y y
g g

= − + +

( )1 2 ( )                                                                          (A - 2)
1e n p ev g H C y y

k
= − −

+
1                                                                                                               (A -3)

1vC
k

=
+

 

where 

y = vertical coordinate measured from the channel bottom. 
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Appendix B: Solution of three velocity points method for the 

exponential channel cross-sections 

Applying the continuity equation for three different locations at the end section 

gives: 

+ + = +                                                                    (B-1)
2 2

et ec ec eb
et-ec ec-eb

v v v vQ A A    

By substituting the velocity values at these three different locations, one obtains: 

2 ( )+ 2 ( ) 2 ( )+ 2
 = +   

2 2
                                                                                                                               (B-2)

n n n n n n n n n
et-ec ec-eb

g H y g H y y g H y y gH
Q A A   

− − + − +

      

Based on the characteristics of the exponential channel cross-section the following 

equations can be generated as: 

                                                                                      (B-3)
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                                                                                                              (B-6)
1

n
n

2

yy
η

=
+

 

So, by substituting Eqs. (B-3), (B-4), (B-5), and (B-6) into Eq. (B-2), one can get: 

2 2

2 2

2 + 2
2 2 1

 = +
2

2 2
2 1 2
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   
+ + +      +   

      

By the definition of the upstream Froude number at the upstream normal section for 

the exponential channel cross-sections, the following equation for the discharge is 

obtained: 

0.50.5

0.5                                                                                        (B-8)
21 n

n
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g yQ =  Fr
ηη

η

+
 

By equating Eqs. (B-7) and (B-8), the following equation for the EDR of the 

exponential channel cross-section is computed as: 
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Appendix C: Solution of three velocity points method for the 

generalized trapezoidal channel cross-sections 

Applying the continuity equation for three different locations at the end section 

gives: 

+ + = +                                                                    (C-1)
2 2

et ec ec eb
et-ec ec-eb

v v v vQ A A    

By substituting the velocity values at these three different locations, one obtains: 

2 ( )+ 2 ( ) 2 ( )+ 2
 = +   

2 2
                                                                                                                               (C-2)

n n n n n n n n n
et-ec ec-eb

g H y g H y y g H y y gH
Q A A   

− − + − +

      

Based on the characteristics of the generalized trapezoidal channel cross-section the 

following equations can be generated as: 
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23 2( 1)                                                                                      (C-6)
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So, by substituting Eqs. (C-3), (C-4), (C-5), and (C-6) into Eq. (C-2), one can get: 
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     
    

           

By the definition of the upstream Froude number at the upstream normal section for 

the generalized trapezoidal channel cross-sections, the following equation for the 

discharge is obtained: 

1.50.5 2
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By equating Eqs. (C-7) and (C-8), the following equation for the EDR of the 

generalized trapezoidal channel cross-section is computed as: 
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Appendix D: Solution of three velocity points method for the 

generalized circular channel cross-sections 

Applying the continuity equation for three different locations at the end section 

gives: 

+ + = +                                                                    (D-1)
2 2

et ec ec eb
et-ec ec-eb

v v v vQ A A    

By substituting the velocity values at these three different locations, one obtains: 

2 ( )+ 2 ( ) 2 ( )+ 2
 = +   

2 2
                                                                                                                               (D-2)

n n n n n n n n n
et-ec ec-eb

g H y g H y y g H y y gH
Q A A   

− − + − +

 

Based on the characteristics of the generalized trapezoidal channel cross-section the 

following equations can be generated as: 

( )
2

ˆ ˆˆ( ) ( )                                                                            (D-3)
4ec-eb e e

DA  = I y Zϕ ϕ− −  

( ) ( )
2 2

ˆ ˆ ˆ ˆˆ( ) ( ) ( ) ( )                                            (D-4)
4 4et-ec e e e

D DA I Z I y Zϕ ϕ ϕ ϕ= − − − −

 

( )
( )

22 2

0.52

ˆ ˆ( ) ( )
                       (D-5)

2 2 16 ˆ ˆ
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n n n n n

n
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I Z Frv A Fr DH y y y y
g T I I
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n

Z Z I I
y I D

I Zϕ ϕ
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So, by substituting Eqs. (D-3), (D-4), (D-5), and (D-6) into Eq. (D-2), one can get: 

( )
( )

( )
( )

( )
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2
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2
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−

−( )
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                 (D-7)
c-eb 

                                                                                                               
           

By the definition of the upstream Froude number at the upstream normal section for 

the generalized circular channel cross-sections, the following equation for the 

discharge is obtained: 
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By equating Eqs. (D-7) and (D-8), the following equation for the EDR of the 

generalized circular channel cross-section is computed as: 

( ) ( ) ( )
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( ) ( )

2 2 2 1.5 2 1.5

2 0.5 2 0.5

2

2 0.5

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )1 8ˆ
ˆ ˆ ˆ ˆ ˆ ˆ2 316( ) 16( ) ( ) ( )

ˆ ˆ ˆ. ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
ˆ ˆ ˆ16( )

n n n n fb n n
n

n n n n n

e e e

n n n n
n

n n

I Z Fr I Z Fr Z Z I I
I

I I I I I Z

I I y

I Z Fr I Z Fr
y

I I

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ

  − − − − −  + + − −  − − −   

− − +

− −
+ +

−

( )

( ) ( )

2 2 1.5 2 1.5

2 0.5

1.5

2 0.25

ˆ ˆ ˆ ˆ( ) ( )1 8ˆ
ˆ ˆ ˆ ˆ2 316( ) ( ) ( )

ˆ ˆ( ) ( )ˆ ˆˆ. ( ) ( ) 0                                                                  ˆ ˆ2( )

n n
n

n n n

n n
e e

n n

Z Z I I
I

I I I Z

I Z Fr
I y Z

I I

ϕ ϕ

ϕ ϕ
ϕ ϕ

  − − −  + − −  − −   

−
− − − =

−
 (D-9)

 

 

 

 

 

 

 



 

163 
 

Appendix E: Solution of infinite number velocity points method for 

the exponential channel cross-sections 

Applying the continuity equation for three different locations at the end section 

gives: 

2 31 2
(1) (2) (2) (3) ( ) ( )

1
1

( -1) ( ) ( ) ( +1)
1

+ ++ =  +
2 2 2

+ + =                                                 (E-1)
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np
np- np i i+1

np to n i to i
i

v v v vv vQ A A  +...+ A +... 

v v v vA  A
−

=
+ ∑

 

Based on the characteristics of the exponential channel cross-section the following 

equations can be generated as: 
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So, by substituting Eqs. (E-2), (E-3), (E-4), and (E-5) into Eq. (E-1), one can get: 
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1
2 1 2 1
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∑       

By the definition of the upstream Froude number at the upstream normal section for 

the exponential channel cross-sections, the following equation for the discharge is 

obtained: 
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By equating Eqs. (E-6) and (E-7), the following equation for the EDR of the 

exponential channel cross-section is computed as: 
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Appendix F: Solution of infinite number velocity points method for 

the generalized trapezoidal channel cross-sections 

Applying the continuity equation for three different locations at the end section 

gives: 

2 31 2
(1) (2) (2) (3) ( ) ( )
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=
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Based on the characteristics of the generalized trapezoidal channel cross-section the 

following equations can be generated as: 
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So, by substituting Eqs. (F-2), (F-3), (F-4), and (F-5) into Eq. (F-1), one can get: 
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∑

      

By the definition of the upstream Froude number at the upstream normal section for 

the generalized trapezoidal channel cross-sections, the following equation for the 

discharge is obtained: 
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By equating Eqs. (F-6) and (F-7), the following equation for the EDR of the 

generalized trapezoidal channel cross-section is computed as: 
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Appendix G: Solution of infinite number velocity points method for 

the generalized circular channel cross-sections 

Applying the continuity equation for three different locations at the end section 

gives: 
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Based on the characteristics of the generalized circular channel cross-section the 

following equations can be generated as: 
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So, by substituting Eqs. (G-2), (G-3), (G-4), and (G-5) into Eq. (G-1), one can get: 
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By the definition of the upstream Froude number at the upstream normal section for 

the generalized circular channel cross-sections, the following equation for the 

discharge is obtained: 
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By equating Eqs. (G-6) and (G-7), the following equation for the EDR of the 

generalized trapezoidal channel cross-section is computed as: 
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