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ABSTRACT  

It is well known that Pascal‟s triangle represents the binomial coefficients in 

binomial expansion. These numbers can also be interpreted as the numbers of 

(shortest) paths from the given position to top element of the triangle allowed to use 

two types of steps in these paths (left-up and right-up steps). The binomial 

coefficients show, in fact, the number of shortest paths in the square grid if only grid 

paths, i.e., paths on the grid lines (paths with cityblock distance), are allowed, and 

they also give the number of shortest paths in the hexagonal grid. When diagonal 

steps are also allowed in the square grid (paths with chessboard distance), the 

number of shortest paths can be described by trinomial coefficients. They can be 

obtained also in a triangle form by summing up three neighbour elements in the 

previous row. We consider also further generalisations of such triangles and their 

elements, quadrinomial and n-nomial coefficients. In this context, n-nomial 

coefficients of n-nomial expansions represent the numbers of paths from the position 

of the coefficient up to the top element of the triangle allowed to use n different types 

of steps, such that for trinomial coefficients, we use three types of steps, and 

quadrinomial coefficients we use four types of steps. We also present formulae to 

calculate trinomial, quadrinomial and n-nomial coefficients based on trinomial, 

quadrinomial and n-nomial expansions, where the power of the sum of more than 

two items is computed, respectively. Multinomial expansions are also related. We 

give also a comparison of those values known as various ways of generalisations of 

the binomial coefficients.  



iv 

 

The number of shortest paths between any point pairs of the square grid, based on 

weighted distances, is computed. We use an 8-adjacency square grid, that is, a first 

weight is associated to the horizontal and vertical movements, while a second weight 

(not necessarily different from the first) is assigned to the diagonal steps. The 

chamfer distance of two points depends on the numbers and weights of the steps in a 

„shortest path‟. In special cases, as we have already mentioned, the cityblock and the 

chessboard distances, the two most basic and widely used digital distances of the 

two-dimensional digital space occur. Although our combinatorial result is theoretical, 

it is closely connected to applications, such as communication networks, path 

counting in digital images, traces and trajectories in 2D digital grids. We consider all 

the seven cases with non-negative weights and also the case when negative weights 

are allowed. 

Also, we will discuss the number of weighted shortest paths between any two pixels 

in the triangular grid, where the number of shortest paths depend on the values of α, 

β and γ weights. In the triangular grid for each pixel, we have three types of 

neighbourhood:1
st
, 2

nd
  and 3

rd
 neighbourhood, where we assign a weight for each 

neighbourhood type, and according to these weights, we use Chamfer distance to 

define these shortest paths, and we use combinations of absolute differences between 

pixels to define number of these paths. 

Keywords: Binomial Coefficients; Trinomial Coefficients; Quadrinomial 

Coefficients; n-nomial Coefficients; Multinomial Coefficients; Trajectories; 

Weighted Distances; Digital Distances; Combinatorics; Triangular Grid, 

Neighbourhood Types, Chamfer Distance; Shortest Weighted Paths; Path Counting.  
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  ÖZ  

Pascal üçgeninin binom açılımındaki binom katsayılarını temsil ettiği iyi 

bilinmektedir. Bu sayılar, aynı zamanda, bu konumlarda iki tür adım (sol-yukarı ve 

sağ-yukarı adımlar) kullanılmasına izin verilen, verilen konumdan üçgenin üst 

elemanına kadar (en kısa) yolların sayısı olarak da yorumlanabilir. Binom katsayıları, 

aslında sadece ızgara yollarının, yani ızgara çizgilerindeki yollara (şehir bloğu 

uzaklığına sahip yollar) izin verilirse, kare ızgaradaki en kısa yolların sayısını 

gösterir ve ayrıca altıgen ızgaradaki en kısa yolların sayısını verir. Kare ızgarada 

(satranç tahtası uzaklıklı yollar) köşegen adımlara da izin verildiğinde, en kısa 

yolların sayısı üçlü katsayılarla tanımlana bilir. Bir önceki satırda üç komşu elemanı 

toplayarak üçgen şeklinde de elde edilebilirler. 

Bu tür üçgenlerin ve elemanlarının, kuadrinomiyal ve n-nominal katsayıların daha 

fazla genelleştirilmesini de düşünüyoruz.  

Bu bağlamda, n-nomal açılımların n-nomal katsayıları, katsayı pozisyonundan 

üçgenin üst elemanına kadar n farklı tipte adım kullanılmasına izin verilen yolların 

sayısını temsil eder, böylece üçlü katsayılar için üç adım türleri ve dört adım 

katsayısı dört tür adım kullanırız. 

Ayrıca, ikiden fazla öğenin toplamının kuvvetinin hesaplandığı üçlü, dörtlü ve n-

nomiyal açılımlara dayanan üçlü, dörtlü ve n-nomal katsayıları hesaplamak için 

formüller sunuyoruz. Çok terimli açılımlar da ilişkilidir. Ayrıca binom katsayılarının 

çeşitli genelleme yöntemleri olarak bilinen değerlerin bir karşılaştırmasını da 

veriyoruz. 
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Ağırlıklı mesafelere göre kare ızgaranın herhangi bir nokta çifti arasındaki en kısa 

yolların sayısı hesaplanır. 8-komşu kare ızgara kullanıyoruz, yani bir ilk ağırlık yatay 

ve dikey hareketlerle ilişkiliyken, ikinci bir ağırlık (birinciden farklı olması 

gerekmez) köşegen adımlara atanmıştır. 

İki noktanın chamfer uzaklığı, 'en kısa yoldaki' adımların sayılarına ve ağırlıklarına 

bağlıdır. Özel durumlarda, daha önce de belirttiğimiz gibi, şehir bloğu ve satranç 

tahtası mesafeleri, iki boyutlu dijital alanın en temel ve yaygın olarak kullanılan iki 

dijital mesafesi meydana gelir.  

Kombinatorik sonucumuz teorik olmasına rağmen, iletişim ağları, dijital 

görüntülerde yol sayma, 2D dijital ızgaralardaki izler ve yörüngeler gibi 

uygulamalarla yakından bağlantılıdır. Negatif olmayan ağırlıkları olan yedi durumu 

ve negatif ağırlığa izin verilen durumu da ele alıyoruz. 

Ayrıca, α, β ve  γ ağırlıklarının değerlerine bağlı olarak en kısa yol sayısının olduğu 

üçgen ızgaradaki herhangi iki piksel arasındaki ağırlıklı en kısa yolların sayısını 

tartışacağız. Her piksel için üçgen ızgarada, üç tip komsuluk var: her komsuluk tipi 

için bir ağırlık atadığımız 1., 2. ve 3. komsuluk ve bu ağırlıklara göre, bu en kısa 

yolları tanımlamak için Chamfer mesafesini kullanıyoruz ve biz bu yolların sayısını 

tanımlamak için pikseller arasındaki mutlak farklılıkların kombinasyonlarını 

kullandık. 

Anahtar Kelimeler: Binom Katsayıları; Trinomiyal Katsayılar; Dörtlü Katsayıları; 

n-nominal Katsayıları; Çok Terimli Katsayılar; Yörüngeleri; Ağırlıklı Mesafeler; 
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Dijital Mesafeler; Bir Kombinasyon; Üçgen Izgara, Komşuluk Tipleri, Chamfer 

Mesafesi; En Kısa Ağırlıklı Yollar; Yol Sayımı. 
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Chapter 1 

INTRODUCTION 

On the first hand, Pascal‟s triangle is one of the most famous patterns of numbers in 

mathematics. One of the well-known applications of the Pascal‟s triangle is to find 

and represent the binomial coefficients for binomial expansion. On one hand, 

trinomial coefficients for expansion in the form of n-th power of           and 

         were discussed in [1, 2], moreover their q-analogues, the q-trinomial 

coefficients were introduced and used in applications related to statistical physics in 

[3]: trinomial coefficients were used to find local densities on lattice gas 

generalization on hexagonal grid. In [4], the triangles of trinomial and quadrinomial 

coefficients were introduced by applying recurrence relations. The sum of terms 

along any rising diagonals in any such array, given by               using 

generalized form of Pascal‟s triangle is presented in [5], consequently trinomial, 

quadrinomial, pentanomial and hexanomial coefficients are studied. Some algebraic 

properties of these coefficients are studied in [6]. On the other hand, general 

multinomial and, specially, trinomial coefficients, the coefficients of the expansions 

of the form         , and their usage were discussed in [7, 8, 9, 10]. Specially, 

Chapter 6 of [8] and some earlier papers of the same authors discuss also Pascal‟s 

tetrahedron.  

On the other hand, in communication networks the transmitters, receivers, etc. can be 

represented by nodes of a graph and their connections, the possible ways of 
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communication, can be shown by the edges. Concepts such as paths, shortest paths 

and distances in these graphs are understood and give some important features of the 

communication network. The number of shortest paths also has importance in 

applications for transmitting messages over networks, since they refer to the width of 

the connection channel between the given points. Any shortest path can be useful and 

used to increase the performance, in this case the amount of information transmitted 

during a unit of time (the width of the network), speeding up communication [11]. 

These networks are usually artificial, meaning that graphs with special properties 

such as the square grid can be considered. In social networks, the various graph 

measures, such as eccentricity, are defined based on the number of some shortest 

paths [12]. In some physical simulations connected to random walks, percolations, 

trajectories and traces [13, 14, 15], it is also important to count the number of 

shortest paths. Several related applications have already been detailed in [16]. Path 

counting in discrete spaces are closely related to graph theory. 

Digital grids and their applications in various fields play important roles in science 

and technology. Digital grids are used in applications such as image processing [17], 

computer graphics, communication networks, crystallography and physical 

simulations. The space, it in this case the considered grid, is discrete, so theoretic 

tools from discrete mathematics, graph theory, combinatorics and, especially, from 

digital geometry can be used. In most cases only coordinates with integer values are 

used to address points (nodes). The square grid (also called rectangular grid) is the 

most usual digital grid, as it is the most frequently applied grid in two dimensions 

(2D). It is essential in image processing, cellular automata and other fields of applied 

information technology as well as 2D physical simulations. In many grids instead of 

the original graph its Voronoi dual is used, that is, instead of the vertices, 



3 

 

pixels/voxels are used. One of the benefits of working on the square grid is that it is 

self-dual: the square grid can be seen by connecting (the midpoints of) neighbour 

pixels to each other, and also by using the original grid, with points where the 

gridlines cross. On the other hand, the honeycomb grid is dual of the triangular grid,  

that is instead of having vertices of the hexagons in the honeycomb (or hexagonal) 

grid, we may use the triangle pixels of the triangular grid keeping both the coordinate 

system and neighborhood structure [18, 19]. 

Opposite to discrete space, Euclidean space is continuous space, and there is no 

neighbour relation. The natural, Euclidean distance has several well-known and 

beneficial properties. However, using Euclidean distance on a discrete space may not 

be the best option. For example, one topological paradox is that the grid points 

having an exact Euclidean distance of seven from the origin do not really form a 

circle in any usual sense; the determined four pixels are not even connected. When 

working with computers, one may prefer digital distances, i.e., distances based on 

paths through neighbour points. In most cases, it is easy to work with these distances 

which have integer values. In a discrete space, shortest paths between any two points 

are computed depending on the grid and on the allowed types of steps of these paths. 

For instance, there is only 1 type of widely used neighborhood on the hexagonal grid. 

There are two popular types of neighborhood relations in the square grid: the 

cityblock and the chessboard neighborhoods [20]. These two neighborhood types are 

shown in Figure 1.1. In the cityblock neighborhood there are four neighbors (left, 

right, up and down) for each point, while in chessboard neighborhood, there are eight 

neighbors for each point: left, right, up, down and four diagonal neighbors. Related 

to the neighborhood relations, there are two types of basic distances between any two 

points of the square grid: cityblock and chessboard distances [21]. The cityblock 
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distance (also called Manhattan distance) can be computed as  

d(p,q) = w1 + w2, while the chessboard distance can be computed as d(p,q) = 

max{w1,w2}, where w1 and w2 are the absolute differences of the first and second 

coordinates of the points p and q, respectively. 

    
Figure 1.1: Cityblock neighborhood of the pixel marked by black point in the center 

(left, neighbors are in grey color). Chessboard neighborhood (right, neighbors are in 

yellow and red color). 

These two digital distances give very rough approximations of the Euclidean 

distance, it was recommended to use them alternating along a path (the obtained 

distance is called octagonal distance). From the end of 1980‟s, extending this idea 

more formally, digital distances based on predefined neighbourhood sequences have 

been introduced and used in which both chessboard and cityblock neighbourhoods 

are combined in a sequence that can be periodic [22, 23, 24] or non-periodic [25]. 

Distances based on neighbourhood sequences on other grids have also been defined, 

see, e.g., [26, 27, 28]. Other digital distances, the weighted distances give another 

way to have distances on a grid with integer values [29]. They are also called 

chamfer distances. A reason to prefer weighted distances versus distances based on 

neighbourhood sequences is that the former ones are always metric, while there are 

plenty of neighbourhood sequences that do not provide metrics [25] (since the 

triangular inequality may fail). 
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In the triangular grid, the triangle pixels (also called trixels) are used as the elements 

of the grid (however, we may also refer them as the `points‟ of the grid). The 

hexagonal and the triangular grids have different symmetries and properties than the 

square grid, they behave in a different way and there are various advantages to apply 

them [30, 31, 32]. There are three types of neighbors widely used on the triangular 

grid [26, 33]. Thus, the triangular grid has the most complex neighborhood structure 

among the three regular two-dimensional grids. Digital distances based on these 

neighborhoods were described in [34], based on neighborhood sequences were 

studied in [19, 26, 35], chamfer distances in triangular grid were investigated in [36, 

37, 38]. Because the three types of neighbors, chamfer distances are based on three 

weights on the triangular grid. Some path counting results were obtained for 

distances based on a given neighborhood in [39] and [40]. 

In the second chapter, we will discuss binomial, trinomial and quadrinomial 

coefficients in term of number of shortest paths, along with a connection between 

trinomial, quadrinomial polynomial coefficients and trinomial, quadrinomial 

multinomial coefficients. In the third chapter, we will study number of shortest paths 

in the square grid using different weights   and   for the cityblock and diagonal 

neighbours. In the fourth chapter, we will introduce number of shortest paths in 

triangular grid using different weights of movements for 1
st
, 2

nd
 and 3

rd
 neighbours.  
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Chapter 2 

POLYNOMIAL AND MULTINOMIAL COEFFICIENTS 

IN TERMS OF NUMBER OF SHORTEST PATHS 

In this part of the thesis, our aim is twofold. First, to make a clear differentiation of 

the two types of widely used generalisations of binomial coefficients, since in the 

literature trinomials, quadrinomials, etc., occur with two different meanings. On the 

other hand, we highlight the differences of the two types of generalisations of the 

binomial coefficients by counting lattice paths and their generalisations: In this 

thesis, we will express binomial and n-nomial coefficients in terms of number of 

shortest paths. 

2.1 Binomial Coefficients as Numbers of Shortest Paths 

The binomial coefficients build up the Pascal‟s triangle, see Figure 2.1. We start to 

write Pascal‟s triangle by writing the number 1 to the top. Then we write a new row 

with the number 1 twice. The remaining numbers in each row are calculated by 

adding the two numbers in the row above which lie above-left and above-right. For 

example, if we want to expand        we select the coefficients from the row of 

the triangle beginning 1,3: these are 1,3,3,1 (see Figure 2.1). We can immediately 

write down the expansion                         . By the well-

known Binomial theorem, the binomial expansion, when   is a positive integer, can 

be expressed as follows:  

       (
 

 
)    (

 

 
)       (

 

 
)          (

 

 
)    
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Alternatively, we may consider the following related expression as well, which also 

highlight the role of binomial coefficients: 

       (
 

 
)    (

 

 
)    (

 

 
)      (

 

 
)    

Now we show a discrete geometric interpretation of the binomial coefficients, they 

can be viewed as the number of shortest paths in the traditional square/rectangular 

grid. We formulate this result as follows. 

1 

1  1 

1  2 1 

1  3 3 1 

1  4 6 4 1 

1  5 10 10 5 1 
Figure 2.1: Pascal‟s triangle with binomial coefficients. 

Theorem 2.1 Let k and j be nonnegative integers such that k ≥ j ≥ 0. Let us consider 

the points O(0,0) and P        of the square grid. The city-block distance of these 

points is k. The number of shortest paths between O and P is ( 
 
)  

  

        
. 

Proof. One can consider the rotated square grid with axes x and y such that the first 

“column” of the Pascal‟s triangle coincides to axis x (growing downward left) and 

the last column of the triangle coincides to axis y. Then, considering the point (x,y) 

with nonnegative integer coordinates, every shortest path has x+y steps and among 

them x is to the direction of the x axis, and y is to the direction of the y axis. The 

order of these steps is arbitrary, and thus, there are (   
 

)  (   
 

) shortest paths. 

Now letting x=j and x + y = k, the statement follows.     ▄ 
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We can give explanation also by Figure 2.1. Each coefficient of this triangle is 

representing the number of shortest paths from the position of the coefficient 

(i.e., point         ) to the top element (i.e., point       ). These paths are 

composed of two types of steps which are left steps and right steps (in addition the 

row position is also changing by 1), where the length of these shortest paths equals to 

k. Thus, the number of left steps in these paths equals to j. Hence the number of right 

steps in the shortest paths equals to      Therefore, the number of different 

arrangements of these left and right steps in the shortest path to        are 

represented by the binomial coefficient ( 
 
)  (  

   
)  

  

        
, where j and k-j are 

the row number and the column number of the coefficient, respectively. 

Example 2.1 The number of shortest grid paths (i.e. cityblock paths) between (0,0) 

and (2,2) is the coefficient of term      in the expansion       . Therefore,     

and j  , then the binomial coefficient equals to 

(
 

 
)  

  

        
    

The digital distance is the number of steps in a shortest path, where a path built up by 

steps to neighbour pixels. The hexagonal grid is also a two-dimensional grid, where, 

using the usual 6-neighbourhood of the pixels, there could be steps in a shortest path 

in at most two directions. Consequently, the following result can be established in a 

very similar manner as Theorem 2.1. 

Theorem 2.2 Binomial coefficients appear as number of the shortest paths in the 

hexagonal grid as it is shown in Figure 2.2. For any hexagon with distance k from 

the origin there are at most two types of steps in a shortest path, and their number is 
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determined by the position of the hexagons. However, the order of the steps is 

arbitrary, and, thus, the binomial coefficients give the number of shortest paths. One 

can observe the Pascal’s triangle six times in the figure starting from the middle 

(hexagon with mark 0). 

 
Figure 2.2: Binomial coefficients in the hexagonal grid in terms of number of 

shortest paths: black numbers show the distance of the given hexagon from the 

origin, i.e., the one marked by 0, red numbers give the number of shortest paths 

between the actual hexagon and the origin.
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2.2 N-nomial Coefficients – Generalising Binomial Coefficients 

As we have already mentioned, in this thesis we consider generalisations of the 

binomial coefficients. Binomial expansion is a sum of two terms raised to power k, 

while n-nomial expansion is a sum of n terms raised to power k. In this thesis, we 

recall two types of n-nomial coefficients and we differentiate them as multinomial 

and polynomial coefficients, depending on the way we generalise the binomial 

expansion. At the first type of extension, the number of variables is increased and the 

dimension of the triangle is increased to 3D (e.g., to have a “pyramid” or a 

tetrahedron), to 4D and, generally to nD. These coefficients will be used in Section 

2.4 to count shortest paths in grids having steps in n independent directions. 

Consequently, number of shortest paths in higher dimensional grids can be given. On 

the other hand, having the other type of generalisation, the coefficients are 

represented by triangle with right or obtuse angle, such that as n increases the 

triangle will be wider, these n-nomial-polynomial coefficients form 2D triangles, and 

thus, these coefficients will represent number of the shortest paths between two 

points in the 2D grid, when, in these paths, steps of n different type are allowed 

based on an extended neighbourhood relation. 

2.3 Multinomial N-nomial Coefficients 

In this type of generalisation, the coefficients of n-nomial expansion  

               
  

are used, where               are different variables. The binomial coefficients 

were represented by equilateral triangle in the two dimensional space (2D), as we 

have shown in Figure 2.1. The n-nomial coefficients, however, can be represented in 

the n dimensional space, i.e. trinomial coefficients are represented as a tetrahedron in 
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the 3D space [8], quadrinomial coefficients are represented as a hypertetrahedron in 

the 4D space, etc. These n-nomial coefficients will be expressed as the number of 

shortest paths in higher dimensional grids in the next subsections. 

2.3.1 Trinomial-Multinomial Coefficients  

Among these multinomial coefficients, the trinomial coefficients can be computed as 

the coefficients of the trinomial expansion on the form:           
 , where 

             are distinct variables. (One may consider similarly the expansion 

         ) These coefficients were shown in the form of the Pascal‟s Pyramid in 

[8]. We show that they can be used to count shortest paths in the cubic grid with the 

closest neighbourhood, i.e., 6-neighbourhood (that is the 3D form of cityblock 

neighbourhood). 

Theorem 2.3 For            , let        . The trinomial coefficient  

             (
 

 
) (

   

 
)  

  

      
 

provides the number of shortest grid paths between point O(0,0,0) and P(r,s,t) in the 

cubic grid.  

Proof. Each shortest path between O and P contains exactly k steps. Moreover, r 

steps are along the first axis, s steps along the second axis and t steps along the third 

axis. The number of steps in the different directions are fixed by the points, however 

the order of the steps is arbitrary, thus there is exactly             ways to order 

these steps, and each of these orderings is describing a shortest path in a bijective 

way. Hence the theorem.         ▄ 
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Consequently, these coefficients can be represented in a cube in the 3D space as it is 

shown on Figure 2.3, where k is the distance from the position of point 0 (top back), 

r, s and t are the numbers of the steps needed along the gridlines of the three 

directions of the axis, respectively. We may call such cube as Pascal‟s cube. 

All points which have the same distance from the position of point 0 (all points with 

the same value of k) can be represented in an equilateral triangle as shown in 

Figure 2.4. The coefficients of any such triangle of the Pascal cube represent the 

number of shortest paths between the position of point 0 and position of any 

coefficient on the k
th

 triangle. 

  
Figure 2.3: Pascal‟s cube representation of trinomial coefficients, where black 

numbers represent the discrete (step based) distance between the given point and 

point 0, and red numbers represent the number of shortest paths between the given 

points. 
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Figure 2.4: Points which have distance 3 from the position of point 0 form a triangle 

mesh in the cube. 

Example 2.2 To find the number of shortest paths between O(0,0,0) and P(2,3,1) is 

the same as the coefficient of        in the trinomial expansion         ,   

 ,    ,    , and    . Therefore the coefficient of        is: 

                        
  

       
    

2.3.2 Generalization to Arbitrary Dimension: N-nomial-Multinomial 

Coefficients 

Extent to n-nomial (multinomial) coefficients, the n-dimensional analogue of 

Pascal‟s triangle and Pascal‟s tetrahedron is called Pascal‟s n-dimensional simplex 

[8,9]. In Pascal‟s n-dimensional simplex, with nonnegative integers 

k                with   ∑      the n-nomial coefficients is given by: 

(
 

             
)  

  

             
 

Where    is the power of the of    in the n-nomial-multinomial expansion:  
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In a similar manner as we have proven Theorem 2.3, its generalisation can also be 

established: 

Theorem 2.4 The n-nomial coefficient (  
             

) is the number of shortest paths 

in the n-dimensional grid between the points (0,0,0,…,0) and (             ) 

where   ∑      

2.4 Polynomial N-nomial Coefficients 

This type of n-nomial coefficients are represented by triangles with right and obtuse 

angles, such that as n increases the triangle will be wider as we are showing them in 

this section. These coefficients represent number of the shortest paths between 

element the origin at k = 0 and j = 0 and the given position of the coefficients, where 

in these paths we use n neighbourhood relations. Therefore, in order to find these 

coefficients, in the shortest paths we may use n different types of steps. 

The coefficients of this type represent n-nomial expansion of the following form:  

                 

where k represents the k
th

 row of the n-nomial triangle, where    . In this type of 

n-nomial expansions, we use only one variable, e.g.  , but it is used in various 

powers. To show relation to path counting we present these coefficients with 

relatively small value of n in the next subsections. For larger values the results are 

analogous to those we present here. 

 

 



15 

 

2.4.1 Trinomial-Polynomial Coefficients  

These polynomial coefficients are used at powers of sums with three elements, 

similarly to the trinomial-multinomial coefficients. However, at this new type of 

coefficients, we understand the trinomial coefficients by the trinomial expansion of 

the form          . The variables are not independent, but powers of the same 

variable. The coefficients are computed by a triangle such that three neighbours in 

the previous line of the triangle are summed up (close to the sides of the triangles the 

missing elements are substituted by 0‟s). The trinomial triangle is shown in 

Figure 2.5. Let    ,    , and    , where k and j are the row number and the 

column number of the coefficient, respectively. The value of the corresponding 

trinomial-polynomial coefficient is  

        ∑(
 

 
)

⌊
 
 
⌋

   

(
   

    
)  ∑

  

                 

⌊
 
 
⌋

   

 

where i is the number of   . 

Theorem 2.5 Each trinomial coefficient equals to the number of shortest paths 

between the first element at position (0,0), and the position of the trinomial 

coefficient by chessboard distance.  

Proof. The proof goes by induction. The base of the induction contains the first 

coefficients up to distance 1. As Figure 2.5 and 2.6 show, the top (or the middle) 

element have exactly one shortest path to itself which contains no step. The next 3 

points can be reached directly by 1 step, meaning exactly 1 shortest path for each 

case. Since there could occur three direction steps in shortest paths in the yellow part 
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of the grid (namely diagonal steps to down and to right directions and cityblock steps 

in the direction between those directions), the number of shortest path to any further 

points can be computed as the number of the shortest paths to its three neighbours in 

the previous row. But, the sum of these values gives exactly the trinomial 

coefficients, thus the theorem is proven.      ▄ 

For    ,    , and    , each coefficient in this case is representing number of 

shortest paths from position of that coefficient (which is represented by k
th

 row and 

j
th 

column) to the first coefficient (for which k = 0 and j = 0) of the triangle shown in 

Figure 2.5. As it was shown in Figure 2.6, these paths are composed by three types of 

steps which are: left, right and middle and the length of these paths equal to k. 

Considering the shortest paths from a point to the top, the number of different 

arrangements of these left, right and vertical steps are computed as        .  

1 

1    1    1 

1    2    3    2    1 

1    3    6    7    6    3    1 

1    4    10    16    19    16    10    4    1 
Figure 2.5: Trinomial triangle with three different neighbours in the preceding line: 

an extension of the Pascal‟s triangle to right angled triangle. 

Example 2.3 For trinomial expansion          , the coefficients are coloured 

with red colour in Figure 2.6 as follows: 
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These coefficients represent the 4
th

 row in Figure 2.5 and the bottom yellow row in 

Figure 2.6, where each coefficient represents number of shortest paths between point 

0 and each point of the given, 4
th

 row using three types of steps allowed in 

chessboard neighbourhood. 

Figure 2.6 shows the trinomial-polynomial coefficients in term of number of shortest 

paths on the square grid using chessboard neighbourhood. 

  
Figure 2.6: Trinomial-polynomial coefficients in square grid in terms of shortest 

paths using chessboard distance, black color: the distance from the pixel marked by 

0, red color: the number of shortest paths between the given pixel and 0. 

2.4.2 Quadrinomial-Polynomial Coefficients 

The quadrinomial-polynomial coefficients are calculated as the coefficients of the 

quadrinomial expansion of the form:             . For    ,    , and 

  ⌊
  

 
⌋, where k and j are the row number and the column number of the coefficient, 

respectively. Therefore the value of any quadrinomial-polynomial coefficient is 

given by: 

        ∑ ∑ (
 

 
) (

   

 
)

⌊
    

 
⌋

                

⌊
 
 
⌋

   

(
     

       
) 
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where i is the number of   , and m is the number of   . 

Quadrinomial coefficients can be computed in a similar manner as Pascal‟s triangle, 

but in this case an obtuse angled triangle is obtained by summing up four of the 

previous elements. Regarding, our main topic, we can state the following result, 

which is somewhat analogous to Theorem 2.5. 

Theorem 2.6 The number of shortest paths between the top and any other elements 

of the triangle is exactly the quadrinomial-polynomial coefficient displayed at the 

corresponding element of the triangle when four different neighbourhood relation 

are used: by changing the row, the column can be changed to the closest two 

neighbours and also to their neighbours (see Figure 2.7, where arrows represent 

those relations). 

Proof. The way to obtain the coefficients in the triangle is exactly the same as the 

way to compute the number of shortest paths inductively from the top to any 

positions of the triangle.        ▄ 

1 

1  1  1  1 

1  2  3  4  3  2  1 

1  3  6  10  12  12  10  6  3  1 

1  4  10  20  31  40  44  40  31  20  10  4  1 
Figure 2.7: Quadrinomial triangle with four different types of neighbourhood 

relations. 

Example 2.4 Quadrinomial-polynomial coefficient where k = 4 and  j = 3 equals to 

the number of shortest paths from the top 1 to the 4th element of the last line: 1, 4, 

10, 20 (in Figure 2.7) and it is computed as 
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        ∑ ∑ (
 

 
) (

   

 
)

⌊
    

 
⌋

                

⌊
 
 
⌋

   

(
     

       
)     

One can further generalise these coefficients to n-nomial coefficients for any positive 

integer n. Instead of having further subsections here, we present the general case in 

the next section. 

2.5 Connection Between Multinominal and Polynominal Coefficients 

Although both type of generalisations have the same names, e.g., trinomial, 

quadrinomial, etc. as we have seen they have very different meaning. However, they 

are not independent of each other, as one can see that by choosing     ,     , 

     , ...,    =     , one can shift from the multinomial approach to the 

polynomial approach. Their names come from the fact that how many elements are 

summed up to obtain a given value, but these values may be neighbors from different 

independent directions (multinomial case, higher dimensions) or larger number of 

neighbors that are next to each other in a 2D triangle (polynomial case). At 

trinomials three numbers are summed up, generally, at n-nominals n. 

Trinomial-polynomial coefficient (         can be calculated in terms of Trinomial-

multinomial coefficients by the following formula: 
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In case    : 

        ∑                  

⌊
 
 
⌋

   

 

If    : 

                    

Similarly, quadrinomial-polynomial coefficients can also be calculated in terms of 

quadrinomial -multinomial coefficients by applying the following formula: 

In case   
  

 
:  

        ∑ ∑                       

⌊
    

 
⌋

                

    

⌊
 
 
⌋

   

 

In case   
  

 
: 

                   

Generally, the n-nomial-polynomial coefficients can always be computed by 

summing up appropriate n-nomial-multiominal coefficients (with the same value of 

n).  
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Chapter 3 

COUNTING THE NUMBER OF SHORTEST CHAMFER 

PATHS IN THE SQUARE GRID 

Path counting (for cityblock and chessboard distances) in digital images (i.e., finite 

subgraphs of the square grid) is used to infer properties of images [21]. It was also 

considered in [41] based on matrix multiplication with various neighbourhood 

relations. In [42], the numbers of shortest paths are computed for the two above 

mentioned basic distances and also to the octagonal distance, which is a special 

neighborhood sequence based distance. For neighbourhood sequences in general, the 

problem was considered in [43, 44]. In this chapter, a similar combinatorial problem, 

the path counting for weighted distances considering the basic two types of steps is 

presented with enumerative combinatorial calculation. In most cases, we assume that 

both weights are non-negative. Moreover, we solve all the cases of the problem by 

providing the solutions by closed formulae. As we will see that there are five entirely 

different cases based on (the relation of) the used weights if both weights are 

positive; and there are two cases with 0 weights. Two of the cases, actually, provide 

the same result as the corresponding results for cityblock and chessboard distances, 

however, our proof technique is different than the technique used in [42]. We also 

present 3D charts to show how the number of shortest paths grows when the distance 

grows. Thus, the significance of the thesis is not only to consider and summarize all 

the possible cases, but also to give solutions for cases which were not analyzed 

before, e.g., the last three cases shown in this thesis. 
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3.1 Preliminaries 

In weighted distance (or chamfer distance per the original terminology [29]) we 

associate a weight for each type of movement: we give weight α for cityblock 

movements and weight β for each diagonal movement, as shown in 

Figure 3.1. Formally, we can describe it as follows: 

Let p = (x1,y1) and q = (x2,y2) be two points in the square grid; let W = (w1,w2) be the 

absolute difference vector between the points, where w1= |x1 – x2| and 

w2= |y1 – y2|. Then, as was previously computed [21]. 

 

     
Figure 3.1: Weighted steps for chamfer distance (α steps, β steps) from the point in 

the centre. 

The number of diagonal steps in a shortest path of the chessboard distance is 

min{w1,w2}, and the number of cityblock steps (i.e. the number of vertical or 

horizontal movements) in a shortest path with the chessboard distance is max{w1,w2} 

– min{w1,w2}. These values become important when calculating the number of 

shortest paths of chamfer distances. 

When using both types of neighbours, but with different weights, in order to 

calculate the length of a shortest path (i.e. the chamfer distance between p and q), we 
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must find how many α and β steps are in the given path. Their numbers in a shortest 

path depend on the respective values of α and β as well. According to their numbers 

and values, we will compute not only the length but also the number of shortest paths 

between any two points. The actual computation depends on the used weights. In this 

thesis, as usual both in graph theory and in digital geometry, we assume that both α 

and β are non-negative, and actually, in the first some cases we assume that they are 

positive. In some applications, there is also an assumption that 0 < α  β. We show 

Example 3.1 below, for this case. With this condition subcases are defined by the 

relation of 2α and β. However, in this thesis, we do not restrict our studies to these 

cases. We will also do computations when 0 < β < α (see Subsection 3.2.5), and as 

we will see this case is the most interesting among all. For the sake of completeness 

we also present the cases, when one or both the weights have value 0. 

Now, as an example, we show how to compute the distance, or the length of the 

shortest path if 0 < α  β holds. Let N be the number of α steps and M be the number 

of β steps in a shortest path; then, the weighted distance between p and q is 

dw(p,q) =N α + M β. 

Example 3.1 Let p = (5,6), q = (7,1) and α = 3,β = 4. Then w1 = 2 and w2 = 5. Thus, 

the cityblock distance of these points is 7, their chessboard distance is 5 (note that in 

these distances unit weight is used). Now, computing the chamfer distance, since 

α < β < 2α, it is worth to use the path defined by the chessboard distance, i.e. with 2 

diagonal and 3 cityblock steps: the chamfer distance equals to: 24+33=17. 
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3.2 Results: Formulae for the Number of Shortest Paths 

According to the values of α and β, we can compute weighted distances, and, 

consequently, we can compute the number of shortest paths. In this context, we have 

various cases depending on the respective ratio of the used weights, letting f(w1,w2) 

be the function calculating the number of shortest paths between two points with an 

absolute difference vector (w1,w2). The cases are listed in the following subsections. 

The first two cases are equivalent to obvious discrete mathematical exercises (and 

have been proven also in [42] by a recursive method), and we explain them only for 

the sake of completeness using enumerative combinatorial techniques in our proofs. 

In the first five subsections cases with positive weights are studied, while in the last 

subsection we deal with the cases when one or both weights is/are zero. 

3.2.1 Case of β > 2α > 0 

Theorem 3.1 Let α and β be the weights for cityblock and diagonal movements, 

respectively, such that β > 2α > 0. Let p = (x1,y1) and q = (x2,y2) be points of the 

square grid and w1 = |x1– x2| and w2 = |y1 – y2| be the absolute differences between 

the corresponding coordinates of the points. Then, the number of shortest paths 

between p and q, denoted by f(w1,w2), is given as f(w1,w2) = ( 1  2

 1
). 

Proof. We have β > 2α such that the weights are positive, which means that in the 

shortest path between p and q, no diagonal steps occur since diagonal steps can be 

substituted by two consecutive cityblock (i.e. a vertical and a horizontal) steps to 

produce a path with smaller weight. Thus, all shortest paths contain only cityblock 

steps. The number of α steps between points p and q in the shortest weighted paths is 

computed in the same way as in the cityblock distance: w1 + w2. The distance 

between p and q is α times more, since each step has weight α. Moreover, in each 
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shortest weighted path between p and q, the numbers of horizontal and vertical steps 

are w1 and w2, respectively. However, the order of these steps is arbitrary; thus, the 

number of shortest paths is given by the number of ways that we can arrange w1 or w2 

steps among the total w1 + w2 steps; it is given by the binomial coefficient ( 1  2

 1
). 

Actually, ( 1  2

 1
) and ( 1  2

 2
) give the same value.      

Example 3.2 The number of shortest paths between the points p(5,12) and q(8,13) 

with α = 3 and β = 7 is computed as follows: w1= | 8 − 5| = 3 and w2= | 13 − 12 | = 1, 

w1 + w2= 4. Thus, the result is f(1,3) =( 
 
)  ( 

 
) = 4. See also Figure 3.2. 

 
Figure 3.2: All shortest paths in case β > 2α > 0; the four colors show the four 

shortest paths of Example 3.2. 

  

Figure 3.3: The number of shortest weighted paths from point (0,0) to other points in 

a 14 × 14 window with corners (−7, −7), (7, −7),(7,7) and (−7,7) in case β > 2α > 0. 
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The paths of this case are also called grid-paths, since only the edges of the grid are 

used. Since these results are exactly the binomial coefficients (as they form the 

Pascal‟s triangle, as we have seen in section 2.1), we do not give them in a table 

form, only sketch them in Figure 3.3 as a 3D chart for the number of shortest 

weighted paths from point (0,0) to all points in the represented region. In the figure 

the origin is placed in the middle to show the symmetry distribution of the values. 

The formula grows rapidly at the corner directions when the coordinate differences 

are (almost) equal. 

3.2.2 Case 0 < α < β < 2α 

Theorem 3.2 Let α and β be the weights for cityblock and diagonal movements, 

respectively, with the condition α < β < 2α. Further, let p = (x1,y1) and q = (x2,y2) be 

points, and let w1 = |x1 – x2| and w2 = |y1 – y2|. Then, the number of the shortest paths 

between p and q is given as f(w1,w2)=(      1  2 
     1  2 

). 

Proof. Both weights are positive and α < β < 2α. Thus, we may move in the shortest 

path from p to q using both α-steps and β-steps. We use β-steps as much as possible 

to get closer to the endpoint, which means that we will move diagonally by the 

minimum number of differences between the point coordinates, and the remaining 

steps are α-steps. According to this, the number of α-steps and β-steps in the shortest 

paths will be computed in the same way, as in a chessboard path from p to q (i.e. the 

number of steps is max{w1,w2}). Since the number of β-steps is min{w1,w2}, the 

number of α-steps is (max{w1,w2} − min{w1,w2}). The order of the steps are 

arbitrary; thus, the number of shortest weighted paths equals to the number of ways 

the β-steps can be arranged in the path with max{w1,w2} steps altogether, which is 

exactly the binomial coefficient (      1  2 
     1  2 

).       



27 

 

Example 3.3 Let p( 2,3), q(2,0), and let α=3, β=4.Then w1=4,w2=3, further 

min{w1,w2} = 3 and max{w1,w2}= 4. Applying the formula for this case, the number 

of shortest paths from p to q is(         
         

) =( 
 
)= 4. Actually these four shortest 

weighted paths are illustrated in Figure 3.4 with various colors. 

 
Figure 3.4: Example for all shortest paths of case 0 < α < β < 2α as in Example 3.3. 

Again, the values of Pascal‟s triangle appear, but in a different arrangement than in 

the previous case. Figure 3.5 gives a 3D chart for values for the number of shortest 

weighted paths from point (0,0) to all points in a 14 × 14 window. To show the 

symmetry of the distribution the origin is in the middle. This graph is already more 

interesting than the previous one, with more growing directions: the value grows 

fastest when one of the absolute coordinate differences is (approximately) half of the 

other one. 
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Figure 3.5: The number of shortest weighted paths in case 0 < α < β < 2α in a 

14 × 14 window with corners (−7, −7), (7, −7), (7, 7) and (−7, 7). The minimums on 

the axes and on the diagonals can be seen. 

3.2.3 Case of β = 2α > 0 

Theorem 3.3 Let α and β be (positive) weights for cityblock and diagonal move-

ments, respectively, such that 2α = β. Let p = (x1,y1), q = (x2,y2), w1 = |x1 – x2| and 

w2 = |y1 – y2|. The number of shortest paths f(w1,w2) between p and q is 

   1  2  ∑
   1   2     

    1       2     

          

   

                                                     

Proof. In this case, a diagonal step has exactly the same weight as two consecutive 

movements to cityblock neighbours. The number of shortest weighted paths between 

p and q depends on the number of used diagonal steps (β-steps) between the two 

points, which is at most the minimum difference of the two coordinate values of p 

and q. Since each diagonal step can be substituted by two consecutive α-steps (a 

horizontal and a vertical one), the number of diagonal steps may be less, potentially 

equalling zero, meaning that the points are connected by only cityblock steps. (In 

special cases, when the two points p and q share a coordinate value, the shortest path 

cannot contain diagonal steps. Thus, the number of shortest weighted paths is exactly 

one in this case.) Let i be the number of diagonal steps in the shortest path (these 
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steps can be replaced by α-steps); then, i has a range between 0 ≤ i ≤ min{w1,w2}. 

Because each diagonal step can be replaced by two consecutive α-steps, we need to 

sum up the cases, such as the number of shortest weighted paths corresponding to 

various value of i. This can be done as follows: 

i = 0, then all steps in the path are α-steps:( 1  2

 1
): vertical and horizontal steps in 

any order;  

i = 1, then 1 diagonal step and remaining steps are α-steps(horizontal and vertical 

steps, accordingly): 
  1  2    

    1      2    
; 

i in general, the number of steps is  1   2    from which i are diagonal,  1    

and  2    are the number of horizontal and vertical steps. The number of such paths 

is 
  1  2    

    1      2    
 ; i =min{w1,w2}, (the same formula applies for this special case, as 

we have used in the case α < β < 2α) : (     1  2 
      1  2 

). 

To sum these numbers up, the number of shortest weighted paths is computed: 

∑
   1   2     

    1       2     

      1  2 

   

 

As is shown in the formula, each time we increment i by 1, the number of diagonal 

steps is increased by 1 and the number of α-steps is decreased by 2 (1 vertical step, 1 

horizontal step); then, the overall number of steps in the shortest path is decreased by 

i for each i, where in this shortest path we have i diagonal steps, w1−i horizontal steps 

and w2−i vertical steps. Therefore, the number of shortest weighted paths according 

to the value of i of diagonal steps is given as  

f(w1,w2,i) = 
  1  2      

    1      2    
 using the fact that the order of steps is arbitrary.    
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        (a)                (b)          (c) 

       (i = 0)        (i = 1)        (i = 2) 

Figure 3.6 :The shortest paths between p(15,1) and q(17,3), with α = 3 and β = 6 

(case 2α = β > 0), when i = 0 , 1 and 2 is the number of diagonal steps (starting from 

i = 0 to i =  min{w1,w2} in the path from p to q). 

Example 3.4 Let q(17,3) and p(15,1) and weights α = 3, β = 6 be given. Then, 

w1 = 2, w2 = 2 and min{w1,w2} = 2, thus, the number of shortest paths is: 

       ∑
        

              

 

   

      

As we can see, the number of shortest weighted paths, in this case, can be computed 

by various numbers of diagonal steps with a maximum of min{w1,w2}. Figure 3.6 (a), 

(b) and (c) shows all the possible shortest paths between points p and q of Example 

3.4 separated by the possible number of diagonal steps. 

Summarizing the results of this case, Figure 3.7 shows the 3D chart for the values of 

the number of shortest weighted paths from point (0,0) to all points in a 14 × 14 

window with the origin in the middle. The function grows most rapidly on the 

diagonal directions. 
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Figure 3.7: The number of shortest weighted paths from the point (0,0) to other 

points in a 14 × 14 window with corners (−7, −7), (7, −7),(7, 7) and (−7, 7), 

in case β = 2α > 0. 

3.2.4 Case of β = α > 0 

This case correspond to the chessboard distance, therefore the number of shortest 

paths of this case is already detailed. Actually, they are counted as the Trinomial-

polynomial coefficients in section 2.4.1. In this section, we will only briefly recall 

these numbers and state the result in a more general way by counting the number of 

shortest chessboard paths between any two points of the square grid with an 

alternative proof. 

Theorem 3.4. Let α and β be (positive) weights for cityblock and diagonal move-

ments, respectively, with α = β. Let p = (x1,y1), q = (x2,y2), w1= |x1 – x2| and 

w2 = |y1 – y2|. The number f(w1,w2) of the shortest paths between p and q is counted 

as 

   1  2  ∑ (
     1  2 

 
)

⌊
     1  2       1  2 

 
⌋

   

(
     1  2   

     1  2   
)               

Proof. In this case, the weight of a diagonal step equals the weight of an α step (i.e. a 

vertical or horizontal step). The number of steps in a shortest path is clearly given by 

max{w1,w2} (as in chessboard distance). Since one does not need to pay any extra for 
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diagonal steps, it is possible, for example, that instead of having two consecutive α 

steps in the same direction, two diagonal steps are applied, reaching the same point 

after the two steps. In these paths, there are diagonal steps that are in an unnecessary 

direction (i.e. shortest paths can be obtained without any such direction steps). Let i 

denote the number of such unnecessary direction diagonal steps. Evidently, the 

minimum value of i is 0. For any such step, we need to have an extra diagonal step 

(in the other diagonal direction, to equalize its effect) instead of an α step. Originally, 

without any unnecessary diagonal steps (i = 0), there are exactly max{w1,w2} – 

min{w1,w2} number of α steps in a shortest weighted path. Thus, the number of α 

steps decreases by two when an unnecessary diagonal step is introduced. Thus, the 

maximum of i will be ⌊
     1  2       1  2 

 
⌋, where the floor function is used. When 

i is fixed, we know the number of various steps in the shortest path(s): there are 

max{w1,w2} steps, from which i are unnecessary diagonal steps, and we have also 

min{w1,w2}+ i number of diagonal steps in the other diagonal direction. The 

remaining steps are α steps, and their number is (max{w1,w2} – i) – (min{w1,w2} + i) 

= max{w1,w2} – min{w1,w2} – 2i. 

Thus, the number of shortest paths with various values of i can be computed as 

follows: 

i = 0, then all steps in the path are in the right direction diagonal and α-steps, and 

their number is (     1  2 
     1  2 

);  

for i in general: 

     1  2   

        1  2           1  2       1  2      
                                               

Where i=⌊
     1  2       1  2 

 
⌋is the maximum value for i. Thus, the total number 

of shortest paths is the sum of those: 
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   1  2  ∑ (
     1  2 

 
)

⌊
     1  2       1  2 

 
⌋

   

(
     1  2   

     1  2   
)                    

   
i = 0, f(3, 0, i = 0) = 1   i = 1, f(3, 0, i = 1) = 6 

(a)      (b) 

Figure 3.8: Shortest paths between p(−18,9) and q(−15,9) with α = β, when i = 0 and 

1, respectively in (a) and (b), where i is the number possible diagonal steps to an 

unnecessary direction in the path from p to q. 

Example 3.5 Let us use the points p(−18,9) and q(−15,9) with weight values α=1, 

β=1. Then w1=3, w2 = 0 and thus, min{w1,w2} = 0, max{w1,w2} =3. Further, the 

number of shortest weighted path (where the distance is 3) is: 

       ∑(
        

 
)

 

   

(
          

          
)     

These paths are also illustrated in Figure 3.8 (a) and (b), with i = 0 and i = 1, 

respectively. 

To show how these numbers are changing in the function of the coordinate 

differences, in Figure 3.9 we present a 3D chart for the number of shortest paths from 

the origin to other points in a 14 × 14 window when the diagonal and cityblock steps 

have the diagonals at the minimum places of this curve while it grows rapidly on the 

axes. 
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Figure 3.9: The number of shortest weighted paths from point (0,0) to other points in 

a 14 × 14 window with corners (−7, −7), (7, −7),(7, 7) and (−7, 7), in case β = α > 0. 

3.2.5 Case of 0 < β < α 

In this case, β steps (diagonal steps) have less weight than α steps (i.e. horizontal and 

vertical steps); therefore, it will be more convenient and shorter to move from one 

point to another by diagonal steps, the shortest path between two points relying on 

the parity of the sum S of the absolute differences of the coordinates of the points. 

Therefore, we discuss two sub-cases in the two subsections below. 

3.2.5.1 Sub-Case of 0 < β < α for Points with Even Sum of Differences 

Theorem 3.5 Let α and β be the weights for cityblock and diagonal movements, 

respectively, with α > β. Let p = (x1,y1), q = (x2,y2), w1= |x1 – x2| and w2= |y1 – y2|. If 

S = w1 + w2 is an even number, then the number of the shortest paths between p and 

q, denoted by f(w1,w2), is computed as 

   1  2  (
     1  2 

     1  2       1  2 
 

)                                                                  

Proof. The number of steps between two points is given as max{w1,w2}; moreover, 

all of them can be diagonal steps. As we showed previously in Subsection 3.2.2 (case 

α < β < 2α), min{w1,w2} is the number of original diagonal steps in a shortest path. 

The remaining number of steps, max{w1,w2}−min{w1,w2}, can also be expressed by 

diagonal steps in this case; we call these diagonal steps „added‟ diagonal steps. These 

added diagonal steps are used instead of the α-steps of the case α < β < 2α. These 
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added diagonal steps are of two directions. One of them is the one we have called 

„unnecessary‟ direction. We must have them in this case if w1  w2. (In case of 

equality, the shortest path is built up by original diagonal steps to the same 

direction.) We need to add the same number of unnecessary direction diagonal steps 

and other (original) direction steps. Thus, the number of unnecessary direction 

diagonal steps is 
      1  2        1  2 

 
, and the same number of added diagonal steps 

is needed. Therefore, the number of diagonal steps in a shortest path is 

(min{w1,w2} + 
     1  2        1  2 

 
) + 

      1  2        1  2 

 
. The first term gives the 

number of original direction diagonal steps (both the original and the added ones), 

while the second term gives the unnecessary direction diagonal steps. The sum 

equals max{w1,w2}. 

Since the order of these steps is arbitrary, the number of shortest weighted paths 

between points p and q is the number of possible arrangements of these diagonal 

steps in the shortest path. Consequently, their number can be expressed by the 

following equation: 

   1  2  (
      1  2 

     1  2        1  2 
 

) 

Equivalently, it can be written as the following binomial coefficient: 

   1  2  (
      1  2 

     1  2  
      1  2        1  2 

 

)                                 

Let us analyse a special case. When w1 or w2 equals zero, the number of original 

diagonal steps is min{w1, w2} = 0, and the shortest path contains only added diagonal 

steps: one (any) of the directions is then unnecessary, and we have the same number 
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of other added diagonal steps. In this case, the previous formula, the number of 

shortest weighted paths is simplified as follows: 

   1  2  (
        2 

     1  2 
 

)                    

Example 3.6 Let p(0,0), q(3,1), α = 2 and β = 1 be given. Then, w1 =|3 − 0| = 3 and 

w2 =|1−0| =1, then the number of shortest paths between p and q is: 

       (
        

                 
 

)  (
 

 
)    

These paths are illustrated in Figure 3.10. 

 
Figure 3.10: The shortest paths between p(0,0) and q(3,1) in case 0 < β < α with even 

sum of differences. 

3.2.5.2 Sub-Case of 0 < β < α for Points with Odd Sum of Differences 

Theorem 3.6 Let α and β be the weights for cityblock and diagonal movements, 

respectively, with α > β. Let p = (x1,y1) and q = (x2,y2) be two points in the square 

grid and w1= |x1 – x2| and w2= |y1 – y2|. If S=w1+w2 is an odd number, then the 

number f(w1,w2) of the shortest paths between the points p and q is determined as  

    1  2  (
      1  2   

      1  2        1  2   
 

)        1  2               
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Proof. In this case, we must have a cityblock step (α step) in the path, because there 

is no way to have shortest path with only diagonal steps (with β steps, two 

coordinates are always modified by 1, and thus odd difference cannot be 

eliminated). The number of diagonal steps, thus, is max{w1,w2}– 1, since the number 

of steps in this shortest path is max{w1,w2}. Let q’ be the cityblock neighbour of q 

that is the closest to p (i.e. a shortest path between p and q’ can be obtained by 

max{w1,w2} – 1 diagonal steps). Actually, a shortest path from p to q contains 

exactly the same number of various direction steps as the shortest path from p to q’ 

plus an additional cityblock step in the direction that is the same as from q’ to q. The 

number of shortest paths is counted as the number of possible arrangements of the 

diagonal steps and the cityblock steps. Applying Theorem 3.5, the number of ways to 

have the diagonal steps between p and q is as follows: 

(
      1  2   

      1  2        1  2   
 

)                              

Then, the number of ways to locate one cityblock step (which may not necessarily be 

the last step of the shortest path, but can be anywhere) is as follows: 

(
     1  2 

 
)        1  2  

From these, the number of shortest weighted paths is given by the following 

equation: 

   1  2  (
     1  2   

     1  2       1  2   
 

)       1  2                            

Example 3.7 Let the points p(2,0) and q(4,3), and the weights α = 3 and β = 2 be 

given. Then w1= |4 − 2| =2 and w2=|3−0| =3, therefore w1+ w2= 5 (which is odd 

number), then the number of shortest paths between p and q is: 
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       (
          

                   
 

)            (
 

 
)      

Figure 3.11 shows all these shortest paths. 

 
Figure 3.11: The shortest paths between p(2,0) and q(4,3), in case 0 < β < α with odd 

sum of differences. 

 
Figure 3.12: The number of shortest weighted paths from the origin (0,0) to other 

points in a 14 × 14 window with corners (−7, −7), (7, −7),(7, 7) and (−7, 7), in case 

0 < β < α. 

Finally, we summarize the case when diagonal steps have lower weights than 

cityblock steps. Figure 3.12 shows the number of shortest paths between (0,0) and 

other points in a 14 × 14 window. For the subcases, we also separately show the 

values: Figure 3.13 represents the cases (β < α for points with even coordinate sum S) 

and (β < α for points with odd coordinate sum S) for the number of shortest weighted 
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paths from point (0,0) in a 14 × 14 window. One can observe that minimal values are 

given on the diagonals, while the function is growing with different speeds for the 

points with odd and even coordinate sums. For odd coordinate sums, it grows more 

rapidly. The largest growth values are on the axes with a growing coordinate 

difference. 

 
Figure 3.13: The number of shortest weighted paths from the origin (0,0) to other 

points in a 14 × 14 window with corners (−7, −7), (7, −7), (7, 7) and (−7, 7), in case 

β < α for points with even coordinate sum S shown on the left and with odd 

coordinate sum S shown on the right. 

3.2.6 Cases with Zero Weights 

In this subsection we consider the special scenarios when one or both of the weights 

is/are 0. In subsection 3.2.6.1 we consider the cases when α = 0, while in 3.2.6.2 we 

consider the case when α is positive, but β has zero value. Up to our knowledge, 

these cases were never considered before. 

3.2.6.1 Case of α = 0 

Theorem 3.7 Let α = 0 and β  0 be the weights for cityblock and diagonal 

movements, respectively. The distance of points p = (x1,y1) and q = (x2,y2) is 0, since 

there are paths between any two points built up only by cityblock steps. Moreover, 

there are infinitely paths between p and q with sum of the weights 0. 
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Proof. Consider the path built up by cityblock steps along the line from p = (x1,y1) to 

r = (x1,y2) with fixed first coordinate concatenated with the path from r to q = (x2,y2) 

on the line with fixed second coordinate. (One or both of these paths could be empty, 

i.e., with 0 steps, depending on the fact if the points p = (x1,y1) and p = (x1,y1) share 

one or two or no coordinates.) The cost of this path is 0 and thus, the distance of the 

points with the condition α = 0 is also zero. 

Now, w.l.o.g., assume that x1  x2. Let us consider the paths defined as follows: 

cityblock steps along the lines from p = (x1,y1) to p’ = (x1n,y1) (for any positive 

integer n), then from p’ to r’ = (x1n,y2), and from r’ to q. Since the sum of the 

weights of this path is 0 for any value of n, all of these paths are considered as 

shortest paths between the two mentioned points, thus, there are infinitely many of 

them.             

Theorem 3.8 Let α = 0 and β  0 be the weights for cityblock and diagonal 

movements, respectively. The weighted distance defined by these weights is not 

metrical, but it is a pseudometric.  

Proof. A pseudometric is a distance function which has non-negative values, it is 

symmetric, it fulfils the triangular inequality, moreover the distance from any point 

to itself is 0. All of these properties are easily to check, since all distance values are 

0. A distance is metric if it is a pseudometric, moreover if the distance of two points 

is 0, then the points coincide. This additional property is dropped by the considered 

distance function, thus it is not a metric.        
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Actually, the given pseudometric is the trivial pseudometric, since all the distance 

values are zero. 

3.2.6.2 Case of α > β = 0 

Theorem 3.9 Let β = 0 and α > 0 be the weights for cityblock and diagonal 

movements, respectively. The distance of points p = (x1,y1) and q = (x2,y2) is 0 if and 

only if the sum of coordinate differences, w1 + w2 =|x1 – x2| + |y1 – y2 | is even. On the 

other hand, the distance of points p and q is α if and only if the sum of coordinate 

differences, w1 + w2 is odd. The number of paths between the points with the given 

length is infinite in both cases. 

Proof. Consider, first, the case, when the sum of the coordinate differences is even. 

There are paths between any two points built up only by diagonal steps. For instance, 

consider the diagonal line with slope 1 containing point p and the “antidiagonal” line, 

the line with slope 1 going through on q. These two lines will intersect each other at 

a point r with coordinates x1 + n = x2   m and y1 + n = y2 + m for a pair of integers n 

and m, where these integers give the number (and the direction) of the diagonal steps 

from p to r and from r to q, respectively. Thus, it is clear that the distance of the 

points becomes zero. Furthermore, the given path can be easily modified to contain 

more and more diagonal steps (in a similar manner as we have shown in the proof of 

3.7), thus the number of paths with length 0 becomes infinite. 

Now, let us consider the case, when the sum of the coordinate differences is an odd 

number. Since in every diagonal step, both of the coordinates change by 1, we 

cannot reach from one (of the points p and q) the other point only by diagonal steps. 

However, we can reach any of its cityblock neighbours by only diagonal zero-weight 
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steps, thus, we need one extra cityblock step in the path resulting the distance of the 

points be α in this case. As the number of zero length paths between p and a given 

cityblock neighbour of q is (according to the first part of the proof) is infinite, each of 

them produces a shortest, i.e., α length path between p and q by adding the last 

cityblock step, hence the proof.         

By a similar proof as the proof of Theorem 3.8, one can also establish the following 

result. 

Theorem 3.10 Let α > 0 and β = 0 be the weights for cityblock and diagonal 

movements, respectively. The weighted distance defined by these weights is not 

metrical, but it is a pseudometric.  
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Chapter 4 

ON THE NUMBER OF SHORTEST WEIGHTED PATHS 

IN TRIANGULAR GRID 

In this chapter of the thesis, we continue our work in terms of path counting, by 

counting the number of shortest paths for various cases based on weighted distances 

on the triangular grid. 

4.1 Preliminaries 

Each pixel in the triangular grid is addressed uniquely by a triplet of coordinates 

having axes with directions x,y and z to reflect the symmetry of the grid structure. In 

this grid, to the sum of the coordinate values reflects the orientation of the trixels 

(pixels or points of the triangular grid), thus we differentiate two types of trixels: 

even (zero sum trixels has orientation  ) and odd trixels (pixel having orientation   

are addressed by triplets with 1-sum). Figure 4.1 shows the origin (trixel with 

coordinates (0,0,0)), the axes of the coordinate system and also a part of the grid with 

the assigned coordinate values. 
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Figure 4.1 Coordinate system for the triangular grid with the Origin and the axes. 

Each pixel in the triangular grid has three types of neighbors: there are three 1-

neighbors, each of them shares a side with the original trixel, there are six more 2-

neighbors and, further, there are three more 3-neighbor trixels. All twelve neighbors 

share at least one point on the boundary with the original trixel (see Figure 4.2). One 

can also define formally the neighborhood relations based on the coordinates of the 

trixels: 

 The trixels p(p(1),p(2),p(3)) and q(q(1),q(2),q(3)) are in m-neighbor relation 

(m  {1,2,3}) if: 

o |p(k) q(k)|    for every k  {1,2,3} and 

o ∑ |         |    
   . 

We note here that, when working with a given neighborhood and also at 

neighborhood sequences, in the second condition the sign ≤ is used and the 

neighborhood relation is having the extensive property, that is all m-neighbors are 

also (m   1)-neighbors (for m > 1). In case of equality of the last condition, the 

trixels are usually referred as strict m-neighbors in the literature. However, for 

chamfer distances, this strict neighborhood is more adequate, thus we use the 
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definition as we have formally described above. Notice that 1- and 3-neighbors have 

different orientation than the original pixel (i.e. if the original pixel is even, then 

these neighbors are odd and vice versa), while 2-neighbors have the same orientation 

as the original pixel [36]. Figure 4.2 shows these three neighbor types for an even 

trixel. 

 
Figure 4.2: Three types of neighbors of trixel 0. 1-neighbors are red, 2-neighbors are 

yellow and 3-neighbors are green. 

4.2 Number of Shortest Weighted Paths in Triangular Grid 

Let p(x1,y1,z1) and q(x2,y2,z2) be two trixels in triangular grid, and let w1, w2 and w3 be 

the absolute differences between the coordinates of p and q such that 

w1 = |x1 x2|, w2 = |y1 y2| and w3 = |z1 z2|. Let S = w1+w2+w3, and              , 

              and               are minimum, middle (median) and 

maximum of              respectively. The number of shortest weighted paths 

between p(x1,y1,z1) and q(x2,y2,z2) depends on the values of the weights α, β and γ. 

According to this fact, we analyze the various cases in the next subsections. 
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4.2.1 The Case: 2α < β and 3α < γ 

Theorem 4.1 Let  ,   and   be the weights of steps to a 1-, 2- and a 3-neighbor, 

respectively, such that              . Let p(x1,y1,z1) and q(x2,y2,z2) be two 

points of the triangular grid. Further, let w1=|x1 – x2|, w2 = |y1 – y2| and w3 = |z1 – z2| 

be the absolute differences between the corresponding coordinates of the points. 

Then, the number of the shortest paths between p and q, denoted by f(w1,w2,w3), is 

computed as 

             (                              
              

)    (9) 

Proof. By the given conditions on the weights, every shortest path is built up only by 

1-steps since each 2-step can be substituted by two consecutive 1-steps and each 3-

step can be substituted by three consecutive 1-steps with less sum of weights. Let us 

consider two different cases: 

Case 1 If the two points are in the same lane: 

The number of steps, i.e., the number of  -steps in a shortest weighted path between 

the two points is mid           + max          , since min          =0. 

There is only 1 shortest path between any two points on the same lane, through the 

points `between‟ the two points in the same lane. Thus, there is only one path, any by 

(4.1) we will also get (             
 

)= 1. 

Case 2 If the two points are not in the same lane: 

For simplicity we will take the two points to be (0,0,0) and (i,j,k), and let us assume, 

that the sector of triangular grid that we are interested in having values, i,j > 0 and 

k < 0, or j, k < 0 and i >0. As we have already mentioned, based on the 

transformations detailed in [45], by mirroring of these sectors, one may obtain the 

whole triangular grid. 
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Firstly, case i, j > 0 and k < 0 is considered. We prove the formula (9) by induction. 

The base case of induction is                = 0, which means that the two points 

p and q are in the same lane. It is already proven that formula (9) is satisfied, i.e., it 

gives 1 for these cases. Now, as the induction hypothesis, let us assume that formula 

(9) holds for every point with |i|+|j|+|k| = i+j-k < M, with a positive integer M. 

Further, let us consider a point with coordinates 

|i|+|j|+|k| = i+j k = M. We may also assume that                > 0. Since every 

trixel has either 0-sum or 1-sum triplet, this condition also means that in this region 

of the grid, one of i and j has the value                and the other has the value 

              . Then, let us analyze, first, the case when q is an odd pixel. In this 

case, all shortest paths from (0,0,0) to (i,j k) must contain, as the last step, a step 

either from (i 1,j,k) or from (i,j-1,k) the target trixel (i,j,k). However, both (i 1,j,k) 

and (i,j 1,k) are even pixels such that the sum of the absolute values of their 

coordinates is less than M. Thus, the number of the shortest paths to the trixels (i-

1,j,k) and (i,j 1,k) are given by the formula (9) by our hypothesis, i.e., (       
   

) and 

(      
 

), respectively, not depending on which of i or j (or both) have the minimal 

value, since, e.g., (       
   

)  (       
 

). Moreover, the number of shortest paths to 

(i,j,k) is, then, exactly the sum of those two values, that is, 

             (
         

    
)  (

         

  
)  (

       

  
)  (

   

 
)  (

   

 
)   

which was to be proven. 

Now, let us analyze the case when q is an even trixel. In this case all the shortest 

paths from (0,0,0) to (i,j,k) has the last step from the trixel (i,j,k+1) = (i,j,   (|k| 1)) 

to the trixel (i,j,k). Thus, the number of shortest path to the even trixel q(i,j,k) is 
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exactly the same as the number of shortest paths to the odd trixel q‟(i,j,k+1). 

However, for q‟ the sum of absolute coordinate values is |i|+|j|+|k+1| = i+j+|k|-

1=M 1. Therefore, based on the hypothesis, the number of shortest path is 

(       
  

)  (   
 
). Observing that q and q‟ shares the coordinates i and j, which are, 

in fact,                and              , the formula also holds for the trixel q. 

Secondly, let us consider the case j, k < 0 and i > 0. Here, 

                  | |. Again we use induction, on the base cases, where 

               = 0, for which cases it is already proven that formula (9) is 

satisfied. Now, as the induction hypothesis, let us assume that formula (9) holds for 

every point with |i|+|j|+|k| = i-j-k < M, with a positive integer M. Further, let us 

consider a point with coordinates |i|+|j|+|k| = i-j-k = M. The number of shortest paths 

from pixel (0,0,0) to an even pixel (i,j,k) equals to the sum of the number of shortest 

paths to points (i,j 1,k) = (i,  (|j| 1),  k) and (i,j,k 1) = (i,   |j|, (|k| 1)), since 

each the shortest path from (0,0,0) to (i,j,k) is passing through exactly one of these 

two points having the last step from there to (i,j,k). However, by the induction 

hypothesis, formula (9) is correct for pixels (i,j 1,k) and (i,j,k 1) since their 

absolute coordinate sum is M-1. Therefore, for trixel (i,j,k) we have 

                                       

 (
         

    
)  (

         

  
) 

            (
       

  
)  (

     

  
)

 (
                              

              
)  



49 

 

For odd pixel (i,j,k), with j,k < 0 and i > 0, the number of shortest weighted paths 

equals to the number of shortest weighted paths for even pixel (i 1,j,k), since in each 

shortest path the last step is from the even trixel (i 1,j,k) to the odd trixel (i,j,k). 

Here                 and                have the values | | and | | (in an order) 

both for the trixels (i 1,j,k) and (i,j,k). Therefore, the number of shortest paths to 

both of them is given by: 

                          (
       

  
)  (

     

  
)

 (
                              

              
)  

The proof has been finished.         ▄ 

As one may also observe in the next example, the binomial coefficients appear in 

Figure 4.3, in fact, the space is cut to six parts, and in each part one can observe the 

Pascal‟s triangle. We also note here that in [39], based on a different approach, but, 

in fact, very similar results were presented (as the case of path counting for 1-

neighborhood).  
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Example 4.1. Figure 4.3 illustrates the number of weighted shortest paths from point 

(0,0,0) to all other points in case 2α <β and 3α < γ. 

 
Figure 4.3: The number of shortest weighted paths from point (0,0,0) to other points 

of the grid with the condition 2α < β and 3α < γ. 

4.2.2 Case of 2α > β and 3α < γ 

In this case the shortest path between p(x1,y1,z1) and q(x2,y2,z2) contains a number of 

 -steps (plus one  -step in case p and q have different parities).The number of  -

steps is equal to ⌊
 

 
⌋. Furthermore, the number of shortest weighted paths, f(w1,w2,w3), 

between p(x1,y1,z1) and q(x2,y2,z2) is computed based on two sub-cases which are 

given by the following subsections. 

4.2.2.1 Sub-Case (2α > β and 3α < γ) and S is an Even Number 

Theorem 4.2 Let  ,   and   be the weights for movements to 1-, 2- and 3-neighbor 

trixels in the triangular grid, respectively, such that       and     . Let 

p(x1,y1,z1) and q(x2,y2,z2) be two points of the triangular grid, and w1 = |x1 – x2|, 

w2 = |y1 – y2| and w3 = |z1 – z2| be the absolute differences between the corresponding 
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coordinates of the points such that   = w1+ w2+ w3 is an even number. Then, the 

number of the shortest paths between p and q, denoted by f(w1,w2,w3), is computed as 

             (
                            

             
)                       

Proof. By the given values of the weights, it is clear that the number of  -steps 

equals to ⌊
 

 
⌋ in any of the shortest paths and there no other steps are considered (any 

3-step can be broken to three consecutive 1-steps, and any 2 consecutive 1-steps can 

be joined to a  -step such that the total weight of the paths is decreasing if the path 

has other type of steps originally). First we deal with the case when the two trixels 

are on the same lane, i.e., they share one of the coordinates values. In this case, 

clearly, there is exactly one shortest path between them, built up by 2-steps on the 

given common lane; and since                , formula (10) also provides this 

result. 

Now, without loss of generality, assume that p is the origin and q does not share any 

lane with p. By the symmetry of the grid, there are various, but equivalent cases. Let 

us consider the case that q(i,j,k) has coordinates with the properties i,j > 0 and k < 0. 

The base of the induction consists the value 1 for the cases when 

               . We use induction on the sum of the coordinate difference, that 

is, in this case, i+j-k. By the induction hypothesis let us assume that equation (4.2) 

holds also for each even trixel (i,j,k) with i+j-k < M for any given positive integer M. 

Then, let us consider an even trixel (i,j,k) with i+j-k = M and count the number of the 

shortest paths from the origin to (i,j,k). It is clear that since only 2-steps are used, 

each shortest path goes through only on even trixels. On the other hand, to reach 

(i,j,k) in a shortest path the last step could be from exactly one of the two trixels (i-
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1,j,k+1) = (i-1,j,-(|k|-1)) and (i,j-1,-(|k|-1)). However, for these two trixels, the 

condition that their absolute coordinate sum is less than M holds (it is actually, M-2 

for any of these two trixels). Therefore, by the hypothesis, the number of shortest 

paths to them can be computed by formula (10), that is, actually, (      
   

)  (      
 

) 

and (      
 

)  (      
   

), since the first two coordinates correspond to the minimum 

and to the middle coordinate differences (in one of the others). Then the number of 

shortest paths to the pixel (i,j,k) is exactly the sum of the previous two values, i.e., 

(      
   

)  (      
 

)  (    
 

)  (    
 

), which is the value we wanted to prove.    

Now, let us give a comment on the previous case, since the result is exactly the same 

as in the first case, when only 1-steps were used. 

Remark 1. Every two consecutive 1-steps can be joined to a 2-step and any 2-step 

can be broken to two consecutive 1-steps, in fact there is a bijection between the set 

of shortest paths used in Theorem 4.1 and the set of shortest paths used in Theorem 

4.2 between the same pixels (since Theorem 4.2, only same parity trixels are 

considered here). By the used sixth of the grid one of the directions of any two 

consecutive 1-steps is a necessary direction step in a shortest path, while there could 

be two choices in the other (if the actual point is not in the same lane as the target 

point). Thus, by describing every second steps of a shortest path with only 1-steps 

(case of Theorem 4.1), one can still uniquely defined the whole path, and in fact, this 

description gives a shortest path between the same two points in case of only 2-steps 

are used (i.e., case of Theorem 4.2).  

4.2.2.2 Sub-Case (2α > β and 3α < γ) and S is an Odd Number 

Theorem 4.3 Let  ,   and   be the weights of the 1-, 2- and 3-steps, respectively, 

with the conditions               . Let p(x1,y1,z1) and q(x2,y2,z2) be two trixels 
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of the triangular grid, and let w1 = |x1 – x2|, w2 = |y1 – y2| and w3 = |z1 – z2| be the 

absolute differences between the corresponding coordinates of the points, such that   

= w1+ w2+ w3 is odd. Then, the number of shortest paths between p and q, denoted 

by f(w1,w2,w3), is computed as 

             (
                            

             
)  

   

 
                   

Proof. In this case the shortest path composed of 
   

 
  -steps, and one  -step. Thus, 

the total number of steps in any shortest path is 
   

 
. By Remark 1, we know that each 

shortest path in this case correspond to a shortest path with only 1-steps (in the sense 

that only those pixels are used during the path of the actual case which are included 

in that shortest path with only 1-steps). However, the mapping is not a bijection in 

this case. There could be many actual shortest paths that correspond to the same 

shortest path with only 1-steps: in fact, any one of the 
   

 
 steps can be the 1-step, and 

then, all others are 2-steps. This gives us the possibility to use multiplication rule to 

count the number of shortest paths, first we can fix a shortest path with only 1-steps 

in (                            

             
) many ways, and then, we can choose 

   

 
 different 

ways the place of the 1-step in the path. Thus, the formula of (11) has been proven.▄   
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Example 4.2. Figure 4.4 shows the number of shortest weighted paths from (0,0,0) 

to the displayed points of the grid in case 2α > β and 3α < γ. 

 

Figure 4.4: The number of shortest weighted paths between point (0,0,0) and some 

other trixels in the case 2α > β and 3α < γ. 

4.2.3 Case of 2α < β < γ < 3α 

In this case 3-steps have the smallest relative weight. Moreover, two consecutive 1-

steps give less sum of weights than a 2-step, thus, in this case 2-steps are not used in 

any shortest paths. 

Theorem 4.4 Let  ,   and   be the weights of 1-, 2- and 3-steps, respectively, such 

that the weights satisfy the conditions 2α < β < γ < 3α. Let p(x1,y1,z1) and q(x2,y2,z2) 

be pixels of the triangular grid, further, let w1=|x1 – x2|, w2 = |y1 – y2| and 

w3 = |z1 – z2| be the absolute differences between the corresponding coordinates of 

the points. Then, the number of the shortest paths between p and q, denoted by 

f(w1,w2,w3), is computed as 
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             (
             

             
)                                            

Proof. The proof consists of various cases. We start it with the case when the two 

points are in the same lane. Then the number of  -steps (and also the number of  -

steps) is zero. The number of shortest paths becomes one, having exactly one path 

through 1-neighbors between the two points in their common lane. Since 

              = 0, the formula (12) leads also to this result: 

            (
             

             
)  (

             

 
)     

Let us consider the cases when the two trixels are not lying on a common lane. 

Because of the symmetry of the grid, further we need to differentiate two cases, i.e., 

we do the proof for two of the sixths of the grid. The sixths of the triangular grid that 

we are interested in is x, y > 0 and z < 0 (2 positive coordinates and 1 negative), and 

x > 0 and y, z < 0 (2 negative and 1 positive coordinates). By mirroring these sixths 

one gets the whole triangular grid. Further, without loss of generality, we assume that 

p(0,0,0) is the origin and q(x,y,z) with the above properties. Let us consider the 

possible cases one by one.  

Case a. If the two points p(0,0,0) and q(x,y,z) are not in the same lane and x,y > 0 and 

z < 0. Further, let us assume, first that q is an even trixel and let us see how a shortest 

path is built up from (0,0,0) to q. The shortest path contains the possible maximum 

number of “  -combo” steps (any of those is a  -step followed by an  -step, such 

that both of the first 2 coordinates are increased by 1 and the third coordinate is 

decreased by 2 during such a “combo” step). Thus, the number of these “combo” 

steps equals to              . Notice that both the order and the direction of these 

steps is fixed by the coordinate values of q. In case x = y, one can reach q in this way, 
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otherwise, “double” α-steps (those are two consecutive α-steps by increasing one of 

the first two coordinates, the one that had the value              , and by also 

decreasing the value of the third coordinate). The direction and the order of these α-

steps is also fixed in a “double” step. Now, any of the shortest paths built up 

altogether by               many “  -combo” and “double” α-steps. The order 

of these combined steps, however, can be arbitrary, and               of them are 

“  -combo”. This leads to the formula that we wanted to prove. Observe that in each 

of the shortest paths in this case the last step, in fact, is an α-step, which decreases 

the third coordinate. This leads us the solution of the next case. 

The next case includes the same sixth of the grid, but q is an odd point  

(i.e., x + y + z = 1). Instead of this odd trixel, let us consider the even trixel  

q„(x,y,z-1). The number of shortest paths from (0,0,0) to q is the same as the number 

of shortest paths to q‟, in fact, there is a bijection between these sets of paths, such 

that to any paths to q the last α-step from q to q‟ is concatenated. However, in this 

sixth of the grid x and y are playing the role of               and 

              (in some order), thus the formula (12) also holds for this case. 

Case b. Let us consider the other sixth of the grid, thus let p(0,0,0) and q(x,y,z) be 

given such that x > 0 and y, z < 0 (two negative coordinates and one positive 

coordinate). First, let q be even. A shortest path contains the possible maximum 

number of “  -combo” steps (their number is              , each of them is 

increasing the first coordinate by 2 and decreasing each of the other two by 1) and 

“double” α-steps (two consecutive α-steps, their directions are also fixed by q). 

Altogether the path contains               number of those combined steps from 
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which               is “  -combo” steps. Since the order of these combined 

steps is arbitrary, the number of the shortest paths is 

            (
             

             
)  

which was to be proven.  

Finally, let us consider the case in the same sixth of the grid when q(x,y,z) is odd 

(x + y + z =1). In this case every shortest path from (0,0,0) will have the last step an 

α-step from the even trixel q‟(x-1,y,z) to q. Therefore, the number of shortest paths 

from the origin to q coincides to the number of shortest paths to q‟. However, in this 

case y and z have the values –              and –              (in some 

order) both for q and q‟, and therefore, the formula (12) gives also the number of the 

shortest paths to q. The theorem is proven.     ▄ 
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Example 4.3. In Figure 4.5, one can observe the number of shortest weighted paths 

from the pixel (0,0,0) to some other pixels in case 2α < β < γ < 3α. 

 
Figure 4.5: The number of shortest weighted paths from point (0,0,0) to some other 

points with the condition 2α < β < γ < 3α. 

4.2.4 Case of 2α = β and 3α < γ 

In this case every shortest path is built up by 1-steps and 2-steps, they are equally 

preferred, since their relative weight for changing a coordinate value is the same. 

Since 3-steps has a larger respective weight, they are not used in any shortest path. 

Moreover, every two consecutive 1-steps can be changed to a 2-step and vice versa 

without changing the sum of the weights in the path. 

Theorem 4.5 Let  ,   and   be the weights of 1-, 2- and 3-steps, respectively, such 

that the weights satisfy the conditions               . Let p(x1,y1,z1) and 

q(x2,y2,z2) be two points of the triangular grid, further, let w1=|x1 – x2|, 

w2 = |y1 – y2| and w3 = |z1 – z2| be the absolute differences between the corresponding 

coordinates of the points, and   be the sum of these absolute differences. Let FS 
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denote the S-th element of the Fibonacci sequence (starting the sequence by F0 = F1 

= 1). Then, the number of the shortest paths between p and q, denoted by f(w1,w2,w3), 

is computed as 

             (                           

             
)      (13) 

Proof. In this case a shortest weighted path may contain only  -steps, or only 

 -steps or both of them. Each  -step can be substituted by two  -steps and vice 

versa. The number of shortest weighted paths with only  -steps equals to 

(                           

             
), as we have seen in formula (9). In each of these paths 

there are exactly S  -steps. In each path, we can always substitute two consecutive 

 -steps by a  -step, such that the original path only 1-steps is clearly identifiable. 

(The obtained  -step can be broken to two consecutive  -steps in a unique way). 

Therefore, we may apply multiplication rule, first by counting the number of base 

paths with only 1-steps, and then, to count the number of paths when various number 

of 2-steps are used in various places. That is actually, the number of the possible 

orders of 1‟s and 2‟s such that their sum is S = w1 + w2 + w3. Let, then i be the 

number of  -steps (0   i  ⌊
 

 
⌋ , and each time we increase the number of  -steps by 

1, we decrease the number of  -steps by 2. Thus, there is i 2-steps, and the path 

contains totally S – i steps. Therefore, we need to sum up the values (   
 
) to get the 

number of possible ways. Actually, ∑ (   
 
)

⌊
 

 
⌋

   
   , that is the S-th Fibonacci 

number: One can see it as follows. When p = q, or they are 1-neighbors, there is 

exactly 1 shortest path, without any steps (any number) or with a 1-step (one number 

1), respectively. Also    and    have the value 1, as the initial values of the 

sequence. Now, as an induction hypothesis, let us assume that the number of possible 

orders of 1‟s and 2‟s such that their sum is S is exactly    when S < M for any fixed 
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M (where M is at least 2). Now there are exactly two ways to have such a sequence 

of 1‟s and 2‟s such that their sum is M: either the last element is a 1 or a 2 (1-step and 

2-step, respectively, considering paths). However, by the assumption, the number of 

those sequences (paths) with sum M that have a 1 as their last element is exactly 

     while the number of those that have a 2 as their last element is exactly     . 

Using the addition rule, we get that             , which is exactly the 

recursive formula for the Fibonacci sequence, thus    is exactly the M-th element of 

this sequence. Summarizing it, we have the formula what we wanted to prove: 

             (
                           

             
)∑(

   

 
)

⌊
 
 
⌋

   

 (
                           

             
)     
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Example 4.4. Figure 4.6 shows the number of shortest paths from point (0,0,0) to the 

displayed points in the case 2α = β and 3α < γ. 

 
Figure 4.6: The number of the shortest weighted paths from the Origin to some other 

points with the condition 2α = β and 3α < γ. 

Observe that if the two trixels are in a common lane (i.e.,                ), the 

number of the shortest paths between them is, in fact, the S-th (i.e., 

(         )-th) element of the Fibonacci sequence, starting with F0=F1=1. 

(Actually, as we have shown, see also, e.g., [40], the number of {1,2}-sequences 

having sum S is FS, that is the S-th element of the Fibonacci sequence.) Based on 

that, we can see the results as a kind of two-dimensional extension of the Fibonacci 

sequence. 

4.2.5 Case of 2α < β and 3α = γ 

In this case the shortest weighted path between p(x1,y1,z1) and q(x2,y2,z2) is composed 

from  -steps and  -steps, and we will never use  -steps, where the number of  -

steps is between 0 and               in a shortest weighted path. Note that a  -
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step can always be substituted by three consecutive  -steps, but the converse does 

not hold. The number of shortest weighted paths between p(x1,y1,z1) and q(x2,y2,z2), 

f(w1,w2, w3), can be computed according to four sub-cases which are given in the 

next theorem. 

Theorem 4.6 Let  ,   and   be the weights of 1-, 2- and 3-steps, respectively, such 

that                hold. Let p(0,0,0) and q(x,y,z) be two trixels of the 

triangular grid, further, let the absolute coordinate differences w1=|x|, 

w2 = |y| and w3 = |z| and the sum of them             be given. Then, there 

are the following cases for counting the number of the shortest paths, denoted by 

f(w1,w2,w3), between p and q:  

If the trixels are in a common lane, that is if                , then there is 

exactly 1 shortest path. 

If the trixels are not in a common lane then, if S is even, then 

             ∑ (
    ⁄   

             
)

             

   

(
             

 
)                     

If S is odd and q has 2 positive and a negative coordinate, then 

             ∑ (
        ⁄   

             
)

             

   

(
             

 
)                       

If S is odd and q has 2 negative and 1 positive coordinate, then 

             ∑ (
        ⁄   

             
)

             

   

(
             

 
)                        

Proof. If the points are in the same lane, clearly, the shortest path built up by 1-steps 

including each trixel between them, and there is only 1 such path. Now, let us 

consider the shortest weighted paths from point p(0,0,0) to q(x,y,z) where none of the 

coordinates of q is zero, i.e., the two points are not in the same lane. A shortest path 
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may contain  -steps only. It may contain “  -combo” steps if q has 1 negative and 2 

positive coordinates or it may contain “  -combo” steps if q has 2 negative 

coordinates and 1 positive coordinate. A shortest path may also contain many  -steps 

and also many combo steps (based on the case as they were described above). Now, 

let us consider the remaining three cases one after the other. 

When q is an even trixel, i.e., S is an even number, every shortest path is built up by 

combo steps and “double”  -steps (two consecutive  -steps). The type of the combo 

steps, i.e., either “  -combo” or “  -combo” depends on the number of negative and 

positive values among the coordinates x, y and z (as we have already described). We 

can partition the set of shortest paths to equivalent classes based on the number of 

combo steps used in them. Consequently, we will compute the number of shortest 

paths in each such blocks and we sum up those values. On the one hand, we may 

have only  -steps in a shortest path, that means that 0 combo steps are used. On the 

other hand, the maximal number of combo steps in a shortest path (since they change 

all the three coordinate values), is                   | | | | | | . When only 

 -steps are used, the number of such shortest paths is (                           

             
) 

(from Theorem 4.1). The number of shortest paths with the maximal number of 

combo steps is (             

             
) (from Theorem 4.4). In one combo step the sum of the 

coordinate changes in absolute value is 4 (3 + 1 in    and 1 + 3 in   -combo), while 

a double  -step changes 2 of the coordinates with sum 2 in absolute value, that 

implies that a combo step can be changed to two double  -steps (although the 

reverse may not hold). Let i be the number of the combo steps in a shortest path 

where                  , then the number of combo and double steps in such 
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shortest path is 
 

 
  . It is actually, 

 

 
                             double 

 -steps, if combo steps are not used: and               of them in one direction, 

while               of them in other direction (60 degree between the two 

directions). Moreover, each combo steps decrease the number of double steps by 2, 

i.e., by one and one both directions double  -steps, and therefore the sum of all types 

of combined steps by 1. In any path the used combo and double  -steps can be put in 

any order. Thus, the combination of the i combo,                 double  -

steps in one direction and                 double  -steps in the other direction, 

altogether 
 

 
   steps, gives the number of shortest paths in this block. This number 

can be written as (     ⁄   

             
) (             

 
). By summing up these values for the 

possible values of i, one gets exactly the formula (14). The proof of this case is 

finished. 

In the case S = |x|+|y|+|z| is odd and q(x,y,z) has 2 positive and one negative 

coordinate, by the symmetry of the triangular grid, we consider only x, y > 0 and 

z < 0. In this sixth of the grid, in the shortest paths “  -combo” and “double”  -steps 

can be used (to any even point). In what follows, for any even point q‟ the shortest 

path finishes with an  -step into the opposite direction than axis z, i.e., by decreasing 

the third coordinate and not changing the other two. Therefore, the number of 

shortest paths from the trixel (0,0,0) to the odd trixel q(x,y,z) is exactly the same as 

the number of shortest paths from (0,0,0) to the even trixel q‟(x,y,z 1). However, the 

number of shortest paths to q‟ is already computed in the previous case. Knowing 

that in this sixth of the grid, one of x and y plays the role of               and the 

other plays the role of               and for q‟ the sum of the coordinate 
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differences is one more than it is for q (it is S+1 for q‟), the number of shortest paths 

is proven to be:  

             ∑ (
        ⁄   

             
)

             

   

(
             

 
)  

Finally, considering the last case, because of symmetry, we use x > 0 and y,z < 0. In 

this sixth of the grid, all shortest paths to an even point q‟ built up by “  -combo” 

and “double”  -steps. To reach an odd trixel q(x,y,z) every shortest path from (0,0,0) 

has the last step as an  -step from the trixel q‟(x-1,y,z) to q(x,y,z). From this fact, it 

flows that the number of shortest path from (0,0,0) to q is the same as to q‟. 

However, the latter one is already proven and it is computed by formula (14). In this 

sixth of the grid –y and –z play the role of               and               in 

an order. Further, the sum of the absolute coordinate values is S for q, then it is S-1 

for q‟. Therefore, one needs to modify the formula (14) according to this and gets 

             ∑ (
        ⁄   

             
)

             

   

(
             

 
)  

which was to be proven. Thus, each case of the theorem is proven.   ▄ 
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Example 4.5. In Figure 4.7 the number of weighted shortest paths from the origin 

(0,0,0) to some points are presented in case of 2α<β and 3α = γ.  

 
Figure 4.7: The number of shortest weighted paths from point (0,0,0) to all other 

displayed points in the case of 2α < β and 3α = γ.  
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Chapter 5 

CONCLUSION 

In this work (second chapter), we have presented two types of n-nomial coefficients: 

to differentiate them, the terms multinomial and polynomial coefficients are used. 

We have interpreted both types of coefficients in terms of numbers of shortest paths 

using various neighbourhood relations in various grids. Connected to the first type, 

we have discussed n-nomial expansions which have n distinct variables, and as a 

special case trinomial-multinomial coefficients. We have shown also formulas to 

compute trinomial- and quadrinomial-polynomial coefficients which are found in 

trinomial- and quadrinomial-polynomial expansions (using various powers of only 1 

variable), respectively. Connection to counting number of shortest paths has also 

been shown. While in the multinomial case, the dimension of the grid is changed, at 

the case of polynomial coefficients counting the shortest path in the 2D grid but with 

an extended neighbourhood was considered. We have also underlined the connection 

between the two types of coefficients, especially, e.g., by a formula for trinomial-

polynomial coefficients in terms trinomial-multinomial coefficients: in both cases the 

number of shortest paths of previously computed three neighbours are summed, but 

while in the multinomial case the directions are independent, in the polynomial case 

we are still in 2D. 

We should also mention that in [46], another kind of extension of the binomial 

coefficients was shown which allows also negative numbers, consequently, the 
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Pascal‟s triangle is expanded to the Pascal‟s hexagon. We also note that counting 

only paths satisfying a given restriction, as, e.g., determining the Catalan numbers, 

has also various extensions. To consider and compare these extended variants of 

Catalan numbers is a topic of a future work. 

Then (in the third chapter, based on [47]), number of shortest paths in the square grid 

using chamfer distance has been discussed. These shortest paths can be represented 

by trajectories on the digital grid. A combinatorial problem, the number of shortest 

paths is computed in various scenarios. The numbers of shortest paths with the 

cityblock and chessboard metrics were already known [42]. However, we have 

presented results for a much larger class of digital distances, for chamfer distances, in 

this way our study can be seen as a generalisation of these previous results. Digital 

distances can be used in various ways in communication networks [31], and they are 

also related to combinatorial problems. For example, the number of shortest paths 

gives important features of a network. Results on the number of shortest paths for 

neighbourhood sequence distances were presented in [43, 44], in this sense, we have 

completed the picture by presenting here analogous results for the other type of 

widely used digital distance family. In this thesis, we have analysed rigorously all the 

cases to find the number of minimum weighted paths between any two points in a 

square grid. The cases depend on the value of weights given to cityblock steps (α 

steps) and diagonal steps (β steps). We have discussed five cases with positive 

weights and two cases when weight zero is allowed. We have seen that the results 

obtained in them are pairwise different. By Table 1 one can also be sure that there are 

no more cases, all the possibilities to have positive and/or zero weights for both 

cityblock and diagonal steps are discussed. Our results with positive weights are also 

displayed in 3D graphs, which show how the resulting functions grow. In most cases  
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the functions have strong monotonic behaviour as one goes further from the origin.  

 

The cases of β > 2α and β = 2α show very similar behaviour (see Figure 3.3 and 3.7). 

The case of α < β< 2α does not seem to relate to any other cases (Figure 3.5). Case of 

β = α, displayed in Figure 3.9, shows some relation to the case of β < α, however this 

latter is more complicated than the others, see Figure 3.12. We highlight the results 

of this case, i.e., when the diagonal steps have less weight than cityblock steps. As 

we have seen, the result is described by two different functions depending on the 

parity of the sum of the coordinate differences of the points, thus it does not behave 

in a monotonic way. We have shown also the cases when zero weight is allowed. If 

the cityblock step has zero weight, all the distances become 0. Contrary, if only the 

diagonal movements are without cost, but the cityblock steps have a positive weight, 

then somewhat similarly to the case of β < α, the result is not monotonous, but given 

by two different values alternating for the points of the grid. Our results are useful in 

network analysis, in digital image processing and in shape analysis. We believe that 

it is important also for application point of view to consider all the possible cases 

depending on the possible values of the weights. The number of shortest weighted 

paths between points that contain a given point or a set of given points can be 

discussed in the future. For example, if we have path s,…,b,…,t, then it can be 

Table 1: The discussed cases for the weights α and β. 

 

 

 

 

 

 

 

Condition 

O n l y      p o s i t i v e      w e i g h t s   

2α < β 2α = β α < β < 2α α = β β < α α = 0  β α > β = 0 

Case /subsection 3.1 3.3 3.2 3.4 3.5 3.6.1 3.6.2 
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computed how many shortest paths between s and t contain b. Extensions to higher 

dimensional or other grids (architectures) can also be done in the future. 

The fourth chapter of this thesis (based on [48]) discusses five of the most popular 

cases for the number of shortest weighted paths between any two pixels in the 

triangular grid. The number of these paths depends on the weights           of the 

movements from the pixel to its various types of neighbors. In Subsection 4.2.1,   is 

preferred, it has the smallest relative weight for changing a coordinate value in a 

path, and thus, no shortest path contain any  - and  -steps. In Subsection 4.2.2,  -

steps are preferred,   has the smallest relative weight for changing a coordinate value 

in a path, and thus, no shortest path contain any  -steps (and at most one  -step is 

used, since we may need to change the parity when we are looking for a shortest path 

between an odd and an even trixel). In contrast to this, in Subsection 4.2.3  -steps 

are not used at all, in fact  -steps are preferred (even by adding also many  -steps 

because of the parities of the trixels). In the case considered in Subsection 4.2.4,  -

steps and  -steps are equally preferred, and no  -step can occur in a shortest path. In 

our last studied case,  -steps and  -steps are equally preferred, and no  -step can 

occur. While in some cases the computation results clearly well-known binomials, 

the structure of the grid give some more interesting cases. We have seen that based 

on the case 2α = β and 3α < γ one can define two dimensional extension of the 

Fibonacci numbers. We believe that the cases presented here are among the most 

basic and usual ones: we have studied the cases, when exactly one or two types of 

steps are not preferred, and therefore they have not appear any of the shortest paths. 

However, there are also some other interesting cases that can be discussed later on, 

e.g., when      and     , when all the three types of steps are equally 
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preferred. Other possible future task is to consider “inhomogeneous” distribution of 

the weights, which causes to count the number of shortest weighted paths of one case 

concatenated by shortest weighted paths of other case. A somehow connected result 

was discussed in [37]: “digital disks” were defined and used to approximate the 

Euclidean disks, where the set of gridpoints having less (or equal) distance than a 

given radius from a given gridpoint defined the digital disk.  
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