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ABSTRACT 

Fixed point theory be one of the advanced topics in both pure and applied mathematics, 

it also has seen great interest since recent decades, because it is considered an essential 

tool for nonlinear analysis and many other branches of modern mathematics. In 

particular, when we deal with the solvability of a certain functional equation 

(differential equation, fractional differential equation, integral equation, matrix 

equation, etc), we are reformulating the problem in terms of investigating the existence 

and uniqueness of a fixed point of a mapping.  In addition, this theory has several 

applications in many different fields such as biology, chemistry, economics, game 

theory, optimization theory, physics, etc. 

The basic purpose of this thesis is to present some recent advances in this theory with 

some applications that is an important for our life. For example, first and second order 

of ordinary differential equations in Banach space and fractional differential equations 

involving Riemmann-Liouville and Caputo differential operators. 

Keywords: Fixed points, Banach’s contraction theorem, Contraction, Schauder’s 

fixed point theorem, Brouwer’s fixed point theorem, Uniqueness, Existence, 

Fractional differential equations, Boundary value problems. 
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ÖZ 

Sabit nokta teorisi hem güvenli hem de uygulamalı matematiğin en ileri konularından 

biri olup, uzun yıllardan bu yana büyük ilgi görüyor, çünkü doğrusal olmayan analizler 

ve modern matematiğin diğer birçoklerinden dalında önemli bir araç olarak kabul 

edilir.  Belirli, temizlenmemiş bir denklemin (diferansiyel denklem, kesirli 

diferansiyel denklem, integral denklem, matris denklemi vb), çözünebilirliği ele 

aldığımızda, bir haritanın sabit bir noktasının çeşitliliği araştırmak için sorun giderme 

düzenliyoruz. Ek olarak, bu teorinin biyoloji, kimya, ekonomi, oyun teorisi, 

optimizasyon teorisi, fizik vb, gibi çeşitli farklı alanda uygulamaları vardır. 

 

Bu tezin temel hedefi, yaşamımız için önemli olan uygulamalarla, bu teorideki bazı 

yeni gelişmeleri sunmaktır.  Örnek olarak, Banach uzayında sıradan diferansiyel 

denklemlerin birinci ve ikinci dereceden sıraları, Riemmann-Liouville ve Caputo 

diferansiyel operatörlerini içeren fraksiyonel diferansiyel denklemler. 

 

 Anahtar Kelimeler: Sabit noktalar, Banach'ın büzülme teoremi, Kasılma, 

Schauder’in sabit nokta teoremi, Brouwer’ın sabit nokta teoremi, Teklik, Varlık, 

Kesirli diferansiyel denklemler, Sınır değer problemleri. 
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Chapter 1 

INTRODUCTION 

The thesis displays a clear explanation of the FPT. After introducing some important 

preliminaries and basic theorems of FP, we focused on some applications of BCP and 

SFPT. The prime aim of this exposition is to offer many of the basic results and 

techniques of this theory. Certainly, not all aspects of involved theory could include in 

this work. 

The thesis is divided into five chapters. In chapter 1, we give a brief introduction of 

some basic aspects of this thesis. 

The second chapter is also devoted to provide a simple summary for some important 

definitions, the examples and the useful results about some of the spaces in this thesis. 

For examples, metric, normed, Banach, inner product and topological spaces. In 

addition, this chapter has illustrated some the basic concepts and several examples 

about the FP and contraction. The last section of this chapter studies some the 

relationships between FPs and convergent sequences of contraction functions. 

On the other hand, the main points of this thesis are basically starting from chapter 3, 

which is more theoretical, develops the main abstract theorems on the existence and 

uniqueness of FPs of maps.  We discuss the most significant theorems of FP in this 

chapter, starting with BCP, it deals with contraction mappings in CMS and checks the 

uniqueness and existence of their FPs. Moreover, we state and prove Browder-Kirk 
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theory which is dedicated to finding FPs for non-expansive mappings of uniformly 

convex BS. Most of the results are discussed in of NS. For instance, Brouwer’s FPT. 

However, it is not just confined to study contraction or non-expansive mappings. it 

studies problems solvability that deals with all the mapping that is defined on certain 

subset of IRn. Furthermore, this the chapter also presents another results such as SFPT, 

which applies to solve the problems of compact and CM defined on NS. It is one of 

the best known classical results of FPT and it is an extension of Brouwer’s FPT. 

In turn, the fourth chapter focuses on several applications of this theory, and it is 

covering an enough variety of important results ranging from ordinary differential 

equations in Banach spaces to fractional differential equations. Therefore, the major 

interest in this chapter is to investigate existence and uniqueness of the solution of the 

IVP and BVP.  The last type depends on the R-L and Caputo operators. In addition, it 

has given few explicit examples to illustrate and support our results.   

The final chapter is consisted of a concise conclusion.  
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Chapter 2 

 PRELIMINARIES 

2.1 Metric Space 

Definition(2.1.1): A set W ≠ ∅ and d is real function defined on  W×W is said to be 

distance or metric function , if all of the following conditions are true:  

(M1) d(u ,w) ≥ 0 (non-negative). 

(M2) d(u ,w) = 0 if and only if u = w. 

(M3) d(u ,w) = d(w , u) (Symmetry). 

(M4) d(u ,w) ≤ d(u , v) + d(v ,w)(Triangle inequality), 

for all u , v,w ∈ W. A nonempty set (W, d) is called metric space. 

Definition(2.1.2): A sequence (wn)  in MS (W , d)  is called a convergent if there 

exists w ∈ W such that lim
n→∞

d(wn, w) = 0 . This means that 

∀ ε > 0 ,  ∃ N ∈ IN such that d(wn, w) < ε , ∀ n > N. 

Remark(2.1.1): The sequence (wn) in MS (W, d) is said to be a divergent, if it is not 

convergent.  

Definition(2.1.3): A sequence (wn) in MS (W, d) is said to be a Cauchy sequence  if 

for all ε > 0 there exists N ∈ IN such that 

d(wn, wm) < ε, ∀ n,m > N. 
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Definition(2.1.4): A MS (W, d) is said to be complete if every Cauchy sequence in W 

converges in W.  

Definition(2.1.5): A non-empty subset D of MS W is called bounded if its diameter  

δ(D) = sup{d(u ,w): u,w ∈ D } is a finite. 

Definition(2.1.6): Let W is MS, U ⊆ W is called compact if every sequence in U has 

a convergent subsequence and also its limit in U . Also U is said to be relatively 

compact if its closure U ⊆ W be compact. 

Definition(2.1.7): Suppose (U, d)  and (W, d)  are MSs and let Y:U ⟶ W be an 

operator. W is said to be compact if every bounded subset of  U is mapped into a RC 

subset of  W. Equivalently, Y is compact if and only if {Y(wn)} contains a convergent 

subsequence in W for every bounded sequence {wn} in U. 

Definition(2.1.8): The mapping Y: (W, d) ⟶ (W′, d)  is said to be a continuous at 

w0 ∈ W if for ∀ ε > 0  there exists  δ > 0  such that 

d( Y(w) , Y(w0)) < ε as d(w ,w0) < δ. 

If the function Y is continuous at every point of  W, it is said to be continuous on W. 

Also it is said to be uniformly continuous if for all ε > 0  there exists δ > 0 such that  

∀ u, w ∈ W, d(u,w) < δ yields  

d(Y(u), Y(w)) < ε. 

Definition(2.1.9): A sub-collection 𝒥 ⊂ C(W)  is said to be uniformly bounded if  

there exists  δ > 0  such that  |Y(w)| ≤ δ  for every  w ∈ W  and  Y ∈ 𝒥.  
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Definition(2.1.10): A sub-collection 𝒥 ⊂ C(W,W′) is said to be equi-continuous if for 

all w0 ∈ A and for each ε > 0 there exists δ = δ(w0, ε) > 0 such that d(w,w0) < δ 

yields d(Y(w), Y(w0)) < ε for all Y ∈ 𝒥. 

Remark(2.1.2): The collection of all CM from W into W′ be denoted by C(W,W′).  

If  W′ = W, then C(W,W) = C(W). 

Theorem(2.1.1)(Arzelà-Ascoli theorem): A sub-collection 𝒥 ⊂ C(W)  be relatively 

compact if and only if, 

(i) 𝒥 is equi-continuous, and  

(ii) 𝒥 is uniformly bounded. 

Corollary(2.1.1): A sub-collection 𝒥 ⊂ C(W) be compact if and only if it be closed, 

equi-continuous and uniformly bounded. 

Theorem(2.1.2): A mapping Y:W⟶ U  is continuous if for every convergent 

sequence (wn) of  W, 

lim
n→∞

Y(wn) = Y ( lim
n→∞

wn). 

Proof 

 

Let’s assume that wn converges to w0 ∈ W such that  lim
x→n

wn = w. By the continuity 

of  Y on W,  

                           

                                           lim
x→n

Y(wn) = Y(w0) = Y ( lim
n→∞

wn).                                ∎ 

2.2 Normed Space 

Definition(2.2.1): Assume W be a LS, the function ‖. ‖:W → IR  is said to be a norm 

function on W if satisfies, 
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(N1) ‖w‖ ≥ 0,  ∀ w ∈ W.                     

(N2) ‖w‖ = 0 if and only if  w = 0.                                                                                                                  

(N3) ‖βw‖ = |β| ‖w‖, ∀ β ∈ IR.                      

(N4) ‖w1 +w2‖ ≤ ‖w1‖ + ‖w2‖ , ∀ w1, w2 ∈ W. 

The non-empty set (W, ‖. ‖) is called  a normed space. 

Definition(2.2.2): Every complete normed space is called a Banach space. 

Definition(2.2.3): Suppose W  , W′ are LSs over the same field , the mapping 

Y: D(Y) ⊆ W⟶W′ is said to be a linear operator if 

(a) The domain D(Y) of  Y is LS and the range R(Y) ⊆ W′ lies in a LS over  the same 

field . 

(b) ∀ u,w ∈ D(Y) and β ∈ IR,    

(i) Y(u + w) =  Y(u) +  Y(w).                  

(ii) Y(βw) = βY(w). 

Definition(2.2.4): Let W , W′ be NSs and  Y: D(Y) ⊆ W⟶W′ be a linear operator. 

The operator  Y  is called bounded  if there exists a real number β > 0 such that for all 

w ∈ D(Y)  

‖Y(w)‖ ≤ β ‖w‖. 

2.3 Inner Product Space 

Definition(2.3.1): Let u, v and w be vectors in a LS W over field C, and let α, β be any 

scalars. The function 〈.  , . 〉 ∶ W ×W → C  is said to be an inner product on W  if 

satisfies the following axioms:  

(IP1) 〈w, w〉 ≥ 0, 
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(IP2) 〈w, w〉 = 0 if and only if w = 0, 

(IP3) 〈u,w〉 = 〈w, u〉,  

(IP4) 〈αu + βv, w〉 = α〈u,w〉 + β〈v,w〉.  

The ordered pair (W, 〈. , . 〉) is called an inner product space. We call 〈u, w〉 

 the inner product of two elements u, w ∈  W. 

Characterizations of Inner Product Spaces  

1. Let (W, 〈. , . 〉) be an inner product space. Then, the function ‖ . ‖ ∶ W → C defined 

by 

‖w‖ = √〈w,w〉. 

2. The standard inner product is 

〈u,w〉 = u .w = ∑ uiwi
n
i=1 , ∀ u, w ∈ Cn. 

Theorem(2.3.1)(Cauchy-Schwarz inequality): Let W  be an inner product space. 

Then,  

|u,w| ≤ ‖u‖. ‖w‖ 

for all u,w ∈  W. 

2.4 Topological Space 

Definition(2.4.1): Consider τ  is a collection of subsets of non-empty set W.  τ is said 

to be a topology on W if the following conditions are satisfied: 

(T1) ∅ , W ∈ τ,                                                              

(T2) τ be closed by arbitrary unions,                            

(T3) τ be closed by finite intersections. 

The filed (W, τ) is called topological space. 
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Some simple examples to illustrate this space 

1) Let  Z = {0, 5, 10} and τ = {∅, {0}, {5, 10}, Z }. Then (Z , τ) is TS.  

2) Consider W is any set and τ = {A: A ⊆  W}. Then τ  is called the discrete topology 

on W, and (W, τ) is also called the discrete space. 

Definition(2.4.2): A subset U of  TS W is said to be a neighborhood of w ∈ W  if  there 

exists an open set M ∈ τ such that 

w ∈ M ⊂ U. 

Definition(2.4.3): A subset 𝑀  of a LS W  is said to be convex if for all u, v ∈ 𝑀 

implies that set  

{ z = αu + (1 − α)v, 0 ≤  α ≤ 1 } 

is a subset of  𝑀. 

        

                                         convex                                   non-convex 

Remark(2.4.1): Let C be a subset of a LS W. Then, C is convex if and only if  

α1w 1 + α2w 2  +··· +αnw n ∈ C 

for any finite set {w1, . . . , wn} ⊂ C  and any scalars αi ≥ 0 with α1 +··· +αn = 1.  
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Definition(2.4.4): Let W be a LS and C be an arbitrary subset of W. The intersection 

of all convex subsets of W containing C is called convex hull of C in W and is denoted 

by co(C). Symbolically, we have 

 co(C) =∩ {K ⊂  W ∶ C ⊆ K,K is convex}. 

In other words, co(C) is the set of all finite convex combination of elements of C, that 

is, 

co(C) = {∑ αiwi
n
i=1 : wi ∈ C, 0 ≤ αi ≤ 1:∑ αi = 1

n
i=1 }. 

Example(2.4.1): Let W be a LS. The interval joining between two points u,w ∈ W is 

the set 

 [u,w] ≔ {tu + (1 − t)w ∶ 0 ≤ t ≤ 1}. 

Then co({u,w}) = [u,w] is convex hull of {u, w}.  

Remark(2.4.2): The closure of convex hull of C is 

co(C) = {∑ αiwi
n
i=1 : wi ∈ C, 0 ≤ αi ≤ 1:∑ αi = 1

n
i=1 }. 

The closed convex hull of C in W is the intersection of all closed convex subsets of W 

containing C and is denoted by co(C), as follows                                         

co(C) =∩ {K ⊂ W:C ⊆ K, K is closed and convex}. 

It is easy to observe that closure of convex hull of C is closed convex hull of C such 

that 

co(C) = co(C). 

Definition(2.4.5): A linear topology on a TS W is said to be a locally convex topology 

if every neighborhood of 0 (the zero vector of W) contains a convex neighborhood of 

0. Then, W is called a locally convex topological vector space. 
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Definition(2.4.6): A NS  (W , ‖∙‖)  is called uniformly convex if there exists an 

increasing positive function δ: (0 ,2] → (0 ,1] such that for u,w ∈ W,‖u‖, ‖w‖ ≤ r 

and ‖u − w‖ ≥ εr  imply that 

‖
u−w

2
‖ ≤ (1 − δ(ε))r.    

2.5 Fixed Point and Contraction 

Definition(2.5.1): A point w ∈ W  is called a fixed point of the mapping Y: W ⟶ W 

if and only if  Y(w) = w .  

Example(2.5.1): The map Y: IR ⟶ IR defined by Y(w) = w2 has two FPs (0 and 1). 

On the other hand, the mapping Y(w) = w− 1 has no FP.                                                           

Definition(2.5.2): Suppose (W, d) is MS. A map Y: W ⟶ W is said to be  

i) A Lipschitz mapping if  there exists a scalar k ∈ [0 ,∞) such that 

d(Y(w1), Y(w2)) ≤ k d(w1, w2),   ∀ w1, w2 ∈ W. 

ii) A contraction if  there exists  a scalar k ∈ [0 , 1) such that   

d(Y(w1), Y(w2)) ≤ k d(w1, w2),  ∀ w1, w2 ∈ W. 

iii) A non-expansive if there exists a scalar k ∈ [0 , 1] such that 

d(Y(w1), Y(w2)) ≤ k d(w1, w2), ∀ w1, w2 ∈ W. 

Remark(2.5.1): Because if wn
n→∞
→  w ⟹ Y(wn)  

n→∞
→  Y(w), a Lipschitzian map is  

necessarily continuous.  

Definition(2.5.3): A mapping Y  of a MS W  into itself and n ∈ IN , we denote by 

Yn the nth- iterate of  Y. Namely, Y. Y. Y. ………Y  n-times such that                                                                  

Yn(u) = Y(Yn−1(u)),……… , Y2(u) = YY(u),Y1(u) = Y(u), 
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Y°(u) = u( Y°is the identity map). 

Remark(2.5.2): If the mapping Y  is a contraction on a MS W  with contraction 

constant k for some n, hence Yn is also a contraction on W with contraction constant 

kn for some n.  But the converse does not hold in general. 

2.6 Sequences of Contractions and Fixed Points 

In this section, we will study two types of the convergence for the FPs, such as: 

(i) Uniform convergence. 

(ii) Pointwise convergence. 

Definition(2.6.1): Let W  is a MS and (Yn)  be a sequence of set valued functions 

defined on W. The sequence  (Yn)  is said to  

i) converge uniformly to Y if given any ε > 0, there exists  L = L(ε) ∈ IN such that  

d(Yn(w) , Y(w)) ≤ ε,  ∀ n ≥ L and ∀ w ∈ W. 

ii) converge pointwise to Y if given any w ∈ W and for every ε > 0, there exists 

 L = L(w, ε) ∈ IN such that  

d(Yn(w) , Y(w)) ≤ ε,  ∀ n > L.                                                                                                                                    

The following two main theorems will show these convergences:  

Theorem(2.6.1): Let (W, d) be a MS and Y:W ⟶ W be a contraction map with a FP 

u0.  Let  Yn: W ⟶W has at least one FP un. If  Yn⟶ Y uniformly, then un⟶ u0. 

Proof  

Firstly, let’s consider that Y is a contraction with Lipschitz constant k < 1 . 

d(Y(w1) , Y(w2)) ≤ k d(w1, w2) , ∀ w1, w2 ∈ W. 
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Since Yn  converges uniformly to Y  , then for any ε > 0  there exists L = L(ε) ∈ IN 

such that                       

d(Yn(w) , Y(w)) ≤ ε(1 − k) , ∀ n ≥ L, ∀ w ∈ W. 

Hence for all  n ≥ L, 

d(wn , w) = d(Yn (wn), Y(w0)) ≤ d(Yn(wn), Y(wn)) + d(Y(wn), Y(w0)) 

                 ≤ ε(1 − k) + k d(wn, w0). 

So, d(wn , w0) ≤ ε , which decides that (wn) converges to the FP w0 .                      ∎                                                        

Theorem(2.6.2): Let (U, d) be a locally compact MS and Y:U ⟶ U be a contraction 

mapping with FP u0. In addition, Yn: U ⟶ U  be an equi-continuous mapping with FP 

un  for each  n ≥ 1. Then convergence of the sequence (Yn) pointwise to Y guarantees 

convergence (un) to u0. 

Proof  

 Set ε > 0 and let ε is enough small so that  

K(u0, ε) = {u ∈ U: d(u, u0) ≤ ε} ⊂ U 

Then, by Corollary (1) K(u0, ε) is a compact.  From the fact that (Yn) is equi-continuous 

sequence of converging pointwise functions to Y , compactness of  K(u0, ε) and by 

Theorem(2.1.1)(A-AT), the sequence Yn
uniformly
→       Y on  K(u0, ε). Indeed,  

since Yn⟶ Y pointwise, then this implies Yn is pointwise bounded ( all convergent 

sequences are bounded ). Define  

an = d(Yn , Y). 

                                                

 

(1) Shirali, S., & Vasudeva, H. L. (2005). Metric spaces. Springer Science & Business Media. p180. 
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We wish to show that  an → 0. To see this let (ank) be any subsequence of  (an). The 

equi-continuity and pointwise boundedness of (Yn) and ( A-AT ) guarantee existence 

a further subsequence (Ynk) that converges uniformly to some function. Since this 

sequence is known to converge pointwise to Y already, the uniform limit must be Y 

(because the uniform limit is also a pointwise limit, and pointwise limits are unique) 

such that , ∃ L = L(ε) ∈ IN such that,  

ank = d(Ynk  , Y)
nk→ ∞
→     0 , for all nk ≥ L. 

Exactly, this means that (an) as well has a further subsequence (ank), that approaches 

to 0. Thus, by Theorem(2), an → 0 , which implies                                  

d(Yn , Y)
n → ∞
→    0 , for all  n ≥ L. 

By definition of uniform convergence, this is the same thing as saying Yn⟶ Y 

uniformly, as desired. Choose L such that if n > L, then 

d(Yn(u) , Y(u)) ≤ ε(1 − k) , ∀ n ≥ L, ∀ u ∈ K(u0, ε) 

where k < 1 is a Lipschitz constant for Y.  Therefore, if  n ≥ L and  u ∈ K(u0, ε),  

d(Yn(u) , u0) ≤ d (Yn(u), Y(u)) + d(Y(u), Y(u0)) 

                        ≤  ε(1 − k) + kd(u , u0) ≤ ε − εk + εk ≤ ε. 

This implies Yn(u) ∈ K(u0, ε) for each u ∈ K(u0, ε). This  proves that if  n ≥ L,  hence  

Yn maps K(u0, ε) into itself.  Thereafter, for all n ≥ L, 

d(un , u0) = d(Yn (un), Y(u0)) ≤ d(Yn(un), Y(un)) + d(Y(un), Y(u0))  

                 ≤ ε(1 − k) +  kd(un, u0) ≤ ε.  

                                                

 

(2) Laczkovich, M., & Sós, V. T. (2015). Real Analysis: Foundations and Functions of One Variable. 

Springer. p 64. 
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Thus, un ∈ K(u0, ε), that means: the sequence (un) converges to u0.                        ∎ 

The next result refers to the general case of Theorem (2.6.1)                                                           

Theorem(2.6.3): Define T: U ⟶ U is an uniformly CM such that  T𝓂 be a contraction 

for some 𝓂 ≥ 1. Suppose Tn has at least one FP un = Tn (un). Then (un)  converges 

to u0 = T(u0), if (Tn) converges uniformly to T. 

Proof 

Firstly, since T𝓂 is a contraction for some 𝓂 ≥ 1, 

d(T𝓂(u1), T
𝓂(u2)) ≤ k

𝓂d(u1, u2) for some k < 1, 

Now it is sufficiently to define a new metric P on U equivalent to d by considering              

P(u1, u2) = ∑
1

kr
d(Tr(u1), T

r(u2))
𝓂−1
r=0 . 

Moreover, note that 

1. T is a contraction with respect to P. To claim this, let u1 , u2 be arbitrary elements 

of  X.     

P(T(u1), T(u2)) = ∑
1

kr
𝓂−1
r=0 d(Tr+1(u1), T

r+1(u2))  = k∑
1

kr
d(Tr(u2), T

r(u2))
𝓂−1
r=1  

                           ≤ k∑
1

kr
d(Tr(u1), T

r(u2)) +
𝓂−1
r=1

1

k𝓂−1
d(T𝓂(u1), T

𝓂(u2)). 

                           ≤ k∑
1

kr
d(Tr(u1), T

r(u2)) +
𝓂−1
r=1 k d(u1 , u2)         

                           = k∑
1

kr
d(Tr(u1), T

r(u2))
𝓂−1
r=0 = kP(u1 , u2). 

2. T is a uniformly continuous with respect to P. To show this let for any ε > 0, there 

exists δ > 0 (δ =
ε

k
) such that P(x , y) ≤ δ.                     

P(T(u1) , T(u2)) ≤ k P(u1 , u2) ≤ k ×
ε

k
= ε  , ∀ u1 , u2 ∈ U. 

3. Tn  is a uniformly convergent to T  respect to P . To display this let for any ε > 0 , 

there exists N = N(ε) ∈ IN such that for each n ≥ N, 
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P(Tn(u), T(u)) = ∑
1

kr
d (Tr(Tn(u)), T

r(T(u)))𝓂−1
r=0 . 

                          = ∑
1

kr
d (Tr(Tn(u)), T(T(u)))

𝓂−1
r=1  + d(Tn(u), T(u)) 

                          ≤ ∑ d(Tn(u), T(u)) + d(Tn(u), T(u))
𝓂−1
r=1  

                           = (𝓂− 1)d(Tn(u),T(u)) + d(Tn(u),T(u)) = 𝓂 d(Tn(u), T(u)). 

Now, we know that Tn
uniform
→      T with respect to d, hence there exists L = L (

ε

m
) ∈ IN, 

such that 

d(Tn(u), T(u)) ≤
ε

𝓂
, ∀ n ≥ L . 

Now, let N ≥ L , 

P(Tn(u), T(u)) ≤ ε   , ∀ n ≥ N and ∀ u ∈ U. 

Finally, by applying the same argument Theorem(2.6.1), we get  P(un , u0) ≤ ε, for all 

n ≥ N. Therefore, un = Tn(un) converges to u0 = T(u0).                                               ∎ 
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Chapter 3 

 FIXED POINT THEOREMS 

3.1 Banach Contraction Principle 

This theory is one of the important theorems and the most used in the applications of 

nonlinear analysis. 

Theorem(3.1.1): Assume (U , d) is a CMS, then all contraction maps Y:U ⟶ U with 

contraction constant k has a unique FP u0 ∈ U. In addition, for every u ∈ U we have 

lim
n→∞

Yn(u) =u0 with  

d(Yn(u) ,  u0) ≤
kn

1−k
 d(u , Y(u)). 

Proof 

Firstly, we will claim the uniqueness. Let that Y has two FPs u, v ∈ U with Y(u) = u 

and   Y(v) = v. Then 

d(u, v) = d(Y(u),Y(v)) ≤ k d(u, v) ⟹ (1 − k) d(u , v) ≤ 0 

                                                            ⟹ d(u , v) ≤ 0.                                       (3.1.1) 

since k is a contraction constant. Also, if d be a metric function, we conclude 

                                                                  d(u, v) ≥ 0                                                    (3.1.2)  

From (3.1.1) and  (3.1.2), we get  

               d(u, v) = 0 

which follows u = v. 

Secondly, to show the existence we will take any u ∈ U and consider the sequence 

(Yn(u)) in U. Now we need to illustrate that Yn(u) is a convergent by using the fact 



17 

  

that (U , d) is a complete, so it is enough to show that the sequence is Cauchy. For all 

n = 0 , 1 , 2 , ……  that 

d(Yn(u) , Yn+1 (u)) = d (Y(Yn−1(u)) , Y(Y (u))) ≤ k d(Yn−1(u) , Yn(u)) 

                                  = k d (Y(Yn−2(u)) , Y(Yn−1 (u))) 

                                  ≤ k2 d(Yn−2(u) , Yn−1(u)) ≤ ⋯⋯⋯  ≤ kn d( u , Y(u)) . 

Therefore, for m > n 

d(Yn(u), Ym (u)) ≤ d(Yn(u) , Yn+1(u)) + d(Yn+1(u) , Yn+2(u)) 

                              +⋯⋯⋯+  d(Ym−1(u) , Ym (u)) 

                              ≤ (kn + kn+1 +⋯⋯⋯+ km−1) d(u, Y(u)) 

                              = kn(1 + k + k2 +⋯⋯+ km−n−1) d(u , Y(u)) 

                              = kn(1 + k + k2 +⋯⋯⋯) d(u , Y(u)). 

We know that 1 + k + k2 +⋯  is a geometric series, which is a convergent since 

  0 ≤ k < 1 and  1 + k + k2 +⋯⋯⋯ =
1

1−k
 . Therefore,            

                                   d(Yn(u) , Ym (u)) ≤
kn

1−k
  d(u , Y(u))                                 (3.1.3) 

Hence, d(Yn(x) , Ym (x))
n→∞
→  0 , it follows (Yn(u))  is Cauchy sequence, that 

converges to u0 ∈ U  since U is a CMS. That is 

lim
n→∞

d( u0 , Y
n (u)) = 0 . 

Thus,  u0 = lim
n→∞

Yn (u) = lim
n→∞

Y(Yn−1 (u)) = Y( lim
n→∞

Yn−1 (u)) = Y(u0)                   

since Y is contraction that guarantees the continuity. Therefore, u0 is a FP. 

Finally, putting m → ∞ in (3.1.3) yields  

d(Yn(u) , u0) ≤
kn

1−k
  d(u , Y(u)). 

The proof of Theorem (3.1.1) is complete.                                                                      ∎       
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This is the best example to clear that, contractions mapping on incomplete MS might 

miss FPs. 

Example(3.1.1): Consider   Y: (0 , 1] → (0 , 1] , Y(x) =
u

2
  such that (0 , 1]  is an 

incomplete MS. Because (
1

n
)  is Cauchy sequence in MS (0 , 1]  but lim

n→∞

1

n
= 0 ∉

(0 , 1]. Therefore, (0 , 1] is not complete. Now, it is a clear that Y is a contraction on 

(0 , 1]. Because, for any  u, v ∈ (0 , 1] 

d(Y(u),Y(v)) = |Y(u) − Y(v)| = |  
 u 

2
 −  

 v 

2 
 | =

1

2
 | u − v | =

1

2
 d(u − v). 

However, for any u ∈  (0 , 1],  Y(u) ≠ u. So, Y need no have a FP. 

Theorem(3.1.2)(Local Banach’s FPT): Consider (U , d) is a CMS and let 

Br(u0) = {u ∈ U: d(u , u0) < r}, 

where u0 ∈ U  and u0r > 0 . Assume Y ∶ Br(u0) → U  be a contraction map with 

contraction constant k ∈ [0,1). As well, assume that 

d(Y(u0) , u0) < r(1 − k). 

Then, Y has a unique FP in  Br(u0).  

Proof                                                                    

We have d(Y(u0) , u0) < r(1 − k) ⟹
d(Y(u0) , u0)

1−k
< r. By using archemidian property 

of real line IR,  there exists 0 ≤ r0 < r such that 

d(Y(u0) , u0)

1−k
≤ r0. 

Now, to show that Y ∶ Br0(u0) → Br0(u0), take any u ∈ Br0(u0), 

                   d(Y(u) , u0) ≤ d(Y(u),Y(u0)) + d(Y(u0), u0) 

                                        ≤ kd(u, u0 ) + (1 − k)r0 ≤ kr0 + r0 − kr0 = r0. 

Subsequently, Y(u) ∈ Br0(u0) for all u ∈ Br0(u0). Now notice that 
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Y (Br0(u0)) ⊆ Br0(u0) ⊂ Br(u0) ⊂ U.   

Since Br0(u0)  is a close subset of CMS U, then by using complete subset Theorem, is 

a CMS. Therefore, by BCP,  Y has a unique FP u ∈ Br0(u0), thus  u ∈ Br(u0). So Y 

has a unique FP in Br(u0).                                                                                              ∎ 

Corollary(3.1.1): Suppose Y: U ⟶ U be mapping of CMS. If  YNis a contraction for 

some positive integer N, whereupon Y has a unique FP u0 ∈ U and for each u ∈ U,  

lim
n→∞

Yn(u) = u0. 

Proof 

Consider that u0 be the unique FP of  YN, given by BCP such that  YN(u0) = u0. Then  

YN(Y(u0)) = Y(Y
N(u0)) = Y(u0). 

This implies  Y(u0) is a FP of  YN which has a unique FP, then Y(u0) = u0. So Y has 

a FP. Since any  FP of  Y  is obviously a FP of  YN, we have uniqueness as well. 

Now, to show lim
n→∞

Yn(u) = u0 by using Theorem(3.1.1)(BCP), to get 

lim
n→∞

(YN)n(u) = u, ∀u ∈ U, N ≥ 1. 

Since n be any integer and n = mN+ r such that 0 ≤ r < N , m ≥ 0. For any u ∈ U, 

Yn(u) = (YN)m(Yr(u)). 

Therefore, d(Yn(u) ,  u0 ) = d((Y
N)m(Yr(u)),  u0). By using Theorem (3.1.1) (BCP), 

d(Yn(u) ,  u0 ) ≤
km

1−k
d (Yr(u), Y(Yr(u))) ≤

km

1−k
  max
0≤h≤N−1

{d (Yh(u), YN+h(u))}. 

Now, clearly that m → ∞ asn → ∞.Therefore, lim
n→∞

d(Yn(u) ,  u0 ) = 0. So   

   

 
lim
n→∞

Yn(u) = u0 .                                                 ∎ 
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3.2 Browder-Kirk’s Fixed Point Theorem of Non-expansive Maps   

We before present this result, will present a result known as Schauder’s theorem for 

non-expansive maps. It is a special case of SFPT which will be presented in this 

chapter. 

Theorem(3.2.1)(Schauder’s theorem for non-expansive maps): Let C ≠ ∅  be a 

closed, convex subset of a NS W with ψ ∶ C → C is non-expansive and ψ(C) a subset 

of a compact set of  C. Then ψ has a FP. 

Proof  

Take any point x0 ∈ C and define 

ψn = (1 −
1

n
)ψ +

1

n
x0 , n ≥ 2. 

It is a clear that 

(i) ψn: C → C, because for all x ∈ C,  

ψn(x) = (1 −
1

n
)ψ(x) +

1

n
x0. 

Thus ψn(x) ∈ C since C is a convex and ψ(x),  x0 ∈ C. 

(ii) ψn is a contraction. To show this let’s assume any x , y ∈ C, hence 

‖ψn(x) − ψn(y)‖ = (1 −
1

n
)‖ψ(x) − ψ(y)‖ ≤ (1 −

1

n
) ‖x − y‖,   ∀n ≥ 2. 

Theorem(3.1.1)(BCP) says that for all n ≥ 2, ψn has a unique FP xn ∈ C such that 

xn = ψn(xn) = (1 −
1

n
)ψ(xn) +

1

n
x0. 

In addition, by our assumption ψ(C) lies in a compact subset say B subset of C such 

that ψ(C) ⊂ B ⊂ C. It follows that a sequence (ψ(xn)) ⊂ ψ(C) ⊂ B has a convergent 

subsequence (ψ(xnk)) such that 

                                                      ψ(xnk)
nk→∞
→   x ∈ C                                              (3.2.1) 

Therefore, 
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xnk = ψnk(xnk) = (1 −
1

nk
)ψ(xnk) +

1

nk
x0

nk→∞
→   x. 

In turn, ‖ψ(xnk) − ψ( x )‖ ≤ ‖xnk − x‖
nk→∞
→   0. Then this automatically yields  

                                                ψ(xnk)
nk→∞
→   ψ( x )                                             (3.2.2) 

From (3.2.1), (3.2.2) and the fact the uniqueness of the limit,  ψ( x ) = x.               ∎                                                                            

The main theorem of this section is a result proved independently by Browder, Gohde 

and Kirk. We state it as follows: 

Theorem(3.2.2)(Browder-Kirk): Let W  be a UCBS and C  be non-empty, closed, 

bounded and convex subset of  W . If ψ:C → C is a non-expansive map, then ψ has a 

FP in C. 

Proof                                                                                                        

Let x∗ ∈ C be fixed, and consider a sequence rn ∈ (0 , 1) converging to one. For each 

n ∈ IN, define the map ψn: C → C as 

ψn(x) = rnψ(x) + (1 − rn)x∗. 

Notice that ψn is a contractions on C. To make sure let’s take x , y ∈ C, 

‖ψn(x) − ψn(y)‖ = rn‖ψ(x) − ψ(y)‖ ≤ rn‖x −  y‖. 

Then there is a unique xn ∈ C  such that  ψn(xn) = xn. Since C is weakly compact, xn 

has a subsequence weakly converges to some x ∈ C. We shall prove that  x is a FP of  

ψ. Notice initial that 

lim
n→∞

(‖ψ( x ) − xn ‖
2 − ‖x − xn‖

2) = ‖ψ( x ) − x‖2.        

Since ψ is non-expansive we have  

‖ψ( x ) − xn‖ ≤ ‖ψ( x ) − ψ(xn)‖ + ‖ψ(xn) − xn‖  

                        ≤ ‖x − xn‖ + ‖ψ(xn) − xn‖ 

                        = ‖x − xn‖ + ‖ψ(xn) − ψn(xn)‖ 
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                        = ‖x − xn‖ + (1 − rn)‖ψ(xn) − x∗‖.                                           

But  rn → 1 as n → ∞ and C is bounded, so we conclude that 

lim
n→∞

(‖ψ( x ) − xn ‖
2 − ‖x − xn‖

2) ≤ 0.  

Thus ‖ψ(x) − x‖ = 0, which yields the equality ψ( x ) = x.                                      ∎ 

3.3 The Brouwer’s Fixed Point Theorem  

Brouwer’s FPT is considered the bases for some FPTs. We start this section by 

reminding you that IRnis endowed with its standard inner product. If u, v ∈ IRn, hence                                                      

〈u, v〉 = u . v = ∑ uivi
n
i=1 , 

and norm    

‖u‖ = √〈u, u〉. 

Also, Bn and Sn−1 will denote respectively, the closed unit ball and unit sphere in IRn: 

Bn = {u ∈ IRn: ‖u‖ ≤ 1}, Sn−1 = {u ∈ IRn: ‖u‖ = 1}. 

Before we introduce the theorems, we provide the following definitions 

Definition(3.3.1): A TS U has the FP property if every CM Y:U ⟶ U has a FP. 

Definition(3.3.2): A CM Y:U ⊆ IRn ⟶ IRn  is said to be of class C1 , if it has a 

continuous extension to an open neighbourhood of U  on which is continuously 

differentiable. 

Definition(3.3.3):  A mapping Y:U ⊆ IRn ⟶ IRn is called a 

1. Non-vanishing if it satisfies  for all u ∈ U,  Y(u) ≠ 0. 

2. Normed if it satisfies for all u ∈ U, ‖Y(u)‖ = 1.  

3. Tangent to Sn−1  if the mapping   Y: Sn−1⟶ IRn satisfies 〈u , Y(u)〉 = 0  for all 

u ∈ Sn−1.     
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Theorem(3.3.1): Assume U ⊆ IRn be a compact. Let Y:U ⟶ IRn is of class C1 on U. 

Then we have the following: there exists k ≥ 0 such that   

‖Y(u) − Y(v)‖ ≤  k ‖u − v‖ , ∀ u, v ∈ U. 

With the result above, we can prove Theorem (3.3.2). 

Theorem(3.3.2): Suppose that Y: Sn−1⟶ IRn  is a normed vector field of class C1 

which is tangent to Sn−1. Then for t > 0 sufficiently small,  

Yt(S
n−1)  =  (1 + t2)

1

2Sn−1, here  Yt ∶  u →  u +  tY(u). 

Proof  

Define  Y∗: IRn\{0} ⟶ IRn, U ⊆ IRn by 

Y∗(u) = ‖u‖Y (
u

‖u‖
) and  U = {u ∈ IRn : 

1

2
≤ ‖u‖ ≤

3

2
}. 

Note that Y∗is well defined. Furthermore, we know that Y∗is of class C1 in Sn−1 since 

‖x‖, Y and 
x 

‖x‖
 are all of class C1  in U. U is also compact since it is bounded and 

closed. By Theorem(3.3.1) applied to Y∗on U, 

∃L ≥ 0 , ∀ u, v ∈ U ∶ ‖Y∗(u) − Y∗(v)‖ ≤  k ‖u − v‖. 

Let |t| ≤ min {
1

3
,
1

k
}, where k is the Lipschitz constant of  Y∗on U. Fix z ∈  Sn−1 and 

define ψ: U → IRn by                                              

ψ(u) = z − tY∗(u). 

We aim to apply Theorem(3.1.1)(BCP) to G. To do so, we must show  ψ: U ⟶ U and 

G is a contraction. By the triangle inequality, our choice of  |t| ≤
1

3
 , and the fact that 

 Y is normed, we have in fact that   

1) ψ ∶ U ⟶ U. To see this let that u ∈ U, hence                           

 ‖ψ(u)‖ = ‖z − tY∗(u)‖  = ‖z − t‖u‖Y (
u

‖u‖
) ‖                                                                 



24 

  

               ≥ ‖z‖ − |t|‖u‖‖Y (
u

‖u‖
)‖ ≥ 1 − |t|‖u‖ ≥ 1 − (

1

3
) (

3

2
) =

1

2
               (3.3.1) 

Similarly, we also have 

‖ψ(u)‖ = ‖z − tY∗(u)‖ = ‖z + (−t)‖u‖Y (
u

‖u‖
) ‖                                                

             ≤ ‖z‖ + |−t|‖u‖‖Y (
u

‖u‖
)‖ = 1 + |t|‖u‖ ≤ 1 + (

1

3
) (

3

2
) =

3

2
              (3.3.2) 

Then (3.3.1) and (3.3.2) imply 

1

2
≤ ‖ψ(u)‖ ≤

3

2
⟹ψ(u) ∈ U. 

2) ψ is a contraction on U. It is easy to verify (using the Lipschitz constant  k of  Y∗on 

A and |t| ≤
1

k
 ) that ψ: U ⟶ U is a contraction. Indeed, let  u, v ∈ U 

             ‖ψ(u) − ψ(v)‖ = ‖z − tY∗(u) − z + tY∗(v)‖ 

                                   = |t|‖Y∗(v) − Y∗(u)‖ ≤ |t|k‖v − u‖ = k|t|‖u − v‖.  

Clearly that U is a closed subset of CMS IRn. Therefore, U is directly complete, by 

Theorem (3.1.1) that  ψ  subsequently has a FP, say u ∈ U, such that  u = ψ(u). Hence  

 u + tY∗(u) = z. Therefore, 

〈u + tY∗(u), u + tY∗(u)〉 = 〈z, z〉 = ‖z‖2 = 1 

⟹ 〈u, u〉 + 2t〈u, Y∗(u)〉 + t2〈Y∗(u), Y∗(u)〉 = 1 

⟹ ‖u‖2 + 2t〈u, Y∗(u)〉 + t2‖Y∗(u)‖2 = 1 

⟹ ‖u‖2 + 2t 〈u, ‖u‖Y (
u

‖u‖
)〉 + t2 ‖‖u‖Y (

u

‖u‖
)‖

2

= 1    

⟹ ‖u‖2 + 2t‖u‖2 〈
u

‖u‖
, Y (

u

‖u‖
)〉 + t2‖u‖2 ‖Y (

u

‖u‖
)‖

2

= 1. 

Since Y is tangent to Sn−1and normed by the assumption and  
u

‖u‖
 is unit vector, we 

have 

‖u‖2 + 2t‖u‖2(0) + t2‖u‖2(1)2 = 1 ⟹ (1 + t2)‖u‖2 = 1⟹ ‖u‖ = (1 + t2)−1/2 

Now we can assume  v =
u

‖u‖
= (1 + t2)1/2u ∈ Sn−1.  
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Yt(v) = v + tY(v) = (1 + t
2)1/2u +

t

‖u‖
Y∗(u) = (1 + t2)1/2u +

t

‖u‖
(
z−u

t
)   

= (1 + t2)1/2u + (1 + t2)1/2(z − u) = (1 + t2)1/2(u + z − u) = (1 + t2)1/2z, 

where z ∈ Sn−1 is an arbitrary. We have shown that for any z ∈ Sn−1 there exists 

 v ∈ Sn−1 with 

Yt(v) = (1 + t
2)1/2z. 

Consequently, 

                                                   (1 + t2)
1

2Sn−1 ⊆ Yt(S
n−1).                                   (3.3.3) 

To show the reverse inclusion, fix u ∈ Sn−1. Because Y is tangent to Sn−1and normed 

by the assumption, we have  

‖u + tY(u)‖2 = 〈u + tY(u), u + tY(u)〉 = 〈u, u〉 + t〈u, Y(u)〉 + t2〈Y(u), Y(u)〉 

                       = ‖u‖2 + t〈u, Y(u)〉 + t2‖Y(u)‖2 = (1)2 + t(0) + t2(1)2 = 1+ t2. 

Fix v = (1 + t2)−1 2⁄ (u + tY(u)). By using above equality 

‖v‖2 = ‖(1 + t2)−1 2⁄ (u + tY(u))‖
2
= (1 + t2)−1‖u + tY(u)‖2 = 1 

Since ‖v‖2 = 1, we have ‖v‖ = 1, that is v ∈ Sn−1. Furthermore, by the definition of  

Yt and our choice of w, we know                                                                           

(1 + t2)−1 2⁄ (u + tY(u)) = v ⟺ u + tY(u) = (1 + t2)1 2⁄ v 

                                                                     ⟺ Yt(v) = (1 + t
2)1 2⁄ y.          

We have shown that for any u ∈ Sn−1, we have v ∈ Sn−1 with Yt(u) = (1 + t
2)1 2⁄ v. 

Therefore, 

                                              Yt(S
n−1) ⊆ (1 + t2)

1

2Sn−1                                         (3.3.4) 

From (3.3.3) and (3.3.4), we get  Yt(S
n−1) =  (1 + t2)

1

2Sn−1, as required.               ∎                                                                                                              

Although we omit the proof, the following theorems are needed in order to induce a 

contradiction in the proof of Theorem (3.3.5).  
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Theorem(3.3.3): If h ∈ IN, then there are no NSs of class C1 tangent to S2h. 

Theorem(3.3.4)(Weierstrass Approximation):  Assume Y is a CM defined on [b, c]. 

Then ∀ ε > 0, there exists a polynomial P such that for all u in [b, c], we have  

‖Y(u) −  P(u) ‖ < ε  or  ‖ Y −  P ‖ <  ε. 

Theorem(3.3.5): If h ∈ IN  be fixed. Then there are no non-vanishing, continuous 

vector fields tangent to S2h. 

Proof 

We aim to prove the above statement by contradiction. Suppose such a field 

 Y: S2h⟶ IR2h+1 exists and that 

r = min{‖Y(u)‖: u ∈ S2h} > 0. 

Since Y is CM and maps to R2h+1 by the assumption, we can apply Theorem (3.3.4) 

to each of the 2h + 1  coordinate components of Y . Recombining the resulting 

polynomial components, we obtain: ∀ ε > 0   there exists P: S2h⟶ R2h+1  such that  

∀ u ∈ S2h, 

‖ P(u) − Y(u)‖ < ε. 

Let r = min{‖Y(u)‖: u ∈ S ,2h}. Observe that r > 0 since Y is non-vanishing. Thus 
r

2
 

is a valid choice for ε, 

∃ P: S2h⟶ IR2h+1 such that ∀u ∈ S2h, ‖ P(u) − Y(u)‖ <
r

2
. 

Now P is of class C∞since polynomials are infinitely differentiable. By the triangle 

inequality and the fact that r is a minimum, we get  

‖P(u)‖ ≥ ‖Y(u)‖ − ‖P(u) − Y(u)‖ ≥ r −
r

2
=
r

2
> 0 . 

Thus P is non-vanishing by Definition(3.3.3). Define the vector field η ∶ S2k → IRn by 
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η(u) = P(u) − 〈P(u), u〉u. 

Because η is also a polynomial, it is also of class C∞and is easily seen to be tangent to 

S2h, as follows 

〈η(u), u〉 = 〈P(u) − 〈P(u), u〉u, u〉 = 〈P(u), u〉 − 〈〈P(u), u〉u, u〉 

               = 〈P(u), u〉 − 〈P(u), u〉〈u, u〉  = 〈P(u), u〉 − 〈P(u), u〉‖u‖2 

               = 〈P(u), u〉 − 〈P(u), u〉 = 0. 

By the triangle inequality, above inequalities, the tangency of Y (by the assumption) 

and Theorem(2.3.1)(Cauchy-Schwarz inequality), ∀ u ∈ S2h we have 

‖η(u)‖ = ‖P(u) − 〈P(u), u〉u ‖  ≥ ‖P(u)‖ − |〈P(u), u〉|‖u‖ >
r

2
− |〈P(u), u〉| 

             =
r

2
− |〈P(u), u〉 − 〈Y(u), u〉| =

r

2
− |〈P(u) − Y(u), u〉| 

             ≥
r

2
− ‖P(u) − Y(u)‖‖u‖ >

r

2
−
r

2
(1) = 0. 

This implies η(u) ≠ 0  ∀ u ∈ S2h. It is well known that 
η(u)

‖η(u)‖
 be a unit vector and 

‖
η(u)

‖η(u)‖
 ‖ = 1. Therefore, we can consider  

η(u)

‖η(u)‖
  is normed by definition. It is also 

of class  C1 and tangent to  S2h,  since η(u) was of class C∞ and tangent to S2h. This 

contradict Theorem (3.3.3). Hence our initial assumption was false, and such that a 

field Y does not exist as required.                                                                                              ∎ 

IRn can be viewed as subspace of IRn+1 by identifying all point x = (x1, ⋯ , xn) ∈ IR
n 

with the point (x1,⋯ , xn, 0) ∈ IR
n+1 . Any point of  IRn+1  may be represented as 

(x, xn+1) , with x ∈ IRn and xn+1 ∈ IR . The unit sphere Sn ⊆ IRn+1  may be divided 

into  

(i) The upper hemisphere 

S+
n = {(x, xn+1) ∈ S

n: xn+1 ≥ 0} 
(ii) The lower hemisphere 
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S−
n = {(x, xn+1) ∈ S

n: xn+1 ≤ 0} 
The unit sphere 

Sn−1 = S+ 
n ∩ S−

n  
is the equator.  

Let  en+1 = (0,… ,0,1) is a north pole while  −en+1 = (0,… ,0,−1) is a south pole.  

Definition(3.3.4): The stereographic projection from en+1  to S
n is the mapping  

S+: IR
n ⟶ Sn defined by 

S+(x) = (
2x

1+‖x‖2
 ,
‖x‖2−1

1+‖x‖2
),  for x ∈ IRn. 

Similarly,  S−: IR
n ⟶ Sn is the stereographic projection S− from −en+1 to S

n defined 

by 

S−(x) = (
2x

1+‖x‖2
 ,
1−‖x‖2

1+‖x‖2
),  for  x ∈ IRn. 

Note that S+  and S−  are both infinitely differentiable and thus of class C∞ . 

Furthermore, for any x ∈  Bn we have 

‖x‖2−1

1+‖x‖2
≤ 0  and   

1−‖x‖2

1+‖x‖2
≥ 0 

Thus  S+: B
n⟶ S−

n  and  S−: B
n⟶ S+

n . Notice also, that for any  x ∈ Sn−1  , 

S+(x) = S−(x) = (
2x

1+1
 ,
1−1

1+1
) = (x, 0) = x. 

Now we will be devoted to proving Theorem (3.3.6), which will be basis for the proof 

of Brouwer’s FPT.  

Theorem(3.3.6): The closed unit ball Bn in IRn has the FP property. 

Proof  

We consider two parts, n even and n odd, where n is the dimension of  IRn. Recall that 

we aim to prove Bn has the FP property. 
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Step1: We assume that n = 2r, where r ∈ IN. We proceed by contradiction. Assume 

the theorem is false. That is, there exists a CM Y: B2r⟶ B2r, which has no FPs. Define 

the vector field η by  

η(u) = u − Y(u). 

It is immediate that η is non-vanishing on B2r, and it is easy to see that at any point 

u ∈ S2r−1 the field is directed outwards, that is,                                                    

0 < 〈u , η(u)〉 = 〈u , u − Y(u)〉 = 〈u , u〉 − 〈u , Y(u)〉 

                                                  = ‖ u ‖2 − 〈u, Y(u)〉 = 1 − 〈u , Y(u)〉. 

Therefore, 〈u , Y(u)〉 < 1,  for u ∈ S2r−1.   

Step 2: We can now define φ ∶ B2r⟶B2r as follows 

φ(u) = u − (
1−‖u‖2

1−〈u,Y(u)〉
)Y(u). 

 Note that for any u ∈ S2r−1, we hold 

φ(u) = u − (
1−1

1−〈u,Y(u)〉
)Y(u) = u. 

We aim to prove φ  is non-vanishing by contradiction. Let that for some u ∈ B2r , 

φ(u) =  0. Then we secure 

u − (
1−‖u‖2

1−〈u,Y(u)〉
)Y(u) = 0 and  u = (

1−‖u‖2

1−〈u,Yu〉
)Y(u). 

 

                                                                 y  

                                     S2n−1                                       Y(u)       

                                                                                                

                                                            u                                                       

                                                                                       B2r                                      
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This shows that  0 , u  and  Y(u)  are collinear since by above equalities u  is some 

constant times Y(u). Therefore, for some α, Y(u) = αu. As a result,  

〈u, Y(u)〉u = 〈u, αu〉u = ‖u‖2αu = ‖u‖2Y(u). 

Hence (1 − 〈u, Y(u)〉)u = (1 − ‖u‖2)Y(u) ⟹ u− 〈u, Y(u)〉u = Y(u) − ‖u‖2Y(u) 

This in turn immediately implies u = Y(u) which is contradiction, Y has no FPs. Our 

initial assumption was false and φ is non-vanishing.  

Step 3: For any u ∈ B2r, consider the set 

{u + tφ(u): t ∈ [0,1]}. 

Since the stereographic projection S+ is of class C∞and maps to S−
2r. The image of this 

set under S+ is a differentiable arc with initial point lying on S−
2r. Therefore, define  

K−: S−
2r⟶ IR2r+1 by 

K−(v) = {
d

dt
S+(u + tφ(u)) }|

t=0
 

We will show  
d

dt
(‖u + tφ(u)‖2), from known that 

‖u + tφ(u)‖2 = 〈u + tφ(u), u + tφ(u)〉 

and the inner product is symmetric. Therefore, 

 
d

dt
(‖u + tφ(u)‖2) =

d

dt
〈u + tφ(u), u + tφ(u)〉                                 

= 〈
d

dt
(u + tφ(u)), u + tφ(u)〉 + 〈u + tφ(u),

d

dt
(u + tφ(u))〉. 

= 2 〈u + tφ(u),
d

dt
(u + tφ(u))〉 = 2〈u + tφ(u),φ(u)〉. 

So K−(v) = {
d

dt
S+(u + tφ(u)) }|

t=0
= {

d

dt
(
2(u+tφ(u))

1+‖u+tφ(u)‖2
 ,
‖u+tφ(u)‖2−1

1+‖u+tφ(u)‖2
) }|

t=0
 

= {
2φ(u)(1+‖u+tφ(u)‖2)−4(u+tφ(u))〈u+tφ(u),φ(u)〉

(1+‖u+tφ(u)‖2)2
,
4〈u+tφ(u),φ(u)〉

(1+‖u+tφ(u)‖2)2
}|
t=0

. 

= (
2(1+‖u‖2)φ(u)−4〈u,φ(u)〉u

(1+‖u‖2)2
 ,
4〈u,φ(u)〉

(1+‖u‖2)2
)                                                                               

=
2

(1+‖u‖2)2
((1 + ‖u‖2)φ(u) − 2〈u,φ(u)〉u, 2〈u,φ(u)〉)                                
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K− is CM since S+ is infinitely differentiable. We also claim that K− is non-vanishing. 

To see this, consider  

‖K−(v)‖
2 =

4

(1+‖u‖2)4
‖((1 + ‖u‖2)φ(u) − 2〈u,φ(u)〉u, 2〈u,φ(u)〉)‖

2
    

=
4

(1+‖u‖2)4
(‖(1 + ‖u‖2)φ(u) − 2〈u,φ(u)〉u‖2 + 4〈u,φ(u)〉2). 

=
4

(1+‖x‖2)4
(〈(1 + ‖u‖2)φ(u) − 2〈u,φ(u)〉u, (1 + ‖u‖2)φ(u) −  2〈u,φ(u)〉u〉 +

4〈u,φ(u)〉2). 

=
4

(1+‖u‖2)4
((1 + ‖u‖2)2‖φ(u)‖2 − 4(1 + ‖u‖2)〈u,φ(u)〉2 + 4〈u,φ(u)〉2‖u‖2 +

4〈u,φ(u)〉2). 

=
4

(1+‖u‖2)4
((1 + ‖u‖2)2‖φ(u)‖2 − 4(1 + ‖u‖2)〈u,φ(u)〉2 +. 

4(1 + ‖u‖2)〈u,φ(u)〉2) 

=
4

(1+‖u‖2)4
((1 + ‖u‖2)2‖φ(u)‖2) =

4

(1+‖u‖2)2
‖φ(u)‖2 = (

2

1+‖u‖2
‖φ(u)‖)

2

. 

Therefore, ‖K−(v)‖ =
2

1+‖u‖2
‖φ(u)‖. 

We know φ  is non-vanishing (‖φ(u)‖ ≠ 0) , thus. K−  is non-vanshing as claimed. 

Lastly, we claim that  K− is tangent to S−
2r. Since S+ maps to S−

2r, we have 

〈S+(u + tR(u)), S+(u + tR(u))〉 = 1 

⟹
d

dt
〈S+(u + tφ(u)), S+(u + tφ(u))〉 = 0.                                                        (3.3.5) 

We know that  

 
d

dt
〈K+(u + tφ(u)), K+(u + tφ(u))〉 = 〈

d

dt
(K+(u + tφ(u))) , K+(u + tφ(u))〉 

                                                             +〈K+(u + tφ(u)),
d

dt
(K+(u + tφ(u)))〉. 

Because the inner product is symmetric, we also have 

d

dt
〈K+(u + tφ(u)), K+(u + tφ(u))〉 = 2 〈

d

dt
(K+(u + tφ(u))) , K+(u + tφ(u))〉 
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= 2〈K−(v), v〉 , ∀ v = S+(u + tφ(u)) ∈ S−2r                                                            (3.3.6) 

Combining (3.3.5) and (3.3.6) we obtain  

〈K−(v), v〉 = 0 for all v ∈ S−
2r. 

Thus K− is tangent to S−
2r as claimed. We define K+: S+

2r⟶ IR2r+1 by 

K+(v) = {
d

dt
S−(u − tφ(u)) }|

t=0
 

In the same way, we also find    

d

dt
(‖u − tφ(u)‖2) = −2〈u − tφ(u),φ(u)〉. 

Thus, K+(v) = {
d

dt
S−(u − tφ(u)) }|

t=0
 

                     = {
d

dt
(
2(u−tφ(u))

1+‖u−tφ(u)‖2
 ,
1−‖u−tφ(u)‖2

1+‖u−tφ(u)‖2
) }|

t=0
. 

                     = {(
−2φ(u)(1+‖u−tφ(u)‖2)+4(u−tφ(u))〈u−tφ(u),φ(u)〉

(1+‖u−tφ(u)‖2)2
,
4〈u−tφ(u),φ(u)〉

(1+‖u−tφ(u)‖2)2
)}|

t=0
. 

                     = (
4〈u,φ(u)〉u−2(1+‖u‖2)φ(u)

(1+‖u‖2)2
 ,
4〈u,φ(u)〉

(1+‖u‖2)2
)                                                                             

                     =
2

(1+‖u‖2)2
(2〈u,φ(u)〉u − (1 + ‖u‖2)φ(u),−2〈u,φ(u)〉). 

By similar arguments as those above, K+  is also continuous, non-vanishing and 

tangent to S+
2r. Therefore, we consider K: S2r⟶ IR2r+1 defined as follows  

K(v) = {
K−(v)  ∶ v ∈ S−

2r

 K+(v)  ∶ v ∈ S+
2r  

for all v = S−(u) ∈ S+
2r. It is easy to see that K+(v) = K−(v) for  v ∈ S2r−1. To prove 

this let u = v ∈ S2r−1, then 

K−(v) =
2

(1+‖u‖2)2
((1 + ‖u‖2)ψ(u) − 2〈u,ψ(u)〉u, 2〈u,ψ(x)〉)                      

            =
2

(1+‖u‖2)2
((1 + ‖u‖2)u − 2〈u, u〉u, 2〈u, u〉)                                       

            =
2

(1+‖u‖2)2
((1 + ‖u‖2)u − 2‖u‖2u, 2‖u‖2) 

            =
2

(1+(1)2)2
((1 + (1)2)u − 2(1)2u, 2(1)2)                                          
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             =
2

(1+(1)2)2
(2(1)2u − (1 + (1)2)u, 2(1)2)                                          

            =
2

(1+‖u‖2)2
(2‖u‖2u − (1 + ‖u‖2)u, 2‖u‖2). 

            =
2

(1+‖u‖2)2
(2〈u, u〉u − (1 + ‖u‖2)u, 2〈u, u〉)                                        

            =
2

(1+‖u‖2)2
(2〈u,φ(u)〉u − (1 + ‖u‖2)φ(u), 2〈u,φ(u)〉) = K+(v). 

By above equality and the continuity of  K− and  K+, we conclude that K is CM on 

S2r. Also since non-vanishing and tangency to S2rof  K− and K+, K is directly non-

vanishing and tangent to S2k. This is a contradiction, by Theorem(3.3.5) , such a vector 

field K should not exist. Our initial assumption was false and Y has a FP for n even as 

required.                                         

Step 4: Let n = 2r − 1  where r ∈ IN . We proceed by contradiction. Suppose there 

exists a CM Y: B2r−1⟶ B2r−1 with no FP. Define ψ:B2r⟶ B2r by  

ψ(u, u2r) = (Y(u), 0). 

We know ψ is continuous since Y is CM. By our proof of the FP for n even, ψ has a 

FP. Therefore for some u ∈ B2r we have  

(u, u2r) = ψ(u, u2r) = (Y(u), 0), 

that is u = Y(u). This contradicts the first part of the proof, Y has no FPs. Our initial 

assumption was false and Y has a FP for n odd as required.                                       ∎ 

This section of the third chapter focuses on proving Brouwer’s FPT. In addition, the 

proof of Brouwer’s FPT relies on the main result of the previous Theorem (3.3.6), as 

well as three additional theorems that we present below. 

Definition(3.3.5): A mapping Y:U → W between two TSs is called a homeomorphism 

if it has the following properties: 

1. Y is a bijection (one-to-one and onto).                                
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2. Y is a continuous. 

3. The inverse function Y−1 is a continuous ( Y is an open mapping).  

Also U and W are called homeomorphic. 

Theorem(3.3.7): Suppose U has the FP property and U is homeomorphic to W . Then 

W has the FP property. 

 Proof 

Let h ∶ U ⟶ W  be a homeomorphism and  μ ∶ W ⟶ W  is CM. To prove W has the 

FP property, it suffices to show that μ has a FP. Define φ: U ⟶ U by 

φ(u) = h−1(μ(h(u))). 

We know  φ is a CM since μ, h and h−1 are all CMs by the assumption. Because U 

has the FP property, φ has a FP, that is  

∃ u0 ∈ U such that  h−1 (μ(h(u0))) = u0. 

Applying h to both sides, we obtain  

                              h (h−1 (μ(h(u0)))) = h(u0) ⟹ μ (h(u0)) = h(u0).                                                    

where h(u0) ∈ W. Subsequently,  μ has a FP h(u0) as required.                                          ∎ 

Definition(3.3.6): Suppose a subset U ⊂ Bn is said to be a retract of  Bn if there exists  

a CM Ψ: Bn⟶ D (called retraction) such that Ψ(u) = u for all u ∈ U. 

Theorem(3.3.8): Every non-empty, closed and convex subset C of IRn is a retract.  

Proof 

Define QC : IRn ⟶ C by the following: for all u ∈ IRn 

QC(u) = w ∈ C such that ‖u − w‖ = inf {‖u − v‖: v ∈ C}. 

We aim to show QC is a non-expansive, that is  
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∀ u,w ∈ IRn, ‖QC(u) − QC(w)‖ ≤ ‖u − w‖. 

Let u′ = QC(u) and w′ = QC(w). Because  u′, w′ ∈ C and C is convex, we know 

∀ t ∈ (0,1), (1 − t)u′ + tw′ ∈ C.  

By definition ‖u′ − u ‖ is the minimum distance between u and any point in C. Thus 

‖[(1 − 0)u′ + (0)w′] − u‖2 = ‖u′ − u‖2 ≤ ‖[(1 − t)u′ + tw′] − u‖2. 

Note that ‖[(1 − t)u′ + tw′] − u ‖2 increases at t = 0, because  

d

dt
‖(1 − t)u′  +  tw′ − u‖2|

t=0
. 

= 2 〈(1 − t)u′  +  tw′ − u,
d

dt
((1 − t)u′  +  tw′ − u)〉|

t=0
. 

=  2〈u′ − u,w′ − u′〉 ≥ 0.                                                                                (3.3.7) 

Similarly, because ‖w′ −w‖2 ≤ ‖[tu′ + (1 − t)w′] − w‖2 by the definition, we also 

have 

d

dt
‖[tu′ + (1 − t)w′] − w‖2 = 2〈w′ −w,u′ −w′〉 ≥ 0                    (3.3.8) 

Consider the function d: (0,1) ⟶ IR defined by 

d(t) = ‖u′ − w′  +  t[u − u′ − (w −w)]‖2. 

It is clear that  d(t) is a quadratic polynomial with a non-negative coefficient for t2. 

Its graph is thus an upwards-opening parabola. By (3.3.7) and  (3.3.8) we have 

d

dt
 ‖u′ − w′  +  t[u − u′ − (w −w′)]‖2. 

=
d

dt
〈u′ −w′  + t[u − u′ − (w −w′)], u′ − w′ +  t[u − u′ − (w −w′)]〉. 

= 〈
d

dt
(u′ −w′  + t[u − u′ − (w− w′)]), u′ −w′ +  t[u − u′ − (w− w′)]〉. 

+ 〈u′ − w′  + t[u − u′ − (w −w′)],
d

dt
(u′ − w′  + t[u − u′ − (w −w′)])〉. 

= 〈 u − u′ − (w −w′), u′ −w′ 〉 + 〈u′ −w′, u − u′ − (w− w′)〉 

= 〈 u − u′ + (w′ −w), u′ −w′ 〉 + 〈u′ −w′, u − u′ + (w′ −w)〉 

= 〈 u − u′, u′ −w′ 〉 + 〈w′ − w, u′ − w′ 〉 + 〈u′ − w′, u − u′〉 + 〈u′ − w′, w′ −w〉. 



36 

  

From symmetric of inner product, we find 

d

dt
 ‖u′ − w+  t[u − u′ − (w − w′)]‖2 = 2〈 u − u′, u′ −w′ 〉 + 2〈w′ −w, u′ −w′ 〉. 

= 2〈 u′ − u,w′ − u′〉 + 2〈w′ − w,u′ −w′ 〉 ≥ 0. 

This means that d(t)  is non-decreasing at 0 . Because d(t)  is an upwards sloping 

parabola d(t) must also be non-decreasing on the interval  [0,∞). In particular, 

‖u′ −w′‖2 =  d(0) ≤ d(1) = ‖u − w‖2. 

This leads immediately 

‖u′ −w′‖ ≤ ‖u −w‖ 

Hence QC is non-expansive, because 

∀ u, w ∈ IRn, ‖QC(u) − QC(w)‖ = ‖u
′ − w′‖ ≤ ‖u − w‖. 

Theorem (3.2.2) (Browder-Kirk) decides that 

∀ u ∈ C, QC(u) =  u. 

Thus QC is a retraction. Hence C is a retract as required.                                                     ∎ 

Theorem(3.3.9): Suppose W has the FP property and U ⊆ W is a retract. Then U has 

the FP property. 

 Proof 

Consider Φ:W⟶ U be a retraction and Y:U ⟶ U be a CM. We need to show Y has a 

FP. Define η:W ⟶ U by  

η(x) = Y(Φ(x)). 

We know that retraction of Φ and continuity of Y by the assumption imply that η is 

continuous. Moreover, we have η:W ⟶ W since U ⊆ W. By the FP property of W, 

η has a FP, that is there exists x0 ∈ W such that 

                                                             η(x0) = x0.                                             (3.3.9) 
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But η(x0) ∈ U  since η:W ⟶ U  by the definition, therefore x0 ∈ U . Because Φ  is  a  

retraction  and  x0 ∈ U such that 

                                                             Φ(x0) = x0.                                               (3.3.10) 

Combining (3.3.9) and (3.3.10) we have  

Y(x0) = Y(Φ(x0)) = η(x0) = x0. 

 Hence Y has a FP x0 as required.                                                                                   ∎ 

Theorem(3.3.10)(Brouwer’s FPT): Every non-empty, bounded, closed and convex 

subset C of IRn has the FP property. 

Proof                                                                                             

Step1: Since C is bounded, then by Definition (2.1.5), there exists M > 0 such that for 

all c ∈ C, ‖c‖ ≤ M. Therefore, C is contained within the closed ball of radius M in IRn, 

denoted by B∗.  

Step 2: By Theorem(3.3.6), we know Bn has the FP property. By Theorem(3.3.7) and 

the fact B∗ and Bn  are homeomorphic (consider the map Y ∶ B∗⟶ Bn defined by 

Y(c) =  
1

M
c ),  B∗ has the FP property.  

Step 3: Since  C is non-empty, closed and convex subset of IRn by the assumption, then 

by using Theorem (3.3.8), C is a retract. 

Step 4: Since C ⊆ B∗,  C  is a retract and B∗  has the FP property. Then by applying 

Theorem (3.3.9), C has the FP property as required.                                                      ∎ 

3.4 Schauder’s Fixed Point Theorem 

Definition(3.4.1): Consider U and W be NSs. A map Y:U ⟶ W is called compact if  

Y(U) is contained in a compact subset of W . A compact map Y is called finite 

dimensional, if  Y(U) is contained in a finite dimensional linear subspace of W. 
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Definition(3.4.2): If  w1, w2,⋯ , wn are vectors of a LS W. An expression  

∑ aiwi
n
i=1 . 

 is called a linear combination of vectors w1, w2,⋯ , wn ,where the coefficients      

a1, a2 ... , an are any scalars. 

Definition(3.4.3): The linear combination is called convex combination, if wi ≥ 0 for 

all i = {1,2, … , n } and 

∑ wi = 1
n
i=1 . 

lies in C. The convex hull of a set W consists of all convex combinations of W, it is 

denoted by co(W) .That is,                                                                                  

co(W) = {x: ∃ xi ∈ W,wi ≥ 0(1 ≤ i ≤ n),∑ wi =
n
i=1 1  and  ∑ wi xi = x

n
i=1 }.  

Remark(3.4.1): The convex hull co(W) be the smallest convex set is containing W 

and is the intersection of all convex sets that include W. 

Definition(3.4.4): Let  C is a convex subset of a NS W,  U = {u1, . . . , un} ⊆ C and for 

fixed ε > 0, let 

Uε = ⋃ B(ui, ε)
n
i=1 , 

where B(ui, ε):= {x ∶ ‖x − ui‖ < ε }.  For each i = 1, … , n , suppose  µi: Uε⟶ IR  be 

the map given by  

µi(x) = max{0, ε − ‖x − ui‖}. 

Let co(U)  denote the smallest convex set containing U . The map Pε: Uε⟶ co(U) 

given by 

Pε(x) =
∑ µi(x)ui
n
i=1

∑ µi(x)
n
i=1

  for  x ∈ Uε. 

 is called the Schauder projection. 
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Remark(3.4.2): 

(i)  Pε(x) is well defined since x ∈ Uε  such that x ∈ B(ui, ε)  for some i ∈ { 1,2, . . . } . 

This implies 

µi(x) = ε − ‖x − ui‖ 

for ∀ i ∈ { 1,2, . . . }. Therefore 

∑ µi(x)
n
i=1 ≠ 0. 

(ii) Pε(Uε) ⊆ co(U). To see this let that  µ(x):= ∑ µi(x)
n
i=1 , such that 

Pε(x):= ∑
µi(x)

µ(x)

n
i=1 ui . 

Notice that 

0 ≤
µi(x)

µ(x)
≤ 1 

 for all  i = {1,2,… , n } . Since Pε(x) , ui ∈ C  and the convexity of C ,  ∑
µi(x)

µ(x)
n
i=1 = 1 . 

Therefore, Pε(x) is a convex combination of the points u1, … , un. Therefore, Pε(x) lies 

in co(U) since co(U) is convex hull of U. 

Theorem(3.4.1): Let C be a convex subset of a NS X, and U = {u1, . . . , un} ⊆ C be a 

finite. Then  

(i) Pε: Uε⟶ co(U) ⊆ C  is a continuous, compact mapping.  

(ii) ‖x − Pε(x)‖ < ε for  ∀ x ∈ Uε.  

Proof 

(i)  The continuity of Pε   is immediate, because for all x ∈ Uε , ∑ µi(x)
n
i=1 ≠ 0  and 

∑ µi(x)ui
n
i=1 , ∑ µi(x)

n
i=1  are CMs since they are linear. Now to show compactness of  

Pε, we know that from properties of the compact that if U is finite, then it is instantly 

compact. Of course, the compactness of  U  guarantees the compactness of co(U) , 

which contains Pε(Uε). By Definition(3.4.1), Pε(Uε) be compact. 
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(ii) Notice that for ∀ x ∈ Uε , 

 ‖x − Pε(x)‖ =
1

µ(x)
‖µ(x)x − ∑ µi(x)ui

n
i=1 ‖ =

1

µ(x)
‖∑ µi(x)

n
i=1 x − ∑ µi(x)ui

n
i=1 ‖ 

                      =
1

µ(x)
‖∑ µi(x)(

n
i=1 x − ui)‖  ≤

1

µ(x)
∑ µi(x)
n
i=1 ‖x − ui‖ 

                      <
1

µ(x)
∑ µi(x)ε = ε
n
i=1  

 since µi(x) = 0 unless ‖x − ui‖ < ε.                                                                          ∎  

Definition(3.4.5): A subset V of a MS W is said to be totally bounded if for all ε > 0 

there exists a finite subset {u1, … , un } ⊂ U such that  

V ⊆ ⋃ Bε(ui)
n
i=1 . 

Any MS itself is totally bounded is said to be a totally bounded metric. 

Remark(3.4.3): If  U  is a totally bounded, then 

 (i) Its closure is also 

 (ii) Any subset of U is also totally bounded. 

The next result describes the relationships between total boundedness and 

compactness:  

Theorem(3.4.2)(3): For a MS the following are equivalent:  

1. The space is compact.  

2. The space is complete and totally bounded.  

3. The space is sequentially compact (every sequence has a convergent subsequence). 

                                                

 

(3) Aliprantis, C. D., & Border, K. C. (1994). Infinite-dimensional analysis, volume 4 of Studies in 

Economic Theory. p 84. 
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Our next result is known as Schauder’s approximation theorem.                                                                                      

Theorem(3.4.3): Consider C   be a convex subset of a NS W  and Y:W ⟶ C  be a 

compact and CM. Then for ∀ ε > 0, there is a finite set U = {u1, … , un} in Y(W) and 

a finite dimensional CM Yε:W ⟶ C with the following properties: 

(i) ‖Yε(w) − Y(w)‖ < ε ,  ∀ w ∈ W. 

(ii) Yε(w) ∈ co(U) ⊆ C ,    ∀ w ∈ W. 

 Proof  

Y(W) is contained in a compact M ⊆ C, that is 

                                                        Y(W) ⊆ M ⊂ C                                                  (3.4.1) 

This obviously implies M is totally bounded by Theorem(3.4.2). Therefore, since K is 

totally bounded, there exists a finite set {u1, . . . , un} ⊂ Y(W) such that 

                                                    M ⊆ ⋃ Bε(u1) =
n
i=1 Uε,                                     (3.4.2) 

Thus, we obtain from (3.4.1) and (3.4.2), 

                                                            Y(W) ⊆ Uε                                                      (3.4.3)                         

Let  Pε: Uε ⟶ co(U) be the Schauder projection and define the map Yε:W ⟶ C by 

Yε(w) ≔ Pε(Y(w)),  ∀ w ∈ W . 

Theorem (3.4.1) now guarantees the result, as follow 

‖Yε(w) − Y(w)‖ = ‖Pε(Y(w)) − Y(w)‖ < ε ∀ w ∈ W. 

Since w ∈  W. Then by using (3.4.3), Y(w) ∈ Uε, which leads 

Pε(Y(w)) ∈ Pε(Uε) ⊆ co(U). 

This straight away is that 

                                           Yε(w) ∈ co(U),  ∀ w ∈ W.                                              ∎ 
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Before we state and prove SFPT we first introduce the notion of an ε −FP.  Let  C  be 

a subset of a NS W  and Y: C ⟶ W  is a map. Given ε > 0 , a point c ∈ C  with  

‖c − Y(c)‖ < ε  is called an ε −FP for Y. 

Theorem(3.4.4): Let  C  be a closed subset of a NS W and Y: C ⟶ W a compact, CM. 

Then Y  has a FP, if  Y has a ε −FP. 

Proof  

In the first, let Y has an ε −FP. Now ∀ n ∈ { 1,2, . . . }, let  cn be a  
1

n
− FP for Y, that is,  

                                                  ‖un − Y(un)‖ <
1

n
                                                  (3.4.4)                                          

Since Y is compact, Y(C) is contained in a compact subset U ⊆ W. Therefore, there 

exists a convergent subsequence Y(unk) of  Y(un) such that 

Y(unk) ⟶ u ∈ U as  nk → ∞. 

Now by using (3.4.4), we find 

‖unk − u‖ ≤ ‖unk − Y(unk)‖ + ‖Y(unk) − u‖ <
1

nk
+ ‖Y(unk) − u‖

nk→∞
→   0   

We have that u ∈ C, since C is closed, also the continuity of Y implies that 

Y(unk) ⟶ Y(u) as nk → ∞. 

The uniqueness of the limit of  Y(cnk) yields, u = Y(u).                                                           ∎ 

Now we ripe to state and prove SFPT. 

Theorem(3.4.5)(SFPT): Let K ≠ ∅ be a closed and convex subset of a NS W. Then 

every compact and CM Y:K ⟶ K has at least one FP. 

Proof 

By Theorem(3.4.4) with C = K, it enough to show that Y has an ε −FP for all ε > 0. 

Fix ε > 0. Theorem (3.4.3) guarantees the existence of finite set 
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A = {a1, . . . , an} 

in Y(K) and finite dimensional, CM Yε: K ⟶ K with  

                                   ‖Yε(x) − Y(x)‖ < ε for all x ∈ K,                                        (3.4.5) 

and Yε(K) ⊆ co(A) ⊆ K for some finite set A ⊆ K. Since co(A) is closed and bounded 

and Yε(co(A)) ⊆ co(A), we may apply Theorem(3.3.10) (Brouwer’s FPT) to deduce 

that there exists xε ∈ co(A) with xε = Yε(xε). Also, (3.4.5) yields  

‖xε − Y(xε)‖ = ‖Yε(xε) − Y(xε)‖ < ε. 

This implies xε = Y(xε) as required.                                                                                 ∎ 

Theorem[Krasnoselskii](3.4.6): Consider C be non-empty, closed and convex subset 

of a BS W. Let f, g: C ⟶ W be such that  

(i) f(x) + g(y) ∈ C,   ∀ x, y ∈ C.  

(ii) f is continuous and compact. 

(iii) g is a contraction with k is the Lipschitz constant. 

Then there is x ∈ C such that f( x ) + g( x ) = x. 

 Proof  

Notice first that I − g  maps homeomorphically C onto (I − g)(C). Because it 

1. A bijection, indeed 

Clearly that  I − g: C ⟶ (I − g)(C) is onto and also it is one to one, because if there 

exist x, y ∈ C, x ≠ y with (I − g)(x) = (I − g)(y). Then 

0 = ‖(I − g)(x) − (I − g)(y)‖ ≥ ‖x − y‖ − ‖g(x) − g(y)‖ ≥ (1 − k)‖x − y‖ 

This implies 1 − k ≤ 0⟹ k ≥ 1, which contradicts k is the Lipschitz constant of g. 

2. I − g is continuous because I, g are CMs. 

3. (I − g)−1 is continuous. Indeed, first one to one of  I − g  guarantees the existence 

of (I − g)−1. Second, the continuity of  (I − g)−1 will be proved if we can show that 
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if (xn) converges to x whenever (xn) is a sequence in C and x is an element in C such 

that,  

((I − g)−1)(xn) converges to (I − g)−1(x). 

Assume yn = ((I − g)
−1)(xn)  and  y = ((I − g)−1)(x), hence (I − g)(yn) = xn and   

(I − g)(y) = x. Suppose that yn ↛ y. Then there exists an ε0 > 0 and a subsequence 

(ynk) of  (yn) such that 

                                                   lim
nk→∞

‖ynk − y‖ > 0                                              (3.4.6)  

 Observe,  

‖xnk − x‖ = ‖(I − g)(ynk) − (I − g)(y)‖ ≥ ‖ynk − y‖ − ‖g(ynk) − g(y)‖ 

                         ≥ ‖ynk − y‖ − k‖ynk − y‖ = (1 − k)‖ynk − y‖ 

Take limit on both sides, 

(1 − k) lim
nk→∞

‖ynk − y‖ ≤ 0. 

Since k is a contraction constant, lim
nk→∞

‖ynk − y‖ ≤ 0, which contradicts (3.4.6). Now 

for any y ∈ C, the map  

x ⟼ f(y) + g(x) 

be a contraction. To see this let  x1, x2 ∈ C, 

‖f(y) + g(x1) − f(y) − g(x2)‖ = ‖g(x1) − g(x2)‖ ≤ k ‖x1 − x2‖. 

Hence by Theorem(3.1.1)(BCP) there is a unique z = z(y) ∈ C such that  

 z = f(y) + g(z) ⟹ z − g(z) = f(y) ⟹ I(z) − g(z) = f(y) ⟹ (I − g)(𝑧) = f(y). 

Thus 

z =  (I − g)−1(f(y)) ∈ C. 
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On the other hand, the map (I − g)−1 ∘ f: C ⟶ C is CM and also by using Theorem(4) 

is compact, being the composition of a continuous map with a continuous and compact 

map. Then Theorem (3.4.5)(SFPT) entails the existence of  x ∈ C such that                                                    

                                  (I − g)−1(f(x)) = x ⟹ f( x ) + g( x ) = x.                              ∎ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                

 

(4) Shirali, S., & Vasudeva, H. L. (2005). Metric spaces. Springer Science & Business Media. p 182. 
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Chapter 4 

APPLICATIONS OF FIXED POINT THEOREMS 

4.1 The First and Second Order of Ordinary Differential Equations 

in BS 

4.1.1 The First Order of Ordinary Differential Equations in Banach Space 

It is natural to begin the applications of FP methods with existence and uniqueness of 

solutions of first order initial value problems as: 

                                             {
z′(s) = μ(s, z(s)), s ∈ [0, α]

z(0) =  z0
                                      (4.1.1.1) 

where μ ∶ [0, α] × IR ⟶ IR is CM, 

C[0, α] = {q: [0, α] ⟶ IRn: q is CM on [0,α], |q|0 = max
t∈[0,b]

|q(s)| }  and  

C1[0, α] = {q ∈ C[0, α]: q′  exists and q′ ∈ C[0, α], |q|1 = max{|q|0, |q
′|0}} are BSs. 

Then, z ∈ C1[0,α] solves (4.1.1.1) if and only if z ∈ C[0, b] solves 

                                       z(s) = z0 + ∫ μ(r, z(r))dr
s

0
.                               (4.1.1.2) 

The operator Y: C[0, α] ⟶ C[0, α] is defined by                      

Y(z(s)) = z0 + ∫ μ(r, z(r))dr
s

0
. 

The classical solutions to (4.1.1.1) are FPs of Y, that is:  Y(z) = z.  

Theorem ( Picard–Lindel )(4.1.1.1): Assume that 

(i)  μ ∶ [0, α] × IRn⟶ IRn be a CM. 
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(ii) μ subscribes Lipschitz condition with respect to 𝑧, that is, there exists k ≥ 0 such 

that 

|μ(s, z) − μ(s,w)| ≤ k|z − w|, ∀ z, w ∈ IRn. 

Then z ∈ IRn be unique solution of (4.1.1.1). 

Proof  

At first glance we define a new norm in C[0, α] as follows: 

‖z‖k = max
s∈[0,α]

e−ks|z(s)|. 

It seems natural that ‖. ‖k ≈ ‖. ‖∞ . To see that to tread the following, since 0 ≤ s ≤ α 

⟹ e−kα ≤ e−ks ≤ 1 ⟹ e−kα|z(s)| ≤ e−ks|z(s)| ≤ |z(s)| 

⟹ e−kα max
s∈[0,α]

|z(s)| ≤ max
s∈[0,α]

e−ks|z(s)| ≤ max
s∈[0,α]

|z(s)| 

⟹ e−kα‖z‖∞ ≤ ‖z‖k ≤ ‖z‖∞. 

Now define   

Y(z(s)) = z0 + ∫ μ(r, z(r))dr
s

0
. 

We now apply BCP to show Y has a unique FP in BS (C[0,α], ‖z‖k). Therefore, we 

will illustrate that Y is a contraction on (C[0,α], ‖z‖k). To see this take u, v ∈ C[0, α], 

|Y(u(s)) − Y(v(s))| ≤ ∫ |μ(r, u(r)) − μ(r, v(r))|dr
s

0
. 

⟹ e−ks|Y(u(s)) − Y(v(s))| ≤ e−ks ∫ |μ(r, u(r)) − μ(r, v(r))|dr
s

0
. 

                                                ≤ ke−ks ∫ |y(s) − z(s)|ds
s

0
. 

                 = ke−ks ∫ ekse−ks|u(s) − v(s)|ds
s

0
. 

                                                       ≤ ke−ks ∫ ekrdr ‖u − v‖k
s

0
. 

                                         = e−ks(eks − 1)‖u − v‖k = (1 − e−ks)‖u − v‖k. 

Take maximum on both sides  

‖Y(u) − Y(v)‖k ≤ (1 − e
−kα)‖u − v‖k. 
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Since 0 ≤ 1 − e−kα <  1, Y is contraction on CMS (C[0,α], ‖u‖k). BCP guarantees  

the existence and uniqueness solution u ∈ C[0, α] of  Y, equivalently u ∈ C1[0, α] is a 

unique solution of (4.1.1.1).                                                                                          ∎ 

Our first result concerns continuous and compact maps. 

Lemma(Urysohn)(4.1.1.1): If V and W are disjoint (V ∩W = ∅) closed subsets of a 

NS U, then there exists a CM η: U ⟶ [0,1] such that ∀ v ∈ V, η(v) = 0 and ∀ w ∈ W,

η(w) = 1.  

Theorem(4.1.1.2)(Nonlinear Alternatives of Leray-Schauder Typy): Suppose V is 

a closed, convex subset of BS U, W an open subset of V and p ∈ W. Consider that 

Y:W ⟶ V is a continuous, compact (that is, Y(U) is a RC subset of V) map. Then 

either 

(i) Y has a FP in W, or  

(ii) ∃ w ∈ ∂W (the boundary of W in V) and β ∈ [0,1] with  w = βY(w) + (1 − β)p.  

Proof  

Let (ii) cannot be realized. Thus w ≠ βY(w) + (1 − β)p for w ∈ ∂W and β ∈ [0,1] 

and also Y has no FPs on ∂W. Define 

H = {h ∈ W: h = tY(h) + (1 − t)p for some t ∈ [0,1]}. 

Clearly, that H ≠ ∅ since p ∈ W. In addition, the continuity of Y insure  the closeness 

of  H. To check this, let hn ∈ H and hn⟶ h and take the limit on both sides of  

hn = tY(hn) + (1 − t)p, 

 hence 

h = tY(h) + (1 − t)p. 

Therefore, h ∈ H.                                                                                         
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Notice that H ∩ ∂W = ∅. Therefore, by Lemma(4.1.1.1) there is a CM η:W ⟶ [0,1] 

with η(H) = 1 and η(∂W) = 0. Let 

M(h) = {
η(h)Y(h) + (1 − η(h))p, h ∈  W
p                                       , h ∈ V/W

 

Now it is immediate that M:V ⟶ V is a continuous, compact map. To see compactness 

use Mazur’s theorem together with M(V) ⊆ co(Y(W) ∪ {p}) . SFPT proves the 

existence of  h ∈ V with  h = M(h). Notice that h ∈ W since p ∈ W. Hence  

h = η(h)Y(h) + (1 − η(h))p. 

This means that h ∈ H. Therefore,  h = Y(h) since η(h) = 1.                                  ∎   

Definition(4.1.1.1): Let 1 ≤ α ≤ ∞ and a constant β are satisfy  
1

α
+
1

β
= 1. Assume 

the following hold: 

(i) h ∈ C[0,1]. 

(ii) μ: [0,1] × IR ⟶ IR is an Lβ-Caratheodory function, by this we mean  

(a) The map t ⟼ μ(t, z) is measurable for all z ∈ IR, such that  ∫ |μ(t)|β dt
1

0
< ∞, 

‖μ‖β = (∫ |μ(t)|
βdt

1

0
)

1

β
. 

(b) The map z ⟼ μ(s, z) is CM for nearly all s ∈ [0,1]. 

(c) ∀ λ > 0, there exists φλ ∈ L
β[0,1] such that |z| ≤ λ implies that |μ(s, z)| ≤ φλ(s) 

for nearly all s ∈ [0,1]. 

(iii) Ps(r) = P(s, r) ∈ L
α[0,1] ,∀ s ∈ [0,1].       

(iv) The map s ⟼ Ps is CM from [0,1] to Lα[0,1]. 

The equation 

                         z(s) = h(s) + ∫  P(s, r)μ(r, z(r))ds, ∀s ∈ [0,1]
1

0
                   (4.1.1.3) 

is called the Fredholm integral equation. 
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Theorem(4.1.1.3): Suppose there is a constant α > 0 is an independent of β, with 

|z|0 = sup
 s∈[0,1]

|z(s)| ≠ α for any solution z ∈ C[0,1] of  

                                   z(s) = β (h(s) + ∫  k(s, r)μ(r, y(r))dr
1

0
),                     (4.1.1.4). 

s ∈ [0,1] and for each β ∈ (0,1). Then the Fredholm integral equation has at least one 

solution z ∈ C[0,1]. 

 Proof  

Step 1: Define the operator T by 

T(z(s)):= h(s) + ∫  Ps(r)μ(r, z(r))dr
1

0
 ∀s ∈ [0,1] 

Notice that T: C[0,1] ⟶ C[0,1].  To realize this take any z ∈ C[0,1],  then this 

guarantees continuity of y . There is λ > 0  such that |z|0 ≤ λ  and since μ  is Lβ -

Caratheodory, there exists φλ ∈ L
β[0,1]  with  |μ(r, z)| ≤ φλ(r)  for almost every      

r ∈ [0,1]. Therefore, for any s1,  s2 ∈ [0,1], we see that 

|T(z(s1)) − T(z(s2))| ≤ | h(s1) − h(s2)| + ∫ |Ps1(r) − ks2(r)||μ(r, z(r))|dr       
1

0
                                                                                                            

≤ | h(s1) − h(s2)| + ∫ |Ps1(r) − Ps2(r)|φλ(r)dr
1

0
             

≤ | h(s1) − h(s2)|  + (∫ |Ps1(r) − Ps2(r)|
α
dr

1

0
) 
1

α (∫ (φλr(r))
β

dr
1

0
) 
1

β. 

= | h(s1) − h(s2)| + (∫ |(Ps1 − Ps2)(r)|
α
dr

1

0
) 
1

α (∫ (φλ(r))
βdr

1

0
) 
1

β. 

= | h(s1) − h(s2)| + ‖Ps1 − Ps2‖α
‖φλ‖β. Therefore, 

                                 |T(z(s1)) − T(z(s2))|
s1⟶s2
→    0 .                                  (4.1.1.5) 

Consequently, this means that  T(z) ∈ C[0,1]. Now we will apply Theorem (4.1.1.2) 

with W ≔ {z ∈ C[0,1] ∶ |z|0 < α} and V = U = C[0,1]. 

First we show that T:W ⟶ C[0,1] is CM. Let zn⟶ z in C[0,1] with {zn}n=1
∞ ⊆  W. 

We are required to show that T(zn) ⟶ T(z) in C[0,1]. There exists φα ∈ L
β[0,1]  
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with |zn|0 ≤ α , |z|0 ≤ α  and |μ(r, zn(r))| ≤ φα(r), |μ(r, z(r))| ≤ φα(r)  for every 

r ∈ [0,1], n = 1,2,…  

By an argument similar to the one used to obtain (4.1.1.5), 

|T(zn(s)) − T(z(s))| ≤ ∫ |Ps(r)||μ(r, zn(r)) − μ(r, z(r))|dr 
1

0

 

= (∫ |Ps(r)|
αdr

1

0
) 
1

α (∫ |μ(r, zn(r)) − μ(r, z(r))|
β
dr

1

0
) 
1

β. 

= ‖Ps‖α (∫ |μ(r, zn(r)) − μ(r, z(r))|
β
dr

1

0
) 
1

β. 

≤ ( sup
s∈[0,1]

‖Ps‖α) (∫ |μ(r, zn(r)) − μ(r, z(r))|
β
dr

1

0
) 
1

β. 

So |T(zn(s)) − T(z(s))| ⟶ 0  as n ⟶ ∞ . Thus T(zn) ⟶ T(z)  as n ⟶ ∞ . 

Therefore, T:W ⟶ C[0,1] is CM.  

Step 2: We will illustrate T:W ⟶ C[0,1] is compact. There is φα ∈ L
β[0,1] such that 

|μ(r, z(r))| ≤ φα(r) 

for almost every r ∈ [0,1] and z ∈ W. 

Since we are working in C[0,1], we can use A-AT to prove compactness. Clearly 

T(W) is a uniformly bounded since  

T(z(s)) = h(s) + ∫  Ps(r)μ(r, z(r)) dr
1

0
, ∀ z ∈ W. 

Subsequently, 

|T(z(s))| ≤ |h(s)| + ∫  |Ps(r)||μ(r, z(r))|dr
1

0
                                       

                ≤ |h(s)| + (∫  |Ps(r)|
αdr

1

0
)

1

α
(∫  |μ(r, z(r))|

β
dr

1

0
)

1

β
.     

                ≤ |h(s)| + (∫  |Ps(r)|
αdr

1

0
)

1

α
(∫  (φα(r))

βdr
1

0
)

1

β
 ≤ |h(s)| + ‖Ps‖p‖φα‖β. 

Take sup on both sides where 0 ≤ s ≤ 1. 

|T(z)|0 ≤ |h|0 + ( sup
0≤s≤1

‖Ps‖α) ‖φα‖β , ∀ z ∈ W. 
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Using the similar argument to the one used to obtain (4.1.1.5), one can see that T(W) 

is equi-continuous since uniform continuity of T in step1. It follows from A-AT that 

T(W) be RC. Therefore, T:W ⟶ C[0,1] is a compact mapping. 

Step 3:  We may now apply Theorem(4.1.1.2) (notice that possibility (ii) cannot occur) 

to deduce that T has a FP in W, or equivalently, (4.1.1.3) has a solution in W.             ∎ 

4.1.2 The Second Order of Ordinary Differential Equations in Banach Space 

To illustrate how Theorem (4.1.1.3) can be applied in practice we turn our attention to 

the second order homogeneous Dirichlet problem, 

                                        {
z′′ = f(s, z, z′), ∀s ∈ [a, b]

z(a) = z(b) = 0
                                    (4.1.2.1) 

where f: [a, b] × IR2⟶ IR  is a CM. Associated with (4.1.1.6) , we consider the 

following related family of problems:  

                                      {
z′′ = λ f(s, z, z′), ∀ s ∈ [a, b], λ ∈ (0,1)

z(a) = z(b) = 0
                  (4.1.2.2) 

Now the integration on both sides of (4.1.2.1) respect to s on [a, λ] implies 

z′(λ) − z′(a) = ∫ f(s)ds
λ

a
. 

Since r ∈ [a, λ] we can change s by r, 

z′(λ) − z′(a) = ∫ f(r)dr
λ

a
. 

After that the integration respect to λ on [a, s] 

z(s) − z(a) − z′(a)(s − a) = ∫ ∫ f(r) dr dλ
λ

a

s

a
. 

⟹ z(s) = z′(a)(s − a) + ∫ ∫ f(r) dr dλ
λ

a

s

a
.                                            (4.1.2.3) 

Since s = b,                                                                   

                                  z′(a) = −
1

b−a
∫ ∫ f(r)drdλ

λ

a

b

a
 .                                        (4.1.2.4) 

Substitute the (4.1.2.4) to (4.1.2.3), to see                                      



53 

  

z(s) = ∫ ∫ f(r)drdλ 
λ

a

s

a
−
s−a

b−a
∫ ∫ f(r)drdλ 

λ

a

b

a
. 

        = ∫ ∫ f(r)dλdr 
s

r

s

a
−
s−a

b−a
∫ ∫ f(r)dλdr

b

r

b

a
                     

        = ∫ (s − r)f(r)dr
s

a
−
s−a

b−a
∫ (b − r)f(r)dr
b

a
. 

        = ∫ (−
(b−s)(r−a)

b−a
) f(r)dr

s

a
+ ∫ (−

(b−r)(s−a)

b−a
) f(r)dr

b

s
. 

Consider the operator Y: C1[a, b] ⟶ C1[a, b] is defined as follows 

Y(z(s)):= ∫ ψ(s, r)f(r, z(r), z′(r))dr
b

a

 

where the Green’s function ψ(s, r) is given by 

ψ(s, r) =: {
−
(b−s)(r−a)

b−a
 , a ≤ r ≤ s ≤ b 

−
(b−r)(s−a)

b−a
 , a ≤ s ≤ r ≤ b

. 

Lemma(4.1.2.1): Assume Z ⊆ IR2 such that f: [a, b] × Z ⟶ IR is Lipschitz function. 

Let that f satisfies the following local Lipschitz condition, there exist k1 , k2 ∈ IR
+ 

such that 

                  |f(s, z1, z1
′ ) − f(t, z2, z2

′ )| ≤ k1|z1 − z2| + k2|z1
′ − z2

′ |,            (4.1.2.5) 

for all (z1, z1
′ ), (z2, z2

′ ) ∈ Z , hence 

‖Y(z1) − Y(z2)‖ ≤ (k1  
(b−a)2

8
+ k2

b−a

2
) ‖z1 − z2‖, 

where ‖z‖ = k1‖z‖∞ + k2‖z
′‖∞ such that 

‖z‖∞ = max
s∈[a,b]

|z(s)| and ‖z′‖∞ = max
s∈[a,b]

|z′(s)|. 

Proof 

Take z1, z2 ∈ C
1[a, b], hence 

 |Y(z1(s)) − Y(z2(s))| ≤ ∫ |ψ(s, r)||f(r, z1(r), z1
′ (r)) − f(r, z2(r), z2

′ (r))|dr
b

a
. 

≤ ∫ |ψ(s, r)|(k1|z1(r) − z2(r)| + k2|z1
′ (r) − z2

′ (r)|)dr
b

a
. 
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≤ ∫ |ψ(s, r)| (k1 max
r∈[a,b]

|z1(r) − z2(r)| + k2 max
r∈[a,b]

|z1
′ (r) − z2

′ (r)|)dr
b

a
. 

= ∫ |ψ(s, r)|dr
b

a
(k1‖z1 − z2‖∞ + k2‖z1

′ − z2
′‖∞) = ∫ |ψ(s, r)|dr

b

a
‖z1 − z2‖. 

Take max on both sides where s ∈ [a, b], 

‖Y(z1) − Y(z2)‖∞ ≤ max
s∈[a,b]

∫ |ψ(s, r)|dr ‖z1 − z2‖
b

a
. 

Now we find, 

∫ |ψ(s, r)|dr = ∫ |ψ(s, r)|dr +
s

a
∫ |ψ(s, r)|dr
b

s

b

a
    

                      =
(b−s)

 b−a 
∫ (r − a)dr
s

a
+
(s−a)

 b−a 
∫ (b − r)dr
b

s
. 

                      =
(b−s) 

2(b−a) 
(s2 − 2as + a2) +

(s−a)

2(b−a) 
(b2 − 2bs + s2). 

                      =
(b−s)(s−a)2 

2(b−a) 
+
(s−a)(b−s)2

2(b−a) 
.=

(b−s)(s−a)

2(b−a) 
(s − a + b − s).=

(b−s)(s−a)

2 
.  

Thus, 

max
s∈[a,b]

∫ |ψ(s, r)|dr
b

a
=
1

2
max
s∈[a,b]

((b − s)(s − a)). 

Let h(s) = (b − s)(s − a) . Using the second derivative test to determine the 

maximum value of  h(s), as follows: 

(1) h′(s) = b − 2s + a.  

(2) Let h′(s) = 0 ⟹ t =
b+a

2
. 

(3) h′′(s) = −2. 

(4) h′′ (
b+a

2
) = −2. 

Since h′′ (
b+a

2
) < 0, h(s) has maximum value at  

b+a

2
 .Hence 

 max
s∈[a,b]

∫ |ψ(s, r)|dr
b

a
=
1

2
(b −

a+b

2
) (

a+b

2
− a) =

1

2
(
b−a

2
) (

b−a

2
) =

(b−a)2

8
          (4.1.2.6)                 

Thus ‖Y(z1) − Y(z2)‖∞ ≤
(b−a)2

8
 ‖z1 − z2‖∞. On the other hand,  
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Y′(z(s)) = ∫
∂

∂r

b

a
 |ψ(s, r)|μ(r, z(r), z′(r))dr. 

⟹ |Y′(z1(s)) − Y(z2(s))| ≤ ∫ |
∂

∂s
ψ(s, r)| dr‖z1 − z2‖

b

a
.  

∫ |
∂

∂s
ψ(s, r)| dr = ∫ |

∂

∂s
ψ(s, r)| dr + ∫ |

∂

∂s
ψ(s, r)| dr 

b

s

s

a

b

a
. 

 =
1

b−a
(∫ |

∂

∂s
(b − s)(r − a)| dr + ∫ |

∂

∂s
(b − r)(s − a)| dr 

b

s

s

a
) 

 =
1

b−a
(∫ (r − a)dr + ∫ (b − r)dr 

b

s

s

a
) 

 =
1

2(b−a)
(s2 − 2as + a2 + b2 − 2bs + s2) =

1

2(b−a)
((s − a)2 + (b − s)2).  

By an argument similar to the one used to derive (4.1.2.6), we obtain 

max
s∈[a,b]

∫ |
∂

∂s
ψ(s, r)| dr

b

a
=
b−a

4
. 

Therefore,  

‖Y′(z1) − Y
′(z2)‖∞ ≤

b−a

4
 ‖z1 − z2‖∞. 

Now since  

‖Y(z1) − Y(z2)‖ = k1‖Y(z1) − Y(z2)‖∞ + k2‖Y
′(z1) − Y

′(z2)‖∞ 

                             ≤ (k1
(b−a)2

8
+ k2

b−a

4
)‖z1 − z2‖∞.                                (4.1.2.7)∎ 

Theorem(4.1.2.1): Consider f: [a, b] × Z ⟶ IR is a CM and satisfies (4.1.2.2) in a set 

U with constants  k1 and  k2 such that  

                                                       k1
(b−a)2

8
+ k2

b−a

4
<  1                                   (4.1.2.8) 

is holds. There exists a bounded open set of functions W ⊆ C1[a, b] with 0 ∈ W such 

that z ∈ W implies (z(s), z′(s)) ∈ Z for all s ∈ [a, b] and 𝑧 solves (4.1.2.2) for some 

λ ∈ (0,1) leads z ∉ ∂ W. Thereafter, (4.1.2.1) has a unique solution in W. 

Proof  
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Obviously, Y:W ⟶ C[a, b] is contraction by (4.1.2.7) and (4.1.2.8). Note that (ii) 

in Theorem(4.1.1.2) cannot occur because of 𝑧 solves (4.1.2.2) for some λ ∈ (0,1) 

implies z ∉ ∂W. Hence by apply Theorems(3.1.1)(BCP) and (4.1.1.2) Y has just one 

FP in W, which is a unique solution of (4.1.2.1) in W.                                              ∎                        

Remark(4.1.2.1): In many important applications, the function f is independent of  z′, 

that is f = f(s, z). In this case, a straightforward review of the reasoning given above 

shows that we can regard Y as 

Y: C[a, b] ⟶ C[a, b] . 

This leads to a useful variant of Theorem (4.1.2.1) in which A ⊆ IR, all reference to y 

and z is dropped in (4.1.2.2) and U ⊆ C[a, b]. 

Example(4.1.2.1): The BVP 

                                                 {
z′′(s) = −ez(s), s ∈ [0,1]

z(0) = z(1) = 0
                              (4.1.2.9)            

possesses a unique solution with maximum norm at most 1.  

To show that apply Theorem(4.1.2.1) and Remark(4.1.2.1) with f = f(s, z) = −ez(s). 

By the mean value theorem we get that |z| ≤ 1 and |z′| ≤ 1 imply there exists w, that 

lies between z, z′ such that 

|f(s, z) − f(s, z′)| = |ez – ez
′
| = ew|z − z′| ≤ emax{z,z

′}|z − z′| ≤ e|z − z′|. 

This means that k1 = e.  We take U = [−1,1] and 

W = {z ∈ C[0,1]: |z|0 = max
s∈[0,1]

|z(s)| < 1 } 

in Theorem (4.1.1.2). Then 

k1
(b−a)2

8
=
e

8
<  1. 
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Consider that u solves  

                                     {
z′′(s) = −λez(s), s ∈ [0,1]

z(0) = z(1) = 0
                                        (4.1.2.10) 

for some λ ∈ (0,1).  

Now integrating on both sides of (4.1.2.10) respect to s on [0, p] implies that 

z′(p) − z′(0) = −λ∫ ez(s)ds
p

0
. 

Since t ∈ [0, p] we can change s by t, 

z′(p) − z′(0) = −λ∫ ez(t)dt
p

0
. 

After that integrating with respect to p on [0, r] yields that 

z(r) − z(0) − rz′(0) = −λ∫ ∫ ez(t)dtdp
p

0

r

0
. 

⟹ z(r) = rz′(0) − λ∫ ∫ ez(t)dtdp
p

0

r

0
.                                                               (4.1.2.11) 

Since r = 1,   z′(0) = λ ∫ ∫ ez(t)dtdp
p

0

1

0
.                                                          (4.1.2.12) 

From (4.1.2.11) and (4.1.2.12), we see                                    

 Z(r) = rλ∫ ∫ ez(t)dtdp
p

0

1

0
− λ∫ ∫ ez(t)dtdp 

p

0

r

0
 

         = rλ∫ ∫ ez(t)dpdt
1

t

1

0
− λ∫ ∫ ez(t)dpdt 

r

t

r

0
                                

          = rλ ∫ (1 − t)ez(t)dt
1

0
− λ∫ (r − t)ez(t)dt

r

0
                 

         = −λ∫ −(1 − r)tez(t)dt
r

0
− λ∫ −(1 − t)rez(t)dt

1

r
. 

Then  

                                                z(r) = −λ∫ ψ(t, r) ez(t)dt
1

0
,                                    (4.1.2.13) 

where 

ψ(t, r) = {
−(1 − t)r    , 0 ≤ r ≤ t ≤ 1
−(1 − r)t    , 0 ≤ t ≤ r ≤ 1

. 

Now take the norm on both sides of (4.1.2.13),                         

 |z(r)| ≤ λ ∫ |ψ(t, r)|ez(t)dt
1

0
 ≤ e|z|0 ∫ |ψ(t, r)|dt

1

0
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           ≤ e∫ |ψ(t, r)|dt
1

0
= e ((1 − t) ∫ rdr + t ∫ (1 − r)dr

1

t

t

0
) =

e

2
t(1 − t). 

 ⟹ |z|0 = max
r∈[0,1]

|z(r)| ≤
e

2
max
r∈[0,1]

r(1 − r). 

Let h(r) = r(1 − r). Using the second derivative test to determine the maximum value 

of h(r), as follows: 

(1) h′(r) = 1 − 2r.  

(2) r =
1

2
 as h′(r) = 0. 

(3) h′′(r) = −2. 

(4) h′′ (
1

2
) = −2. 

Since h′′ (
1

2
) < 0, h(r) has maximum value at  

1

2
 . Therefore, 

|z|0 ≤
e

2
max
r∈[0,1]

r(1 − r) =
e

2
(
1

2
(1 −

1

2
)) =

e

8
. 

Consequently |z|0 < 1 . Therefore, z ∉ ∂W , Hence Theorem (4.1.2.1) implies that 

(4.1.2.9) has only one solution with norm at most  1. 

4.2 Global Solution of Fractional Differential Equations 

Definition(4.2.1): The function Γ(γ) is defined by 

Γ(γ) = ∫ sz−1e−s
∞

0

ds  

is said to be gamma function where z ∈ C (Re(γ) >  0).  

Remark(4.2.1): If  Γ(γ) is gamma function then 

(i) Γ(γ + 1) = γΓ(γ), (Re(γ) >  0). 

(ii) Γ(n + 1) = n! where n ∈ IN ∪ {0}, with  0! = 1.  

Definition(4.2.2): The fractional integral Iα
RL

t
p
f(t)  of order p ∈ R+ (n = [p] + 1 , [p] 

means the integer part of order p) defined by 
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Iα
RL

t
p
f(t) =

1

Γ(p)
∫ (t − r)p−1f(r)dr
t

α
, t > α and p > 0.  

is called Riemann-Liouville fractional integral. 

Definition(4.2.3): The fractional derivative Dα
RL

t
p
f(t) of order p ∈ R+ defined by,  

Dα
RL

t
p
f(t) =

dn

dtn
Ia

RL
t
n−αf(t)  =

1

Γ(n−α)

dn

dtn
(∫ (t − s)n−α−1f(s)ds
t

a
), 

is called Riemann-Liouville fractional derivative. 

Definition(4.2.4): The fractional derivative Dt
αf(t)a

C  of order α ∈ IR+is defined by 

Dt
p
f(t) = Dt

p
(f(t) − ∑

f(k)(q)

k!

n−1
k=0 (t − q)k)q

RL
q
C , 

is said to be Caputo fractional derivative, where n = [p] + 1 for p ∉ N ∪ {0}, n = p 

for p ∈ N ∪ {0}. In particular, p ∈ (0,1), then 

Dt
p
f(t) = Dt

p(f(t) − f(a))q
RL

q
C . 

Properties(4.2.1):  

(1) If  p > 0 and f ∈ Lr([q,w], IRn) (1 ≤ r ≤ ∞), then the following equality 

Dq
RL

t
p
( Iq
RL

t
p
f(t)) = f(t) . 

(2) Let p > 0 and  n = [p] + 1 for p ∉ N ∪ {0}, n = p for p ∈ N ∪ {0}. If 

y ∈ ACn([a, b], IRn) or  y ∈ Cn([a, b], IRn), then 

Ia
RL

t
p
( Da
C

t
p
y(t)) = y(t) − ∑

y(k)(a)

k!

n−1
k=0 (t − a)k. 

In particular, if  0 < p ≤ 1 and y ∈ AC([a, b], Rn) or y ∈ C([a, b], IRn) then 

Ia
RL

t
p
( Da
C

t
p
y(t)) = y(t) − y(a). 

Consider  

                                             {
Dt
αx(t)⋅

C = βx(t)

x(0) = x0
                                                 (4.2.1) 
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such that α ∈ (0,1),W is BS and β ∈ L(W) is a linear bounded operators from W to 

itself.  

 Definition(4.2.5): Assume that τ ∈ (0,∞) such that  

Cα([0, τ],W) = {x ∈ C([0, τ],W): Dt
αx ∈ C([0, τ],W)⋅

C }, 

x ∈ C([0, τ],W) is called a global solution of (4.2.1), if x ∈ Cα([0, τ],W) for ∀ τ > 0 

and satisfies (4.2.1). 

Lemma(4.2.1): Assume x: [0,∞) ⟶W  be a CM, then x  is a global solution of  

(4.2.1) if and only if x satisfies: 

                                  x(t) = x0 +
1

Γ(α)
∫ (t − s)α−1βx(s) ds
t

0
, t ≥ 0,                  (4.2.2) 

Proof 

Let’s prove recessily that x satisfies (4.2.2). Therefore, let that x is a global solution 

of (4.2.1). By Definition (4.2.5), x ∈ Cα([0, τ],W) for all τ > 0 and satisfies (4.2.1). 

This means that x ∈ C([0, τ],W) and Dt
αx ∈ C([0, τ],W)⋅

c . Since 0 ≤ α ≤ 1, property  

(4.2.1-2) and x ∈ C([0, τ],W), 

x(t) − x(0) = I.
RL

t
α( Dt

αx(t)⋅
c ) 

⟹ x(t) − x0 = I.
RL

t
α(βx(t)) 

⟹ x(t) = x0 +
1

Γ(α)
∫ (t − s)α−1βx(s)ds
t

0
. 

Now let’s prove sufficient that x  is a global solution of (4.2.1)  since x  satisfies 

(4.2.2). For this we let t = 0,   

x(0) = x0 +
1

Γ(α)
∫ (−s)α−1βx(s)ds 
0

0
.⟹ x(0) = x0.                                               (4.2.3) 

Since x(t) = x0 +
1

Γ(α)
∫ (t − s)α−1βx(s)ds
t

0
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⟹ x(t) − x0 =
1

Γ(α)
∫ (t − s)α−1βx(s) ds
t

0

 ⟹ x(t) − x(0) = I.
RL

t
α(βx(t)) 

⟹ Dt
α

⋅
RL (x(t) − x(0)) = Dt

α
⋅

RL I.
RL

t
α(βx(t)) 

⟹ Dt
α

⋅
c x(t) = βx(t),                                                                                               (4.2.4) 

by using property (4.2.1-1) since βx(t) ∈ L([0, τ], X) and the fact that 

Dt
α

⋅
c x(t) = Dt

α
⋅

RL (x(t) − x(0)). 

From (4.2.3) and  (4.2.4), x satisfies (4.2.1).    

Now we will show  x ∈ Cα([0, τ],W), ∀τ > 0. Since x: [0,∞) ⟶ W be CM,   

                               x ∈ C([0,∞],W) ⟹ x ∈ C([0, τ],W), ∀τ > 0.                    (4.2.5) 

Since β ∈ L(W) linear bounded operator on W. 

⟹ β  is CM on ([0, τ],W) ⟹ β ∈ C([0, τ],W) ⟹ βx(t) ∈ C([0, τ],W) 

⟹ Dt
α

⋅
c x(t) ∈ C([0, τ],W), ∀τ > 0.                                                                       (4.2.6) 

From (4.2.5) and (4.2.6), x ∈ Cα([0, τ],W). Therefore, 

x is a global solution of  (4.2.1).                                                                                               ∎                                           

Theorem(4.2.1): Let 0 < α < 1, β ∈ L(W)and x0 ∈ W. Then (4.2.1) has a unique 

global solution. 

Proof 

Assume τ > 0 and  kτ = {x ∈ C([0, τ], X): x(0) = x0}. Consider K: kτ⟶ kτ by 

x(t) ⟶ K(x(t)) = x0 +
1

Γ(α)
∫ (t − s)α−1βx(s) ds
t

0
. 

We will show that a power of K is contraction to use BCP                                                   

|K(x(t)) − K(y(t))| ≤
1

Γ(α)
∫ (t − s)α−1|β||x(s) − y(s)|ds
t

0

 

≤
|β|

Γ(α)
∫ (t − s)α−1ds‖x − y‖
t

0
 ≤

|β|tα

αΓ(α)
‖x − y‖  =

|β|tα

Γ(α+1)
‖x − y‖. 

Take maximum on both sides since 0 ≤ t ≤ τ,                           
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‖K(x) − K(y)‖ ≤
|β|τα

Γ(α+1)
‖x − y‖. 

Notice also that 

‖K2(x) − K2(y)‖ ≤
|β|τα

Γ(α+1)
‖K(x) − K(y)‖.≤ (

|β|τα

Γ(α+1)
)
2

‖x − y‖ 

≤
|β|2τ2α

(Γ(α+1))
2 ‖x − y‖ =

|β|2τ2α

(α!)2
‖x − y‖ ≤

|β|2τ2α

(2α)!
‖x − y‖   =

|β|2τ2α

Γ(2α+1)
‖x − y‖. 

By the repetition, we discover that 

‖Kn(x) − Kn(y)‖ ≤
|β|nτnα

Γ(nα+1)
‖x − y‖. =

(|β|
1
ατ)

nα

(nα)!
‖x − y‖, 

such that 
(|β|

1
ατ)

nα

(nα)!
< 1 for n large enough. Therefore, Kn  is a contraction for some 

n ≥ 1.  

By Corollary (3.1.1), K has a unique FP x ∈ Kτ such that 

x(t) = K(x(t)) = x0 +
1

Γ(α)
∫ (t − s)α−1
t

0
β(x(s)) ds. 

Then Lemma (4.2.1) guarantees singularity of global solution of (4.2.1).                 ∎                                                             

Definition(4.2.6): The function Eα(z) defined by 

Eα(z) = ∑
zk

Γ(1+αk)
, R(α) > 0∞

k=0 . 

is called the basic Mittag-Leffler function. Note that when α = 1 it is 

∑
zk

Γ(1+k)
=∞

k=0 ∑
zk

k!
= ez∞

k=0 . 

One generalization of Eα(z) is denoted and defined as follows: 

Eα,β(z) = ∑
zk

Γ(β+αk)
, R(α) > 0∞

k=0 , R(β) > 0. 

where (γ)k = γ(γ + 1)⋯(γ + k − 1), (γ)0 = 1, γ ≠ 0,and  (γ)k =
Γ(γ+k)

Γ(γ)
, (γ) > 0.  
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Theorem(4.2.2): Consider the same assumption of Theorem(4.2.1). In addition, 

assume {un(t)}n=0
∞  be a sequence of CMs  un: [0,∞) ⟶ W given by u0(t) = x0 and 

un(t) = x0 +
1

Γ(α)
∫ (t − s)α−1βun−1(s)ds
t

0
. 

Then there exists a CM u: [0,∞) ⟶ W such that un⟶ u in C([0, τ],W), τ > 0, u is 

a solution of (4.2.1) that is unique and 

u(t) = Eα(βt
α)kx0. 

Proof 

Let  un ∈ C([0, τ],W), τ > 0 such that  u0(t) = x0. 

u1(t) = x0 +
1

Γ(α)
∫ (t − s)α−1βu0(s)ds
t

0
. 

           = x0 +
βx0

Γ(α)
∫ (t − s)α−1ds
t

0
.= x0 +

βtα

Γ(α+1)
x0. 

u2(t) = x0 +
1

Γ(α)
∫ (t − s)α−1βu1(s)ds
t

0
. 

           = x0 +
β

Γ(α)
x0 ∫ (t − s)

α−1ds
t

0
. +

β2

Γ(α)Γ(α+1)
x0 ∫ (t − s)

α−1sαds
t

0
. 

           = x0 +
βtα

Γ(α+1)
x0 +

β2

Γ(α)Γ(α+1)
x0 ∫ (t − s)

α−1sαds
t

0
.  

Now integrating by parts to find ∫ (t − s)α−1sαds
t

0
, 

Let  u = sα                                         du = αsα−1ds 

      dv = (t − s)α−1ds                        v =
−1

α
(t − s)α. 

∫ (t − s)α−1sαds
t

0
= ∫ (t − s)α

t

0
sα−1ds. 

Integrating by parts again to find ∫ (t − s)αsα−1ds
t

0
. 

Let  u = sα−1                                     du = (α − 1)sα−2ds 

      dv = (t − s)αds                             v =
−1

α+1
(t − s)α+1 

∫ (t − s)α−1sαds
t

0
=
α−1

α+1
∫ (t − s)α+1
t

0
sα−2ds.. 

After use integration by parts α- times to obtain  
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∫ (t − s)α−1sαds
t

0
=
(α−1)(α−2)⋯(α−α+1)

(α+1)(α+2)⋯(α+α−1)
∫ (t − s)2α−1ds
t

0
. 

                                 =
(α−1)(α−2)⋯3.2.1

(α+1)(α+2)⋯(2α−1)(2α)
t2α.=

Γ(α)t2α

(α+1)(α+2)⋯(2α−1)(2α)
 . 

Therefore, 

 u2(t) = x0 +
βtα

Γ(α+1)
x0 +

β2t2α

(2α)(2α−1)⋯(α+2)(α+1)Γ(α+1)
x0. 

           = x0 +
βtα

Γ(α+1)
x0 +

(βtα)2

Γ(2α+1)
x0. = ∑

(βtα)k

Γ(kα+1)
x0

2
k=0 . 

      ⋮ 

un(t) = ∑
(βtα)k

Γ(kα+1)
x0

n
k=0 . 

We now illustrate that un(t) is Cauchy sequence in BS C([0, τ],W). 

|un+1(t) − un(t)| =
|β|n+1tα(n+1)

Γ((n+1)α+1)
x0. 

Take maximum on both sides, to drive 

‖un+1 − un‖ ≤
(|β|

1
ατ)

(n+1)α

((n+1)α)!
x0. 

Let m > n, 

‖um − un‖ ≤ ‖um − um−1‖ +⋯+ ‖un+1 − un‖ 

≤
(|β|

1
ατ)

mα

(mα)!
x0 +⋯+

(|β|
1
ατ)

(n+3)α

((n+3)α)!
x0.+ 

(|β|
1
ατ)

(n+2)α

((n+2)α)!
x0 +

(|β|
1
ατ)

(n+1)α

((n+1)α)!
x0. 

≤
(|β|

1
ατ)

mα

((n+1)α)!
x0 +⋯+

(|β|
1
ατ)

(n+3)α

((n+1)α)!
x0.+ 

(|β|
1
ατ)

(n+2)α

((n+1)α)!
x0 +

(|β|
1
ατ)

(n+1)α

((n+1)α)!
x0. 

=
(|β|

1
ατ)

(n+1)α

((n+1)α)!
x0(1 + |β|τ

α + (|β|τα)2 +⋯+ (|β|τα)m−n−1). 

=
(|β|

1
ατ)

(n+1)α

((n+1)α)!
x0 ∑ (|β|τα)km−n−1

k=0 .≤
(|β|

1
ατ)

(n+1)α

((n+1)α)!
x0 ∑ (|β|τα)k∞

k=0 . 
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=
(|β|

1
ατ)

(n+1)α

((n+1)α)!
(

x0

1−|β.|τα
)
n→∞
→  0. 

Therefore, {un(t)}n=0
∞  be Cauchy sequence in BS C([0, τ],W), this indicates there 

exists u(t) ∈ C([0, τ],W) such that un(t)
n→∞
→  u(t). To show that u  is solution for 

(4.2.1), it is enough prove u satisfies (4.2.2). 

u(t) = lim
n→∞

un(t) = x0 +
1

Γ(α)
∫ (t − s)α−1β lim

n→∞
un−1(s)ds

t

0
. 

        = x0 +
1

Γ(α)
∫ (t − s)α−1βu(s)ds
t

0
. 

Hence, Lemma(4.2.1) say that u is a global solution for (4.2.1). Since 0 < α < 1, 

β ∈ L(W) and x0 = u(0) ∈ W, then by Theorem(4.2.1), u is a unique solution for 

(4.2.1). Now let t ∈ [0, τ] such that τ > 0, 

   u(t) = lim
n→∞

un(t) = lim
n→∞

∑
(Btα)k

Γ(kα+1)
x0

n
k=0  = ∑

(Btα)k

Γ(kα+1)
x0

∞
k=0 .= Eα(t

αB)kx0.            

The proof is done.                                                                                                          ∎ 

4.3 Boundary Value Problems for Two-Point Fractional Differential 

Equations 

  Define the following BVP 

                       {
Da+
α η(t) = −f(t, η(t)), t ∈ [a, b], α ∈ (1, 2].

C

η(a) = A, η(b) = B,     A, B ∈ IR
                                 (4.3.1) 

where f: [a, b] × IR ⟶ IR is a CM. 

Lemma(4.3.1): Let α > 0, then the FDE 

Dαη(t)⋅
C = 0 

has solution 

η(t) = c0 + c1t + c2t
2 +··· + cn−1t

n−1, ci ∈ IR, i = 0, 1, 2,⋯ , n, n = [α] + 1. 



66 

  

Lemma(4.3.2): A function η ∈ C2[a, b]  is a solution of problem (4.3.1) if and only if 

it satisfies the integral equation                                                                           

 η(t) = A +
t−a

b−a
(B − A +

1

Γ(α)
∫ (b − s)α−1f(s, η(s))
b

a
ds). 

         −
1

Γ(α)
∫ (t − s)α−1f(s, η(s))
t

a
ds.                                                    (4.3.2) 

Proof 

I.
RL

a+
α Da+

α η(t) = − I.
RL

a+
α f(t, η(t)).

C  

⟹ η(t) − ∑
η(k)(a)(t−a)k

k!

1
k=0 .= −

1

Γ(α)
∫ (t − s)α−1f(s, η(s))
t

a
ds. 

⟹ η(t) − η(a) − η′(a)(t − a).= −
1

Γ(α)
∫ (t − s)α−1f(s, η(s))
t

a
ds. 

⟹ η(t) = η(a) + η′(a)(t − a).−
1

Γ(α)
∫ (t − s)α−1f(s, η(s))
t

a
ds. 

⟹ η(t) = η′(a)(t − a).−
1

Γ(α)
∫ (t − s)α−1f(s, η(s))
t

a
ds.                                       (4.3.3) 

From (4.3.3),  t = b and  η(b) = B, we obtain 

η′(a) =
1

b−a
(B − A  +

1

Γ(α)
∫ (b − s)α−1f(s, η(s))
b

a
ds).                                        (4.3.4)             

Substitute the value of (4.3.4) to equations (4.3.3), to get (4.3.2).  

The converse follows by direct computation. Indeed, 

η(t) = A +
t−a

b−a
(B − A +

1

Γ(α)
∫ (b − s)α−1f(s, η(s))
b

a
ds).− I.

RL
a+
α f(t, η(t)). 

         = A −
a

b−a
(B − A +

1

Γ(α)
∫ (b − s)α−1f(s, η(s))
b

a
ds). 

         +
1

b−a
(B − A +

1

Γ(α)
∫ (b − s)α−1f(s, η(s))
b

a
ds) t − I.

RL
a+
α f(t, η(t)). 

Hence by Lemma(4.3.1), 

Da+
α η(t) = − Da+

α I.
RL

a+
α f(t, η(t)).

C
.
C = −f(t, η(t)). 

Also since (4.3.2),  t = a and  t = b, then η(a) = A,  η(b) = B, respectively.             ∎  

Remark(4.3.1): We can express the solution (4.3.2) in terms of Green’s function as 
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η(t) = A +
(B−A)(t−a)

b−a
.+

1

Γ(α)
∫
(t−a)(b−s)α−1−(b−a)(t−s)α−1

b−a
f(s, η(s))

t

a
ds. 

        +
1

Γ(α)
∫

(t−a)(b−s)α−1

b−a
f(s, η(s))

b

t
ds. 

T     = A +
(B−A)(t−a)

b−a
+ ∫ ψ(s, t)f(s, η(s))

b

a
ds, 

 where  

                       ψ(s, t) =
1

Γ(α)
{

(t−a)(b−s)α−1

b−a
− (t − s)α−1, a ≤ s ≤ t ≤ b

(t−a)(b−s)α−1

b−a
                         , a ≤ t ≤ s ≤ b

 is. completes  

Let’s start to define a function 

g(t, s) =
(t−a)(b−s)α−1

b−a
− (t − s)α−1, a ≤ s ≤ t ≤ b. 

The goal is to determine the field where g(t, s) < 0,   

⟹
(t − a)(b − s)α−1

b − a
− (t − s)α−1 < 0 

⟹
t−a

b−a
< (

t−s

b−s
)
α−1

⟹ (
t−a

b−a
)

1

α−1
<

t−s

b−s
⟹ (

t−a

b−a
)

1

α−1 (b − s) < t − s. 

⟹ (
t−a

b−a
)

1

α−1
b − t < s((

t−a

b−a
)

1

α−1
− 1). 

Since (
t−a

b−a
)

1

α−1
− 1 < 0, we clearly get 

s <
(
t−a

b−a
)

1
α−1b−t

(
t−a

b−a
)

1
α−1−1

. 

If we define the function h by 

h(t) =
(
t−a

b−a
)

1
α−1b−t

(
t−a

b−a
)

1
α−1−1

, t ∈ [a, b)  and  h(b) = lim
t→b

(
t−a

b−a
)

1
α−1b−t

(
t−a

b−a
)

1
α−1−1

= 2b − a − α(b − a). 

We now wish to show that a < h(t) < t on (a, b). We have 

a <
(
t−a

b−a
)

1
α−1b−t

(
t−a

b−a
)

1
α−1−1

⟺ (
t−a

b−a
)

1

α−1
a − a > (

t−a

b−a
)

1

α−1
b − t   ⟺ t − a > (

t−a

b−a
)

1

α−1 (b − a) 
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                          ⟺
t−a

b−a
> (

t−a

b−a
)

1

α−1
 ⟺ (

t−a

b−a
)

2−α

α−1
< 1 ⟺

t−a

b−a
< 1 ⟺ t < b, 

which is true. In addition, 

(
t−a

b−a
)

1
α−1b−t

(
t−a

b−a
)

1
α−1−1

< t ⟺ (
t−a

b−a
)

1

α−1
b > (

t−a

b−a
)

1

α−1
t ⟺ b > t, it is also true.  

Therefore, a < h(t) < t on (a, b). Furthermore, it is easy to view that, 

{
g(t, s) < 0, a ≤ s < h(t)

g(t, s) > 0, h(t) ≤ s ≤ t
 

∫ |ψ(t, s)|ds =
1

Γ(α)

b

a
∫ ((t − s)α−1 −

(t−a)(b−s)α−1

b−a
) ds

h(t)

a
. 

+
1

Γ(α)
∫ (

(t−a)(b−s)α−1

b−a
− (t − s)α−1) ds

t

h(t)
.+

1

Γ(α)
∫

(t−a)(b−s)α−1

b−a
ds

b

t
. 

=
1

Γ(α+1)
(
(t−a)(b−s)α

b−a
− (t − s)α) |.a

h(t)
. 

+
1

Γ(α+1)
((t − s)α −

(t−a)(b−s)α

b−a
) |.h(t)

t .−
1

Γ(α+1)
(
(t−a)(b−s)α

b−a
) |.t

b 

=
1

Γ(α+1)
(
(t−a)(b−h(t))

α

b−a
− (t − h(t))

α
− (t − a)(b − s)α−1 + (t − a)α −

 
(t−a)(b−t)α

b−a
 −  (t − h(t))

α
+
(t−a)(b−h(t))

α

b−a
+
(t−a)(b−t)α

b−a
). 

=
1

Γ(α+1)
(
2(t−a)(b−h(t))

α

b−a
− 2(t − h(t))

α
− (t − a)(b − a)α−1 + (t − a)α). 

It is clear that the right side of the previous equality has a maximum on (a, b), though 

we couldn’t find it analytically. We define, 

M(α, a, b) 

=
1

Γ(α+1)
max
a≤t≤b

(
2(t−a)(b−h(t))

α

b−a
−  2(t − h(t))

α
− (t − a)(b − a)α−1 + (t − a)α). 

Finally, we get 

                                              ∫ |ψ(t, s)|ds ≤
b

a
M(α, a, b).                                   (4.3.4)  



69 

  

Theorem(4.3.1): Assume that η: [a, b] × IR ⟶ IR is a CM and satisfies a uniform 

Lipschitz condition with respect to the second variable on [a, b] × IR with Lipschitz 

constant L > 0 that is 

|η(t, x) − η(t, y)| ≤ L|x − y|, 

for all (t, x), (t, y) ∈ [a, b] × IR. If 

M(α, a, b) <
1

L
, 

then the BVP (4.3.1) has a unique solution. 

Proof 

Define an operator K: C[a, b] ⟶ C[a, b] by 

(Kx)(t) = A +
(B−A)(t−a)

b−a
+ ∫ ψ(s, t)η(s, x(s))

b

a
ds. 

Let x, y ∈ C[a, b], 

|(Kx)(t) − (Ky)(t)| ≤ ∫ |ψ(s, t)||η(s, x(s)) − η(s, y(s))|
b

a

ds 

                                 ≤ L∫ |ψ(s, t)||x(s) − y(s)|
b

a
ds ≤ L∫ |ψ(s, t)|

b

a
ds‖x − y‖. 

From (4.3.4), we obtain 

|(Kx)(t) − (Ky)(t)| ≤ L M(α, a, b)‖x − y‖. 

Take maximum on both sides where a ≤ t ≤ b, 

‖K(x) − K(y)‖ ≤ L M(α, a, b)‖x − y‖ 

Notice that L M(α, a, b) < 1 since M(α, a, b) <
1

L
 . Therefore, K is a contraction on 

C[a, b]. It is following by an application of the BCP (3.1.1) that K has only FP  

x(t) = A +
(B−A)(t−a)

b−a
+ ∫ ψ(s, t)η(s, x(s))

b

a
ds. 

Lemma(4.3.2) says that x(t) is a one solution for (4.3.1).                                           ∎                                                                             

Corollary(4.3.1): Assume that η: [a, b]  × IR ⟶ IR is a CM and admits  
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|η(t, x) − η(t, y)| ≤ L|x − y| , 

for all (t, x), (t, y) ∈ [a, b] × IR and L > 0. If 

b − a <
2√2

√L
, 

then the BVP 

                                 {
x′′(t) = −η(t, x(t)), a < t < b, 1 < α ≤ 2,

x(a) = A  x(b) = B, A, B ∈ IR
                  (4.3.5) 

has a unique solution. 

Proof 

Initially, we suppose that α = 2. Then, it is not diffecult to show that 

h(t) =
(
t−a

b−a
)b−t

(
t−a

b−a
)−1

=
a(t−b)

t−b
= a. 

Moreover,  

M(2, a, b) =
1

2
max
a≤t≤b

((t − a)(b − a) − (t − a)2) =
1

2
max
a≤t≤b

((t − a)(b − t)). 

Now we will let  K(t) = (t − a)(b − t), subsequently, K′(t) = b + a − 2t. Hence 

t =
a+b

2
, 

since K′(t) = 0. Also K′′(t) = −2 < 0. So, K(t) taken its maximum at t =
a+b

2
. Thus 

M(2, a, b) =
1

2
(
a+b

2
− a) (b −

a+b

2
) =

1

2
(
b−a

2
) (

b−a

2
) =

(b−a)2

8
 <

1

8
(
2√2

√L
)
2

=
1

L
. 

Theorem(4.3.1) and the BVP decide that (4.3.5) has a unique solution.                   ∎ 

4.4 Boundary Value Problems of Order 𝛂 ∈ (𝟎, 𝟏] for FDEs 

 Consider the given fractional BVP 

                          {
Dαϑ(k) = φ(k, ϑ(k)), t ∈ [0, K], α ∈ (0, 1].
C

aϑ(0) + bϑ(1) = c
                                  (4.4.1) 

where φ: [0, K] × IR ⟶ IR is a CM, a + b ≠ 0 and a, b, c ∈ IR. 
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Definition(4.4.1): A function ϑ ∈ C1([0, K], IR) is said to be a solution of (4.4.1) if  ϑ 

satisfies the equation Dαϑ(k) = φ(k, ϑ(k)).
C  on [0, K] and the condition 

aϑ(0) + bϑ(1) = c. 

For the existence of solution for (4.4.1), we need the following auxiliary lemmas: 

Lemma(4.4.1): Assume 0 < α < 1, h ∈ C([0, K], IR). The solution of the fractional 

integral equation is given as follows, 

                                  ϑ(k) = ϑ0 +
1

Γ(α)
∫ (k − s)α−1h(s)ds
k

0
.                                 (4.4.2)   

if and only if ϑ be a solution of the fractional IVP  

                                           {
Dk
αϑ(k).

C = h(k),    0 ≤ k ≤ K

ϑ(0) = ϑ0
                                    (4.4.3) 

Lemma(4.4.2): Assume 0 < α < 1, h ∈ C([0, K], IR). The solution of the fractional 

integral equation is given as follows, 

ϑ(k) =
1

Γ(α)
∫ (k − s)α−1h(s)ds
k

0
−

1

a+b
(
b

Γ(α)
∫ (K − s)α−1h(s)ds − c
K

0
).              (4.4.4)   

if and only if  ϑ is a solution of the fractional BVP  

                                           {
Dt
αϑ(k).

C = h(k),    0 ≤ k ≤ K

aϑ(0) + bϑ(K) = c
                                    (4.4.5)                     

Proof 

Let ϑ be a solution of  Dαϑ(k).
C = h(k) 

⟹ I.
RL α Dαϑ(k).

C = I.
RL αh(k) ⟹ ϑ(k) = I.

RL αh(k) + L, L ∈ IR.                           (4.4.6) 

We need to find L  by using the condition aϑ(0) + bϑ(K) = c . Let’s determine 

ϑ(0), ϑ(K) by (4.4.4), a simple calculation gives 

{
ϑ(0) = L

ϑ(K) = I.
RL αh(K) + L

. 

Now, we have aϑ(0) + bϑ(K) = c ⟹ a L + b( I.
RL αh(K) + L) = c 
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⟹ (a + b)L = c − b I.
RL αh(K) ⟹ L =

c

a+b
−

b

a+b
I.

RL αh(K).                                  (4.4.7) 

Substitute the value of L to equations (4.4.6) and (4.4.7), to get 

ϑ(k) =
1

Γ(α)
∫ (k − s)α−1h(s)ds
k

0
−

1

a+b
(
b

Γ(α)
∫ (K − s)α−1h(s)ds − c
K

0
). 

Conversely, it is clear that if ϑ is satisfied equation (4.4.2), then equation (4.4.3) 

holds. Indeed, 

ϑ(0) = −
1

a+b
(
b

Γ(α)
∫ (K − s)α−1h(s)ds − c
K

0
). 

From (4.4.4), we get 

ϑ(k) = ϑ(0) +
1

Γ(α)
∫ (k − s)α−1h(s)ds
k

0
. 

Lemma (4.4.1) guarantees that ϑ is a solution for Dt
αϑ(k).

C = h(k).                    (4.4.8) 

Now, to prove the condition let (4.4.4) is hold for all k ∈ [0,K]. Then  

 aϑ(0) + bϑ(K) =
a

a+b
(c −

b

Γ(α)
∫ (K − s)α−1h(s)ds
K

0
). 

                           +(1 −
b

a+b
)

b

Γ(α)
∫ (K − s)α−1h(s)ds +

bc

a+b

K

0
. 

                           =
ac

a+b
−

ab

(a+b)Γ(α)
∫ (K − s)α−1h(s)ds
K

0
 

                           +
ab

(a+b)Γ(α)
∫ (K − s)α−1h(s)ds
K

0
+

bc

a+b
=
(a+b)c

a+b
= c.                (4.4.9) 

From (4.4.8) and (4.4.9) we drive ϑ is solution for (4.4.5).                                          ∎               

The BCP is a main base for first consequence. 

Theorem(4.4.1): Assume that 

(H1) ∃k > 0 such that |f(k, u) − f(k, u)| ≤ L|u − u|, t ∈ [0, K] and all u, u ∈ IR. If 

                                        LKα (
1

Γ(α+1)
+

|b|

|a+b|Γ(α−1)
) < 1,                                      (4.4.10) 

then the BVP (4.4.1) has a unique solution on [0, K]. 

Proof 
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To begin to prove the theorem we transform the problem (4.4.1) into a FP problem. 

To this end we introduce the following operator 

Y: C([0,K], IR) ⟶ C([0,K], IR) 

where Y is defined by 

                  (Yu)(k) = I.
RL αf(k, u(k)) −

b

a+b
I.

RL αf(K, u(K)) +
c

a+b
.                 (4.4.11) 

Clearly, if  u ∈ C[0, K] then Y(u) ∈ C[0,K], this means Y: C[0, K] ⟶ C[0,K] is CMS. 

Therefore, we need to show that Y is a contraction mapping. To show this suppose  

u,w ∈ C([0, K], IR), then for every k ∈ [0, K] we have 

|Yu(k) − Yw(k)| ≤
1

Γ(α)
∫ (k − s)α−1|f(s, u(s)) − f(s,w(s))|ds
k

0
. 

+
|b|

|a+b|Γ(α)
∫ (K − s)α−1|f(s, u(s)) − f(s, w(s))|ds
K

0
.. 

≤
L

Γ(α)
∫ (k − s)α−1|u(s) − w(s)|ds
k

0
+

L|b|

|a+b|Γ(α)
∫ (K − s)α−1|u(s) − w(s)|ds
K

0
. 

≤ L (
1

Γ(α)
∫ (k − s)α−1ds +

|b|

|a+b|Γ(α)
∫ (K − s)α−1ds
K

0

k

0
)‖u − w‖∞. 

= L(
kα

αΓ(α)
+

|b|Kα

|a+b|αΓ(α)
)‖u − w‖∞. 

Take maximum on both sides where 0 ≤ k ≤ K, 

‖Y(u) − Y(w)‖∞ ≤
LKα

Γ(α+1)
(1 +

|b|

|a+b|
)‖u − w‖∞. 

Consequently, by assumption (4.4.10), Y is directly contraction on CMS C([0, K], IR). 

Application of the theorem(3.1.1)(BCP) shows the existence and uniqueness of FP of  

Y, which is a solution of (4.4.1).                                                                                   ∎    

The SFPT is a base for secondary consequence. 

Theorem(4.4.2): Assume that  

(H1) ∃L > 0 such that for all t ∈ [0, K] , u, u ∈ IR, |f(k, u) − f(k, u)| ≤ L|u − u|. 

(H2) The function f: [0, K] × IR ⟶ IR is continuous. 
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(H3) There is a constant M > 0 such that |f(k, u)| ≤ M for ∀ t ∈ [0, K] and ∀ u ∈ IR. 

Under these assumptions, the BVP (4.4.1) has at least one FP in C[0, K]. 

Proof 

The proof is created on SFPT to prove that Y has a FP. The proof will be given in 

several steps: 

Step 1:  Y is a continuous. 

Let {un}n=1
∞ ⊂  C([0,K], IR)  be a sequence such that un⟶ u  in C([0, K], IR) . Then 

for each t ∈ [0, K] 

|Y(un(k)) − Y(u(k))| ≤
1

Γ(α)
∫ (k − s)α−1|f(s, un(s)) − f(s, u(s))|ds
k

0
. 

+
|b|

|a+b|Γ(α)
∫ (K − s)α−1|f(s, un(s)) − f(s, u(s))|ds
K

0
. 

≤
1

Γ(α)
∫ (k − s)α−1 sup

0≤s≤K
|f(s, un(s)) − f(s, u(s))| ds

k

0
. 

+
|b|

|a+b|Γ(α)
∫ (K − s)α−1 sup

0≤s≤K
|f(s, un(s)) − f(s, u(s))|ds

K

0
. 

≤
1

Γ(α)
∫ (k − s)α−1ds‖f(. , un(. )) − f(. , u(. ))‖∞
k

0
. 

+
|b|

|a+b|Γ(α)
∫ (K − s)α−1ds
K

0
‖f(. , un(. )) − f(. , u(. ))‖∞. 

= (
kα

Γ(α+1)
−

|b|Kα

|a+b|Γ(α+1)
) ‖f(. , un(. )) − f(. , u(. ))‖∞. 

Take maximum on both sides where 0 ≤ k ≤ K, 

                     ‖Y(un) − Y(u)‖∞ ≤
Kα

Γ(α+1)
(1 −

|b|

|a+b|
) ‖f(. , un(. )) − f(. , u(. ))‖∞. 

Since f is a continuous, we obtain 

‖Y(un) − Y(u)‖∞
n⟶∞
→   0. 

Hence Y: C([0, K], IR) ⟶ C([0, K], IR), is a CM. 

Step 2: Y maps the bounded sets into the bounded sets in C([0, K], IR). Indeed, it is 

enough to show that for ∀ η > 0 there exists a positive constant 𝑙 such that for ∀ u in         
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Bη = {u ∈ C([0,K], IR): ‖u‖∞ ≤ η}, 

we have 

‖Yu‖∞ ≤ M. 

By (H3) we have for each k ∈ [0, K]  

|(Yu)(k)| ≤
1

Γ(α)
∫ (k − s)α−1|f(s, u(s))|
k

0
ds +

|b|

|a+b|Γ(α)
∫ (K − s)α−1|f(s, u(s))|
K

0
ds. 

+
|c|

|a+b|
.≤

M

Γ(α)
∫ (k − s)α−1
k

0
ds +

M|b|

|a+b|Γ(α)
∫ (K − s)α−1ds
K

0
+

|c|

|a+b|
. 

≤
M

Γ(α+1)
kα +

M|b|

|a+b|Γ(α+1)
Kα +

|c|

|a+b|
.. 

Take maximum on both sides where 0 ≤ k ≤ K, 

‖Yu‖∞ ≤ MK
α (

1

Γ(α+1)
+

|b|

|a+b|Γ(α+1)
) +

|c|

|a+b|
. 

Since MKα (
1

Γ(α+1)
+

|b|

|a+b|Γ(α+1)
) +

|c|

|a+b|
= 𝑙, then  ‖Y(u)‖∞ ≤ 𝑙. 

Step 3: Y maps the bounded sets into the equi-continuous sets of C([0,K], IR). To see 

this let k1, k2 ∈ (0,K], k1 < k2 and u ∈ Bη such that 

Bη = {u ∈ C([0,K], IR): ‖u‖C ≤ η}. 

Subsequently, 

 |Y(u(k2)) − Y(w(k1))| =
1

Γ(α)
(∫ ((k2 − s)

α−1 − (k1 − s)
α−1)|f(s, u(s))|

k1

0
ds. 

+∫ (k2 − s)
α−1|f(s, y(s))|

k2

k1
ds). 

=
M

Γ(α)
(∫ ((k2 − s)

α−1 − (k1 − s)
α−1)

k1

0
ds.+∫ (k2 − s)

α−1k2

k1
ds) 

=
M

Γ(α+1)
(k2
α − k1

α). 

Therefore, the right hand side of the above inequality tends to zero as k1⟶ k2. Hence 

Y(u) is equi-continuous. By steps 2 and 3 and Theorem (2.1.1)(A-AT), we conclude 

that Y: C([0,K], IR) ⟶ C([0,K], IR)  is a relatively compact. Definition (2.1.7) says 
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that Y(C([0, K], IR)) is compact. Therefore, Y: C([0,T], R) ⟶ C([0,T], R) is a 

continuous and compact. 

Step 4: A priori bounds, it remains to show that the set  

ℳ = {u ∈ C([0, K], IR): u = λY(u), 0 < λ < 1} 

 is bounded. 

Let u ∈ ℳ, then u = λY(u) for some 0 < λ < 1. Thus for each k ∈ [0, K] we have 

|u(k)| = λ|(Yu)(k)| 

≤ λ (
1

Γ(α)
∫ (k − s)α−1|f(s, u(s))|
k

0
ds +

|b|

|a+b|Γ(α)
∫ (K − s)α−1|f(s, u(s))|
K

0
ds. 

+ |
c

a+b
|) ≤ λ(

M

Γ(α)
∫ (k − s)α−1
k

0
ds +

M|b|

|a+b|Γ(α)
∫ (K − s)α−1ds
K

0
+ |

c

a+b
|). 

≤ λ (
M

Γ(α+1)
kα +

M|b|

|a+b|Γ(α+1)
Kα + |

c

a+b
|). 

Take maximum on both sides where 0 ≤ k ≤ K, 

‖u‖∞ ≤ λ(MK
α (

1

Γ(α+1)
+

|b|

|a+b|Γ(α+1)
) + |

c

a+b
|). 

Since 𝑙 = (MKα (
1

Γ(α+1)
+

|b|

|a+b|Γ(α+1)
) + |

c

a+b
|), then ‖u‖∞ ≤ λ 𝑙. 

This shows that the set ℳis bounded. As a consequence of Theorem(3.4.5)(SFPT), we 

deduce that Y has at least one FP, which is a solution of the problem (4.4.1).                ∎                                                                                                       

In this section we give an example to illustrate the usefulness of our main results.  

Example(4.4.1): Consider the following fractional BVP 

                   {
D.
C αu(k) =

e−k|u(k)|

(9+ek)(1+|u(k)|)
, k ∈ [0,1] , 2 < α ≤ 3

 u(0) = 0, u′(0) = 1, u′′(0) = 0
                          (4.4.12) 

Set  f (k, u(k)) =
e−k|u(k)|

(9+ek)(1+|u(k)|)
 , (k, u(k)) ∈ [0,1] × [0,∞) , let u, w ∈ [0,∞)  and 

k ∈ [0,1]. Then we have  

|f (k, u(k)) − f (k, w(k))| = |
e−k|u(k)|

(9+ek)(1+|u(k)|)
−

e−k|w(k)|

(9+ek)(1+|w(k)|)
|. 



77 

  

                                         =
e−k

9+ek
|
|u(k)|

(1+|u(k)|)
−

|w(k)|

(1+|w(k)|)
| 

                                         =
||u(k)|(1+|w(k)|)−|w(k)|(1+|u(k)|)|

(9ek+1)(1+|u(k)|)(1+|w(k)|)
. 

                                         =
||u(k)|−|w(k)||

(9ek+1)(1+|u(k)|)(1+|w(k)|)
≤

|u(k)−w(k)|

(9ek+1)(1+|u(k)|)(1+|w(k)|)
 

                                         ≤
1

9ek+1
|u(k) − w(k)| ≤

1

10
|u(k) − w(k)|. 

Hence the condition (H1) holds with L =
1

10
. We shall check that condition (4.4.11) is 

satisfied with K = 1. Indeed, 

LKα (
1

Γ(α+1)
+

1

2Γ(α−1)
) < 1 ⟹ 

1

Γ(α+1)
+

1

2Γ(α−1)
< 10.                                           

Notice that   
1

6
≤

1

Γ(α+1)
<
1

2
  and  

1

2
≤

1

2Γ(α−1)
< c.                                      (4.4.13) 

The previous inequalities decide that 

1

Γ(α+1)
+

1

2Γ(α−1)
< 1
2
+ c ≤ 10.⟹

1
2
+ c ≤ 10 ⟹ c ≤

19

2
. 

From (4.4.13), we get 

   
1

2
≤

1

2Γ(α−1)
<
19

2
⟹

1

19
< Γ(α − 1) ≤ 1 ⟹

1

19
< (α − 2)! ≤ 1,                (4.4.14)                             

which is satisfied for some α ∈ (2,3]. Then by Theorem (4.4.1) the problem (4.4.12) 

has a unique solution on [0,1] for the values of α satisfying (4.4.14).  

4.5 Nonlocal BVPs for Nonlinear FDEs of Higher – Order  

Consider the following nonlinear FDEs of higher q with nonlocal boundary conditions  

                {

Dqy(t) = η(t, y(t)), t ∈ (0,1),.
C q ∈ (m − 1,m],m ≥ 2,

y(0) = y′(0) = y′′(0) = ⋯⋯⋯ = y(m−2)(0) = 0,

y(1) = αy(λ), 0 < λ < 1, αλm−1 ≠ 1, α ∈ IR

                   (4.5.1) 

where η: [0,1] × X ⟶ X is a CM and (X, ‖∙‖) is a BS. 

Lemma(4.5.1)( Auxiliary Lemmas): Let q > 0, then 
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Iq Dqy(t).
C = y(t) + c0 + c1t + c2t

2 +··· + cn−1t
n−1, 

 for some  ci ∈ IR, i = 0, 1, 2,⋯ , n, n = [q] + 1. 

Lemma(4.5.2): For σ ∈ C[0,1],  the unique solution of the BVP 

                   {

Dqy(t) = σ(t), t ∈ (0,1),.
C q ∈ (m− 1,m],m ≥ 2,

y(0) = y′(0) = y′′(0) = ⋯⋯⋯ = y(m−2)(0) = 0,

y(1) = αy(λ), 0 < λ < 1, αλm−1 ≠ 1, α ∈ IR

                         (4.5.2) 

is given by 

y(t) = ∫
(t−r)q−1

Γ(q)
σ(r)dr

t

0
.−

tm−1

1−αηm−1
[∫

(1−r)q−1

Γ(q)
σ(r)dr − α∫

(η−r)q−1

Γ(q)
σ(r)dr

η

0

1

0
]. 

Proof 

Let  Dqy(t) =  σ(t).
C ⟹ Iα⋅

RL Dqy(t)⋅
C = Iα⋅

RL σ(t). The Lemma (4.5.1) says that 

y(t) =
1

Γ(q)
∫ (t − r)q−1σ(r)dr
t

0
− c0 − c1t − c2t

2 −⋯− cm−1t
m−1.                  (4.5.3) 

y′(t) =
q−1

Γ(q)
∫ (t − r)q−2σ(r)dr
t

0
− c1 − 2c2t − ⋯− (m − 1)cm−1t

m−2. 

         =
1

Γ(q−1)
∫ (t − r)q−2σ(r)dr
t

0
− c1 − 2c2t − ⋯− (m− 1)cm−1t

m−2. 

y′′(t) =
q−2

Γ(q−1)
∫ (t − r)q−3σ(r)dr
t

0
− 2c2  −(m − 1)(m− 2)cm−1t

m−3. 

          =
1

Γ(q−2)
∫ (t − r)q−3σ(r)dr
t

0
− 2c2 −⋯.−(m − 1)(m− 2)cm−1t

m−3. 

             ⋮ 

y(m−2)(t) =
q − 2

Γ(q − 1)
∫ (t − r)q−3σ(r)dr
t

0

− 2c2   − (m − 1)(m− 2)cm−1t 

                 =
1

Γ(q−m+2)
∫ (t − r)q−(m−1)σ(r)dr
t

0
. 

                 −(m− 2)(m− 3)⋯(1)cm−2 − (m− 1)(m− 2)⋯(2)cm−1t. 

Applying the boundary conditions for assumption c1 = c2 = ⋯ = cm−3 = cm−2 = 0 

and thus, 
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                            {
y(1) = ∫

(1−s)q−1

Γ(q)
σ(s)ds

1

0
− cm−1,

y(λ) = ∫
(λ−r)q−1

Γ(q)
σ(r)dr

λ

0
− cm−1λ

m−1
.                             (4.5.4) 

Substitute the equations of (4.5.4) to equation y(1) = αy(λ), to get 

cm−1 =
1

1−αηm−1
(∫

(1−r)q−1

Γ(q)
σ(r)dr −

1

0
α∫

(η−r)q−1

Γ(q)
σ(r)dr

η

0
). 

Substitute again the values c1 = c2 = ⋯ = cm−3 = cm−2 = 0  and cm−1 to the 

equation (4.5.3), to obtain 

y(t) = ∫
(t−r)q−1

Γ(q)
σ(r)dr

t

0
.−

tm−1

1−αηm−1
(∫

(1−r)q−1

kΓ(q)
σ(r)dr − α∫

(η−)q−1

Γ(q)
σ(r)dr

η

0

1

0
), 

as required.                                                                                                                     ∎ 

The first basic technique is dependable on BCP. 

Theorem(4.5.1): Assume η: [0,1] × X ⟶ X is jointly CM and support the condition 

‖η(t, x) − η(t, y)‖ ≤ L‖x − y‖, ∀ t ∈ [0,1], x, y ∈ X. 

Then the BVP (4.5.1) has a unique solution as long as γ < 1 and ϑ is given by  

                                   ϑ =
L

Γ(q+1)
+ γ,  γ =

L(1+|α|λq)

Γ(q+1)|1−αλm−1|
                                  (4.5.5) 

Proof 

K: C ⟶ C is defined by  

           (Ky)(t) = ∫
(t−r)q−1

Γ(q)

t

0
η(r, y(r))dr −

tm−1

1−αλm−1
[∫

(1−r)q−1

Γ(q)
η(r, y(r))dr

1

0
 

                         −α∫
(λ−r)q−1

Γ(q)
η(r, y(r))dr

λ

0
] , t ∈ [0,1].                                         

Locate sup
t∈[0,1]

‖η(t, 0)‖ = M, and choose 

                               β ≥
M

(1−Λ)Γ(q+1)
(1 +

1+|α|λq

|1−αλm−1|
) : ϑ ≤ Λ < 1.                           (4.5.6) 

Now we let  Uβ = {y ∈ C: ‖y‖ ≤ β} and show that K(Uβ) ⊂ Uβ. For all y ∈ Uβ, 

|(Ky)(t)| ≤ ∫
(1−r)q−1

Γ(q)
|η(r, y(r))|dr

t

0
. 
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+
tm−1

|1−αλm−1|
[∫

(1−r)q−1

Γ(q)
|η(r, y(r))|dr

1

0
.+ |α| ∫

(λ−r)q−1

Γ(q)
|η(r, y(r))|dr

λ

0
]. 

≤ ∫
(1−r)q−1

Γ(q)
(|η(r, y(r)) − η(r, 0)| + |η(r, 0)|)dr

t

0
. 

+
tm−1

|1−αλm−1|
[∫

(1−r)q−1

Γ(q)
(|η(r, y(r)) − η(s, 0)| + |η(r, 0)|)dr

1

0
. 

+ |α|∫
(λ−r)q−1

Γ(q)
(|η(r, y(r)) − η(r, 0)| + |η(r, 0)|)dr

λ

0
]. 

≤ (Lβ +M) (∫
(1−r)q−1

Γ(q)
dr

t

0
.+

tm−1

|1−αλm−1|
[∫

(1−r)q−1

Γ(q)
dr

1

0
+ |α| ∫

(λ−r)q−1

Γ(q)
dr

λ

0
]). 

=
Lβ+M

Γ(q+1)
(tq +

tm−1

|1−αλm−1|
[1 + |α|λq]). 

Take maximum on both sides where 0 ≤ t ≤ 1.  

‖K(y)‖ ≤
Lβ+M

Γ(q+1)
(1 +

1+|α|λq

|1−αλm−1|
). 

             = β(
L

Γ(q+1)
+

L(1+|α|λq)

Γ(q+1)|1−α𝜆m−1|
) +

M

Γ(q+1)
(1 +

1+|α|λq

|1−αλm−1|
). 

             = βϑ +
M

Γ(q+1)
(1 +

1+|α|λq

|1−αλm−1|
), (Using (4.5.5)) 

From (4.5.6), we get 

‖K(y)‖ ≤ βϑ + β(1 − Λ) = β(ϑ + 1 − Λ) = β(ϑ − Λ + 1) ≤ β(Λ − Λ + 1) = β. 

Therefore, K(y) ∈ Uβ , ∀ y ∈ Uβ. Now, for x, y ∈ C and for each t ∈ [0,1], we obtain 

|(Kx)(t) − (Ky)(t)| ≤ ∫
(1−r)q−1

Γ(q)
|η(r, x(r)) − η(r, y(r))|dr

t

0
. 

+
tm−1

|1−αλm−1|
[∫

(1−r)q−1

Γ(q)
|η(r, x(r)) − η(r, y(r))|dr

1

0
. 

+ |α|∫
(λ−r)q−1

Γ(q)
|η(r, x(r)) − η(r, y(r))|dr

λ

0
]. 

≤ L (∫
(1−r)q−1

Γ(q)
dr

t

0
+

tm−1

|1−αλm−1|
[∫

(1−r)q−1

Γ(q)
dr

1

0
+ |α| ∫

(λ−r)q−1

Γ(q)
dr

λ

0
]) ‖x − y‖. 

=
L

Γ(q+1)
(tq +

tm−1

|1−αλm−1|
[1 + |α|λq]) ‖x − y‖. 

Take maximum on both sides where 0 ≤ t ≤ 1, 

‖K(x) − K(y)‖ ≤
L

Γ(q+1)
(1 +

1+|α|λq

|1−αλm−1|
)‖x − y‖. 
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                          = (
L

Γ(q+1)
+

L(1+|α|βq)

Γ(q+1)|1−αβm−1|
) ‖x − y‖.= ϑ‖x − y‖. 

Since ϑ < 1⟹ K is a contraction. Thus, the conclusion of the theorem follows by the 

BCP.                                                                                                                                ∎ 

Krasnoselskii’s FPT is used to prove following result. 

Theorem(4.5.2):  η: [0,1] × X ⟶ X be a CM maps bounded subsets of [0,1] × X into 

RC subsets of  X. If 

(A1) |η(t, x) − η(t, y)| ≤ L|x − y| ∀t ∈ [0,1], x, y ∈ X, 

(A2) |η(t, y)| ≤ μ(t), ∀(t, y) ∈ [0,1] × X, μ ∈ L1([0,1],R+), 

are acceptable with  γ < 1( γ is given by (4.5.5)). Then the BVP (4.5.1) has at least 

one solution on [0,1]. 

Proof 

Consider β ≥
‖μ‖

L1

Γ(q)
(1 +

1+|α|λq−1

|1−αλm−1|
)  and Uβ = {y ∈ C: ‖y‖ ≤ β} . Also define two 

operators Φ and Ψ on Uβ as (Φy)(t) = ∫
(t−r)q−1

Γ(q)

t

0
η(r, y(r))dr  and 

(Ψy)(t) = −
tm−1

1−αλm−1
[∫

(1−r)q−1

Γ(q)
η(r, y(r))dr

1

0
. −α∫

(λ−r)q−1

Γ(q)
η(r, y(r))dr

λ

0
]. 

For x, y ∈ Uβ, 

‖Φ(x) + Ψ(y)‖ ≤ ‖Φ(x)‖ + ‖Ψ(y)‖                                                                   (4.5.7) 

|(Φx)(t)| ≤ ∫
(t−r)q−1

Γ(q)

t

0
|η(r, x(r))|dr.≤ ∫

(t−r)q−1

Γ(q)
μ(r)dr

t

0
≤
tq−1

Γ(q)
∫ μ(r)dr
t

0
. 

Since 0 ≤ β ≤ t ⟹ 0 ≤ t − β ≤ t ⟹ (t − β)q−1 ≤ tq−1, 

|(Φx)(t)| ≤
1

Γ(q)
∫ μ(r)dr
1

0
 =

‖μ‖
L1

Γ(q)
. 

Take maximum on both sides where 0 ≤ t ≤ 1, 

                                                  ‖Φ(x)‖ ≤
‖μ‖

L1

Γ(q)
.                                                  (4.5.8) 
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|(Ψy)(t)| ≤
tm−1

|1−αλm−1|
[∫

(1−r)q−1

Γ(q)
|η(r, y(r))|ds

1

0
.+|α| ∫

(λ−r)q−1

Γ(q)
|η(r, y(r))|dr

λ

0
]. 

≤p
tm−1

|1−αλm−1|
[∫

(1−r)q−1

Γ(q)
μ(r)dr

1

0
+ |α| ∫

(λ−r)q−1

Γ(q)
μ(r)dr

λ

0
]. 

≤p
tm−1

|1−αλm−1|
[
1

Γ(q)
∫ μ(r)dr
1

0
+
|α|λq−1

Γ(q)
∫ μ(r)dr
λ

0
]. 

≤p
tm−1

|1−αλm−1|
[
1

Γ(q)
∫ μ(r)dr
1

0
+
|α|λq−1

Γ(q)
∫ μ(r)dr
1

0
].=

tm−1

|1−αλm−1|
[
‖μ‖

L1

Γ(q)
+
|α|λq−1‖μ‖

L1

Γ(q)
].                            

Take maximum on both sides where 0 ≤ t ≤ 1, 

                                ‖Ψ(y)‖ ≤
1

|1−αλm−1|
[
‖μ‖

L1

Γ(q)
+
|α|λq−1‖μ‖

L1

Γ(q)
].                 (4.5.9) 

It follows from (4.5.7), (4.5.8) and (4.5.9), 

‖Φ(x) + Ψ(y)‖ ≤
‖μ‖

L1

Γ(q)
+

1

|1−αλm−1|
[
‖μ‖

L1

Γ(q)
+
|α|λq−1‖μ‖

L1

Γ(q)
]. 

                               =
‖μ‖

L1

Γ(q)
(1 +

1+|α|λq−1

|1−αλm−1|
) ≤ β. 

Therefore, Φ(x) + Ψ(y) ∈ Uβ.  

It follows from the assumption (A1) that Ψ is a contraction mapping for γ < 1. To see 

that let’s assume x, y ∈ C([0,1], X), 

|(Ψx)(t) − (Ψy)(t)| ≤
tm−1

|1−αλm−1|
[∫

(1−r)q−1

Γ(q)
|η(r, x(r)) − η(s, y(s))|ds

1

0
. 

+ |α|∫
(λ−r)q−1

Γ(q)
|η(r, x(r)) − η(r, y(r))|dr

λ

0
]. 

≤
Ltm−1

|1−αλm−1|
[∫

(1−r)q−1

Γ(q)
|x(r) − y(r)|dr

1

0
.−L |α| ∫

(λ−r)q−1

Γ(q)
|x(r) − y(r)|dr

λ

0
]. 

≤
Ltm−1

|1−αλm−1|
[∫

(1−r)q−1

Γ(q)
dr

1

0
− |α|∫

(λ−r)q−1

Γ(q)
dr

λ

0
] ‖x − y‖. 

≤
Ltm−1

|1−αλm−1|
(
1−|α|λq

Γ(q+1)
) ‖x − y‖. 

Take maximum on both sides where 0 ≤ t ≤ 1, 

‖Ψ(x) − Ψ(y)‖ ≤
L(1−|α|λq)

Γ(q+1)|1−αλm−1|
‖x − y‖ = γ‖x − y‖. 
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The continuity of η  implies that the operator Φ  is a CM. Also, Φ  is a uniformly 

bounded on Uβ as   

                                                  ‖Φ(x)‖ ≤
‖μ‖

L1

Γ(q)
 , ∀x ∈ Uβ .                                          (4.5.10) 

To show that the operator Φ is compact, we use AAT. In view of (A1) and (A2), we 

define 

sup
(t,x)∈[0,1]×Uβ

|η(t, x)| = fmax, 

Consequently, since t2 > t1, we have 

|( Φx)(t1) − ( Φx)(t2)| 

≤ ∫
((t2−r)

q−1−(t1−r)
q−1)

Γ(q)

t1

0
|η(r, x(r))|dr.+∫

(t2−r)
q−1

Γ(q)

t2

t1
|η(r, x(r))|dr. 

≤ fmax (∫
((t2−r)

q−1−(t1−r)
q−1)

Γ(q)

t1

0
dr + ∫

(t2−r)
q−1

Γ(q)

t2

t1
dr). 

= fmax (
t2
q
−(t2−t1)

q−t1
q
+(t2−t1)

q

Γ(q+1)
) =

fmax

Γ(q+1)
(t2
q
− t1

q)
t1⟶t2
→    0, 

Thus, Φ is equi-continuous.                                                                                   (4.5.11) 

It is following from (4.5.10) ,(4.5.12)  and A-AT (2.1.1) that Φ  is RC on Uβ . This 

means that Φ maps BS Uβ of  X into a RC subset Φ(Uβ). By definition (2.1.7), Φ is a 

compact on Uβ . Theorem [Krasnoselskii] is satisfied and the conclusion of 

Theorem(3.4.6)[Krasnoselskii] implies that the BVP (4.5.1) has at least one solution 

on [0,1].                                                                                                                         ∎ 

Example(4.5.1): Consider the following BVP 

                   {
D.
q

.
C y(t) =

1

(t+7)2
(
|y(t)|

1+|y(t)|
) , q ∈ (2, 3], t ∈ [0,1]

y(0) = y′(0) = 0, y(1) = y(
1

2
)

                         (4.5.12) 

Here, η(t, y(𝑡)) =
1

(t+7)2
(
|y(t)|

1+|y(t)|
) , m = 3, α = 1 and λ =

1

2
 . Since 
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|η(t, x(t)) − η(t, y(t))| ≤
1

(t+7)2
|
|x(t)|

1+|x(t)|
−

|y(t)|

1+|y(t)|
|.=

1

(t+7)2

||x(t)|−|y(t)||

(1+|x(t)|)(1+|y(t)|)
 

                                        ≤
1

(t+7)2

|x(t)−y(t)|

(1+|x(t)|)(1+|y(t)|)
.≤

1

(t+7)2
|x(t) − y(t)|. 

                                        ≤
1

(0+7)2
|x(t) − y(t)| =

1

49
|x(t) − y(t)|... 

Therefore, (A1) is satisfied with  L =
1

49
. Further, 

ϑ =
L

Γ(q+1)
(1 +

1+|α|λq

|1−αλm−1|
) =

1

49Γ(q+1)
(1 +

4

3
(1 + (

1

2
)
q

)). 

    <
1

49Γ(3)
(1 +

4

3
(1 + (

1

2
)
2

)), since  2 < q ≤ 3. 

   ≤ 1

49(2!)
(
8

3
) =

4

147
< 1. 

Thus, by Theorem(4.5.1), the BVP (4.5.12) has just one solution on [0,1]. 
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Chapter 5 

CONCLUSION 

In this thesis, we presented some basic techniques and results of FPT with some 

applications.  

Namely, we studied the existence and uniqueness of some ordinary and fractional 

differential equations by using Banach, Brouwer’s and Schauder’s fixed point 

theorems under certain conditions.  
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