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ABSTRACT

In this thesis, we focus on numerical solutions of general linear multi-term fractional

differential equations (FDEs) with fractional derivatives defined in the Caputo sense.

Multi-term fractional order differential equations are involving both ordinary and

fractional derivative operators. Numerical methods plays very crucial role for solving

fractional differential equations, since analytical solutions are not always possible for

solving them. Memory trait of fractional calculus is one of the main reason for

difficulty of developing analytical techniques for such a equations. Therefore, there

has been considerable interest in solving FDEs numerically in recent years and many

powerful schemes have been developed. Essentially, most of the developed methods

are modified from original versions for classical differential equations and applied to

FDEs.

In this study, we introduce a numerical technique based on the fractional Taylor

vector and we construct fractional Taylor operational matrix of fractional integration

to solve multi-term FDEs. The main characteristic of this technique is to reduce the

given IVP of fractional order to a system of algebraic equations by employing the

fractional Taylor operational matrix of fractional integration. Finally, this set of

algebraic equations can be solved easily and efficiently for unknown coefficients by

using computer programming. Consequently, by using these coefficients, the

approximate solution of the given problem can be obtained. Some numerical

examples are presented to demonstrate the accuracy and applicability of given

method. The approximate solutions obtained by use of given technique are compared

with numerical results of some other methods in literature and exact solutions of
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given problems. From these results, we can conclude that the presented technique is

efficient and applicable for solving high order multi-term fractional order differential

equations numerically.

Keywords: numerical solutions, fractional Taylor vector,fractional differential

equations, spectral method, Caputo fractional derivative, Riemann-Liouville

fractional integral, operational matrices.
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ÖZ

Bu tez çalışmasında, Caputo kesirli türevlerine sahip, genel lineer çok terimli kesirli

diferansiyel denklemlerin sayısal yöntem ile çözümlerine odaklanılmıştır. Çok terimli

kesirli türevlere sahip diferansiyel denklemler, hem klasik hem kesirli türev

operatörleri içeren denklemlerdir. Analitik metodlar ile kesirli türevlere sahip

diferansiyel denklemlerin çözümlerine ulaşmak her zaman mümkün olmadığından,

sayısal metodlar bu tür denklemlerin çözümlerinde çok önemli bir rol oynamaktadır.

Kesirli analizin uzun hafıza özelliği, bu tür diferansiyel denklemlerin çözümü için

analitik yöntemler geliştirmeyi zorlaştıran en önemli sebeplerden biridir. Bu nedenle,

kesirli türevli diferansiyel denklemlerin sayısal yöntemler kullanılarak çözümü son

yıllarda büyük ilgi görmektedir ve bunun sonucu olarak birçok güçlü teknik

geliştirilmiştir. Aslında, geliştirilen yöntemlerin çoğu, klasik diferansiyel

denklemlerin çözümü için kullanılan orijinal versiyonlardan değiştirilip

güncellenerek kesirli diferansiyel denklemlere uygulanan yöntemlerdir.

Bu çalışmada, çok terimli kersirli diferansiyel denklemlerin sayısal çözümleri için,

kesirli Taylor vektörüne dayanan bir yöntem sunulmaktadır. Sunulan yöntemin ana

amacı, kesirli Taylor vektöründen yararlanarak kesirli integrasyonun operasyonel

matrisini oluşturmak ve bu matrisi kullanarak, verilen çok terimli kesirli diferansiyel

denklemin bir cebirsel denklem sistemine indirgenmesini sağlamaktır. Son olarak,

elde edilen bu cebirsel denklem sistemi, bilgisayar programlaması kullanılarak,

bilinmeyen katsayı için verimli bir biçimde çözülebilmektedir. Sonuç olarak, elde

edilecek katsayılar kullanılarak, verilen problemin yaklaşık çözümü elde

edilmektedir. Sunulan yöntemin verimliliğini ve uygulanabilirliğini test edebilmek
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için bazı örnekler verilmiştir. Sunulan yöntem kullanılarak elde edilen yaklaşık

çözümler, verilen problemlerin kesin çözümleri ve literatürde bulunan bazı diğer

sayısal yöntemler ile karşılaştırılmıştır. Elde edilen sonuçlar ve karşılaştırmalar,

sunulan yöntemin, çok terimli kesirli diferansiyel denklemlerin yaklaşık çözümlerine

ulaşmakta çok başarılı ve verimli olduğunu kanıtlamaktadır.

Anahtar Kelimeler: sayısal çözümler, kesirli diferansiyel denklem, spektral metod,

Caputo kesirli türevi, Riemann-Liouville kesirli integrali, kesirli Taylor vektörü,

operasyonel matrix.
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Chapter 1

INTRODUCTION

1.1 Fractional calculus: A brief history and some applications

An emerging field of mathematical analysis; fractional calculus, which can be

described as generalisation of ordinary differentiation and integration to arbitrary

non-integer orders. Although the title ”integration and differentiation of arbitrary

order” being more proper for this topic, a misnomer designation; ”fractional calculus”

is in use from the days of L’Hospital. The history of fractional calculus is almost as

long as the history of traditional calculus, beginning with some speculations of G.W.

Leibniz (1695) and L. Euler (1730). However, fractional calculus and fractional

differential equations (FDEs) are rapidly developing and increasingly becoming

popular in recent years. Some of famous mathematicians, who have provided crucial

contributions for fractional calculus, contains P.S. Laplace (1812), J.B.J. Fourier

(1822), N.H. Abel (1823-1826), J. Liouville (1832-1873), B. Riemann (1847), A.K.

Grünwald (1867-1872), A.V. Letnikov (1868-1872), H. Laurent (1884), J. Hadamard

(1892), S. Pincherle (1902), H. Weyl (1917), H.T. Davis (1924-1936), A. Zygmund

(1935-1945), E.R. Love (1938-1996), D.V. Widder (1941), M. Riesz (1949) and so

on [13]. Since fractional derivative is not necessarily unique, there are some different

well-known definitions in the literature, i.e. Grünwald–Letnikov derivative, RL

fractional derivative and Caputo derivative are some important ones. The

progressively developing history of this old and yet novel topic can be found
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in [1]- [5]. In fact, fractional calculus provides the mathematical modeling of some

crucial phenomena like social and natural in a more powerful way than the ordinary

one. Because, if we compare with the classical calculus, the fractional calculus has

the long interaction features, namely memory effects. Therefore, this memory treat of

fractional calculus can better illustrate different kinds of nonlinear dynamics in both

theories and mathematical modeling of engineering problems. Over the last few

decades, many applications were reported in many fields of science and engineering

such as chaotic systems [6], fluid mechanics [8], viscoelasticity [9], optimal control

problems [10, 11], chemical kinetics [12], electrochemistry [14], biology [15],

physics [16], bioengineering [17], finance [18], social sciences [47], economics [48],

optics [49], chemical reactions [50], rheology [51] and so on. Due to the importance

of FDEs, the solutions of them are attracting widespread interest. On the other hand,

due to reason that we mention before about the difficulty of analytical solutions,

numerical techniques becomes more crucial for solving such equations.

In this thesis, we will focus to solve multi-term FDEs numerically, which are one of

the most important type of FDEs, that is a system of mixed fractional and ordinary

differential equations and involving more than one fractional differential operators.

Nowadays, they are widely appearing for modeling of many important processes,

especially for multirate systems. Their approximate solution is then a strong subject

that deserves high interest.
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3

imperfect vaccination. In [59], Veeresha et al. used the q -homotopy analysis

to get numerical approximations to fractional stochastic SIS epidemic model with 

In [58], Abuasad et al. applied fractional multi-step differential transformed technique 

class of initial BVPs for the fractional diffusion equations with variable coefficients. 

Denghan presented a method based on the shifted Legendre-tau idea for solving a 

operational matrices of differentiation to approximate FDEs. In [57], Saadamandi and 

equations with non-integer order numerically. In [56], Li and Sun applied block pulse 

collocation technique based on Haar wavelet to solve Riccati type differential 

operational matrix to find the solution to FDEs. In [55], Khashan et al. introduced a 

applied the numerical inverse Laplace transform technique based on the Bernstein 

partial differential equations in [23] by Vavani and Aminataei. In [54], Rani et al. 

alternative method of Laplace transform. Tau method introduces for solving fractional 

and Bera applied Adomian decomposition method for the solution of a FDEs as an 

iteration method and homotopy perturbation technique to solve FDEs. In [22], Ray 

Taylor collocation method. In [8, Chapter 6], Zheng and Zhang used variational 

by Podlubny. In [21], Ç enesiz et al. solved Bagley–Torvik equation by generalized 

by Diethelm et al. Laplace transforms for the solution of FDEs is introduced in [20]

used to solve FDEs. An Adams type predictor-corrector method is discussed in [19]

this section, we give some examples of existing numerical methods in literature that 

various numerical techniques have been developed for solving FDEs in literature. In 

equations to their corresponding FDEs is not an easy process. However, there are 

The extension of present numerical techniques for classical integer order differential 

differential equations

1.2 Literature review on numerical methods for fractional 



transform method to solve fractional Kolmogorov–Petrovskii–Piskunov (FKPP)

equation. In [60], Silva et al. used the conformable Laplace transform to discuss

solution of some fractional linear differential equations with constant coefficients.

In [61], Pitolli applied a collocation method based on fractional B-splines for the

solution of FDEs. In [62], finite difference method on Non-Uniform Meshes for

Time-Fractional Advection–Diffusion Equations used by Fazio et al. In [24], Odibat

et al. applied homotopy analysis technique to solve nonlinear FDEs and so on.

1.3 Spectral methods

Spectral methods are numerical techniques used to solve classical or fractional

differential equations in applied mathematics. In 1938, spectral methods introduced

by Lanczos [68] by showing the powerful role of Fourier series and Chebyshev

polynomials for solutions of some problems. Applying spectral methods to solve

many different types of integral and differential equations numerically, has received

considerable interest in recent years, because of their easy applicability over finite and

infinite intervals. Spectral methods are highly related to finite element methods and

they depend on very similar ideas. The principal difference is that the finite element

methods utilize basis functions that are nonzero only on trivial subdomain, while

spectral methods utilize basis functions which are nonzero over the entire domain.

That is to say, finite element methods utilize a local approach, whereas spectral

methods take on a global approach. Therefore, when the solution is smooth, spectral

methods have very good error properties, that is the so-called ”exponential

convergence” being the fastest possible. These highly accurate methods are based on

expressing the approximate solution of differential equation as a linear combination

of a chosen set of orthogonal basis functions and choosing the coefficients in the sum

4



in order to satisfy the solution of differential equation [69]. In general, there are three

types of such a methods; collocation, Tau and Galerkin. We focus on collocation

spectral method.

The collocation is based on interpolation. Similar to finite difference method, the

collocation spectral method uses collocation points, namely a set of grid points in the

domain. In our work, for discretization of multi-term FDEs, we use spectral collocation

method with fractional Taylor basis which are easy to approximate the functions.

1.4 Structure of the thesis

In this thesis, motivated by the results reported in [27, 30] for solving a smaller class

of problems where the highest order of derivative is an integer and involving at most

one noninteger order derivative, we go further and establish a method for numerical

solutions for higher order and arbitrary multi-term fractional FDEs which have a

general form

Dαy(t) = f
(

t,y(t),Dβ0y(t),Dβ1y(t), ...,Dβky(t)
)
, t ∈ [0,R] (1.1)

where Dα representing the Caputo fractional derivative of order α > 0 and we assume

that 0 < β0 < β1 < ... < βk < α, y(p)(0) = Yp, p = 0,1, ...n where n−1 < α < n.

In this work, our main purpose is to present an effective, reliable method to

approximate IVP for the Eq.(1.1). Therefore, a numerical approach based on

fractional Taylor vector is proposed to solve the initial value problem of general type

of multi-term FDEs. The core idea of this method is to present and employ the

operational matrix of fractional integration based on fractional Taylor vector to given

5



problem and reduce it to a set of algebraic equations which can be efficiently solved.

The structure of the thesis is organized as follows. In Chapter 2, we briefly introduce

some necessary definitions and preliminary ideas of fractional calculus. In Chapter 3,

we give existence and uniqueness results for FDEs. Also, linear multi-term FDEs are

introduced in Section 3.3 and some existing numerical techniques are given in Section

3.3.1. In Chapter 4, we introduce an algorithm based on fractional Taylor operational

matrix of fractional integration to solve multi-term FDEs numerically. Also, given

method has been applied to nine examples to demonstrate the efficiency and

applicability. A final conclusion is presented in the last chapter.
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Chapter 2

PRELIMINARIES

In this chapter, we introduce basic definitions of some special functions which have

very important roles in fractional calculus. We also briefly give some necessary

definitions of fractional derivatives and integrals and some properties that will be used

later.

2.1 Basic Functions of Fractional Calculus

2.1.1 Gamma Function

The gamma function is a very useful and well-known function in mathematics, that is

one commonly used generalisation of the factorial function to complex numbers. This

function is introduced by Euler in the 18th century.

Definition 2.1.1. The Gamma function is given by the Euler integral of the second

kind

Γ(k) =
�

∞

0
tk−1e−tdt

where Re(k)> 0 and tn−1 = e(n−1) log t .

Gamma function is related to factorial by following relation:

Γ(k) = (k−1)!.

7



2.1.2 Beta Function

The beta function has a crucial role in calculus because of its close relation to the

gamma function. It’s also called as Euler’s integral of the first kind.

Definition 2.1.2. The beta function or the Euler integral of the first kind is given as

following

β(n,m) =

� 1

0
tn−1(1− t)m−1dt

for Re(n), Re(m)> 0.

The beta and gamma functions have relation as given in following equation

β(n,m) =
Γ(n)Γ(m)

Γ(n+m)
.

2.1.3 Mittag–Leffler Function

The ML function is a simple generalisation of the exponential function exp(m). i.e.

replacing m! = Γ(m+1) by (αm)! = Γ(αm+1) in the denominator of the power terms

of the exponential series. The definition of ML function is given in following:

Definition 2.1.3. The ML function of one parameter is defined as

En(k) =
∞

∑
i=0

ki

Γ(ni+1)
,

where n > 0.
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The two parameter ML function is given as

En,m(k) =
∞

∑
i=0

ki

Γ(ni+m)

where n,m > 0.

2.2 Fractional Derivative and Integral

2.2.1 Riemann–Liouville Fractional Integral

Definition 2.2.1. The RL fractional integral to order α of an integrable function y(t) is

defined to be

Iαy(t) =


1

Γ(α)

� t

0
(t− s)α−1y(s)ds, α > 0

y(t), α = 0

(2.1)

When applied to a power function, it yields the following result:

Iα(t)c =
Γ(c+1)

Γ(c+α+1)
(t)c+α, α≥ 0, c >−1 (2.2)

The operator has a commutativity property, that is

IαIβy(t) = IβIαy(t), α,β > 0

and it is linear, that is to say

Iα(A1y1(t)+A2y2(t)) = A1Iαy1(t)+A2Iαy2(t)

for any two functions y1,y2 and constants A1,A2.
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2.2.2 Caputo Fractional Derivative

Definition 2.2.2. The fractional derivative of y(t) of the order α in the Caputo sense is

given as

Dαy(t) = I j−α

(
d j

dt j y(t)
)
, j−1 < α≤ j, j ∈ N (2.3)

2.2.3 Some properties

1. The RL fractional integral and Caputo fractional derivative do not usually

commute with each other. The Newton-Leibniz identity given below provides

an important relation between them:

Iα(Dαy(t)) = y(t)−
j−1

∑
i=0

y(i)(0)
t i

i!
(2.4)

where j−1 < α≤ j, j ∈ N.

2. The Caputo fractional derivative also has the following substitution identity. If

we write y1(q) = y(qR) and q = t/R, then we have

Dαy(t) =
1

Rα
Dαy1(q) (2.5)

where j−1 < α≤ j, j ∈ N.
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Chapter 3

FRACTIONAL DIFFERENTIAL EQUATIONS

3.1 Introduction

Fractional differential equations (FDEs), which are the generalisation of the ordinary

differential equations to a arbitrary order, involve fractional derivatives of the form

(dα/dxα) , where α > 0. Here, α is not necessarily to be an integer number.

In this part, existence and uniqueness theorems for FDEs are presented. Linear

multi-term FDEs, which is one of the most important type of FDEs and some existing

numerical methods for solving such equations are also briefly presented.

3.2 Existence and uniqueness theorems for FDEs

For any kind of differential equations, existence and uniqueness of the solution are too

crucial. Therefore, in this part, we will discuss about the existence and uniqueness

results of IVP for FDE in the following form

Dpy(t) = f (t,y(t)) (3.1)

y(i)(0) = yi
0, i = 0,1,2, ...n−1 (3.2)

where Dpy(t) denotes the Caputo fractional derivative of order p > 0, with n−1 < p <

n.

The existence and uniqueness results of the given IVP is presented in [31] that are a
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very close to the corresponding ordinary theorems known in the first-order equations

case.

Theorem 1 (Existence). [31] Let B := [0,R∗]× [y0
0−β,y0

0+β] with R∗ > 0 and β > 0

and the f : B→ R be continous function. Moreover, let B := min
{

R∗,
(

βΓ(p+1)
‖ f‖

∞

)}
.

Then, ∃y : [0,R]→ R solving the IVP (3.1)-(3.2).

Theorem 2 (Uniqueness). [31] Let B := [0,R∗]× [y0
0− β,y0

0 + β] with R∗ > 0 and

β > 0. Moreover, assume that the f : B→ R be bounded function on B and satisfy a

Lipschitz condition with respect to the second variable, namely,

| f (t,y)− f (t,z)| ≤ L |y− z|

subject to a constant L > 0 independent of t,y,z. Then, expressing R as given in

Theorem 1, there exists mostly one function y : [0,R] → R that solves the IVP

(3.1)-(3.2).

To prove these two theorems we need to use following results.

Lemma 3. [31] If f is a continuous function, then IVP (3.1)-(3.2) is equivalent to the

nonlinear second kind Volterra integral equation

y(t) =
n−1

∑
i=0

t i

i!
y(i)(0)+

1
Γ(p)

� t

0
(t− z)p−1 f (z,y(z))dz (3.3)

with n− 1 < p ≤ n. That is to say, each solution of Volterra equation (3.3) is also a

solution of given IVP (3.1)-(3.2) and vice versa.

The generalisation of Banach’s fixed point theorem is used to get proof of the
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uniqueness theorem.

Theorem 4. [31] Assume that V be a nonempty closed subset of a Banach space

X, and let βn ≥ 0 ∀n and so that ∑
∞
n=0 βn converges. Furthermore, assume that the

mapping M : V →V satisfy the following inequality

‖Mnv−Mnu‖ ≤ βn ‖v−u‖ , (3.4)

since Mnv = M(Mn−1v) where M0v = Mv, ∀n ∈ N and for each v,u ∈ V. So, M has a

unique fixed point v∗. Moreover, for any v0 ∈V, the sequence (Mnv0)
∞
n=1 converges to

point v∗.

Proof of Theorem 2. [31] As defined previously, discussing the case 0 < p < 1 only

will be enough to prove the uniqueness. Therefore, the Volterra equation (3.3) brings

to form

y(t) = y0
0 +

1
Γ(p)

� t

0
(t− z)p−1 f (z,y(z))dz (3.5)

Hence, V = {y ∈C[0,R] :
∥∥y− y0

0

∥∥
∞
≤ β}. Clearly, the set V is a closed subset of the

Banach space of all continuous functions on [0,R], equipped with the Chebyshev norm.

It can be also seen that V is non-empty since y ≡ y0
0 is in V. The operator M on V is

defined by

(My)(t) = y0
0 +

1
Γ(p)

� t

0
(t− z)p−1 f (z,y(z))dz. (3.6)

By using this operator, we can rewrite the equation under consideration as following

y = My
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and to prove uniqueness of the solution, we need to prove that M has a unique fixed

point. Therefore, let us investigate the features of the operator M. Firstly, noting that,

for 0≤ t1 ≤ t2 ≤ R,

|(My)(t1)− (My)(t2)|

=
1

Γ(p)

∣∣∣∣� t1

0
(t1− z)p−1 f (z,y(z))dz−

� t2

0
(t2− z)p−1 f (z,y(z))dz

∣∣∣∣ (3.7)

=
1

Γ(p)

∣∣∣∣� t1

0

(
(t1− z)p−1− (t2− z)p−1) f (z,y(z))dz+

� t2

t1
(t2− z)p−1 f (z,y(z))dz

∣∣∣∣
≤ ‖ f‖

∞

Γ(p)

[� t1

0

(
(t1− z)p−1− (t2− z)p−1)dz+

� t2

t1
(t2− z)p−1dz

]
=
‖ f‖

∞

Γ(p)

(
2(t2− t1)p + t p

1 − t p
2
)
. (3.8)

shows that My is a continuous function. Furthermore, for y ∈V and t ∈ [0,R] we get

∣∣(My)(t)− y0
0
∣∣ =

1
Γ(p)

∣∣∣∣� t

0
(t− z)p−1 f (z,y(z))dz

∣∣∣∣≤ 1
Γ(p+1)

‖ f‖
∞

t p

≤ 1
Γ(p+1)

‖ f‖
∞

Rp ≤ 1
Γ(p+1)

‖ f‖
∞

βΓ(p+1)
‖ f‖

∞

= β.

Hence, we can see that if y ∈V then My ∈V ; namely, M maps the set V to itself.

Next, let us prove that ∀n ∈ N0 and for each t ∈ [0,R], we have

‖Mny−Mnŷ‖L∞[0,t] ≤
(Lt p)n

Γ(1+ pn)
‖y− ŷ‖L∞[0,t] . (3.9)

In order to prove this, the induction technique can be use. When n = 0, the statement
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is easily true. For n−1→ n, we write

‖Mny−Mnŷ‖L∞[0,t] =
∥∥∥∥∥M(Mn−1y)−M(Mn−1ŷ)

∥∥
L∞[0,t]

∥∥∥
=

1
Γ(p)

sup
0≤q≤t

∣∣∣∣� q

0
(q− z)p−1[ f (z,Mn−1y(z))− f (z,Mn−1ŷ(z))]dz

∣∣∣∣ .

Next, using the Lipschits assumption on f and induction, we get

‖Mny−Mnŷ‖L∞[0,t] ≤
L

Γ(p)
sup

0≤q≤t

� q

0
(q− z)p−1 ∣∣Mn−1y(z)−Mn−1ŷ(z)

∣∣dz

≤ L
Γ(p)

� t

0
(t− z)p−1 sup

0≤q≤t

∣∣Mn−1y(q)−Mn−1ŷ(q)
∣∣dz

≤ Ln

Γ(p)Γ(1+ p(n−1))

� t

0
(t− z)p−1zp(p−1) sup

0≤q≤t
|y(q)− ŷ(q)|dz

≤ Ln

Γ(p)Γ(1+ p(n−1))
sup

0≤q≤t
|y(q)− ŷ(q)|

� t

0
(t− z)p−1zp(p−1)dz

=
Ln

Γ(p)Γ(1+ p(n−1))
‖y− ŷ‖

L∞[0,t]

Γ(p)Γ(1+ p(n−1))
Γ(1+ pn)

t pn.

which is the desired result. Consequently, by taking Chebyshev norms on the interval

[0, t] we get

‖Mny−Mnŷ‖
∞
≤ (Lt p)n

Γ(1+ pn)
‖y− ŷ‖

∞

It’s proved that the M satisfies the assumptions of Theorem 3 with βn = (Lt p)/Γ(1+

pn). To use Theorem 3, we need to verify that ∑
∞
n=0 βn converges. This is a well known

result; the limit
∞

∑
n=0

(Lt p)n

Γ(1+ pn)
= Ep(Lt p)

is the ML function of one parameter p, evaluated at Lt p. Then, applying the fixed point

theorem will give the uniqueness result for the solution of FDE.
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Proof of Theorem 1. [31] Similarly, we utilize the same operator M defined in (3.6)

and remember that it maps the convex, nonempty and closed set V = {y ∈ C[0,R] :∥∥y− y0
0

∥∥
∞
≤ β} to itself.

Let us now show that M is a continuous operator. Given any γ > 0, we can find ϕ > 0

so that

| f (t,y)− f (t,z)|< γ

t p Γ(p+1) (3.10)

whenever |y− z|< ϕ

Next, assume that y, ŷ ∈V so that ‖y− ŷ‖< ϕ. Then, from (3.10)

| f (t,y(t))− f (t, ŷ(t))|< γ

t p Γ(p+1) (3.11)

∀t ∈ [0,R]. Therefore,

|Mny(t)−Mnŷ(t)| =
1

Γ(p)

∣∣∣∣� t

0
(t− z)p−1( f (z,y(z))− f (z, ŷ(z)))dz

∣∣∣∣
≤ Γ(p+1)γ

t pΓ(p)

� t

0
(t− z)p−1dz =

γt p

t p ≤ γ

which shows that the operator M is continuous.

Next, let us consider the set of functions

M(V ) := {My : y ∈V}.
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For c ∈M(V ), we get ∀x ∈ [0,R],

|c(x)| = |(My)(t)| ≤
∣∣y0

0
∣∣+ 1

Γ(p)

� t

0
(t− z)p−1 | f (z,y(z)|dz

≤
∣∣y0

0
∣∣+ 1

Γ(p+1)
‖ f‖

∞
Rp.

This result shows that M(V ) is bounded in a pointwise sense. Furthermore, from proof

of Theorem 2 for 0≤ t1 ≤ t2 ≤ R, we get that

|(My)(t1)− (My)(t2)| ≤
‖ f‖

∞

Γ(p+1)
(
2(t2− t1)p + t p

1 − t p
2
)

≤ 2
‖ f‖

∞

Γ(p+1)
(t2− t1)p.

Hence, if |t2− t1|< ϕ,

|(My)(t1)− (My)(t2)| ≤ 2
‖ f‖

∞

Γ(p+1)
ϕ

p.

Here, we note that the right side of this expression is independent of y, and the set M(V )

is equicontinuous. Hence, by Arzelà-Ascoli theorem, each sequence of functions from

M(V ) have a uniformly convergent subsequence. Hence, M(V ) is relatively compact.

Then, by Schauder’s fixed point theorem, M has a unique fixed point. By construction,

a fixed point of M is a solution of given IVP (3.1)-(3.2).

3.3 Linear multi-term FDEs

In this part, we rewrite and focus on the general type of multi-term FDE in Caputo

sense given in Eq.(1.1) in the following linear form

Dαy(t) =
k

∑
i=0

uiDβiy(t)+uk+1y(t)+ f (t), 0≤ t ≤ R, (3.12)
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with

y(p)(0) = Yp, p = 0,1, ...,n−1 where n−1 < α < n, (3.13)

ui (i = 0,1, ...,k) are known coefficients and

0 < β0 < β1 < ... < βk < α

Here, it’s also worth to mention that the highest order α need not to be an integer and

f (t) is a known function. This equation is important in applications due to the fact it

can treat the problems with fractional force, therefore it is suitable for being treated

within fractional operators of Caputo type.

Multi-term FDEs have very useful features and they can describe complex multi-rate

physical processes in a numerous way and can be applied in many different kind of

fields, see e.g. [2, 4, 20, 25]. Basset equation [28] and Bagley–Torvik [29] equations

can be given as important examples for smaller class of multi-term FDEs. Existence,

uniqueness and stability of solution for multi-term FDEs are discussed in [31–33, 46].

3.3.1 Some numerical techniques for solving Multi-term FDEs

In this subsection, we will briefly review some techniques that used to solve

multi-term FDEs numerically. Due to difficulty of finding the exact solutions for

multi-term FDEs, many new numerical techniques have been developed to investigate

the numerical solutions for such equations. In [40], Diethelm et al. used a

generalization of the classical one-step Adams–Bashforth–Moulton technique for

first-order equations for solving nonlinear FDEs. Haar wavelets for the solution of

fractional Volterra and Fredholm integral equations are considered in [41] by Lepik.

Differential Transform Method (DTM) have been carried out for various types of
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problems, including the Bagley–Torvik, Ricatti and composite fractional oscillation

equations for the application of the technique in [35] by Arıkoğlu and Özkol. In [26],

Diethelm and Ford applied Adams–Bashforth–Moulton method to solve multi-order

FDEs of the general form. In [34], Saw and Kumar introduced a scheme based on

collocation technique and shifted Chebyshev polynomials (SCP) to solve multi-term

fractional order IVP. A method based on using Boubaker polynomial operational

matrix of fractional integration have been applied to solve multi-order FDEs in [38]

by Bolandtalat et al. In [63], the solution of multi-term FDEs expressed in terms of

ML functions evaluated at matrix arguments by Popolizio. In [64], the differential

transformation is proposed as convenient for finding solution to the IVP involving

multiple Caputo fractional derivatives of generally non-commensurate orders by

Rebenda.
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Chapter 4

NUMERICAL SOLUTIONS FOR MULTI-TERM FDEs

WITH FRACTIONAL TAYLOR OPERATIONAL

MATRIX OF FRACTIONAL INTEGRATION

4.1 Fractional Taylor Basis Vector

We shall make use of the fractional Taylor vector,

Tmδ(t) =
[
1, tδ, t2δ, ..., tmδ

]
(4.1)

for m ∈ N and δ > 0 in the work of this thesis.

4.2 Approximation of function

Suppose that Tmδ(t)⊂H, where H is the space of all square integrable functions on the

interval [0,1]. For any y ∈ H, since S = span
{

1, tδ, t2δ, ..., tmδ

}
is a finite dimensional

vector space in H, then, y has a unique best approximation y∗ ∈ S, so that

∀ŷ ∈ S, ‖y− y∗‖ ≤ ‖y− ŷ‖

Therefore, the function y is approximated by fractional Taylor vector as following

y' y∗ =
m

∑
i=0

cit iδ =CT Tmδ(t) (4.2)

20



If we define Gα as

Gα =

[
1

Γ(α+1)
,

Γ(δ+1)
Γ(δ+α+1)

,
Γ(2δ+1)

Γ(2δ+α+1)
, ...,

Γ(mδ+1)
Γ(mδ+α+1)

]
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denotes the operational matrix of integration.

Mα = diag 
[ 

Γ(α

1
+ 1) 

, 
Γ(

Γ

δ

(

+

δ +

α +

1)
1) 
, 
Γ(

Γ

2
(

δ

2
+

δ +

α +

1)
1) 
, ..., 

Γ(

Γ

m
(

δ

m
+

δ +

α +

1)
1) 

]
where

= tαMαTmδ(t) (4.4)

= 
[ 

Γ( 
1

α+1)t
α, 

Γ(
Γ(
δ+

δ+
α+

1)
1)t

δ+α, 
Γ(

Γ(
2 

2
δ+

δ+
α+

1)
1)t

2δ+α, ..., 
Γ(

Γ(m
mδ+

δ+
α+

1)
1)t

mδ+α 

]Iα(Tmδ(t)) =

construct the fractional Taylor operational matrix of fractional integration as following

By using the property of RL fractional integral given in Eq.(2.2) and Eq.(4.1), we 

integration

4.3 Construction of fractional Taylor operational matrix of fractional 

are the unique coefficients.

CT = [c0, c1, c2, ..., cm] (4.3)

where Tmδ(t) denote the fractional Taylor vector and



then, we can rewrite the Eq.(4.4) as

Iα(Tmδ(t)) = tαGα ∗Tmδ(t) (4.5)

where ∗ denotes the operation of multiplying matrices term by term.

4.4 The Numerical Algorithm

In this part, we give the numerical algorithm of fractional Taylor method to solve given

multi-term IVP of fractional order [45].

Let us recall the linear multi-term FDE defined in Eq.(3.12) and Eq.(3.13),

Dαy(t) =
k

∑
i=0

uiDβiy(t)+uk+1y(t)+ f (t), 0≤ t ≤ R,

subject to the

y(p)(0) = Yp, p = 0,1, ...,n−1 where n−1 < α < n

ui (i = 0,1, ...,k) are known coefficients and

0 < β0 < β1 < ... < βk < α

The procedure to solve given equation above is explained step by step as following.

As a first step, by using the transformation q = t/R, we replace the variable t ∈ [0,R]

with q ∈ [0,1]. Now, by using Eq.(2.5) in Eq.(3.12), we get

1
Rα

Dαy1(q) =
k

∑
i=0

1
Rβi

uiDβiy1(q)+uk+1y1(q)+ f1(q), 0≤ q≤ 1 (4.6)
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where f1(q) = f (qR) and y1(q) = y(qR). Same as Eq.(4.2), we approximate the y1(q)

as

y1(q) =
m

∑
i=0

ciqiδ =CT Tmδ(q) (4.7)

such that Tmδ(q) = [1,qδ,q2δ, ...,qmδ]T is the fractional Taylor vector and the unique

coefficients CT is unknown vector which is defined in Eq.(4.3).

Next step, employing the RL fractional integral for the both sides of (4.6), we have

1
Rα

[
y1(q)−

n−1

∑
j=0

y( j)
1 (0+)

t j

j!

]
=

k

∑
i=0

1
Rβi

uiIα−βi

[
y1(q)−

ni−1

∑
j=0

y( j)
1 (0+)

t j

j!

]

+uk+1Iαy1(q)+ Iα f1(q) (4.8)

where y(p)(0) =Vp, p = 0,1, ...,n−1 where ni−1 < βi < ni.

From this place, by substituting initial conditions (3.13), we have

1
Rα

[y1(q)] =
k

∑
i=0

1
Rβi

uiIα−βi [y1(q)]+uk+1Iαy1(q)+h1(q) (4.9)

so that h1(q) = Iα f1(q)+ 1
Rα

(
∑

n−1
j=0 Vj

t j

j!

)
+∑

k
i=0

1
Rβi

uiIα−βi
(

∑
ni−1
j=0 Vj

t j

j!

)
.

Now, by using the Eq.(4.5), we approximate the fractional integrals in above equation

and we get

1
Rα

[
CT Tmδ(q)

]
=

k

∑
i=0

1
Rβi

uiCT qα−βi
(
Gα−βi ∗Tmδ(q)

)
+uk+1qαCT (Gα ∗Tmδ(q))+h1(q) (4.10)
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As a final step, by taking the collocation points q j = j/m ( j = 0,1, ...,m) in Eq.(4.10),

we get m + 1 linear algebraic equations. This linear system can be solved for the

unknown vector CT . Consequently, y1(q) can be approximated by Eq.(4.7).

4.5 Error Estimation

In this part, an error estimation based on residual error function for the proposed

method will be presented. The residual error estimation was used in [71, 72] and from

these results, we can conclude that, this error estimation is very effective. Let ym,δ(t)

and y(t) be numerical and exact solutions of given IVP (3.11)-(3.12).

Substituting ym,δ(t) into IVP (3.11)-(3.12) we get,

Dαym,δ(t)−
k

∑
i=0

uiDβiym,δ−uk+1ym,δ− f (t) = Rm(t)

where Rm(t) is the residual function. By using the above equation and Eq.(3.11) we

have

Dα(y(t)− ym,δ(t))−
k

∑
i=0

uiDβi(y(t)− ym,δ(t))−uk+1(y(t)− ym,δ(t)) = Rm(t)

Now, we define the error function as

em,δ = y(t)− ym,δ(t).

Next, using this error function we get

Dαem,δ−
k

∑
i=0

uiDβiem,δ−uk+1em,δ = Rm(t)
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with initial conditions em,δ(0) = 0 and e′m,δ(0) = 0. Solving this equation in the same

way presented in Section 4.4, we get the approximate error estimation em,δ(t) of

proposed method. Consequently, the approximation of maximum absolute error can

be estimated by

Em,δ = max
{∣∣em,δ

∣∣ ,0≤ t ≤ R
}
.

In the case that the exact solution of the given problem is unknown, this presented error

estimation can be used to show the accuracy of the obtained results.

4.6 Illustrative Examples

To show the applicability and effectiveness of the given method, we give nine examples

in this section. To approximate the solution of given problems, the presented fractional

Taylor method applied to each example. Approximate solutions obtained by use of

presented method have been compared with analytical solutions and also with results

of some other techniques in literature. From this comparisons, we can conclude that the

presented technique is providing very good results and very effective for approximating

the solution of multi-term FDEs. To compute the numerical results, MATLAB version

R2015a has been used.

For choosing δ, we usually take either δ = 1 or δ = α−bαc, the fractional part of α.

4.6.1 Example 1

For the first example, let us focus on multi-order FDE in the form given below [37]

Dαy(t) = u0Dβ0y(t)+u1Dβ1y(t)+u2Dβ2y(t)+u3Dβ3y(t)+ f (t), 0≤ t ≤ R, (4.11)

y(0) =V0, y′(0) =V1

25



We let α = 2,V0 = V1 = 0,R = 1, the coefficients u0 = u2 = −1,u1 = 2,u3 = 0 and

β0 = 0,β1 = 1,β2 =
1
2 and the function f (t) is

f (t) = t7 +
2048

429
√

π
t6.5−14t6 +42t5− t2− 8

3
√

π
t1.5 +4t−2.

The exact solution is y(t) = t7− t2.

To solve Eq.(4.11), let us apply the given procedure step by step which is implemented

in previous section.

As a first step, replace variable t ∈ [0,R] to q ∈ [0,1] by taking q = t/R.

Next, we use the Eq.(2.5) and get

1
Rα

Dαy1(q) =
u0

Rβ0
Dβ0y1(q)+

u1

Rβ1 Dβ1y1(q)+
u2

Rβ2
Dβ2y1(q)+

u3

Rβ3
Dβ3y1(q)+ f1(q)

(4.12)

where 0≤ q≤ 1.

Now, using Eq.(2.4) we have

1
Rα

(y1(q)− y1(0)−qy1′(0)) =
u0

Rβ0
Iα−β0(y1(q)− y1(0)−qy1′(0))

+
u1

Rβ1 Iα−β1(y1(q)− y1(0)−qy1′(0))

+
u2

Rβ2
Iα−β2(y1(q)− y1(0)−qy1′(0))

+
u3

Rβ3
Iα−β3(y1(q)− y1(0)−qy1′(0))

+ Iα f1(q). (4.13)
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Next, using Eq.(4.13) and putting initial conditions y(0) =V0, y′(0) =V1 into equation

1
Rα

(CT Tmδ(q)−V0−RqV1) =
u0

Rβ0
Iα−β0(CT Tmδ(q)−V0−RqV1)

+
u1

Rβ1 Iα−β1(CT Tmδ(q)−V0−RqV1)

+
u2

Rβ2
Iα−β2(CT Tmδ(q)−V0−RqV1)

+
u3

Rβ3
Iα−β3(CT Tmδ(q)−V0−RqV1)

+ Iα f1(q). (4.14)

From Eq.(4.5), we have

1
Rα

(CT Tmδ(q)−V0−RqV1)

=
u0

Rβ0
qα−β0CT (Gα−β0 ∗Tmδ(q))−

u0qα−β0

Rβ0Γ(α−β0 +1)
V0−

u0qα−β0+1

Rβ0Γ(α−β0 +2)
V1

+
u1

Rβ1 qα−β1CT (Gα−β1 ∗Tmδ(q))−
u1qα−β1

Rβ1Γ(α−β1 +1)
V0−

u1qα−β1+1

Rβ1Γ(α−β1 +2)
V1

+
u2

Rβ2
qα−β2CT (Gα−β2 ∗Tmδ(q))−

u2qα−β2

Rβ2Γ(α−β2 +1)
V0−

u2qα−β2+1

Rβ2Γ(α−β2 +2)
V1

+
u3

Rβ3
qα−β3CT (Gα−β3 ∗Tmδ(q))−

u3qα−β3

Rβ3Γ(α−β3 +1)
V0−

u3sα−β3+1

Rβ3Γ(α−β3 +2)
V1

+ Iα f1(q). (4.15)

Now, taking R = 1 in Eq.(4.15) and putting the given values for V0,V1,ui,βi where

i = 0,1,2,3 into this equation, we get

CT Tmδ = 2q1CT (G1 ∗Tmδ(q))−q3/2CT (G3/2 ∗Tmδ(q))−q2CT (G1 ∗Tmδ(q))+ I2 f1(q)

(4.16)

Finally, taking the collocation points q j = j/m ( j = 0,1, ...,m) generates a linear

algebraic system of dimension m+ 1 with unknown vector CT . In order to solve this
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system by using presented method and comparing the results, we choose δ = 1 and

different values of m.

To show the efficiency, we compared the numerical results with the method given

in [37].

Table 4.1, compares the obtained results for absolute error with m = 4,6,7. We

observe from Table 1 that, the absolute errors for presented method are smaller and

the numerical solution is more accurate for the same size of m.

Table 4.1: The comparison for absolute errors of the proposed scheme and method
given in [37] with m = 4,6,7

Present method Method in Present method Method in Present method Method in
t m = 4 [37] m = 4 m = 6 [37] m = 6 m = 7 [37] m = 7

0.2 0.0116 0.0844 6.81430698097618e-07 0.0044 1.040834086e-16 2.81025203108243e–15
0.4 0.0032 0.3501 1.01100805164899e-04 0.0079 2.498001805e-16 6.63358257213531e–15
0.6 0.0108 0.6734 1.2907314422994e-05 0.0143 1.665334537e-16 3.27515792264421e–15
0.8 0.0037 1.0234 1.16246682382747e-04 0.0214 3.330669074e-16 4.25770529943748e–14
1.0 0.0026 1.6700 1.11299947542775e-05 0.0280 1.110223025e-16 2.43819897540083e–13

In Fig. 4.1–Fig. 4.3, we present the graphical representation of comparison between

exact solution and the numerical solutions obtained by given method and the method

of [37] for the problem (4.11) with m = 4,6,7 respectively. From these results, we can

conclude that m = 4 and m = 6 give larger absolute error, while m = 7 gives smaller

absolute error (10−16) and more precise numerical solution. These comparisons also

shows that the results obtained by given method is closer to the exact solution than the

results of [37].
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Figure 4.1: Graphical representation of exact solution and the numerical solutions
obtained by presented method and the method of [37] with m,n = 4

Figure 4.2: Graphical representation of exact solution and the numerical solutions
obtained by presented method and the method of [37] with m,n = 6
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Figure 4.3: Graphical representation of exact solution and the numerical solutions
obtained by presented method and the method of [37] with m,n = 7

In Fig. 4.4, we show the graphical representation of absolute errors obtained by using

presented method and the method of [37] with m,n = 6.
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Figure 4.4: The behaviour of absolute errors obtained by using given technique and
the method of [37] with m,n = 6.

From Fig. 4.4, we can conclude that the absolute error obtained by our method is

remaining smaller and stable while the absolute error of other method is increasing in

the interval [0,1].

In Fig. 4.5–Fig. 4.6, we give the graphical representation of absolute errors obtained

by using proposed method with m = 4,7 respectively.
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Figure 4.5: The absolute error result with m = 4.

Figure 4.6: The absolute error result with m = 7.
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A pseudo-code for MATLAB implementation of Example 1 is given below.

Algorithm 1: fractionalTaylormethod.m
al pha = 2;

beta = [1,1/2,0];

Uk = [2,−1,−1];

f unc =@(t) t7 +2048/(429∗ sqrt(pi))∗ t6.5−14∗ t6 +42∗ t5− t2− ...

8/(3∗ sqrt(pi))∗ t1.5 +4∗ t−2;

t0 = 0 ; R = 1;

y0 = [0;0];

m = 4;

delta = 1;

[A,b] = f ractionalTaylor(al pha, beta, Uk, f unc, t0, R, y0, m, delta)

C = linsolve(A,b)

[s,y] = approxSoln(C)

4.6.2 Example 2

In this example, we focus on Eq.(4.11) with α = 2,V0 =V1 = 0, the coefficients u0 =

u2 =−1,u1 = 0,u3 = 2 and β0 = 0,β2 =
2
3 ,β3 =

5
3 and the function is

f (t) = t3 +6t− 12
Γ(7

3)
t

4
3 +

6
Γ(10

3 )
t

7
3 .

The exact solution of this equation is y(t) = t3. [37]

Applying the same procedure to given problem as presented in Example 1, we get the

33



following equation

CT Tmδ = 2q1/3CT (G1/3 ∗Tmδ(q))−q4/3CT (G4/3 ∗Tmδ(q))−q2CT (G2 ∗Tmδ(q))+ I2 f1(q)

(4.17)

As we stated in previous example, collocating this equation at the nodes q j = j/m

( j = 0,1, ...,m) generates a set of algebraic equations. In this example, to solve this

sysem for CT , we choose δ = 1,1.5 and different values of m.

Table 4.2 shows the results for obtained absolute errors by using presented method with

m = 2,3. From these results, we can see that, there is satisfactory agreement between

the exact solution and numerical solutions. The absolute error is achieved about 10−15.

We also note that, the proposed method gives better results for m= 2 by taking δ= 1.5.

In Fig. 4.7.(a), we show the graphical representation of obtained numerical solution

Table 4.2: The absolute errors with m = 2,3

t δ = 1, m = 2 δ = 1.5, m = 2 δ = 1, m = 3

0 0 0 0
0.1 0.010209105 1.3e-17 7.42e-17
0.2 0.008778787 4.68e-17 1.232e-16
0.3 0.001709047 1.11e-16 1.769e-16
0.4 0.005000117 2.082e-16 2.637e-16
0.5 0.005348703 3.608e-16 4.163e-16
0.6 0.006663287 5.829e-16 6.661e-16
0.7 0.037035855 8.882e-16 9.992e-16
0.8 0.091769001 1.2212e-15 1.5543e-15
0.9 0.176862723 1.6653e-15 1.9984e-15
1.0 0.2983170221 2.2204e-15 2.8866e-15

and the exact solution of the given problem. Fig. 4.7.(b) presents the obtained absolute

error by using proposed method with m = 3.
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Figure 4.7: (a) The numerical and the exact solutions with m = 3. (b) The absolute
error with m = 3.

4.6.3 Example 3

Consider the multi-term fractional order IVP [34]

D(2.2)y(t)+1.3D(1.5)y(t)+2.6y(t) = sin(2t), (4.18)

with initial conditions

y(0) = y′(0) = y′′(0) = 0,

where the equation have the series solution given by [35]

ys(t) =
28561

3600000
t6 +

2
Γ(4.2)

t3.2− 13
5Γ(4.9)

t3.9 +
169

50Γ(5.6)
t4.6

− 8
Γ(6.2)

t5.2− 2197
500Γ(6.3)

t5.3− 26
5Γ(6.4)

t5.4 +
52

5Γ(6.9)
t5.9. (4.19)

To solve this problem, we choose δ = 1, and m = 10.

We give the comparison of series solution and the approximate solution obtained by
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given technique in Table 4.3. Table 4.4 compares the obtained absolute errors by using

presented method with the results of [34]. From this compared results, it can be seen

that the obtained approximate solution by use of given method is very close to series

solution for a small number of m.

Table 4.3: Comparison of numerical solution with series solution for Example 3

t Series Solution [35] Present Method m = 10

0.0 0 0
0.1 0.000147766 0.000147731
0.2 0.001274983 0.001275552
0.3 0.00439917 0.00440567
0.4 0.010405758 0.010441315
0.5 0.019962077 0.020094648
0.6 0.033452511 0.033841301
0.7 0.050923716 0.051890573
0.8 0.0720381 0.074169634
0.9 0.096035415 0.100321388

Table 4.4: Comparison for absolute errors of Example 3

t Present Method m = 10 Method in [34] m = 20

0.0 0 0
0.1 3.47449e-08 5.2560e-7
0.2 5.69366e-07 1.7150e-6
0.3 6.49968e-06 8.2260e-6
0.4 3.55576e-05 3.7820e-5
0.5 0.000132571 0.0001353
0.6 0.00038879 0.000392
0.7 0.000966858 0.0009704
0.8 0.002131534 0.002135
0.9 0.004285973 0.00429

The compared results of Table 4.4 conclude that the proposed technique has better

approach to series solution with a smaller m.

The graphical representation of comparison between series solution and approximate

36



solutions obtained by presented method and the method of [34] in the interval [0,1] is

illustrated in Fig. 4.8.

Figure 4.8: The comparison between series solution and numerical solutions obtained
by presented method and the method of [34] with m = 10.

In Fig. 4.9, we show present graphical representation of absolute errors obtained by

using given technique and the method of [34] with m = 10.
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Figure 4.9: The behaviour of absolute errors obtained by using given technique and
the method of [34].

In Fig. 4.10, we show the graphical representation for series solution and the numerical

results of presented method for the interval [0,10]. The results plotted in Fig. 4.10 are

in a very good and satisfactory agreement with the series solution given in [35] and the

results of [36].
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Figure 4.10: The behaviour of series solution and the approximate solution obtained
by proposed method for the interval [0,10].

4.6.4 Example 4

Motivated by [40], we consider the following form of FDE,

Dαy(t)+ y(t) =


2

Γ(3−α)
t2−α + t2− t, α > 1

2
Γ(3−α)

t2−α− 1
Γ(2−α)

t1−α + t2− t, α≤ 1

(4.20)

with

y(0) = 0, y′(0) =−1

whose exact solution is y(t) = t2− t.

To apply the presented method to Eq.(4.20) and compare the results with methods

of [44], [40] and [67], we solve this problem with α = 0.3,0.5,0.7,1.25,1.5,1.85, and

various values for δ and m. The obtained results are presented as below.
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In Table 4.5, we list the results of obtained absolute errors for α = 0.3,0.5,0.7 by use

of presented method. Also, the results for α = 1.25,1.5,1.85 are given in Table 4.6.

Table 4.5: The Absolute Errors with m=3 and α < 1 for Example 4

t α = 0.3 α = 0.5 α = 0.7

0 0 0 0
0.1 4.16e-17 8.33e-17 1.94e-16
0.2 8.33e-17 5.55e-17 2.78e-16
0.3 1.11e-16 2.78e-17 2.50e-16
0.4 1.67e-16 1.39e-16 2.50e-16
0.5 1.67e-16 1.11e-16 1.67e-16
0.6 1.67e-16 5.55e-17 2.78e-17
0.7 1.67e-16 8.33e-17 8.33e-17
0.8 3.05e-16 5.55e-17 1.11e-16
0.9 2.08e-16 1.25e-16 1.39e-16
1.0 1.91e-16 1.26e-16 8.91e-17

Table 4.6: The Absolute Errors with m=3 and α > 1 for Example 4.

t α = 1.25 α = 1.5 α = 1.85

0.0 0 0 0
0.1 1.39e-17 2.78e-17 1.25e-16
0.2 5.55e-17 5.55e-17 1.94e-16
0.3 5.55e-17 5.55e-17 2.22e-16
0.4 5.55e-17 2.78e-17 2.50e-16
0.5 1.11e-16 0 2.22e-16
0.6 1.67e-16 5.55e-17 1.67e-16
0.7 1.94e-16 5.55e-17 5.55e-17
0.8 3.05e-16 1.39e-16 5.55e-17
0.9 1.11e-16 8.33e-17 1.39e-17
1.0 8.21e-17 1.97e-16 1.06e-16

In Fig. 4.11.(a) and Fig. 4.11.(b), we give the graphical representation of obtained

results for numerical and exact solution of the given problem and absolute error for

α = 1.5 in the interval [0,1]
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Figure 4.11: (a) The numerical and exact solutions for α = 1.5. (b) The absolute error
for α = 1.5.

In Fig. 4.12, we plot the graphical representation for behavior of the obtained

approximate solution by use of the given method and the exact solution of the given

problem for α = 1.5 in the interval [0,15].

Figure 4.12: The behaviour of the obtained numerical and exact solutions with
α = 1.5 for the interval t ∈ [0,15]

Table 4.7 lists the obtained absolute errors for the given problem (4.20) at

t = 1,5,10,50 and α = 1.5 by use of presented method and some other methods in
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literature [40, 44, 67]. From this compared results, we can say that the numerical

solution obtained by use of given technique is in better agreement with the exact one

and obtained absolute error is smaller.

Table 4.7: Comparison for absolute errors of proposed method and some other
numerical methods in literature at t = 1,5,10,50 for α = 1.5

t Presented method Method of [44] Method of [40] Method of [67]

δ = 1/2,m = 4 n = 20 h = 1/320 p = 1,T = 1

1 7.99361e-14 9.10e-5 3.42e-3 -
5 2.55795e-13 2.42e-3 - -
10 1.42109e-13 5.50e-3 - -
50 3.63798e-12 3.74e-2 - 1.2

In Fig. 4.13, the behaviour of absolute error for α = 1.5 with m = 4 and δ = 1/2,1

at t ∈ [0,50] is presented. From this graph, it can be seen that we get better results by

taking δ = 1/2 for this example and the approximate solution is very close to exact

solution for a small number of m.

Figure 4.13: The behaviour of the absolute errors for given technique where α = 1.5,
t ∈ [0,50] with m = 4 and δ = 1/2,1.
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4.6.5 Example 5

This example considers the following form of linear multi-term FDE with variable

coefficients [65]

aD2y(t)+b(t)Dβ1y(t)+ c(t)Dy(t)+ e(t)Dβ2y(t)+ k(t)y(t) = f (t), (4.21)

with,

y(0) = 2, y′(0) = 0

where 0 < β2 < 1, 1 < β1 < 2 and

f (t) =−a− b(t)
Γ(3−β1)

t2−β1− c(t)t− e(t)
Γ(3−β2)

t2−β2 + k(t)
(

2− t2

2

)

whose the exact solution is y(t) = 2− t2

2 .

We give the numerical solution for the given problem by proposed method for a =

1,b(t) =
√

t,c(t) = t
1
3 ,e(t) = t

1
4 ,k(t) = t

1
5 ,β2 = 0.333,β1 = 1.234 with δ = 1.

In Table 4.8, we give the results for maximum errors obtained by use of proposed

method and comparison with the results of [65, 66]. From this compared results, we

can see that the numerical solution obtained by use of given technique is closer to the

exact solution.
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Table 4.8: Maximum Errors of Example 5 for t = 1 with m = 3,4,5,6,10,20,40.

m Present Method Method given in [66] Method given in [65]

3 4.44089e-16 4.4409e-16 -
4 6.66134e-16 1.4633e-13 -
5 4.44089e-16 3.2743e-12 6.88384e-5
6 4.44089e-16 1.0725e-13 -
10 2.22045e-15 - 3.00351e-6
20 3.47278e-13 - 1.67837e-7
40 1.46549e-13 - 1.02241e-8

Fig. 4.14 presents the graphical representation for behaviour of numerical and exact

solutions with m = 6. From this representation, we can see that the obtained

approximate solution is in a very good agreement with exact solution.

Figure 4.14: The behaviour of the numerical and exact solutions with m = 6.

4.6.6 Example 6

Now, we consider the below FDE [44]

y′(t)+D1/2y(t)−2y(t) = 0, t ∈ (0,R], (4.22)

y(0) = 1
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which arises, for example, in the study of generalized Basset force occuring when a

spherical object sinks in a (relatively dense) incompressible viscous fluid; see [28,53].

By use of Laplace Transformation of Caputo derivatives, we get the analytical solution

as following

y(t) =
2

3
√

t
E1/2,1/2(

√
t)− 1

6
√

t
E1/2,1/2(−2

√
t)− 1

2
√

πt
,

where the ML function Eλ,µ(t) with parameters λ,µ > 0 is given as

Eλ,µ(t) =
∞

∑
k=0

tk

Γ(λk+µ)
.

This ML function and its variations are very significant in fractional calculus and FDEs

[43].

In order to solve given problem by use of given method and compare the results, we

take t ∈ (0,5] and use different values of δ and m.

Table 4.9 lists the exact and obtained numerical solutions by use of presented method

and method of [44] for the given problem for m = 5,10,15,20. Comparison of this

results shows that, even for small values of m, the numerical solution obtained by use

of given technique is in a better agreement with exact one.

Table 4.9: The resulting values for Example 6, with R = 5 in some values of t.
Proposed Method given Proposed Method given Proposed Method given Proposed Method given

Method in [44] Method in [44] Method in [44] Method in [44]
t Exact m = 5 m = 5 m = 10 m = 10 m = 15 m = 15 m = 20 m = 20

1 3.42445 3.42415 2.714336 3.425121 3.426525 3.42376044 3.42496 3.424563 3.424807
2 9.69088 9.670891 8.922571 9.692732 9.696794 9.68896761 9.692754 9.691185 9.691706
3 26.6414 26.60757 24.59981 26.64646 26.65929 26.6362145 26.64683 26.64225 26.64381
4 72.6729 72.53849 65.78029 72.68665 72.72038 72.6587861 72.68787 72.6752 72.67936
5 197.77 197.5757 180.1481 197.8077 197.8994 197.731934 197.8112 197.7766 197.7879
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In Fig. 4.15.(a)–Fig. 4.17.(a), we present the graphical representation of comparison

between exact solution and the numerical solutions obtained by using given method

and the method of [44] with taking m = 5,10,20 respectively. Also in Fig. 4.15.(b)–

Fig. 4.17.(b) we show the behaviour of absolute errors obtained by given method and

the method of [44] in the interval [0,1] with m = 5,10,20.

Figure 4.15: (a) The comparison of analytical solution and approximate solutions
obtained by the given technique and the method of [44] with m = 5. (b) The

behaviour of the absolute errors between the exact solution and numerical solutions
obtained by our method and the method given in [44] with m = 5.
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Figure 4.16: (a) The comparison of analytical solution and approximate solutions
obtained by the given technique and the method of [44] with m = 10. (b) The

behaviour of the absolute errors between the exact solution and numerical solutions
obtained by our method and the method given in [44] with m = 10.

Figure 4.17: (a) The comparison of analytical solution and approximate solutions
obtained by the given technique and the method of [44] with m = 20. (b) The

behaviour of the absolute errors between the exact solution and numerical solutions
obtained by our method and the method given in [44] with m = 20.

From these graphical results represented in Fig. 15–Fig. 17, we can conclude that

the absolute error obtained by our method is remaining smaller when compared the

absolute error of method given in Ref. [44].
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4.6.7 Example 7

In this example, we consider a fractional linear differential equation involving two

fractional derivative operator with non-homogeneous initial condition [70]

D2α
0,t y(t)+

3
2

Dα
0,ty(t) = −1

2
y(t), t ∈ (0,R], R > 0 (4.23)

y(0) = 1

The analytical solution is given by

y(t) = 2Eα(−tα/2)−Eα(−tα)

Here, Eα(t) denotes the ML function with one parameter.

We solve this problem for α = 0.5 and R = 1,10. The approximate results obtained

by using presented technique with δ = 1/2, R = 1 and step size m = 2,3,5,15,25 are

presented in Table 4.10. Table 4.11 shows the relative error (%) results in percentage

values. In Figure 4.18, we show the graphical comparison of numerical and exact

solutions for t ∈ (0,10]. The graphical representation of obtained absolute errors for

m = 2,5,15,25 and t ∈ (0,1] are presented in Figures 4.19-4.22 respectively. Also

in Figures 4.23-4.26, we give graphical comparison of numerical solution and exact

solution for m = 2,5,15,25 and t ∈ (0,1] respectively.
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Table 4.10: Absolute Errors of Example 7 for R = 1 with m = 2,3,5,15,25.

t m = 2 m = 3 m = 5 m = 15 m = 25

0 0 0 0 0 0
0.1 0.0089091 0.0017007 0.0000187 9.396e-12 3.973e-12
0.2 0.0048821 0.0002407 0.0000193 4.884e-12 2.138e-12
0.3 0.0014756 0.0004188 0.0000142 3.294e-12 1.439e-12
0.4 0.0009667 0.0005774 0.0000072 2.452e-12 1.068e-12
0.5 0.0024974 0.0004673 0.0000048 1.927e-12 8.41e-13
0.6 0.0032202 0.0002495 0.000005 1.573e-12 6.84e-13
0.7 0.0032345 0.0000381 0.0000048 1.315e-12 5.72e-13
0.8 0.0026266 0.0000842 0.0000032 1.121e-12 4.87e-13
0.9 0.0014694 0.000056 0.0000013 9.71e-13 4.22e-13
1.0 0.0001758 0.0001694 0.0000031 8.51e-13 3.67e-13

Figure 4.18: The behaviour of the numerical solution and exact solution for Example
7 with R = 10.
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Table 4.11: Relative Errors (%) of Example 7 for R = 1 with m = 2,3,5,15,25.

t m=2 m=3 m=5 m=15 m=25

0 0 0 0 0 0
0.1 0.92396 0.17638 0.00194 9.74494e-10 4.12036e-10
0.2 0.52105 0.02569 0.00206 5.21303e-10 2.28214e-10
0.3 0.16147 0.04583 0.00156 3.60427e-10 1.57459e-10
0.4 0.10818 0.06462 0.00081 2.74378e-10 1.19539e-10
0.5 0.28532 0.05338 0.00055 2.20175e-10 9.5977e-11
0.6 0.375 0.02905 0.00058 1.83136e-10 7.9693e-11
0.7 0.38348 0.00452 0.00057 1.55872e-10 6.7761e-11
0.8 0.31672 0.01015 0.00038 1.35142e-10 5.8715e-11
0.9 0.18005 0.00686 0.00016 1.18905e-10 5.1665e-11
1.0 0.02187 0.02107 0.00038 1.05871e-10 4.5663e-11

Figure 4.19: Graphical results of absolute errors for Example 7 with m = 2.
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Figure 4.20: Graphical results of absolute errors for Example 7 with m = 5.

Figure 4.21: Graphical results of absolute errors for Example 7 with m = 15.
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Figure 4.22: Graphical results of absolute errors for Example 7 with m = 25.

Figure 4.23: The behaviour of numerical solution and exact solution for Example 7
with m = 2.
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Figure 4.24: The behaviour of numerical solution and exact solution for Example 7
with m = 5.

Figure 4.25: The behaviour of numerical solution and exact solution for Example 7
with m = 15.
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Figure 4.26: The behaviour of numerical solution and exact solution for Example 7
with m = 25.

4.6.8 Example 8

Consider the equation [34]

Dαy(t)+ y(t) = t4− 1
2

t3− 3
Γ(4−α)

t3−α +
24

Γ(5−α)
t4−α

with

y(0) = 0

The exact solution is given by

y(t) = t4− 1
2

t3.

We take α = 0.5 and applying presented method to this problem with a choose of

δ = 1/2 and m = 11.
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In Table 4.12, the results for absolute errors obtained by using given technique and the

method of [34] are presented. From this table, if we compare the given error values,

we can conclude that the presented method gives better results for solving the given

problem for the same step-size. In Figure 4.27, we give the graphical representation

for the behaviour of numerical and exact solutions for the given problem with taking

m = 10. From this figure, we can see that the numerical solutions and exact solutions

are in a very good agreement.

Table 4.12: Results for absolute errors of Example 8 for R = 1 with m = 10.

t Present Method m = 10 Method in [34] with m = 10

0 0 0
0.1 4.15e-14 4.78e-14
0.2 2.1e-14 9.78e-14
0.3 1.46e-14 1.19e-13
0.4 1.11e-14 1.26e-13
0.5 8.9e-15 1.46e-13
0.6 7.6e-15 1.68e-13
0.7 6.3e-15 1.66e-13
0.8 5.4e-15 1.52e-13
0.9 5.2e-15 1.84e-13

Figure 4.27: The behaviour of numerical and exact solutions for Example 8 with
m = 10.
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4.6.9 Example 9

Now, we consider the FDE with two fractional derivative operator as given in following

[7]

D1.8y(t)+0.5D0.5y(t)+ y(t) = p(t), t ∈ (0,R], R > 0

with

y(0) = 1,y′(0) = 2.

Let p(t) = 2.1782t1/5 + 1.1284t1/2 + 0.75225t3/2 + (1 + t)2. The exact solution is

given by y(t) = (1+ t)2.

In order to solve this problem by presented technique, we choose δ = 1, m = 2 and

R = 10,20.

In Figures 4.28 and 4.29, the graphical representation of absolute errors obtained by

use of presented method for t ∈ (0,10] and t ∈ (0,20] are given respectively. From

these graphs, we can conclude that the given technique gives very good results even

for a small step-size m = 2.
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Figure 4.28: Absolute error for Example 9 in the interval t ∈ (0,10].

Figure 4.29: Absolute error for Example 9 in the interval t ∈ (0,20].

Figures 4.30 and 4.31 shows the graphical representation for the behaviour of exact
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solution and approximate solution obtained by use of given technique for given

problem in the intervals t ∈ (0,10] and t ∈ (0,20] respectively. These graphical results

shows that the approximate solution is remain stable for different values of R and in a

very good agreement with exact solution.

Figure 4.30: The behaviour of exact and approximate solutions for t ∈ (0,10].
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Figure 4.31: The behaviour of exact and approximate solutions for t ∈ (0,20]
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Chapter 5

CONCLUSION

During the past decades, multi-term FDEs has found many crucial application in many

branches of applied science and engineering. Thus, their solutions becomes more and

more important. In this study, we have focused on approximating the solution of such

a equations.

In this thesis, an operational matrix based on the fractional Taylor vector is used to

solve the multi-term FDEs numerically by reducing them to a set of linear algebraic

equations, which simplifies the problem. From comparison of the obtained results with

exact solutions and also with results of other techniques in the literature, we conclude

that the given method provides the solution with high accuracy. The findings also

show that, even for the small number of steps, we can get satisfactory results by using

presented method. All computational results are obtained by using MATLAB.

In presented method, constructing the operational matrix without any approximation

except the unknown function is an important benefit of using Taylor polynomials and

this is a crucial reason for better results. Also, fractional derivative of Taylor

polynomials can be evaluated easily and the use of these polynomials also provides

ease to approximate the functions.

It is important to highlight that the MATLAB program that used to calculate the
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computational problems, was particularly designed for given problem. However, the

general algorithm may be used for any problem of similar structure.

Concerning the difficulty of solving FDEs analytically, the presented method can have

important contributions to the field of numerical techniques by having very efficient

results and applicability even for a very less step size.
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Pseudo Code for the Numerical Algorithm

The pseudo code given below allows us to use proposed method in MATLAB to get a

numerical solution of a given problem. [52]

Algorithm 2: Fractional Taylor Method
[A,b] = f ractionalTaylor(al pha, beta, Uk, f unc, t0, R, y0, m, delta)

% Input variables
% al pha is the highest order of fractional derivative of given equation
% beta is the order of fractional derivatives other than alpha. beta must be a
vector with descending ordered values
% Uk is the vector of coefficients
% f unc is defining the right hand side of given problem
% t0 and R denotes the left and right endpoints
% y0 is the initial conditions
% m denotes the number of steps
% delta is a real number greater than zero. We usually take delta = 1 or
delta =fractional part of al pha

% Output variables
% A is an (m+1) x (m+1) matrix
% b is an (m+1) x 1 matrix
% using f ractionalTaylor.m, where command f ractionalTaylor.m is defined
by the Equation (4.10), gives us the linear system AC = B which is (m+1)
% algebraic equations with unknown coefficients CT

% Next step is to use matlab function linsolve(A,b) to solve obtained
algebraic equation for unknown coefficient vector CT with dimension (m+1).
C = linsolve(A,b)

% Output variables
% C is an (m+1) x 1 matrix which is the solution of linear system AC = B
% Next step is substituting obtained coefficients to approxSoln() as input,
where the command approxSoln() defined by Equation (4.7), we get the
approximate solution of given problem
[s,y] = approxSoln(C)

% Input variables
% C is the vector of coefficients obtained in previous step.

% Output variables
% s is the nodes on [t0,R] in which the approximate solution calculated
% y is the numerical solution evaluated in the points of s.
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