
Submitted to the 

Institute of Graduate Studies and Research 

in partial fulfillment of the requirements for the degree of 

Master of Science 

in 

Physics 
  

Geodesics of Black Holes in Bumblebee Gravity 

Theory 

Hüseyin Karyal 

Eastern Mediterranean University 

September 2020 

Gazimağusa, North Cyprus 



Approval of the Institute of Graduate Studies and Research 

Prof. Dr. Ali Hakan Ulusoy 

Director 

 

Prof. Dr. İzzet Sakallı 

 Chair, Department of Physics 

 

Prof. Dr. İzzet Sakallı 

Co-Supervisor 

 Assoc. Prof. Dr. Ali Övgün 

Supervisor 

  

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master 

of Science in Physics. 

We certify that we have read this thesis and that in our opinion it is fully adequate in 

scope and quality as a thesis for the degree of Master of Science in Physics. 

Examining Committee 

1. Prof. Dr. Mustafa Halilsoy  

2. Prof. Dr. İzzet Sakallı  

3. Assoc. Prof. Dr. İbrahim Güllü  

4. Assoc. Prof. Dr. S. Fatemeh Mirekhtiary  

5. Assoc. Prof. Dr. Ali Övgün  

 



iii 

ABSTRACT 

In this thesis, our main purpose is to study the geodesics of bumblebee black hole 

(BBH) in 4-dimension (4D), which is an exact solutions to the bumblebee gravity 

theory. The motions of photon and massive particles are going to be studied via the 

standart Lagrangian method in asymptotically flat geometry. Due to the physical 

constraints, instead of spacelike geodesics, we concantrate on null and timelike 

solutions.  

After finding the Euler Lagrange  equations, next step is invastigating  radial  motions 

of geodesics. Moreover, exact analytical solutions are also planned to be studied for 

the radial and angular geodesic equations. According to our purpose, we use some 

numerical simulations in order to plot  graphs for visualizing the geodesics. We also 

investigate the limit of Lorentz symmetry breaking term (LSB)   by using  classicsal 

tests which  are the advance of the perihelion and bending of light. 

Keywords: General Relativity, Standart Model Extensions, Bumblebee Gravity 

Theory, Black Hole, Geodesics, Perihelion, Lorentz Symmetry Breaking, Deflective 

Angle. 
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ÖZ 

Bu tezde, Bumblebee yerçekimi teorisi'nin kesin çözümleri olan 4 boyutlu (4D) kara 

deliklerin (BH) jeodeziklerini araştırıyoruz. Kütlesiz ve kütleli parçacıkların 

hareketleri asimptotik olarak düz geometride, standart Lagrangian yöntemi ile 

incelenecektir. Fiziksel kısıtlamalar nedeniyle, uzay benzeri jeodezikler yerine, ışık ve 

zaman benzeri jeodezikler üzerinde çalışılacaktır. 

Euler-Lagrange denklemlerini elde ettikten sonra, jeodeziklerin  radyal hareketlerini 

analiz edeceğiz. Ayrıca, hem radyal hemde açısal jeodezik denklemler için kesin 

analitik çözümlerin de çalışılması planlanmaktadır. Aynı düşüncede, jeodeziklerin 

görüntülenmesini sağlayacak, birçok grafiği çizmek için bazı sayısal simülasyonlar 

yapacağız. Günberi ilerlemesi ve ışığın bükülmesi gibi bazı klasik testleri de araştırdık. 

Anahtar Kelimeler: Genel Görelilik, Standart Model Uzantıları, Bumblebee 

Yerçekimi Modeli, Kara Delik, Jeodezikler, Günberi, Lorentz Simetri Kırınımı, Sapma 

Açısı. 
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Chapter 1 

1 INTRODUCTION 

The mysteries in the universe have always attracted the attention of human beings. 

Nicolaus Copernicus was a mathematician and astronomer who made a pioneering 

contribution to the scientific revolution [1]. The motion of stars and planets  were 

discovered by Copernicus in the earlys of 1500’s and he formulated a model of the 

universe that  the planets orbit around the Sun. Laterly, discoveries of science 

continues with Kepler who correctly defined  orbits. The development of the modern 

scientific approach started with  Johannes Kepler (1571-1630), then continue with 

Isaac Newton (1642-1726) and Albert Einstein (1879-1955) [2].  

In 1609, Kepler hypothesized the first two of his three laws in his work Astronomia 

Nova [3]  the existence of a force radiated by the Sun, which decreases with distance 

and which causes the planets to move faster in the event that closer to the Sun and he 

asserted  that planets, while orbiting around the sun, follow  elliptical geometry [4], 

not circles (as claimed up to that time), then, he explained his last law, which used 

mathematic principles to relate the time a planet takes to orbit the sun to the average 

distance of the planet from the sun. With these three laws, Kepler became one of the 

pioneers of modern astronomy. 

Nonetheless, the understanding of gravitational force is due to Isaac Newton. The 

impressive discoveries of Newton sprang quickly from those of  Kepler, and completed 
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the incredible chain of truths which constitude laws of the planetary system [5]. Kepler 

believed that some force from the sun pushed the planets around in their orbits, but he 

was unable to identify the force. Laterly,  Newton's work on gravity revealed why the 

planets orbit the way they do. When applied to the planets and the Sun, Newton's law 

of universal gravitation accurately predicts the motion of the planets. Newton put forth 

his laws in Philosophiae Naturalis Principia Mathematica, published in 1687 [6]. 

1.1 General Relativity 

General relativity is a gravitation theory that was evolved by Albert Einstein between 

1907 and 1915 [7]. In  General Relativity, the  gravitational effect  is causing by the 

distortion of space-time between masses. In the early 20th century, Newton's universal 

law of attraction was adopted as a valid definition of gravitational force among the 

masses for more than two hundred years. In Newton's principle, gravity is causing of 

an appealing force between large objects. Even Newton, though disturbed by the 

unknown nature of this force, was extremely successful in explaining fundamental 

frame motion. As time progressed it is showed that Einstein's definition of gravity 

explains several effects that cannot  reach accurate results from Newton's law, such as  

orbits of planets and an effect  of  gravity  on light. In Newton's definition of gravity, 

matter causes the force of gravity. More precisely, it results from a certain property of 

material objects: their mass. In Einstein's theory and related theories of gravity, the 

curvature at every point in space-time originates from everything that exists. Here, 

mass is also a key property in determining the gravitational effect of matter. However, 

in a theory of general relativity, mass cannot be the only source of gravity. Relativity 

combines mass with energy and energy with momentum. Today Einstein’s General 

Relativity remains scientists’ best understanding of gravity and a key to our 

understanding of the cosmos on the grandest scale. 
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1.2 Geodesics  

In general, the shortest distance between two points on a plane is represented by a 

straight line. The shortest distance between two points on a sphere is expressed by the 

arc segment whose center is the center of the sphere and passes through these two 

points. We call this curve that indicates the shortest distance between two points on a 

surface, the geodesic curve [8]. More importantly, when a particle undergoes a free 

falling, the gravitational force dissapears and this path is a particular geodesic. In other 

words, a freely moving or falling particle always moves along a geodesic [9]. In 

general relativity, gravity can be considered not as a force, but as a result of a curved 

space-time geometry, where the source of curvature is the stress energy momentum 

tensor (i.e. matter). On the authority of Einstein, the gravitational field is nothing more 

than a deviation of the properties of real spacetime moves along a geodesic line, which 

is independent of its mass and composition. This geodesic motion in curved spacetime 

is percieved by us as curved motion with variable velocity. Einstein’s theory postulates 

from the very beginning that the curvature of the trajectory and the variation of speed 

are spacetime properties, properties of the geodesics; and, hence, that accelerations of 

all bodies must be equal [10]. 

1.3 Black Holes 

Black holes are a number of the strangest and maximum captivating items in outer 

space. They're extraordinarily dense,with such robust gravitational enchantment that 

even light cannot escape out theirhold close if it comes close to enough [11]. The 

principle of general relativity predicts that compact galaxies in time can deform space 

time to create a black  hole [12]. There is a line where light cannot escape from the 

BH, we call it the event horizon. Until now, we could not make observation of event 

horizon  although it has great effect to the objects. In many ways, a BH acts as an ideal 
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blackbody, as it does not reflect light [13]. The most important property of BHs are 

being very dense. Density is a measure of how tightly mass is packed into a space. 

1.4 Bumblebee Gravity 

There are currently two theories of physics that explain the universe: first, Einstein's 

theory of relativity, which can explain very large objects like galaxies, and second, 

quantum mechanics, which can explain very small-sized matter like atoms. These two 

theories explain the same universe, when the two theories are combined in one theory. 

However, this has not been achieved so far. Some possibilities were found in several 

experiments, but these possibilities were found to be infinite. However, probability 

should not be less than 0 and greater than 1. By using string theory, reasonable results 

were obtained in solutions by getting rid of these infinities. This combination is already 

considered the greatest step in the history of science.  V. Alan Kostelecký is a smart 

theoretical physicist that he verified presence of an anisotropy   in string theory models, 

and described a modified version of the Standard Model of particle physics, called the 

Standard-Model Extension [14] that space-time symmetry can be violated.  

Bumblebee models are modified gravity models which describing a vector field in 

space with a non vanishing vacuum expectation value that spontaneously breaks 

Lorentz symmetry. A bumblebee model is the basic  model of a theory with Lorentz 

symmetry breaking. The improvement of bumblebee models was first motivated by 

the discovery of unisotropy  in string theory (and other modified quantum theories of 

gravity) can play an important role in non vanishing vacuum expectation values. 

In my master thesis, my main motivation is to analyse the geodesics of the 4-

dimensional non rotating black hole by Euler Lagrange method, which are exact 
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solutions to the bumblebee gravity theory in asymptotically flat geometry. We study 

the radial motion of  a particle both in null [15]  and timelike geodesics via the standart 

Lagrangian method. We also inspect the 𝑉𝑒𝑓𝑓 to observe the motion of test particles,  

both in  null (photon) and timelike geodesics. In addition, we find the exact analytical 

solutions of the geodesics equations in bumblebee graviy model. Finally, we observed 

the limit of Lorentz violation term  by getting help from some experimental  tests which 

are the advance of the perihelion and bending of light. 

As i will mention here, the  order of my master thesis; in chapter 2, we discussed the 

bumblebee spacetime and giving properties of Lorentz symmetry breaking [16] under 

the bumblebee model. In chapter 3, we derived the geodesics equations via the standart 

Lagrangian method and we also  study the radial motion of  a particle both in null and 

timelike geodesics without angular momentum. In chapter 4, we find the exact 

analytical solutions of the geodesics equations in bumblebee graviy model. Chapter 5  

represents some classical tests about advance of the perihelion and bending of light. 

Finally, in chapter 6, we wrote our conclusion. 
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Chapter 2 

2 BUMBLEBEE SPACETIME 

In Riemann spacetime, the bumblebee term and coupling term cause changes in the 

Lagrangian density [17]. Therefore, our modified Lagrangian density of the 

bumblebee gravity model [18] gives the following extended vacuum Einstein 

equations 

 
𝐺𝜇𝜈 = 𝑅𝜇𝜈 −

1

2
𝑅𝑔𝜇𝜈 = 𝑘𝑇𝜇𝜈 

(2.1) 

where Gμν is Einstein tensor, Rμν is Ricci tensor, R is Ricci scalar, gμν is the metric 

tensor, k is a gravitational coupling and Tμν is total energy momentum tensor 

respectively. In addition, Tμν is the total source of combining of matter and Bumblebee 

field. In mathematically,  

Tμν = Tμμ
M + Tμν

B  and Tμν
B  is given by [19] 

 
Tμν

B = −BμνBν
α −

1

4
BαβBβαgμν − Vgμν + 2V′BμBν

+
ξ

k
[
1

2
BαBβRαβgμν − BμBαRαν − BνBαRαμ

+
1

2
∇α∇μ(BαBν) +

1

2
∇α∇ν(BαBμ) −

1

2
∇2(BμBν)

−
1

2
gμν∇α∇β(BαBβ)] 

(2.2) 

where ξ is coupling constant relation with gravity-bumblebee interaction. In Eqn. (2.2), 

potential term (V) satisfied non vanishing  vacuum expectation value for bumblebee 

vector. 
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On  the  other   hand, vacuum   solutions   of   bumblebee   field determined when 𝑉 =

𝑉′ = 0. Vacuum in space means,   there is no matter or pressure close to any particles 

in the space and do not affect any processes being carried on there. In other words, it  

means  that there is not any source and  not any time dependence. For this reason, the 

bumblebee vector should be a simple as stated below; 

 Bµ =  (0, br(r), 0, 0) (2.3) 

When the bumblebee field 𝐵𝜇 vanishes, the equation (2.1) reduces to the Einstein 

equations. Recently, the vacuum solution in the bumblebee gravity model  induced by 

the Lorentz symmetry breaking  has been derived by Casana [20]. 

In arrange to explore the Lorentz symmetry breaking [21] in standart model extension, 

there should be theories which gives the Lorentz violation, occurs in the vector Bµ that 

gives a nonzero vacuum expectation value. These speculations are called bumblebee 

models and are among the only illustrations of field hypotheses with unconstrained 

Lorentz and diffeomorphism infringement. 

In addition,   (-,+,+,+) is applying  to the metric signature. In a bumblebee gravity 

model, a spherically symmetric vacuum solution is obtained as follows [22], 

 
𝑑𝑠2 = − (1 −

2𝑀

𝑟
) 𝑑𝑡2 + (1 + 𝑙) (1 −

2𝑀

𝑟
)

−1

𝑑𝑟2

+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑∅2) 

(2.4) 

or 

 𝑑𝑠2 = −𝑓𝑑𝑡2 + (1 + 𝑙)𝑓−1𝑑𝑟2 + 𝑟2𝑑𝛺2 (2.5) 

where 

 𝑑𝛺2 = 𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑∅2 (2.6) 
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and 𝑙 is the non-zero Lorentz symmetry breaking parameter. If 𝑙 takes zero value in 

the metric tensor, then it reduces to the Schwarzschild solution model. The differences 

between Schwarzschild and bumblebee model is  non zero vaalue of 𝑙. 

 
𝑓 = 1 −

2𝑀

𝑟
,       𝑟𝐻 = 2𝑀,       𝑟𝐻: 𝐸𝑣𝑒𝑛𝑡 𝐻𝑜𝑟𝑖𝑧𝑜𝑛 

(2.7) 

 
𝑇𝐻 =  

1

8𝜋𝑀√1 + 𝑙
 

(2.8) 

The non-zero LSB parameter has the effect of reducing the Hawking temperature [23] 

of a Schwarzschild BH. 

In addition, Kretschmann scalar is given by; 

 
𝐾 =

4(12𝑀2 + 4𝑙𝑀𝑟 + 𝑙2𝑟2)

𝑟6(1 + 𝑙)2
 

(2.9) 

and r = 0 is the real singularity. 

  



9 

Chapter 3 

3 RADIAL SOLUTION OF THE BUMBLEBEE 

BLACKHOLE 

3.1 Analysing of Complete Geodesics Equations of the Bumblebee 

Blackhole from Euler Lagrange Equations 

In this section, geodesics of the test particles in the bumblebee BH is the main 

motivation. Standart Lagrangian  method is applied  to the metric to find the equations 

of motion. The suitable Lagrange ( L )  equation of a photon and massive particle in 

the BBH geometry is shown below; 

 2𝐿 =  −𝑓�̇�2 + (1 + 𝑙)𝑓−1�̇�2 + 𝑟2(�̇�2 + 𝑠𝑖𝑛2𝜃∅̇2) (3.10) 

where dot over proportion represents the derivative with respect to the affine 

parameter. The left side of Eqn. (3.10) is the metric condition in general and stated by; 

 𝐿 =
𝜀

2
 

(3.11) 

in which 𝜀 = 0 represents null and 𝜀 = -1 represents timelike geodesics. In this metric, 

(t, 𝜙) are cyclic coordinates, therefore, their conjugate momenta 𝔭𝑡 , 𝔭∅  are defined as; 

 𝑑

𝑑𝜎
(𝔭𝑡) =

𝜕𝐿

𝜕𝑡
= 0 

(3.12)  

 𝑑

𝑑𝜎
(𝔭∅) =

𝜕𝐿

𝜕∅
= 0 

(3.13)  

where  𝔭𝑡 =
𝜕𝐿

𝜕�̇�
  𝑎𝑛𝑑   𝔭∅ =

𝜕𝐿

𝜕∅̇
.  
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As can be understood from the Eqns. (3.12) and (3.13), the conjugate momenta of t 

and 𝜙 are independent variable. For this reason, they are equal to constant number. 

 
𝔭𝑡 =

𝜕𝐿

𝜕�̇�
= −𝑓�̇� = 𝑐𝑜𝑛𝑠𝑡 

(3.14) 

 
𝔭∅ =

𝜕𝐿

𝜕∅̇
= 𝑟2𝑠𝑖𝑛2𝜃∅̇ = 𝑐𝑜𝑛𝑠𝑡 

(3.15) 

where, 𝜎 is affine parameter. Time variable t is associated with energy and 𝜙 variable 

is associated with angular momentum respectively. 

𝔭𝑡 = −𝐸 ⟹ 𝑓�̇� = 𝐸 ⟹ 𝐸: 𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑝𝑟𝑡𝑖𝑐𝑙𝑒𝑠 

 
�̇� =

𝐸

𝑓
=

𝐸

1 −
𝑟𝐻

𝑟

=
𝐸𝑟

𝑟 − 𝑟𝐻
,        (𝑟𝐻 = 2𝑀) 

(3.16) 

Moreover, E represent the total energy  of the massive and massless particles 

investigated  by an external observer located at  

𝑟 → ∞ (𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦) ∶ 𝑟 → ∞ ⟹ �̇� → 𝐸 

On the other hand; 𝓁 is an integration constant which include angular momentum 

relation and stated as below;     

 
𝑟2𝑠𝑖𝑛2𝜃∅̇ = 𝓁 ⟹ ∅̇ =

𝓁

𝑟2𝑠𝑖𝑛2𝜃
 

(3.17) 

Without loss of generality, to make it simple, we can project the problem into an 

equilateral plane:   𝜃 =
𝜋

2
.         

Thus the Lagrangian become 

 
𝐿 =  −

1

2
𝑓�̇�2 +

1

2
(1 + 𝑙)𝑓−1�̇�2 +

𝑟2

2
(∅̇2) 

(3.18) 

and also  can be written as  

 
𝐿 =  −

1

2

𝐸2

𝑓
+

1

2
(1 + 𝑙)𝑓−1�̇�2 +

𝓁2

2𝑟2
 

(3.19) 

EL-equation of the radial coordinates then reads as follow 
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 𝑑

𝑑𝜎
(

𝜕𝐿

𝜕�̇�
) =

𝜕𝐿

𝜕𝑟
 

(3.20) 

where    (𝐿 =
−𝐸2

2𝑓
+

�̇�2

2𝑓
(1 + 𝑙) +

𝓁2

2𝑟2) 

 𝑑

𝑑𝜎
(

1 + 𝑙

2𝑓
�̇�) =

𝐸2

2𝑓2
𝑓′ −

�̇�2(1 + 𝑙)

2𝑓2
𝑓′ −

𝓁2

𝑟3
 

(3.21) 

and from the metric condition; we introduce 
𝜖

2
 instead of L in Eqn. (3.19), then, we 

obtain Eqn. (3.22); 

𝐿 =
𝜖

2
⟹

𝜖

2
=

−𝐸2

2𝑓
+

�̇�2

2𝑓
(1 + 𝑙) +

𝓁2

2𝑟2
𝑓 

𝑓𝜖 = −𝐸2 + �̇�2(1 + 𝑙) +
𝓁2

𝑟2
𝑓 

 
�̇�2 =

1

1 + 𝑙
[𝐸2 + 𝑓𝜖 −

𝓁2𝑓

𝑟2
] 

(3.22) 

making some  additions, corrections and editions to the Eqn. (3.22), we find as 

 1

2
�̇�2 =

1

2(1 + 𝑙)
[𝐸2 + 𝑓 (𝜖 −

𝓁2

𝑟2
)] 

(3.23) 

where dot means derivative with respect to 𝜎. Moreover, we reformat our Eqn. (3.23) 

where the effective potential and effective energy can be seen easily as shown below. 

 1

2
�̇�2 + 𝑉𝑒𝑓𝑓 = 𝐸𝑒𝑓𝑓 

(3.24) 

 1

2
�̇�2 =

𝑓

2(1 + 𝑙)
(

𝓁2

𝑟2
− 𝜖) =

𝐸2

2(1 + 𝑙)
 

(3.25) 

Therefore; we can  separate  𝐸𝑒𝑓𝑓 and 𝑉𝑒𝑓𝑓 equations respectivley. 

 
𝐸𝑒𝑓𝑓 =

𝐸2

2(1 + 𝑙)
 

(3.26) 

 
  𝑉𝑒𝑓𝑓 =

𝑓

2(1 + 𝑙)
(

𝓁2

𝑟2
− 𝜖) 

(3.27) 

In addition, with the help of chain rule, we change the variables, 



12 

𝑑

𝑑𝜎
=

𝓁

𝑟2

𝑑

𝑑∅
 ⟹ �̇� =

𝓁

𝑟2
𝑟′,   𝑟′ =

𝜕𝑟

𝜕∅
=

𝑑𝑟

𝑑∅
⟹  �̇�2 =

𝓁2

𝑟4
𝑟′2 

 
𝑟′2 =

2𝑟4

𝓁2
(𝐸𝑒𝑓𝑓 − 𝑉𝑒𝑓𝑓) 

(3.28) 

Setting  𝑟 =
1

𝑢
= 𝑢−1 and 𝑑𝑟 = −𝑢−2𝑑𝑢. Then, introducing this equation into a 

standart Kepler problem which is very important for analysing  the circular motion 

[24]. (𝐻𝑖𝑛𝑡:
𝑑𝑟

𝑑∅
= 𝑟′ = −𝑢−2𝑢′) 

 
𝑢′2 =

2

𝓁2
[𝐸𝑒𝑓𝑓(𝑢) − 𝑉𝑒𝑓𝑓(𝑢)] 

(3.29) 

Or in open form is shown as below; 

 
𝑢′2 =

1

𝓁2(1 + 𝑙)
[𝐸2 + (𝑢𝑟𝐻 − 1)(𝓁2𝑢2 − 𝜖)] 

(3.30) 

3.2 Radial Geodesics without Angular Momentum 

In this part, we are focusing on zero angular momentum case in which 𝓁=0. Thus, we 

reduced our 4D into a 3D  and the motion of particle is only  in radial direction. 

Therefore,  the Eqn. (3.23) reduces  to  

 
�̇�2 =

1

1 + 𝑙
[𝐸2 + 𝑓𝜖] 

(3.31) 

Moreover, when the geodesics refer to a null case, it means that massless particle 

(photon) is taken to the consideration and  the above equation becomes as; 

 
�̇�2 =

𝐸2

1 + 𝑙
= 2𝐸𝑒𝑓𝑓 

(3.32) 

where �̇� =
𝑑𝑟

𝑑𝜎
.   

Again, using the properties of Eqn. (3.16), and changing the variable of Eqn. (3.32), 

from affine parameter 𝜎 to the time t, we obtain ;  �̇� =
𝐸

𝑓
 ⟹

𝑑𝑡

𝑑𝜎
=

𝐸

𝑓
⟹ 𝑑𝜎 =

𝑓

𝐸
𝑑𝑡 . 

Therefore; it becomes; 
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 𝑑𝑟

𝑑𝑡
= ±

𝑓

√1 + 𝑙
 

(3.33) 

where 𝑓 = 1 −
𝑟𝐻

𝑟
. Therefore it becomes as 

 𝑟√1 + 𝑙

𝑟 − 𝑟𝐻
𝑑𝑟 = ±𝑑𝑡 

(3.34) 

and we take integral of both sides with respect to t and r. Then, we obtain, 

 
√1 + 𝑙 ∫

𝑟𝑑𝑟

𝑟 − 𝑟𝐻

𝑟

𝑟0

= ± ∫ 𝑑𝑡
𝑡

𝑡0

 

                                    ⇒  𝛥𝑟 + 𝑟𝐻 𝑙𝑛 (
𝑟−𝑟𝐻

𝑟0−𝑟𝐻
) = ±

𝛥𝑡

√1+𝑙
 

(3.35) 

In which 𝛥𝑟 = 𝑟 − 𝑟0   𝑎𝑛𝑑   𝑟0 ≥ 𝑟𝐻 respectively.In addition, letting  𝑐 = 𝑟0 − 𝑟𝐻, we 

obtain, 

 
    𝛥𝑟 + 𝑟𝐻 𝑙𝑛 (

𝑟 − 𝑟𝐻

𝑐
) = ±

𝛥𝑡

√1 + 𝑙
 

(3.36) 

Finally, we find the radial solution of  𝑟(𝑡) as follows; 

 
𝑟 = 𝑟𝐻 + 𝑐 𝑒𝑥𝑝 [

1

𝑟𝐻(1 + 𝑙)
[𝐿𝑎𝑚𝑏𝑒𝑟𝑡𝑤 (

𝑒𝑦𝑐

𝑟𝐻
) 𝑟𝐻(1 + 𝑙)

− (𝑠√1 + 𝑙𝛥𝑡 + 𝑐(1 + 𝑙))]] 

(3.37) 

where t is nothing but the time measured by an external observer as higher initial time  

and c is chosen to be a constant parameter. We can reorganize our Eqn. (3.37) into this 

form as stated below; 

 
𝑟 = 𝑟𝐻 + 𝑐 𝑒𝑥𝑝 [−𝑌 + 𝐿𝑎𝑚𝑏𝑒𝑟𝑡𝑤 (

𝑐𝑒𝑌

𝑟𝐻
)] 

(3.38) 

where 𝐻0 =  𝑠√1 + 𝑙𝛥𝑡 + 𝑐(1 + 𝑙)   and 𝑌 =
𝐻0

𝑟𝐻(1+𝑙)
.   
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Now, instead of null geodesics, we concentrate on timelike geodesics (𝜖 = −1) or 

massive particle without angular momentum. Therefore, Eqn. (3.31)  leads to become 

as follow, 

 
�̇�2 =

1

1 + 𝑙
[𝐸2 − 𝑓] 

(3.39) 

Substituting 𝑓 = 1 −
𝑟𝐻

𝑟
  into the above equation and get the derivative of Eqn. (3.39) 

with respect to 𝜎 parameter, then we reach the 2nd order radial equation. 

 
�̈� = −

1

2(1 + 𝑙)

𝑟𝐻

𝑟2
 

(3.40) 

Moreover, just reorganizing 𝜏 (proper time) instead of the affine parameter 𝜎, we reach 

the radial force per unit mass (i.e. the acceleration). 

 𝑑2𝑟

𝑑𝜏2
= 𝑎𝑟 =

−𝑟𝐻

2(1 + 𝑙)𝑟2
 

(3.41) 

In which 𝑎𝑟 gives us the centrifugal acceleration due to its NEGATIVE sign. This is 

not a surprised result cause 𝑎𝑟 is directed toward the center of the black hole. Now, if 

we assume that a particle indicates its motion from rest at an initial point 𝑟𝑖 , using the 

following equation: 

 
�̇�2 =

1

1 + 𝑙
[𝐸2 + 𝑓𝜖] 

(3.42)  

When we take the timelike particle into the consideration (𝜖 = −1). Our equation 

reduces to; 

 
�̇�2 =

1

1 + 𝑙
[𝐸2 − 𝑓] 

(3.43)  

and, considering a particle that its initial radial point 𝑟 = 𝑟𝑖  with 𝜎 = 𝜏, we get 

 𝐸2 = 1 −
𝑟𝐻

𝑟𝑖
=

𝑟𝑖 − 𝑟𝐻

𝑟𝑖
 

(3.44) 

then, substituting Eqn. (3.42) into an Eqn. (3.44), we obtain, 
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�̇�2 =

1

1 + 𝑙
[
𝑟𝐻(𝑟𝑖 − 𝑟)

𝑟𝑟𝑖
] 

(3.45)  

Moreover, from the previous equation which is Eqn. (3.27),  we obtain the effective 

potential. For photons, introducing the 𝓁 = 0 condition  to this potential, our equation 

leads to; 

 
𝑉𝑒𝑓𝑓 =

𝑓

2(1 + 𝑙)
 

(3.46)  

One can get the above result from the definition of conservative force for a test particle 

having m=1 as shown below, 

 
 𝐹 = 𝑚

𝑑2𝑟

𝑑𝜏2
=

𝑑2𝑟

𝑑𝜏2
=

−1

2(1 + 𝑙)

𝑟𝐻

𝑟2
= −𝛥𝑉𝑒𝑓𝑓

=
−𝑑𝑉𝑒𝑓𝑓

𝑑𝑟
 

(3.47) 

 
𝑉𝑒𝑓𝑓 = ∫

1

2(1 + 𝑙)

𝑟𝐻

𝑟2
𝑑𝑟  

                                        ⇒ 𝑉𝑒𝑓𝑓 =
−1

2(1+𝑙)

𝑟𝐻

r
+ 𝑐 

(3.48)  

Where c is an integration constant. For the sake of conformity of Eqn. (3.27), we can 

get  𝑐 =
1

2(1+𝑙)
  . Therefore we proved that our effective potential is same as shown 

below; (Hint: 2M=Mass of BH) 

 
𝑉𝑒𝑓𝑓 =

1

2(1 + 𝑙)
[1 −

2𝑀

𝑟
] 

(3.49)  

Finally, we impose timelike geodesics to Eqn. (3.31) which means 𝜀 = −1, and using 

the previous condition which was  𝜕𝜎 = 𝜕𝜏 =
𝐸

𝑓
𝜕𝑡. Thus, we obtain, 

 𝐸2

𝑓2
(

𝑑𝑟

𝑑𝑡
)

2

=
1

1 + 𝑙
[𝐸2 − 𝑓] 

⇒
𝑑𝑟

𝑑𝑡
= √

1

1 + 𝑙
(𝑓2 −

𝑓3

𝐸2
) = √𝑥 = 𝑥1/2 

(3.50)  
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In addition, setting  𝑥 =
1

1+𝑙
(𝑓2 −

𝑓3

𝐸2
) and differenriating the above expression with 

respect to t, one can easily find that 

 𝑑

𝑑𝑡
[
𝑑𝑟

𝑑𝑡
= √𝑥] ⟹

𝑑2𝑟

𝑑𝑡2
=

1

2
(𝑥)−

1
2

𝑑𝑥

𝑑𝑡
=

1

2
(𝑥)−

1
2

𝑑𝑥

𝑑𝑟

𝑑𝑟

𝑑𝑡
 

=
1

2
(𝑥)−1/2(𝑥)1/2

𝑑𝑥

𝑑𝑟
 

𝑑2𝑟

𝑑𝑡2
=

1

2

𝑑𝑥

𝑑𝑟
 

𝑑𝑥

𝑑𝑟
=

𝑓

1 + 𝑙
(2 −

3𝑓

𝐸2
)

𝑟𝐻

𝑟2
 

𝑑2𝑟

𝑑𝑡2
=

1

2

𝑓𝑟𝐻

𝑟2(1 + 𝑙)
(2 −

3𝑓

𝐸2
) 

(3.51) 

On the other hand, for a massive particle starting its motion from rest (𝑉0 = 0) 

 
𝑉0

2 =
𝑓𝑖

2

(1 + 𝑙)𝐸2
 

(3.52)  

where 𝐸2 = 𝑓𝑖 = 1 −
𝑟𝐻

𝑟𝑖
=

𝑟𝑖−𝑟𝐻

𝑟𝑖
.             
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Figure 1: Showing the  𝑉𝑒𝑓𝑓(𝑟) potential versus r. The plot is  

governed by [Eq. (3.49)] 

 
Figure 2: The plot of the 𝐸2 𝑣𝑠 𝑟𝑖. The plot is  

governed by [Eq. (3.52)] 
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Figure 3: Showing the orbit of a photon around a Schwarzschild black hole (l=0) 

 
Figure 4: Showing the orbit of a photon around a Bumblebee black hole (l=0.1) 
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Figure 5: Showing the orbit of a photon around a Bumblebee black hole (l=0.3) 

 
Figure 6: Showing the orbit of a photon around a Bumblebee black hole (l=0.6) 
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Figure 7: Showing the orbit of a photon around a Bumblebee black hole (l=0.9) 
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Chapter 4 

4 ANALYTICAL SOLUTION OF GEODESICS 

EQUATIONS OF BUMBLEBEE BLACK HOLE IN 

MODIFIED GRAVITY 

4.1 Euler Lagrange Equations with Mino Proper Time 

In this section, the Lagrangian (3.11) is reordering  by using the mino proper time (𝛾) 

which is ruled by the following differential expression in bumblebee gravity model.  

 𝑑𝜎 = 𝑟𝑑𝛾 (4.1) 

By using the chain rule  
𝜕

𝜕𝜎
=

1

𝑟

𝜕

𝜕𝛾
  and describe the  ′ =

𝜕

𝜕𝛾
 , Thus, we obtain reforming 

of Lagrangian which is stated as below; 

 
𝐿 =

−𝑓

2𝑟2
(𝑡′)2 +

(1 + 𝑙)𝑓−1

𝑟2
(𝑟′)2 +

(𝜃′)2

2
+

𝑠𝑖𝑛2𝜃

2
(∅′)2 

(4.2) 

where 𝑓 = 1 −
2𝑀

𝑟
, 𝑟𝐻 = 2𝑀 𝑎𝑛𝑑 2𝐿 =  𝜖.  

And its corresponding metric condition is in the same form with Eq. (3.11). After 

applying the EL method, we get 

 𝑑

𝑑𝛾
(

−𝑓𝑡′

𝑟2
) = 0 ⇒    𝑡′ =

𝑟2𝛼

𝑓
 

(4.3)  

 𝑑

𝑑𝛾
(𝑠𝑖𝑛2𝜃∅′) = 0  ⇒   ∅′ =

𝛽

𝑠𝑖𝑛2𝜃
 

(4.4) 

In which 𝛼 and 𝛽 are integration constants respectively. Moreover, from  Eqn. (4.2), 

we get the equation as follows; 
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 𝑑

𝑑𝛾
(𝜃′) = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃(∅′)2 

                                        ⇒ 𝜃′′ = 𝑐𝑜𝑠𝜃
𝛽2

𝑠𝑖𝑛3𝜃
 

                                   ⇒2𝜃′𝜃′′ =
𝑐𝑜𝑠𝜃

𝑠𝑖𝑛3𝜃
𝛽22𝜃′⇒  2𝜃′𝑑𝜃′ = 2𝛽2 𝑐𝑜𝑠𝜃

𝑠𝑖𝑛3𝜃
𝑑𝜃 

                                        ⇒𝜃′2 = 2𝛽2 ∫
𝑐𝑜𝑠𝜃𝑑𝜃

𝑠𝑖𝑛3𝜃
+ 𝑘 

(4.5)  

where 𝜃′ =
𝑑𝜃

𝑑𝛾
  and k is the integration constant. In addition, by integrating new 

variable to the above  equation such that  u=sin𝜃 and  du=cos𝜃d𝜃, then, applying the 

integral, our Eqn. (4.5),  becomes as follows; 

 
𝜃′2 = 𝑘 − (

𝛽

𝑠𝑖𝑛𝜃
)

2

 
(4.6) 

With the help of metric condition, the radial equation can be direved as stated below; 

 
𝐿 =

−𝑓

𝑟2
(

𝑟2𝛼

𝑓
)

2

+
(1 + 𝑙)

𝑓𝑟2
(𝑟′)2 + [𝑘 − (

𝛽

𝑠𝑖𝑛𝜃
)

2

] 

+𝑠𝑖𝑛2𝜃
𝛽2

𝑠𝑖𝑛4𝜃
= 𝜖 

                                ⇒  −
𝑟2𝛼2

𝑓
+

(1+𝑙)(𝑟′)
2

𝑓𝑟2 = 𝜖 − 𝑘 

(𝑟′)2 =
𝜖 − 𝑘

1 + 𝑙
𝑓𝑟2 +

𝛼2

1 + 𝑙
𝑟4 

(4.7) 

where  𝜌2 =
𝛼2

1+𝑙
      and   𝛼 =

𝑓𝑡′

𝑟2
   respectively. Finally we get; 

 
(𝑟′)2 =

𝜖 − 𝑘

1 + 𝑙
𝑓𝑟2 + 𝜌2𝑟4 

(4.8) 

4.2 Exact Analytical Solution of the Radial Geodesics in Bumblebee 

Gravity Model 

Under the leadership of transformations given in [25, 26],  we make a change in the 

radial-coordinate as follows: 
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 𝑟(𝑦) =
𝑠

𝑥(𝑦)
+ 𝑧 

(4.9) 

where,   𝑠 = ±1  , 𝑠2 = 1 ,   𝑦 ≡ 𝛾 , respectively. 

From Eqn. (4.8), when r is equal to z, the radial equation become zero. Therefore, z 

satisfied the zero condition when its equal to r.  

 
(𝑟′)2 =

𝜖 − 𝑘

1 + 𝑙
𝑓𝑟2 + 𝜌2𝑟4,      𝑎𝑡 𝑧 = 𝑟 

⇒  (𝑟′)2 = 0 

(4.10) 

where  𝑓 =
𝑟(𝑦)−𝑟ℎ

𝑟(𝑦)
 , 𝑟ℎ = 2𝑀. Moreover, when we put the all parameters into an    

Eqn. (4.8), we obtain the new form of radial equation as stated below; 

 (𝑥′)2 = 𝑎1𝑥4 + 𝑎2𝑥3 + 𝑎3𝑥2 + 𝑎4𝑥 + 𝑎5 (4.11) 

and we find  

 
𝑎1 =

𝜖 − 𝑘

1 + 𝑙
𝑓𝑟2 − 𝜌2𝑟4 

(4.12) 

 
𝑎2 =

(3𝑟𝐻 − 2𝑧)

𝑟𝐻 − 𝑧
𝜌2𝑠𝑧3 

(4.13) 

 
𝑎3 =

6𝑟𝐻 − 5𝑧

𝑟𝐻 − 𝑧
𝜌2𝑧2 

(4.14) 

 𝑎4 = 𝜌24𝑠𝑧 (4.15) 

 𝑎5 = 𝜌2 (4.16) 

then, letting      𝑎2 = 𝑏3 ;  𝑎3 = 𝑏2 ;  𝑎4 = 𝑏1 ;  𝑎5 = 𝑏0, we obtain, 

 (𝑥′)2 = 𝑏3𝑥3 + 𝑏2𝑥2 + 𝑏1𝑥 + 𝑏0 (4.17)  

setting 

 
𝑥(𝑦) =

1

𝑏3
(4𝑢(𝑦) −

𝑏2

3
) 

(4.18) 

One can get; 
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 (𝑢′)2 − 4𝑢3 + 𝑔22𝑢 + 𝑔33 = 0 (4.19) 

where 𝑔22 =
𝑏2

2

12
−

𝑏1𝑏3

4
     and      𝑔33 =

−𝑏2
3

216
+

𝑏1𝑏2𝑏3

48
−

𝑏0𝑏3
2

16
. 

Eqn. (4.19) is nothing but the equation of Weierstrass P function (an elliptic function). 

Solution of this equation is stated below, 

 𝑢(𝑦) = 𝑊𝑃(𝑐1 + 𝑦, 𝑔22, 𝑔33) (4.20) 

finally, we reach the full solution in radial direction.  

 
𝑥 =

1

𝑏3
(4𝑢(𝑦) −

𝑏2

𝑏3
) 

(4.21) 

4.3 Exact Analytical Solution of the Angular Geodesics in Bumblebee 

Gravity Model 

In this section, analytical solution of the angular geodesics are investigated. 

From our 
𝑑𝜃

𝑑𝛾
  Eqn. (4.6), which showed below, should be integrated to find the 

analytical solution. 

 
𝑑𝜃

𝑑𝛾
= √𝑘 −

𝛽2

𝑠𝑖𝑛2𝜃
=

√𝑘𝑠𝑖𝑛2𝜃 − 𝛽2

𝑠𝑖𝑛𝜃
 

(4.22)  

and integration calculations are showed below step by step. 

 𝑠𝑖𝑛𝜃𝑑𝜃

√𝑘𝑠𝑖𝑛2𝜃 − 𝛽2
= 𝑑𝛾 

(4.23) 

Let cos𝜃= u , du= -sin𝜃d𝜃 and from basic knowledge  𝑠𝑖𝑛2𝜃 = 1 − 𝑢2, one can write 

this Eqn. in this form; 

 −𝑑𝑢

√𝑘(1 − 𝑢2) − 𝛽2
= 𝑑𝛾 

(4.24)  
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− ∫

𝑑𝑢

√𝑘(1 − 𝑢2) − 𝛽2
= 𝛾 − 𝛾0 

(4.25) 

then, our integration become; 

 
−√𝑘(𝛾 − 𝛾0) = 𝑡𝑎𝑛−1 (

√𝑘𝑢

𝑘 − 𝑘𝑢2 − 𝛽2
) 

(4.26) 

Hint : ( 1 + 𝑡𝑎𝑛𝑤𝑣 =
1

𝑐𝑜𝑠2𝑣
 ) and plus one for both sides of Eqn. (4.26) 

 
1 + 𝑡𝑎𝑛2 (√𝑘(𝛾 − 𝛾0)) =

𝑘𝑢2

𝑘 − 𝑘𝑢2 − 𝛽2
+ 1 

⇒  
1

𝑐𝑜𝑠2 (√𝑘(𝛾 − 𝛾0))
=

𝑘 − 𝛽2

𝑘 − 𝑘𝑢2 − 𝛽2
 

(4.27) 

 (𝑘 − 𝛽2) (1 − 𝑐𝑜𝑠2 (√𝑘(𝛾 − 𝛾0))) = 𝑘𝑢2 

⇒  (𝑘 − 𝛽2)𝑠𝑖𝑛2 (√𝑘(𝛾 − 𝛾0)) = 𝑘𝑢2 

(4.28)  

finally, we reached the angular solution with new proper time parameter (𝛾) as stated 

below; 

 

𝑢 = √
𝑘 − 𝛽2

𝑘
𝑠𝑖𝑛 (√𝑘(𝛾 − 𝛾0)) 

(4.29) 

According to the mathematical computer programming Mapple, we can obtain  𝜃 as; 

 𝜃 = 𝜋 ± 𝑐𝑜𝑠−1(𝑢) (4.30) 

then, putting  Eqn. (4.29) into the Eqn. (4.30)  and substituting into Eqn. (4.22), Finally 

we obtained ∅ - equation’s solution. 

 
𝛾 − 𝛾0 = −

1

√𝑘
𝑡𝑎𝑛−1 (

𝛽

√𝑘
𝑡𝑎𝑛(𝑐𝑖 − ∅)) 

(4.31) 

where 𝑐𝑖 is also an integration constant. 
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Chapter 5 

5 PERIHELION AND BENDING OF LIGHT 

Light bending and perihelion precession are the two most vital impacts on orbits 

caused by the general relativity redresses to the Newtonian gravitational field of the 

sun [27]. The main concept of his section is to find the upper limit of Lorentz violation 

term (l) in spherically symmetric geodesic equation. Thus, we handle the Solar system 

to study the effects of LV term on the bending of light around the Sun and perihelion 

precession of inner planets. In other words, we use these technniques to compare the 

result with GR. Geodesics of the particles describe as 

 𝑑2𝑥𝜇

𝑑𝜆2
+ 𝛤𝜎𝜈

𝜇 𝑑𝑥𝜎

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
= 0 

(5.1) 

In which λ is an affine parameter. However, due to the metric compatibility, it is 

continuously conceivable to utilize a constant motion, χ , characterized as; 

 𝜒 = −𝑔𝜇𝜈𝑈𝜇𝑈𝜈 (5.2) 

in which  the vector  is defined as 

 
𝑈𝜇 =

𝑑𝑥𝜇

𝑑𝜆
≡ �̇�𝜇 

(5.3) 

where  dot simply explains the derivative with respect to λ. For gigantic particles, the 

relative parameter is ordinarily chosen to be the proper time τ. In addition, massive 

and massless particles get the value of χ = +1 (timelike geodesics), χ = 0 (null 

geodesics) respectively. 
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5.1 Advance of the Perihelion 

From the geodesic Eqn. (5.1), the equations of motion is detected for a massive 

particle. 

 𝑑

𝑑𝜏
[(1 −

2𝑀

𝑟
)�̇�] = 0 

(5.4) 

 
�̈� +

𝑀(𝑟 − 2𝑀)

𝑟3(𝑙 + 1)
�̇�2 −

𝑀

𝑟(𝑟 − 2𝑀)
�̇�2 

(5.5)  

 
−

𝑟 − 2𝑀

𝑙 + 1
(�̇�2 + 𝑠𝑖𝑛2 𝜃∅̇2) = 0 

(5.5) 

 𝑑

𝑑𝜏
(𝑟2𝑠𝑖𝑛2 𝜃∅̇) = 0 

(5.6) 

For simplicity, we reduces our 4D to 3D by taking the 𝜃 =
𝜋

2
. Therefore, we understood 

that any differential orders of 𝜃 in Eqn. (5.6), equal to zero and the motion of the 

particle continue on equilateral plane. From the cyclic coordinates we had two vectors 

that represent the energy and the angular momentum. The time-like geodesic is related 

to the energy given as follow; 

 
𝐸 = −𝑔𝜇𝜈𝐾𝜇𝑈𝜈 = (1 −

2𝑀

𝑟
)𝑡

˙
 

(5.7) 

and the  angular momentum of the particle, 

 
𝓁 = 𝑔𝜇𝜈𝜓𝜇𝑈𝜈 = 𝑟2𝜙

˙

 
(5.8) 

thus, both Eqn. (5.8) and Eqn. (5.9) are the conserved quantities and when we put this 

equations into the time-like geodesics which is Eq. (5.2), we obtain 

 
(1 + 𝑙)𝑟

˙ 2 + (1 −
2𝑀

𝑟
)(

𝓁2

𝑟2
+ 1) = 𝐸2 

(5.9) 

The Eqn. (5.10) is nothing but just explains how we can use the property of  Eqn. (5.2)  

in our  time-like geodesic to find conserved equation. When we introducing the new 
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variable which is 𝑢 = 𝑟−1 and substitude into above equation which is Eqn. (5.10), we 

obtain; (Hint:   𝑟
˙

=
𝑑𝑟

𝑑𝜙
𝜙
˙

= −𝓁
𝑑𝑢

𝑑𝜙
) 

 
(1 + 𝑙)(

𝑑𝑢

𝑑𝜙
)2 + 𝑢2 =

𝐸2 − 1

𝓁2
+

2𝑀

𝓁2
𝑢 + 2𝑀𝑢3 

(5.10) 

As can easily be seen above, it is preferred to solve the second order differential  

equation obtained by differentiating  equation with respect to 𝜙. Thus, we obtain; 

 
(1 + 𝑙)

𝑑2𝑢

𝑑𝜙2
+ 𝑢 −

𝑀

𝓁2
− 3𝑀𝑢2 = 0 

(5.11) 

in Eqn. (5.12), only the first term contain LV property  if we compare with the standart 

GR. For the purpose of solving Eqn. (5.12) perturbatively, the Lorentz violating term 

should be smaller than one (l≪ 1). it is still significant to consider the last term as a 

relativistic redress when compared with the Newtonian case. The perturbative solution 

is including in terms of a small parameter, ∈=
3𝑀2

𝓁2 . 

 𝑢 ≃ 𝑢(0)+∈ 𝑢(1) (5.12) 

The zeroth order of differential equation in ∈ yields 

 
(1 + 𝑙)

𝑑2𝑢(0)

𝑑𝜙2
+ 𝑢(0) −

𝑀

𝓁2
= 0 

(5.13) 

where the solution is given by 

 
u(0) =

M

𝓁2
[1 + ecos (

𝜙

√1 + 𝑙
)] 

(5.14) 

It is similar to Newtonian result. In addition, the integration constants we have 

considered are the orbital eccentricity e and the initial value ∅0 = 0. The first order 

differential equation in ∈ is 

 
(1 + 𝑙)

𝑑2𝑢(1)

𝑑𝜙2
+ 𝑢(1) −

𝐿2

𝑀
(𝑢(0))2 = 0 

(5.15) 

which shows  approximated solution of the form 
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𝑢(1) ≃

𝑀

𝓁2
𝑒

𝜙

√1 + 𝑙
𝑠𝑖𝑛 (

𝜙

√1 + 𝑙
)

+
𝑀

𝓁2
[(1 +

𝑒2

2
) −

𝑒2

6
𝑐𝑜𝑠 (

2𝜙

√1 + 𝑙
)]

 

(5.16) 

The second term can be ignored because of giving non-effective result, Therefore, the 

perturbative solution of Eqn. (5.13) reads, 

 
𝑢 ≃

𝑀

𝓁2
[1 + 𝑒𝑐𝑜𝑠 (

𝜙

√1 + 𝑙
) + 𝜖𝑒

𝜙

√1 + 𝑙
𝑠𝑖𝑛 (

𝜙

√1 + 𝑙
)] 

(5.17) 

Because of  ∈≪ 1, the perturbative arrangement can be revised within the shape of an 

ellipse condition 

 
𝑢 ≃

𝑀

𝓁2
[1 + 𝑒𝑐𝑜𝑠 (

𝜙(1 − 𝜖)

√1 + 𝑙
)] 

(5.18) 

although  the priority of Lorentz violation, with period Φ, the orbit remains periodic. 

 
𝛷 =

2𝜋√1 + 𝑙

1 − 𝜖
≈ 2𝜋 + 𝛥𝛷 

(5.19) 

In general, the minimum order of ∈ and l expansion gives the advance of perihelion 

which is (∆Φ) and it is stated below;   

 𝛥𝛷 = 2𝜋𝜖 + 𝜋𝑙 = 𝛥𝛷𝐺𝑅 + 𝛿𝛷𝐿𝑉 (5.20) 

where ∆∅𝐺𝑅 is the prediction of GR 

 
𝛥𝛷𝐺𝑅 = 2𝜋𝜖 =

6𝜋𝐺𝑁𝑚

𝑐2(1 − 𝑒2)𝑎
 

(5.21) 

İn which c represents the speed of light, m is the mass, e is the half major axis of 

ellipse. Therefore, from the above Eqn. (5.21), we can easily understood that the 

contribution to the GR is coming from the Lorentz Symmetry Breaking term and it 

showed below; 

 𝛿∅𝐿𝑉 = 𝜋𝑙 (5.22) 

The expression (5.21) shows the effects of Lorentz violation term to the GR result.  
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5.2 Bending of Light 

In this section, we are going to use null geodesics instead of timelike geodesics because 

of massless test particles motion. For this reason, in our Eqn. (5.2) yields  χ=0. 

substituting our conserved quantities in null geodesic, we obtain; 

 
(1 + 𝑙)�̇�2 + (1 −

2𝑀

𝑟
)

𝑙2

𝑟2
= 𝐸2 

(5.23) 

where dot defines the differentiation with respect to affine parameter. Similar to the 

previous part of this chapter, we again  altering the variable by using 𝑢 = 𝑟−1. 

Moreover, substituting this new parameter into the Eqn. (5.24) and the differentiation 

with respect to ∅, we created a new form of  null geodesics, as stated below, 

 
(1 + 𝑙)

𝑑2𝑢

𝑑𝜙2
+ 𝑢 − 3𝑀𝑢2 = 0 

(5.24) 

Just a simple observation, the deflection of light rays, in Eqn. (5.25), reduces to the 

normal GR result when ℓ → 0. Thus, by using the perturbation,  we can write the 

solution 

 𝑢 ≃ 𝑢(0) + 3𝑀𝑢(1) (5.25) 

when we substitute  the above equation  in Eqn. (5.25), it gives the following 

differential equation for u0, 

 
(1 + 𝑙)

𝑑2𝑢(0)

𝑑𝜙2
+ 𝑢(0) = 0 

(5.26) 

in which the  solution is 

 
𝑢(0) =

1

𝐷
𝑠𝑖𝑛 (

𝜙

√1 + 𝑙
) 

(5.27) 

For simplicity, we have considered the initial  angle of  ∅0 = 0, in addition, D is an 

integration constant. This result corresponds to a straight line equation similar to the 

Newton estimate. The differential equation for u1,  then, becomes; 
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(1 + 𝑙)

𝑑2𝑢(1)

𝑑∅2
+ 𝑢(1) −

1

𝐷2
𝑠𝑖𝑛2 (

∅

√1 + 𝑙
) = 0 

(5.28) 

and its arrangement is depicting as 

 
𝑢(1) =

1

3𝐷2
[1 + 𝐴𝑐𝑜𝑠 (

∅

√1 + 𝑙
) + 𝑐𝑜𝑠2 (

∅

√1 + 𝑙
)] 

(5.29) 

On account of this,  the  solution for u(∅) is representing in this form 

 
𝑢 ≅

1

𝐷
𝑠𝑖𝑛 (

∅

√1 + 𝑙
)

+
𝑀

𝐷2
[1 + 𝐴𝑐𝑜𝑠 (

∅

√1 + 𝑙
) + 𝑐𝑜𝑠2 (

∅

√1 + 𝑙
)]

 

(5.30) 

As we know, A is a constant parameter and the main purpose is detecting the angle of 

deflection rate for a light, thus, he boundary conditions are presenting as follow: 

(i) because of source r → ∞ it means u(r → ∞) → 0 and φ = −δ1, and (ii) because of 

observer  r → ∞ it means u(r → ∞) → 0 and φ = +δ2, therefore, δ = δ1 + δ2 is the total 

angle of deflection. By using these  conditions in Eqn. (5.31), taking in consideration 

ℓ ≪ 1 and δ1, δ2 ≪ 1, the first-order equation provides 

 
𝛿1 =

M

D
(2 + A) 

(5.31) 

 
𝛿2 =

𝑀

𝐷
(2 − 𝐴) +

𝜋𝑙

2
 

(5.32) 

Therefore, the deflection angle of light in  our metric tensor (2.4) becomes, 

 
𝛿 = 𝛿𝐺𝑅 + 𝛿𝐿𝑉 =

4𝐺𝑁𝑚

𝑐2𝐷
+

𝜋𝑙

2
 

(5.33) 

Here m is the mass of the deflecting object and D is the parameter that indicates the 

path closest to the center of the deflecting object. The first term  presents  as follow; 

 
δGR =

4GNm

c2D
 

(5.34) 

which gives the deflection of light in standart GR model and the second term in Eqn. 

(5.34) is the Lorentz symmetry breaking term. 
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𝛿𝐿𝑉 =

𝜋𝑙

2
 

(5.35) 

Moreover, taking the limit 𝑙 → 0 in Eqn. (5.34), it means that we cancel the second 

term and automatically we reach standart GR model for the bending of light. 
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Chapter 6 

6 CONCLUSION 

In this thesis, main purpose was to investigate the geodesics of Bumblebee BH. The 

only differences between Scharwzchild BH and  BBH is the Lorentz violation term 

that  breaks the symmetry. These BHs are said to be the solutions of modified gravity 

since the bumblebee field is coupled with the standart GR field equations. Moreover, 

the BBHs reduce to the Schwarzchild BH in the limit of vanishing Lorentz symmetry 

breaking. To have the geodesics equations, we first employed the Lagrangian method 

in the geometry of the bumblebee black hole. Then we derived full solutions of radial 

equations of   both massive and massless particles in bumblebee gravity model. We 

also plotted the   effective potential versus radius of BH in Figure 1 by changing the 

magnitude of lorentz symmetry breaking term. In figure 2, we draw 𝐸2 vs 𝑟𝑖 and the 

rest of the figures are showing the orbit of a photon around a bumblebee black hole 

with different l values. Furthermore, we obtained the exact analytical solutions of BBH 

both in null and timelike geodesics. We then investigated  the upper limit of lorentz 

violation term by using some experimental methods. I believed that the work presented 

in this thesis may shed light on the observational studies in the future about the signs 

of the existence of the Lorentz symmetry breaking in the cosmos. I also plan to extend 

my studies to the rotating BBHs for revealling the effect of angular momentum 

geodesics. This will be my near future project. 
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