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ABSTRACT 

Time series data can be collected in many domains including econometric, signal 

processing, weather forecasting, and earthquake prediction. Accurate prediction of 

time series prices is essential for investors, meteorologist, or statisticians. Forecasting 

of the financial time series has intrinsic complexity due to uncertainties of factors 

that affect it. In this study, better forecasting of the financial stock market time series 

movements is targeted using the closing prices of the stock market. In this work, our 

objective is to implement a set of well-known financial time series forecasting 

models such as Autoregressive-Integrating-Moving-Average (ARIMA), Exponential 

Smoothing, Support Vector Regression (SVR), Long-Short Time Memory (LSTM), 

and to merge the forecasted decision by using fuzzy knowledge-based decision 

system. The difference of this thesis compared to the previous works is mainly the 

expert-decided membership functions instead of clustering in building the fuzzy rule 

base.  An experimental demonstration has been carried out on the S&P 500 index 

using the closing prices of this Index. The results shows that the fuzzy decision 

fusion procedure gives lower cumulative absolute prediction error than cumulative 

error of forecasts of each individual model. 

 

Keywords: time series, time series forecasting, fuzzy decision fusion, fuzzy logic 

system, fuzzy rule generation.  
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ÖZ 

Zaman serisi verileri, ekonometri, sinyal işleme, hava durumu tahmini, deprem 

tahmini dahil olmak üzere birçok alanda üretilir ve kullanılır. Yatırımcılar, 

meteorologlar ve istatistikçiler için serilerin doğru tahmin edilmesi çok önemlidir. 

Zaman serilerini etkileyen faktörlerin belirsizliklerinden dolayı, mali zaman 

serilerinin tahmini içsel karmaşıklığa sahiptir. Bu çalışmada finansal borsa zaman 

serisi hareketlerinin tahmininin, yalnızca borsa endeksinin kapanış fiyatları ve hacmi 

kullanılarak iyileştirilmesi hedeflenmiştir. Önerilen yöntem, Otoregressif-Bütünleşik-

Hareket-Ortalaması (ARIMA), Üstel yumuşatma (ESM) Destek Vektör Regresyonu 

(SVR), Uzun Kısa Süreli Bellek (LSTM)  gibi mevcut zaman serisi verilerinden bir 

finansal zaman serisinin gelecekteki fiyatını tahmin etme yeteneğine sahip bir dizi 

model kullanmakta, ve eğitim veri seti üzerinden öğrendiği bulanık karar birleştirme 

kuralları bilgi tabanını  kullanarak tahmin edilen değerlerin en iyisini 

seçebilmektedir. Bu çalışmada, önceki tez çalışmalarından farklı olarak, karar 

birleştirme için bulanık bir kural tabanı oluşturmada öbekleme yöntemleri yerine 

standart bulanık yöntemler kullanmaya odaklanılmıştır. S&P 500 endeksinden elde 

edilen veriler üzerinde, bu hisse endeksinin kapanış fiyatları zaman dizisi 

kullanılarak önerilen yöntemin deneysel bir gösterimi sunulmuştur. Sonuçlar, 

önerilen bulanık karar füzyon birleştirme yönteminin, bireysel modellerin her bir 

tahmininin kümülatif hatalarından daha düşük kümülatif mutlak tahmin hatası 

sağladığını göstermiştir. 

Anahtar Kelimeler: zaman serileri, zaman serisi tahmini, bulanık karar füzyonu, 

bulanık mantık sistemi, bulanık kural üretimi.  
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1. Chapter 1 

1 INTRODUCTION  

1.1 Introduction on Forecasting 

Forecasting is the process of predicting future values based on available information, 

knowledge, and data that can impact the prediction. Forecasting is part of our daily 

life. It is useful in several domains including economic forecast, political forecast, 

weather forecast, and meteorology. It is used by many businesses to define how to 

allocate their budgets or plan to anticipate expenses for an upcoming period time 

therefore it should be reliable [1].  

 

Improving time series accuracies has constantly retained researchers‟ attention. 

Several methods have been put in place to forecast time-series data, such as 

statistical methods, deep learning, and machine learning methods which have made it 

possible to obtain more or less satisfactory results from one data set to another. Each 

method has its strengths and weaknesses.  The accuracy of each method depends on 

many factors such as characteristics of the data namely the trend, seasonality, the size 

of the data, the date range, and the length of the forecast horizon. In general, no 

method outperforms others in all cases. The stochastic nature of time series data 

makes it difficult for a single method to capture all intrinsic information of a given 

time series data. It is therefore very risky to rely on one forecasting method. To avoid 

this risk and to benefit of the strength of many individual methods, a combination of 



  

    

2 

 

the results from different forecasting methods was proposed and their accuracy is 

generally better than those of the individual model [2]. 

Stock market forecasting consists of determining the future value of a company. The 

current and future prices of the investment are two critical prices any investors have 

to know. Investors generally review past pricing history and use it to influence their 

future investment decision. 

 

The efficient-market hypothesis (EMH) states that the current share prices already 

contain sufficient information for predicting future values [3]. This hypothesis is 

stated in 3 levels: weak, semi-strong, and strong. The weak form claims that 

technical analysis is insufficient for investors in making a trading decision. The semi-

strong form instead believes that if some information is not readily available to the 

public then technical or fundamental analysis can be used by investors to boost their 

returns. The strong form believes that all information is present in the current stock 

prices therefore using proper tools, an investor can boost their chance of beating the 

market. Further studies in this area show that the stock prices are not efficient and do 

not follow a random walk [4]. And, several methods such as statistical, deep 

learning, and machine learning methods have been put in place to forecast time-

series data, and have made it possible to obtain more or less satisfactory forecasts 

depending on time series data sets. 

 

Motivated by making higher return rates, researchers, investors, and investment 

professionals always attempt to find a stock market model that would make a better 

forecast for a higher return. For a satisfactory forecast of time series data, the choice 

of the model is crucial. Each method has its strengths and weaknesses, and its 

https://en.wikipedia.org/wiki/Efficient-market_hypothesis
https://www.investopedia.com/terms/w/weakform.asp
https://www.investopedia.com/terms/s/semistrongform.asp
https://www.investopedia.com/terms/s/semistrongform.asp
https://www.investopedia.com/terms/s/strongform.asp
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accuracy depends on many factors such as its characteristics, trend, seasonality, size, 

range of data, and length of the forecast horizon. No method outperforms the others 

in all cases, in other to get rid of the question which method to use to aim good or 

better accuracy, an alternative is to combined results from different forecasting 

methods.  

1.2 The Goal of the Thesis 

The goal of this thesis is to improve the cumulative absolute error of the time series 

prediction by a set of forecasting models using Fuzzy Decision Fusion (FDF) that 

learns the best decision for each fuzzy rule through the training data set. In other 

words, this study aims to demonstrate the decision fusion ability of a fuzzy rule base 

for multiple forecasting models namely the Autoregressive Integral Moving Average, 

(ARIMA), Double Exponential Smoothing, (EXP), Support Vector Regression, 

(SVR), and Long Short Term Memory, (LSTM) on currently available S&P500 time-

series dataset. 

1.3 Literature Review 

There are many models to deal with a forecasting problem. Because it is more and 

more difficult to improve the performance of a single model, the combination has 

become one major way to do that and many models combination has been proposed. 

In decision making, the decision of multiple experts or models is fused to get the 

final decision. In the past decade, various methodologies were employed to combine 

decisions. The literature proposes different ways of combining forecasting methods it 

can be done by using either objective methods which involve objective techniques in 

its combination or subjective methods involving human judgment techniques [5].  

Objective methods combination was introduced by Bates in 1969 [6] as a linear 

combination of two objective forecasts with k and (1-k) for the first and second 
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decisions respectively (Df = k*D1 + (1-k)*D2) where k is the factor that minimizes 

the error variance of the combined forecast.  

 

Subsequently, the combination was extended from 2 to n, and combination 

techniques began to be interpreted as a structural form of regression [7]. After their 

study, more sophisticated methods were proposed such as arithmetic mean methods 

neural networks methods, and nonlinear combinations [8]. A combination of 

decisions is carried also using Bayesian analysis in which weights are attributed 

based on the expected value [9], [10]. 

 

The key challenge in model combination forecast is to find the optimal model 

combination; this can be done at the learning phase for the static method [11] or at 

the testing  for the dynamic method [12]. 

 

In 2001 Armstrong developed the so-called Rule-Based Forecasting (RBF). It 

determines the weights for each forecasting method by using IF-THEN rules to 

provide a rule-based weighted average combination. Kourentzesa et al proposed an 

approach that consists of selecting the models in the forecast combination [13]. 

 

Under Dr. Bodur‟s supervision, Ahmed Salih [14] implemented a forecasting model. 

He applied some well-known forecasting methods: Radial Basis Function, K-Nearest 

Neighbour method, Self-organizing map methods, and Autoregressive Fractionally 

Integrated Moving Average. Then, he clustered the estimated error space produced 

by these prediction methods. For each cluster, he obtained the final decision that 
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provides minimum forecasting error by using majority voting of the training data. 

For each new entry, the closest estimated error cluster indicates the final decision. 

 

A similar study was supervised by Dr. Bodur, in 2014, that used fuzzy C-means 

clustering for decision source selection among three-time series technical analysis 

methods; six-days-moving-average, moving-average convergence-divergence, and 

relative strength index using TSK to select the best forecasting method among those 

three [15]. 

1.4 Overview of the Proposed System 

In this thesis, Fuzzy Decision Fusion is applied to select the finalized forecast among 

the forecasts of four prediction models by Fuzzy Decision Source Selection, which 

uses the fuzzified estimated errors of the models to select the final decision according 

to a fuzzy rule base. 

 

In time series forecasting, mostly there are multiple candidates of prediction models 

available for the purpose. The standard decision making procedure targets to 

determine the best model by carrying tests on the models using a test data set, and 

selecting the best model that gives the least prediction error through the test data set. 

Decision fusion is a combination of various decisions coming from many sources. 

Each source, in our case prediction model, makes its own decision, in our case a 

forecast, with its local information. 

 

This thesis aims to improve time series forecasting (in an accuracy point of view) by 

using fuzzy logic to select the best among multiple prediction models as proposed in 
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the internal report by Dr. Mehmet Bodur [16]. The demonstration consists of four 

prediction models: namely Double Exponential Smoothing EXP (M1), SVM (M2), 

ARIMA (M3), and, LSTM (M4) to forecast the S&P 500 data series. The first step is 

to use training data to determine the parameters of models, M1 … M4, and to get the 

forecasted values.  The next stage is to use training data set to train a fuzzy rule base 

which shall finalize the prediction method to be used depending on the most strongly 

fired rule of the rule base. The proposed decision merging system is demonstrated on 

the Standard & Poor's 500 Index (S&P 500) daily time series data which is 

downloaded from the “finance.yahoo.com” data server [17] for 10 years period. 75% 

of the data points were used for training and 25 were reserved for independent 

testing.  

1.5 Structure of the Thesis 

The thesis starts with a short introduction of recent advancements in fuzzy decision 

fusion in Chapter 1.  Chapter 2 explains some properties of time series forecasting on 

prediction models. Chapter 3 introduces the methods of the forecasting models which 

serve as the decision sources, and the fuzzy decision fusion algorithm. A 

demonstration of the proposed method is presented in Chapter 4 on forecasting of 

S&P 500 data set, including the results and discussions on the improvements of the 

forecasting by applied fuzzy decision fusion. Finally, we complete the thesis with a 

conclusion in Chapter 5. 
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2. Chapter 2 

2 TIME SERIES FORECASTING 

A time-series data is a collection of numerical values at different time points in 

successive order, usually spaced at regular time steps. It is commonly used in many 

areas including economics, health care, and so on. They can be univariate, which 

means collected by observations of a single variable over time, and multivariate 

where a set of observations of several variables are collected at each time step.  

2.1 Stationary and Non-Stationary Time Series 

A data set is said to be stationary time series when both the mean and variance are 

constant over time, therefore at large periods its properties are time-independent. A 

non-stationary time series has either a constant mean or a constant variance or both 

non-constant over large time. Many time series techniques assume that the time 

series is stationary. For a non-stationary time series, there exist two main methods to 

transform it into a stationary series. Differencing is performed to get rid of the 

varying mean. y(t) = x(t)–x(t–1), while Log-transformation is a nonlinear 

transformation to stabilize the non-constant variance of a series.  

2.2 Components of a Time Series Data 

A time-series can be decomposed into three components. (i) The trend means 

continuation of increasing or decreasing values in a given time series; (ii) the 

seasonal character means a repeating cycle over a specific period such as day, week, 

month, in a given time series; (iii) the noise is the random irregularity of values in a 

https://www.aptech.com/industry-solutions/econometrics/
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given time series. Time series forecasting uses information in the sequence of 

historical values and their associated patterns to predict future activity. 

2.3 Time Series Forecasting Models 

They are various methods to forecast time-series data, and they can be classified into 

2 groups [18] . 

 

Qualitative methods:  

For these methods, the forecast is based on opinions judgment, personal experiences 

emotions, and intuition. Here there is no model or any mathematical computation. 

They are subjective. We list methods such as Delphi Method, Market Survey, 

Executive Opinion, and Salesforces Composite in this group. 

 

Quantitative methods:  

These methods heavily rely on mathematical quantitative computations and are 

objective. Quantitative models can be grouped into associative models, often called 

Causal models in which forecasting is based upon associations between the forecast 

variable and other variables in the environment and time-series models that look at 

past patterns of data and attempt to predict the future. We can list here some 

quantitative methods such as (i) naive, (ii) moving average, (iii) exponential 

smoothing, (iv) artificial intelligence models,  and (v) ensemble model.   

In this thesis, we mainly use quantitative methods that use observed data to fit in a 

model that provides forecast of future values. Each quantitative model has its 

structural and fitting parameters and its hypothesis to be considered. The following 
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part of this chapter describes a non-exhaustive list of some well-known forecasting 

models that have been used in literature to forecast time series data. 

2.3.1 Autoregressive Model (AR) 

As its name indicates, the autoregressive model is a regression model to predict the 

future value by fitting the data series to a linear expression using the past values of 

the variable. The autoregressive model uses multiple numbers of past linear terms. 

The number (p) of the lag variable is decided depending on the correlation of 

variable at time t with respect to time t-p. An autoregressive model of order p (lag) is 

written in (2.1). 

yt= c + A1 yt−1 + A2 yt−2 + …+ Ap yt−p  + bt.           (2.1) 

where bt.  is white noise, yk (k from t-1 to t-p)  is the value of the forecasted variable 

at different lags. Therefore, AR(p) model is called an autoregressive model of 

order p. 

2.3.2 Moving Average Models (MA) 

This model is a linear regression on white noise in other words; it uses the past few 

forecast errors in a regression-like model, 

yt= c +εt+θ1εt−1+θ2εt−2+⋯+θqεt−q.        (2.2) 

where, εt is white noise. MA(q) model is a moving average model of order q. 

2.3.3 ARIMA 

ARIMA modelling also called Box-Jenkins modelling proposed by Box and Jenkins 

in 1970 [19] is a mathematical model that forecasts future value by using previous 

time-series data plus an error. Specifically, it combines the Autoregressive model 

(AR) and the Moving average (MA). ARIMA model is applied under the assumption 

of stationary time series which means they have constant variance and mean. In the 

https://www.statisticshowto.com/mean/
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ARIMA model, the predictors are lags of the dependent variable and/or lags of the 

forecast errors   

 ŷt   =   c + A1 yt-1 +…+ Ap yt-p – B1εt−1 –… – Bq εt−q.                                               (2.3) 

     

p: the number of autoregressive terms, 

d:  how many non-seasonal differences are needed to achieve stationarity, 

q: the number of lagged forecast errors in the prediction. 

In EMU-CMPE department, studies on forecasting stock market time series are 

carried under the supervision of Dr. M Bodur since 2013 [20]. Shareef demonstrated 

that filling the missing values of financial time series data improves the forecasting 

accuracy by extensive experiments, and her experiments indicated the possible high 

profit of a daily international automatic foreign exchange algorithm that uses a very 

high order ARMA(p=9,q=10) model for two days ahead of closing price prediction.  

2.3.4 Exponential Smoothing  Model 

Exponential smoothing is a univariate time series forecasting method that models the 

three components of a time-series: values, trend, and seasonality. It is similar to 

ARIMA by Box-Jenkins in the sense that it is a weighted average of past 

observations with the main difference that the weights are decaying exponentially as 

the observations get older. According to the pattern taken into consideration, we can 

distinguish three types of exponential smoothing. 

Single/Simple Exponential Smoothing (SES): 

It models univariate time series data without trend or seasonality. The only parameter 

here is the smoothing factor coefficient called alpha (α) to control the decaying rate 

of influence of the previous observations as shown in (2.4).  

ARIMA(p,d,q), model (2.3) has three structural parameters:



  

    

11 

 

yt+1| t= αyt+α(1−α)yt−1+α⟮1−α)2yt−2+...+y1.  With 0 ≤ α ≤ 1                                (2.4) 

 

Double Exponential Smoothing:  

Double Exponential Smoothing is a univariate time series model, and it extends SES 

by explicitly adding support for trends in the time series. In addition to the parameter 

α, a smoothing factor called β is added to control the decay of the influence of the 

change in trend. 

 

Triple Exponential Smoothing:  

It models a univariate time series by its trend and seasonality components. It extends 

the Double Exponential Smoothing by adding support for seasonality. Therefore it 

introduces alpha, beta, and gamma (2.5), (2.6). Gamma controls the influence on the 

seasonal component. This method is also called Holts-Winters exponential 

Smoothing and it is modelled from (2.5) to (2.8). 

The forecast equation:   yt+h|t=[ℓt+(ϕ1+ϕ2+⋯+ϕh)bt]st+h−mk+1.                  (2.5) 

 Level/values equation:  ℓt=α(yt/st−m)+(1−α)(ℓt−1+ϕbt−1).                             (2.6) 

Trend equation:  bt=K∗(ℓt−ℓt−1)+(1−k∗)ϕbt−1 .                                  (2.7) 

 Seasonality equation   st= γyt(ℓt−1+ϕbt−1)+(1−γ)st−m.                                 (2.8) 

2.3.5 Support Vector Regression (SVR) 

SVR is a regression algorithm that targets to fit the error within a certain threshold 

instead of minimizing the error rate as it is done in other regression algorithms. 

Before describing SVR operation mode we let us take a look at some important 

terminologies. 
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Kernel:  

SVR assumes a linear relationship between the input and output variables, even if 

this assumption is not always verified with the dynamics of time series data. Kernel 

functions (polynomial, Gaussian Radial Basis Function, Sigmoidal) are employed to 

capture the nonlinear dynamics of the time series under study. In another word, the 

kernel function plays the role of moving data from lower-dimensional data into 

higher dimensional data so as to make it possible to perform linear separation on 

non-linear data without increasing the computational cost as shown in Figure 1. 

 

Figure 1: Kernel Mapping by Sethi [21] 

Hyper plane:  

A hyperplane is a surface that is determined by the kernels to predict the continuous 

output or target value. 

 

Boundary line:  

These are the lines drawn at an error ε (epsilon) distance from the hyperplane.  It is 

used to create demarcation (margin) between the data point. 
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Support vectors:  

These are the data points that are closest to the boundary line with a minimum or 

least distance. 

Mathematical Formulation of SVM Regression 

Given some data points, the goal of SVR is to draw a boundary (margin) lines and 

only consider points between these lines. In other words, SVR attempts to draw a 

line called hyperplane that fits the data points best and then, put boundaries at -𝞮, and 

+𝞮, distance from this hyperplane.  

 

Linear Support Vector Regression: the Primal Formulation  

Assuming we have a multivariate training data set xn of n observations and a target 

variable yn. SVR aims to search for the flat linear function h(x) =x ′k+b with minimal 

norm value (k′ k) .This can be formulated as an optimization problem with (2.9) as 

the goal and (2.10)  as constraints:  

 Minimize 

      s(k) =1/2 k′k                                                                                     (2.9) 

Subject to:  

                      ∀n: | yn− (xn′k+b) | ≤ ε.                                                                      (2.10) 

These constraints may not be always satisfied in all point of our data set therefore, to 

prevent against outliers, slack variables such as  ξ, and  ξ
*
 can be added in each point 

leading us to the objective function in (2.11) and (2.12), also called the primal 

formula [22]. 

Minimize 

                                s (k) =1/2k ′k+  ∑ (     
∗) 

                                               (2.11) 

Subject to: 
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         ∀n: yn−(xn′k+b) ≤ ε+ξ
n,                                                                                       

(2.12) 

                                 ∀n: (xn′k+b)−yn ≤ ε+ξ
*

n   

                                ∀n:ξ
*

n 
≥ 0, 

                                ∀n:ξn  ≥ 0, 

where C is a constant that aims to control the penalty on data points lying outside the 

margin (ε). 

 

This primal formulation, and can be written in a Lagrange dual formulation which 

makes the problem computationally simpler to solve and enable the primal technique 

to be extended to nonlinear functions [22]. Figure 2 illustrates a schematic of epsilon 

deviation bands in SVM process. 

  
Figure 2: SVR Epsilon Deviation Bands by Bhattacharyya [23] 

2.3.6 Long Short Term Memory  Networks (LSTM) 

In deep learning, LSTM is an artificial Recurrent Neural Network (RNN) 

architecture, which is known as well-suited for processing sequential data. In 
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traditional neural networks, input and output data are temporally independent which 

means it cannot memorize the previous outputs. In some cases like text mining or 

time-series data prediction of the current output depends on the previous input and 

hence comes the need to remember the previous input. This can then be solved by 

using Recurrent Neural Network (RNN). 

 

A recurrent neural network is a type of artificial neural network with a memory that 

is capable of remembering previously computed information. Its main drawback 

appears if the sequence to process becomes long, where RNN faces the gradient 

vanishing and exploding problem. 

 

The gradient vanishing and exploding problem 

In backpropagation artificial neural network or in neural network with gradient-based 

learning technique, the error gradient is used to update the weights of the network 

and to know the right propagation direction. When the sequence to process is very 

long, the gradient is unable to remember old term dependency and shrinks as it back 

propagates this then causes its value to become too small and therefore doesn‟t 

contribute that much in learning: the network stop learning without been trained 

sufficiently. 

LSTM is an efficient RNN capable of remembering a long time dependencies 

without being affected by the vanishing gradient problem. Proposed by Hochreiter et 

al, LSTM is used in the field of deep learning and it has feedback connections [24]. 

Unlike standard feed-forward neural networks, it is suitable for data sequences such 

as stock market index, speech or video streams as it is capable to handle lags of 

unknown duration between important events in a time series. 

https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Feedforward_neural_network
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 The LSTM network is composed of the following items. 

Cell state: It plays the role of memory. It processes relevant information throughout 

the processing of the sequence and discards or forgets the irrelevant as shown in 

Figure 3.  

Input Gate: this gate is responsible for adding relevant information to the cell state. 

Forget Gate: it is a sigmoid layer has an output between 0 and 1. By this output, it 

decides which information should stay or be forgotten during the training. An output 

closer to zero indicates that information is irrelevant; while an output closer to one 

means relevant information and should stay. 

Output Gate: This gate decides which values to be allowed as an output from the 

current cell. 

Activation functions: These are some equations that determine the neural network 

output we can name: sigmoid function which is a popular function in a neural 

network. It transforms its input values to values between 0 and 1. Typically, the 

hyperbolic tangent function (tanh) is a nonlinear function that transforms it input 

values into values between -1.0 and 1.0. 

Given a new sequence value xt, it will be concatenated to the previous output of the 

cell ht−1. The result is squashed with a tanh layer and then passed to the input gate. 

The latter will therefore kill off the unrequired element of the input vector using a 

sigmoid function. The next stage consists of determining the required variable (from 

the input gate) to be remembered or forgotten using the forget gate. Finally, the 

variables to be remembered are squashed (tanh) and passed to the output gate. Figure 

3 shown an example of LSTM cell and its components. 

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Sigmoid_function
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Figure 3: LSTM Cell Diagram by Varsamopoulos [25] 

Operations in LSTM cells can be mathematically formulated as: 

Input:      g= tanh( b
g

 + xt U
g

 + ht−1V
g
), 

Output of the input gate:       (      
       

 )   

where U
g
 and V

g
 represent the input and previous cell output weights, respectively, 

and b
g
 is the input bias. 

The output of the input section is:         , 

Forget gate and state loop is:       (      
       

 ). 

The output from the forget gate is:                . 

Output gate:        (      
       

 ). 

Output of the cell is:          (  )   . 

2.4 Discussion on Quantitative Prediction Models 

It is noticeable that the selected quantitative prediction models for the demonstration 

of the fuzzy decision fusion by source selection have quite different characters. We 

expect that each one may help in the final decision at a different partition of the 

expected errors, and take part in the fuzzy rule base as the best model for its niche.  
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3. Chapter 3 

 3 FUZZY DECISION FUSION 

3.1 Fuzzy Representation of Numbers, and Fuzzification  

In this work, we used fuzzy sets to represent a vector in the fuzzy domain. In 

representing numerical variables by fuzzy terms (or labels), a fuzzy set is a function 

from an interval of numbers to the interval of membership values to describe the 

uncertainty of the linguistic terms by a continuous membership value between non-

member (0) and fully-member (1) [26]. In mathematical terms, a fuzzy set is a set, in 

which each real number is mapped onto a membership value that lies in the range  

[0, 1]. Given a collection of elements in the universe of discourse X, and each 

member denoted by x, a fuzzy set A in X is an ordered set of pairs: 

A= {(x, UM (x)) | x € X}                                              (3.1) 

 

where UM (x) or M(x) is the membership function is also called the degree of truth of 

x in A. Linguistic labels such as attributes very low, low, medium, high, very high 

are represented by a family of membership functions, mostly a parametric 

mathematical function such as trapezoidal, triangular and Gaussian, for the ease of 

description and computation [27]. A value of a variable, for example, the closing 

value of the SP500 shares, ck=45, is fuzzified in the interval [30, 50] by reading the 

value of the membership functions corresponding to each of the linguistic labels, 

resulting in a set of membership degrees uk = (0.01, 0.1, 0.3, 0.9, 0.4), meaning that it 

is strongly in high fuzzy-interval, and closer to very high rather than medium. 
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In fuzzy modelling, the membership degrees of the inputs are processed by t-norm, 

and co-norm operators similar to the “and” and “or” operators of binary logic 

systems. The most widely used t-norm and co-norm pair are min and max functions, 

which are used by Zadeh to build decision inference models [26]. Fuzzy logic is a 

computational approach that uses “degree of truth” (1 ≥ u ≥ 0) instead of Boolean 

logic (p is either true or false, represented by either 1 or 0). In other words, it is a 

logic used to handle the concept of partial truth in which a value can be between 

completely true and completely false. 

On Zadeh‟s Fuzzy Set Theory, several technics were introduced in the literature for 

combining the results of models aiming improvement of accuracy. Developments 

followed one of the two main tracks: (i-) an expert-determined set of membership 

functions used in modelling a training data set, (ii-) extracting the knowledge to a 

fuzzy rule base which points an acceptable solution for the modelled system, such as 

for a given input vector predicting the value of target variable, or determining the 

correct cluster.  

In the past decade, fuzzy modelling techniques applied to decision fusion started in 

1994 [28]. Dietrich et al proposed KNN method of classification of Time Series 

Utilizing temporal and decision fusion [29]. Xie et al built a fuzzy decision support 

system for demand forecasting based on a decision from market expert, customer, 

Autoregressive Moving Average (ARMA) model, and time-series analysis based on 

the decomposition method [30]. Fatemipour et al. proposed a source selection 

methodology for fuzzy decision fusion systems, where a binary tree-structured fuzzy 

rule base, decides the best source for a given input vector [31]. Finally, Ronald R. 

Yager worked on the fusion of multiple multi-criteria aggregation functions with a 

https://www.sciencedirect.com/science/article/pii/S0950705119305453#!
https://www.sciencedirect.com/science/article/pii/S0950705119305453#!
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focus on the fusion of OWA aggregations [32] and all these works give promising 

results. 

3.2 Fuzzy Rule-Based Decision Fusion System 

Fuzzy Rule-Based System (FRBS) is a rule-based system that uses fuzzy logic and 

fuzzy set to represent  different forms of knowledge. 

3.2.1 General Architecture of a Fuzzy Rule-Based System  

The functioning of FRBSs can be defined as the interaction between knowledge and 

reasoning, which is the knowledge base (KB) and processing structure. The KB 

stores the available knowledge about the problem in the form of fuzzy IF-THEN 

rules. The processing structure uses these rules to puts into effect the inference 

process on the system inputs. Figure 4 shows a general structure of a FRBSs. 

 
Figure 4: Typical Diagram of a Mamdani FRBS by Magdalena [33] 

3.2.2 Knowledge Base (KB) 

This component stores all the problem-specific knowledge (the relationship between 

input and output of the system). It is made of the fuzzy partition (methodology for 

generating fuzzy sets), rule base (RB), which is the collection of linguistic rules in 

the form of IF-THEN (i.e. IF X1 is Ai and X2 is Aj THEN Y is C) and the scaling 
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functions that are used to transform between the universe of discourse in which the 

fuzzy sets are defined from to the domain of the system input and output variables. 

3.2.3 The Processing Structure  

A fuzzy rule base system contains five main components, namely:  (i) the input 

scaling which scales the input from its domain to a normalized domain require by 

input fuzzy partitions, (ii) the fuzzification interface which transforms crisps input 

values into a fuzzy value that serves as the input to the fuzzy reasoning process, (iii) 

the inference engine which uses the fuzzy input to infer fuzzy output based on the 

information in the KB, (iv) the defuzzification interface that converts the fuzzy 

inference result to a crisp value and finally (v) the output scaling which converts the 

defuzzified value to output variable domain. 

A typical fuzzy rule is: IF x1 is Ai and x2 is Aj THEN y is C. The linguistic variables 

Ai and Aj are called antecedent and C is the consequent. Depending on the form of 

the consequent we can differentiate two basic FRBS models: (i) linguistic 

memberships function as the Mamdani model, and, (ii) an arithmetic function of 

input variables as TSK models. 

3.2.4 Fuzzy Decision Fusion   

Analysing data with several models provide more insights about this data and hence 

fusing the decisions made by each model enables one to benefit from multiple views 

rather than one.  Assume we have K prediction models applied on a data set, with X 

explanatory variables, and hi(X) the output of each model i (i = 1… K), the goal of 

decision fusion-based model is to find the function g which suitably combines the 

prediction models given specific criteria.  
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A fuzzy decision fusion model works on the principle of space partitioning, which 

may be obtained either by clustering methods as applied by [14]. Many methods of 

partitioning are well known including k-means, fuzzy c-means (FCM) method, 

mountain, and subtractive clustering (SC) method. Partitioning may also be based on 

expert opinion who decides the fuzzy labels for input variables and specifies the 

parameters of the membership functions for each of these fuzzy labels. On this track, 

a supervisory training of membership function parameters is a possibility for further 

developments as implemented by [27]. Once explanatory variables are partitioned 

into subspaces, one or more rules are defined for each subspace as follow: 

If x is C1 then [w11, w21…..wk1] 

If x is C2 then [w12, w22…..wk2] 

… 

If x is CR then [w1R, w2R…..wkR] 

where k is the number of models, Ci is the center of the i
th

 rule with i = 1….R and wsk 

is the weights vector assigns to model number s and in rule number k. In the source 

selection methodology, the weight wiR = 1 just specify the selection of the i
th

 source, 

while all other weights being zero specifying not to select them.  

3.3 The Proposed Data Fusion Method 

The proposed data fusion method works in two phases: (i) the learning phase is a 

supervised algorithm that uses the cumulative absolute errors of the prediction 

models for strongest fired rule; (ii) the decision phase uses the best-scored prediction 

model for the strongest fired rule. 

 

Parallel to the standard best model selection strategy, the parameters of prediction 

models ARIMA (M1), LSTM (M2), SVR (M3), and double exponential smoothing 
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(M4) were determined using only the training data set. The mean of the predictions 

of all these models was used as an intermediate estimate of prediction to build the 

vectors of estimated errors, which were used as the feature set to build the fuzzy rule 

base that determines the best method to be used for each fuzzy rule, as proposed in 

the internal report [16]. 

 

Once the fuzzy rules were learned, for a new time series inputs, the predictions of 

methods M1 … M4 were calculated using the trained parameter sets of each method. 

The predictions were converted to the estimated error features by using the mean of 

the predictions as the intermediate estimate of the prediction. The estimated error 

vector (eemx) calculated by this estimated prediction is fuzzified, and the firing 

strengths of the rules are obtained by using max-min t-norm and co-norm. The rule 

that gets the maximum firing strength specifies which model among the trained M1 

… M4 model set performs the best for this input. The predicted value of that model 

is used as the finalized decision for the new input vector. The performance of the 

system is compared to each of the methods M1, … , M4 using the vectors in the test 

data set by the same procedure described for finalized prediction decision, and 

calculating the cumulative absolute prediction error.  Figure 5 describes the process 

in a visual format, including the three phases: model training, fuzzy decision 

learning, and inference for new inputs. It also shows the flow of process for the 

determination of the cumulative prediction errors of M1 … M4 models, in parallel to 

the cumulative prediction error of proposed fuzzy decision method.  
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Figure 5: General Structure of the Demonstrated Fuzzy Decision Fusion System  

3.3.1 Learning Phase of the Decision Finalization 

The general framework for the training phase of the proposed method is described in 

5 main phases. 
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Construction of the Estimated Error Vector  

The first task is to construct the error vector from the predicted values of each of the 

single method. The error is computed as the difference between the predicted and the 

observed value  

 

Computing Membership Degrees (MD): 

The fuzzification process partitions the input variable in a certain number of the 

linguistic term following a structure called membership function which can be 

Trapezoid, Triangle, Sigmoid, Gaussian, or Bell-shaped forms [27]. The membership 

functions are specified by the expert opinion to partition the universe of discourse in 

a reasonable and convenient form to get rich content of partitions for all linguistic 

labels. 

 

Normalize Membership Degrees (MD):  

The sum of membership degrees obtained this way are not exactly unity and may 

create unexpected problems in further processing.  Each MD of an input variable is 

normalized by dividing each MD value with the sum of the membership degrees 

along with the labels of each input variable so that their sum makes unity.  

 

Determine which rule is fired strongest: 

The strongest fired rule is determined using the combination of the maximum 

membership degrees along with the labels of each input variable as seen in Table 1. 

After all training inputs were evaluated, if some of the rules are non-voted, they are 

omitted by marking them as obsolete, and the globally best model is assigned as the 

default for all obsolete rules. 



  

    

26 

 

Table 1: Determination of Strongest Fired Rule 

Input MD Strongest Fired Rule 

For variable 1, maximum MD is low, q1=1 Rule =  q1 

+3 (q2-1) 

+ … 

+3
(K-1) 

(qK-1) 

For variable 2, maximum MD is high, q2=3 

… 

For variable K, the maximum MD is (med.), 

qK=2  

Determine the best model by actual errors: 

This task consists of finding the model with less cumulative error for each rule. Table 

2 explains cumulative calculation of the actual errors erri,j for each training input 

vector i in {1 ... n} and prediction model j in {1… k}.  

After all train inputs were evaluated, the minimum error accumulator ERj of rule-R, 

for model-j is searched to get the best model for that rule. If some of the rules are 

non-voted, they are marked as obsolete rules, and the global best algorithm is 

specified as the default for these rules. 

Table 2: Selection of the Best Algorithm for each Rule  

MD combination Strongest Fired Rule Model Error Update (1 … k) 

For input 1 Rule A EA1+=err1,1;…  EAk+=err1,k;    

For input 2 Rule B EB1+=err2,1;…  EBk+=err2,k;    

… … … 

For input n Rule A EA1+=err1,1;…  EAk+=err1,k;    

After all inputs trained: 
model-j is best for rule-R  

if ERj =min(ER1, …, ERk). 
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3.3.2 Forecasting of a New Input  

For the given new input vector, the output may not be given at all. In the training of 

Fuzzy Decision Fusion, the output value has been used to get erri,j terms. In the 

forecasting case; (i) the predicted values for each model shall be calculated, (ii) 

estimated prediction errors eemx shall be fuzzified to get membership degrees of 

each variable of eemx, (iii) the maximum MD of each variable shall be combined to 

get the rule number which points the best model, (iv) among the cumulative model 

errors the minimum one shall indicate the model to be selected by fuzzy decision 

fusion as the finalized decision.  

3.4 Concluding Remarks 

This chapter has completed the description of the components which take part in the 

proposed method. The next chapter will focus on a step by step case study of our 

method on S&P 500 data. And the result will be compared to the individual 

prediction model that took part in the fuzzy fusion. 
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4. Chapter 4 

4 COMPUTATIONAL RESULTS 

4.1 Data Set and Code Development Environment 

For the demonstration of the proposed Fuzzy Decision Fusion method, we used 10 

years of historical data set of the Standard & Poor's 500 Index (November 2009 to 

November 2019). S&P 500 index is a market-capitalization-weighted index of 

the 500 largest U.S. publicly traded companies. Data contain 6 columns that describe 

the market behaviour (open price, highest price, lowest price, close price, and the 

volume). S&P500 index is accessible on the website of finance.yahoo.com. Data 

contain missing values for weekends and holidays, which can affect the forecast 

accuracy [20]. Therefore, data pre-processing will consist of filling missing data via 

interpolation. 

All codes in this thesis were developed in the RStudio environment using R language 

[34], [35]. The code heavily depends on the libraries: keras, tensorflow, ggplot2, 

quantmod, tseries, timeSeries, forecast, xts, CombMSC, scales, e1071, httr, 

miceadds, lfl, fdm2id, frbs, Metrics, and DMwR. 

4.2 Data Pre-processing 

Table 3 shows the first 6 lines of raw data where we notice the absence of values on 

weekend days since the market is off. 
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Table 3: Sample of Raw S&P 500 Data Set 

Days Open High Low Close Volume 

2009-11-11 1096.04 1105.37 1093.81 10985.51 4286700000 
2009-11-12 1098.31 1101.97 1093.48 1093.48 4160250000 
2009-11-13 1087.59 1097.79 1093.48 1093.48 3792610000 
2009-11-16 1094.13 1113.69 1094.13 1109.30 4565850000 
2009-11-17 1110.52 1110.52 1102.19 1110.32 3824070000 

   

The linear interpolation is one of the most commonly used methods for solving 

missing data. It proceeds by taking the weighted average of the before missing data 

and the after missing data. After using linear interpolation, we obtained data 

including weekend days as it is in Table 4.  

Table 4: Data after Filling the Missing Values  

Days Close Volume 

2009-11-11    1098.510 4286700000 

2009-11-12    1087.240 4160250000 

2009-11-13    1093.480 3792610000 

2009-11-14    1098.753 4050356667 

2009-11-15    1104.027 4308103333 

2009-11-16    1109.300 4565850000 

2009-11-17    1110.320 3824070000 

   

For better insight, the training set was plotted in quarter sections. We can notice from 

the plot in Figure 6, that there is an additive upward trend pattern without outliers nor 

a sudden shift in the time series data which indicate a non-stationary data set this can 

also be checked with the Augmented Dickey-Fuller (ADF) test. 
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Figure 6: S&P 500 Daily Close Price Plot 

4.3 Forecasting Models.  

Four well-known prediction models were used, and after prediction by each model, 

all decisions were fused by a fuzzy rule base that determined the best models for 

each fuzzy region of the predicted error space. 75% of our data were used as training 

and 25% for testing. 

4.3.1 Test for Stationary Property of Data  

The ADF test is a statistic test for testing the null hypothesis that a unit root is 

present in the time series at some level of confidence such as because of random 

walk character. 

ADF returns the P-Value of the data set. When this value is less than 5% null 

hypothesis of being stationary can be rejected. As seen in Figure 7 ADF applied on 

SP500 data returned P-value = 17%, which means that data set is not stationary. 
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adf.test(trainData) 
##  Augmented Dickey-Fuller Test 
##  
## data:  trainData 
## Dickey-Fuller = -2.9523, Lag order = 14, p-value = 0.1752 
## alternative hypothesis: stationary 
 

Figure 7: Code output of the ADF test for S&P 500 data set 

4.3.2 ARIMA Model 

The auto_arima function requires optimal structural parameters (p, d, q). We tested 

ARIMA (2, 1, 2) which means AR and MA orders are 2, and stationarity assumption 

is verified by first differentiation.  

Figure 8 shows the training (blue) and fitted ARIMA forecast values (red) while 

Figure 9 displays the residual from ARIMA forecast. 

 

Figure 8: ARIMA Fitted Values Plot and Observed Values Plot  
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Residual Analysis 

Residual is used to evaluate the appropriateness of a model which is generally done 

by observing the residual graph. In statistic there are some assumptions on residual 

such as: the residual variance should be constant, its variables should be independent, 

and the residual has to be normality of the distribution. These assumptions hold when 

the residual is randomly distributed around zero. 

 

ARIMA Residual Plot  

From the residual graph in Figure 9, we observe that the ARIMA residual follows a 

normal distribution, that is, it has a mean of zero and variance is uniform. This shows 

that, there is no repeating pattern left in the residual.  

 

Figure 9: ARIMA Residual Plot 
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4.3.3 SVR Model 

Radial Basis Function (RBF) was used as a kernel. RBF is a real-value function that 

maps each input from its domain to a real value. This value depends on the distance 

between the input and some fixed point that can be the origin ( ( )   (|| ||) or a 

center c ( ( )   (||   ||). 

SVR prediction performance can be visualized in Figure 10 and Figure 11 where we 

can visualize the fitted and residuals plot respectively. 

 

Figure 10: SVR Plot for Fitted and Observed Values 

 
Figure 11:  SVR Residual Plot 
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4.3.4 Double Exponential Smoothing 

The error trend seasonality (ETS) model was used to identify the type of exponential 

smoothing function to use and its appropriate parameters (α, K, γ).  The R code for 

tuning ETS parameters is given in Figure 12. 

ets_model<-ets(ts(trainData$GSPC.Close),  

 model = "AAN",alpha = NULL,gamma = NULL,lambda = NULL,beta = NULL) 

etsF<-forecast(ets_model,h=n) 

exp_forecast<-(ets_model$fitted) #forescast on train 

summary(ets_model) 

 
Figure 12: R Code for EXP prediction model 

 

The output of the ETS model summary is given in Figure 13. It indicates the use of a 

double exponential smoothing with the additive trend with parameters: alpha = 0.998 

and beta = 1e-04. The fitted values of the double exponential smoothing model on 

the training data can be visualized in Figure 14. Additionally, the residual plot in 

Figure 15 implies that there is no useful information left. 

 

ETS(A,A,N)  
## Call: 
##  ets(y = ts(trainData$GSPC.Close), model = "AAN", alpha = NULL,   
##  Call: 
##      beta = NULL, gamma = NULL, lambda = NULL)  
##   Smoothing parameters: 
##     alpha = 0.998  
##     beta  = 1e-04  
##   Initial states: 
##     l = 1081.4624  
##     b = 0.5072  
##   sigma:  11.2215 
##      AIC     AICc      BIC  
## 36776.88 36776.90 36806.69  
## Training set error measures: 
##                        ME     RMSE      MAE          MPE      MAPE      MASE 
## Training set -0.003391882 11.21368 7.160736 -0.004591073 0.4475896 0.9986955 
##                    ACF1 
## Training set 0.03131204 

Figure 13: ETS Model Summary Output for EXP Model 
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Figure 14:  Graph of Exponential Smoothing Forecasted and Observed Values 

 

 

Figure 15: Exponential Smoothing Residual Plot 

 

4.3.5 LSTM Model 

LSTM model was build using the python open-source neural-network library called 

keras. It permits rapid experimentation with deep neural networks. It is modular, 

user-friendly, and extensible.  
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Data processing for LSTM: 

To enable LSTM learning, the data must be divided into multiple input/output 

patterns. In this case one-time step was used as input (k) and one-time step was used 

as output. In other words we put our data in 2 dimensions (x-k and x) as shown in 

Table5. 

     Table 5: Two Dimensional Representations of the Data for LSTM Learning 

Index x-1 X 

1 0.000000   2.670044 

2 2.670044   7.926636 

3 7.926636   7.926636 

4 7.926636   7.926636 

5 7.926636  -0.069946 

6 -0.069946                                                 5.500000 

  

Data is reshaped to have another dimension as required by keras API so that it has 

dimensions for samples, time steps, and features.  

In the demonstration, a vanilla LSTM model is built as a single hidden layer of 

LSTM unit and an output layer for prediction. In the model, the hidden layer contains 

50 LSTM units and produces a single numeric value as output. The model was 

configured with the Adam stochastic gradient descent as an optimizer, and Mean 

Square Error (MSE) as the loss function. The predicted and observed values are 

plotted in Figure 16 and we can notice a close similarity between. 



  

    

37 

 

 
Figure 16: LSTM Predicted and Observed Values 

 

4.4 Fuzzy Decision Fusion 

4.4.1 Preparation of the Training Dataset  

Once the prediction models Mj,  j = {1 … k} forecast the next day value yi,j for an 

input xi, we used the predicted values { yi,j | i=1 … n; j=1 … k} as input for the fuzzy 

decision fusion system. Instead of using directly the predicted values as input 

features, we used estimated errors for each model, so that, decisions do not get 

affected by any interference of predicted variables which carries dominant 

information of data set together with the differences in the model prediction. The 

actual output yi is estimated by the mean of all predictions, {yi,j | j=1 … k}, and the 

estimated prediction error vector (eemxi) is used as the feature vector of fuzzy 

decision fusion as shown at Table 6. The plot of all prediction errors for the first 50 

inputs against the observed values is shown in Figure 17.  
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Table 6: The First Six Predicted and Observed Values of each Model 

 
EXP SVM ARIMA LSTM Observed 

1 1081.97 1132.13 1065.563 1069.393 1066.63 

2 1067.166 1131.577 1066.637 1072.063 1069.3 

3 1069.802 1131.03 1069.411 1079.989 1077.227 

4 1077.719 1130.49 1077.601 1087.916 1085.153 

5 1085.646 1129.957 1085.717 1095.843 1093.08 

6 1093.574 1129.43 1093.638 1095.773 1093.01 

 

 

 
Figure 17: Graph of Prediction Errors vs. Observed Values for all Models 

4.4.2 Construct the Estimated Error Vector (eemx) 

The model prediction errors are obtained by subtracting the predicted values from the 

observed values. A sample can be seen in Table 7.   
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Table 7: Samples of Estimated Error Matrix 

 eeESM eeSVR eeARIMA eeLSTM 

1 5.294295 -44.86607 21.700485 17.871294 

2 17.194849 -47.21626 17.72354 12.297866 

3 17.75641 -43.47203 18.146717 7.568901 

4 15.712699 -37.05878 15.830484 5.515594 

5 13.644394 -30.66642 13.574013 3.448014 

  

The prediction performance of each method may be evaluated using the cumulative 

absolute error (CAE), which is computed as the sum of prediction error made for 

each input data. Table 8 lists the training CAE of the four models. LSTM performs 

better than the three others by producing the least CAE values. 

Table 8: Training Cumulative Absolute Prediction Errors by Models EXP, SVR, 

ARIMA, and LSTM 

Models EXP SVR ARIMA LSTM 

Training CAE 20572.79 111203.4 20549.25 9366.128 

  

4.4.3 Setting Membership Functions for Fuzzification 

For the demonstration each input variable is partitioned into 3 Gaussian Membership 

Functions (MF). In Figure 18Figure 18: Membership Function Plot for Each Input 

Variable. It is a 5 by n*k matrix where n is the number of input variables and k the 

number of labels for each variable. The first row of this matrix describes the type of 

MF where 1: Triangle MF, 2: Trapezoid-left-side MF, 3: Trapezoid-right-side MF, 4: 

Trapezoid-middle MF, 5: Gaussian MF, 6: Sigmoid MF, and finally 7: for Bell-

shaped MF. The other rows indicate the corner points to construct the functions.   
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      Table 9: Parameter Matrix for Membership Function 

 
eeESM eeSVR eeARIMA eeLSTM 

 

Low Med. High Low Med. High Low Med. High Low Med. High 

1 5 5 5 5 5 5 5 5 5 5 5 5 

2 -200 0 50 -200 0 50 -200 0 50 -50 0 400 

3 100 20 40 100 20 40 100 20 40 30 10 200 

4 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 
 

 
Figure 18: Membership Function Plot for Each Input Variable 

 

        Table 10: Membership Degree of the First Six Input Data  

 eeESM eeSVR eeARIMA eeLSTM 

 

eE1 eE2 eE3 eS1 eS2 eS3 eA1 eA2 eA3 eL1 eL2 eL3 

1 0.12 0.97 0.54 0.3 0.08 0.06 0.09 0.56 0.78 0.08 0.2 0.16 

2 0.09 0.69 0.71 0.31 0.06 0.05 0.09 0.68 0.72 0.12 0.47 0.15 

3 0.09 0.67 0.72 0.29 0.09 0.07 0.09 0.66 0.73 0.16 0.75 0.15 

4 0.1 0.73 0.69 0.27 0.18 0.09 0.1 0.73 0.69 0.18 0.86 0.14 

5 0.1 0.79 0.66 0.24 0.31 0.13 0.1 0.79 0.66 0.2 0.94 0.14 

6 0.11 0.89 0.6 0.22 0.42 0.16 0.11 0.89 0.6 0.16 0.76 0.15 
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4.4.4 Extract the Membership Degree  

The degree of membership to each label is obtained by applying the membership 

function to a giving input. In other words for each input vector, we compute their 

degree of belonging to each fuzzy set on each input variable. For the complete set of 

training inputs, the matrix of Membership Degree is an N*M matrix in which values 

lied between [0-1] where N is the number of input data and M is equal to the product 

of the number of input variable by the number of label [36]. For the demonstration M 

= 4*3=12 as shown on         Table 10  which lists the MDs of first six training inputs.  

4.4.5 Extract all Fired Rules 

The number of rules is proportional to the input variable and the number of fuzzy set 

for each variable. The demonstration has 4 input variables and 3 membership 

functions and therefore 3 by 3 by 3 by 3 = 81 rules. From these rules those which 

were fired were retained, and from the retained rules, we get the best model of each 

rule searching the model with the lowest error. Table 11 shows the first ten rules, 

among which we observe that rule number 3 was fired, and, for that rule, model-1 

(EXP) worked best. 

Table 11: Cumulative Error Accumulators.  

Rule No. 1 2 3 4 5 6 7 8 9 10 ... 

EE 0 0 0.7 0 0 0 0 0 0 0 ... 

ES 0 0 9 0 0 0 0 0 0 0 ... 

EA 0 0 1.5 0 0 0 0 0 0 0 ... 

EL 0 0 1432.1 0 0 0 0 0 0 0 ... 
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4.4.6 Cumulative Absolute Error of Fuzzy Fusion on Training Data 

The performance of the demonstrated method against each of the conventional 

prediction models was evaluated using the cumulative absolute error (CAE) for 

trainng inputs. As indicated on  

Table 12, the demonstrated decision fusion method outperformed all models for the 

training phase by 14.31 % improvement compared to LSTM which stands out to be 

the best method among the four individual models. 

Table 12: Cumulative Absolute Training Errors  for  Models and FDF  

Models Cumulative Absolute Error 

EXP   20572.8 

SVM  111203.4 

ARIMA    20549.3 

LSTM      9366.1 

Fuzzy Decision Fusion      7934.8 

  

 4.4.7 Training of Fuzzy Decision Fusion Rule Base 

During the model-training, the parameters of the models are determined to get the 

best prediction yi,j for the training input xi by model-j among the models: EXP, SVR, 

ARIMA, and LSTM. Once the training of all models is over, the estimated prediction 

error eexmi,j is computed using the mean of all predictions as an estimate of observed 

output. Fuzzification of eexmi vectors partitions the input variables eexmi,j to expert-

specified labels through the membership degrees MDi,p in expert-specified 

Membership-Functions. The combination of the maximum MD values points the 

strongest fired rule, r. The cumulative absolute error accumulators of rule r is 

updated by Er,j += erri,j ; for all models. 

 



  

    

43 

 

After all training inputs are processed, the minimum accumulated error for rule r 

specifies the best model for that rule, i.e., for rule r model j is best among k models if 

Er,j =min(Er,1 … Er,k). 

4.4.8 Processing of New Inputs and Test Data Set 

Once at the training phase the parameters of prediction models were trained, it also 

determines the best model for each rule in the fuzzy rules of the fuzzy decision 

fusion procedure. 

 

The first step of the process for a new input data xi is to predict target output from the 

four models: EXP, SVR, ARIMA, and LSTM using the trained parameters. Next, the 

estimated prediction error eemxi,j by each model-j,  is computed using the mean of all 

predictions as an estimate of observed output, even if the observed output values for 

a new input is missing. The fuzzy decision fusion is carried out by the fuzzification 

step of eemx to obtain the strongest fired rule corresponding to the input data. After 

normalizing MD vectors for each input value, the normalized MD is used in finding 

the strongest fired rule. The absolute errors accumulated at the training phase for 

each model of the fired rule selects the best prediction model for that input as the 

finalized decision of the fuzzy decision fusion procedure. This process is repeated 

until all training input data set are processed. 

 

For the test data set, the mean absolute error is computed for each model 

individually, and for the fuzzy decision fusion selected final predictions. The results 

of these calculations are listed in Appendix E. 
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Table 13  contains Membership Degrees of the expected errors for the first three test 

data. The mean absolute error of all fired rules is available in Appendix E in which a 

rule with zero cumulative absolute errors for all models represent a non-fired rules. 

During the learning process of fuzzy decision fusion, each time a rule is fired, it 

increments the rulecount counter of fired rule. Rulecounts of the rules are used to 

compute the mean absolute error for each model for each rule at the end of the 

process. Appendix E also shows the rule count of each fired rule during the training 

process.  

Table 13: Membership Degrees of the First Three Test eexm Values. 

 eeESM eeSVR eeARIMA eeLSTM 

 eE1 eE2 eE3 eS1 eS2 eS3 eA1 eA2 eA3 eL1 eL2 eL3 

1 0.1 0.6 0.27 0.105 0.841 0.054 0.107 0.787 0.106 0.11 0.686 0.203 

2 0.1 0.6 0.275 0.105 0.84 0.055 0.111 0.789 0.1 0.112 0.685 0.204 

3 0.1 0.6 0.273 0.104 0.839 0.056 0.112 0.789 0.099 0.112 0.683 0.205 

 

Table 14: Cumulative Absolute  Error Performance of Each Model on Test Data  
Models: EXP SVM ARIMA LSTM Fuzzy Dec. Fusion 

CAE: 14841.033 839040.988 14783.931 15003.846 14764.844 
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Table 15: Head and Tail of Predictions by all models and FDF 

 

ESM SVR ARIMA LSTM Fuzzy Dec. Fusion 

1 2502.7 2492.8 2500.2 2504.2 2504.2 

2 2503.0 2493.1 2502.7 2505.4 2505.4 

3 2504.2 2493.4 2503.9 2506.6 2506.6 

4 2507.0 2493.7 2506.8 2509.4 2509.4 

5 2508.6 2493.9 2508.4 2511.0 2511.0 

 

ESM SVR ARIMA LSTM Fuzzy Dec. Fusion 

953 2851.0 1406.6 2854.0 2853.4 2854.0 

954 2864.9 1406.6 2865.0 2867.3 2865.0 

955 2878.8 1406.6 2876.7 2881.2 2876.7 

956 2863.8 1406.7 2860.4 2866.2 2860.4 

957 2939.7 1406.7 2940.1 2942.3 2940.1 

 

Cumulative Absolute Error for Fuzzy Decision Fusion on Test Set 

In Table 14  we observed a slight improvement of decision fusion of 0.19% 

compared to LSTM which stands out to be the best method among the four models. 

A sample of the predicted values is seen in Table 15 which lists the head and tail of 

the overall output prediction respectively. 

4.5 Concluding Remarks 

The results of demonstration on S&P 500 time-series data set indicate the successful 

contribution of fuzzy decision fusion by source selection by decreasing the 

cumulative absolute test error as well as the cumulative absolute training error. It is 

noticeable that the success of the method depends on the expert-opinion based 

selection of proper membership functions for the labels of input variables. Also, the 

fusion of the predicted decisions requires training and evaluation of prediction 

models, which requires considerable execution time. For the demonstrated data, an i7 

processor with 8 GB main memory running at 2.8 GHz clock takes almost 20 

minutes for training, and about 20 seconds for the test data set.  
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Chapter 5 

5 CONCLUSION 

Forecasting stock prices is very challenging and demands a reliable or accurate 

predictive model. This thesis demonstrated an approach of finalizing the selection of 

the best performing forecast among multiple well-known predictive models to reduce 

cumulative forecasting error. The idea is demonstrated on S&P 500 index using the 

prediction models: ARIMA, Double Exponential Smoothing, SVR, and LSTM. 

Fuzzy decision fusion combined the decisions of these models.  

 

The demonstration shows that although all four prediction techniques forecasted the 

target in the best way for their limitations, LSTM outperformed the other three 

models in mean absolute training errors. Still, each model has its local hyperspaces 

where they work better than the others. This condition is observed in the Cumulative 

Error Accumulators of the rules. The Fuzzy Decision Fusion algorithm applied on 

the demonstration is expected to extract the best model for each fuzzy region. In the 

run, rule-3 and rule-51 had a local best model, EXP, while all other rules pointed the 

LSTM as the best. As a result of these local differences, which are successfully 

detected by FDF, the selected models by FDF outperformed the individual 

cumulative performances of all models both in training and in testing evaluations.   

  

The fuzzy decision fusion method requires higher computational cost for training and 

forecasting procedures, but the extra time is not linearly dependent on the number of 
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models. The training and the forecasting period of EXP, SVR, and ARIMA take 

almost one-tenth of LSTM, the best performing conventional model. As a result, the 

0.2% reduction in test-CAE costs only about 20% extra computational time. For the 

S&P 500 data set with total 3600 data points, the R code takes almost 20 minutes on 

an i7 processor with 8GB RAM, even while the source runs on a USB2 connected 

flash disk. Note that reduction of CAE depends on many factors, and may vary from 

one data set to another. 

The proposed fuzzy decision fusion method has the advantage of combining methods 

of different natures (statistic, deep learning, or Machine Learning methods) and can 

be extended to other types of data. However, it presents some deficits. First of all, 

selecting the set of models to fuse is nontrivial.  Next, no optimization method or tool 

is available to determine expert-proposed MF of input variable labels for an 

application. The third deficit is the increased computational complexity as discussed 

in the previous paragraph while explaining the computational complexity of the 

method. 

 

 

Future Work  

As a perspective and possible future work, the Fuzzy Decision Fusion idea may be 

applied on a panel or cross-sectional time series analysis to improve the accuracy of 

The  most  critical  part  of  the  proposed  method  is  the  expert-opinion  based  MF

settings. Without proper settings, the method cannot distinguish local best regions of

the  prediction  models.  In  this  respect,  the  proposed  model  is  more  art  than  a

straightforward applicable tool for time series forecasting problems.
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predictions by including other critical data sources on the related financial sectors 

and even political actions at some extent for a successful stock market forecasting.  
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Appendix A: Data Retrieval and Split 

This code is a step by step r code used to split our S&P 500 data set into train and 

test data set and later, build our individual model forecast. The fitted values of each 

model during training were bind as features input to the fuzzy Rule-Based model. 

The code starts by importing the necessary library files. 

library(keras) 
library(tensorflow) 
library(ggplot2) 
library(quantmod) 
library(tseries) 
library(timeSeries) 
library(forecast) 
library(xts) 
library(CombMSC) 
library(scales) 
library(e1071) 
library(httr) 
library(miceadds)  # to load .Rdata  
library(lfl) 
library(fdm2id) 
library(frbs) 
library(Metrics) 
library(DMwR) 
rm(list = ls()) 
start_date <- as.Date("2009-11-05") 
end_date <- Sys.Date() - 1 
Sys.setenv(TZ = "GMT") 
# if the file don't exixt then downloaf and save else just load it 
if (!file.exists("GSPC.Data")) { 
    re <- getSymbols.yahoo("^GSPC", env = parent.frame(),  
    from = start_date, to = Sys.Date(),  
    index.class = "Date", periodicity = "daily",  
    return.class = "xts",  
        auto.assign = "FALSE", frequency = 7) 
    save(list = "re", file = "GSPC.Data") 
} 
load.Rdata("GSPC.Data", "spy") 
myData = spy[, 1:6] 
# removes tryCatch result 
indexClass(myData) <- "POSIXlt" 
# indexClass(myData) 
tzone(myData) <- Sys.timezone() 
allIndex <- index(myData) 
print(as.data.frame(myData[1:20, ])) 
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Appendix B: Filling the Missing Values 

This part of the code fills the missing data at weekend and holidays by merging 

missing days using linear interpolation function. It also splits data into train and 

testing partitions. 

 
tt <- seq(from = min(index(myData)), to = max(index(myData)), by = 
"day") 
newData <- merge(myData, fill = "NA", tt) 
## Warning in merge.xts(myData, fill = "NA", tt): NAs introduced by 
coercion 
newData[, 5] <- na.approx(newData[, 5]) 
newData[, 4] <- na.approx(newData[, 4]) 
close_volume <- newData[, 4:5] 
# head(index(myData)) 
print(as.data.frame(close_volume[1:20, ])) 
  

Split the data into train and testing data 

 
N <- nrow(closeD) 
closeD <- ts(close_volume[, 1], frequency = 1) 
# Delimit training range 
smp_siz = floor(0.75 * nrow(closeD))  # index of 75% of the dtaset 
# smp_size= floor(0.75*nrow(volumeD)) # index of 75% of the dtaset 
 
train_data1 <- window(closeD, end = c(smp_siz, 1)) 
 
head(train_data1) 
## Time Series: 
## Start = 1  
## End = 6  
## Frequency = 1  
##      GSPC.Close 
## [1,]   1066.630 
## [2,]   1069.300 
## [3,]   1077.227 
## [4,]   1085.153 
## [5,]   1093.080 
## [6,]   1093.010 
# Delimit testing range 
test_data1 <- window(closeD, start = c((smp_siz + 1), 1)) 
head(test_data1) 
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Appendix C: EXP, SVR, ARIMA, LSTM Modeling 

The following code builds ARIMA, SVR, and Exponential smoothing models on the 

training set. 

n = nrow(ts(train_data)) 
model_auto <- arima(ts(train_data$GSPC.Close), order = c(2, 1, 2)) 
arima_forcast <- forecast(model_auto, h = n)$fitted 
 
regress <- svm(train_data$trainSeq, train_data$GSPC.Close, data = train_data,  
    kernel = "radial", type = "eps-regression", epsilon = 0.13, cost = 2^4)  #svm(x,y,...) 
# prediction on train data 
svm_forecast <- regress$fitted 
n_test = nrow(test_data) 
n <- nrow(train_data) 
ets_model <- ets(ts(train_data$GSPC.Close), model = "AAN", alpha = NULL, gamma = NULL,  
    lambda = NULL, beta = NULL) 
etsF <- forecast(ets_model, h = n) 
exp_forecast <- (ets_model$fitted)  #forescast on train 

 

The following code builds LSTM Model, starting by data preparation, i.e., generating 

lagged dataset in two dimensions (x-1 and x)  

 
diffedData = diff(closeD, differences = 1) 
 
lagData <- function(x, k = 1) { 
 
    lagged = c(rep(NA, k), x[1:(length(x) - k)]) 
    DF = as.data.frame(cbind(lagged, x)) 
    colnames(DF) <- c(paste0("x-", k), "x") 
    DF[is.na(DF)] <- 0 
    return(DF) 
} 
superviseData = lagData(diffedData, 1) 
 
Nr = nrow(superviseData) 
nr = round(Nr * 0.75, digits = 0) 
 
train_lstm = superviseData [1:n, ] 
test_lstm = superviseData [(nr + 1):N, ] 
scale_data = function(trainData, test,  
  feature_range = c(0, 1)) { 
    x =trainData 
    fr_min = feature_range[1] 
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Appendix D: Data Preparation for Fuzzy Decision Fusion 

The following function (AllModel_test) is called to apply the models on the test set 

and use the output as input for testing the FRBSs. 

AllModel_test = function(etsModel, svmRegressor, arimaModel, dataT) { 
    n_test <- nrow(dataT) 
    # svmF<-predict(svmRegressor, newData=dataT) 
    svm_test <- predict(svmRegressor, dataT[, -2])  #prediction on test data 
     
    arima_test <- Arima(dataT[, -1], model = arimaModel) 
    arima_test <- fitted(arima_test) 
    etsF1 <- ets(dataT[, -1], model = ets_model)  #fit test data values 
    ets_test <- etsF1$fitted 
    arimaF <- as.data.frame(arima_test) 
     
    # lstm foescast on test set 
     
    L = length(x_test) 
    scaler = Scaled$scaler 
    Lstm_Test = numeric(L) 
    N = nrow(supervised) 
    n = round(N * 0.75, digits = 0) 
    for (i in 1:L) { 
        X = x_test[i] 
        dim(X) = c(1, 1, 1) 
        yhat = model %>% predict(X, batch_size = batch_size) 
        # invert scaling 
        yhat = invert_scaling(yhat, scaler, c(-1, 1)) 
        # invert differencing 
        yhat = yhat + closeD[n + i] 
        # store 
        Lstm_Test[i] <- yhat 
    } 
    combineF <- data.frame(cbind(volumeTest, ets_test, svm_test, arima_test,  
        Lstm_Test, dataT[, -1])) 
    colnames(combineF) <- c("Volume", "ETS_pred", "SVM_pred", "ARIMA_pred",  
        "LSTM_ped", "Test_Data") 
    return(combineF) 
} 
n_test <- nrow(train_data) 
finalTestData1 <- data.frame(cbind(volumeTrain, exp_forecast, svm_forecast,  
    arima_forcast, lstm_forecast, train_data[, -1])) 
 
colnames(finalTestData1) <- c("Volume", "ETS_pred", "SVM_pred",  
     "ARIMA_pred", "LSTM_ped", "Train_Data") 
 
finalTrainData <- scale(finalTestData1) 
print(as.data.frame(round(finalTrainData[1:10, ], 3))) 
 
finalTestData1 <- AllModel_test(ets_model, regress, model_auto, test_data). 
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finalTestData <- scale(finalTestData1) 
 
 
Saving an R data frame as a .csv file as to be used next time instead of running all the 

models code again. 

write.csv(FinalTrainData1, "FrbsTrain.csv") 
write.csv(finalTestData1, "FrbsTest.csv") 
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Appendix E:  Fuzzy Decision Fusion for Time Series 

This code follows the frameworks described in Figure 8. 

## expected value estimate of CLO 
trn.epPL= (trn.d[,1]+trn.d[,2]+trn.d[,3]+trn.d[,4])/4 
#error matrix 
trn.emx=matrix(c( 
trn.d[,5] -trn.d[,1], 
trn.d[,5] -trn.d[,2], 
trn.d[,5] -trn.d[,3], 
trn.d[,5] -trn.d[,4] 
),ncol=4, byrow=FALSE ) 
colnames(trn.emx)=c("eESM","eSVR","eARIMA","eLSTM") 
#estimated error matrix 
trn.eemx=matrix(c( 
trn.epPL - trn.d[,1], 
trn.epPL - trn.d[,2], 
trn.epPL - trn.d[,3], 
trn.epPL - trn.d[,4]),ncol=4, byrow=FALSE ) 
colnames(trn.eemx)=c("eeESM","eeSVR","eeARIMA","eeLSTM") 
 
{ 
  plot(trn.d$CLO[1:50],trn.eemx[1:50,1], 
    pch=20, ylab='ees and eep') 
  points(trn.d[1:500,5], trn.eemx[1:500,2], pch=21) 
  points(trn.d[1:500,5], trn.eemx[1:500,3], pch=22) 
  points(trn.d[1:500,5], trn.eemx[1:500,4], pch=23) 
  legend("topright", 
    legend=c("ESM","SVR","ARIMA","LSTM"), 
    pch=c(20,21,22,23)) 
} 
 
options(width=120) 
trn.eMD = fuzzifier( 
trn.eemx, 
trn.num.ivar, 
trn.num.labels, 
 trn.eMF ) 
 
colnames(trn.eMD)=c( 
  "eE1","eE2","eE3", 
  "eS1","eS2","eS3", 
  "eA1","eA2","eA3", 
  "eL1","eL2","eL3" ) 
# we need number of input variables, use trn.num.ivar 
trn.eMDN=trn.eMD # start with copy of MD 
for (i in 1:nrow(trn.eemx)){ # for each training vector 
   for (k in 1:trn.num.ivar) { # for each input variable 
      # ik is the start index of sum 
      ik=sum(trn.num.labels[1:k])-trn.num.labels[k]+1 
sumik=sum( trn.eMD[i, ik:(ik+trn.num.labels[k]-1)]) 
for (m in ik:(ik+trn.num.labels[k]-1) ){ 
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trn.eMDN[i,m]=trn.eMD[i,m]/sumik} 
# cat('i=',i,' k=',k,' eMDN=',eMDN[i,],"\n") # debug 
} 
} 
head(round(trn.eMDN,2)) 
# a matrix of 6-col x 2-row to count voted algorithms 
trn.num.rules = prod(trn.num.labels) 
trn.rulemaes= 0*matrix( 
   1:(trn.num.rules*(trn.num.ivar)), 
   nrow=trn.num.ivar) 
trn.rulecount=0*matrix( 1:trn.num.rules, nrow=1) 
trn.rulenr = 0*trn.d[,-5][,1] 
for (i in 1:nrow(trn.eemx)) { # for each training vector 
  # i=3 
  trn.rulenr[i] = 0 
  # find the most strongly fired rule using shortcut 
  # by the largest normalized MD for each variable. 
  for (k in 1:trn.num.ivar) { # for each variable 
    # k=1; k=2 
    # start index of eMDN for that variable 
    ik = sum(trn.num.labels[1:k]) - trn.num.labels[k] + 1 
    # index of highest in the labels of k th var 
    ikmax1 = which.max( 
      trn.eMDN[i, ik:(ik + trn.num.labels[k] - 1)]) 
    # there are evi.label.num[1]*..*evi.label.num[kmax] 
    # rules. Positional weight of k th variable is 
    pw1 = prod(trn.num.labels[k:trn.num.ivar] 
               ) / trn.num.labels[k] 
    trn.rulenr[i] = trn.rulenr[i] +  
        pw1 * (ikmax1 - 1) # iterative terms 
  } 
  trn.rulenr[i]=trn.rulenr[i]+1 # last term. 
  trn.rulemaes[,trn.rulenr[i]] = 
    trn.rulemaes[,trn.rulenr[i]]+ abs(trn.emx[i,]) 
  trn.rulecount[trn.rulenr[i]] = 
    trn.rulecount[trn.rulenr[i]] + 1 
} 
for (r in 1:length(trn.rulemaes[1, ])) { 
  # i=1 i=2 
  for (k in 1:trn.num.ivar) 
    if (trn.rulemaes[k, r] > 0) { 
      trn.rulemaes[k, r] = round(trn.rulemaes[k, r] / 
                                 trn.rulecount[r], 1)} 
} 
options(width = 100) 
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         round(tst.rulemaes[k,r] 
              /tst.rulecount[r],3)} 
} 
options(width = 100) 
tst.rulemaes 
##      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17] 
## [1,]    0    0    0    0    0    0    0    0    0     0     0     0     0     0     0     0     0 
## [2,]    0    0    0    0    0    0    0    0    0     0     0     0     0     0     0     0     0 
## [3,]    0    0    0    0    0    0    0    0    0     0     0     0     0     0     0     0     0 
## [4,]    0    0    0    0    0    0    0    0    0     0     0     0     0     0     0     0     0 
##      [,18]   [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26] [,27] [,28] [,29] [,30] [,31] [,32] 
## [1,]     0  16.431     0     0     0     0     0     0     0     0     0     0     0     0     0 
## [2,]     0 947.531     0     0     0     0     0     0     0     0     0     0     0     0     0 
## [3,]     0  16.354     0     0     0     0     0     0     0     0     0     0     0     0     0 
## [4,]     0  16.597     0     0     0     0     0     0     0     0     0     0     0     0     0 
##      [,33] [,34] [,35] [,36] [,37] [,38] [,39] [,40]  [,41] [,42] [,43] [,44] [,45] [,46] [,47] 
## [1,]     0     0     0     0     0     0     0     0  3.360     0     0     0     0     0     0 
## [2,]     0     0     0     0     0     0     0     0 32.036     0     0     0     0     0     0 
## [3,]     0     0     0     0     0     0     0     0  3.544     0     0     0     0     0     0 
## [4,]     0     0     0     0     0     0     0     0  3.158     0     0     0     0     0     0 
##      [,48]   [,49]  [,50]  [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58] [,59] [,60] [,61] [,62] 
## [1,]     0  13.691  1.367  5.068     0     0     0     0     0     0     0     0     0     0     0 
## [2,]     0 142.259 60.308 84.127     0     0     0     0     0     0     0     0     0     0     0 
## [3,]     0  13.910  1.913  5.141     0     0     0     0     0     0     0     0     0     0     0 
## [4,]     0  13.255  1.042  5.700     0     0     0     0     0     0     0     0     0     0     0 
##      [,63] [,64] [,65] [,66] [,67] [,68] [,69] [,70] [,71] [,72] [,73] [,74] [,75] [,76] [,77] 
## [1,]     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
## [2,]     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
## [3,]     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
## [4,]     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
##      [,78] [,79] [,80] [,81] 
## [1,]     0     0     0     0 
## [2,]     0     0     0     0 
## [3,]     0     0     0     0 
## [4,]     0     0     0     0 
 
tst.rulecount 
##      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17] 
## [1,]    0    0    0    0    0    0    0    0    0     0     0     0     0     0     0     0     0 
##      [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26] [,27] [,28] [,29] [,30] [,31] [,32] 
## [1,]     0   880     0     0     0     0     0     0     0     0     0     0     0     0     0 
##      [,33] [,34] [,35] [,36] [,37] [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] 
## [1,]     0     0     0     0     0     0     0     0    31     0     0     0     0     0     0 
##      [,48] [,49] [,50] [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58] [,59] [,60] [,61] [,62] 
## [1,]     0     5     1    41     0     0     0     0     0     0     0     0     0     0     0 
##      [,63] [,64] [,65] [,66] [,67] [,68] [,69] [,70] [,71] [,72] [,73] [,74] [,75] [,76] [,77] 
## [1,]     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
##      [,78] [,79] [,80] [,81] 
## [1,]     0     0     0     0 
options(width = 80) 
 


