
Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Improving Time Series Forecasting Performance by

Fuzzy Decision Fusion

Sonia Malvina Djeuda Nzouapet

Eastern Mediterranean University

September 2020

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy

Director

Prof. Dr. H. Işık Aybay

 Chair, Department of Computer

Engineering

Assoc. Prof. Dr. Mehmet Bodur

Supervisor

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science in Computer Engineering.

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

Examining Committee

1. Assoc. Prof. Dr. Adnan Acan

2. Assoc. Prof. Dr. Mehmet Bodur

3. Assoc. Prof. Dr. Mehtap Köse Ulukök

iii

ABSTRACT

Time series data can be collected in many domains including econometric, signal

processing, weather forecasting, and earthquake prediction. Accurate prediction of

time series prices is essential for investors, meteorologist, or statisticians. Forecasting

of the financial time series has intrinsic complexity due to uncertainties of factors

that affect it. In this study, better forecasting of the financial stock market time series

movements is targeted using the closing prices of the stock market. In this work, our

objective is to implement a set of well-known financial time series forecasting

models such as Autoregressive-Integrating-Moving-Average (ARIMA), Exponential

Smoothing, Support Vector Regression (SVR), Long-Short Time Memory (LSTM),

and to merge the forecasted decision by using fuzzy knowledge-based decision

system. The difference of this thesis compared to the previous works is mainly the

expert-decided membership functions instead of clustering in building the fuzzy rule

base. An experimental demonstration has been carried out on the S&P 500 index

using the closing prices of this Index. The results shows that the fuzzy decision

fusion procedure gives lower cumulative absolute prediction error than cumulative

error of forecasts of each individual model.

Keywords: time series, time series forecasting, fuzzy decision fusion, fuzzy logic

system, fuzzy rule generation.

iv

ÖZ

Zaman serisi verileri, ekonometri, sinyal işleme, hava durumu tahmini, deprem

tahmini dahil olmak üzere birçok alanda üretilir ve kullanılır. Yatırımcılar,

meteorologlar ve istatistikçiler için serilerin doğru tahmin edilmesi çok önemlidir.

Zaman serilerini etkileyen faktörlerin belirsizliklerinden dolayı, mali zaman

serilerinin tahmini içsel karmaşıklığa sahiptir. Bu çalışmada finansal borsa zaman

serisi hareketlerinin tahmininin, yalnızca borsa endeksinin kapanış fiyatları ve hacmi

kullanılarak iyileştirilmesi hedeflenmiştir. Önerilen yöntem, Otoregressif-Bütünleşik-

Hareket-Ortalaması (ARIMA), Üstel yumuşatma (ESM) Destek Vektör Regresyonu

(SVR), Uzun Kısa Süreli Bellek (LSTM) gibi mevcut zaman serisi verilerinden bir

finansal zaman serisinin gelecekteki fiyatını tahmin etme yeteneğine sahip bir dizi

model kullanmakta, ve eğitim veri seti üzerinden öğrendiği bulanık karar birleştirme

kuralları bilgi tabanını kullanarak tahmin edilen değerlerin en iyisini

seçebilmektedir. Bu çalışmada, önceki tez çalışmalarından farklı olarak, karar

birleştirme için bulanık bir kural tabanı oluşturmada öbekleme yöntemleri yerine

standart bulanık yöntemler kullanmaya odaklanılmıştır. S&P 500 endeksinden elde

edilen veriler üzerinde, bu hisse endeksinin kapanış fiyatları zaman dizisi

kullanılarak önerilen yöntemin deneysel bir gösterimi sunulmuştur. Sonuçlar,

önerilen bulanık karar füzyon birleştirme yönteminin, bireysel modellerin her bir

tahmininin kümülatif hatalarından daha düşük kümülatif mutlak tahmin hatası

sağladığını göstermiştir.

Anahtar Kelimeler: zaman serileri, zaman serisi tahmini, bulanık karar füzyonu,

bulanık mantık sistemi, bulanık kural üretimi.

v

ACKNOWLEDGMENT

The completion of this thesis was made possible with the contribution of many

whose assistance was a milestone in the realization of this project.

 I will first of all like to thank the all mighty God for the gift of life, wisdom, and his

constant guidance and motivation throughout my life and more specifically my

academic years.

My profound gratitude to my parents Mr. & Mrs. Nzouapet for their unfailing

support and continuous encouragement.

I will like to extend my thanks to my supervisor Assoc. Prof. Dr. Mehmet Bodur for

his availability, orientation, and advice whenever I needed it.

I extend my thanks to all those who near or far have made this work possible.

Finally, my thanks go to the authorities of Eastern Mediterranean University for

providing me with the necessary resources and environment for the completion of

this project.

vi

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

ACKNOWLEDGMENT .. v

LIST OF TABLES .. ix

LIST OF FIGURES ... x

LIST OF ABBREVIATIONS ... xi

1 INTRODUCTION .. 1

1.1 Introduction on Forecasting ... 1

1.2 The Goal of the Thesis ... 3

1.3 Literature Review ... 3

1.4 Overview of the Proposed System ... 5

1.5 Structure of the Thesis ... 6

2 TIME SERIES FORECASTING .. 7

2.1 Stationary and Non-Stationary Time Series ... 7

2.2 Components of a Time Series Data .. 7

2.3 Time Series Forecasting Models .. 8

2.3.1 Autoregressive Model (AR) .. 9

2.3.2 Moving Average Models (MA) .. 9

2.3.3 ARIMA ... 9

2.3.4 Exponential Smoothing model .. 10

2.3.5 Support Vector Regression (SVR) .. 11

2.3.6 Long Short Term Memory networks (LSTM) .. 14

2.4 Discussion on Quantitative Prediction Models .. 17

vii

3 FUZZY DECISION FUSION ... 18

3.1 Fuzzy Representation of Numbers, and Fuzzification 18

3.2 Fuzzy Rule-Based Decision Fusion System .. 20

3.2.1 General Architecture of a Fuzzy Rule-Based System 20

3.2.2 Knowledge Base (KB) .. 20

3.2.3 The Processing Structure .. 21

3.2.4 Fuzzy Decision Fusion .. 21

3.3 The Proposed Data Fusion Method .. 22

3.3.1 Learning Phase of the Decision Finalization .. 24

3.3.2 Forecasting of a New Input ... 27

3.4 Concluding Remarks .. 27

4 COMPUTATIONAL RESULTS .. 28

4.1 Data Set and Code Development Environment ... 28

4.2 Data Pre-processing ... 28

4.3 Forecasting Models. ... 30

4.3.1 Test for Stationary Property of Data ... 30

4.3.2 ARIMA Model .. 31

4.3.3 SVR Model ... 33

4.3.4 Double exponential smoothing ... 34

4.3.5 LSTM Model ... 35

4.4 Fuzzy Decision Fusion ... 37

4.4.1 Preparation of the Training Dataset .. 37

4.4.2 Construct the Estimated Error Vector (eemx) ... 38

4.4.3 Setting Membership Functions for Fuzzification 39

4.4.4 Extract the Membership Degree ... 41

viii

4.4.5 Extract all fired rules... 41

4.4.6 Cumulative Absolute Error of Fuzzy Fusion on Training Data 42

4.4.7 Training of Fuzzy Decision Fusion Rule Base ... 42

4.4.8 Processing of New Inputs and Test Data Set .. 43

4.5 Concluding Remarks .. 45

5 CONCLUSION ... 46

APPENDICES ... 54

Appendix A: Data Retrieval and Split ... 55

Appendix B: Filling the Missing Values.. 56

Appendix C: EXP, SVR, ARIMA, LSTM Modeling .. 57

Appendix D: Data Preparation for Fuzzy Decision Fusion 58

Appendix E: Fuzzy Decision Fusion for Time Series... 60

ix

LIST OF TABLES

Table 1: Determination of Strongest Fired Rule .. 26

Table 2: Selection of the Best Algorithm for each Rule .. 26

Table 3: Sample of Raw S&P 500 Data Set ... 29

Table 4: Data after Filling the Missing Values .. 29

Table 5: Two Dimensional Representations of the Data for LSTM Learning 36

Table 6: The First Six Predicted and Observed Values of each Model 38

Table 7: Samples of Estimated Error Matrix ... 39

Table 8: Training Cumulative Absolute Prediction Errors by Models EXP, SVR,

ARIMA, and LSTM ... 39

Table 9: Parameter Matrix for Membership Function ... 40

Table 10: Membership Degree of the First Six Input Data .. 40

Table 11: Cumulative Error Accumulators. ... 41

Table 12: Cumulative Absolute Training Errors for Models and FDF 42

Table 13: Membership Degrees of the First Three Test eexm Values. 44

Table 14: Cumulative Absolute Error Performance of Each Model on Test Data 44

Table 15: Head and Tail of Predictions by all models and FDF 45

x

LIST OF FIGURES

Figure 1: Kernel Mapping by Sethi [21] .. 12

Figure 2: SVR Epsilon Deviation Bands by Bhattacharyya [23] 14

Figure 3: LSTM Cell Diagram by Varsamopoulos [25] .. 17

Figure 4: Typical Diagram of a Mamdani FRBS by Magdalena [33] 20

Figure 5: General Structure of the Demonstrated Fuzzy Decision Fusion System.... 24

Figure 6: S&P 500 Daily Close Price Plot ... 30

Figure 7: Code output of the ADF test for S&P 500 data set 31

Figure 8: ARIMA Fitted Values Plot and Observed Values Plot 31

Figure 9: ARIMA Residual Plot .. 32

Figure 10: SVR Plot for Fitted and Observed Values .. 33

Figure 11: SVR Residual Plot ... 33

Figure 12: R Code for EXP prediction model .. 34

Figure 13: ETS Model Summary Output for EXP Model ... 34

Figure 14: Graph of Exponential Smoothing Forecasted and Observed Values 35

Figure 15: Exponential Smoothing Residual Plot .. 35

Figure 16: LSTM Predicted and Observed Values .. 37

Figure 17: Graph of Prediction Errors vs. Observed Values for all Models 38

Figure 18: Membership Function Plot for Each Input Variable 40

xi

LIST OF ABBREVIATIONS

ADF Augmented Dickey-Fuller

API Application Programming Interface

AR Autoregressive

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive Moving Average

CAE Cumulative Absolute Error

EMH Efficient-Market Hypothesis

ETS Error, Trend, Seasonal

FDF Fuzzy Decision Fusion

FRBS Fuzzy Rule-Based System

KB Knowledge Base

LSTM Long short-term memory

MA Moving Average

MSE Mean Square Error

RBF Radial Basis Function

RMSE Root Mean square Error

RNN Recurrent Neural Network

SVR Support Vector Regression

TSK Takagi-Sugeno-Kang

https://en.wikipedia.org/wiki/Efficient-market_hypothesis

1

1. Chapter 1

1 INTRODUCTION

1.1 Introduction on Forecasting

Forecasting is the process of predicting future values based on available information,

knowledge, and data that can impact the prediction. Forecasting is part of our daily

life. It is useful in several domains including economic forecast, political forecast,

weather forecast, and meteorology. It is used by many businesses to define how to

allocate their budgets or plan to anticipate expenses for an upcoming period time

therefore it should be reliable [1].

Improving time series accuracies has constantly retained researchers‟ attention.

Several methods have been put in place to forecast time-series data, such as

statistical methods, deep learning, and machine learning methods which have made it

possible to obtain more or less satisfactory results from one data set to another. Each

method has its strengths and weaknesses. The accuracy of each method depends on

many factors such as characteristics of the data namely the trend, seasonality, the size

of the data, the date range, and the length of the forecast horizon. In general, no

method outperforms others in all cases. The stochastic nature of time series data

makes it difficult for a single method to capture all intrinsic information of a given

time series data. It is therefore very risky to rely on one forecasting method. To avoid

this risk and to benefit of the strength of many individual methods, a combination of

2

the results from different forecasting methods was proposed and their accuracy is

generally better than those of the individual model [2].

Stock market forecasting consists of determining the future value of a company. The

current and future prices of the investment are two critical prices any investors have

to know. Investors generally review past pricing history and use it to influence their

future investment decision.

The efficient-market hypothesis (EMH) states that the current share prices already

contain sufficient information for predicting future values [3]. This hypothesis is

stated in 3 levels: weak, semi-strong, and strong. The weak form claims that

technical analysis is insufficient for investors in making a trading decision. The semi-

strong form instead believes that if some information is not readily available to the

public then technical or fundamental analysis can be used by investors to boost their

returns. The strong form believes that all information is present in the current stock

prices therefore using proper tools, an investor can boost their chance of beating the

market. Further studies in this area show that the stock prices are not efficient and do

not follow a random walk [4]. And, several methods such as statistical, deep

learning, and machine learning methods have been put in place to forecast time-

series data, and have made it possible to obtain more or less satisfactory forecasts

depending on time series data sets.

Motivated by making higher return rates, researchers, investors, and investment

professionals always attempt to find a stock market model that would make a better

forecast for a higher return. For a satisfactory forecast of time series data, the choice

of the model is crucial. Each method has its strengths and weaknesses, and its

https://en.wikipedia.org/wiki/Efficient-market_hypothesis
https://www.investopedia.com/terms/w/weakform.asp
https://www.investopedia.com/terms/s/semistrongform.asp
https://www.investopedia.com/terms/s/semistrongform.asp
https://www.investopedia.com/terms/s/strongform.asp

3

accuracy depends on many factors such as its characteristics, trend, seasonality, size,

range of data, and length of the forecast horizon. No method outperforms the others

in all cases, in other to get rid of the question which method to use to aim good or

better accuracy, an alternative is to combined results from different forecasting

methods.

1.2 The Goal of the Thesis

The goal of this thesis is to improve the cumulative absolute error of the time series

prediction by a set of forecasting models using Fuzzy Decision Fusion (FDF) that

learns the best decision for each fuzzy rule through the training data set. In other

words, this study aims to demonstrate the decision fusion ability of a fuzzy rule base

for multiple forecasting models namely the Autoregressive Integral Moving Average,

(ARIMA), Double Exponential Smoothing, (EXP), Support Vector Regression,

(SVR), and Long Short Term Memory, (LSTM) on currently available S&P500 time-

series dataset.

1.3 Literature Review

There are many models to deal with a forecasting problem. Because it is more and

more difficult to improve the performance of a single model, the combination has

become one major way to do that and many models combination has been proposed.

In decision making, the decision of multiple experts or models is fused to get the

final decision. In the past decade, various methodologies were employed to combine

decisions. The literature proposes different ways of combining forecasting methods it

can be done by using either objective methods which involve objective techniques in

its combination or subjective methods involving human judgment techniques [5].

Objective methods combination was introduced by Bates in 1969 [6] as a linear

combination of two objective forecasts with k and (1-k) for the first and second

4

decisions respectively (Df = k*D1 + (1-k)*D2) where k is the factor that minimizes

the error variance of the combined forecast.

Subsequently, the combination was extended from 2 to n, and combination

techniques began to be interpreted as a structural form of regression [7]. After their

study, more sophisticated methods were proposed such as arithmetic mean methods

neural networks methods, and nonlinear combinations [8]. A combination of

decisions is carried also using Bayesian analysis in which weights are attributed

based on the expected value [9], [10].

The key challenge in model combination forecast is to find the optimal model

combination; this can be done at the learning phase for the static method [11] or at

the testing for the dynamic method [12].

In 2001 Armstrong developed the so-called Rule-Based Forecasting (RBF). It

determines the weights for each forecasting method by using IF-THEN rules to

provide a rule-based weighted average combination. Kourentzesa et al proposed an

approach that consists of selecting the models in the forecast combination [13].

Under Dr. Bodur‟s supervision, Ahmed Salih [14] implemented a forecasting model.

He applied some well-known forecasting methods: Radial Basis Function, K-Nearest

Neighbour method, Self-organizing map methods, and Autoregressive Fractionally

Integrated Moving Average. Then, he clustered the estimated error space produced

by these prediction methods. For each cluster, he obtained the final decision that

5

provides minimum forecasting error by using majority voting of the training data.

For each new entry, the closest estimated error cluster indicates the final decision.

A similar study was supervised by Dr. Bodur, in 2014, that used fuzzy C-means

clustering for decision source selection among three-time series technical analysis

methods; six-days-moving-average, moving-average convergence-divergence, and

relative strength index using TSK to select the best forecasting method among those

three [15].

1.4 Overview of the Proposed System

In this thesis, Fuzzy Decision Fusion is applied to select the finalized forecast among

the forecasts of four prediction models by Fuzzy Decision Source Selection, which

uses the fuzzified estimated errors of the models to select the final decision according

to a fuzzy rule base.

In time series forecasting, mostly there are multiple candidates of prediction models

available for the purpose. The standard decision making procedure targets to

determine the best model by carrying tests on the models using a test data set, and

selecting the best model that gives the least prediction error through the test data set.

Decision fusion is a combination of various decisions coming from many sources.

Each source, in our case prediction model, makes its own decision, in our case a

forecast, with its local information.

This thesis aims to improve time series forecasting (in an accuracy point of view) by

using fuzzy logic to select the best among multiple prediction models as proposed in

6

the internal report by Dr. Mehmet Bodur [16]. The demonstration consists of four

prediction models: namely Double Exponential Smoothing EXP (M1), SVM (M2),

ARIMA (M3), and, LSTM (M4) to forecast the S&P 500 data series. The first step is

to use training data to determine the parameters of models, M1 … M4, and to get the

forecasted values. The next stage is to use training data set to train a fuzzy rule base

which shall finalize the prediction method to be used depending on the most strongly

fired rule of the rule base. The proposed decision merging system is demonstrated on

the Standard & Poor's 500 Index (S&P 500) daily time series data which is

downloaded from the “finance.yahoo.com” data server [17] for 10 years period. 75%

of the data points were used for training and 25 were reserved for independent

testing.

1.5 Structure of the Thesis

The thesis starts with a short introduction of recent advancements in fuzzy decision

fusion in Chapter 1. Chapter 2 explains some properties of time series forecasting on

prediction models. Chapter 3 introduces the methods of the forecasting models which

serve as the decision sources, and the fuzzy decision fusion algorithm. A

demonstration of the proposed method is presented in Chapter 4 on forecasting of

S&P 500 data set, including the results and discussions on the improvements of the

forecasting by applied fuzzy decision fusion. Finally, we complete the thesis with a

conclusion in Chapter 5.

7

2. Chapter 2

2 TIME SERIES FORECASTING

A time-series data is a collection of numerical values at different time points in

successive order, usually spaced at regular time steps. It is commonly used in many

areas including economics, health care, and so on. They can be univariate, which

means collected by observations of a single variable over time, and multivariate

where a set of observations of several variables are collected at each time step.

2.1 Stationary and Non-Stationary Time Series

A data set is said to be stationary time series when both the mean and variance are

constant over time, therefore at large periods its properties are time-independent. A

non-stationary time series has either a constant mean or a constant variance or both

non-constant over large time. Many time series techniques assume that the time

series is stationary. For a non-stationary time series, there exist two main methods to

transform it into a stationary series. Differencing is performed to get rid of the

varying mean. y(t) = x(t)–x(t–1), while Log-transformation is a nonlinear

transformation to stabilize the non-constant variance of a series.

2.2 Components of a Time Series Data

A time-series can be decomposed into three components. (i) The trend means

continuation of increasing or decreasing values in a given time series; (ii) the

seasonal character means a repeating cycle over a specific period such as day, week,

month, in a given time series; (iii) the noise is the random irregularity of values in a

https://www.aptech.com/industry-solutions/econometrics/

8

given time series. Time series forecasting uses information in the sequence of

historical values and their associated patterns to predict future activity.

2.3 Time Series Forecasting Models

They are various methods to forecast time-series data, and they can be classified into

2 groups [18] .

Qualitative methods:

For these methods, the forecast is based on opinions judgment, personal experiences

emotions, and intuition. Here there is no model or any mathematical computation.

They are subjective. We list methods such as Delphi Method, Market Survey,

Executive Opinion, and Salesforces Composite in this group.

Quantitative methods:

These methods heavily rely on mathematical quantitative computations and are

objective. Quantitative models can be grouped into associative models, often called

Causal models in which forecasting is based upon associations between the forecast

variable and other variables in the environment and time-series models that look at

past patterns of data and attempt to predict the future. We can list here some

quantitative methods such as (i) naive, (ii) moving average, (iii) exponential

smoothing, (iv) artificial intelligence models, and (v) ensemble model.

In this thesis, we mainly use quantitative methods that use observed data to fit in a

model that provides forecast of future values. Each quantitative model has its

structural and fitting parameters and its hypothesis to be considered. The following

9

part of this chapter describes a non-exhaustive list of some well-known forecasting

models that have been used in literature to forecast time series data.

2.3.1 Autoregressive Model (AR)

As its name indicates, the autoregressive model is a regression model to predict the

future value by fitting the data series to a linear expression using the past values of

the variable. The autoregressive model uses multiple numbers of past linear terms.

The number (p) of the lag variable is decided depending on the correlation of

variable at time t with respect to time t-p. An autoregressive model of order p (lag) is

written in (2.1).

yt= c + A1 yt−1 + A2 yt−2 + …+ Ap yt−p + bt. (2.1)

where bt. is white noise, yk (k from t-1 to t-p) is the value of the forecasted variable

at different lags. Therefore, AR(p) model is called an autoregressive model of

order p.

2.3.2 Moving Average Models (MA)

This model is a linear regression on white noise in other words; it uses the past few

forecast errors in a regression-like model,

yt= c +εt+θ1εt−1+θ2εt−2+⋯+θqεt−q. (2.2)

where, εt is white noise. MA(q) model is a moving average model of order q.

2.3.3 ARIMA

ARIMA modelling also called Box-Jenkins modelling proposed by Box and Jenkins

in 1970 [19] is a mathematical model that forecasts future value by using previous

time-series data plus an error. Specifically, it combines the Autoregressive model

(AR) and the Moving average (MA). ARIMA model is applied under the assumption

of stationary time series which means they have constant variance and mean. In the

https://www.statisticshowto.com/mean/

10

ARIMA model, the predictors are lags of the dependent variable and/or lags of the

forecast errors

 ŷt = c + A1 yt-1 +…+ Ap yt-p – B1εt−1 –… – Bq εt−q. (2.3)

p: the number of autoregressive terms,

d: how many non-seasonal differences are needed to achieve stationarity,

q: the number of lagged forecast errors in the prediction.

In EMU-CMPE department, studies on forecasting stock market time series are

carried under the supervision of Dr. M Bodur since 2013 [20]. Shareef demonstrated

that filling the missing values of financial time series data improves the forecasting

accuracy by extensive experiments, and her experiments indicated the possible high

profit of a daily international automatic foreign exchange algorithm that uses a very

high order ARMA(p=9,q=10) model for two days ahead of closing price prediction.

2.3.4 Exponential Smoothing Model

Exponential smoothing is a univariate time series forecasting method that models the

three components of a time-series: values, trend, and seasonality. It is similar to

ARIMA by Box-Jenkins in the sense that it is a weighted average of past

observations with the main difference that the weights are decaying exponentially as

the observations get older. According to the pattern taken into consideration, we can

distinguish three types of exponential smoothing.

Single/Simple Exponential Smoothing (SES):

It models univariate time series data without trend or seasonality. The only parameter

here is the smoothing factor coefficient called alpha (α) to control the decaying rate

of influence of the previous observations as shown in (2.4).

ARIMA(p,d,q), model (2.3) has three structural parameters:

11

yt+1| t= αyt+α(1−α)yt−1+α⟮1−α)2yt−2+...+y1. With 0 ≤ α ≤ 1 (2.4)

Double Exponential Smoothing:

Double Exponential Smoothing is a univariate time series model, and it extends SES

by explicitly adding support for trends in the time series. In addition to the parameter

α, a smoothing factor called β is added to control the decay of the influence of the

change in trend.

Triple Exponential Smoothing:

It models a univariate time series by its trend and seasonality components. It extends

the Double Exponential Smoothing by adding support for seasonality. Therefore it

introduces alpha, beta, and gamma (2.5), (2.6). Gamma controls the influence on the

seasonal component. This method is also called Holts-Winters exponential

Smoothing and it is modelled from (2.5) to (2.8).

The forecast equation: yt+h|t=[ℓt+(ϕ1+ϕ2+⋯+ϕh)bt]st+h−mk+1. (2.5)

 Level/values equation: ℓt=α(yt/st−m)+(1−α)(ℓt−1+ϕbt−1). (2.6)

Trend equation: bt=K∗(ℓt−ℓt−1)+(1−k∗)ϕbt−1 . (2.7)

 Seasonality equation st= γyt(ℓt−1+ϕbt−1)+(1−γ)st−m. (2.8)

2.3.5 Support Vector Regression (SVR)

SVR is a regression algorithm that targets to fit the error within a certain threshold

instead of minimizing the error rate as it is done in other regression algorithms.

Before describing SVR operation mode we let us take a look at some important

terminologies.

12

Kernel:

SVR assumes a linear relationship between the input and output variables, even if

this assumption is not always verified with the dynamics of time series data. Kernel

functions (polynomial, Gaussian Radial Basis Function, Sigmoidal) are employed to

capture the nonlinear dynamics of the time series under study. In another word, the

kernel function plays the role of moving data from lower-dimensional data into

higher dimensional data so as to make it possible to perform linear separation on

non-linear data without increasing the computational cost as shown in Figure 1.

Figure 1: Kernel Mapping by Sethi [21]

Hyper plane:

A hyperplane is a surface that is determined by the kernels to predict the continuous

output or target value.

Boundary line:

These are the lines drawn at an error ε (epsilon) distance from the hyperplane. It is

used to create demarcation (margin) between the data point.

13

Support vectors:

These are the data points that are closest to the boundary line with a minimum or

least distance.

Mathematical Formulation of SVM Regression

Given some data points, the goal of SVR is to draw a boundary (margin) lines and

only consider points between these lines. In other words, SVR attempts to draw a

line called hyperplane that fits the data points best and then, put boundaries at -𝞮, and

+𝞮, distance from this hyperplane.

Linear Support Vector Regression: the Primal Formulation

Assuming we have a multivariate training data set xn of n observations and a target

variable yn. SVR aims to search for the flat linear function h(x) =x ′k+b with minimal

norm value (k′ k) .This can be formulated as an optimization problem with (2.9) as

the goal and (2.10) as constraints:

 Minimize

 s(k) =1/2 k′k (2.9)

Subject to:

 ∀n: | yn− (xn′k+b) | ≤ ε. (2.10)

These constraints may not be always satisfied in all point of our data set therefore, to

prevent against outliers, slack variables such as ξ, and ξ
*
 can be added in each point

leading us to the objective function in (2.11) and (2.12), also called the primal

formula [22].

Minimize

 s (k) =1/2k ′k+ ∑ (
∗)

 (2.11)

Subject to:

14

 ∀n: yn−(xn′k+b) ≤ ε+ξ
n,

(2.12)

 ∀n: (xn′k+b)−yn ≤ ε+ξ
*

n

 ∀n:ξ
*

n
≥ 0,

 ∀n:ξn ≥ 0,

where C is a constant that aims to control the penalty on data points lying outside the

margin (ε).

This primal formulation, and can be written in a Lagrange dual formulation which

makes the problem computationally simpler to solve and enable the primal technique

to be extended to nonlinear functions [22]. Figure 2 illustrates a schematic of epsilon

deviation bands in SVM process.

Figure 2: SVR Epsilon Deviation Bands by Bhattacharyya [23]

2.3.6 Long Short Term Memory Networks (LSTM)

In deep learning, LSTM is an artificial Recurrent Neural Network (RNN)

architecture, which is known as well-suited for processing sequential data. In

15

traditional neural networks, input and output data are temporally independent which

means it cannot memorize the previous outputs. In some cases like text mining or

time-series data prediction of the current output depends on the previous input and

hence comes the need to remember the previous input. This can then be solved by

using Recurrent Neural Network (RNN).

A recurrent neural network is a type of artificial neural network with a memory that

is capable of remembering previously computed information. Its main drawback

appears if the sequence to process becomes long, where RNN faces the gradient

vanishing and exploding problem.

The gradient vanishing and exploding problem

In backpropagation artificial neural network or in neural network with gradient-based

learning technique, the error gradient is used to update the weights of the network

and to know the right propagation direction. When the sequence to process is very

long, the gradient is unable to remember old term dependency and shrinks as it back

propagates this then causes its value to become too small and therefore doesn‟t

contribute that much in learning: the network stop learning without been trained

sufficiently.

LSTM is an efficient RNN capable of remembering a long time dependencies

without being affected by the vanishing gradient problem. Proposed by Hochreiter et

al, LSTM is used in the field of deep learning and it has feedback connections [24].

Unlike standard feed-forward neural networks, it is suitable for data sequences such

as stock market index, speech or video streams as it is capable to handle lags of

unknown duration between important events in a time series.

https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Feedforward_neural_network

16

 The LSTM network is composed of the following items.

Cell state: It plays the role of memory. It processes relevant information throughout

the processing of the sequence and discards or forgets the irrelevant as shown in

Figure 3.

Input Gate: this gate is responsible for adding relevant information to the cell state.

Forget Gate: it is a sigmoid layer has an output between 0 and 1. By this output, it

decides which information should stay or be forgotten during the training. An output

closer to zero indicates that information is irrelevant; while an output closer to one

means relevant information and should stay.

Output Gate: This gate decides which values to be allowed as an output from the

current cell.

Activation functions: These are some equations that determine the neural network

output we can name: sigmoid function which is a popular function in a neural

network. It transforms its input values to values between 0 and 1. Typically, the

hyperbolic tangent function (tanh) is a nonlinear function that transforms it input

values into values between -1.0 and 1.0.

Given a new sequence value xt, it will be concatenated to the previous output of the

cell ht−1. The result is squashed with a tanh layer and then passed to the input gate.

The latter will therefore kill off the unrequired element of the input vector using a

sigmoid function. The next stage consists of determining the required variable (from

the input gate) to be remembered or forgotten using the forget gate. Finally, the

variables to be remembered are squashed (tanh) and passed to the output gate. Figure

3 shown an example of LSTM cell and its components.

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Sigmoid_function

17

Figure 3: LSTM Cell Diagram by Varsamopoulos [25]

Operations in LSTM cells can be mathematically formulated as:

Input: g= tanh(b
g

 + xt U
g

 + ht−1V
g
),

Output of the input gate: (

)

where U
g
 and V

g
 represent the input and previous cell output weights, respectively,

and b
g
 is the input bias.

The output of the input section is: ,

Forget gate and state loop is: (

).

The output from the forget gate is: .

Output gate: (

).

Output of the cell is: () .

2.4 Discussion on Quantitative Prediction Models

It is noticeable that the selected quantitative prediction models for the demonstration

of the fuzzy decision fusion by source selection have quite different characters. We

expect that each one may help in the final decision at a different partition of the

expected errors, and take part in the fuzzy rule base as the best model for its niche.

18

3. Chapter 3

 3 FUZZY DECISION FUSION

3.1 Fuzzy Representation of Numbers, and Fuzzification

In this work, we used fuzzy sets to represent a vector in the fuzzy domain. In

representing numerical variables by fuzzy terms (or labels), a fuzzy set is a function

from an interval of numbers to the interval of membership values to describe the

uncertainty of the linguistic terms by a continuous membership value between non-

member (0) and fully-member (1) [26]. In mathematical terms, a fuzzy set is a set, in

which each real number is mapped onto a membership value that lies in the range

[0, 1]. Given a collection of elements in the universe of discourse X, and each

member denoted by x, a fuzzy set A in X is an ordered set of pairs:

A= {(x, UM (x)) | x € X} (3.1)

where UM (x) or M(x) is the membership function is also called the degree of truth of

x in A. Linguistic labels such as attributes very low, low, medium, high, very high

are represented by a family of membership functions, mostly a parametric

mathematical function such as trapezoidal, triangular and Gaussian, for the ease of

description and computation [27]. A value of a variable, for example, the closing

value of the SP500 shares, ck=45, is fuzzified in the interval [30, 50] by reading the

value of the membership functions corresponding to each of the linguistic labels,

resulting in a set of membership degrees uk = (0.01, 0.1, 0.3, 0.9, 0.4), meaning that it

is strongly in high fuzzy-interval, and closer to very high rather than medium.

19

In fuzzy modelling, the membership degrees of the inputs are processed by t-norm,

and co-norm operators similar to the “and” and “or” operators of binary logic

systems. The most widely used t-norm and co-norm pair are min and max functions,

which are used by Zadeh to build decision inference models [26]. Fuzzy logic is a

computational approach that uses “degree of truth” (1 ≥ u ≥ 0) instead of Boolean

logic (p is either true or false, represented by either 1 or 0). In other words, it is a

logic used to handle the concept of partial truth in which a value can be between

completely true and completely false.

On Zadeh‟s Fuzzy Set Theory, several technics were introduced in the literature for

combining the results of models aiming improvement of accuracy. Developments

followed one of the two main tracks: (i-) an expert-determined set of membership

functions used in modelling a training data set, (ii-) extracting the knowledge to a

fuzzy rule base which points an acceptable solution for the modelled system, such as

for a given input vector predicting the value of target variable, or determining the

correct cluster.

In the past decade, fuzzy modelling techniques applied to decision fusion started in

1994 [28]. Dietrich et al proposed KNN method of classification of Time Series

Utilizing temporal and decision fusion [29]. Xie et al built a fuzzy decision support

system for demand forecasting based on a decision from market expert, customer,

Autoregressive Moving Average (ARMA) model, and time-series analysis based on

the decomposition method [30]. Fatemipour et al. proposed a source selection

methodology for fuzzy decision fusion systems, where a binary tree-structured fuzzy

rule base, decides the best source for a given input vector [31]. Finally, Ronald R.

Yager worked on the fusion of multiple multi-criteria aggregation functions with a

https://www.sciencedirect.com/science/article/pii/S0950705119305453#!
https://www.sciencedirect.com/science/article/pii/S0950705119305453#!

20

focus on the fusion of OWA aggregations [32] and all these works give promising

results.

3.2 Fuzzy Rule-Based Decision Fusion System

Fuzzy Rule-Based System (FRBS) is a rule-based system that uses fuzzy logic and

fuzzy set to represent different forms of knowledge.

3.2.1 General Architecture of a Fuzzy Rule-Based System

The functioning of FRBSs can be defined as the interaction between knowledge and

reasoning, which is the knowledge base (KB) and processing structure. The KB

stores the available knowledge about the problem in the form of fuzzy IF-THEN

rules. The processing structure uses these rules to puts into effect the inference

process on the system inputs. Figure 4 shows a general structure of a FRBSs.

Figure 4: Typical Diagram of a Mamdani FRBS by Magdalena [33]

3.2.2 Knowledge Base (KB)

This component stores all the problem-specific knowledge (the relationship between

input and output of the system). It is made of the fuzzy partition (methodology for

generating fuzzy sets), rule base (RB), which is the collection of linguistic rules in

the form of IF-THEN (i.e. IF X1 is Ai and X2 is Aj THEN Y is C) and the scaling

21

functions that are used to transform between the universe of discourse in which the

fuzzy sets are defined from to the domain of the system input and output variables.

3.2.3 The Processing Structure

A fuzzy rule base system contains five main components, namely: (i) the input

scaling which scales the input from its domain to a normalized domain require by

input fuzzy partitions, (ii) the fuzzification interface which transforms crisps input

values into a fuzzy value that serves as the input to the fuzzy reasoning process, (iii)

the inference engine which uses the fuzzy input to infer fuzzy output based on the

information in the KB, (iv) the defuzzification interface that converts the fuzzy

inference result to a crisp value and finally (v) the output scaling which converts the

defuzzified value to output variable domain.

A typical fuzzy rule is: IF x1 is Ai and x2 is Aj THEN y is C. The linguistic variables

Ai and Aj are called antecedent and C is the consequent. Depending on the form of

the consequent we can differentiate two basic FRBS models: (i) linguistic

memberships function as the Mamdani model, and, (ii) an arithmetic function of

input variables as TSK models.

3.2.4 Fuzzy Decision Fusion

Analysing data with several models provide more insights about this data and hence

fusing the decisions made by each model enables one to benefit from multiple views

rather than one. Assume we have K prediction models applied on a data set, with X

explanatory variables, and hi(X) the output of each model i (i = 1… K), the goal of

decision fusion-based model is to find the function g which suitably combines the

prediction models given specific criteria.

22

A fuzzy decision fusion model works on the principle of space partitioning, which

may be obtained either by clustering methods as applied by [14]. Many methods of

partitioning are well known including k-means, fuzzy c-means (FCM) method,

mountain, and subtractive clustering (SC) method. Partitioning may also be based on

expert opinion who decides the fuzzy labels for input variables and specifies the

parameters of the membership functions for each of these fuzzy labels. On this track,

a supervisory training of membership function parameters is a possibility for further

developments as implemented by [27]. Once explanatory variables are partitioned

into subspaces, one or more rules are defined for each subspace as follow:

If x is C1 then [w11, w21…..wk1]

If x is C2 then [w12, w22…..wk2]

…

If x is CR then [w1R, w2R…..wkR]

where k is the number of models, Ci is the center of the i
th

 rule with i = 1….R and wsk

is the weights vector assigns to model number s and in rule number k. In the source

selection methodology, the weight wiR = 1 just specify the selection of the i
th

 source,

while all other weights being zero specifying not to select them.

3.3 The Proposed Data Fusion Method

The proposed data fusion method works in two phases: (i) the learning phase is a

supervised algorithm that uses the cumulative absolute errors of the prediction

models for strongest fired rule; (ii) the decision phase uses the best-scored prediction

model for the strongest fired rule.

Parallel to the standard best model selection strategy, the parameters of prediction

models ARIMA (M1), LSTM (M2), SVR (M3), and double exponential smoothing

23

(M4) were determined using only the training data set. The mean of the predictions

of all these models was used as an intermediate estimate of prediction to build the

vectors of estimated errors, which were used as the feature set to build the fuzzy rule

base that determines the best method to be used for each fuzzy rule, as proposed in

the internal report [16].

Once the fuzzy rules were learned, for a new time series inputs, the predictions of

methods M1 … M4 were calculated using the trained parameter sets of each method.

The predictions were converted to the estimated error features by using the mean of

the predictions as the intermediate estimate of the prediction. The estimated error

vector (eemx) calculated by this estimated prediction is fuzzified, and the firing

strengths of the rules are obtained by using max-min t-norm and co-norm. The rule

that gets the maximum firing strength specifies which model among the trained M1

… M4 model set performs the best for this input. The predicted value of that model

is used as the finalized decision for the new input vector. The performance of the

system is compared to each of the methods M1, … , M4 using the vectors in the test

data set by the same procedure described for finalized prediction decision, and

calculating the cumulative absolute prediction error. Figure 5 describes the process

in a visual format, including the three phases: model training, fuzzy decision

learning, and inference for new inputs. It also shows the flow of process for the

determination of the cumulative prediction errors of M1 … M4 models, in parallel to

the cumulative prediction error of proposed fuzzy decision method.

24

Figure 5: General Structure of the Demonstrated Fuzzy Decision Fusion System

3.3.1 Learning Phase of the Decision Finalization

The general framework for the training phase of the proposed method is described in

5 main phases.

Time Series

Databank

CAE of FDF for
Test Data set

Data Pre-processing and

Training/Test Split

Training Data

EXP (M1) Training

SVR (M2) Training

ARIMA (M3) Training

LSTM (M4) Training

Training of Prediction Models

Inputs and
Outputs

Test Data

Test
Inputs

Only

Training

Inputs
Only

Model

Parameters

EXP (M1) Predictions

SVR (M2) Predictions

ARIMA (M3) Predictions

LSTM (M4) Predictions

Cumulative Absolute

Prediction Error
Calculation of

Models with Training

Data Set

Raw Data

Cumulative Absolute
Prediction Error

Calculation for

Models with Test
Data Set

Observed

Training
Outputs

Predicted

Training

Outputs

Predicted
Test

Outputs

CAE of

Models for

Training

Data set

CAE of

Models for

Test

Data set

Observed
Test Outputs

New

Input

New Input

Predicted
New

Outputs

Forecasting by Prediction Models

Predicted
Training Outputs

Fuzzy Decision Fusion Learning
Calculation of CAE for the

Strongest Fired Rule Observed
Training
Outputs

Update of Rules

Cumulative Absolute

Prediction Error

Calculation of FDF with

Training Data Set

Cumulative Absolute

Prediction Error
Calculation of FDF

with Test Data Set

Observed
Training
Outputs

Finalized
Predicted
Training
Outputs

CAE of FDF for

Training Data set

Observed
Test Outputs

Finalized Predicted Test Outputs
 Finalized

Predicted

Output for

New Input

Update of the Rule Base

Strongest Fired Rule

Membership Degrees

Selected Final Prediction

Estimated Error Vectors of

EXP, SVM, ARIMA, LSTM

Models (eexm)

Fuzzification

Fuzzy Max-Min Inference

for the Strongest Fired Rule

Fuzzy Decision Fusion Rule Base

25

Construction of the Estimated Error Vector

The first task is to construct the error vector from the predicted values of each of the

single method. The error is computed as the difference between the predicted and the

observed value

Computing Membership Degrees (MD):

The fuzzification process partitions the input variable in a certain number of the

linguistic term following a structure called membership function which can be

Trapezoid, Triangle, Sigmoid, Gaussian, or Bell-shaped forms [27]. The membership

functions are specified by the expert opinion to partition the universe of discourse in

a reasonable and convenient form to get rich content of partitions for all linguistic

labels.

Normalize Membership Degrees (MD):

The sum of membership degrees obtained this way are not exactly unity and may

create unexpected problems in further processing. Each MD of an input variable is

normalized by dividing each MD value with the sum of the membership degrees

along with the labels of each input variable so that their sum makes unity.

Determine which rule is fired strongest:

The strongest fired rule is determined using the combination of the maximum

membership degrees along with the labels of each input variable as seen in Table 1.

After all training inputs were evaluated, if some of the rules are non-voted, they are

omitted by marking them as obsolete, and the globally best model is assigned as the

default for all obsolete rules.

26

Table 1: Determination of Strongest Fired Rule

Input MD Strongest Fired Rule

For variable 1, maximum MD is low, q1=1 Rule = q1

+3 (q2-1)

+ …

+3
(K-1)

(qK-1)

For variable 2, maximum MD is high, q2=3

…

For variable K, the maximum MD is (med.),

qK=2

Determine the best model by actual errors:

This task consists of finding the model with less cumulative error for each rule. Table

2 explains cumulative calculation of the actual errors erri,j for each training input

vector i in {1 ... n} and prediction model j in {1… k}.

After all train inputs were evaluated, the minimum error accumulator ERj of rule-R,

for model-j is searched to get the best model for that rule. If some of the rules are

non-voted, they are marked as obsolete rules, and the global best algorithm is

specified as the default for these rules.

Table 2: Selection of the Best Algorithm for each Rule

MD combination Strongest Fired Rule Model Error Update (1 … k)

For input 1 Rule A EA1+=err1,1;… EAk+=err1,k;

For input 2 Rule B EB1+=err2,1;… EBk+=err2,k;

… … …

For input n Rule A EA1+=err1,1;… EAk+=err1,k;

After all inputs trained:
model-j is best for rule-R

if ERj =min(ER1, …, ERk).

27

3.3.2 Forecasting of a New Input

For the given new input vector, the output may not be given at all. In the training of

Fuzzy Decision Fusion, the output value has been used to get erri,j terms. In the

forecasting case; (i) the predicted values for each model shall be calculated, (ii)

estimated prediction errors eemx shall be fuzzified to get membership degrees of

each variable of eemx, (iii) the maximum MD of each variable shall be combined to

get the rule number which points the best model, (iv) among the cumulative model

errors the minimum one shall indicate the model to be selected by fuzzy decision

fusion as the finalized decision.

3.4 Concluding Remarks

This chapter has completed the description of the components which take part in the

proposed method. The next chapter will focus on a step by step case study of our

method on S&P 500 data. And the result will be compared to the individual

prediction model that took part in the fuzzy fusion.

28

4. Chapter 4

4 COMPUTATIONAL RESULTS

4.1 Data Set and Code Development Environment

For the demonstration of the proposed Fuzzy Decision Fusion method, we used 10

years of historical data set of the Standard & Poor's 500 Index (November 2009 to

November 2019). S&P 500 index is a market-capitalization-weighted index of

the 500 largest U.S. publicly traded companies. Data contain 6 columns that describe

the market behaviour (open price, highest price, lowest price, close price, and the

volume). S&P500 index is accessible on the website of finance.yahoo.com. Data

contain missing values for weekends and holidays, which can affect the forecast

accuracy [20]. Therefore, data pre-processing will consist of filling missing data via

interpolation.

All codes in this thesis were developed in the RStudio environment using R language

[34], [35]. The code heavily depends on the libraries: keras, tensorflow, ggplot2,

quantmod, tseries, timeSeries, forecast, xts, CombMSC, scales, e1071, httr,

miceadds, lfl, fdm2id, frbs, Metrics, and DMwR.

4.2 Data Pre-processing

Table 3 shows the first 6 lines of raw data where we notice the absence of values on

weekend days since the market is off.

29

Table 3: Sample of Raw S&P 500 Data Set

Days Open High Low Close Volume

2009-11-11 1096.04 1105.37 1093.81 10985.51 4286700000
2009-11-12 1098.31 1101.97 1093.48 1093.48 4160250000
2009-11-13 1087.59 1097.79 1093.48 1093.48 3792610000
2009-11-16 1094.13 1113.69 1094.13 1109.30 4565850000
2009-11-17 1110.52 1110.52 1102.19 1110.32 3824070000

The linear interpolation is one of the most commonly used methods for solving

missing data. It proceeds by taking the weighted average of the before missing data

and the after missing data. After using linear interpolation, we obtained data

including weekend days as it is in Table 4.

Table 4: Data after Filling the Missing Values

Days Close Volume

2009-11-11 1098.510 4286700000

2009-11-12 1087.240 4160250000

2009-11-13 1093.480 3792610000

2009-11-14 1098.753 4050356667

2009-11-15 1104.027 4308103333

2009-11-16 1109.300 4565850000

2009-11-17 1110.320 3824070000

For better insight, the training set was plotted in quarter sections. We can notice from

the plot in Figure 6, that there is an additive upward trend pattern without outliers nor

a sudden shift in the time series data which indicate a non-stationary data set this can

also be checked with the Augmented Dickey-Fuller (ADF) test.

30

Figure 6: S&P 500 Daily Close Price Plot

4.3 Forecasting Models.

Four well-known prediction models were used, and after prediction by each model,

all decisions were fused by a fuzzy rule base that determined the best models for

each fuzzy region of the predicted error space. 75% of our data were used as training

and 25% for testing.

4.3.1 Test for Stationary Property of Data

The ADF test is a statistic test for testing the null hypothesis that a unit root is

present in the time series at some level of confidence such as because of random

walk character.

ADF returns the P-Value of the data set. When this value is less than 5% null

hypothesis of being stationary can be rejected. As seen in Figure 7 ADF applied on

SP500 data returned P-value = 17%, which means that data set is not stationary.

31

adf.test(trainData)
Augmented Dickey-Fuller Test

data: trainData
Dickey-Fuller = -2.9523, Lag order = 14, p-value = 0.1752
alternative hypothesis: stationary

Figure 7: Code output of the ADF test for S&P 500 data set

4.3.2 ARIMA Model

The auto_arima function requires optimal structural parameters (p, d, q). We tested

ARIMA (2, 1, 2) which means AR and MA orders are 2, and stationarity assumption

is verified by first differentiation.

Figure 8 shows the training (blue) and fitted ARIMA forecast values (red) while

Figure 9 displays the residual from ARIMA forecast.

Figure 8: ARIMA Fitted Values Plot and Observed Values Plot

32

Residual Analysis

Residual is used to evaluate the appropriateness of a model which is generally done

by observing the residual graph. In statistic there are some assumptions on residual

such as: the residual variance should be constant, its variables should be independent,

and the residual has to be normality of the distribution. These assumptions hold when

the residual is randomly distributed around zero.

ARIMA Residual Plot

From the residual graph in Figure 9, we observe that the ARIMA residual follows a

normal distribution, that is, it has a mean of zero and variance is uniform. This shows

that, there is no repeating pattern left in the residual.

Figure 9: ARIMA Residual Plot

33

4.3.3 SVR Model

Radial Basis Function (RBF) was used as a kernel. RBF is a real-value function that

maps each input from its domain to a real value. This value depends on the distance

between the input and some fixed point that can be the origin (() (|| ||) or a

center c (() (|| ||).

SVR prediction performance can be visualized in Figure 10 and Figure 11 where we

can visualize the fitted and residuals plot respectively.

Figure 10: SVR Plot for Fitted and Observed Values

Figure 11: SVR Residual Plot

34

4.3.4 Double Exponential Smoothing

The error trend seasonality (ETS) model was used to identify the type of exponential

smoothing function to use and its appropriate parameters (α, K, γ). The R code for

tuning ETS parameters is given in Figure 12.

ets_model<-ets(ts(trainData$GSPC.Close),

 model = "AAN",alpha = NULL,gamma = NULL,lambda = NULL,beta = NULL)

etsF<-forecast(ets_model,h=n)

exp_forecast<-(ets_model$fitted) #forescast on train

summary(ets_model)

Figure 12: R Code for EXP prediction model

The output of the ETS model summary is given in Figure 13. It indicates the use of a

double exponential smoothing with the additive trend with parameters: alpha = 0.998

and beta = 1e-04. The fitted values of the double exponential smoothing model on

the training data can be visualized in Figure 14. Additionally, the residual plot in

Figure 15 implies that there is no useful information left.

ETS(A,A,N)
Call:
ets(y = ts(trainData$GSPC.Close), model = "AAN", alpha = NULL,
Call:
beta = NULL, gamma = NULL, lambda = NULL)
Smoothing parameters:
alpha = 0.998
beta = 1e-04
Initial states:
l = 1081.4624
b = 0.5072
sigma: 11.2215
AIC AICc BIC
36776.88 36776.90 36806.69
Training set error measures:
ME RMSE MAE MPE MAPE MASE
Training set -0.003391882 11.21368 7.160736 -0.004591073 0.4475896 0.9986955
ACF1
Training set 0.03131204

Figure 13: ETS Model Summary Output for EXP Model

35

Figure 14: Graph of Exponential Smoothing Forecasted and Observed Values

Figure 15: Exponential Smoothing Residual Plot

4.3.5 LSTM Model

LSTM model was build using the python open-source neural-network library called

keras. It permits rapid experimentation with deep neural networks. It is modular,

user-friendly, and extensible.

36

Data processing for LSTM:

To enable LSTM learning, the data must be divided into multiple input/output

patterns. In this case one-time step was used as input (k) and one-time step was used

as output. In other words we put our data in 2 dimensions (x-k and x) as shown in

Table5.

 Table 5: Two Dimensional Representations of the Data for LSTM Learning

Index x-1 X

1 0.000000 2.670044

2 2.670044 7.926636

3 7.926636 7.926636

4 7.926636 7.926636

5 7.926636 -0.069946

6 -0.069946 5.500000

Data is reshaped to have another dimension as required by keras API so that it has

dimensions for samples, time steps, and features.

In the demonstration, a vanilla LSTM model is built as a single hidden layer of

LSTM unit and an output layer for prediction. In the model, the hidden layer contains

50 LSTM units and produces a single numeric value as output. The model was

configured with the Adam stochastic gradient descent as an optimizer, and Mean

Square Error (MSE) as the loss function. The predicted and observed values are

plotted in Figure 16 and we can notice a close similarity between.

37

Figure 16: LSTM Predicted and Observed Values

4.4 Fuzzy Decision Fusion

4.4.1 Preparation of the Training Dataset

Once the prediction models Mj, j = {1 … k} forecast the next day value yi,j for an

input xi, we used the predicted values { yi,j | i=1 … n; j=1 … k} as input for the fuzzy

decision fusion system. Instead of using directly the predicted values as input

features, we used estimated errors for each model, so that, decisions do not get

affected by any interference of predicted variables which carries dominant

information of data set together with the differences in the model prediction. The

actual output yi is estimated by the mean of all predictions, {yi,j | j=1 … k}, and the

estimated prediction error vector (eemxi) is used as the feature vector of fuzzy

decision fusion as shown at Table 6. The plot of all prediction errors for the first 50

inputs against the observed values is shown in Figure 17.

38

Table 6: The First Six Predicted and Observed Values of each Model

EXP SVM ARIMA LSTM Observed

1 1081.97 1132.13 1065.563 1069.393 1066.63

2 1067.166 1131.577 1066.637 1072.063 1069.3

3 1069.802 1131.03 1069.411 1079.989 1077.227

4 1077.719 1130.49 1077.601 1087.916 1085.153

5 1085.646 1129.957 1085.717 1095.843 1093.08

6 1093.574 1129.43 1093.638 1095.773 1093.01

Figure 17: Graph of Prediction Errors vs. Observed Values for all Models

4.4.2 Construct the Estimated Error Vector (eemx)

The model prediction errors are obtained by subtracting the predicted values from the

observed values. A sample can be seen in Table 7.

39

Table 7: Samples of Estimated Error Matrix

 eeESM eeSVR eeARIMA eeLSTM

1 5.294295 -44.86607 21.700485 17.871294

2 17.194849 -47.21626 17.72354 12.297866

3 17.75641 -43.47203 18.146717 7.568901

4 15.712699 -37.05878 15.830484 5.515594

5 13.644394 -30.66642 13.574013 3.448014

The prediction performance of each method may be evaluated using the cumulative

absolute error (CAE), which is computed as the sum of prediction error made for

each input data. Table 8 lists the training CAE of the four models. LSTM performs

better than the three others by producing the least CAE values.

Table 8: Training Cumulative Absolute Prediction Errors by Models EXP, SVR,

ARIMA, and LSTM

Models EXP SVR ARIMA LSTM

Training CAE 20572.79 111203.4 20549.25 9366.128

4.4.3 Setting Membership Functions for Fuzzification

For the demonstration each input variable is partitioned into 3 Gaussian Membership

Functions (MF). In Figure 18Figure 18: Membership Function Plot for Each Input

Variable. It is a 5 by n*k matrix where n is the number of input variables and k the

number of labels for each variable. The first row of this matrix describes the type of

MF where 1: Triangle MF, 2: Trapezoid-left-side MF, 3: Trapezoid-right-side MF, 4:

Trapezoid-middle MF, 5: Gaussian MF, 6: Sigmoid MF, and finally 7: for Bell-

shaped MF. The other rows indicate the corner points to construct the functions.

40

 Table 9: Parameter Matrix for Membership Function

eeESM eeSVR eeARIMA eeLSTM

Low Med. High Low Med. High Low Med. High Low Med. High

1 5 5 5 5 5 5 5 5 5 5 5 5

2 -200 0 50 -200 0 50 -200 0 50 -50 0 400

3 100 20 40 100 20 40 100 20 40 30 10 200

4 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0

Figure 18: Membership Function Plot for Each Input Variable

 Table 10: Membership Degree of the First Six Input Data

 eeESM eeSVR eeARIMA eeLSTM

eE1 eE2 eE3 eS1 eS2 eS3 eA1 eA2 eA3 eL1 eL2 eL3

1 0.12 0.97 0.54 0.3 0.08 0.06 0.09 0.56 0.78 0.08 0.2 0.16

2 0.09 0.69 0.71 0.31 0.06 0.05 0.09 0.68 0.72 0.12 0.47 0.15

3 0.09 0.67 0.72 0.29 0.09 0.07 0.09 0.66 0.73 0.16 0.75 0.15

4 0.1 0.73 0.69 0.27 0.18 0.09 0.1 0.73 0.69 0.18 0.86 0.14

5 0.1 0.79 0.66 0.24 0.31 0.13 0.1 0.79 0.66 0.2 0.94 0.14

6 0.11 0.89 0.6 0.22 0.42 0.16 0.11 0.89 0.6 0.16 0.76 0.15

41

4.4.4 Extract the Membership Degree

The degree of membership to each label is obtained by applying the membership

function to a giving input. In other words for each input vector, we compute their

degree of belonging to each fuzzy set on each input variable. For the complete set of

training inputs, the matrix of Membership Degree is an N*M matrix in which values

lied between [0-1] where N is the number of input data and M is equal to the product

of the number of input variable by the number of label [36]. For the demonstration M

= 4*3=12 as shown on Table 10 which lists the MDs of first six training inputs.

4.4.5 Extract all Fired Rules

The number of rules is proportional to the input variable and the number of fuzzy set

for each variable. The demonstration has 4 input variables and 3 membership

functions and therefore 3 by 3 by 3 by 3 = 81 rules. From these rules those which

were fired were retained, and from the retained rules, we get the best model of each

rule searching the model with the lowest error. Table 11 shows the first ten rules,

among which we observe that rule number 3 was fired, and, for that rule, model-1

(EXP) worked best.

Table 11: Cumulative Error Accumulators.

Rule No. 1 2 3 4 5 6 7 8 9 10 ...

EE 0 0 0.7 0 0 0 0 0 0 0 ...

ES 0 0 9 0 0 0 0 0 0 0 ...

EA 0 0 1.5 0 0 0 0 0 0 0 ...

EL 0 0 1432.1 0 0 0 0 0 0 0 ...

42

4.4.6 Cumulative Absolute Error of Fuzzy Fusion on Training Data

The performance of the demonstrated method against each of the conventional

prediction models was evaluated using the cumulative absolute error (CAE) for

trainng inputs. As indicated on

Table 12, the demonstrated decision fusion method outperformed all models for the

training phase by 14.31 % improvement compared to LSTM which stands out to be

the best method among the four individual models.

Table 12: Cumulative Absolute Training Errors for Models and FDF

Models Cumulative Absolute Error

EXP 20572.8

SVM 111203.4

ARIMA 20549.3

LSTM 9366.1

Fuzzy Decision Fusion 7934.8

 4.4.7 Training of Fuzzy Decision Fusion Rule Base

During the model-training, the parameters of the models are determined to get the

best prediction yi,j for the training input xi by model-j among the models: EXP, SVR,

ARIMA, and LSTM. Once the training of all models is over, the estimated prediction

error eexmi,j is computed using the mean of all predictions as an estimate of observed

output. Fuzzification of eexmi vectors partitions the input variables eexmi,j to expert-

specified labels through the membership degrees MDi,p in expert-specified

Membership-Functions. The combination of the maximum MD values points the

strongest fired rule, r. The cumulative absolute error accumulators of rule r is

updated by Er,j += erri,j ; for all models.

43

After all training inputs are processed, the minimum accumulated error for rule r

specifies the best model for that rule, i.e., for rule r model j is best among k models if

Er,j =min(Er,1 … Er,k).

4.4.8 Processing of New Inputs and Test Data Set

Once at the training phase the parameters of prediction models were trained, it also

determines the best model for each rule in the fuzzy rules of the fuzzy decision

fusion procedure.

The first step of the process for a new input data xi is to predict target output from the

four models: EXP, SVR, ARIMA, and LSTM using the trained parameters. Next, the

estimated prediction error eemxi,j by each model-j, is computed using the mean of all

predictions as an estimate of observed output, even if the observed output values for

a new input is missing. The fuzzy decision fusion is carried out by the fuzzification

step of eemx to obtain the strongest fired rule corresponding to the input data. After

normalizing MD vectors for each input value, the normalized MD is used in finding

the strongest fired rule. The absolute errors accumulated at the training phase for

each model of the fired rule selects the best prediction model for that input as the

finalized decision of the fuzzy decision fusion procedure. This process is repeated

until all training input data set are processed.

For the test data set, the mean absolute error is computed for each model

individually, and for the fuzzy decision fusion selected final predictions. The results

of these calculations are listed in Appendix E.

44

Table 13 contains Membership Degrees of the expected errors for the first three test

data. The mean absolute error of all fired rules is available in Appendix E in which a

rule with zero cumulative absolute errors for all models represent a non-fired rules.

During the learning process of fuzzy decision fusion, each time a rule is fired, it

increments the rulecount counter of fired rule. Rulecounts of the rules are used to

compute the mean absolute error for each model for each rule at the end of the

process. Appendix E also shows the rule count of each fired rule during the training

process.

Table 13: Membership Degrees of the First Three Test eexm Values.

 eeESM eeSVR eeARIMA eeLSTM

 eE1 eE2 eE3 eS1 eS2 eS3 eA1 eA2 eA3 eL1 eL2 eL3

1 0.1 0.6 0.27 0.105 0.841 0.054 0.107 0.787 0.106 0.11 0.686 0.203

2 0.1 0.6 0.275 0.105 0.84 0.055 0.111 0.789 0.1 0.112 0.685 0.204

3 0.1 0.6 0.273 0.104 0.839 0.056 0.112 0.789 0.099 0.112 0.683 0.205

Table 14: Cumulative Absolute Error Performance of Each Model on Test Data
Models: EXP SVM ARIMA LSTM Fuzzy Dec. Fusion

CAE: 14841.033 839040.988 14783.931 15003.846 14764.844

45

Table 15: Head and Tail of Predictions by all models and FDF

ESM SVR ARIMA LSTM Fuzzy Dec. Fusion

1 2502.7 2492.8 2500.2 2504.2 2504.2

2 2503.0 2493.1 2502.7 2505.4 2505.4

3 2504.2 2493.4 2503.9 2506.6 2506.6

4 2507.0 2493.7 2506.8 2509.4 2509.4

5 2508.6 2493.9 2508.4 2511.0 2511.0

ESM SVR ARIMA LSTM Fuzzy Dec. Fusion

953 2851.0 1406.6 2854.0 2853.4 2854.0

954 2864.9 1406.6 2865.0 2867.3 2865.0

955 2878.8 1406.6 2876.7 2881.2 2876.7

956 2863.8 1406.7 2860.4 2866.2 2860.4

957 2939.7 1406.7 2940.1 2942.3 2940.1

Cumulative Absolute Error for Fuzzy Decision Fusion on Test Set

In Table 14 we observed a slight improvement of decision fusion of 0.19%

compared to LSTM which stands out to be the best method among the four models.

A sample of the predicted values is seen in Table 15 which lists the head and tail of

the overall output prediction respectively.

4.5 Concluding Remarks

The results of demonstration on S&P 500 time-series data set indicate the successful

contribution of fuzzy decision fusion by source selection by decreasing the

cumulative absolute test error as well as the cumulative absolute training error. It is

noticeable that the success of the method depends on the expert-opinion based

selection of proper membership functions for the labels of input variables. Also, the

fusion of the predicted decisions requires training and evaluation of prediction

models, which requires considerable execution time. For the demonstrated data, an i7

processor with 8 GB main memory running at 2.8 GHz clock takes almost 20

minutes for training, and about 20 seconds for the test data set.

46

Chapter 5

5 CONCLUSION

Forecasting stock prices is very challenging and demands a reliable or accurate

predictive model. This thesis demonstrated an approach of finalizing the selection of

the best performing forecast among multiple well-known predictive models to reduce

cumulative forecasting error. The idea is demonstrated on S&P 500 index using the

prediction models: ARIMA, Double Exponential Smoothing, SVR, and LSTM.

Fuzzy decision fusion combined the decisions of these models.

The demonstration shows that although all four prediction techniques forecasted the

target in the best way for their limitations, LSTM outperformed the other three

models in mean absolute training errors. Still, each model has its local hyperspaces

where they work better than the others. This condition is observed in the Cumulative

Error Accumulators of the rules. The Fuzzy Decision Fusion algorithm applied on

the demonstration is expected to extract the best model for each fuzzy region. In the

run, rule-3 and rule-51 had a local best model, EXP, while all other rules pointed the

LSTM as the best. As a result of these local differences, which are successfully

detected by FDF, the selected models by FDF outperformed the individual

cumulative performances of all models both in training and in testing evaluations.

The fuzzy decision fusion method requires higher computational cost for training and

forecasting procedures, but the extra time is not linearly dependent on the number of

47

models. The training and the forecasting period of EXP, SVR, and ARIMA take

almost one-tenth of LSTM, the best performing conventional model. As a result, the

0.2% reduction in test-CAE costs only about 20% extra computational time. For the

S&P 500 data set with total 3600 data points, the R code takes almost 20 minutes on

an i7 processor with 8GB RAM, even while the source runs on a USB2 connected

flash disk. Note that reduction of CAE depends on many factors, and may vary from

one data set to another.

The proposed fuzzy decision fusion method has the advantage of combining methods

of different natures (statistic, deep learning, or Machine Learning methods) and can

be extended to other types of data. However, it presents some deficits. First of all,

selecting the set of models to fuse is nontrivial. Next, no optimization method or tool

is available to determine expert-proposed MF of input variable labels for an

application. The third deficit is the increased computational complexity as discussed

in the previous paragraph while explaining the computational complexity of the

method.

Future Work

As a perspective and possible future work, the Fuzzy Decision Fusion idea may be

applied on a panel or cross-sectional time series analysis to improve the accuracy of

The most critical part of the proposed method is the expert-opinion based MF

settings. Without proper settings, the method cannot distinguish local best regions of

the prediction models. In this respect, the proposed model is more art than a

straightforward applicable tool for time series forecasting problems.

48

predictions by including other critical data sources on the related financial sectors

and even political actions at some extent for a successful stock market forecasting.

49

REFERENCES

[1] Zemke, S., “Data Mining for Prediction. Financial Series Case.,” Computer and

systems science, university's (KTH), 1971.

[2] Andrawis, R. R. , Atiya, A. F. & El-Shishiny, H., “Forecast combinations of

computational intelligence and linear models for the NN5 time series forecasting

competition.,” International Journal of Forecasting,, pp. vol. 27, issue 3, 672-

688, 2011.

[3] Ţiţan, G., Alexandra, I., “The Efficient Market Hypothesis,” Procedia

Economics and Finance, pp. 442-449, 2015.

[4] Lo, A. W. & MacKinlay, A. C. , “Stock Market Prices dot not Follow Random

Walks,” STOR, pp. 41-66, 1988.

[5] Castello, A.; Mancuso, B.; Werner L., “Review of Combining Forecasts

Approaches,” Independent Journal of Management & Production (IJM&P), pp.

v. 4, n. 1, 2013.

[6] Bates, J. M. & Granger, C. W. J. , “The Combination of Forecasts,” Journal of

the Operational Research Society volume, p. 451–468, 1969.

[7] Granger, C. & Newbold, P., “Spurious regressions in econometrics,” Journal of

50

Econometrics, pp. vol. 2, issue 2, 111-120, 1974.

[8] Shanming Shi ; Bao Liu, “Nonlinear combination of forecasts with neural

networks,” in Proceedings of 1993 International Conference on Neural

Networks, Nagoya, Japan, Japan, 1993.

[9] Clemen, T., “Combining forecasts,” International Journal of Forecasting, pp.

Volume 5, Issue 4, 559-583, 1989.

[10] Werner, L., “A composite model to perform demand forecasting by integrating

the combination of forecasts and opinion-based adjustment,” Federal University

Of Rio Grande, Porto Alegre, 2004.

[11] Burduk, R., Walkowiak, K., “Static Classifier Selection with Interval Weights of

Base Classifiers,” in Asian Conference on Intelligent Information and Database

Systems, 2015.

[12] Oliveira, L. E. S., Sabourin, R., & Britto, AS. Jr., “Dynamic selection of

classifiers,” p. 3665–3680, 2014.

[13] Kourentzesa, N.; Barrowb, D.; Petropoulo, F. , “Another look at forecast

selection and combination:evidence from forecast pooling,” International

Journal of Production Economics, pp. 1-40, 2018.

51

[14] Ibrahim, A. S., “Model Based Multi Criteria Decision Making Methods for

Prediction of Time Series Data,” Eastern Mediterranean University,

Gazimağusa, North Cyprus, 2014.

[15] Thanoon, M. A. , “Prediction of International Stock Markets Movement Using

Technical Analysis Methods and TSK,” Eastern Mediterranean University,

Computer Engineering, Gazimağusa, North Cyprus, 2014.

[16] Bodur, M., “Fuzzy Decision Fusion, Internal Report,” Dr. Bodur, EMU,

Computer Eng. Dept., G/Magusa, 2020.

[17] Finance.Yahoo, “S&P 500 (^GSPC),” September 2020. [Online]. Available:

https://finance.yahoo.com/quote/%5EGSPC?p=^GSPC. [Accessed 21 March

2020].

[18] Karmaker, C. L.; Halder, P. K.; & Sarker, E., “A Study of Time Series Model

for Predicting Jute Yarn Demand,” Hindawi journal of Industrial Engineering,

pp. 1-8, 2017.

[19] Box G., and Jenkins G., “Time series analysis: Forecasting and control,” San

Francisco, CA, 1970.

[20] Shareef, J. K., “Prediction of International Stock Market Movements Using a

Statistical Time Series Analysis Method,” Eastern Mediterranean University

52

Computer Engineering, Gazimağusa, North Cyprus, 2013.

[21] Sethi, A., “Support Vector Regression for Machine Learning,” Analytics Vidhya,

pp. 1-7, 2020.

[22] Platt, J. C., “Sequential Minimal Optimization,” Research Gate, pp. 1-22, 1998.

[23] Bhattacharyya, I., “Support Vector Regression Or SVR,” 29 june 2018.

[Online]. Available: https://medium.com/coinmonks/support-vector-regression-

or-svr-8eb3acf6d0ff. [Accessed 21 05 2020].

[24] Staudemeyer, R. C.; Morris, E. R. , “Understanding LSTM,” Schmalkalden

University of Applied Sciences, Germany, Schmalkalden, 2019.

[25] Varsamopoulos, S., Bertels, K., & Almudéver, C.G., “Designing neural network

based decoders for surface codes,” 2018.

[26] Zadeh, L. A., “Outline of a New Approach to the Analysis of Complex Systems

and Decision Processes,” IEEE Transactions on Systems, Man, and Cybernetics,

pp. 28 - 44, 1973.

[27] Bodur, M., “Fuzzy System Modeling with the Genetic and Differential

Evolutionary Optimization,” in Proc.Int.Conf CIMCA-IAWTIC, Vienna, 2005.

53

[28] Buczak, A. L. ; Uhrig, R. E. , “Decision fusion by fuzzy set operations,” in

Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference,

Orlando, FL, USA, 1994.

[29] Dietrich, C. ; Schwenke, F. ; Palm G., “Classification of Time Series Utilizing

Temporal and Decision Fusion,” in International Workshop on Multiple

Classifier Systems, 2001.

[30] Xie, Y; Burnham, K. , “Fuzzy decision support system for demand forecasting

with a learning mechanism,” Fuzzy Sets and Systems, pp. 1713-1725, 2006.

[31] Fatemipour M. R; Akbarzadeh T, “Dynamic Fuzzy Rule-based Source Selection

in Distributed Decision Fusion Systems,” Fuzzy Information and Engineering,

pp. 107-127, 2018.

[32] Yager, R., “On the fusion of multiple multi-criteria aggregation functions with

focus on the fusion of OWA aggregations,” Knowledge-Based Systems, 2020.

[33] Magdalena, L., “Fuzzy Rule-Based Systems,” in Springer Handbook of

Computational Intelligence, 7 Warsaw, Poland, Janusz Kacprzyk, 2015, pp.

203-218.

[34] RStudio, “RStudio Team,” 2020. [Online]. Available: http://www.rstudio.com/.

54

[35] R-Core-Team, “(). R: A language and environment for statistical computing. R

Foundation for Statistical Computing,,” URL https://www.R-project.org/.,

Vienna,, 2017.

[36] Riza, L. S., Bergmeir, C., & Herrera, F., “Package „frbs‟ documentation,”

december 2019. [Online]. Available: http://dicits.ugr.es/software/FRBS/.

[Accessed 18 June 2020].

55

APPENDICES

56

Appendix A: Data Retrieval and Split

This code is a step by step r code used to split our S&P 500 data set into train and

test data set and later, build our individual model forecast. The fitted values of each

model during training were bind as features input to the fuzzy Rule-Based model.

The code starts by importing the necessary library files.

library(keras)
library(tensorflow)
library(ggplot2)
library(quantmod)
library(tseries)
library(timeSeries)
library(forecast)
library(xts)
library(CombMSC)
library(scales)
library(e1071)
library(httr)
library(miceadds) # to load .Rdata
library(lfl)
library(fdm2id)
library(frbs)
library(Metrics)
library(DMwR)
rm(list = ls())
start_date <- as.Date("2009-11-05")
end_date <- Sys.Date() - 1
Sys.setenv(TZ = "GMT")
if the file don't exixt then downloaf and save else just load it
if (!file.exists("GSPC.Data")) {
 re <- getSymbols.yahoo("^GSPC", env = parent.frame(),
 from = start_date, to = Sys.Date(),
 index.class = "Date", periodicity = "daily",
 return.class = "xts",
 auto.assign = "FALSE", frequency = 7)
 save(list = "re", file = "GSPC.Data")
}
load.Rdata("GSPC.Data", "spy")
myData = spy[, 1:6]
removes tryCatch result
indexClass(myData) <- "POSIXlt"
indexClass(myData)
tzone(myData) <- Sys.timezone()
allIndex <- index(myData)
print(as.data.frame(myData[1:20,]))

57

Appendix B: Filling the Missing Values

This part of the code fills the missing data at weekend and holidays by merging

missing days using linear interpolation function. It also splits data into train and

testing partitions.

tt <- seq(from = min(index(myData)), to = max(index(myData)), by =
"day")
newData <- merge(myData, fill = "NA", tt)
Warning in merge.xts(myData, fill = "NA", tt): NAs introduced by
coercion
newData[, 5] <- na.approx(newData[, 5])
newData[, 4] <- na.approx(newData[, 4])
close_volume <- newData[, 4:5]
head(index(myData))
print(as.data.frame(close_volume[1:20,]))

Split the data into train and testing data

N <- nrow(closeD)
closeD <- ts(close_volume[, 1], frequency = 1)
Delimit training range
smp_siz = floor(0.75 * nrow(closeD)) # index of 75% of the dtaset
smp_size= floor(0.75*nrow(volumeD)) # index of 75% of the dtaset

train_data1 <- window(closeD, end = c(smp_siz, 1))

head(train_data1)
Time Series:
Start = 1
End = 6
Frequency = 1
GSPC.Close
[1,] 1066.630
[2,] 1069.300
[3,] 1077.227
[4,] 1085.153
[5,] 1093.080
[6,] 1093.010
Delimit testing range
test_data1 <- window(closeD, start = c((smp_siz + 1), 1))
head(test_data1)

58

Appendix C: EXP, SVR, ARIMA, LSTM Modeling

The following code builds ARIMA, SVR, and Exponential smoothing models on the

training set.

n = nrow(ts(train_data))
model_auto <- arima(ts(train_data$GSPC.Close), order = c(2, 1, 2))
arima_forcast <- forecast(model_auto, h = n)$fitted

regress <- svm(train_data$trainSeq, train_data$GSPC.Close, data = train_data,
 kernel = "radial", type = "eps-regression", epsilon = 0.13, cost = 2^4) #svm(x,y,...)
prediction on train data
svm_forecast <- regress$fitted
n_test = nrow(test_data)
n <- nrow(train_data)
ets_model <- ets(ts(train_data$GSPC.Close), model = "AAN", alpha = NULL, gamma = NULL,
 lambda = NULL, beta = NULL)
etsF <- forecast(ets_model, h = n)
exp_forecast <- (ets_model$fitted) #forescast on train

The following code builds LSTM Model, starting by data preparation, i.e., generating

lagged dataset in two dimensions (x-1 and x)

diffedData = diff(closeD, differences = 1)

lagData <- function(x, k = 1) {

 lagged = c(rep(NA, k), x[1:(length(x) - k)])
 DF = as.data.frame(cbind(lagged, x))
 colnames(DF) <- c(paste0("x-", k), "x")
 DF[is.na(DF)] <- 0
 return(DF)
}
superviseData = lagData(diffedData, 1)

Nr = nrow(superviseData)
nr = round(Nr * 0.75, digits = 0)

train_lstm = superviseData [1:n,]
test_lstm = superviseData [(nr + 1):N,]
scale_data = function(trainData, test,
 feature_range = c(0, 1)) {
 x =trainData
 fr_min = feature_range[1]

59

Appendix D: Data Preparation for Fuzzy Decision Fusion

The following function (AllModel_test) is called to apply the models on the test set

and use the output as input for testing the FRBSs.

AllModel_test = function(etsModel, svmRegressor, arimaModel, dataT) {
 n_test <- nrow(dataT)
 # svmF<-predict(svmRegressor, newData=dataT)
 svm_test <- predict(svmRegressor, dataT[, -2]) #prediction on test data

 arima_test <- Arima(dataT[, -1], model = arimaModel)
 arima_test <- fitted(arima_test)
 etsF1 <- ets(dataT[, -1], model = ets_model) #fit test data values
 ets_test <- etsF1$fitted
 arimaF <- as.data.frame(arima_test)

 # lstm foescast on test set

 L = length(x_test)
 scaler = Scaled$scaler
 Lstm_Test = numeric(L)
 N = nrow(supervised)
 n = round(N * 0.75, digits = 0)
 for (i in 1:L) {
 X = x_test[i]
 dim(X) = c(1, 1, 1)
 yhat = model %>% predict(X, batch_size = batch_size)
 # invert scaling
 yhat = invert_scaling(yhat, scaler, c(-1, 1))
 # invert differencing
 yhat = yhat + closeD[n + i]
 # store
 Lstm_Test[i] <- yhat
 }
 combineF <- data.frame(cbind(volumeTest, ets_test, svm_test, arima_test,
 Lstm_Test, dataT[, -1]))
 colnames(combineF) <- c("Volume", "ETS_pred", "SVM_pred", "ARIMA_pred",
 "LSTM_ped", "Test_Data")
 return(combineF)
}
n_test <- nrow(train_data)
finalTestData1 <- data.frame(cbind(volumeTrain, exp_forecast, svm_forecast,
 arima_forcast, lstm_forecast, train_data[, -1]))

colnames(finalTestData1) <- c("Volume", "ETS_pred", "SVM_pred",
 "ARIMA_pred", "LSTM_ped", "Train_Data")

finalTrainData <- scale(finalTestData1)
print(as.data.frame(round(finalTrainData[1:10,], 3)))

finalTestData1 <- AllModel_test(ets_model, regress, model_auto, test_data).

60

finalTestData <- scale(finalTestData1)

Saving an R data frame as a .csv file as to be used next time instead of running all the

models code again.

write.csv(FinalTrainData1, "FrbsTrain.csv")
write.csv(finalTestData1, "FrbsTest.csv")

61

Appendix E: Fuzzy Decision Fusion for Time Series

This code follows the frameworks described in Figure 8.

expected value estimate of CLO
trn.epPL= (trn.d[,1]+trn.d[,2]+trn.d[,3]+trn.d[,4])/4
#error matrix
trn.emx=matrix(c(
trn.d[,5] -trn.d[,1],
trn.d[,5] -trn.d[,2],
trn.d[,5] -trn.d[,3],
trn.d[,5] -trn.d[,4]
),ncol=4, byrow=FALSE)
colnames(trn.emx)=c("eESM","eSVR","eARIMA","eLSTM")
#estimated error matrix
trn.eemx=matrix(c(
trn.epPL - trn.d[,1],
trn.epPL - trn.d[,2],
trn.epPL - trn.d[,3],
trn.epPL - trn.d[,4]),ncol=4, byrow=FALSE)
colnames(trn.eemx)=c("eeESM","eeSVR","eeARIMA","eeLSTM")

{
 plot(trn.d$CLO[1:50],trn.eemx[1:50,1],
 pch=20, ylab='ees and eep')
 points(trn.d[1:500,5], trn.eemx[1:500,2], pch=21)
 points(trn.d[1:500,5], trn.eemx[1:500,3], pch=22)
 points(trn.d[1:500,5], trn.eemx[1:500,4], pch=23)
 legend("topright",
 legend=c("ESM","SVR","ARIMA","LSTM"),
 pch=c(20,21,22,23))
}

options(width=120)
trn.eMD = fuzzifier(
trn.eemx,
trn.num.ivar,
trn.num.labels,
 trn.eMF)

colnames(trn.eMD)=c(
 "eE1","eE2","eE3",
 "eS1","eS2","eS3",
 "eA1","eA2","eA3",
 "eL1","eL2","eL3")
we need number of input variables, use trn.num.ivar
trn.eMDN=trn.eMD # start with copy of MD
for (i in 1:nrow(trn.eemx)){ # for each training vector
 for (k in 1:trn.num.ivar) { # for each input variable
 # ik is the start index of sum
 ik=sum(trn.num.labels[1:k])-trn.num.labels[k]+1
sumik=sum(trn.eMD[i, ik:(ik+trn.num.labels[k]-1)])
for (m in ik:(ik+trn.num.labels[k]-1)){

62

trn.eMDN[i,m]=trn.eMD[i,m]/sumik}
cat('i=',i,' k=',k,' eMDN=',eMDN[i,],"\n") # debug
}
}
head(round(trn.eMDN,2))
a matrix of 6-col x 2-row to count voted algorithms
trn.num.rules = prod(trn.num.labels)
trn.rulemaes= 0*matrix(
 1:(trn.num.rules*(trn.num.ivar)),
 nrow=trn.num.ivar)
trn.rulecount=0*matrix(1:trn.num.rules, nrow=1)
trn.rulenr = 0*trn.d[,-5][,1]
for (i in 1:nrow(trn.eemx)) { # for each training vector
 # i=3
 trn.rulenr[i] = 0
 # find the most strongly fired rule using shortcut
 # by the largest normalized MD for each variable.
 for (k in 1:trn.num.ivar) { # for each variable
 # k=1; k=2
 # start index of eMDN for that variable
 ik = sum(trn.num.labels[1:k]) - trn.num.labels[k] + 1
 # index of highest in the labels of k th var
 ikmax1 = which.max(
 trn.eMDN[i, ik:(ik + trn.num.labels[k] - 1)])
 # there are evi.label.num[1]*..*evi.label.num[kmax]
 # rules. Positional weight of k th variable is
 pw1 = prod(trn.num.labels[k:trn.num.ivar]
) / trn.num.labels[k]
 trn.rulenr[i] = trn.rulenr[i] +
 pw1 * (ikmax1 - 1) # iterative terms
 }
 trn.rulenr[i]=trn.rulenr[i]+1 # last term.
 trn.rulemaes[,trn.rulenr[i]] =
 trn.rulemaes[,trn.rulenr[i]]+ abs(trn.emx[i,])
 trn.rulecount[trn.rulenr[i]] =
 trn.rulecount[trn.rulenr[i]] + 1
}
for (r in 1:length(trn.rulemaes[1,])) {
 # i=1 i=2
 for (k in 1:trn.num.ivar)
 if (trn.rulemaes[k, r] > 0) {
 trn.rulemaes[k, r] = round(trn.rulemaes[k, r] /
 trn.rulecount[r], 1)}
}
options(width = 100)

63

 round(tst.rulemaes[k,r]
 /tst.rulecount[r],3)}
}
options(width = 100)
tst.rulemaes
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17]
[1,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[4,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26] [,27] [,28] [,29] [,30] [,31] [,32]
[1,] 0 16.431 0 0 0 0 0 0 0 0 0 0 0 0 0
[2,] 0 947.531 0 0 0 0 0 0 0 0 0 0 0 0 0
[3,] 0 16.354 0 0 0 0 0 0 0 0 0 0 0 0 0
[4,] 0 16.597 0 0 0 0 0 0 0 0 0 0 0 0 0
[,33] [,34] [,35] [,36] [,37] [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47]
[1,] 0 0 0 0 0 0 0 0 3.360 0 0 0 0 0 0
[2,] 0 0 0 0 0 0 0 0 32.036 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0 0 3.544 0 0 0 0 0 0
[4,] 0 0 0 0 0 0 0 0 3.158 0 0 0 0 0 0
[,48] [,49] [,50] [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58] [,59] [,60] [,61] [,62]
[1,] 0 13.691 1.367 5.068 0 0 0 0 0 0 0 0 0 0 0
[2,] 0 142.259 60.308 84.127 0 0 0 0 0 0 0 0 0 0 0
[3,] 0 13.910 1.913 5.141 0 0 0 0 0 0 0 0 0 0 0
[4,] 0 13.255 1.042 5.700 0 0 0 0 0 0 0 0 0 0 0
[,63] [,64] [,65] [,66] [,67] [,68] [,69] [,70] [,71] [,72] [,73] [,74] [,75] [,76] [,77]
[1,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[4,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[,78] [,79] [,80] [,81]
[1,] 0 0 0 0
[2,] 0 0 0 0
[3,] 0 0 0 0
[4,] 0 0 0 0

tst.rulecount
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17]
[1,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26] [,27] [,28] [,29] [,30] [,31] [,32]
[1,] 0 880 0 0 0 0 0 0 0 0 0 0 0 0 0
[,33] [,34] [,35] [,36] [,37] [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47]
[1,] 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0
[,48] [,49] [,50] [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58] [,59] [,60] [,61] [,62]
[1,] 0 5 1 41 0 0 0 0 0 0 0 0 0 0 0
[,63] [,64] [,65] [,66] [,67] [,68] [,69] [,70] [,71] [,72] [,73] [,74] [,75] [,76] [,77]
[1,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[,78] [,79] [,80] [,81]
[1,] 0 0 0 0
options(width = 80)

