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ABSTRACT 

The logistic growth concept investigated by many researchers has wide applications 

in different fields. An exact solution to the logistic growth problem can always be 

obtained using the first order differential equation.  However, this is not always 

possible when the fractional order of derivative is used.  

This work investigated the use of deterministic and probabilistic approaches for 

modeling the logistic growth models. The deterministic model was built using 

classical and fractional differential equations. Hadamard type fractional derivative 

and integral were used to prove the existence and uniqueness of the solution to the 

fractional logistic differential equation using theorems. Numerical methods were 

employed to approximate the solution in the fractional case since it has no analytic 

form. The probabilistic approach used by employing the Gaussian kernel smoothing. 

A comparison of deterministic and probabilistic methods performance in modeling 

the logistic growth concept, minimum error levels were achieved with the fractional  

method, and Gaussian kernel smoother method with bandwidth 22.     

Keywords: Gaussian kernel, optimal bandwidth, fractional differential equation, 

Hadamard derivative, Caputo-Fabrizio, Grünwald-Letnikov, generalized Euler 

method, carrying capacity.  
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ÖZ 

Birçok araştırmacının üzerinde çaliştığı lojistik büyüme kavramı pek çok farklı 

alanda uygulanabilir. Birinci dereceden diferansiyel denklemler kullanılarak, lojistik 

büyüme problemlerinin tam çözümü mümkündür. Ancak, kesirli diferansiyel 

denklemler kullanıldığında tam çözüm bulmak mümkün olmayabilir. 

Bu çalışmada lojistik büyüme kavramının modellenmesi deterministik ve 

probabilistik yaklaşımlarla araştırıldı. Deterministik model, klasik ve kesirli 

diferansiyel  denklemler kullanılarak tayin edildi. Hadamard türü kesirli differansiyel 

ve integral kullanılarak  kesirli diferansiyel türü lojistik denklem için tek çözüm 

olacağı teoremlerle ispatlanmıştır. Analitik çözümün elde edilemediği kesirli 

durumlar için, nümerik yöntemlerle yaklaşık değerler bulunmuştıur.  Probabilistik 

yaklaşımda Gauss kernel düzleştiricisi kullanılmıştır. Lojistik büyüme modellenmesi 

sürecinde kullanılan deterministik ve istatistiksel yöntemler, tahmin işleminde ortaya 

çıkan hatala gözönünde bulundurularak  karşılaştırılmıştır. En düşük hatalar Kesirli 

üssel metod ve Gauss kernel düzleştirici metodunda band genişliği 22 iken elde 

edilmiştir.  

Anahtar kelimeler: Gauss kernel, optimum band genişliği, kesirli diferansiyel 

denklem, Hadamard türevi, Caputo-Fabrizio, Grünwald-Letnikov, genelleştirilmiş 

Euler metodu, taşıma kapasitesi.  
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Chapter 1 

 INTRODUCTION 

Applied mathematics focuses on mathematical modeling of various processes from 

all fields of life. Approach used in applied mathematics consists of design, analysis 

and simulation of models. Models are often built upon a problem from different 

fields such as biology, physics, chemistry, economics or any other field of study [10].  

In general, models are defined with the aim to propose a general solution to 

particular type of problems. In this respect a well designed model with solid 

mathematical proof of their efficiency are often adopted unanimously by researchers 

worldwide. Hence, some scientific phenomena are identified by the model upon 

which they are built. For instance the Malthusian model [9], also known as 

population growth model was introduced by Thomas Malthus. Prior to a 

phenomenon modeling, it is always required to make some assumptions based to 

experimental observations. Failure to undertake the right assumptions might lead to 

poor model. Natural phenomenon modeling usually undergoes through an iterative 

process consisting of model validation followed by improvement and finally 

identification of model limitations [10].   

Technically, models are classified into two subcategories, which are deterministic 

model and non-deterministic models that may be probabilistic or stochastic in nature. 

In the deterministic model, the assumption is that the initial state of the model is 

enough to determine all other states of the process [10].This means randomness is 
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ignored, whereas in the probabilistic and stochastic models randomness is taken into 

account.   

The use of differential equations in modeling was introduced more than a century 

ago.  Kuang [72] studied population growth modeling using a large range of 

differential equation. Ordinary Differential Equations (ODE) and Partial Differential 

Equations (PDE) whether classical or fractional are used as main tools in building a 

deterministic model. ODE usually involved a single variable. Generally experimental 

data set involving a single variable is considered and the model is built upon it.  PDE 

involves more than one variable. It is common to have time and space as variables in 

modeling. This is because many systems change over time or space. However, there 

are many other variables that can be involved in modeling such as temperature, 

strength of a material, height etc. Differential equations and their solutions are 

surrounded by some conditions. For instance it is fundamental to prove the existence 

and uniqueness of the solution to a problem to some extend that scientists refer to as 

‘principle of determinism’ [11].  

Sometimes it is difficult or even impossible to provide exact and explicit solutions to 

ODE and PDE, in which case numerical approaches to solve those problems are 

suggested. This usually concerns non-linear differential equations, which analytic 

form of their solutions are difficult to establish. In many research works, the goal is 

to optimize the numerical approach in order to minimize the error term. Scientific 

computing is the field that focuses on writing algorithms for numerical computation. 

While using numerical approach to solve differential equations, it is necessary to 

study the stability and prove the convergence of the algorithm [12].   



 

3 

 

Probability theory studies the randomness in a process. Probability laws and models 

are often able to appraise and explain random variation in natural phenomena. 

Random variations occur in natural phenomena as a result of unknown or 

unpredictable cause. However, stochastic processes aim to quantify the dynamic of 

the relationship among sequences of random events [13].  Stochastic models are 

often driven by probability laws. In general, the role of probability laws in a 

stochastic model is to formally provide a framework within which the randomness of 

a variable can be appraised. In other words, stochastic model tries to appraise the 

uncertainty of an event. In general statistical modeling focuses on providing 

necessary tools for the modeling of data set while considering the random nature of 

the variable.  

Modeling of some natural phenomena is possible through the combination of two 

approaches. Hence, it is required in some cases to combine both deterministic and 

stochastic methods to be able to model a problem. Stochastic Differential Equations 

(SDE) are used for this purpose. This category of differential equations contains a 

random element [14]. Fundamentally the difference between ODE and SDE is that, 

solution to ODE is functions whereas a solution to a SDE is given in term of 

probability density due to the randomness in the model. The main interest in SDE is 

to study the average behavior of the system variation.    

During the past three decades, researchers focused on the Fractional Differential 

Equations (FDE) that was theoretically introduced back in 19
th

 century. FDE differs 

from the ODE by its type of derivative. Existential theory of FDE is studied by many 

in literature [15]. In fact, derivative order is assumed to be a fractional number in the 

case of FDE. It has been proven by researchers that FDE sometimes is more efficient 
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than ODE in modeling. A set of examples are given in [31] supporting the claim 

about the advantages of fractional differential over the ordinary differential equation 

in modeling.  

In this work modeling of some commonly known phenomena using both 

deterministic and non-deterministic approaches is undertaken. In the deterministic 

case ODE, FDE are used, while in the non-deterministic case Smoothing approach is 

employed. Model comparisons are provided in some cases for performance 

evaluation. The work is divided into six chapters organized as follow. The current is 

the introductory chapter; it is followed by a review of existing work. Chapter 3 is a 

review of fractional calculus tools needed in the work.  Chapters 4,5 and 6 are core 

case studies, which contents are summarized as follows. 

Chapter 4 studies deterministic model known as the logistic growth model. 

Hadamard derivative and integral were used to prove the existence and uniqueness of 

the solution of the Fractional Logistic Differential Equation (FLDE). Previous works 

have shown that there isn’t an analytic solution to the FLDE. Therefore, some 

numerical approaches such as power series expansion (PSE) method, generalized 

Euler’s method (GEM) and Caputo-Fabrizio (CF) method were used to find an 

approximate solution. The classical solution obtained from the first order non-linear 

differential equation was also considered for error comparison. 

Chapter 5 studies logistic growth model. The  -Caputo model is built using the 

Rayleigh function as kernel function. The study focuses on a special case when the 

population carrying capacity K tends to infinity. The existence and uniqueness of the 

solution to the defined problem using the  -Caputo method is proven. The Chinese 
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population is taken as a case study, which has a carrying capacity K that tends to 

infinity. As a result, the proposed  -Caputo approach with Rayleigh kernel fits 

population with K that tends to infinity better than the usual logistic growth equation.  

In application many data sets do not exhibit a certain pattern or model. Therefore, the 

use of nonparametric smoothing methods is employed to fit a function that best 

represents the variable of concern. Chapter 6 is a comparative study of the logistic 

growth model using both deterministic and non-deterministic approaches. The 

Logistic Growth Model (LGM) is fitted using a statistical approach known as kernel 

smoothing using the Nadaraya Watson estimator [73].  World population from 1910 

to 2010 is used as a case study data [74]. The same data is modeled using ODE and 

FDE, which are commonly used deterministic methods in exponential and logistic 

growth modeling. A comparative study on their performances was undertaken and 

results show that the kernel smoothing gives better estimates compared with other 

methods used. The choice of optimum bandwidth is obviously essential for the 

success in kernel estimation.  

Concluding remarks of the study are in Chapter 7.  
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Chapter 2 

LITERATURE REVIEW ON MATHEMATICAL 

MODELING 

There is a rich collection of research works in literature related with natural and 

physical phenomena modeling. Models are built using experimental data and process 

description. In some cases, existing models are used to fit a given phenomenon. 

Consistent and mathematically proven models are generally adopted as reference and 

used to solve problems similar to the problem upon which the model was built. In 

this review, attention is paid to logistic growth model and smoothing model among 

others.  

Tashiro and Yoshimura [1] studied bacteria growth based on a modified logistic 

model they have introduced and called neo-logistic model. They first of all identified 

four phases of the bacteria growth, when a culture is enclosed in favorite liquid 

environment with a unique nutrient. These phases are the lag phase, within which the 

germs adapt to their new environment with no growth observed. The second phase is 

called exponential phase, during which the bacteria grow exponentially. The third 

phase is called stationary phase, during which the number of bacteria is saturated 

and the growth stops; and finally death phase, during which there is a continuous 

decline of the bacteria number in the culture. The authors highlighted the fact that, 

for the four phases, the model presents an S-shape. However, the fourth phase is 

often neglected and the growth is represents by either a logistic model or Gompertz 
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model. Authors contributed in the study by considering the fourth phase which is 

often neglected. The iterative construction of the logistic growth equation was done 

based on the relations between the number of bacteria and the volume of substrate 

absorbed by bacteria. Hence the iterative variation of the number of bacteria and the 

number of substrate cubes are given respectively by following equations 

1 3 3

3

1 2

         

k k
k k k

k
k k

SC SC
BC BC BC

n n

SC
BC BC

n

 





 
   
 

 

,                                (2.1) 

1 3

k
k k k

BC
SC SC SC

n



  ,                                            (2.2) 

where 
k

SC  and 
k

BC  are the number of substrate cubes and bacteria at the time k, 

respectively. The quantity n
3 

 is the number of space cubes into which the space is 

divided, and   is a constant.   

Differential equations of the model are built from Eq.(2.1) and Eq.(2.2) by dividing 

both by the time variation unit t , and taking the limit 
3

0

1
lim
n
t

t n




 


 

. At the 

limiting case, it appears that  

 
   

dBC t
SC t BC t

dt
 ,                                           (2.3) 

and 

 
   

dSC t
BC t SC t

dt
  .                                         (2.4) 

It was revealed that the total amount of substrate cubes and bacteria are converged 

toward infinity following the conservation equation  
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   BC SC t BC t

  .                                              (2.5) 

Substitution of Eq.(2.5) into Eq.(2.3) leads to the bacteria growth logistic model 

defined by  

 
    

dBC t
BC BC t BC t

dt



  .                                      (2.6) 

Eq.(2.6) is known as the logistic model. The authors’ proposal in [1] to build what 

they called neo-logistic is derived based as shown in what follows. It is worth 

mentioning terminology and meaning of the terms used. In what follows, ‘rank’ is 

used to refer to the quantity in number of substrate cube the culture has absorbed 

from the initial time to the first cell division. Hence absorption of each additional 

substrate will increase the bacterium rank of one unit starting from its initial rank 

which 0. Moreover, bacteria with rank n are produced from bacteria with rank n-1, 

hence any bacteria of rank k doesn’t decrease, which motivated to write a recursive 

formula similar to Eq.(2.1) as  

1

1 3 3 3

1

1 3 3

1 1 2

1 3 3

0 0

1 3

1 2

;

1 ;

                                 

1

n n n nk k k
k k k k

n n n nk k
k k k k

n n nk k
k k k

k
k k

SC SC SC
BC BC BC BC

l l l

SC SC
BC BC BC BC

l l

SC SC
BC BC BC

l l

SC
BC BC

l

  

 

 











  





 
    
 

  

 
   
 

 
  
 



                   (2.7) 

1 3
0

 
jn
k

k k k
j

BC
SC SC SC

t





    ,                                                (2.8) 

where 
k

SC  and 
k

BC  are the number of substrate cubes and bacteria at the time k, 

respectively. l
3
 is the number of spaces cubes into which the space is divided and   

is a constant.   
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The model differential equations is obtained from Eq.(2.7) and Eq.(2.8) by taking the 

limits values as l and 0t   . 

 
       

 
       

 
   

 

 







 

  

  

 



1

1

1 2

0

0

;

;

.

n

n n

n

n n

dBC t
SC t BC t SC t BC t

dt

dBC t
SC t BC t SC t BC t

dt

dBC t
SC t BC t

dt

                     (2.9) 

 
   

0

n
j

j

dSC t
BC t SC t

dt




    .                                                  (2.10) 

Eq.(2.9) and Eq.(2.10) are called neo-logistic model. Moreover, the total number of 

bacteria in the bacterium at time t is  

   
0

n
j

j

BC t BC t


  .                                                    (2.11) 

There are analogies between the classical logistic model and the neo-logistic model 

proposed here. For instance Eq.(2.3) and Eq.(2.4) appear as particular cases of 

Eq.(2.9) and Eq.(2.10) respectively when the bacteria rank n=0.  

 It is sometime difficult to fit data collected from a process using a single model. Due 

to some modifications that can happen during an experiment or a process, the shape 

of the collected data might change. Harris et al. [2] studied the US energy 

consumption data between 1949 and 2015.  Interestingly, the data shows a double ‘S-

shape’ in a form of two logistic equations put together, see Figure 2.1.  
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Figure 2.1: US energy from 1949 to 2015 and forecast to 2040 [2]. 

The authors proposed a four-parameter multi-cycle logistic growth model to fit and 

to forecast the US energy data shown above. The four-parameter logistic function 

proposed is given by  

  2

( )exp

1 exp

Z Z

t N
K H

h
P t

t N
Q

h

 
  

 
   
   

  

,                                             (2.12) 

where P is annual based production rate. ZH  represents the cumulative production 

low-plateau and ZK  represents the cumulative production high-plateau. The time t is 

the production year. h is the all in years width factor, N is the growth Midpoint.   

An application of logistic modeling in Biology was studied by Banks et al.[3] . They 

studied logistic growth of the green algae. In their study, the usual logistic growth 

equation was considered, with application to data set collected from a population of 

green algae. The authors focused on the residuals data observed during modeling. 

With regard to this they built a 95% confidence interval of the fitting parameters of a 

logistic growth model, which are: the initial population size, the growth rate and the 

carrying capacity. This confidence interval can be used in the estimation of the whole 
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population growth. The confidence interval was developed admitting that there is a 

random error term between the collected data set and the estimated data. In order to 

evaluate the error due to measurement, the following statistical model is used 

   0 0, ,i i i iY g x g x


                                              (2.13)  

Where i=1, 2,…, n and n is the sample size; iY  are the observation;   is a constant  ; 

 0,ig x   is the fitting function of the data set; i  is the identically and 

independently distributed noise data causing deviation between observed values and 

model fitted value. Moreover 
i
 is a zero mean random variable, that is   0iE    

and variance   2

0var i  .
0

 is simply an hypothesized ‘nominal’ or ‘true’ vector of 

parameter generator of the observations iY . When the constant 0  , Eq.(2.13) is a 

special case called Ordinary Least Squared estimator (OLS). 

Logistic model also find its application in economy. A country’s Gross Domestic 

Product (GDP), tends to grow under favorable economic conditions, and decline 

under adverse economic conditions. However, when it comes to GDP growth, it is 

important to mention that, although many countries present a continuous growth of 

their GDP over years, there is a saturation point. Researchers are not always in 

agreement about the modeling of GDP. Some claim that exponential model is 

suitable whereas other are convinced that logistic model is appropriated. Kwasnicki 

[4] proposed a framework in which he provided criteria that would help to decide 

when to use Exponential growth or logistic growth. In general, it is observed that the 

approach is more intuitive and explicative. It is not based on any direct mathematical 

formula manipulation. However error evaluation tools are proposed by the following 

formulae  
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 
max

0

2

1

max 0

1
( ) ( )

1

x

x x

E y x y x
x x 

 
 

                                  (2.14) 

max

0

2

2

max 0

1 ( ) ( )

1 ( )

x

x x

y x y x
E

x x y x

 
  

   





                              (2.15) 

0x  is the initial time and maxx  is final time of the data observation. ( )y x  is the true 

data value ; ( )y x  is the fitted data value. Eq.(2.14) and Eq.(2.15) are respectively 

called Mean Squared Error and Relative Mean Squared Error.  

Reliability test is important in every goods or services provider in industry. This 

means goods and services can sustainably be sold and purchased only if they have 

been proven reliable. For example in software industry, a reliability test is essential. 

Software testing is a tedious and time consuming task. After highlighting the fact that 

the existing testing approaches require heavy resources financial and/or human 

resources, Chin-Yu [72] has proposed a logistic based model to analyze 

performances of software reliability growth models. His model established the 

testing-consumption effort  C t , in a cumulative form defined as  

 
 

 

1/

1 /

1 exp
C t N

B t



 



 
     

,                              (2.16) 

where N is the amount of testing-efforts to be consumed, is the rate at which the 

testing-effort is consumed,  B  and   are constants, and   is the structuring index.   

Gompertz model [5] and Logistic model are famous for their use in population 

growth modeling. They both have similar properties such as their S-shape. They also 

have property that differentiates both of them. For instance the Gompertz generating 
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function is symmetric whereas the logistic generating function is asymmetric. It is 

clear that failing to select the right model in modeling a particular population growth 

will lead to a bad forecast. Nguimkeu [5], proposed a selection criteria that would 

help choosing the right model for a given population growth modeling. The criteria 

are derived as follow. Consider the logistic and Gompertz trend functions given 

respectively by  

 
  

1

2 31 exp
L t

t



 


 
,                                    (2. 17) 

    1 2 3exp expG t t     ,                            (2. 18) 

where 1 , 2 , 3 , 1 , 2 ,and 3 are all constants. Differentiating Eq.(2.17) and 

Eq.(2.18)  following by rearrangement of their terms will respectively lead to 

Eq.(2.19) and Eq.(2.20) as follow 

 

 
    3 1ln ln

L t
L t

L t
 


   ,                                 (2.19) 

 

 
  3 1

G t
G t

G t
 


                                        (2.20) 

It follows from Eq.(2.19) and Eq.(2.20) that a simple linear representation of the 

logistic Eq.(2.7) and  Gompertz Eq.(2.18) are given respectively by  

 1 2 1 1lnt t ty c c Y v   ,                                          (2.21) 

and 

1 2 1 2t t ty d d Y v    ,                                                      (2.22) 

where tY  is the variable of interest it can be G(t) or L(t), and the quantity 

1

1

t t
t

t

Y Y
y

Y






  represents a relative increase in tY  , the error term is tv . 
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A comprehensive but artificial linear model that plays the role of both Eq.(2.21) and 

Eq.(2.22) is given by 

 1 2 1 3 1lnt t t ty b b Y b Y v       .                                 (2.23) 

Fractional Differential Equation is a widely used tool in modeling nowadays. The 

exact solution to fractional logistic equation defined as  

      1tD f t f t f t   ,                           (2. 24) 

was first proposed by West B.[6] in the form of  the following  power series function  

   0

0 0

1
k

k

f
f t E k t

f

 

 




 
  

 
  .                             (2.25) 

However Area et al.[7] have proven that the proposed solution, Eq.(2.25) fails to be 

correct for the fractional case, rendering West’s claim incorrect. This has drawn the 

interest of many authors putting effort towards the solution of the fractional logistic 

growth problem. A set of numerical schemes to approach the solution of the 

fractional logistic equation is found in [8].  

It is difficult to forecast the outcome of a random process. However, it is possible to 

appraise it using probability theory. Once the shape of the process is built based one 

experimental data, Kernel smoothing can be used to smooth the data set into a 

smooth curve. In practice, there exist many random phenomena. An example is the 

variation of wind speed. Bo et al. [16] proposed a review of existing smoothing 

method and proposed an application to wind speed modeling. 

It is difficult to forecast future outcome in a random process. However, once the 

probabilistic law governing a process is defined, then the process can be monitor. 
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Monitoring consists of setting lower limit and upper limit of the possible outcome, in 

an optimal way. If a process is multivariate, then principal components analysis 

might be useful to identify the main axes of variation. Chen et al. [17] proposed a 

model for process monitoring combing principal components analysis and kernel 

smoothing. 

Currency fluctuation, country’s economy, portfolio investment are modeled by the 

meaning of stochastic process. Portfolio risk management and price derivative in 

finance require high precision in estimation. Hong et al. [18] proposed in their work 

a kernel smoothing based framework of portfolio risk management.  They found out 

that although the kernel smoothing is a weak performer for a process with few risk 

factors, it performs very well for portfolio with high number of risk factors.  
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Chapter 3 

ELEMENTS OF FRACTIONAL CALCULUS 

The name fractional calculus comes from the fact that the integral and derivative 

orders are fractions or decimal numbers rather than the commonly used integers. 

Early work on fractional calculus dates back to early 19
th

 century [19]. Researchers 

initially focused on proving existence and uniqueness of the solution to a fractional 

differential equation [20, 21, 22]. Discussion on the theory of fractional calculus can 

be found in [23, 24, 25]. 

In this chapter, some useful fractional calculus definitions and theory are discussed. 

These definitions, properties and theorems only represent a very small part of 

fractional calculus literature. However, the selected topics represent the set of useful 

tools needed in the course of this work. One might not start such discussion without 

mentioning the Mittag-Leffler function which is a generalization of the classical 

exponential function. This function plays a key role in fractional calculus. The 

Mittag-Leffler function usually appears in the representation of the solutions of 

fractional differential equations. 

3.1 Basic Definitions and Theorems 

Definition 3.1 [26] The one parameter Mittag-Leffler function is defined by  

 
 0 1









 


i

i

t
E t

i
,                                                (3.1) 
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where 0   and t . The functional  . is the well known gamma function. 

When 1  , then Eq.(3.1) coincides with the classical exponential function 

 
 

1

0

exp( )
1





 
 


i

i

t
E t t

i
 .                                       (3.2) 

This shows that the exponential function is a special case of the Mittag-Leffler 

function, in other words, Mittag-Leffler function is a generalization of exponential 

function [26].  

Definition 3.2 [26] The two parameter Mittag-Leffler function is given by  

 
 

,

0

 
 






 


i

i

t
E t

i
,                                           (3.3) 

where , 0    and t .  

A similar reasoning to what leads to Eq.(3.2) can be adopted to derive classical 

exponential function from the two-parameters Mittag-Leffler function. In fact, for

1  and 1   , Eq.(3.3) becomes  
 

1,1

0

exp( )
1





 
 


i

i

t
E t t

i
. Many others special 

functions can be derived for specific values the parameters  and   . These are for 

instance, the cosine function 

 
 

 
 

2

2

2,1

0

1
cos

2 1

k k

k

t
E t t

k






  

 
 ; 

 The cosine hyperbolic function  

 
 

 
2

2

2,1

0

cosh ,
2 1

k

k

t
E t t

k





 
 

  

and 
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 
 

 
  

0.5

0.5 0.5

0.5,1

0

1
1

0.5 1

k k

t

k

t
E t e erf t

k






    

 
 ; 

where  
2

0

2 t
xerf t e dx



  , t  is called the error function . The error function 

can also be defined in a complement form as    1erfc t erf t  . 

The Mittag-Leffler function is a family of functions; hence it is worth studying some 

proprieties of its asymptotic behavior and its integral representation. The integral 

representation of the Mittag-Leffler function is useful in deriving some properties, as 

well as for its asymptotic behavior. 

Definition 3.3 [26] Consider the two-parameter Mittag-Leffler function with 1 

and 0 2   ; or simply the one parameter Mittag-Leffler function, then the 

following integral representation are possible 

 
 

 

1/ 1 /

,

;

1
,

2

x

c

e x
E z dx

i x z

  

 

 
 




 .      ;  

   ;z G  


                           (3.4) 

 
 

 

1/

1/
1 /

,

;

1 1

2

x
z

c

e x
E z e dx

i x z




 

 

 
  



 
 , 

   ;z G  


                      (3.5) 

where  ,c    is the integral contour defined such that  min ,
2


    .   

Asymptotically, that is when z  , the Mittag-Leffler function can be represented 

by the mean of power series and residuals (O notation) [84]. Such representation is 

useful in the implementation of computational algorithm.   
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Definition 3.4 Consider the one-parameter Mittag-Leffler function with 0 2 

and  min ,
2


    . Then the following asymptotic formulas hold  

 
 

 
1/ 1

1

1

1

nq
qz

n

z
E z e O z

n




 


 



  
 

 , arg z  ,   z       (3.6) 

 
 

 1

1 1

nq
q

n

z
E z O z

n





 



  
 

 , arg z   , z                  (3.7) 

with q , a randomly selected integer.  

Under the conditions of proposition 3.4, if 2   , the asymptotic formula is given by  

 
 

 
2

11/

1

1
exp

1

i nq
q

n

z
E z z e O z

n


 


 


 



 
   

  
  ;                    (3.8) 

where arg z  ; z  , with   : , 2 arg
2

P z k k k z


 
 

     
 

 , and 

arg z     . 

The Mellin-Barnes representation of a one-parameter Mittag-Leffler function, with 

0  , is the following 

 
   

 
 

11

2 1
ih

tt t
E z z dt

i t



 

  
 

  , arg z  .                                (3.9) 

The contour over which the integration is carried ih , is a straight line from h i  to

h i   ; with the constant 0 1h   . 

In the section below, it is usually assumed that the variable z . Special properties 

of Mittag-Leffler function can be studied for real valued variables.  
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Definition 3.5 [26] Let a function g be a real-valued absolutely integrable on the 

open interval  0, ,its Laplace transform is defined as  

    
0

uxLg u e g x dx


  .                                                (3.10) 

The following Laplace integral relation exists with the one parameter Mittag-Leffler 

function  

 
0

1

1

te E t z dt
z






 

 , 0  .                                     (3.11) 

The Laplace transform of  E x   is obtained from Eq. (3.11) by setting t z x    

as follows 

     
1

0 1

ux u
L E x u e E x dx

u


 

  




   
 .                              (3.12) 

The main tools in modeling a dynamic process are derivative and integral. This 

section reviews the special type of derivatives and integrals, namely, fractional 

derivatives and integrals. 

Definition 3.6 [27] The Riemann-Liouville fractional integral of order 0q  of a 

function  : 0, g  is defined as  

  0RL

qI g t =
 

   
1

0

1
,




 
t

q
t s g s ds

q
                                  (3.13) 

provided that the right hand side of the integral is point wise defined on  0,  and 

 is the gamma function   1

0

 , 0 


    
te t dt . 
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Definition 3.7 [27] The Riemann-Liouville fractional derivative of order 0q  of a 

function  : 0, g  is defined as 

  
 

   
1

0

0

1
,

  
  
   


t

RL

n
n qq

n

d
D g t t s g s ds

n q dt
                      (3.14) 

where 1 ,  .   n q n n  

Definition 3.8 [27] The Caputo derivative of order 0q  for a function

 : 0, g  is defined as  

  
     

 
   

1

00

       , 1 ,
Γ

                          ,       ,  

n qt n

q

n

C

t s
ds n q n

n qD g t

g t q

g s



  
  

 







 



               (3.15) 

where    1,   n q q is the integer part of q .  

Definition 3.9 [23] Let g be a continuous function and ,



t a

n
h  then the Grünwald- 

Letnikov (GL) fractional derivative of g  is given by  

      
0

0

1
lim 1 ,

 
 
 




 
   

 


t a

h
jq

qaL
h

G

j

q
D g t g t jh

jh
             (3.16) 

where 

 

 

   

1!
= , and 1.

0! ! 1 1

    
    

        

q qqq

j j q j j q j
 

Definition 3.10 [28] Given an Hilbert space  1 , ,H a b b a , Let  1 , ,g H a b and 

 0,1q then the new Caputo version of fractional derivative of g is defined as  



 

22 

 

  
 

 
   0 exp

1 1

t

q

C

a

F

M q q
D g t g s t s ds

q q

 
   

  
 ,                 (3.17) 

where  M q is the normalization function with    0 1 1 M M . If  1 ,g H a b

then, a new fractional derivative can be built. It is called Caputo-Fabrizio fractional 

derivative [28], and it is defined as  

  
 

 
   0 exp

1 1

q

CF

tM q q
D g t g s t s ds

q q


 
   

  
 .                          (3.18)  

The Caputo-Fabrizio fractional derivative is a derivative with non-singular kernel. 

This is the fundamental difference and advantage it has over other type of fractional 

derivatives [28]. 

Caputo-Fabrizio fractional derivative definition can be extended to a class of 

function that don’t belong to  1 ,H a b  . In fact given a function  1 ,g L d  and a 

fractional order derivative 0 1q < , the Caputo-Fabrizio fractional derivative of g , 

is given by  

 
 

      
( )

exp
1 1

x

q

CF x

qM q q
D g x x t g x g t dt

q q


 
    

  
  .                       (3.19) 

The Caputo-Fabrizio fractional derivative also has the advantage that it coincides 

with the classical derivative when the order the derivative q  approaches the value 1; 

and it is a definite integral when the order of derivative q  approaches the value 0.   

Proposition 3.11 Considering the Caputo-Fabrizio fractional derivative given by 

Eq.(3.18) and Eq. (3.19), the following relations [28] are correct  
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i) 
1

( ) ( )q

CF x
q
Lim D g x g x


 , 

ii) 
0

( ) ( ) ( )q

CF x
q
Lim D g x g x g a


  . 

Proof of Proposition 3.11 

Setting 
1 q

q



 , leads to 

1

1
q





;  with 0 1q  , then it follows that 0   . 

Based on these setting, Eq.(3.18) can be written as  

 
 

 
( )

exp ,

x

q

CF x

a

x tN
D g x g t dt



 

 
  

 


                      

(3.20) 

where the normalization function of the new form of derivative, ( )N   is such that 

(0) ( ) 1N N   . Observe that when 1q  we have  0 . Moreover,   

 
 

0

1
exp

x t
Lim x t



 

 
   
 

, it follows from Eq.(3.18) and Eq.(3.20) that  

 
   

 
 

 

1 1

0

( )
( ) exp

1 1

( )
                     exp

                     .

x

q

CF x
q q

a

x

a

M q q
Lim D g x Lim x t g t dt

q q

x tN
Lim g t dt

g x





 

 



 
   

  

 
  

 





  

This proves part i) of the proposition. It is also observed that when 0q 
 
we have 

   ; 
 0

( ) ( )
1

1q

N M q
Lim Lim

q



 
 


, and also 

 
exp 1

x t





 
  
 

, hence  

 
   

 
 

0 0

( )
( ) exp

1 1

( )
                     exp

                     ( ) ( ).

x

q

CF x
q q

a

x

a

M q q
Lim D g x Lim x t g t dt

q q

x tN
Lim g t dt

g x g a





 

 



 
   

  

 
  

 

 



  

This proves part ii) of the proposition.  
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Definition 3.12 [29] The Hadamard fractional integral of order q of a continuous 

function g  is defined as  

 
 

 1

ln
1

,    0,



 
 




 
qt

H q

a

g st
ds

s
g t q

q s
I

                 

 (3.21) 

provided that the integral exists.  

Definition 3.13 [29] The Hadamard fractional derivative of order 0q  of a 

continuous function : ,  g a   is defined as  

    
 

 1
1

ln ,

 

   
     

    


n n qt

H q n H q

a

g sd t
g t I g t t ds

dt n q s s
D         (3.22) 

with  1 ,   1    n q n n q ; =
 
 
 

d
t

dt
and  q denotes the integer part of the real 

number q. 

Definition 3.14 [29]  Let    , , , , nu x C a T  where

        1
, , : , : ,

nnC a T u x a T u C a T 


    then 

    
1

ln .





 
   

 


q jn

j

H q H

j

q t
D u t u tI c

a
                           (3.23) 

Another useful fractional calculus tool is the fractional derivative of a function with 

respect to another function, which is similar to the chain from classical calculus.  

Definition 3.15 [30] Let 0  ,  1 ,g L a b and  1 , C a b be an increasing 

function with    0,  ,   x x a b  then  ,

0

 
I g t   denotes the fractional integral of

g  with respect to   and it is given by 
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 
 

        
1,

0

0

1
.

t

I g s t s g s dst    





 


 

             

 (3.24) 

Definition 3.16 [30] Let 0  ,  , ,  ng C a b with being an increasing function 

and    0,  ,   x x a b   then  ,

0

 
C D g t  denotes the fractional derivative of g  

with respect to  and it is given by  

 
 

      
 

 
1, 11

.
0 0

D g t
c

nt dn
s t s g s ds

n s dt


 










  


      

  

    (3.25) 

Definition 3.17 [30] Let 0  , n  a natural number such that ( 1, ) n n . If 

 , ,  ng C a b then 

    
 

 

    
1

, .

0 0
0

1
0

.
!

0   


  





 
     

n

i

i

i

C

g

D g t g t

d

t
I t

i

s d
             (3.26)

 

Derivatives and integrals are tools used in differential equations. Some fractional 

types of derivatives and integrals are defined in the above section.  In the following 

section these derivatives and integrals are used as tools in solving fractional 

differential equations.  

3.2 Theory of Fractional differential Equation 

Fractional derivative and integrals are useful tools in fractional differential equations. 

Similar to classical differential equation, it is possible to investigate the existence and 

uniqueness of solution of fractional differential equations.  

The general form of a Riemann-Liouville non-linear fractional differential equation 

of the order  , on a close interval  ,b c of the real line  is given by 
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     ,bD f t g t f t

  ,                                         (3.27) 

with b t .  

A Cauchy problem can be associated to Eq.(3.27), by the initial conditions 

  k

b kD f b t 

    ,                                    (3.28) 

where  
1

,
 

k k m
t and   1m   .         

A special case of the non-linear equations defined by Eqs.(3.27)-(3.28) is the linear 

fractional differential equation which is defined by 

      bD f t f t g t    ,                        (3.29) 

where *  ,    and  ,t b c .                     

A Cauchy problem can be associated to the problem defined by Eq.(3.29) using an 

approach which is similar to what was used to obtain Eq.(3.28). Hence the Cauchy 

problem associated to the problem defined by Eq.(3.29) is also given by Eq.(3.28). 

Proposition 3.18 [23] Consider *  ,   1m   ; given also 0 1  such that 

  m , and . If the function  ,g C b c , it follows that the fractional 

differential equation defined with the initial condition (Cauchy problem), given by 

Eq.(3.29) has a solution  f t , which is unique such that    , ,mf t C b c

  . This 

solution has the following analytic form 

           
1

, 1 ,

1

m ti

i i
b

i

f t u t b E t b t v E t b f v dv
   

    
 

 



        
     .    (3.30) 
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Proposition 3.18 gives the analytic and explicit solution of fractional differential 

equations with Riemann-Liouville fractional derivative.  Using a similar approach, 

the explicit solution to fractional differential equation with Caputo derivative is 

defined. 

A linear fractional differential equation with Cauchy problem using Caputo 

derivative is defined as follow 

      C

bD f t f t g t    ,                                   (3.31) 

with b t c  , 1   m m , m and   . 

A Cauchy problem associated to Eq.(3.31) is given as follow 

   k

kf b t  ,                                                      (3.32) 

with kt  and 0 1k m   .                                                                    

Lemma 3.19: [23]:  Given 1   m m , m ;  0 1   such that  ,and also 

consider  . At this point if the function  ,g C b c , then the fractional 

differential equation Eq.(3.31) with its associated Cauchy problem Eq.(3.32) has a 

unique solution  f t  such that    , 1 ,



 mf t C b c  which is defined by 

           
1

1

, 1 ,

1

m ti

i i
b

i

f t u t b E t b t v E t b f v dv
  

   








        
    

 

.  (3.33) 

The explicit solution given by Eq.(3.33) involves the two-parameter Mittag-Leffler 

function. In [27], an explicit solution to the Cauchy problem defined by Eqs. (3.31), 

(3.32) based on the one-parameter Mittag-Leffler function is proposed as follow 
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       
 

   

   

1

1

0

0

1
  0

1 !

1
    0
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m b
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x t g t dt if
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f t f b u t

g x t u t dt if












 
   

    
  
  






 ,                (3.34)            

with  
 

 
1

.  
1 !



 
 

x

k
b

u t E t dt
k

 

The above mentioned theory related with fractional derivative and integral is 

considered sufficient to handle the problems to be handled in subsequent chapters of 

the thesis.   
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Chapter 4 

NUMERICAL SOLUTION OF THE FRACTIONAL 

LOGISTIC DIFFERENTIAL EQUATION 

4.1 Introduction  

In recent work, many researchers have focused on showing the advantages of 

fractional calculus methods over classical calculus approaches [22, 31, 32,33, 34]. 

Form many experiments and comparative studies, it has become evident  that the 

fractional calculus model has provided better results in problem solving than their 

classical counterparts approaches used in solving the same problem. Usually the 

lower error levels obtained from modeling with fractional calculus is used to prove 

the strength of this approach [31, 32, 33, 35, 36].Computational methods are often 

used for implementation of an explicit equation or to iteratively approach the 

solution to a problem whose analytic form doesn’t exit. Some of the important work 

in which computational methods have been applied successfully are found in [37, 38, 

39, 40, 41, 42].  

Application of fractional calculus in modeling and solving real life problems have 

gradually been proven by research work in various branches of science, including but 

not limited in Economy[32]; Biology [31, 43, 34, 35, 44] and Physics[31, 33].  

In the process of comparing classical calculus and fractional calculus approaches, it 

is common for researchers to evaluate the performance of both approaches in solving 
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the same problem. It is however important to mention that the solutions obtained 

from both approaches might be different in some cases. For instance, a problem 

might have an explicit classical solution whereas its fractional counterpart might not. 

An evidence of this situation is the logistic differential equation [45] that has an 

exact solution.  However an exact solution was proposed to Fractional Logistic 

Differential Equation (FLDE) by West [46]. Subsequently, West’s proposal was 

proven limited by Area et.al.[47],since it is valid only when the derivative order is 

one. D’Ovidio et. al. [48] have also proven that West proposal could be fully valid 

only if the FLDE is modified into what they called ‘Modified fractional logistic 

equation’. An Euler’s based numerical approach to the FLDE was proposed in [49]. 

Up to date, an exact solution to the FLDE hasn’t yet been established by researchers. 

In this regards, we follow the path of  the authors of [49] in this chapter, by 

computing numerical solution of the FLDE using several numerical methods , 

namely  the Caputo-Fabrizio ( CF ) method [52], the power series expansion (PSE) 

method also known as Letnikov method (LM) [51], and the generalized Euler 

method (GEM) [50].  Prior to the application of those numerical methods we have 

carefully proven the existence and the uniqueness of a solution to the FLDE.  

4.2 Numerical Methods and Formula for Solving non-linear 

Differential Equations  

In this section, some numerical methods and algorithms for solving non-linear 

differential equations are discussed.  

4.2.1 The Generalized Euler’s Method (GEM) 
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Here the GEM is discussed, and referred to the approach introduced by Odibat et al. 

[50]. GEM is inspired and defined from the Euler’s method for solving differential 

equations. Given a   fractional order non-linear differential equation defined by  

       
0

, , 0 0,  C

qD x t g t x t x                                    (4.1) 

where 0,1q is the fractional order of derivative and 0t . The functions  x t ,

 
0C

qD x t and  2

0C

qD x t are assumed to be continuous on the closed interval  0,T . 

Finding the numerical solution to the problem defined by Eq.(4.1)over the interval

 0,T is only possible after a discretization of the closed interval  0,T  into k sub-

intervals 1, 
  j jt t , of equal width  Th

k
 is required. Beside this discretization, the 

corresponding set of points   ,j jt x t are also required in the approximation process. 

Finally, the GEM algorithm to approximate the solution is defined as  

   
 

  1 , , 0,1,
1

1  





 
q

j jj j g t
h

x t jx t
q

kt x ,                     (4.2) 

with node , 1,2, ,  jt jh j k . 

4.2.2 The Grünwald–Letnikov Method  (GL) or Power Series Expansion (PSE) 

A method for solving non-linear differential equation was established by Grünwald, 

more details on the method are found in [51]. This method is known in literature as 

Power Series Expansion (PSE) or Grünwald–Letnikov Method (GL). 

Definition 4.1[51] The explicit formula for the fractional numerical approximation 

of qth derivative at the point kh , ( 1,2,......)k in the Grünwald–Letnikov sense is 

defined as 

 
      

/
0

1
1 




 
   

 
k

m

k
jq

t k jqk L
j

GL
h

q
D g t g t

jh
,                                       (4.3) 
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where mL  is the memory length; kt kh , the time or space step of iteration is h, and 

 1
 

  
 

j q

j
are referred to as binomial coefficients (different from the commonly used 

in combinatory ). The binomial coefficients in the computation process are denoted 

by 
   , 0,1,....
q

jc j and computed using the formula 

 

   

0

1

1,

1
1 

 

  

  
 

q

q q

j j

c

q
c c

j

.  

Consider a non-linear fractional differential equation with initial conditions, with the 

derivative considered in the Grünwald–Letnikov sense, defined by 

    ( ), L

q

aG D u t g u t t .                                  (4.4) 

Then a numerical solution to the problem defined by Eq.(4.4) is computed by the 

following formula 

   
1

( ) ( ( ), ) .



 
k

qq

k k k j k j

j

u t g u t t h c u t

                        

(4.5) 

4.2.3 The Caputo-Fabrizio Method (CF) 

Consider a non-linear fractional differential equation, with initial conditions and 

derivative taken in the Caputo-Fabrizio sense defined by  

       0 0, , 0 q

CF D u t g t u t u u .                           (4.6) 

A numerical solution to the problem stated by Eq.(4.6) is computed using the Adam-

Basforth approach as (see [52,53])   

   
 

   
 1 1 1

1 3 1
, ,

2 2
  

    
          

   
n n n n n n

q qh q qh
u u g t u g t u

M q M q M q M q
.      (4.7) 

4.3 Fractional Logistic Differential Equation 
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In this section the logistic model is studied in both classical and fractional sense. 

Numerical methods mentioned in the previous section are used to establish and 

compute some numerical solution of the FLDE. As a reminder, the logistic model has 

long been used in modeling population growth. Consider a population that has a 

proliferation capability, and whose initial size is P0. From a simplistic point of view, 

such a population would increase infinitely as the time increases toward infinity. 

Malthus, T. R(see[54]), has proven that a population growth tends to stabilize once it 

reach a certain size, hence doesn’t grow infinitely when the time approaches infinity.  

Malthusian theory is what spans the logistic population growth model. The model is 

defined using integer order differential equation as follow 

 
 

 
1
 

  
 

dN t N t
rN t

dt K
 ,                                                      (4.8) 

with the initial population size denoted as   00 N N ;r is called the growth rate and 

K is the carrying capacity. This capacity is the maximum size that the population can 

reach.  N t is the function representing the population size at any time t. The exact 

solution of the problem defined by Eq.(4.8) is given by  

0

0

( ) .

1 


 

  
 

c

rt

K
N t

K N
e

N
                                       

(4.9) 

In order to investigate the FLDE, it is important to assume that Eq.(4.8) is built using 

a fractional order derivative. Moreover, let this derivative be the Hadamard fractional 

derivative without loss of generality. Then the FLDE is defined as 

    
 

 0 1 , ,H q

a

N t
rN tN t

K
D N a N

 
    

 


                   

(4.10) 

where
a

N  is the initial population value. 
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4.3.1  Existence and Uniqueness of the Solution of Fractional Logistic Equation 

Existence and uniqueness of the solution of FLDE are proven in this section. For 

conformity and without loss of generality, Hadamard type of fractional derivative 

and integral used. 

Applying the Hadamard integral operator H rI  to Eq.(4.10)leads to the following 

equation  

 
1

1 ln 1 .


  

 
 
 
 

  
  

H

q

q N
N t c I rN

K

t

a
                                         (4.11) 

From Eq.(4.11), the following notation is adopted for simplicity  

  , 1 .
 

  
 

N
Q t N t rN

K
                                        (4.12) 

The initial value conditions is denoted 1 . ac N  

Denote by   , , H C a T  the Banach space of all continuous functions defined 

from the closed interval  ,a T to , and then build the operator : E H H  endowed 

with the norm  sup ,
 


a t T

N N t  then using the operator E, it follows that  

  
 

  1 1

ln ln
,1

.

 

   
   
   

 
 

qt

a

a

q Q s N s
EN

t t

a s
t N ds

q s
                             (4.13) 

4.3.1.1 Existence of solution 

Based on the setting of Eq.(4.11) - Eq.(4.13), existence of the solution of FLDE is 

stated and proven in what follows.  

Theorem 4.2 Let  : ,   Q a T be a continuous function such that the following 

assumptions hold 
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 1 :    0 QNA such that  

     1 2 1 2 1 2, ,, , , , .      QQ t N Q t N N N NN Nt a T   

 2 :  A           , ,   0, ,  ,  , ,y t t N T y at TQ N C       , where   , ,C a T    

is endowed by the norm  sup
 


a t T

y t y  . 

In addition, it is assumed that 
 

1

1,
1

ln



 
 



  

q

QN T

q a
then there exists at least one 

solution for the initial value problem defined by Eq.(4.10) . 

Proof of Theorem 4.2: Consider the close set  ,   N H NB  with 
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l l
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T
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Define the following two operators 1E  and 2E on B  by   

  
1
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q
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a
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(4.15)
 

For all 1 2, , N N B the following holds from Eq.(4.14) and Eq.(4.15) 

 
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1 21 2 ln ln
1

1
,
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                        (4.16) 

leading to 1 21 2 . E N NE B
 

The next step is to show that the mapping 2E is a contraction. The said proof is as 

follow,   1 2, , , ,    Nt a T BN we have the following relation  
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it then follows that  
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From Eq.(4.18), it is observable that 2E  is a contraction. In addition, to the 

contraction of 2E , 1E  it is a continuous operator as a result of the continuity of N . 

Furthermore, 1E  is uniformly bounded as 

1

1 ln .



 
  

 
a

q
T

E N
a

N                                             (4.19) 

The following step is to show the compactness of the operator 1E . For all

   1 2 1 2, , ,  t t a T t t , the following holds 

     
1 1

2 1
2 11 1 ln ln .a

q q
t t

t t
a a

E N E N N
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 
 
  

   
                           (4.20) 

The right hand side of Eq.(4.20) approaches zero as 1 2t t . Note that 

     21 11E Et N tN  doesn’t dependent on N  which implies that 1E  is relatively 

compact. By Arzela-Ascoli theorem (See appendix A for theorem and its proof) we 

conclude that 1E is compact on B . Hence, the existence of the solution of the initial 

value problem defined by Eq.(4.10) holds by Krasnoselskii’s fixed point theorem 

(See appendix B for theorem and its proof). 

4.3.1.2 Uniqueness of solution 
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Existence of a solution to the FLDE, Eq.(4.10) is proven by theorem 4.2. In this 

section the uniqueness of the solution is proven.  

Theorem 4.3 Let  : ,   Q a T be a continuous function that satisfies  1A and 

assume that 
 

ln
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,
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q

Q

T
N

q a
then the initial value problem given by 

Eq.(4.10) has a unique solution. 

Proof of Theorem 4.3: Consider the close set  ,   N H NB  where 
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The first step is to show that    EB B . Hence,  , ,   N B t a T , the following 

inequality holds   
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(4.22) 

It then follows from Eqs.(4.19) to Eq.(4.22) that 

 
 

1

ln   ln

    

1

1

    .





     
            



q q

QaEN N
q

T T
N M

a a                        (4.23) 



 

38 

 

Eq. (4.23) implies that ,   EN B N B , which means that  EB B .  

The next step is to show the contraction of the mapping operator E . For all

1 2  , N N H , the following relation holds 
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Eq.(4.24) implies that  
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From Eq.(4.25), the mapping E is a contraction. From the Banach contraction 

mapping theorem (See appendix C for theorem and its proof) the initial value 

problem defined by Eq. (4.10) has a unique solution on the close interval , .a T

Q.E.D. 

4.4 Simulation Studies 

In previous sections, we highlighted the fact that so far none has proposed an 

acceptable and valid analytic solution to the FLDE. Moreover, we have proven the 

existence and uniqueness of the solution of the FLDE using Hadamard’s fractional 

derivatives and integral. In this section, three numerical methods namely GEM, CF 

and PSE are used to compute the numerical solution of the FLDE.    

Consider a fractional order of derivative    0,1 1,2 q , then the numerical 

solution of the FLDE using GEM, PSE and CF are defined respectively as 
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39 

 

 
     

1

1( ) .



 
 

 


k
qq

PS

k

kE k j k j

j

N t h c N t
N t

rN t
K

               

(4.27) 

   
   

 
 

   
 

 

1

1

1

1  

             

1 3

2

1
  1 .

2







 
    

 

 
 

 
 

 

  


 
 

 

n

n

n

F n

n

C n

N t
N t

K

N

q qh
N t N t

M q M q

q qh

M

t

KM q
N t

q
          

(4.28) 

For performance evaluation purpose of the methods defined by Eq.(4.26)-Eq.(4.28), 

a mean squared error [56], whose formula is given in Eq. (4.29) is used to compute 

the deviation rate between the true values and the values obtained through numerical 

approximations, 

       
2 2

0 0

ˆ
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n n

i i i

i i

y t y t y t
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



 
,                                    (4.29)  

where  iy t is the true value at time t;  ˆ
iy t is the approximated value computed at 

time t and finally n is the data size. 

The data used for the numerical simulation in this section is the annual growth rate of 

the helianthus plant. The data set was retrieved from [55] and it is a record of the 

helianthus plant height measured at a constant rate of one measurement after every 7 

days. The plants’ heights are measured in centimeter. The plants on which the 

experiment was carried were considered from their 7
th

 day of age up to their 84
th

 day 

of age, representing 12 measurements. For uniformity a measurement is the average 

value of all the plants heights on the record day.  

Recalling Eq.(4.9), which is the solution to the logistic differential equation using the 

classical approach, the Matlab optimization routine of non-linear model ‘lsqcurvefit’ 
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is used to find the carrying capacity K=267.5301and the growth rate r=0.0760 of the 

data set. Using these parameters, the error rate computed using Eq.(4.29) is 

MSE%=0.0320 i.e 3.2%. Figure 4.1 shows the plots of the true data and the data 

computed using Eq.(4.9).   

 
Figure 4.1: Classical Method 

Consider Eq.(4.26) and Eq.(4.27) for the GEM and PSE numerical solution 

respectively. The value of fractional derivative that would minimize the error rate is 

investigated iteratively. A step or increment value of 10
-3

 was used to iteratively 

cover the interval [0.9, 1.2] representing the possible q –values and the 

corresponding error rate MSE% of each q-value was computed. As result, it appears 

that both GEM and PSE would produce a minimum error MSE%, if the fractional 

order derivative is q=1 as shown on figure 4.2. 
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Figure 4.2: PSE and GEM error rate (MSE%) versus possible q values. 

PSE and GEM would produce a minimum error only if their fractional order 

derivative is q=1, which means when both methods coincide with the classical 

approach. In which case, the common error rate value of GEM , PSE and the 

classical approach all coincide and equals to MSE%=0.0320 , i.e3.2%. Figure 4.3 

shows the plots of the true data versus the computed data using GEM and PSE with 

q=1. 

 
(a) 

 
(b) 

Figure 4.3: Graphs of (a) PSE with q=1 and (b) GEM for q=1. 
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Different values of the fractional derivative order have significant effect on the 

estimation. In order to illustrate such effect, a q=0.9, was considered in simulation 

with PSE and GEM. The PSE produced MSE%=0.4146 that is41.46% whereas GEM 

has produced MSE%=0.2954, i.e29.54%. Figure 4.4 shows the plots of both GEM 

and PSE methods for q=0.9 alongside the true data values. Looking at Figure 4.3 and 

Figure 4.4, the behavior the difference is clearly perceptible.  

 
              (a) 

 
(b) 

Figure 4.4: Graphs of (a) PSE with q=0.9 and (b) GEM for q=0.9. 

Consider Eq.(4.28) for the CF numerical solution. The value of fractional derivative 

that would minimize the error rate is investigated iteratively. Here a step value of   

10
-3

 was used to iteratively cover the interval [0.9, 1.2] representing the possible q –

values and the corresponding error rate MSE% of each q-value was computed. It is 

observed that CF would produce a minimum error MSE%=3.21%, if the fractional 

order of derivative is q=1.005 as shown on Figure 4.5. 
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Figure 4.5: CF’s error rate versus q values. 

Under some approximation circumstances, q=1.005 could be approximated by q=1. 

However, it is important to highlight that such approximation would incorrect in this 

study. For a clear illustration, the CF was simulated for q=1 and has produced 

ER=0.3824 i.e. 38.24%. Figure 6.6 shows plots of the data obtained using CF with 

q=1.005and q=1, respectively.  

 
(a) 

 
(b) 

Figure 4.6: CF ‘s graph (a) for q=1.005 and (b) for q=1. 

4.5 Analysis of Results 
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In this chapter the FLDE was studied. The model was derived from its counterpart 

logistic differential equation with integer order of derivative. Hadarmard fractional 

integral and derivatives were used to prove the existence and uniqueness of a 

solution for the FLDE. Moreover, CF, PSE and GEM numerical algorithms were 

used to build the numerical solution of the FLDE, since an exact analytic form 

doesn’t exist yet.  

In application with experimental data, when q=1, GEM and PSE both produced 

minimum error rate MSE%=3.2 %, that coincides with the error rate of the classical 

approach. On the other hand, CF has produced a minimum MSE%=3.2 % for 

q=1.005.    

As summary, the chapter’s aim which was to build the FLDE and investigate its 

solution was achieved. It appears that the solution of the FLDE can only be 

computed numerically up today. The error rate of the FLDE for the best value of q is 

not different from error rate of the classical approach. 
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Chapter 5 

FRACTIONAL LOGISTIC GROWTH MODELING 

WITH RAYLEIGH KERNEL FUNCTION 

5.1 General Concepts 

Mathematical modeling is of great importance in science since it finds its application 

in various fields of different disciplines. Physics [61, 62], Biology [58, 59, 60], 

Health Science [90], Economy [91], are just some of the long list of fields where 

mathematical modeling is used.   

Various approaches are used in modeling, namely deterministic and stochastic 

approaches. We mentioned in earlier chapters of this work that both approaches will 

be explored. When it comes to the deterministic approach, differential equations are 

known as the ultimate tool to be used. In recent decades, researchers have focused on 

a type of differential equations, known as fractional differential equations [57]; with 

the main goals to support the mathematical theory behind it [25, 63] and investigate 

how efficient it is in application [64, 65]. In some cases it is proven that fractional 

differential equations perform better than their classical counterpart in modeling [31, 

33]. Derivatives and integrals are the main tools used in differential equations, 

whether it be fractional or classical. With reference to the chain rule derivative 

method [66], Imelda et Al. [30], introduced a similar fractional derivative, which 

they referred to as ‘the  -Caputo derivative’. That is the fractional derivative taken 
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in Caputo sense, of a function with respect to another function. The function with 

respect to which the derivative is taken is called the kernel function.  

There exists a probability distribution function called Rayleigh function [67], which 

is derived from Weibull family type of distribution. In this work a logistic model is 

built using the  -Caputo derivative’ with the Rayleigh function as kernel function. 

The use of the Rayleigh function is motivated by its belt shape, which tends to 

stabilize the rate in a logistic growth model. A special attention is paid to logistic 

model with very large carrying capacity K. Preliminary work was done on the model 

to prove existence and uniqueness of solution and finally, the Chinese population 

growth was used in application since it has a very large carrying capacity.  

5.2 Preliminaries Definitions and Rayleigh Distribution 

The Rayleigh distribution is continuous density function that belongs to the Weibull 

and exponential families of distribution. It is defined only for positive valued random 

variable [68].The distribution was named after Lord Rayleigh [69], who did the 

initial work on its development. The application fields of this distribution include but 

not limited, wind trajectory, queuing system, life span of an object, magnetic 

resonance and biomedical image processing. In [85, page 111], authors proposed a 

generalized form of distribution called ‘Gamma family’ from which they derived the 

Rayleigh, Weibull and many others distributions as special cases. The one parameter 

gamma distribution has a density function given by  

 
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1 tt e
f t






 




,                                         (5.1) 
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with 0t  and 0  . The distribution parameter  is known as shape. When 1  , 

Eq.(5.1) becomes the exponential distribution. A scale parameter 0  can be 

introduced into Eq.(5.1) to produce a two-parameters gamma distribution defined  
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.                                            (5.2) 

A location parameter l  can be added to Eq.(5.2) with the purpose of centralizing 

the formula leading to a three-parameters gamma distribution defined by  
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.                                       (5.3) 

Stacy et al. [86] introduced another shape parameter 0  , to the model given by 

Eq.(5.3) to produce a four-parameters distribution; which is also referred to as 

generalized gamma distribution  
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.                                 (5.4) 

Different distributions can be generated using Eq.(5.4) by simply changing the values 

of the parameters , ,l   and  . The table below contains some of such 

distributions.  

Table 5.1: Distribution derived from generalized gamma distribution.  

 , , ,f t l    from Eq.(5.4)   Name of the derived Distribution 

 1,1,0,f t   Reduced Weibull distribution  

 1, , ,f t l   Three-parameters Weibull distribution 

 1, , ,2f t l  Rayleigh Distribution 

 0.5, 2 ,0,2f t  
Half-Normal distribution  

 1, 2 ,0,2f t  
Circular Normal distribution  
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 1,1,0,1f t  Reduced Exponential distribution  

 

From table 1, one can observe that the Rayleigh distribution is a special case of the 

three-parameters Weibull distribution with 2  . Several similar formulae which 

might sometime differ only by constants appearing in notations are used to represent 

the Rayleigh distribution. For instance a definition of Rayleigh distribution function 

is given in [68] as follow. 

Definition 5.1 A random variable X, is said to have a Rayleigh distribution with 

shape parameter , if the following holds 

 

2

22
2

     , 0
.

0                otherwise






 

 



x

X

x
e x

f x

                                

(5.5) 

It is important to observe that the distribution is a positive, bell shaped distribution. 

The cumulative Rayleigh distribution is easily derived as follow    

   

22 2

22 2 22 2
2

0

 1 .
0

xt tx x xt
F x f t dt e dt e e  



 
    
 



      
         

(5.6) 

The mean and variance of a random variable X having a Rayleigh distribution with a 

shape parameter   are proven to respectively be given by  
2

E X


 and 

  24
.

2
Var X





  

Notation: 
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- In all what will follow, the notation  X Ray   will refers to a Rayleigh 

random variable with parameter .  

- For simplification purpose, from Eq.(5.5) let us perform the following change 

of variable 22  , then it follows a simplified Rayleigh distribution 

function given by 

 

2

2
     , 0

.

0                otherwise

x

X

x
e x

f x





 

 

                                 

(5.7) 

Theorem 5.2 The scaling property is verified by Rayleigh distribution. That is given 

a random variable X such that  X Ray  .Then 0  , it follows that

 2X Ray   . 

Proof of Theorem 5.2 [68] Since the distribution is defined for X>0, and also 0 

, define the following bijection  

 X h X X Y

  


  

 
.                                          (5.8) 

The inverse of h , is then defined as  1 Y
h Y X



   . The Jacobian of the linear 

transformation, Eq.(5.8) is 
1dX

dY 
 . Using the variable transformation technique, it 

follows that  

    

 

   

 
  

 

 1;

1
                        

Y X

X

dX
y f y f h y

dY

y
f
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 

 
 





















2

2

2

2

2
2

2

2

1
                        

                        .

y

y

y
e

y
e

                                   (5.9) 

Hence  2y Ray   . Q.E.D.  

 
Figure 5.1: Rayleigh distribution 

5.3 Logistic Population Growth Modeling with  -Caputo derivative 

The theory of the population growth modeling using logistic equation was introduced 

by an economist named Malthus T.R [9, 54, 70]. The size of a population with 

growing capacity would theoretically approach infinity when the time approaches 

infinity. However, such idea was proven incorrect by Malthus, who claimed that 

growing populations always reach a saturation point. Modeling of a population 

growth with FLDE is discussed. Furthermore, the solution to the FLDE was built and 

computed numerically. In this chapter, the FLDE is considered with the ‘ -Caputo 

derivative’.  
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Consider the classical logistic growth model defined by 

 
 

 
1

dN t N t
rN t

dt K

 
  

 
,                               (5.10) 

where r is the growth rate and K is the carrying capacity which represents the 

maximum value that the population size may reach. Hence at that size the population 

growth stabilizes. A general solution for the classical logistic model defined by 

Eq.(5.10) is 

0

0

( ) ,

1

c

rt

K
N t

K N
e

N




 

  
                                     

(5.11) 

where N0=N(0) is the initial size of the population at t=0. 

 

Considering problem from fractional point of view, the Fractional equivalent to 

Eq.(5.10) using the psi-Caputo derivative is defined  as  

   
 , 1 , 

 
  

 
c

N t
D N t rN t

K
                               

(5.12) 

where    0,1 ,  0 0 N . 

The right hand side of Eq.(5.12) is written as a function of t and  N t as   

    , , ,  c D N t f t N t
                                

(5.13) 

with    0,1 ,  0 0 N . 

 

The notation provided in Eq.(5.13) is adopted for simplification and  conformity in 

proving Lemmas and theorems that follow in the course of the work. 
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Lemma 5.3 Assume f is an integrable function defined on  0,T , then the general 

solution of the fractional differential equation given by Eq.(5.13)  is equivalent to the 

following integral equation  

 
 

         
0

0

11
, .

t

N fNt x t x dxNx x


  



  

 
        

(5.14) 

Applying the‘ -Caputo’ fractional integral operator 
,

0
I 

 to both sides of Eq.(5.13) 

leads to 

    0

,

0
, .N fN I t N tt  


                                  

(5.15) 

At this point it is worth building the framework under which the method is 

applicable. After building the framework, existence and uniqueness of the problem 

defined by Eq.(5.12) and Eq.(513) are proven.  

Consider     0, 0,T N C TC   , let   0, ,C T   representing the Banach space 

of all continuous functions from the close interval    0,T to , endowed with the 

norm defined by  
0

sup
t T

N N t
 

 . 

An operator :   can be associated with the problem defined by Eq.(513) and 

defined as 

   
 

         
0

0

11
,  

t

t x Nt xN xN f x x d


  



 


    .             (5.16) 

Prior to the statement and proof of the main results, the existence and uniqueness of 

solution for the problem given by Eq.(5.14) is discussed. Consider the following 

hypotheses 
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(A1):  : 0,f T    is continuous. 

(A2): There exists 0NL  such that      1 2 1 2, , , 0,Nf t N f t N L N N t T     . 

 (A3): There exists a function     0, ,     g C T   and a non-decreasing function

:     such that          , , ,   0,f t u g t u t u T   ,   , u v . 

(A4): There exists a constant 0 W  such that 

 
 

    0

1
1

0
1

g T

W

N


  



 

  


 





. 

Theorem 5.4 Assume that (A1), (A3) and (A4) hold. Then the problem defined by 

Eq.(5.13) has at least one solution on the close interval  0,T . 

Proof of Theorem 5.4: This proof will be split into several steps. The first step 

consists of showing that the operator : maps bounded sets into bounded 

sets of . In this regard, let  :B N N     be a bounded set in , then  

  
 

         

 
          

1

0

1

0

0

0

1
,  

1
               

t

t

t x t x f x x dx

x t x g x d

N N

N x

N

N





  


   






  


  






 



.           (5.17) 

Taking the norm  
0

sup
t T

tN N
 

  , implies that 

 
         

 
      

0

0

1

0

1
,  

1
        0 .

1





  


  





  



  
 


t

x x x f x x dx

g T

N N N

N





(5.18) 
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The second step is to show that the operator : maps bounded sets into 

equicontinuous sets of .
 

Let  1 2, 0,t t T  with 1 2t t  and N B . Moreover Denote by 

 
               

1

1 1

0

1 1

1 2

1
( )

t

k t x t x t x g x N dx
 

     


     
     and 

 
          

2

1

1

2 2 2

1
( )

t

t

k t x t x g x N dx


   


  
     then it follows that 

     2 1 1 1 2 2( ) ( )N t N t k t k t    .                     (5.19) 

The right hand side of inequality defined by Eq.(5.19) tends to zero as 1 2t t , 

implying that      2 1 0 N t N t   as 1 2t t . Note that the right hand side of 

Eq.(5.19) is independent of N B hence, by Arzela-Ascoli theorem (See appendix A 

for theorem and its proof ) we conclude that  is completely continuous. 

The last step to complete the assumptions of Leray-Schauder nonlinear alternative 

theorem (See appendix D for theorem and its proof) is to show the boundedness of 

the set of all solutions to the following equation 

N N  .                                                          (5.20) 

 Assume that N is a solution of Eq.(5.20), then 

    

 
      

 
      

0

0

1
         0

1

1
          0 .

1

                                           

N t N t

N g T

N g T







   


  








 
      

  
 



           

(5.21) 

Eq.(5.21) implies that 
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 
      0

1.
1

0
1

N

N g T





  



 
 

                      

(5.22) 

Recalling (A4), there exists a constant 0W   such thatW N . At this point, 

considering the set  Ω :N N W   , it follows that the operator : is 

continuous and completely continuous, by the constructed  Ω , N  such that

N N  for some  0,1  . Consequently, by the nonlinear alternative of Leray-

Schauder type, we conclude that  has a fixed point Nwhich is a solution of the 

problem given by Eq.(5.14). 

Theorem 5.5 Assume that (A1), (A2) hold. If
 

    0 1
1

NL
T


 


 

 
, then the 

problem given by Eq.(5.13) has a unique solution on  0,T . 

Proof of Theorem 5.5: Consider the operator  defined by Eq.(5.16) and define a 

ball   0, :B N C T N     with 
 

    

 
    
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1
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1
,

1
1 0

1

N

N

N M T

L T





 




 


 
     

 
 

 

where  
0

sup   ,0N
t T

M f t
 

 . 

First show that
 
B B .  For any , 0,N B t T


    , we have  

  
 

        


  



  

 
1

0

0

1
, 0

t

N t N x t x f x N dx .          (5.23) 

Moreover, the following inequality can be built from a functions’ norm 
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         

      

, , ,0 ,0

                     , ,0 ,0

                     

                     .

N N

N N

f x N x f x N x f x f x

f x N x f x f x

L N M

L M

  

  

 

 
                       

(5.24) 

Using Eq.(5.23) and Eq.(5.24) , it follows that 

 
        

 
      
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
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
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



 
    

  

 
    

  





(5.25) 

Eq.(5.25) implies that 
 
B B . 

The second step is to prove that the operator is a contraction. 
1 2
,N N , we have  

     
 
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L T N N

 
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1 2

            .N N

(5.26) 

From Eq.(5.26),N is a contraction. Hence, by the Banach contraction mapping 

theorem (See Appendix C for theorem and proof), the fractional differential equation 

given by Eq.(5.13) has a unique solution over the interval 0,T   . 

5.4 Population Growth with Carrying Capacity K  Approaching 

infinity 
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In section 5.3 the framework of FLDE using the  -Caputo derivative’ was built. In 

this section the FLDE is built with the assumption that the population carrying 

capacity is very large. The size of the carrying capacity highly influences the model 

variations. Recalling Eq.(5.10), if the carrying capacity is too large with respect to 

the current population size, then the following  mathematical relations can be derived 

 N t K ,                                           (5.27) 

equivalently 

 
0

N t

K
 .                                      (5.28) 

Under the conditions defined by Eq.(5.27) and Eq.(5.28) , the logistic model defined 

by Eq.(5.10) becomes an exponential growth model  

 
 

dN t
rN t

dt
 .                                        (5.29) 

A general solution of the exponential growth model defined by Eq.(5.29) is obtained 

as 

 

 

 

 
ln( ( ))

0ln( ( )) ( )N t rt c rt
dN t dN t

rdt rdt N t rt c e e N t N e
N t N t

           . 

Then 

  0

rtN t N e ,                                                  (5.30) 

where N0 is the initial population size. Eq.(5.30) shows that the population size will 

increases infinitely as t  . However, in many application problems this does not 

hold true. For example in the Chinese population case from Figure 5.2 it can be seen 

that exponential growth leaves its place to linear growth after mid 1970s. 
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In what follows, an alternative approach is proposed for the modeling of large size 

population with carrying capacity K  . Applying the ‘ -Caputo derivative’ to 

the model defined by Eq.(5.29) the following is obtained 

   

 

,

0

0

0 .

C rN t

N N

D N t 
 


                                  

(5.31)
 

The solution of the model defined by Eq. (5.31) is defined as   

      0 0N t N E r t


    
 

.                      (5.32) 

Choosing the Rayleigh cumulative density function  
 2 22

1





 
t

et  as kernel, 

Eq.(5.32) becomes  

 
  

2 2

0

2
= 1




 
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 

t
N et N E r .                                (5.33) 

In simulations, a choice of the Kernel is made based on their shape in a way to best 

fit the data.  

5.5 Numerical Simulation Using Chinese Population Data 

Annual population of China between 1900 and 2020 is taken from the World Bank 

web site [71] as input data to test the accuracy of the logistic, exponential and 

Rayleigh models. It is observed that the Rayleigh model produced better fit to the 

population data with large carrying capacity, than the others in terms of lower 

Percent Mean Square Error. Using the Matlab non-linear optimization routine 

‘lsqcurvefit’ the parameter that fits best to the classical logistic model Eq.(5.16), the 

exponential model Eq.(5.29) and the Psi-Caputo fractional model Eq.(5.33) are 

determined. Referring to Eq.(4.29), Percent Mean Square Error can be opened up as, 

Mean Square Error (MSE) 

2

1

( )n
i i

i

x x
MSE

n





.                                       (5.34) 
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A fair comparison of MSE values from different methods or models can be obtained 

by expressing the MSE value as a percentage of the average of the squares of the 

variable under study, given as 

2

1

n

i

İ

x

n
AS 


 . Then 

% 100
MSE

MSE
AS

 
  
 

.                                   (5.35) 

 

Computation of MSE% values for each methodology lead to the following results 

- The classical logistic approach with a growth rate of r=0.0145 and a carrying 

capacity of  K=3.3198x10
23

would best fit the data by producing a total error 

rate of MSE%=6.27%. 

- The classical exponential approach produced the same result as the classical 

logistic approach. In fact, r=0.0145, minimize the error rate to 

MSE%=6.27%. 

- The Rayleigh Kernel fractional approach with a fractional order of derivative 

0.2867   and a rate of 3.050x10
3
, both obtained through non linear 

optimization routine ‘lsqcurvefit’ produced a minimum error rate to 

MSE%=3.67%. 

Based on the MSE% values the Rayleigh Kernel fractional approach produced 

the lowest error, meaning its estimates are better than the other two methods. 
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-  Figure 5.2: Chinese population growth modeling 

Note: The difference in the error rate value from 3.67% to 6.27% seems to be small. 

However, this difference is highly significant as the population size is too large. 

A close examination of the raw data in Figure 5.2 led to the idea of splitting the data 

into 3 sub sections. Sub group 1 is between 1960 to 1975 the graph exhibits an 

exponential pattern. Sub group 2 is from 1976 to 1995 a linear behavior is evident. 

Finally sub group 3 from 1996 onwards a downward curvature is visible. Hence, for 

sub group 1 an exponential model with growth rate estimated as r=0.0186, for sub 

group 2 a linear model with slope 80.1476 10  and y intercept 86.737 10 , and for 

sub group 3 a  -Caputo model with Rayleigh kernel with parameters 

0.1527,  31.9236α r   are used. Obtained models and raw data are given in 

Figures 5.3, 5.4, and 5.5 respectively. Respective error levels are 2.97%, 0.38% and 

0.38%.  
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Figure 5.3: Population from 1960-1975 by 

exponential model 

 
Figure 5.4: Population from 1976-

1995 by Linear model  

 

 
Figure 5.5: Population from 1996-2016 by Rayleigh kernel model 
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Chapter 6 

DETERMINISTIC AND PROBABILISTIC MODELING 

OF THE WORLD POPULATION GROWTH 

6.1 Kernel Smoothing 

This method is used for fitting a non-parametric model to a data set. Kernel 

smoothing is the most widely used method for nonparametric model fitting to a data 

set with no visible pattern. Without loss of generality, we consider the univariate 

Kernel density function in this section.  

Let X be a random variable. Consider the vector (X1, X2,…,Xn) representing n 

observation of the random variable X, generated by an unknown density function 

f(x). If the vector (X1, X2,…, Xn)doesn’t show any standard parametric trend, such as 

linear or quadratic shape, then the unknown density function f(x) can be estimate 

using the kernel density estimation method given by the formula [75, 76]  

 
1

1ˆ ,
n

i

i

x X
f x h K

nh h

 
  

 
 .                            (6.1) 

In (6.1), h is called the bandwidth, K is the kernel density, it is usually a symmetric 

non-negative and continuous function having the properties [75],   1K x dx





 ; 

  0xK x dx





  and  20 x K x dx





   .  The most widely used kernel density 

functions are known to be the Gaussian kernel function [76]  
21

21

2

x

K x e


 
 
 
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Epanechnikov kernel function      
2

1

3
1

4 x
K x x I


  , and the Uniform kernel 

function    1

1

2 x
K x I


 . 

Let f(x) be the unknown function and X be a variable that is one of p variables that 

governs some process. Let the kernel density estimator of f(x,h) be  ˆ ,f x h , h being 

the band width used by the kernel estimator. The goal is to select the optimal h value 

that will minimize the error level. That is to minimize the absolute value of the 

quantity ˆ( ) ( , )f x f x h . The use of the sample data (X1, X2,…,Xn) to derive the 

optimal bandwidth h is known as bandwidth selector technique [75]. Different 

approaches exist for computing the optimal bandwidth value. One way of estimating 

the optimal bandwidth is based on the minimization of the mean squared error (MSE) 

or the mean integrated squared error (MISE). 

Definition 6.1 Consider a statistical parameter , which is estimated by ̂ . The 

mean square error (MSE) between the parameter and its estimated value is the 

expectation of the squared deviation between the true value of the parameter  and 

its estimated value ̂ . Its given by 

   
2

ˆ ˆMSE E   .                                (6.2) 

In practice, Eq.(6.2) is split into summation of a bias and variance terms as shows 

below 

     
2

ˆ ˆMSE Var E     .                       (6.3) 

Details on how Eq.(6.3) is derived is found in [92].  
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The bias-variance form of the MSE is used to derive the optimal bandwidth value h. 

Lemma 6.2 Consider n observations (X1, X2,…,Xn) , of a univariate  random variable 

X from a non-parametric distribution. An optimal bandwidth of the kernel density 

function defined by Eq.(6.1) is computed based on the asymptotic mean integrated 

squared error (AMISE), by the formula[75] 

 
 

   
5

2

2

AMISE

R K
Opt h

K R f n

 
  

  

,                        (6.4) 

with    2

2 K t K t dt    and    
2

R f f t dt  . 

The unknown density function f is assume to be defined such that 2f C . 

Proof of Lemma 6.2: Recalling definition 6.1 and formula (6.2),   ˆ ,f x h  which is 

used to fit the original f(x) has a MSE defined by 

     
2

ˆ ˆ, ,MSE f x h E f f x h  .                            (6.5) 

Using the idea of Eq.(6.3), Eq.(6.5)  becomes 

        
2

ˆ ˆ ˆ, , ,MSE f x h Var f x h Ef x h f   .                (6.6) 

At this point, it is important to explicitly find the variance term   ˆ ,Var f x h and the 

bias term   
2

ˆ ,Ef x h f  that appear in Eq.(6.6) in order to complete the proof. 

Expected value of  ˆ ,f x h is computed as follows 

                         

  
1

1ˆ ,
n

i

i

x X
E f x h E K

nh h

   
   

  
 , 
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1

1 1
 

n
i i

i

x X x X
E K E K

nh h h h

        
       

      
 .             (6.7) 

Since the kernel density is a continuous function and the unknown function 2f C , 

which means is also continuous, the integral form of summation is used to expand 

Eq.(6.7) as follow 

    
1 1ˆ , ix X x t

E f x h E K K f t dt
h h h h

      
     

   
 .         (6.8) 

Consider the following variable change,
x t

u t x hu
h


    , it follows from 

Eq.(6.8) that 

        
1ˆ ,

x t
E f x h K f t dt K u f x hu du

h h

 
   

 
  .        (6.9) 

The Taylor expansion of  f x hu  is needed in the next steps. Hence, the second 

order Taylor expansion of  f x hu  is given by the relation 

     
 

   
2

2

1! 2!

huhu
f x hu f x f x f x o h      .          (6.10) 

Substituting Eq.(6.10) into Eq.(6.9), it follows that 

          

      

     
 

   
2

2

ˆ ,

                  
1! 2!

 

 
     

  





E f x h K u f x hu du

huhu
K u f x f x f x du o h

, 

      

       

     
2

2 2

1!

    
2!

h
f x K u du f x uK u du

h
f x u K u du o h

 

 

 



.                                  (6.11) 
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Given that the kernel density K(.) has the properties [75,76]   1K x dx





 ; 

  0xK x dx





 , Eq.(6.11) becomes 

          
2

2 2ˆ ,
2!

h
E f x h f x f x u K u du o h   .            (6.12) 

The squared bias term appearing in Eq.(6.6) as   
2

ˆ ,Ef x h f , is derived from 

Eq.(6.12) as follow 

           
2

22
2 4ˆ ,

2!

h
E f x h f x f x u K u du o h

 
   

 
 .       (6.13) 

Recalling from Eq.(6.4)  that    2

2 K t K t dt   , it follows from Eq.(6.13) that , 

            
42 2 2 4

2
ˆ ,

4

h
E f x h f x f x K o h   .            (6.14) 

Eq. (6.14) is the bias. 

The variance of  ˆ ,f x h is computed below based on similar assumptions used for 

the bias computation [77]. 

   2
1 1

1 1 1ˆ ,
n n

i i

i i

x X x X
Var f x h Var K Var K

nh h n h h 

        
       

      
  .  (6.15) 

Placing the summation before the variance symbol in Eq.(6.15) leads to 

2 2
1 1

1 1 1 1n n
i i i

i i

x X x X x X
Var K Var K Var K

n h h n h n h 

             
           

          
  . (6.16) 

Using the fact that the variance of a random variable X is the difference between the 

square expectation of X and its expectation squared, Eq.(6.16) becomes 

2

21 1i i ix X x X x X
Var K E K E K

n h n h h

                
             

             

.  (6.17) 
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Since the kernel density is a continuous function and the unknown function 2f C ; 

also using the relation and transform given by Eq.(6.8), Eq.(6.9)into the Eq.(6.17) 

leads to 

   
2

2

2

1 1 1x t x t
K f t dt K f t dt

n h h h h

       
           

  .          (6.18) 

The variable change 
x t

u t x hu
h


    and the first order Taylor expansion

( ) ( ) ( )f x hu f x o h    of Eq. (6.18) leads to 

        

          

22

22

1 1

1 1
.

K u f x hu du f x o h
n h

K u f x du o h f x o h
n h

 
   

 

 
    

 




           

(6.19) 

Recalling from Eq.(6.4) the notation    
2

R f f t dt  , it follows from Eq.(6.19) 

that 

         11ˆ ,Var f x h R K f x O nh
nh


  .                 (6.20) 

Recalling Eq.(6.6)  in which the MSE is expressed as summation of variance and 

squared bias , and using the variance terms and squared bias term derived by 

Eq.(6.20) and Eq.(6.14)respectively, Eq.(6.6) is written as  

                
4

2 12 4

2

1ˆ ,
4

h
MSE f x h R K f x f x K o h O nh

nh



    . (6.21) 

Neglecting the small o and big O terms in Eq.(6.21) it follows that 

           
4

2 2

2

1ˆ ,
4

h
MSE f x h R K f x f x K

nh
  .       (6.22) 

Eq.(6.22) is the mean square error. Integrating the MSE over the real line gives the 

mean integrated square error (MISE) which is 
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     

      
4

2 2

2

ˆ ˆ, ,

1
                         

4




 

MISE f x h MSE f x h dx

h
R K f x K

nh

.                 (6.23) 

The optimal value of the bandwidth is obtained by finding the critical point of 

Eq.(6.23), which obviously is a local maximum. The partial derivative with respect 

to h is found and set to 0. 

  
      

23 2

22

ˆ , 1
0

MISE f x h
R K h f x K

h nh





   


.           (6.24) 

 
 

   
5

2

2

AMISE

R K
Opt h

K R f n

 
  

  

.                            (6.25) 

The curvature of f given by its second derivative f determines the nature of the 

bandwidth. The data will be over smoothed or under smoothed, if f is assumed to 

have a small curvature or large curvature respectively.  The normality assumption of 

the unknown f is required when Eq.(6.25) is used in application. 

Lemma 6.3 Assume that f is a Gaussian (normally distributed) function with 

variance 2 and mean  . Then a robust estimation of the optimal bandwidth value h 

is given by [77, 78] 

 
1

51.06 min ,
1.34

AMISE

R
Opt h n 

  
    

 
.                   (6.26) 

R and  are the inter-quartile range and the standard deviation of the distribution, 

their respective approximated values R̂  and ̂  can be computed from the sample 

data. Moreover, the approximations are in practice used in computation. 

Definition 6.4 Bias-variance tradeoff, there exists a tradeoff between the bias and the 

variance terms found in Eq.(6.3) and Eq.(6.6) respectively. For an over smoothed 
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data set, the variance is small and the bias term is large; whereas for under smoothed 

data, the variance is large and the bias term is small. 

Theorem 6.5 The optimal value of the bandwidth h can be computed using iterative 

approximation. From the bias-variance tradeoff, let us define the following functions 

from    :     ˆ: ,g h g h Var f x h
 

and     
2

ˆ: ,u h u h Ef x h f  . 

The solution to the equation    g h u h is the optimal bandwidth value
opth . 

Proof of Theorem 6.5: The function  g h is a strictly increasing function with 

 
0

lim 0
h

g h


 and  lim
h

g h


   . On the other hand,  u h is a strictly decreasing 

function with  
0

lim
h

u h


  and  lim 0
h

u h


 . These imply the existence and 

uniqueness of a solution to    g h u h .  A bias-variance tradeoff graph can also 

support this result graphically.  

Lemma 6.6 Given  ,T Y  a 2-dimmensional random variable, let 

     1 1 2 2, , , , , ,m mt y t y t y  be an empirical sample data representing m observations 

of  ,T Y  .  The Nadaraya-Watson regression function of Y onT is defined by 

 
1

1

ˆ

m
k

k

k n

m m
k

k n

t t
y K

h
Y t

t t
K

h





 
 
 
 
 
 




.                                                      (6.27) 

In Eq.(6.27), nh  and K  are the bandwidth and kernel function respectively [73]. 

6.2 Logistic and exponential Growth Models  
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Since the aim is to carry out deterministic and probabilistic estimations and compare 

the results, it is considered useful to introduce some of deterministic growth models. 

Logistic and exponential growth models are built using both classical and fractional 

approaches of differential equations.  

6.2.1 Exponential Growth and Fractional Exponential Growth Models 

The general idea that leads to the building of an Exponential growth equation is the 

following [79].  The population size at the time t of a certain species is a function of 

time and it is defined by 

 P t .                                                   (6.28) 

Usually, it assumes that the rate of change of a population size is proportional to the 

size at the current state.  This means 

dP
P

dt
  .                                             (6.29) 

The parameter   is often considered as the difference between the population’s birth 

rate B  and its mortality rate M . That is B M   . 

Note: The constant , is known as the rate of decline or the rate of growth, meaning 

that   is negative or positive respectively. 0 leads to exponential growth and

0  leads to exponential decay. 

Eq.(6.29) is solved below using two approaches. The first is the ordinary differential 

equation with integer order derivative and the second is the fractional differential 

approach. 

1
st
 approach: First order ordinary differential equation. 
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From Eq.(6.29) it follows that
dP P

P P P
dt P

  


     ,  integrating both sides 

with respect to the variable tas  ln
P

dt dt P t c
P

 


     leads to the general 

form of the model 

     exp exp expP t c P c t     .                       (6.30) 

The constant  exp c represents the population size at the initial time t=0. The initial 

population size is usually denoted by   00P P  ; hence, Eq.(6.30) takes the common 

form of   

 0 exp .P P t
                                       

(6.31) 

2
nd

 approach: Fractional differential equations 

Using similar assumptions to the 1
st
 approach, the fractional rate of change using the 

Caputo fractional derivative is  

   0

c

uD P t P t  .                                    (6.32) 

A general form of the solution to Eq.(6.32) is given by 

 0( )P t P E t  .                                   (6.33) 

6.2.2 Logistic Growth and Fractional Logistic Growth Model. 

Similar assumptions used for building the exponential growth model are used in 

building logistic growth model. However the only difference is that the population 

rate of change is not constant but it is a function of the current population size. The 

classical and the fractional approaches to the solution will be presented respectively.  

Classical approach 

 
dP

f P P
dt

 ,                                             (6.34) 
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with f (P) referring to a function of P.                                                          

Note: The function  f P in Eq.(6.34) is chosen such that,  when P is sufficiently 

large   0f P ,  when P grows larger  f P decreases and finally for sufficiently 

small value of P,  f P is almost constant. For this purpose a suitable choice is a 

linear function with the form 

 f P P    .                                          (6.35) 

Solution to Eq.(6.34) is built as below. Substituting Eq.(6.35) into Eq.(6.34) leads to 

  1
dP dP P

P P P
dt dt

  


 
       

 
,                      (6.36) 

with 





 ,  where ,  ,     are constants. 

Note:  In the absence of any possible limiting factor due to the population size, the 

growth rate defined above by Eq.(6.35) is represented only by the constant . In this 

case,  is known as the intrinsic growth rate [79]. The quantity  is known as the 

carrying capacity. 

Using the variable separation technique, Eq.(6.36) is written as 

1 1

dP dP
dt dt

P P
P P

  
   
      
   

  

 

.                         (6.37)  

Few steps of algebraic manipulation leads to the analytic solution of Eq.(6.37), given 

by 

 
0

0 0

t

P
P

P P e 



 


 
.                                      (6.38) 



 

73 

 

Setting 0

0

P

P





 , the general solution is given in a more compact form as 

1 t
P

e 



 



.                                          (6.39) 

Fractional model approach 

Assuming that the rate of change is fractional, Eq.(6.34) can be written in the form 

      1D P t P t P t   .                        (6.40) 

Several methods have been proposed to solve the fractional logistic differential 

equation [6, 7, 80, 81, 82, 83 ] , most of which used numerical approach. In chapter 4 

several numerical approaches were proposed to solve Eq.(6.40).    

6.3 Numerical Simulation 

In this section a numerical simulation is undertaken aiming to illustrate and compare 

the results of data modeling using a probabilistic approach or a deterministic 

approach. A similar comparative study in the fields of Differential equation was 

proposed by [31] in which the fractional differential equation has been proven more 

efficient than integer differential equations in solving problem. The mean square 

error (MSE) term is used for the evaluation of the performance of used models. Let

 
1i i n

P
 

represent n observations of random variable and  
1

ˆ
i

i n
P

 
be the estimation of 

 
1i i n

P
 

 through modeling approach. Then MSE term is computed by  

 
2

1

ˆ
n

i i

i

MSE P P


  .                                      (6.41) 

The data set used for the simulation purpose comes from [74]. It gives the world’s 

population in billions from 1910 up to 2010 and forecasted values up to 2050. 
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Case 1:  we consider a realistic part of the data from [74], which gives the true 

population figures of the world from 1910 to 2010. Then the integer, the fractional 

order differential equation and kernel smoothing are used for exponential growth 

modeling. From Figure 6.1, it is evident that the data exhibits an exponential shape.  

 
Figure 6.1:  World population from 1910 to 

2010 

 
Figure 6.2: World population from 

1910 to 2010 estimated by exponential 

equation. 

 

 

Recall Eq.(6.31), representing the exponential growth using the classical approach, 

the estimation of the world population from 1910 to 2010 using the classical 

approach of differential equation is shown in Figure 6.2 together with the true data 

values from 1910 to 2010.  The total MSE=0.9132 billion. 

Consider Eq.(6.33), that gives the general solution to the fractional exponential 

growth differential equation. The constant 1.3933   is given in [31] and also 

confirmed using MATLAB to be correct, that gives the best estimation of the 

fractional derivative. Figure 6.3shows the estimated curve together with the curve 

obtained from true data. In this case MSE=0.2051 billion. 
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Figure 6.3World population from 1910 to 

2010 estimated by fractional differential 

equation. 

 
Figure 6.4 World population from 1910 

to 2010 estimated by kernel smoothing 

with h=21. 

 

The Gaussian kernel smoothing technique is used and obtained results are given in 

Figure 6.4. Optimal bandwidth to be used is computed using Eq. (6.26), resulting in   

opth  =21. MSE= 2.197 billion is obtained. 

Knowing that theoretically computed bandwidth (h) tend to result in large error 

levels, errors obtained from ordinary and fractional exponential models were taken as 

reference. Using an iterative algorithm error levels were computed for different h 

values using the Gaussian kernel model. It was observed that the error level obtained 

from ordinary exponential model (MSE=0.9132) was obtained at around h=15.5. 

Similarly the error level of fractional exponential model (MSE=0.2051) was reached 

at h=8.5. Corresponding estimated values and true values are shown in Figures 6.5 

and 6.6.  
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Figure 6.5: World population from 1910 

to 2010 estimated by kernel smoothing 

with h=8.5 

 
Figure 6.6: World population from 1910 

to 2010 estimated by kernel smoothing 

with h=15.5. 

  

Case 2: The data obtained from [74], included population annual projections until the 

year 2050. The graph of this data (1900 to 2050) exhibited a logistic model type 

trend. The data set of interest is from year 1900 to 2050. Using the Eq. (6.39) 

estimated values were computed using parameter values 21.9050  and 0.0148  . 

Obtained MSE=2.2731, and the same MSE obtained using fractional logistic method 

when the derivative order is 1. For order values different than 1, level of error were 

larger.  Figure 6.7 shows the logistic shape of the data. 

 
Figure 6.7: World population from 1900 

to 2050 

 
Figure 6.8: World population from 1900 

to 2050 estimated by logistic approach. 
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Using the Gaussian kernel method the where the bandwidth was computed as 

h=27.95 from Eq. (6.26), resulted in an MSE=5.122. Using the iterative method, an 

error level around that of the Logistic method (2.2731) was achieve for h=22. 

Figure 6.9: World population from 1900 

to 2050 estimated by kernel approach 

with h=27.9454. 

 
Figure 6.10: World population from 1900 

to 2050 estimated by kernel approach with 

h=22. 

 

 

Table 6.1: error terms of estimations  

 MSE 

 Integer derivative 

approach 

Fractional 

derivative 

approach 

Kernel smoothing 

approach 

Exponential 

model 

0.9132 0.2051 2.197     for h=21 

0.2164   for h=8.5 

0.9430   for h=15.5 

Logistic Model 2.2731 2.2731 5.122  for h=27.95 

2.3269   for h=22 
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Chapter 7 

CONCLUSION 

The work focused on the mathematical modeling of natural phenomena. In particular, 

the logistic growth model was at the center of the study. Deterministic methods 

(classical and fractional differential equations) and non-deterministic methods (non-

parametric, kernel smoothing) were used throughout the study. Deterministic 

approach does not cater for the random element in any process, and this may lead to 

considerable error in modeling. The non-deterministic modeling is designed to 

handle the random element in a process, therefore providing an idea about the 

possible magnitude of error involved in the model. Randomness of the non-

deterministic model doesn’t mean a trendless output, but rather the level of chance 

for the possible outcome that can be expected.  

Following the review of important concepts in fractional calculus, one main 

achievement was the proof of the existence and uniqueness of the FLDE. Since the 

FLDE doesn’t have analytic solution, numerical schemes, such as the CF method, the 

PSE or LM method and the GEM are used to compute approximate solutions to the 

FLDE. 

Another important work in this thesis is the study of a logistic growth model with a 

large carrying capacity. It is known that when the carrying capacity approaches 

infinity, the logistic growth model coincides with the exponential growth model. In 
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chapter 5 an application for the logistic growth model with large carrying capacity 

with an application to the Chinese population growth modeling is given.  

In Chapter 5 it was determined that the  -Caputo derivative with Rayleigh kernel 

function performed better compared with the classical logistic or exponential models, 

based on obtained MSE values.    

It is difficult to give a practical meaning to a fractional order derivative. In this study 

a simulation to determine the error levels obtained using CF, PSE and GEM 

numerical algorithms to find the optimum solution of the FLDE, indicated that only 

the CF method resulted in minimum error for the fractional derivative order q=1.005. 

The PSE and GEM methods achieved minimum error levels at q=1 which is the 

same as the classical approach. 

Non-parametric kernel smoothing was used as a non-deterministic model in 

modeling data set that would be fitted by the deterministic logistic growth model. 

However, it is generally observed that the optimal bandwidth determined using 

theoretical formulae, tends to result in large estimation errors. A trial an error method 

could be used in selecting optimal bandwidth, where the balance between bias and 

variance is observed, and error level minimized.  
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Appendix A: Arzela-Ascoli Theorem and proof 

This theorem is usually stated in different forms. Below are given the two forms that 

are the commonly used. Denote by  ,C X  , the set of continuous functions from X  

to  . 

Form 1:   A subset S of  ,C X  is compact if and only if it is bounded, closed and 

equicontinuous.  

Form 2: If a sequence  
1n

g


in  ,C X  is bounded and equicontinuous then it has a 

uniformly convergent subsequence.  

Note:  boundedness and equicontinuity are mathematically written respectively as  

i) ‘  ,S C X  is bounded’  means that there is a constant 0   , such 

that  g x  , for x X and g S . 

ii) ‘  ,S C X  is equicontinuous’  means that : 0  , ( )   such that 

,x y X  :      , ( )d x y f x f y      ,  f S  . 

Proof:  see [93] 
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Appendix B: Krasnoselskii’s fixed point theorem 

Let S be a closed, bounded and convex nonempty subset of a Banach space  , .Y . 

Moreover assume that U  and V  are continuous application that map S into Y , such 

that [87] 

i)  ( ) ( )I U S V S  , 

ii)  ( )I U S is contained in a compact subset of S . 

iii) If n
Vx y then there is a convergent subsequence    nk n

x x ,  

iv) ( )y Range V  ,  :
y
D x S Vx y   isa convex set.  

Then there is y S , y Uy Vy  . 

Proof:  See [87] 
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Appendix C: Banach contraction mapping theorem 

See [88] for details information about the theorem which is stated as follow:  

Consider a complete metric space  ,X d . A mapping :P X X is said to be a 

contraction mapping if 1 2
,x x X  ,    1 2 1 2

, ,d Px Px d x x . With 0 1  . 

Proof:  See [88]. 
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Appendix D: Leray-Schauder nonlinear alternative theorem 

See [89] for detailed information about the theorem which is stated as follow. 

Denote by V  and V  respectively the open and the closed subset of a convex U of a 

normed and linear space Y such that 0 V . Moreover let :P V U be a continuous 

and compact operator. Then either  

a) Equation Px x has a solution in the closed setV , or  

b) There is a point v V such that v Pv ; with  0,1 and V represents 

the boundary of V . 

Proof:  See [89]. 


