
Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Information and Communication Technologies in Education

Design and Implementation of a Responsive Web-

Based Library Management System for Educational

Purposes

Hasan Özçelik

Eastern Mediterranean University

September 2020

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy

Director

Prof. Dr. Ersun İşçioğlu

 Chair, Department of Computer

Education and Instructional

Technologies

Asst. Prof. Dr. Hüsnü Bayramoğlu

Supervisor

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master

of Science in Information and Communication Technologies in Education.

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Information and

Communication Technologies in Education.

Examining Committee

1. Asst. Prof. Dr. Hüsnü Bayramoğlu

2. Asst. Prof. Dr. Emre Özen

3. Asst. Prof. Dr. Kamil Yurtkan

iii

ABSTRACT

This study was conducted for building a responsive web application for managing the

Eastern Mediterranean University library, both for library users and librarians. The

followed research method for the project is Design Base Implementation Research.

The main objective of the project is to provide the mentioned user base a web

application that they can use for managing their library online usage, easily and

efficiently. This is aimed to be achieved by building a responsive application, meaning

that the user can use the application on any smart device, such as a computer, a tablet,

or a mobile, also, mostly automating the borrowing, reserving and returning resources

operations Thus, decreasing the time and effort spent to carry out these processes both

for library users and the librarian.

The developed project was built with the client-server approach, consisting of two

applications, a backend application (service) and a frontend application (consumer).

The backend application handles receiving requests from the frontend application,

process data and respond the according information to the frontend application.

Whereas, the frontend application provides the user a graphical user interface for using

and interacting with the system, both sending requests to the backend application, and

displaying information responded from the backend application.

This project was developed by using a range of technologies and methodologies. The

backend application was built by using NodeJS, JavaScript, and ExpressJS. Moreover,

the frontend application was built with a modern, responsive approach, by using

HTML, CSS, JavaScript, ReactJS and Material-UI.

iv

Overall, this project provides a modern, responsive web application in order to carry

out general library management operations online, faster, easier and more efficient

than the current methods that are used in the Eastern Mediterranean University library.

Keywords: Library management, responsive design, client-server model, React,

NodeJS

v

ÖZ

Bu çalışma, hem öğrenciler ve kütüphaneciler için Doğu Akdeniz Üniversitesi

kütüphane yönetimi için esnek web uygulama oluşturmak için yapılmıştır. Proje için

takip edilen araştırma yöntemi, Tasarım Temel Uygulama Araştırması'dır. Projenin

temel amacı, belirtilen kullanıcılara, kütüphane kullanımlarını çevrimiçi, kolay ve

verimli bir şekilde yönetmek için kullanabilecekleri bir web uygulaması sunmaktır.

Bunun, duyarlı bir uygulama oluşturarak elde edilmesi amaçlanmaktadır, yani

kullanıcının uygulamayı bilgisayar, tablet veya mobil gibi herhangi bir akıllı cihazda

kullanabilmesi, ayrıca genel olarak ödünç alma, ayırma ve iade işlemlerini

otomatikleştirmesi, böylece hem öğrenciler hem de kütüphaneci için bu işlemleri

gerçekleştirmek için harcanan zamanı ve çabayı azaltacaktır.

Geliştirilen proje bir bütün olarak istemci-sunucu yaklaşımı ile oluşturulmuş, arka uç

uygulama ve ön uç uygulama olarak iki alt uygulamadan oluşturulmuştur. Arka uç

uygulaması, ön uç uygulamasından gelen istekleri ele alır, verileri işler ve ön uç

uygulamasına uygun bilgileri yanıtlar. Bunun yanında ön uç uygulaması, kullanıcıya

hem arka uç uygulamasına istek göndererek hem de arka uç uygulamasından

yanıtlanan bilgileri görüntüleyerek sistemi kullanmak ve onunla etkileşim kurmak için

bir grafik kullanıcı arabirimi sağlar.

Bu proje, bir dizi teknoloji ve metodoloji kullanılarak geliştirilmiştir. Arka uç

uygulaması NodeJS, JavaScript ve ExpressJS kullanılarak oluşturulmuştur. Ön uç

uygulaması ise, HTML, CSS, JavaScript, ReactJS ve Material-UI kullanılarak modern,

duyarlı bir yaklaşımla oluşturulmuştur.

vi

Genel olarak, bu proje çevrimiçi genel kütüphane yönetim işlemlerini yürütmek

amacıyla modern, duyarlı, daha hızlı, daha kolay ve Doğu Akdeniz Üniversitesi

kütüphanesinde kullanılan güncel yöntemlere göre daha verimli bir web uygulaması

sağlar.

Anahtar Kelimeler: Kütüphane yönetimi, duyarlı tarasrım, istemci-sunucu modeli,

React, NodeJS

vii

To My Family and Beloved Ones

viii

ACKNOWLEDGEMENT

I happily want to state that I am very lucky to have my family members, my girlfriend,

and my supervisor besides me at all times, during my postgraduate studies.

I am greatly thankful for the support and guidance that was provided to me by my

supervisor Asst. Prof. Dr. Hüsnü Bayramoğlu, always with patience and care,

regardless of how tough the times was during my studies.

Also, I would like to thank my family for their endless encouragement and support

along the way. They have always been by my side, and I will always appreciate that

they have always been and will be supporting of me with any path I want to follow in

life.

Additionally, I am thankful to my co-workers at Analiz Systems for their care, help

and support.

At last, I would like to give special thanks to my girlfriend, for her endless support,

help, attention, and always believing in me, regardless of time or place, providing me

strength throughout my study.

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. v

DEDICATION ... vii

ACKNOWLEDGEMENT .. viii

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

1 INTRODUCTION .. 1

2 RELATED WORKS ... 6

3 PROPOSED SYSTEM ... 12

3.1 Frontend Technologies and Methodologies .. 13

3.1.1 Responsive Web Design ... 13

3.1.2 Hypertext Mark-up Language Version 5 .. 15

3.1.3 Cascading Style Sheets Version 3 .. 16

3.1.4 JavaScript.. 17

3.1.5 React ... 19

3.1.6 Material-UI ... 21

3.2 Backend Technologies and Methodologies ... 22

3.2.1 NodeJS .. 22

3.2.2 ExpressJS .. 23

3.2.3 MySQL ... 24

3.2.4 Design-Based Implementation Design ... 24

3.3 Software Development Architecture ... 25

3.3.1 Development Life Cycle ... 25

x

3.3.2 Iterative Model ... 25

3.3.3 Scrum .. 26

3.4 Proposed Library Management System Design Model 27

3.4.1 Backend Application .. 31

3.4.1.1 Database Tables .. 31

3.4.1.2 Routes .. 34

3.4.1.3 Base Route .. 35

3.4.1.4 Modelled Routes ... 37

3.4.1.5 Application Programming Interface .. 37

3.4.1.6 Authentication ... 37

3.4.1.7 Security ... 41

3.4.2 Frontend Application .. 42

3.4.2.1 View Models ... 43

3.4.2.2 Forms .. 45

3.4.2.3 Search .. 46

3.4.2.4 View Tables .. 46

3.4.2.5 Authentication ... 46

3.4.3 Testing .. 47

3.4.4 Development Environment ... 49

3.4.5 Replacing the Already Existing System ... 50

4 CONCLUSION ... 51

4.1 Future Work .. 54

REFERENCES ... 56

APPENDIX .. 62

xi

LIST OF TABLES

Table 1: LMS, Existing System, and Related Works Comparison Table 52

xii

LIST OF FIGURES

Figure 1: Responsive Web Applications on Multiple Devices (Napper, 2020) 13

Figure 2: JavaScript Frontend Framework Use in 2020 (Makhija, 2020) 20

Figure 3: Iterative Model Cycle (Powell-Morse, 2016) ... 26

Figure 4: Scrum Framework Visualization (Job, 2015) ... 27

Figure 5: EMU Library Management System Use Case Diagram 29

Figure 6: Client-Server Model Visualization (Christensson, 2016)........................... 30

Figure 7: EMU LMS Database Relationship Diagram .. 34

Figure 8: An example of Base Route and Modelled Route Relation 35

Figure 9: Login Activity Diagram ... 38

Figure 10: Verify Token Activity Diagram ... 39

Figure 11: Check Library User Role Activity Diagram ... 40

Figure 12: Check Librarian Role Activity Diagram .. 40

Figure 13: An example of Base View Model and View Model Relation 44

Figure 14: Home Page (Library Users/Guest) ... 63

Figure 15: Search Results Page .. 63

Figure 16: Author Search Result .. 64

Figure 17: Floor Search Result .. 64

Figure 18: Shelf Search Result ... 65

Figure 19: Resource Details Page as a Guest ... 65

Figure 20: Login Required Dialog ... 66

Figure 21: Login Page .. 66

Figure 22: Resource Details Page as a Student/Lecturer ... 67

Figure 23: Borrow Dialog .. 67

xiii

Figure 24: Reservable Resource... 68

Figure 25: Reserve Dialog ... 68

Figure 26: Current Library User Processes .. 69

Figure 27: Librarian Home Page .. 70

Figure 28: Resources Page (Librarian) .. 70

Figure 29: Add Resource (Librarian) ... 71

Figure 30: Edit Resource (Librarian) ... 72

Figure 31: Resource Types Page (Librarian) ... 72

Figure 32: Add Resource Type Page (Librarian) ... 73

Figure 33: Edit Resource Type Page (Librarian) ... 73

Figure 34: Authors Page (Librarian) .. 74

Figure 35: Add Author Page (Librarian) .. 74

Figure 36: Edit Author Page (Librarian) .. 75

Figure 37: Add Resource Item Page (Librarian) .. 75

Figure 38: Floors Page (Librarian) ... 76

Figure 39: Add Floor Page (Librarian) .. 76

Figure 40: Edit Floor Page (Librarian)... 77

Figure 41: Shelves Page (Librarian) .. 77

Figure 42: Add Shelf Page (Librarian)... 78

Figure 43: Edit Floor Page (Librarian)... 78

Figure 44: Library User Processes (Librarian) .. 79

Figure 45: Borrow Request Dialog (Librarian) .. 79

Figure 46: Return Borrow Page (Librarian) ... 80

Figure 47: Return Borrow Request .. 80

xiv

LIST OF ABBREVIATIONS

BLM Bluetooth Library Manager

CRUD Create, Read, Update, Delete

CSS Cascading Style Sheets

DOM Document Object Model

EMU Eastern Mediterranean University

GSM Global System for Mobile Communications

GUI Graphical User Interface

HTML Hypertext Mark-up Language

HTTP Hypertext Transfer Protocol

I/O Input/Output

IoT Internet of Things

JSON JavaScript Option Notation

JSX JavaScript XML

LMS Library Management System

MVC Model-View-Controller

NFC Near-Field Communication

OFET Organic Field Effect Transistor

RFID Radio-frequency Identification

SDLC Software Development Life Cycle

SMS Short Message Service

SPICE Simulation Program with Integrated Circuit Emphasis

SQL Structured Query Language

UI User interface

xv

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WSN Wireless Sensor Network

XML Extensible Markup Language

XSS Cross-site Scripting

1

Chapter 1

INTRODUCTION

In a university, the library is a large part in providing the students a solid environment

to access resources of many kinds. Thus, students spend a considerable amount of time

in libraries to use these resources and to gain or enhance their knowledge while

studying. Besides of physical resources held in a library, there are also a large amount

of digital resources that are provided as well. So, it is evident that a tool for browsing

and managing a library is almost essential (Chang, 2013).

Over the years, there have been different ways of managing libraries. In the past, we

would often see libraries being managed in more traditional ways, without the use of

internet, but nowadays this is possible to be mostly achieved online. Even so, there are

many types of online solutions ranging from open source software to mobile

applications or systems that are integrated with sensors and different networking

technologies. For such reasons, today nearly all universities have utilized their

university library with a dedicated online library management system.

Library management systems are mostly managed or used online by logged in library

users and sometimes even by guest users as well. It is clear why that is the case; overall,

online systems of any other type are also a consistent part of our lives and they are

being used for many other activities out of school as well such as entertainment,

shopping, communication as in social media and so forth (Torres-Díaz, Duart, Gómez-

2

Alvarado, Marín-Gutiérrez, & Segarra-Faggioni, 2016). Also, for students, online

systems are used frequently if not every day in school for managing or carrying out

their school activities during or out of their classes. These online activities typically

are or similar to student portals, learning management systems, websites that are

dedicated to their lectures, or even classes that are held online.

Nowadays, most of these mentioned systems are developed as responsive web

applications, which are websites that are built with Hypertext Mark-up Language

version 5 (known as HTML) and Cascading Style Sheets version 3 (known as CSS)

and have user interfaces (UI) that are adaptive among many different devices and

screen sizes (Giurgiu & Gligorea, 2017). So, responsive web applications are

especially very popular, because they essentially give students a wide range of freedom

and the ability to adapt their daily needs, either being used on a computer or a mobile

device. In brief, most people are familiar with online management systems as they are

using it for different activities in their daily and school lives. Thus, factors such as

these make a well built, fully responsive online library management system a

significantly useful tool for all library users.

In recent times, it is apparent that most of the online library management systems are

also shifting towards mobile friendly environments, similar to other systems. In some

cases, even new systems are being developed specifically for mobile devices to replace

existing systems. So, it is clear that mobile friendly online applications are more

preferable overall when it comes to library management systems.

3

Most of these applications that are replacing existing systems focus on making

processes that take place in a library quicker and easier. Mostly, these processes are

about locating and borrowing books.

The proposed study adopts the research methodology which is called Design Base

Implementation Research which is also known as DBIR. DBIR is an effective research

methodology where an emphasis is taken on focusing on a solution for a problem,

following certain conditions (LeMahieu, Nordstrum, & Potvin, 2017). Nowadays,

DBIR is often used by researchers and guides them to develop and implement, and

also test innovations in accurate environments. So, this study follows the DBIR

methodology by including a wide literature review of similar systems that have similar

aims and also related works.

This study aims to develop a system which is a responsive and user-friendly web

application that will be used both by library users or clients and library staff. By using

the system, library users (students or lecturers) will have the ability to search any

resource in the library, see the details of the respective resource, see borrowing or

reserving details, as well as carrying out the borrowing process of a resource online.

The library staff will also have the ability to search any resource in the library, see the

details of a resource similar to library users, but besides of that, the library staff will

also have the ability to carry out such as borrowing or reserving processes, seeing

detailed information about borrowing or returning processes, as well as general

administrative tasks given to the library staff.

This study focuses on developing a responsive web application, which aims to be

adaptive to different devices and screen sizes ranging from personal computers to

4

mobile devices. This will be ensured by testing the application on different devices

and platforms. Likewise, the project will be designed focusing on user centric UI

design in order to make the developed application easy to use and user friendly. For

achieving the desired aims and objectives, several techniques such as user centric

design, responsive design and technologies will be used. Alongside HTML5 and CSS3

which were previously mentioned, other frameworks and libraries are also used that

are based on JavaScript both on client side (frontend) and also on server side

(backend).

As a fully responsive web application, the project contains two sections that work in

correlation, those sections being backend and frontend. Backend section being

responsible to handle server-side operations of the application such as the database

connection and frontend section being responsible for the UI implementation. For

backend development, a JavaScript framework called ExpressJS is used, which is a

popular framework for building application programming interfaces (API) for web

applications that runs in NodeJS environment. Subsequently for frontend

development, another popular JavaScript library called ReactJS (also known as React)

is used, which is a library that is used for creating UIs and is known for being highly

flexible and scalable.

Additionally, my personal experiences with online library management systems also

made the benefit of a responsive and user-friendly one very clear. When I was studying

abroad in the United Kingdom, I was a frequent user of the university library and the

library web application. This application was a responsive, a very user-friendly

application, which helped me well and saved me a lot of time, thus affected my

learning vastly. Then when I came to study at EMU and tried to use the university's

5

library web application, I was surprised to see that it was not very easy to use and

responsive. The idea that EMU students or lecturers could also benefit from such an

application touched me and made me think. Hence, I was greatly motivated to conduct

a study in this field, as well as keeping me motivated during my study.

The rest of this thesis is arranged as follows: Chapter 2 reviews other similar studies

that have been conducted in recent years, Chapter 3 explains the developed system in

technical details, also giving information about the technologies and methodologies

that were used, and finally Chapter 4 makes a general conclusion to the study, as well

as making a brief statement about possible future work.

6

Chapter 2

RELATED WORKS

Over the years and especially since the early 2010s, it can be said that there have been

a considerable growth on online library management system development (Londhe &

Patil, 2015). As a part of that, literature growth in the implementation of online library

management systems also is apparent overall. Within this growth, even though the

aims and the objectives are really similar, there are some different approaches that are

taken when providing a solution. These different approaches could be seen on factors

such as different technologies, platforms, principles, and so on.

Moreover, a study by authors Suda and Rani, proposes a study which aims to design a

system where the identification of a large number of books at a time is possible (Suda

& Rani, 2013). The study briefly gives information about the existing system which

uses barcode technology to identify books. Even though similar systems also often use

barcodes, this project aims to replace the use barcodes with Radio-frequency

Identification (RFID) technology. This is because of the main objective; allowing

identification of a large amount of items at the same time is required, the study breaks

down both the barcode and RFID technologies and their advantages and disadvantages

to achieve this objective. Overall, RFID is preferred as it is more advantageous in such

a case, so the system preferably utilizes RFID technology.

7

In a different study by Bhattacharya, a project was built called “Bluetooth Library

Manager” (BLM) with the objective of reducing the heavy work force that is required

for maintaining the daily work of a more traditional, non-online library system

(Bhattacharya, 2014). But, this project has a different approach to this problem.

Bluetooth technology with SQLite was used for connecting to the database. Thus, the

connection between the server and the client is made only inside the library, as

Bluetooth has a limited connectivity range compared to other network technologies.

Bu besides, this enables users to also have functionalities such as phone calls, short

message service (SMS) and email within the library with each other.

In a similar study, a project was developed with the aim of being used as a tracking

system within the library, tracking books on shelves, to simplify similar processes and

decrease the possibility of any mistakes made by the library staff, as well as to save

time both for the library staff and the library users (Sangavi, Deepa, Surya, Vinumadhi,

& Brindha, 2016). However, RFID is used alongside two models called Simulation

Program with Integrated Circuit Emphasis (SPICE) and Organic Field Effect

Transistor (OFET) essentially for both scanning and finding the books. Thus, overall

provides flexibility and acts as “building blocks” with several other hardware

components according to the author.

A different study was conducted with the aim to be a guide towards building a

framework for employing the Internet of Things (IoT) in renovating the conventional

library systems and to become “smart” online library schemes (Bayani, Segura,

Alvarado, & Loaiza, 2018). Overall, many technologies are discussed such as Near-

Field Communication (NFC), RFID and Wireless Sensor Network (WSN). NFC and

RFID, which are two similar technologies in that they are both used for identifying

8

books and grant operation control to libraries and both achieve this by scanning items.

With WSN technology, a non-centralized network is created between nodes in order

to build a line of communication between them. Besides of the mentioned

technologies, it is also stated in this study that when designing a smart library system,

two components are in focus which are hardware architecture and software

development, as the approach to these two should be well balanced.

In their study, similarly, authors Monali and Gaikwad designed and built a project with

the objective of reducing the efforts of users when finding books and locations in the

library (Monali & S.A., 2017). So, the system was developed using Global System for

Mobile Communications (commonly known as GSM) and RFID technologies. This

system also has a distinguishable approach on what network technology it uses and

unlike many other similar studies, it uses GSM. The aim on using these specific

technologies is stated by the authors as having an essential role on reducing human

effort. Overall, the complete system works by sending messages to a GSM modem,

then with a link of communication between GSM and RFID technologies, any search

by a user about a book results on locating the relative book and informing the user

accordingly.

A similar project was also built to replace an existing system (Karanth, Castelino,

Nireeksha, Nazareth, & K, 2017). The authors briefly give information about how

previously the librarian kept track of books physically in a library, but with the

advancements of many technologies, nowadays these processes care carried out much

easier and efficiently. In this study the system which is aimed to be replaced, was being

operated manually by the librarian. The developed project aims to provide a mobile

solution, thus it is developed for Android mobile devices. The objectives of the project

9

is to provide the information of books, download and borrow books upon admin

permission and notify the users about their upcoming book return dates, as well as

giving the librarian the ability to manage books and book information. Besides of this,

technical information is given such as that the system is built using Java programming

language and SQLite database management system, which are both popular due to

Java being multiplatform and SQLite being free of charge.

On the other hand, in this study authors discusses the IoT principles in detail,

mentioning the architecture, elements and layers of IoT (P., Bhattacharjee, & Gupta,

2017). According to the authors, IoT provides opportunities such as direct interaction

with the physical world and that it increases accuracy and efficiency with reduced

human intervention, which makes it important for a smart online library system.

Besides of IoT, the authors make an emphasis on RFID, as well as other sensors that

are used and their communication through IoT. Finally, it is stated by the authors that

the developed system is connected through a central processor and a common, simple

graphical user interface.

In a more recent research, a study was conducted which aims to make locating and

borrowing books and similar processes quicker (Patil, Karande, Desai, & Pereira,

2017). Mainly, this project is designed around the IoT principles and besides of this,

uses NFC technology instead of RFID or barcode technologies for scanning and

identifying books. In addition, the details about hardware implementation that is

required for the system is specified, which in summary includes NFC cards, hand held

NFC card reader, an Arduino board and other components. Overall, makes an

emphasis on the importance of hardware-software syncing in such systems and some

10

problems that might appear when creating a library system as well, which often most

of them are related with hardware-software relationship and syncing.

In another study, the authors discuss the aim and functionality of a smart library system

(Baryshev, Verkhovets, & Babina, 2017). Overall, this study by itself aims to develop

the required set of theory and techniques which will fuse the smart library system with

information technology and into educational environments. States that in time, it might

be required to rethink the library’s comprehensive aim with focusing on new upcoming

technology. Besides of this, according to this study, the individual user is the centre of

a smart library of a university. So, an online survey is carried out as a questionnaire in

order to define user needs. Making a conclusion that a library also always has to be

adjustable with quickly changing modern technologies and changing different needs.

Similarly, another project was also developed to replace an existing, already being-

used system (Pandey, Kazmi, Hayat, & Ahmed, 2017). Even though the existing

system can accomplish most of the required functionality and objectives such as

tracking books, tracking book transactions, editing book information, etc. The existing

system is mentioned to be a slow-working one, limiting the overall efficiency of the

library and also decreasing the potential users’ interest in using the system. In order to

define a main objective, a methodology is followed which includes methods such as

defining and refining difficulties, framing proposition and getting conclusions, and at

last carefully testing the conclusions. Thus, the main objective of the project was

determined by approaching the project with qualitative and quantitative analyses and

conducting a survey was a big part of capturing general user needs and requirements.

Other than that, the project was built accordingly and was built around RFID

technology.

11

Another study makes an emphasis on what is meant by a “smart library”, what makes

a library system “smart” and how can traditional library systems be transformed to

smart ones (Cao, Liang, & Li, 2018). According to the authors, the “smartness” in a

smart library refers to the ability of a system in which capturing needs, providing

resources and services can be automated, in order to fulfil those needs. With this, the

dimensions of a smart library are discussed, which are stated as; technology (IoT, data

mining, sensors such as RFID or NFC, etc.), service (user-centred services), user-

oriented (i.e. the user and the librarian) dimensions and each are considered to be

concepts that are associated with smart libraries. Besides of this, it is implied that to

make a library system smart, it is often required to integrate and interact a mixture of

technologies. Finally, study discusses the importance of providing smart services,

which includes both the users as the library user and the librarian, alongside a smart

system. Meaning that, alongside the technology, the human factor is also important in

making the system smart and work as intended.

The following study is developed for implementing a graphical user interface for an

Android mobile library management system application (Shada & Ayu, 2018). It aims

to enhance and improve the library with the application, by considering user needs.

Besides, mentioned development techniques are requirement gathering, system

analysis, graphical user interface design, implementation and unit testing. As well as

this, the study also aims to understand user interface elements of a mobile application

that affects user experience. So, the study considers user feedback and user testing

results, and states that the development will be considered as the final system if it

satisfies all mentioned feedback and testing.

12

Chapter 3

PROPOSED SYSTEM

The proposed system is a library management system (LMS) that is built for Eastern

Mediterranean University (EMU) library. This system is built as a responsive web

application, which can both used by students, lecturers and librarians. As a modern

responsive web application, this system was built using a range of technologies and

methodologies.

As mentioned, the LMS web application was built as a responsive web application

which is dynamic, generally with languages such as HTML, CSS, JavaScript and

NodeJS runtime environment, alongside with other frameworks or libraries. Alongside

these technologies, a responsive design approach and design patterns were keenly

followed.

In this section, the proposed system will be discussed from the technical perspective,

explaining the technologies that were used and how the project was built in detail.

Firstly, the technologies and methodologies that were used will be explained, then

section by section how the application was built, and the project structure will be

explained.

13

3.1 Frontend Technologies and Methodologies

3.1.1 Responsive Web Design

Previously, browsing the web was mostly carried on computers, viewed on a larger

screen by comparison to smaller, mobile devices. On the other hand, an application

was necessary to be developed for mobile devices. However, as the usage of mobile

devices of many kinds such as smart phones and tablets has been increasing, nowadays

almost every website or application is being developed with responsive web design

approach (Giurgiu & Gligorea, 2017). Responsive web design is a concept where a

website is designed with a purpose to visually adapt to the screen size of the device

which the website is being browsed on (Wiener, Ekholm, & Haller, 2017). This is very

important, because mobile development on itself can require developing the same

application for multiple other operating systems, such as Apple’s iOS and Google’s

Android. This approach mainly eliminates the need to develop more than one

application for different device screen sizes. So, the same website can be browsed on

a computer, tablet, mobile phone, etc., but with a completely adapted graphical user

interface (GUI) when necessary on any type of device.

Figure 1: Responsive Web Applications on Multiple Devices (Napper, 2020)

14

There are many techniques and methods that are used to make a website responsive.

One of the most known out of these is the use of grid-based layouts. These layouts are

based on the use of flexible grids, which instead of having a layout fixed width, or

designed to be placed on a fixed section of the screen, they are set with percentage

sizes which are calculated according to the screen size and they are scaled accordingly.

So, regardless of the screen size, with the help of a grid-based layout, the GUI elements

can be displayed widely on a higher screen resolution but shrink and align on a lower

screen resolution. Another common technique is the use of media queries (Jin, 2017).

They are basically conditions that are followed depending on the current screen

resolution, providing ways to implement different styling for different screen sizes and

resolutions.

Currently, HTML, CSS and JavaScript are the essentials of frontend web development.

Therefore, all previously mentioned techniques that are used on responsive web

development are based on HTML, CSS and JavaScript. Because in core, HTML with

the help of CSS, which is used to style the page, and a scripting language such as

JavaScript, is all that is needed. So basically, with the combination of these

technologies, developers have everything that they need in order to develop responsive

web application frontend. However beside of that, these essential technologies bring a

solid foundation for many other frameworks developing robust responsive web

frontend, such as Bootstrap, React, Angular and Vue.js, which provide easier to

maintain, a faster development and scalability for more complex and large

applications.

15

3.1.2 Hypertext Mark-up Language Version 5

Hypertext Mark-up Language –better known as HTML- is often called the “publishing

language of the World Wide Web” and it is currently the standard way of creating

hypertext documents to be published on the internet (W3C, 2018). One of the main

reasons that it became a standard for years is that it is developed to be cross-platform.

Meaning that regardless of a specific platform, or a specific operating system, there

are no requirements to view HTML documents with the use of a web browser.

Originally, HTML was developed in the early 1990s. But it was not published to the

public until the mid-1990s, as HTML 2.0. As same as we know it today, HTML 2.0

brought the core HTML document structure, consisting of main elements such as head

and body, but furthermore, included other now staple HTML elements such as the

headings (h1 to h6), paragraph, ordered and unordered lists, hyperlinks, forms, with

fields and form submission. In the following years, HTML versions 3 and 4 were

released right after another in the same year.

HTML4 was released by the World Wide Web Consortium (W3C) and was a very

successful version for a long time compared to HTML3. Early after it was released,

Document Object Model Level 2 HTML (simply known as DOM) was developed and

published by W3C. DOM provides both the access and the ability to update the

elements or structure of HTML documents with programs and/or scripts.

After a decade of popular HTML4 use by web developers all around the world,

HTML5 was published in 2010s. HTML5 is currently the latest version of HTML,

expanding HTML even further than version 4. It brings many new features to web

development, which are oriented more towards modern web applications. Some of

16

these features vary from new elements such as header or footer, video embedding,

local storage to enhanced web forms, which overall are all vastly common nowadays.

These features are very significant and important, because previously some of these

functionalities were provided by third party plug-ins. Even though in perspective to

responsive web design HTML is highly dependent on CSS and JavaScript, it is a

proven language that has the greatest impact and usefulness on current modern web

development.

3.1.3 Cascading Style Sheets Version 3

Cascading Style Sheets (better known as CSS) is a styling description for HTML

documents (W3C, 2019). It is almost an essential part of HTML, thus an essential piece

in web development. So alongside of HTML, web developers have been building web

sites utilizing CSS since the earlier days of web development. By using CSS, HTML

documents are supported visual-wise very extensively. Basically, almost every

element of an HTML document can be styled by a CSS specification, such as

colouring, lay outing, text styling, and so on.

At the beginning, CSS initially was published in mid-1990s by W3C. Even though

there were other proposed methods and technologies to style HTML documents at the

time, with the requirement of grouping many styling elements and even with multiple

documents, CSS became more outstanding and popular. One of the requirements

which was a main focus of CSS was to support inclusion to HTML externally.

Meaning that besides of internal CSS implementation (directly in an HTML

document), implementing and including an external CSS file to an HTML document

was also made possible. Apart from that in CSS version 1, the base of its essential

features were included, such as styling fonts, texts, colours, backgrounds and box

17

properties as in margins, paddings etc., but in more of an elementary sense, as well as

the general standard CSS document structure.

With a rapid growth in web usage and development, CSS3 was published in the early

2000s. Similar to HTML, it had a clearer step forward on a more modern approach to

web design. This is all due to a several new features of CSS3, such as tables, columns

and media queries. In these features, one stands out as one of the most important

features that affected responsive web design; media queries. Media queries in CSS3

are conditions that check a browser’s size, in order to take actions in styling according

to it. With media queries, properties such as a browser’s current width, height and even

orientation can be checked, thus, different styling can be created for different captured

properties (device screen sizes). With these mentioned features of CSS3, developers

are given a great range of options to develop and optimize fluid and responsive web

applications.

3.1.4 JavaScript

The birth of JavaScript goes back to mid-1990s. In the beginning, it was developed to

work on a specific web browser, called Netscape Navigator. But, as its popularity grew

quickly, it has been adapted to other web browsers as well and got the nickname “the

language of the web” (Miller, 2018). JavaScript is essentially an object-oriented

programming language, normally, it is most known by being used as a scripting

language on client-side web development. So, in this situation, it runs on a browser

and it is used to interact with the GUI. This is in order to achieve more dynamic and

interactive websites, dynamically adapting the display of a page controlling what

appear on the page in certain conditions. So, this use of JavaScript is more known as

client-side JavaScript.

18

JavaScript is known to be similar to other popular object-oriented programming

languages such as C++ and Java. Thus, JavaScript brings many features that are

expected to be on an object-oriented programming language, however in a lighter

sense. But, principally, many concepts are supported by JavaScript. Various datatypes

such as integers, strings, Boolean, as well as arrays, logical operations such as

comparisons, conditional executions such as if statements and loops. So, the features

that are brought to web development by JavaScript allow for broader web applications,

especially for better user interaction. Many solutions could be provided to modern web

development problems; handling user interaction with HTML forms and form

elements, handling data distribution, even provide connectivity to servers for data

submission and fetching.

On the other hand, even though there are some structural close similarities between

JavaScript and high-level programming languages previously mentioned such as C++

and Java, there are some limitations to JavaScript in comparison. First of all, JavaScript

has a lighter syntax, also known as ‘Java-lite’, not being as strict about syntax rules

overall then the mentioned higher-level languages. Other than that, for example, unlike

those high-level programming languages, JavaScript does not have capabilities that

interact with the client device’s operating system, such as the access to client I/O

facilities, launching programs and reading or writing files.

As JavaScript became the most common programming language for web development

over the years, frameworks written in JavaScript also have been appearing as

frequently. The need for a framework emerges as web applications become more

complex and difficult to maintain. Definition of a framework can be stated as a group

of written utilities, functions or libraries in a programming language, in order to

19

produce and contain reusable code for solving specific development problems.

Nowadays a few examples as some of the most popular UI frameworks for JavaScript

are React, Angular and Vue. Frameworks such as these, give developers the ability to

quickly and easily create and maintain modern, complex, responsive UI for web

applications.

Although JavaScript is mostly known as being a client-side programming language

and to be run on a browser, developers sought ways of running JavaScript on other

environments. One of the most apparent reasons for this, is so that developers could

develop server-side applications using JavaScript as well. With that, a full web

application would be possible to be developed with JavaScript, without developing the

server application with another language such as PHP, Perl, or Python. So throughout,

there have been ways to create environments, or engines which allowed JavaScript to

run on other development environments. Nowadays, one of the most runtime

environments for JavaScript is NodeJS and is widely used on many server-side

applications.

3.1.5 React

As mentioned previously, building UI for web applications using a frontend JavaScript

framework is very common nowadays. ReactJS (more commonly known as React) is

one of the most used ones. React was developed by and currently being maintained by

Facebook, initially to solve a UI problem their development team had recently faced

at the time, then it was released as a library back in 2013 (Wieruch, 2019). The main

objective of React is to create interactive and reactive UI, easily and quickly. This is

aimed to be achieved by the creation of reusable fragment of UI elements, called

“components”.

20

Figure 2: JavaScript Frontend Framework Use in 2020 (Makhija, 2020)

React controls an element that is called “The Virtual DOM”, a copy of the HTML

DOM. Whenever there is a state change in a React component subtrees of nodes are

rendered by this Virtual DOM accordingly instead of re-rendering the HTML DOM.

The difference between the virtual DOM and the HTML DOM is compared and only

the section or sections that contain changes are updated in the HTML DOM. This

results in a smaller amount of interference to HTML DOM, thus making significantly

lighter than some other similar frontend frameworks.

React components can be written in normal native JavaScript syntax. However, there

is a special syntax that, can be used to create React components, which is called

JavaScript XML (JSX). This syntax is similar to any mark-up language syntax, such

as XML or HTML. So, as this enables creating components in a syntax that is similar

to HTML, it is easier for both to write and read overall. Even though React components

can be written without using the JSX syntax, it is not as popular and mostly is not

21

recommended. Because, besides of it being easier to read and visualize a mark-up

structure, the lines of code that is written also reduced. Then, React has the ability to

convert the JSX syntax into native JavaScript syntax. This conversion is carried out by

a JSX transformer, which transforms JSX into JavaScript in the browser. Thus, the

conversion does not occur at runtime, but before the application deployment, by the

JSX transformer. An example of a JSX transformer is Babel.

Previously, it was mentioned that the reusable fragments of UI elements that can be

created by React and are called “components”, elements called “components”, have

many functions and properties of their own, ranging from controlling their data,

display states and even can be used for debugging. Data that are contained in a

component can be provided both internally, and externally. Meaning that the data

could be initialized and be accessed within a component, which is called a state, but

could also from outside of the component, which is called a prop. Besides of these, a

component has a required method called “render”, mostly returning a single JSX

layout, which is the components display.

3.1.6 Material-UI

Google keenly follow a consistent UI design language all across their developed

platforms from Android, Google Drive, Gmail and even to YouTube. This concept in

UI design is also often called a “UI design pattern language” (Doosti, Dong, & Deka,

2018). This refers to the consistency of design choices and following standards, which

naturally causes an identifiability to users, making an appliaction more user friendly.

The overall design language and philosophy adopted by Google is called Material

design, introduced by Google back in 2014. Google maintains an open source library

for React, providing components that are designed as a part of Material Design.

22

Material UI aids a simpler, faster development, with well designed and maintained,

also easily customizable UI components. This library contains a large range of UI

elements; layout components such as containers and grid lists, input components such

as buttons, checkboxes, radio buttons and text fields, navigation components such as

menus, tabs and breadcrumbs, and many others such as dialogs, avatars, badges, icons,

lists, or dividers.

3.2 Backend Technologies and Methodologies

3.2.1 NodeJS

Today, languages such as HTML5, JavaScript and frameworks that are being used for

developing web applications allow developing complex applications. Also, with a

responsive design approach, it is possible to develop applications that are similar to

mobile native applications. Thus, providing and receiving a large data-stream in a

stable nature over to the client-side application is essential. With this current

complexity in current standard web applications, the concept of client-server side

development integration, meaning that developing server-side applications with

JavaScript is highly desirable.

NodeJS was first introduced in 2009, as a platform to run JavaScript on servers. Since

then, it has been a solid choice for developers to develop server-side applications for

complex web applications. NodeJS as a framework provides an environment for

building scalable and fast back-end applications, along with good performance,

running on Google’s V8 JavaScript engine (Hota & Prabhu, 2014).

JavaScript Option Notation, also known as JSON, is a notation that is used for

providing data to an endpoint. JSON is a subset of JavaScript and is very beneficial in

23

providing the UI application with data that is interpreted with JSON. Therefore, on the

client-side application, the received data can be easily parsed and integrated. NodeJS

works as a single thread application. Meaning that each request is operated on a single

thread, instead of creating a thread for each operation like in other similar back-end

environments. By this, a non-blocking I/O model is provided by NodeJS with

asynchronous programming through JavaScript’s asynchronous tools such as Promises

and async/await. When a server is created with NodeJS, it listens a port for receiving

incoming requests, when a request is received, it later is placed and handled in the

NodeJS event loop. Thus, with NodeJS, an event-driven, asynchronous server-side

environment is created.

3.2.2 ExpressJS

ExpressJS is a framework that is used on the NodeJS server-side applications and

provides an easier use for NodeJS’s main functionality (Hahn, 2016). With that, one

of the primary objective of it is to be minimal, flexible, fast, as well as easy to setup

and configure for back-end development.

One of the features of ExpressJS is called a “middleware” and is used for carrying out

requests and responses to/from the server. A middleware can be received as services,

which technically are functions. These middleware functions are in charge of

managing both HTTP requests and responses. So with these middlewares, the requests

are broken down into smaller pieces, handling a single section accordingly.

Another feature of ExpressJS which is called “routing”, enables different requests to

be handled with different request handlers. Specifically, specific routes are created,

followed with a middleware function. When one of these routes are visited, the

according function is executed. As a simple example, we can create a route such as

24

“/hello”, with a function which returns the value “Hello World”, when a HTTP.GET

request is made to this route, the value “Hello World” is received. So, these routes can

be used as endpoints which the client-side application sends requests to the server.

3.2.3 MySQL

MySQL is an open source, relational database system, which is relatively fast, stable

and easy to learn, thus very popular. It has a wide range of features which are appearent

in a quality, standard database system. As the name implies, MySQL has Structured

Query Language (SQL) support, which is a standard language of querying a database

administration.

As many others, MySQL is actually a client/server system, meaning that the

transaction between the database and the user is carried out between the client

applciation and the server where the data is stored. Thus, database transactions such as

data querries, data saves or edits are sent from the client and are handled on the MySQL

server. Besides, MySQL is easily integrated with NodeJS as well.

3.2.4 Design-Based Implementation Design

Similar to other ways of design research, DBIR has the objective to develop practical

solutions to continuous educational problems. It aims to achieve this objective by

designing and studying innovations in the context of their implementation. The

difference that separates DBIR from other different forms of design research is that it

focuses on implementation. Also, the use of implementation research for improving

iterative design. An essential focus of DBIR is not about what works but is more about

how effective programs could be made to work in a variety of context and for diverse

groups of people in or out of school. As an iterative, collaborative and practice focused

25

method, the developers are brought together as equals, in order to develop, test and

scale programs to enhance teaching and learning.

3.3 Software Development Architecture

3.3.1 Development Life Cycle

In software engineering, the set of different processes that are carried out in order to

successfully and efficiently design, develop, test and maintain software is called

software development life cycle (SDLC) (S, 2017). In a SDLC, there often are specific

rules that are followed in each step, or an overall idea that is followed. Some examples

of these steps are requirements gathering, design, implementation, verification, testing,

maintenance, etc. Even though the followed steps are similar, how they are carried out

differentiates the SDLCs from each other.

Over the years, there have been various theorical SDLCs, which software developers

and software development teams have been using. Some of the most popular SDLCs

are the waterfall model, V model, iterative model, spiral model, agile model, etc.

Waterfall model is the most traditional SDLC, but it is a model that has very strict

rules which are not very suitable for most of the modern software development

practices. So, nowadays software development teams mostly use SDLCs such as agile

model or iterative model.

3.3.2 Iterative Model

As the name implies, iterative development as a method focuses on developing

software in iterations, as divided in smaller parts (Nugroho, Waluyo, & Hakim, 2017).

This model does not depend on requirement gathering. Instead, with a small amount

of requirements, development can be started. With each iteration of development, the

developed application expands in small versions, with steps such as design,

26

implementation and testing being repeated. So, with each iteration, new functionalities

is added to the application. The development is continued as such until the final version

of the application is fully completed.

Figure 3: Iterative Model Cycle (Powell-Morse, 2016)

There are many scenairos where the iterative model can be preferred. The most

appearant scenario is whenever the initial requirements are not very clear or the most

important requirements are defined however smaller requirements can be developed

in following iterations. But besides these, there are other suitable scenarios for the

iterative model where there is no time constraints, or when the required skill set is not

met yet but being learnt during the development. Hence, the iterative model provides

a work flow where working, usable versions of the project can be produced from the

earliest completed iterations.

3.3.3 Scrum

In agile development environments such as incremental model, scrum is seen as an

incremental and iterative method, or also referred as compression algorithm

(Sutherland & Schwaber, 2011). In scrum, the development is structured in cycles that

are called sprints. These sprints are aimed to be completed in a specific time-frame,

27

with no pauses. As they are timed, at the end of that specific time-frame, they end

regardless of the task being completed or not and they are never extended. Thus, scrum

is a method that can be used to control and structure iteration cycles when following

the iterative model.

Figure 4: Scrum Framework Visualization (Job, 2015)

On a project management sense, the control sturcures that the scrum methodology

provides are very benefitial. Hence, managing the project from the perspectives of time

and resource management becomes more extensive. So, overall, scrum as a

methodology is very flexible by design.

3.4 Proposed Library Management System Design Model

The Library Management System, also called LMS (standing for ‘library management

system’), is a responsive web application that is designed and developed for managing

and browsing the EMU library, in the educational setting, both for library users and

the library staff. And as many people know, such an application will enhance the

28

quality of education in students' or lecturers’ busy everyday lives and it is equally vital

that library staff carry out their work easily and efficiently.

Guest users, which are non registered users, can search for a resource (book, article,

magazine, news paper, etc), view the details of a resource, search for an author, view

resources by an author and search the resources on a shelf or a floor. Additionally,

library users users can login to their LMS account to make a borrow request to a

resource, borrow the resource, reserve a resource if it is currently borrowed by another

user and also, track any of their borrow or reserve processes that are currently held by

them.

On the other hand, the application provides more functionalities for the library staff.

Besides searching and veiwing resources, resource types, authors, floors and shelves,

the library staff also have administration privileges in order to manage these items by

adding, editting and deleting resources, resource types, authors, floors and shelves.

The library staff users can also check and approve/reject borrow requests, as well as

viewing any borrow or reserving process.

There is a user manual prepared for the system that can be checked in the appendix

section of this thesis, where all the mentioned functionalities are stated with

screenshots provided.

29

Figure 5: EMU Library Management System Use Case Diagram

Nowadays, dynamic web applications based on client-server model that work with

displaying and managing information consist of two sections, which can be seen as

two different applications. Those applications are called frontend or client side and

backend or server side applications. Frontend applications run on the user’s internet

browser and mainly handles displaying the GUI. But besides, it also handles requesting

the backend application in order to carry out any process or receive information and

display the information that is received from the backend application. Contrarily, the

backend application has communication to the database, where query requests are sent

through, then process and provide the information that is received by the frontend

application.

30

Figure 6: Client-Server Model Visualization (Christensson, 2016)

The developed LMS was built by using many different technologies and approaches.

The frontend application was build using technologies such as HTML, CSS, JavaScript

and React framework, with a responsive design approach. Whereas, the backend

application was built by using JavaScript in NodeJS version 10.16.3 environment and

ExpressJS framework version 4.17.1 alongside MySQL rational database management

system version 8.0.19.

Overall, the LMS were built with a framework approach in mind, both for frontend

and backend applications. In this study, the framework approach refers to have a

certain way of structuring the project which aims to have a faster, easier and robust

development. To achieve this aim, both of the applications are structured in a way that

have many processes and functionalities automated and reused. The details of this

structure and approach will be discusses further for both applications as mentioned

before, in their respective sections.

31

3.4.1 Backend Application

In the LMS project, the backend application consists the technologies and

methodologies that are necessary for processing requests and then producing and

providing a response to the client. The code that handles this process runs on a server,

which includes the logic that processes the request and provides the response

accordingly. Since MySQL is used in LMS, the database is located on a cluster, and

the backend application has a connection to that MySQL database, that the LMS data

is stored.

The backend application consists all the logic that defines how a request is responded.

With the use of special ExpressJs functions, routes are created where the client can

send requests to. These functions that are run on the backend are called middlewares.

A middleware is usually a application as mentioned, which runs whenever the server

receives a request or is returning a response. By using these middleware functions

many processes can be handled on backend. To give a few examples, the request

objects can be modified, the database can be querried, or process the information that

will be sent as a response.

The LMS backend application runs on a server which is created with ExpressJS

framework on NodeJS. The server handles the base routing of the application, which

are also handled by using ExpressJS. The LMS database is created using MySQL.

Then, a connection is established to this database from the backend application.

3.4.1.1 Database Tables

The database tables of the LMS is explained as follows:

 Resource: This table represents the items within the library. These resources

can range for many types, such as books, journals, magazines, etc. The resource

32

table has the fields ‘id’, ‘isbn’, ‘name’, ‘language’, ‘publisher’, ‘publish_date’,

’page’, ‘summary’, ‘subject’, ‘cover_image’, ‘back_cover_image’, ‘author’,

and ‘shelf’. The ‘author’ and ‘shelf’ fields are foreign keys, pointing to author

and shelf ids.

 Resource item: This table represents the resource items within the library. For

example, a book could have two copies within the library and a digital version.

The resource item table has the fields ‘id’, ‘type’ and ‘resource’. Both the ‘type’

and ‘resource’ fields points to resource type and resource ids.

 Resource type: This table represents the resource types, as previously

mentioned in th resource table, types such as a book, journal, magazine, etc.

This table has the fields ‘id’, ‘name’ and ‘hard_copy’, the ‘hard_copy’ field

representing if the resource is a hard copy or a digital copy.

 Shelf: This table represents the shelves within the library. It has the fields ‘id’,

‘name’ and ‘floor’, the ‘floor’ field pointing to the floor id.

 Floor: This table represents the floors within the library. It has the fields ‘id’,

‘name’ and ‘number.

 Author: This table represents the authors that can be saven in LMS. It has the

fields ‘id’, ‘full_name’ and ‘date_of_birth’.

 Process: This table represents the processes that can be taken within the LMS.

These processes can be borrowing or reserving a book. It has the fields ‘id’,

‘date’, ‘start_date’, ‘end_date’, ‘status’, and ‘type’. The ‘date’ field is the date

that the process is issued, ‘start_date’ is the date that the borrow or reserve

starts and the ‘end_date’ is the date that the borrow or reserve ends. The ‘status’

field states the status of the process such as ‘Approved’, ‘Declined’, or

‘Returned’, and the ‘type’ fields points to the process type id.

33

 Process type: This table represents the process types within the LMS, as

recently mentioned, the process types are reserve and borrow. It has the fields

‘id’ and ‘name’.

 User process: This table represents the processes that the user processes that

are currently taking place. It has the fields ‘id’, ‘user’, ‘process’ and ‘resource’,

all pointing to the respective ids.

 Notification: This table represents the notifications that are shown to users

about their past due dates, upcoming due dates, or recent borrows. It has the

fields ‘content’, ‘title’, ‘type’, ‘user’ and ‘process’. The ‘content’ field contains

the message of the notification, the ‘title’ field contains the title of the

notification, the ‘type’ field contains the type of the notification such as ‘error’,

‘warning’, or ‘success’ and it is used for showing the according cotification

icon. The ‘user’ field points to the user id, and the ‘process’ field point to the

process id.

 User: This table represents the users that use the LMS. It has the fields ‘id’,

‘name’, ‘surname’, ‘username’, ‘password’, ‘user_id’, ‘date_of_birth’,

‘department’, and ‘type’. The ‘type’ field points to the user role id.

 User role: This table represents the user roles within the LMS. It has the field

‘id’ and ‘name’.

34

Figure 7: EMU LMS Database Relationship Diagram

3.4.1.2 Routes

The routes that are created by the help of ExpressJS can be visited with a URI that is

defined. These are structured exactly as a URL for example. By that, the client sends

the requests and receive responds by pointing to these routes.

In the LMS project, the use of these routes are structured, that are similar to models in

the Model-View-Controller software architecture, which is commonly known as

MVC. To briefly explain, the ‘model’ in the MVC architecture corresponds to the data

structure, that is dynamic and independent from the other sections of the application,

such as the GUI.

Thus, each table in the database has a route that is created for it, which includes the

information that is needed to handle the base create, read, update, delete operations

35

(also known as CRUD operations) as well as other helper operations such as getting

view tables data, searching query responds and creating database tables automatically.

3.4.1.3 Base Route

The LMS routes are inherited from a class called ‘Base Route’. The Base Route defines

a data structure for the inheriting classes, which are called ‘Modelled Routes’. Also,

the methods previously mentioned, CRUD operations and other helper operations are

defined in the Base Route. These base operations in the Base Route are all general and

they are used by all the Modelled Routes. The defined data structure is used both in

the base operation methods, and the specified methods in the Modelled Routes.

Figure 8: An example of Base Route and Modelled Route Relation

The data structure of the Base Route contains the following data; table, route, fields,

field types, foreign key fields, prefix, join, view table fields and search table fields.

 Table: The ‘table’ field is the table name of the route in the database. This field

is used by the CRUD operations and the helper operations.

 Route: The ‘route’ field is the name that is given to the route, which used in

the route URI, similar to the example http://server/route-name.

http://server/route-name

36

 Fields: The ‘fields’ field is an array of strings that contain the field names of

the route’s database table. These fields are used by the CRUD operations and

the helper operations.

 Field types: The ‘field types’ field is an array of strings that contain the field

types of the route’s database table. These fields are used in database table

creation.

 Foreign key fields: The ‘foreign key fields’ field is an array of strings that

contain the field names of the foreign key fields that are in the route’s database

table. These fields are used when searching for items, in such where they are

added to the ‘SELECT’ section of a select-from SQL query. By this, the foreign

keys get included when searching for items, producing a more throughout

search result.

 Prefix: As a part of the structure, the database table fields begin with a prefix.

Thus, the ‘prefix’ field stands for the prefix of the route’s database table fields.

This field is used when getting a specific value, where the ID of a field is

obtained as ‘prefix_ID’, similar to ‘USER_ID’ as an example.

 Join: The ‘join’ field is the join statement that can be passed to a SQL query.

This field is used by the helper operations, such as search and getting view

tables.

 View table fields: The ‘view table fields’ field is a string that contains the field

names that will be returned in a view table response. By this field, what fields

are shown on a view table can be customized.

 Search table fields: The ‘search table fields’ field is a string that contains the

field names that will be use returned in a search response. By this field, what

fields are returned in a search response can be customized.

37

3.4.1.4 Modelled Routes

The Modelled Routes which are all inherit the Base Route, include the data structure,

CRUD operation methods and helper methods which are inherited from the Base

Route. Thus, a Modelled Route can be created for representing any table in the

database. Then, any CRUD operation, or helper operation can be carried out. Apart

from the base operations, any required specific method is written in a Modelled

Route’s own class. So, by following this general structure, the development phase can

be completed quciker, more efficiently and as well organized.

3.4.1.5 Application Programming Interface

An “Application Programming Interface” (API) is defined as a group of methods and

procedures, that serves the information to the client application from the backend

application. So, in LMS, all the methods that are defined in both the Base Route and

the Modelled Routes represent the API as a whole. Every method is represented in a

specific structure, that can be accessed from the client application and send requests to

or receive responds from. These specific address structures are stated as

http://server/route-name/method. So, an example can be given as

http://server/BaseRoute/USER/getAll, which would return all the data in the ‘USER’

table as a response. Any other specific method that is aside from the base operations

could be reached such as http://server/USER/getAllUserDepartments, which reside

from the Modelled Route’s address, instead of the Base Route’s. Thus, the collection

of these addresses represent the LMS API.

3.4.1.6 Authentication

In LMS, there are restricted processes that has to be authenticated in order to proceed.

Such as borrowing a book, which a user has to be logged in. Or, viewing all the

borrow/reserve application processes, which a user has to be logged in as a librarian

http://server/route-name/method
http://server/BaseRoute/USER/getAll
http://server/USER/getAllUserDepartments

38

user. So, logging in the user and checking the user role authentication operations are

handled on the backend application. To carry out these authentication operations,

middlewares are created and used respectively. To any authenticated operation similar

to what is given as an example previously, these authentication middlewares are used.

These authentication middlwares are defined as in the following:

 Login the user: The database is checked if the user exists, then it is checked if

the password matches. If the user exist and the password is correct, a token is

created for the user and is returned to the cleint. This token is generated from

the user id and a specifically defined secret, which means that each token is

unique in each login.

Figure 9: Login Activity Diagram

39

 Verify token: Any operation that requires the user to be logged in requires a

token to be provided, that should be generated on user login. This token than

has to be verified in order to proceed to a login restricted operation. If a token

is not provided or fails to be verified, the operation does not carry on and an

according respond is sent to the client.

Figure 10: Verify Token Activity Diagram

 Is student or lecturer: The user role is checked in the database, if the user role

is not student or lecturer, a response is returned accordingly and the operation

is not carried out. But, if the user role is student or lecturer, the operation

proceeds.

40

Figure 11: Check Library User Role Activity Diagram

 Is librarian: Exactly as the student/lecturer authentication, the user role is

checked in the database, if the user role is not librarian, a response is returned

accordingly and the operation is not carried out. But, if the user role is librarian,

the operation proceeds.

Figure 12: Check Librarian Role Activity Diagram

41

In conclusion, when performing authenticated operations, these actions are followed

by using the respective middlewares depending on the authentication that is required.

As an example, these actions are taken in the following order when a borrow request

is received; “verify token, check if the user is a student or a lecturer, perform the

borrowing operation”.

3.4.1.7 Security

For any web application, security is an important aspect. If an application is not secure,

the application can be exposed and open to attacks. The ‘Authentication’ section that

was recently mentioned, provides a base level of security as the users must be

authenticated whenever they are carrying out operations that are confidential and has

to be authenticated.

Apart from that, the backend applications are mostly targetted by the attackers

especially by the HTTP headers. The reason for this, is the HTTP headers’ potential

vulnerability, as they can leak sensitive information. These sensitive information can

be used by the attacker to attack to a web application with attacks such as cross-site

scripting (also known as XSS) and other attacks called ‘click-jacking’ or ‘sniffing’

attack (Vogt, et al., 2007) (Huang, Moshchuk, Wang, Schechter, & Jackson, 2012)

(Thakur & Chaudhary, 2013). To secure the application against such attacks, a module

called 'helmet' of NodeJS module is used in the LMS backend application, which

handles the securing of the HTTP headers. Helmet provides many security measures,

a few most important of these being:

 X-Frame-Options: Used for preventing the ‘click-jacking’ attack.

 X-Content-Type-Options: Used for preventing the ‘sniffing’ attack.

 X-XSS-Protection: Used for adding protection against XSS attacks.

42

Another general measure of security in LMS is provided by encrypting the user

password. The encryption is done by bcrypt password hashing, using the NodeJS

‘bcrypt’ module. Bcrypt is a password hashing algorithm, based on the Blowfish cipher

(Sriramya & Karthika, 2015). On the backend application, this module is used for

hashing the password, before saving it to the database. So, the user password is not

saved to the database as being exposed. When logging in, the bcrypt module is used

again, for comparing and verifying that the user password is matched.

Apart from these, MySQL has backup and restore functionalities. On of those is to

exporting the database to an SQL file. Thus, LMS database can be backed up by

exporting it to a file, which can be easily restored by importing that exported file. The

exporting process can also be automated by using many different tools. Also for

automating the backup import, MySQL’s own ‘mysqldump’ command can be used

alongside with the Linux ‘cron’ utility which is a time-base job scheduling utility, to

import the backed up file with defined intervals such as every 24 hours (Kirch &

Dawson, 2000).

3.4.2 Frontend Application

In the LMS project, the frontend application composed of technologies and

methodologies that are necesary for building the GUI, that aims to display the

information that is provided from the backend application, as well as submitting forms

for adding and editting. The code that handles these processes all run on the client side,

which is the user’s internet browser. Overall, React is used for routing client-side and

rendering pages that are written with JSX, and requesting the API is handled by

JavaScript fetch interface. Thus, all the pages that the user navigate and interact with

the LMS is built with React, version 16.13.1.

43

Similar to the backend application, the frontend application is also structured in a way

where models are utilized. With a structure utilizing models, it is aimed to handle

sending the base CRUD operation requests to the API, also automatically create forms

and view tables.

3.4.2.1 View Models

Frontend models, which are called ‘View Models’ are inherited from the ‘Base View

Model’. In order to utilize the model structure, the models are created representing

each Modelled Route in the backend application. By doing this, the URI that is created

in the backend application can be requested from the API. In the Base View Model, a

specific data structure is defined. With this data structure, it is possible to create

requests for the API accordingly.

In the Base View Model, basic methods are created that can be used for generating

requests to the CRUD operations. These requests are generated with the use of the

specific data fields that is defined for each View Model. Thus, with any View Model

that is created, CRUD operations can be carried out qucikly and easily. Apart from the

Base View Model and the base operations, more specific operations can be defined in

any View Model.

44

Figure 13: An example of Base View Model and View Model Relation

In a page where an action is required to be taken related with a View Model, for

example seeing the table of resources within the library, a View Model should be

defined accordingly in order to use the required action. So as in our example, in a page

similar to ‘View Resources’, a Resource View Model should be defined, where from

that View Model the ‘get all’ method is called, and all the resources are received from

the backend application. Received as a JSON object, this information is set to a React

state and applied to the GUI. Similar to this idea, any base operations can be used for

the View Models, which are forms, search and view tables. Apart from the base

operations, any other specific operation can be used after being defined in the

according View Model.

The Base View Model contains the data fields ‘route’, ‘title’, ‘url’ and ‘arguments’.

These fields can be explained as follows:

 Route: This field is a string which represents the route that is defined in the

backend application. This field is used when creating the URL that will be

requested.

45

 Title: This field is a string which will be used for titling forms, search results,

and view tables.

 URL: This field is a string which represents the URL, and it is created by

concatinating the server name with the route.

 Arguments: This field, is an array of JavaScript objects, which represents each

field of a Modelled Route in the View Model. These ‘arguments’ are used when

automatically creating forms and view tables. In each JavaScript object, a field

name, label and value, alongside other helper fields. These fields are not

mandotary and used whenever in need, in such operations such as froms and

view tables.

3.4.2.2 Forms

Forms are a fundamental functionality in many web applications. And also as

important in LMS, forms are a base functionality in the frontend application. Thus all

the operations of generating, validating, and submitting the form are done in the

frontend application.

The forms are generated by checking each argument defined in a View Model. For

each argument, related helper fields are checked in order to both generate and validate

the form. The ‘hidden’ field is checked to determine if the argument is included in the

form as a field, the ‘required’ field is checked to determine if the field is allowed to be

submitted empty or not. Also, a boolean field called ‘number’ is used to set a field into

only allow numeric values, and a field called ‘digit’ is used for setting a maximum

digit. When the form is submitted, the base ‘add’ operation is called for the respective

View Model, with the according fields.

46

3.4.2.3 Search

Similar to a search engine, the user can make a search within the library with the search

functionality in LMS. This search is usually made for a resource, but authors, shelves

and floors can also be searched. Thus, the user can view any resource, author, shelf,

and floor information by searching. A specific response is received from the backend

application containing the information of each search result. So, views are built

specificly according to this request. The search functionality is a base operation in the

LMS frontend application, which means that it can be used for any View Model.

3.4.2.4 View Tables

View tables are an effective way of displaying information to the user. This is another

base functionality of the LMS frontend application, which is implemented by using

the base structure and Material-UI tables. Thus, view tables can be created for any item

within LMS, such as resources, floors, shelves, etc.

By requesting the table view data from the API for a View Model, data is responded

according to Modelled Route’s view table fields from the backend application. With

the received information, the view table is generated automatically, using the Material-

UI table component. These view tables also have features such as column sorting,

increasing pagination, increasing the number of rows to display, as well as searching

and filtering any row with a search in real time.

3.4.2.5 Authentication

As mentioned previously, there are tasks in LMS which require authentication. Even

though some of the tasks such as searching a resource, checking resource details, etc

can be taken as a guest, other tasks such as borrowing or reserving a resource requires

the user to be a student or a lecturer.

47

Authentication on the frontend application is handled by as described; when the user

logs in successfully, the backend application responds with the user information which

contains the user id, name, surname, student id, username, birth date, department, role,

and the access token.

The information that is received from the backend application is then stored locally.

When an action is taken that requires authentication, the access token is also included

to the request as a parameter to be matched and verified on the backend application.

For example, the user information is checked before borrowing a book, if the user is

not logged in, he/she is prompted to login to their account and retry borrowing.

Any page that authentication is required for access also is checked by the system if the

user is logged in or not by from the local storage, if not, the user is redirected to another

page such as the login page. As an example, all the librarian user pages can only be

seen if the user is logged in as a librarian, otherwise they will be redirected to the login

page. On the other hand, because the student and lecturer users can view some pages

as a guest, if a guest tries to see page which requires authentication such as their

processes page, guests are redirected to the previous page that they were in.

3.4.3 Testing

In software engineering, testing is conducted in order to gather or provide information

about a sotware system’s quality. There are several ways and techniques on how

software testing is carried out. These techniques are generally guided towards both

finding bugs or errors in the system and measuring the usability of the system. In brief,

it involves running a section of the software, aiming to make sure that it meets some

certain factors such as meeting the requirements, responding correctly to inputs,

performance and proper usability.

48

Some of the most used software testing techniques are called black-box testing and

white-box testing. Black-box testing is carried out without accessing the source code,

meaning that the tester is aware of what the software is supposed to do, but does not

have any technical knowledge about it. On the other hand, white-box testing is carried

out by testers that have the knowledge of inner workings of the software, thus

conducting tests in a unit level. As a combination of these two techniques, there is

another technique called gray-box testing. In grey-box testing, the test is conducted by

a tester who have the knowledge of the inner workings of the software, defining test

cases based on that knowledge. This enables the tester to execute those test cases

similar to black-box testing, but test the qualities of the software more thoroughly.

As mentioned previously, LMS was developed iteratively. Where in each iteration, it

is aimed to bring a new feature to the system. As I worked alone on the project, I did

not have the chance to conduct black-box testing. Thus, I carried out grey-box testing

at the end of each iteration before advancing to a new one, making sure that the features

of the iteration meet the requirements, works as intended, and there are no apparent

bugs or errors.

During grey-box testing, my strategy was to identify inputs, expected outputs, user

scenarios and defining comprehensive test cases regarding these factors. Then, each

test case was tested by me, either passing if there were no problems, or failing when

faced any problems as result. At the end, any problem, error or bug that found by

failing tests was fixed. The goal of this strategy was to make sure there were no bugs

before moving on to a new development iteration, as stated earlier.

49

3.4.4 Development Environment

In web development, the tools to be used are generally not very strict. It often depends

on what the developer would prefer to use. For writing JavaScript code, only a text

editor is necessary when developing web applcations, as it does not require compiling.

For that reason, even a lightweight, simple text editor can be used, however nowadays

there are many integrated development environment and editor choices such as

VSCode, Sublime Text, or WebStorm, each having different options such as keyboard

shortcuts, error detecting, code formatting, and so forth. But as mentioned, it is

completely up to what to developer prefers to use as a code editor.

Besides of an editor, other tools might also be used in order to make the development

easier, and more efficient during web development. One of the most important of these

tools is a version control tool. A version control tool is a tool that is used for managing

the changes in development, such as Git.

Tools such as a visual database design tool or an API client are other tools that could

be used during web development. A visual database design tool is a tool that is easily

used to build, change, query databases and update data through a GUI. Whereas an

API client is a tool that is used for testing API calls, by sending calls, then receiving

and presenting the response. These tools make sending complex or repeated test API

calls easier and efficient, as requests can be saved, or edited.

While deveoping the LMS, I used WebStorm IDE, Git with GitHub for version control,

MySQL Workbench database design tool for MySQL, Postman for testing the backend

API, on Windows 10 operating system.

50

3.4.5 Replacing the Already Existing System

In software engineering, systems which are outdated, but still in use are called legacy

systems. Over the time, already existing systems become outdated by current time

standarts, which is both difficult to use by the users and dificult to maintain by the

developers. Thus, techniques and tools exist that are used when migration and

modernization needed.

Legacy system migration is a multistep process, which is implemented by using many

techniques and tools. Some of the legacy system migration techniques are legacy

system understanding, target system understanding, target system development and

deployment and provisioning of target systems (Ganesan, T.Chithralekha, &

Rajapandian, 2018). The tools that are used in legacy system migration are often for

data analysis and reverse engineering, such as Software Refinery, DB-MAIN, Apache

NiFi (Bisbal, et al., 1997). By utilizing these techniques and tools, a sufficient and

through migration can be achieved.

In order to migrate the already existing system into LMS, data such as resources and

users has to be transferred to the LMS database. Even though the data and database

structure is not exactly the same, they are similar, since library systems mostly have a

commonly known structure. The process of integrating the required data to the LMS

database can be achieved either by using previously mentioned tools or by writing

simple, specific scripts by further analysis of the data.

51

 Chapter 4

CONCLUSION

Today the advantages of a modern, responsive web application are evident. As an

application that can be accessed through a web browser, can both be used on a

computer, or on any other mobile device with full compatibility and this provides more

flexibility than a traditional non-responsive web application or a native mobile

application. Combined with a straightforward, easy to use, user centric design, a library

application in an educational setting can be improved tremendously.

It is aimed to develop an application with an objective to ease the use of the EMU

library, with more of a user centric and responsive design, both for students, lecturers

and the library staff. Overall, the library users can mainly search resources within the

library, can view the details of the resources, and carry out borrow or reserve requests

on resources easily, where the library staff can respond to borrow or reserve requests

and check the current borrow and reserve processes.

The LMS aims to provide the library users a versatile use as part of their education and

busy everyday lives. Thus, it is focused to be designed with a modern approach,

methodologies, and technologies. In addition to this, the LMS also provides a solution

to the tedious process of locating, borrowing or reserving a resource, keeping track of

the borrowing or the reservation using a modern responsive web application, offering

an overall simpler way to use and manage the EMU library. The LMS brings many

52

advantages both for students, lecturers and librarians of EMU. Users of EMU library

can view and use the whole system anywhere, anytime and with any device, thus

making these processes fully online. Besides, the library users get notified about any

reserve or borrowed resource whenever they have a closing pick-up or return date and

keeping track of their reserve or borrow processes easily online. On the other hand,

librarians can manage keeping track of the library stock fully online, carry out

borrowing operation fully online as well without the need of paperwork, and have a

safer environment as only the EMU students and lecturers can reserve or borrow

resources. Below, a table of comparison is shown briefly comparing LMS to the

existing system, and some of the mentioned related works.

Table 1: LMS, Existing System, and Related Works Comparison Table

Library

Manage-

ment

System

Current EMU

Library

Catalogue

LIBKART Bluetooth

Library

Manager

Technologies HTML,

CSS,

JavaScript,

ReactJS,

NodeJS,

ExpressJS,

MySQL

JavaScript,

PrototypeJS,

script.aculo.us,

Apachi Web

Server

Java Python,

SL4A,

Bluetooth,

SQLite

Platforms Web

application,

any

computer or

smart device

with an

internet

browser

Web

application, any

computer or

smart device

with an internet

browser

Android Android

Responsiveness Fully

responsive,

along

computers

and smart

devices

Responsive,

along

computers and

smart devices,

has several

bugs/errors

Only on

mobile

devices

Only on

mobile

devices

53

Hardware

Implementation

No hardware

implementat

ion, stated as

a future

work further

in chapter 4

No hardware

implementation

No

hardware

implement-

tation

No hardware

implementa-

tion

Search for

resources

Search for

resources all

within the

system

Search for

resources all

within the

system

Search for

resources

all within

the system

Search for

resources all

within the

system

Locate resources View

resource

details,

containing

the resource

floor and

shelve

information

View resource

details,

containing the

resource shelve

number

N/A View

resource

details,

containing the

resource rack

Borrow/Reserve

online

Carried out

fully within

the system,

without

applying or

paperwork

Requires

applying for a

membership

and borrowed

by filling a

form

Only

borrow

request

within the

system

N/A

Keep track of

borrows/reserves

Within the

system

Within the

system, if the

user is a

member

N/A N/A

Notifications Within the

system

Via e-mail N/A N/A

As a web application, the LMS contains two applications, and works as a combination

of these two applications. The backend application, which receives requests from the

client, and provides response to the user, alongside with the frontend application,

where the user interacts with the system through the GUI. Focused on modern

methodologies and technologies, the backend application was built using NodeJS,

ExpressJS and MySQL, then the frontend application was built using HTML, CSS,

JavaScript and React alongside with Material-UI.

54

4.1 Future Work

In recent years, many libraries around the world is adapting their systems both with

online and hardware technologies combined. As also mentioned in the ‘Related

Works’ section of this study, it is clear that many studies are conducted to bring both

hardware technologies and other methodologies such RFID, NFC, WSN, OFET,

Bluetooth, IoT, etc., besides of online technologies. The recent progress and the

availability of such technologies enable a library management system to be a more

complete, coherent, and efficient system as a whole with the combination of both

hardware and online technologies.

Therefore, the LMS can also be easily integrated with such technologies, as a part of

an even larger system. A system where all the resources within the library is equipped

with RFID cards, and all the shelve racks with RFID readers. That way, the books

could dynamically be tracked within the library, automatically showing the book

location according to those RFID readings. Besides of that, special borrowing stations

physically could also be placed within the library, where the borrowing can be carried

out by scanning the RFID cards on these resources, automatically without any further

support from the librarian. Amongst these borrowing stations, there could also be

returning stations for returning the borrowed resources, carrying out the returning

resource process, again without any further assist from the librarian. Both on

borrowing and returning stations, a web service could be written with NodeJS, for

carrying out the borrowing and returning actions, by making related calls to the LMS

API.

55

Often, resources within the library go under maintenance, in order to keep them in a

good physical condition. So, certain resources inside the library may not be accessible

from time to time until they are replaced or fixed, if they need and undergo

maintenance. To identify if a resource is currently under maintenance, a ‘maintenance’

field could be kept in the ‘resource_item’ database table. Thus, the number items that

are currently available to borrow could be controlled more accurately. For example, if

there are multiple copies available of an item, and only a single book undergoes

maintenance, the total number of available copies should be decreased by one. But if

there is only a single copy of the book, and it undergoes maintenance, a message could

be shown to the user on the resource details page, stating that the book is currently

undergoing maintenance.

Another useful feature for library users, would be having a rating system for resources.

By keeping a rating for resources, library users could get information about how useful

or helpful a resource is more clearly. This feature could be implemented by adding a

rating picker on the resource details page and a field called ‘rating’ to the ‘resource’

database table, keeping the average rating of a resource.

In addition, digital versions of resources could also be provided for library users to

view online. To implement this, a field can be added to the ‘resource_item’ database

table called ‘digital_file’, for the scanned, digital version of the resource, such as a

PDF file. When adding a resource item, the digital version could be added by this field.

Then on the resource details page, a button called ‘View Digitally’ could be shown, if

the digital version of the book is available within the system. That way, if any of the

users prefer to view a digital version of a resource, they can view it online.

56

REFERENCES

Baryshev, R. A., Verkhovets, S. V., & Babina, O. I. (2017). The smart library project

Development of information and library services for educational and scientific

activity. The Electronic Library, 36(3).

Bayani, M., Segura, A., Alvarado, M., & Loaiza, M. (2018). IoT-Based Library

Automation and Monitoring system: Developing an Implementation

framework of Implementation. e-Ciencias de la Información, 8(1).

Bhattacharya, S. (2014). Blue-Droid: An Intelligent Library Management System on

Android Platform. IOSR Journal of Computer Engineering, 16(4).

Bisbal, J., Lawless, D., Wu, B., Grimson, J., Wade, V., Richardson, R., & O'Sullivan,

D. (1997). A Survey of Research into Legacy System Migration.

Cao, G., Liang, M., & Li, X. (2018). How to make the library smart? The

conceptualization of the smart library. The Electronic Library, 36(5,).

Chang, C.-C. (2013). Library mobile applications in. Emeral Insight.

Christensson, P. (2016, June 17). Client-Server Model Definition. (TechTerms)

Retrieved August 19, 2020, from https://techterms.com/definition/client-

server_model

57

Doosti, B., Dong, T., & Deka, B. (2018). A Computational Method for Evaluating UI

Patterns.

Ganesan, A., T.Chithralekha, & Rajapandian, M. (2018). A Formal Model for Legacy

System Understanding. I.J. Intelligent Systems and Applications.

Giurgiu, L., & Gligorea, I. (2017). Responsive Web Design Techniques. De Gruyter

Open.

Hahn, E. M. (2016). Express in Action: Writing, building, and testing Node.js

applications. New York: Manning Publications.

Hota, A., & Prabhu, D. M. (2014). Node.Js: Lightweight, Event driven I/O web

development. Informatics.

Huang, L.-S., Moshchuk, A., Wang, H. J., Schechter, S., & Jackson, C. (2012).

Clickjacking: Attacks and Defenses.

Jin, K. H. (2017). Teaching Responsive Web Design to Novice Learners. New York:

Association for Computing Machinery.

Job, J. (2015, December 7). My Scrum Diagram. (jordanjob.me) Retrieved August 19,

2020, from https://jordanjob.me/blog/scrum-diagram/

58

Karanth, S., Castelino, J., Nireeksha, Nazareth, F., & K, A. (2017). An Advanced

Library Management System Using Android Device. International Journal of

Latest Technology in Engineering, Management & Applied Science, VI(IV).

Kirch, O., & Dawson, T. (2000). Linux Network Administrator's, 2nd Edition.

O'Reilly.

LeMahieu, P. G., Nordstrum, L. E., & Potvin, A. S. (2017). Design-based

implementation research. Quality Assurance in Education, 25(1).

Londhe, M. N., & Patil, D. S. (2015). Open Source Library Management Systems: A

Survey and Present Developmental Status. International Journal of Library

and Information Science.

Makhija, R. (2020). Top Front-End Frameworks in 2020. (Guru TechnoLabs)

Retrieved August 19, 2020, from https://www.gurutechnolabs.com/top-front-

end-frameworks/

Miller, D. (2018). The Power of JavaScript. New York: Cavendish Square Publishing.

Monali, M. S., & S.A., P. G. (2017). GSM and RFID Based Library Book Availability

and Location Finder System. International Advanced Research Journal in

Science, Engineering and Technology, 4(Special Issue 2).

59

Napper, T. M. (2020, APRIL 7). Responsive Web Design. (MY LATEST NEWS)

Retrieved August 19, 2020, from https://mylatestnews.org/responsive-web-

design/

Nugroho, S., Waluyo, S. H., & Hakim, L. (2017). Comparative Analysis of Software

Development Methods between Parallel, V-Shaped and Iterative. International

Journal of Computer Applications, 169(11).

Pandey, J., Kazmi, S. I., Hayat, M. S., & Ahmed, I. (2017). A Study on Implementation

of Smart Library Systems using IoT.

Patil, N., Karande, P., Desai, J., & Pereira, S. (2017). Internet of Things for library

Management System. International Journal of Engineering Science and

Computing, 7(4).

Powell-Morse, A. (2016, December 15). Iterative Model: What Is It And When Should

You Use It? (Airbrake) Retrieved August 19, 2020, from

https://airbrake.io/blog/sdlc/iterative-model

Sangavi, S., Deepa, C. S., Surya, S., Vinumadhi, C. P., & Brindha, M. S. (2016).

Advanced Library Management System Using RFID. International Journal for

Trends in Engineering & Technology, 15(1).

Shada, G. S., & Ayu, M. A. (2018). Designing Android User Interface for University

Mobile Library.

60

Shylesh, S. (2017). A Study of Software Development Life Cycle Process Models.

Mangalore: Srinivas Institute of Management Studies.

Sriramya, P., & Karthika, R. A. (2015). Providing Password Security by Salted

Password Hashing Using Bcrypt Algorithm. ARPN Journal of Engineering and

Applied Sciences, 10(13).

Suda, K. A., & Rani, N. S. (2013). Radio Frequency Identification for Efficient Library

Management. International Journal of Business and Social Science, 4(15).

Sutherland, J., & Schwaber, K. (2011). The Scrum Papers: Nut, Bolts, and Origins of

an Agile Framework. Paris.

Thakur, B. S., & Chaudhary, S. (2013). Content Sniffing Attack Detection in Client

and Server Side: A Survey. International Journal of Advanced Computer

Research, 3(10).

Torres-Díaz, D. J.-C., Duart, D. J., Gómez-Alvarado, D. H.-F., Marín-Gutiérrez, D. I.,

& Segarra-Faggioni, V. (2016). Internet Use and Academic Success in

University Students. Media Education Research Journal.

Vandana, C. P., Bhattacharjee, A., & Gupta, A. (2017). Library Management system

based on IoT. Journal of Computer Science and Engineering, 3(4).

61

Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., & Vigna, G. (2007).

Cross-Site Scripting Prevention with Dynamic Data Tainting and Static

Analysis.

W3C. (2018, March 27). HTML 4.01 Specification. Retrieved from

https://www.w3.org/TR/2018/SPSD-html401-20180327/

W3C. (2019, January 22). CSS Snapshot 2018. Retrieved from

https://www.w3.org/TR/css3-roadmap/

Wiener, L., Ekholm, T., & Haller, P. (2017). Modular ResponsiveWeb Design: An

Experience Report.

Wieruch, R. (2019). The Road to Learn React. Leanpub.

62

APPENDIX

63

User Manual

Figure 14: Home Page (Library Users/Guest)

From the home page, the users can search for a resource, author, shelf or floor.

Figure 15: Search Results Page

When a search is made, the user is taken to the search page to check the search results.

In this page, the related items with the query are listed, according to the search criteria.

The search results here can be narrowed down by resources, floors, shelves or authors.

64

Figure 16: Author Search Result

When a search result includes an author, the author name and some work of the author

is displayed in the author search results.

Figure 17: Floor Search Result

When a search result includes a floor, the floor name, floor number, and some of the

shelves that are in that floor is displayed in the floor search results.

65

Figure 18: Shelf Search Result

When a search result includes a shelf, the shelf name and the floor that the shelf is in

is displayed in the shelf search results.

Figure 19: Resource Details Page as a Guest

Upon clicking the resource title in search results, the user is taken to the resource

details page. In this page, the user can see the related resource information such as the

title, type, release date, author, summary, ISBN, publisher, publish date, author, page

66

number, availability and location. In this page, any resource that is available can be

asked to be borrowed by clicking the “Borrow” button.

Figure 20: Login Required Dialog

If users wish to borrow a resource, they have to login to the system with their

student/lecturer id and password. The users can login by clicking the ‘login’ button

either on the login warning dialog, or on the right side of the top bar.

Figure 21: Login Page

67

Figure 22: Resource Details Page as a Student/Lecturer

After logging in, the users can now make a borrow request to any resource that is

available, by clicking the ‘Borrow’ button.

Figure 23: Borrow Dialog

When the ‘Borrow’ button is clicked, the user can see the borrow details on the borrow

dialog. In this dialog, the book name, borrow starting date, borrow ending that, and

68

user full name is displayed. The user can confirm the borrow request by clicking the

‘Borrow’ button on this dialog.

Figure 24: Reservable Resource

If a resource is not currently available, meaning that all the resource copies are

borrowed, the user can reserve the resource by clicking the ‘Reserve’ button.

Figure 25: Reserve Dialog

69

When the ‘Reserve’ button is clicked, the user can see the reserve details on the borrow

dialog. In this dialog, the book name and the soonest return date is displayed. The user

can confirm the reserve by clicking the ‘Reserve’ button on this dialog.

Figure 26: Current Library User Processes

By clicking the ‘Borrows/Reserves’ button on the right side of the app bar, users can

view the current ongoing borrow or reserve processes as a table. On this table, the

process type, borrower name, borrower surname, borrower student/lecturer id,

borrowed resource ISBN, borrowed resource name, borrow date and return date are

displayed.

70

Figure 27: Librarian Home Page

The librarian section of the LMS can only be accesses by librarian users, thus no guest

is allowed on the librarian application. From the home page, the librarian can view the

resources (books), resource types, authors, processes, floors and shelves. From each

respective view page for these, new items can be added, edited or deleted.

Figure 28: Resources Page (Librarian)

In this page, all the resources within the library. The ISBN, name, language, publisher,

publish date, number of pages, subject, author, shelf, floor and the current amount of

the resource are displayed in the view table. The librarian can search items the view

71

table by using the ‘Search’ text field on top of the view table. Any row can also be

sorted ascending and descending. A new resource can be added by clicking the ‘Add

New’ button on top, an item can be edited by choosing it on the view table and clicking

the ‘Edit’ button, and any item can be deleted by choosing it on the view table and

clicking ‘Delete’ button. Also, in the Resources Page, the librarian can view resource

types and authors, by clicking to the ‘Resource Types’ button and the ‘Authors’ button

and resource items can be added by clicking the ‘Resource Item’ button.

Figure 29: Add Resource (Librarian)

On the ‘Add Resource’ page, the user can add a new resource by filling the form. The

form contains these fields; ISBN, name, language, publisher, publish date, number of

pages, summary, subject, cover image, back cover image, author and shelf.

72

Figure 30: Edit Resource (Librarian)

On the ‘Edit Resource’ page, the user can edit the resource details by filling the form.

The form contains the same fields as the add page; ISBN, name, language, publisher,

publish date, number of pages, summary, subject, cover image, back cover image,

author and shelf.

Figure 31: Resource Types Page (Librarian)

In this page, all the resource types within the library. The resource type name and is

the resource type hard copy or not are displayed in the view table. The librarian can

73

search items the view table by using the ‘Search’ text field on top of the view table.

Any row can also be sorted ascending and descending. A new resource type can be

added by clicking the ‘Add New’ button on top, an item can be edited by choosing it

on the view table and clicking the ‘Edit’ button, and any item can be deleted by

choosing it on the view table and clicking ‘Delete’ button.

Figure 32: Add Resource Type Page (Librarian)

On the ‘Add Resource Type’ page, the user can add a new resource type by filling the

form. The form contains these fields; resource type name and is the resource type hard

copy or not.

Figure 33: Edit Resource Type Page (Librarian)

74

On the ‘Edit Resource Type’ page, the user can edit the resource details by filling the

form. The form contains the same fields as the add page; resource type name and is

the resource type hard copy or not.

Figure 34: Authors Page (Librarian)

In this page, all the authors within the library. The author name and the author date of

birth are displayed in the view table. The librarian can search items the view table by

using the ‘Search’ text field on top of the view table. Any row can also be sorted

ascending and descending. A new author can be added by clicking the ‘Add New’

button on top, an item can be edited by choosing it on the view table and clicking the

‘Edit’ button, and any item can be deleted by choosing it on the view table and clicking

‘Delete’ button.

Figure 35: Add Author Page (Librarian)

75

On the ‘Add Author’ page, the user can add a new resource type by filling the form.

The form contains these fields; author name and the author date of birth.

Figure 36: Edit Author Page (Librarian)

On the ‘Edit Author’ page, the user can edit the author details by filling the form. The

form contains the same fields as the add page; author name and the author date of birth.

Figure 37: Add Resource Item Page (Librarian)

On the ‘Add Resource Item’ page, the user can add a new resource item by choosing

the resource item type, and the resource.

76

Figure 38: Floors Page (Librarian)

In this page, all the floors within the library. The floor name, floor number, number of

shelves on the floor are displayed in the view table. The librarian can search items the

view table by using the ‘Search’ text field on top of the view table. Any row can also

be sorted ascending and descending. A new floor can be added by clicking the ‘Add

New’ button on top, an item can be edited by choosing it on the view table and clicking

the ‘Edit’ button, and any item can be deleted by choosing it on the view table and

clicking ‘Delete’ button.

Figure 39: Add Floor Page (Librarian)

On the ‘Add Floor’ page, the user can add a new floor by filling the form. The form

contains these fields; floor name and floor number.

77

Figure 40: Edit Floor Page (Librarian)

On the ‘Edit Floor’ page, the user can edit the floor details by filling the form. The

form contains the same fields as the add page; floor name and floor number.

Figure 41: Shelves Page (Librarian)

In this page, all the shelves within the library. Shelf name, shelf floor name, shelf floor

number, and number of books on the shelf are displayed in the view table. The librarian

can search items the view table by using the ‘Search’ text field on top of the view table.

Any row can also be sorted ascending and descending. A new shelf can be added by

clicking the ‘Add New’ button on top, an item can be edited by choosing it on the view

table and clicking the ‘Edit’ button, and any item can be deleted by choosing it on the

view table and clicking ‘Delete’ button.

78

Figure 42: Add Shelf Page (Librarian)

On the ‘Add Shelf’ page, the user can add a new shelf by filling the form. The form

contains these fields; shelf name and the floor.

Figure 43: Edit Floor Page (Librarian)

On the ‘Edit Shelf’ page, the user can edit the shelf details by filling the form. The

form contains the same fields as the add page; shelf name and the floor.

79

Figure 44: Library User Processes (Librarian)

In this page, all the library user processes within the library. Process type, borrower

name, borrower surname, borrower student/lecturer id, borrowed resource ISBN,

borrowed resource name, borrow date, borrow return date are displayed in the view

table. The librarian can search items the view table by using the ‘Search’ text field on

top of the view table. Any row can also be sorted ascending and descending.

Figure 45: Borrow Request Dialog (Librarian)

By clicking a process on the Library User Processes view table, the librarian can

confirm or decline a borrow request. On this dialog, the book name, borrow start date,

borrow return date, and the user full name is displayed. The borrow request can be

80

confirmed by clicking the ‘Confirm’ button and declined by clicking the ‘Decline’

button.

Figure 46: Return Borrow Page (Librarian)

On the ‘Process Requests’ page the librarian can change the process status of returned

resource items by choosing an item, then clicking the ‘Return’ button.

Figure 47: Return Borrow Request

By clicking the ‘Return’ button, the librarian can confirm or decline a return. On this

dialog, the book name, borrow start date, borrow return date, the user full name and

81

the user ID is displayed. The return request can be confirmed by clicking the ‘Confirm

Return’ button and declined by clicking the ‘Cancel’ button.

