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ABSTRACT 

Speaker Verification (SV) is a type of speaker recognition that validates the identity of a 

claimed person by his/her voice. Training the models from large speech data requires a 

significant amount of memory and computational load. In this thesis we present a 

parallel implementation of speaker verification system based on Gaussian Mixture 

Modeling – Universal Background Modeling (GMM – UBM) designed for many-core 

architecture of NVIDIA’s Graphics Processing Units (GPU) using CUDA single 

instruction multiple threads (SIMT) model. CUDA implementation of these algorithms 

is designed in such a way that the speed of computation of the algorithm increases with 

number of GPU cores. In our experiments we have achieved 30 times speedup for k-

means clustering and 65 times speedup for Expectation Maximization (EM) for an input 

of about 350K frames of 16 dimensions and 1024-2048 mixtures on GeForce GTX 570 

(NVIDIA Fermi Series) with 480 cores when compared to a single threaded 

implementation on the traditional CPU. 

Keywords: Speaker Verification, Gaussian Mixture Models, Parallel Computing, 

Compute Unified Device Architecture, General-purpose computing on graphics 

processing units 
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ÖZ 

Konuşmacı tanıma işlemlerinden olan konuşmacı doğrulama sisteminde iddia edilen 

konuşmacının sesinin doğruluğu onaylanır. Konuşmacıların modelleri eğitilirken önemli 

miktarda bellek ve işlem yükü gerektirir. Bu tezde biz konuşmacı dogrulama sistemini 

Gauss Karışım Modeli- Evrensel Arkaplan Modelleme tekniği (UBM-GMM)  

kullanılarak eğittik. Eğitim aşmasını hızlandırmak için seçilen paralel uygulama modeli 

CUDA teknolojili, tek komutlu çok izgeli (SIMT) işlemci sistemini destekleyen ve çoklu 

çekirdek desteği olan NVIDIA Grafik İşleme Üniteleri (GPU) kullanılarak 

gerçekleştirilmiştir.  CUDA kullanılarak tasarlanan uygulamarın hesaplama hızı, GPU 

daki çekirdek sayısına bağlı olarak artmaktadır. Deneysel sonuçlara göre, 350K 

penceresi ve 16 boyutu olan öznitelik vektörleri  k-ortalamala kümeleme algoritmasının 

paralelleştirilmesi ile elde edilen hızlanma faktörü 65 kat, aynı sayıda öznitelik 

vektörlerinin 2048 karışımlı GMM datasının Enbüyütme Beklentisi Algoritmasına 

sokulmasıyla elde edilen hızlanma faktörü 65 kat olarak gerçekleşmiştir. 

Anahtar Kelimeler: Konuşmacı Doğrulama, Gauss Karışım Modelleri, Paralel 

Hesaplama, Hesap Birleşik Aygıt Mimarisi, Grafik İşleme Ünitelerinde Genel-Amaçlı 

Hesapla  
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Chapter 1 

1 INTRODUCTION  

Speaker Verification (SV) is a type of speaker recognition that validates the identity of a 

claimed person by his/her voice. The main aim is not to validate the sentence spoken 

itself but to validate the speaker voice characteristic. There are various methods used to 

identify a person using SV. These methods involve techniques such as frequency 

estimation, hidden Markov models, Gaussian mixture models, pattern matching 

algorithms and more [1]. In this thesis, our research is narrowed down to Gaussian 

Mixture Modeling (GMM). 

Optimization of the SV systems can help to decrease development time. It should be 

kept in mind that the mixture based modeling techniques can be easily optimized using 

parallel implementation. The existence of a massively parallel computing technology 

such as Compute Unified Device Architecture (CUDA) has changed the face of 

computing in the past years. Currently having some of the most efficient ratings on 

Green500 list [2] indicates that today’s GPUs are more suited for scientific computing 

with less power consumption. 

In this thesis we perform a research on parallelizing SV using CUDA technology and we 

measure its benefits compared to the traditional single-thread or parallel CPU 

implementations. 
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The rest of the thesis is organized in the following way. In chapter 2 we will explain the 

speaker verification system that was chosen as our target problem. In chapter 3 we will 

describe the CUDA technology. In chapter 4 we review some of the related works. 

Following that, we will continue with the actual implementation of the system in chapter 

5. In chapter 6 the results of the experimentations will be presented with analysis. 

Finally in chapter 7 we will conclude the thesis.  
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Chapter 2 

2 SPEAKER VERIFICATION 

2 Gaussian Mixture Model 

GMM is a parametric probability density modeling system typically used to make 

decision with respect to mixture models. This method is usually used as a model for 

probability distribution of feature of speaker verification system. The parameters of 

GMM are trained and refined usually using Maximum Likelihood (ML). In this thesis 

Expectation Maximization (EM) is used to estimate the parameters [3]. 

2.1 Universal Background Modeling 

Universal Background Modeling (UBM) is a method used to represent speaker-

independent feature characteristics of all of our speakers. In order to reflect the correct 

type and composition of our speech we train the system for male and female speakers 

separately. For example for verification of telephone speech of male speakers, we train 

our system using the pool of male speakers. UBM is trained for likelihood ratio test. 

Given an observation, O, and a hypothesized person, P, the task of verification is to 

determine if O was from P. This verification task can be restated as a basic hypothesis 

test between [4]:  

H0 : O is from person P 

H1 : O is not from person P 

The optimum test to the ratio can be written as: 
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 ( |  )

 ( |  )
        {

              
              

 
( 2-1) 

 

Where  ( |  )      is the probability density function or also called “likelihood” of 

the hypothesis    and   is the decision threshold. However the optimality is a rare case 

since the maximum likelihood functions are not usually known [4]. The first step of SV 

is to extract parameters of speakers in form of vector of features. In our case Mel-

Frequency Cepstrum Coefficients Filter (MFCC) is used to extract the features. The 

result of this step is then used to calculate H0 and H1. Given a set of N background 

speaker models *       + the alternative hypothesis model is represented by: 

 

 ( |  ̅)   ( ( |  )    ( |  )) ( 2-2) 

 

Where  () is some average or maximum function of likelihood values.  Another method 

to approximate the imposter model is the use of UBM. From a large number of speakers 

a pooled training is used to generate a single large mixture (2048) model. The likelihood 

of background speakers used as a reference set is as follows: 

 

 ( |  ̅)    ( |    ) ( 2-3) 

 

Where  ( |  ̅) is the claimant speaker GMM likelihood for a sequence of the feature 

vectors, X and the UBM model parameters are      *        +   
 . The UBM model 

parameters are trained using EM algorithm. As a benefit, for use in a task for all 

hypothesized speakers, a single speaker-independent model can be trained only once. In 

this thesis UBM is always used as the reference likelihood.  
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2.2 Mel-Frequency Cepstrum Coefficients 

MFCC are a collection of coefficients that represent the audio on a non-linear mel-scale 

of frequencies. MFCC are commonly used as reduced-dimensional features of an audio 

which represents the human vocal characteristics. MFCC are also used in music 

information retrieval applications [5]. One thing to point is that MFCCs are not additive-

noise invariant and therefore their values are usually normalized to be less affected by 

low energy components [6]. The block diagram of MFCC procedure can be seen in the 

following figure: 

 
Figure 2-1. Block diagram of the MFCC processor [7] 

 

K-means Clustering 

K-means Clustering is a method that helps to accelerate convergence [8]. We have 

implemented this algorithm solely for MFCC in UBM step. In this method with a set of 

observations (x1, x2, …, xn), each of which a vector of d dimensions are clustered into k 

sets (k ≤ n) S = {S1, S2, …, Sk} such that the sum of square in each cluster is minimized: 

Continuous 
Speech 

Frame Blocking Windowing FFT or DFT 
Mel-frequency 

Wrapping 
Cepstrum 

mel cepstrum 
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where    is the mean of point in   . 

2.3 Parameter Estimation: Expectation Maximization Algorithm 

Expectation-maximization (EM) algorithm is a method that iteratively estimates the 

likelihood [9]. It is similar to the k-means clustering algorithm for Gaussian mixtures 

since they both look for the center of clusters and refinement is done iteratively.  

For a given set of T observation vectors   *          + and assuming    vectors are 

independent and identically distributed (iid), the best fitting model   is the one that 

maximizes, 

 

 ( | )  ∏ (  ⃗⃗  ⃗| ) 

 

   

 ( 2-5) 

 

This is a non-linear problem; therefore   cannot be directly calculated. The EM 

algorithm consists of the following steps: 

Algorithm 2-1. Expectation Maximization Procedure [10] 

 

In each EM iteration, the ML estimates for the means, variances and weights (a priori 

mixture probability) for a particular speaker model are computed as follows [10]: 

1. Choose an initial model . 

2. Find a new model  so that p(X | ) > p(X | ). 

3. Repeat step 2 until the difference  

4. p(X | ) - p(X | ) has reached a convergence threshold or you have reached the 

maximum number of iterations. 
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Mixture Weight: 
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Means: 
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Variances: 
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where   ̅̅ ̅̅ ,   ̅⃗⃗  ⃗ and    ̅̅ ̅ are updated values of   ,   ⃗⃗  ⃗ and   
  respectively, and   

 ,    and    

refer to arbitrary elements of the vectors in    ̅̅ ̅,   ⃗⃗  ⃗ and  ⃗⃗  ⃗  respectively and,   
 ⃗⃗⃗⃗  is the 

shorthand for dialog (  ⃗⃗  ⃗  ́ ⃗⃗  ⃗). The posterior probability for the ith acoustic class is given 

by, 

 

 ( |  ̅   )  
    (  ⃗⃗  ⃗)

∑     (  ⃗⃗  ⃗)
 
   

 ( 2-9) 

 

Where    and    are the mixture weight of the ith and the kth mixture component and 

  (  ⃗⃗  ⃗) and   (  ⃗⃗  ⃗) are the component densities of ith and kth mixture component. 
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2.4 Speaker Model Adaptation 

In adaptation stage, instead of constructing the model from the training data, we adapt 

the trained UBM parameters using Bayesian adaptation to claimant speaker and the 

Maximum A Posteriori (MAP) estimation (see Figure  2-2). The MAP is done in two 

steps. The first step is to calculate the estimates of the statistics of training data for every 

mixture in the prior model. In the second step these estimates are combined with UBM 

mixture parameters to create adapted claimant models [3]. 

 
Figure 2-2. GMM-UBM likelihood ratio detector. [10] 

 

In adaptation process, at first basic statistics are estimated to compute the desired 

parameters for the next part of adaptation. The training feature from a client is used to 

perform this process. The probability of the mixture component i in the UBM is defined 

as, 

 

  ( |  ⃗⃗  ⃗)   
    (  ⃗⃗  ⃗)

∑     (  ⃗⃗  ⃗)
 
   

 ( 2-10) 
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Where    and    are the mixture weight of the ith and the kth mixture component and 

  (  ⃗⃗  ⃗) and   (  ⃗⃗  ⃗) are the component densities of ith and kth mixture component. 

 

Using   ( |  ⃗⃗  ⃗) and   ⃗⃗  ⃗, the statistics for weight, mean and variance can be found follows: 

 

   ∑  ( |  ⃗⃗  ⃗)
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Then, the adapted speaker model parameters  

   * ̂    ̂   ̂ +   
  are computed as, 

 ̂  ,
    
 
 (    )  -  ( 2-14) 

 ̂      ( )  (    )   ( 2-15) 

 ̂ 
      ( 

 )  (    )(  
    

 )   ̂ 
  ( 2-16) 

 

Where   is a scale factor to make sure that the mixture weights sum to unity.    
  

    
 

is a data dependent adaptation coefficient which controls the balance between the old 

and new estimates where r is the fixed relevance factor (as suggested by [11] r is 
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typically between 8 and 20). An important factor is that the adaptation of the UBM 

mixture components is highly dependent on the fact that there is sufficient 

correspondence with the client training data. 
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Chapter 3 

3 COMPUTE UNIFIED DEVICE ARCHITECTURE 

3  A short introduction to GPU Computing and CUDA 

Since the first time Graphics Processing Units (GPU) was invented back in 1999 by 

NVIDIA [12], the GPU technology has evolved and has been through major changes. 

Currently, GPUs are available with a much higher arithmetic power and greatly higher 

memory bandwidth than CPUs. Since 2003, GPUs were available for non-graphics 

applications in the form of high level shading languages in DirectX, OpenGL and others. 

Because of that, several algorithms were ported to GPU and problems such as protein 

folding, stock options pricing, SQL queries, and MRI reconstruction gained considerable 

speedups [13]. These efforts were called GPGPU (General-purpose computing on 

graphics processing units). 

There were limitations with those architectures. First of all, it was very difficult for 

general programmers to adopt their programs into these graphics APIs. Also the 

complexity of expressing those problems in form of vertices and textures were hard to 

manage. Additionally, random reads and writes on the memory were not possible 

because of architectural limitations. The other limitation was that double precision 

floating points were not supported, which concluded to no use for some scientific 

computations until recently. Both ATI and NVIDIA companies have introduced GPU 

architectures that can be benefited by programmers.  
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3.1 G80 and GT200 Architectures 

NVIDIA having a head-start on the new GPU technology introduced a pair of G80 

unified graphics and compute architecture and CUDA software/hardware architecture 

that allows development on different high level languages.  

G80 was the first architecture to support C language and also the first to introduce Single 

Instruction Multiple Threads (SIMT) execution model. In SIMT multiple independent 

threads execute concurrently using a single instruction. Shared memory and barrier 

synchronization were also features of G80. 

On 2008, NVIDIA introduced GT200 architecture which increased the number of stream 

processor from 128 to 240 and the size of register file per processor were also doubled 

as well as adding double precision support. The GT200 supports up to 512 threads per 

execution block. 

3.2 The Fermi Architecture 

Fermi is the world’s first computational GPU. This is the main target architecture in this 

thesis. The advantages of Fermi over previous architectures are as follows: 

 Improved double precision performance 

 World’s firstGPUECCmemory: Error Correction Codes (ECC) insures 

that important applications like finance and medical imaging are performing 

their calculations without any errors. 

 Increased shared memory: The Fermi supports up to 48Kbytes of shared 

memory per block. 
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 Faster context switching and atomic operations 

 A true cache architecture: Due to the request of users a true cache hierarchy 

was implemented as an alternative to shared memory when users are not able 

to use shared memory. 

 More threads per block: Fermi supports up to 1024 threads per block. 

3.3 Compute Unified Device Architecture 

CUDA [14] is the parallel computing architecture developed by NVIDIA and is the 

computing engine in NVIDIA graphical processing units (GPUs). This architecture is 

available through different programming languages and supports other application 

programming interfaces, such as CUDA FORTRAN, OpenCL, and DirectCompute. 

CUDA helps to solve many complex computational problems in a more efficient way 

than on a CPU. The CUDA parallel programming model is designed to overcome the 

challenge of developing application software that transparently scales its parallelism 

while maintaining a low learning curve for programmers familiar with standard 

programming languages such as C. 

CUDA has several advantages [15] over traditional general purpose computation on 

GPUs. One of them is that the GPU code can access different addresses in memory. 

Another advantage is availability of shared memory which is a locally accessible 

memory that is shared among a group of threads. This helps to reduce the global 

memory accesses and as a result providing a higher bandwidth. 

However, there are some limitations. One is that the data transfer between the device 

and the host memory is slower that within-device memory transfers. Although [16] 
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discusses that this may not always be the case, including [17] and our implementation. 

We have used a small number of threads per block group to get better results. Threads 

are activated in groups of 32, with thousands of them running in total. Another limitation 

is that CUDA technology is only available for NVIDIA GPUs. It only supports round-

to-nearest mode of IEEE 754 [18] standard for double precision calculations. 

On CUDA architecture, the problems are divided into sub-problems and each sub-

problem into finer pieces that can cooperatively run in parallel by all threads within the 

block. Each block of threads can be scheduled on any of the available processor cores, in 

any order, concurrently or sequentially, so that a compiled CUDA program can execute 

on any number of processor cores as illustrated by Figure  3-1. 

 
Figure 3-1.  Automatic Scalability [14] 
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3.4 CUDA Kernels 

Kernels are C functions that are extended by CUDA programming language. The kernels 

are defined by a declaration identifier “__global__”. The number of threads that will 

execute such kernel function is defined using the new syntax <<< >>> called execution 

configuration. For every thread there is a unique Thread ID that can be accessed from 

within the thread. The threadIdx is a 3-dimensional variable which is accessible locally 

in each thread and it represents a logical location of the thread that runs the kernel. As an 

example, Algorithm  3-1 performs  (  )         and stores the result into a variable 

named result: 

Algorithm 3-1. Kernel FofX is executed on N threads 

 
 

Blocks of threads are organized into a one-dimensional, two-dimensional, or three-

dimensional grid of thread blocks as illustrated by Figure  3-2. The number of thread 

blocks in a grid is usually decided depending on the size of our data being processed or 

the number of processors in the system. 

5. // Kernel definition 

6. __global__ void FofX(float* X, int A, int B,float* result) 

7. { 

8.   int i= threadIdx.x; // The X dimension of Thread index.  

9.   result[i] = A * X[i] + B; 

10. } 

11. // Main function 

12. int main()  

13. {  

14.   ...  

15.   // Kernel invocation with N threads  

16.   FofX<<<1, N>>>(X, A, B, result);  

17. } 
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Figure 3-2. Grid of Thread Blocks [14] 

 

Each running block is divided into Single Instruction Multiple Threads groups called 

warps. The size of these warps are equal. The running warps are scheduled in a timely 

manner (time-sliced). The thread scheduler switches between warps to maximize the use 

of the multiprocessors computational resources. 

3.5 Memory Hierarchy 

The threads in the CUDA environment can benefit from different types of memory. 

Each thread has local memory, a shared memory within the block and global memory 

which is available to all threads in all blocks. Additionally, threads can access two read-

only memory types called constant memory and texture memory. The global, constant 

and texture memories are suited for different memory usages. The general memory 

hierarchy of CUDA GPUs is illustrated in Figure  3-3. 
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Figure 3-3.  Memory Hierarchy [14] 
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Chapter 4 

4 RELATED WORKS 

To the best of our knowledge, there are no full implementations of Speaker Verification 

systems on CUDA technology. The focus is usually on a particular module of the system 

rather than targeting the whole process. Therefore direct comparison to this thesis is not 

possible. However, in this chapter we will introduce the related works in a modular 

form. Note that: 

 Most of the publications do not mention the exact conditions the 

experimentations were performed. 

 In most cases the performance of CUDA increases with the increase in the 

data size or number of processing cores. 

 The architectures targeted by those publications mostly belong to G80 and 

GT200 architectures while we target GT200 and Fermi. 

 Most experiments were performed on data with the type of single-precision 

floating points due to architecture limitation. 

4 Related modules 

4.1 MFCC Feature Extraction 

In [19] a GPU based implementation of different feature extraction methods were 

introduced. In their implementation for MFCC, the kernel function executes a single 



19 

transformation. Each thread block consists of a window of 512 samples and since there 

is no data dependency, the window samples can run simultaneously on GPU. This is not 

easily achievable for our thesis since we consider a method of discarding silence periods 

while in [19] there is no mention of Voice Activation Data (VAD). In their experiment 

they have used FFT algorithm that is provided by NVIDIA CUFFT Library [20] to 

maximize the performance of FFT. In this thesis the problem is implemented using DFT. 

The other optimization technique they have applied is the use of parallel reduction where 

summation of a variable was needed. There is no mention of what type of data was 

introduced in matters of precision. But since the operations were also performed on G80 

architecture we implicitly assume the data was of type single-precision floating point. In 

most cases their implementation shows better performance when more cores are 

introduced, except for MFCC which GT200 architecture shows better performance than 

G80 and Fermi. 

4.2 K-means Algorithm 

There are several implementations of K-means over CUDA technology. We briefly 

review those publications. 

In BAI Hong-Taoa et al  [21] publication the experimentation were performed on G80 

architecture which lacks the support of double-precision floating points, but the authors 

have produced samples of 32-bit float numbers from 100K to 1M between 0 and 1 which 

in the iteration they have simulated 64-bit floating point manipulations. This is possible 

because CUDA follows the IEEE 754 standard. In their problem they have achieved a 

result of 40 times faster than CPU k-means. However the increase in the size of data 



20 

increased their execution time on GPU. Their GPU based K-means is illustrated in 

Figure  4-1: 

 
Figure 4-1. BAI Hong-tao el al, K-Means on commodity GPUs with CUDA Diagram 

[21] 

In Mario Zechner el ta [22] experimentation is performed on G80 architecture which 

again implies single-precision float data manipulation. Their strategy involves 

cooperation of CPU and GPU similar to [21] except after rearrangement of the labels the 

centroid reallocation is done on CPU rather than GPU. They did not benefit from shared 

memory since their data size of 4000 dimensions restricts the usage of shared memory 

up to 16 Kbytes due to G80 specifications. They performed the process of loading and 

calculating the distance from a data point to a centroid in parts. The achieved a speedup 

of 14x. It is also mentioned for some tests there are variations in the resulting centroids. 
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It is observed that this is because of combined multiplication and addition operations 

(MADD) that results in rounding errors. 

In You Li et al publication [23], the adopted method is divide and conquer. The data is 

first divided into groups and each group is reduced to get temporary centroids. Then 

those centroids are divided and reduced iteratively. This process is repeated until the 

number of groups to be divided is smaller than the multiple of the number of steaming 

multiprocessors (SM). In other words the process is continued until GPU has no 

advantage over computing the rest of calculation on CPU. The target architecture of this 

publication is GT200 and they claim to achieve speedup of 3 to 8 times faster than the 

best GPU based k-means implementations. 

4.3 Expectation Maximization Algorithm 

We have observed that currently there is only one publication [24] available for CUDA 

implementation of EM algorithm for SV. This is authored by NVIDIA Corporation [12] 

which is the designer of CUDA technology itself. They have targeted G80 and GT200 

architectures with 128 and 240 cores respectively. The problem in had is input of 230K 

with 32 mixtures of 32 dimensional Gaussian model. The data type accuracy is single-

precision floating points. The location of data loop in each iteration is different from the 

implementation in this thesis. While our outer loop is the mixtures’ loop, their outer loop 

is the data loop. They have utilized the shared memory to maximize the performance. In 

their implementation they have divided the EM algorithm into multiple kernels, a 

method that we have also applied in this thesis. Their results show that performance 

increases with the number of cores and/or the data size. On GT200 architecture they 

achieved the speedup of 164 compared to CPU single-threaded implementation. 
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Chapter 5 

5 IMPLEMENTATION OF ALGORITHMS 

5 Implemented Modules 

In this chapter we discuss the development of SV. In order to have a fair comparison, we 

implemented the most important modules of SV in single-threaded CPU, multi-threaded 

CPU and Parallel GPU modes. In nature, all parts of our original problem from UBM 

parameter maximization to adaptation and testing include common algorithms that are 

slightly different. Therefore, we focus on explaining those common modules and later in 

chapter 6 we will illustrate the results separately for each step of SV. 

5.1 Mel-Frequency Cepstrum Coefficients 

Due to the nature of speech data, it is very normal to have unvoiced sound segments. 

Here, Voice Activation Data is used to discard silence periods [10]. The other front-end 

operations like segmentation and windowing are also applied to each frame in order to 

produce the corresponding feature set. The complexity of MFCC extraction is mainly 

dominated by Discrete Fourier Transform (DFT) of each window segment which is 

 (  
 ) where Ns is the window size. In this thesis we only parallelize the DFT step of 

MFCC as shown in Figure  2-1. The CPU DFT pseudo-code for window size of 240 is as 

illustrated in Algorithm  5-1.  

In order to have load balancing, we have split the execution of the loop at line 5 of 

Algorithm  5-1 into I number of cores. Each core is responsible for executing operations 
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of a range of window-size frames. In our case we have used an Intel® Core™ i7-920 

[25] CPU to perform the parallel tasks on 4 cores. Note that the cosine and sine values 

are pre-computed to decrease the redundancy of the calculations. 

Algorithm 5-1. CPU DFT Parallel 

 
 

In this algorithm, the time complexity is  (  ). On CPU Parallelism, the complexity is 

only divided by a number much smaller than N. Therefore the complexity remains the 

same. The CUDA DFT implementation in nature also follows the CPU model with the 

exception that all iterations of loop k are run on separate threads. In this case the 

complexity is reduced to  ( ). There are also memory transfers between host and 

CUDA device as shown in Algorithm  5-2. 

Algorithm 5-2. CUDA DFT Parallel 

 

The MFCC module is used in all steps of SV. In UBM feature extraction, MFCC is 

applied to the pool of frames from all speakers of each gender separately while in 

adaptation and testing steps, MFCC features are extracted for every speaker separately. 

1. Cores = 4; 

2. N = 240; // Winowsize 

3. RangeSize = N / Cores;  

4. For core I (concurrently) 

5.  For k  from [RangeSize * I] to [RangeSize * ( I + 1 ) ] 

6.   Initialize Real and Imaginary variables 

7.   For n from 0 to 2 * N 

8.    Calculate Real & Imaginary 

10.  Calculate DFT  

1. Allocate & Transfer Sine and Cosine Tables from host to device memory. 

2. Allocate & Transfer Current Window Frames from host to device memory. 

3. Allocate space for DFT output on device memory 

4. Perform DFT on CUDA with grid size of 16 and block size of 16 

5. Copy the output from device to host memory 
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5.2 K-means Clustering 

The k-mean clustering pseudo-code in a nutshell is as shown in Algorithm  5-3. Since 

initial selection of mean is random, we choose mean vectors of size M mixtures by D 

dimensions from the feature vectors. 

Algorithm 5-3. K-mean Pseudo-Code 

 

In parallel implementation it is advised to give more work load to each processor to 

maximize the utilization. In the case of k-means clustering, the major loop that is 

parallelizable is loop T which includes inner loop M and D. The computation complexity 

of K-mean clustering is  (         ). Since k and d are fixed, the problem will come 

down to n number of entities to be clustered [10]. In both CPU and GPU approach we 

have parallelized the most outer loop which in this case is T given the fact that the 

distances can be calculated concurrently. For CUDA device implementation we will 

perform the calculations for each feature vector simultaneously. As a result the 

complexity will be  ( ́        ́) where  ́   . Additionally, there are memory 

transfers from and to device. The order of CUDA actions for k-mean algorithm is shown 

in Algorithm  5-4. 

1. Random initialization of mean vectors. 

2. T= number of frames;  

3. M= order of mixtures 

4. D= number of dimensions; 

5. For each frame T 

6.  For each mixture M 

7.   For each feature D 

8.    Calculate minimum distance 

9. Calculate average of selected feature vectors belonging to the same centroid. 
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Algorithm 5-4. K-means CUDA Implementation 

 

Note that all of our 2-dimensional jagged arrays are first converted into 1-dimensional 

arrays for device memory allocation. Also, the k-means algorithm is only applied to 

refine UBM parameters and is only concern of UBM feature extraction step. The other 

notable point is that in this thesis once we find the centroids, we don’t update them; 

therefore running k-means only for one iteration. 

5.3 Expectation Maximization 

As explained in section 2.3, the first step of expectation maximization is to initialize   

parameters mixture weights (Equation ( 2-6)), means (Equation ( 2-7)) and variances 

(Equation ( 2-8)). The computation complexity for background speaker model is directly 

extracted from Algorithm  5-5 as  (    ) where    is the number of feature vectors 

each having dimension of D and each speaker having M mixtures. In order to prevent 

redundant calculations we first calculate the common part of those parameters which is: 

1. Random initialization of mean vectors. 

2. T= number of frames;  

3. M= order of mixtures 

4. D= number of dimensions; 

5. Transfer initialized random mean vectors to device. 

6. Transfer feature vectors to device. 

7. Allocate label memory on device. 

8. Allocate mean average memory on device. 

9. Allocate distance memory on device. 

10. Perform k-mean on CUDA device with grid size of T/20+1 and block size of 20. 

11. Transfer label memory back to host. 

12. Transfer mean-average memory back to host. 

13. Calculate average of selected feature vectors belonging to the same centroid. 
 



26 

 

∑ ( |  ⃗⃗  ⃗  )

 

   

 ( 5-1) 

 

where i is the number of mixtures. Following the Equation ( 2-9), we calculate the 

denominator of Equation ( 2-9), so later it can be applied for the posterior probability. 

Then we continue with calculating posterior probability, sum of means and sum of 

variances. Then we apply Equations ( 2-6), ( 2-7) and ( 2-8) to calculate the updated 

values    ̅̅ ̅̅ ,    ̅⃗⃗  ⃗ and    ̅̅ ̅. This concludes one iteration of EM Algorithm. In our 

implementation the iterations are repeated 50 times. The pseudo-code for EM algorithm 

is illustrated in Algorithm  5-5. 
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Algorithm 5-5. Expectation Maximization Pseudo-Code for CPU 

 

 

The mentionable points of parallelization in Algorithm  5-5 are where we have loops of 

size T. Since the convergence iterations are dependent and have to be executed 

consecutively, the most dominant parallelizable loop is T. In case of CPU parallelism, 

we apply a similar method as seen in Algorithm  5-1 to distribute the load. In a nutshell 

the following tasks are performed in CPU Parallel mode: 

1. Initialize mean, variance and weight values. 

2. T = Number of feature vectors.  

3. M = Order of mixtures  

4. D = Number of dimensions in a feature vector  

5. For iteration between 0 and 50 { 

6. For k between 0 and M 

7.  Calculate determinant of sigma[k] 

8. For t between 0 and T 

9.  For k between 0 and M 

10.   For l between 0 and D 

11.    prepare sum. 

12.   calculate sum_p_denominator 

13. For k between 0 and M 

14.  For l between 0 and D 

15.   Initialize Sum_mean and Sum_variance 

16.  For t between 0 and T 

17.   Initialize Sum 

18.   For l between 0 and D 

19.    Calculate Sum 

20.   Calculate Sum_p 

21.   For l between 0 and D 

22.    Calculate Sum_mean 

23. Calculate Sum_variance 

24.  For l between 0 and D 

25.   Calculate Mean and Variance 

26.  Calculate k 

27. } 
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Algorithm 5-6. EM Pseudo-Code for Parallel CPU 

 
 

The D loops are left sequential because in the small loops the cost of creating multiple 

threads is more than the calculation cost in a single thread. On the other hand the K loop 

is not parallelized for the fact that the inner loop T is big enough to cover the cost of 

thread activation. 

In CUDA Parallel mode we have sliced the procedures into smaller groups to handle the 

number of threads better. Since the CUDA code is SIMT all threads run identical code 

only on different parts of the memory. For example in the case of initializing sum of 

means and sum of variances we will only need D threads while for updating them we 

need T threads. This calls for task separation. It can be understood from Algorithm  5-6 

that for EM algorithm there are more memory transfers/allocations are involved. It is 

also known that the CUDA code will run on device as kernels. They will be lunched 

1. Initialize mean, variance and weight values. 

2. T = Number of feature vectors. (around 350K) 

3. M = Order of mixtures (1024) 

4. D = Number of dimensions in a feature vector (16) 

5. For iteration between 0 and 50 { 

6. Parallel For k between 0 and M   

7.  Calculate determinant sigma[k]; 

8. Parallel For t between 0 and T 

9.   Calculate sum_p_denominator; 

// Updating mean, weight and variance 

10. For k between 0 and M 

11.  For l between 0 and D 

12.   sum_mean, sum_var initialization 

13.  Parallel For t between 0 and T 

14.   Calculate sum_mean and sum_var 

15.  For l between 0 and D 

16.   Update mean,variance 

17. Update weight 

18. } 
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from the host code to run on many CUDA threads. We will discuss the importance of 

grid size and block size in Chapter 6. The following is the EM algorithm designed to run 

on CUDA device: 

Algorithm 5-7. EM Pseudo-Code for Parallel CUDA 

 

The complexity of our EM algorithm is reduced to  (  ). Note that there are slight 

differences for different steps of SV. In UBM, all speakers are participating into the EM 

together, so the size of T will be almost as large as 350,000 for each gender. While in 

adaptation process speakers are applied to maximization algorithm separately and size of 

T ranges between 4000 and 5000 for each speaker. The testing step is also similar to EM 

in adaptation process except the fact that two likelihoods (UBM Model and Speaker 

Model) are calculated for every speaker. This however, will not change the computation 

complexity of EM algorithm. 

 

 

1. Initialize mean, variance and weight values. 

2. T = Number of feature vectors. // around 350K for each gender 

3. M = Order of mixtures // 1024 for each gender 

4. D = Number of dimensions in a feature vector (16) 

5. Allocate memory on device and transfer the initialized mean, variance and weight. 

6. Transfer feature vectors to device memory. 

7. For iteration between 0 and 50 { 

8.   Lunch Det_Sigma () on 2 blocks of size M/2; 

9.   Lunch Create_Sum_p_denom () on T / 20 + 1 blocks of size 20; 

10.  For k between 0 and M 

11.   Lunch SumMeanVarInit () on 1 block of size D; 

12.   Lunch Calc_Sum_Mean_SumVar () on T / 32 + 1 blocks of size 32; 

13.  Lunch UpdateMeanVar () on 1 block of size D; 

14. Lunch UpdateWeight () on 1 block of size 1;  

15. } 

16. Transfer mean, weight and variance from device to host memory 



30 

Chapter 6 

6 EXPERIMENTATION AND RESULTS ANALYSIS 

6 Experimentation Specifications 

We have implemented our parallel algorithms using CUDA version 3.2. Our 

experiments were performed on a PC with GTX 285 and GTX 570 GPUs and an Intel® 

Core™ i7-920 CPU. The CPU has 4 cores (8 hyper-threads) running at 2.66 GHz. The 

main memory is 3 GB (DDR3-1600) with the peak bandwidth of 12.8 GB/sec. The 

specification of our GPUs can be seen in Table  6-1. 

Table 6-1. Specifications of NVIDIA GPUs. 

GPU Architecture Cores DRAM Processor Clock Memory Bandwidth 

GTX 285 GT200 240 1 GB 1.47 GHz 159 GB/s 

GTX 570 Fermi 480 1.25 GB 1.46 GHz 152 GB/s 

 

The SV problem we have chosen for this thesis is based on a part of [10] which was 

originally implemented on C++ language in Linux platform. We have converted that 

implementation to C# on Windows platform. The database used in this dissertation is 

NIST [ref]TODO. There are three modes of SV available in our application:  

 CPU Single-threaded: This is the traditional CPU implementation which was 

performed solely on .NET Framework without any external libraries. 



31 

 CPU Multi-core: Multi-threaded implementation was programmed using .NET 

4.0 Task Parallel Library which relatively corresponds to the available number of 

cores in the target machine. 

 CUDA: GPU parallel implementation was done using two .NET interfaces for 

the original CUDA SDK called CUDA.NET [26] and CUDAfy [27]. Note that 

the CUDA code runs on GPU and has a separate CUDA C compiler by NVIDIA. 

We will present the results of calculations omitting the file read/writes to concentrate on 

algorithm’s speedup. The UBM experiments were performed on 92 female and 92 male 

speakers. The adaptation process was performed over 396 speakers of both genders. The 

testing step was performed on 100 speakers of both genders.  

6.1 MFCC feature extraction and K-Means Clustering Modules 

The Table  6-2 shows the actual time taken to perform MFCC feature extraction as well 

as refining its parameters using k-means clustering on UBM. 

Table 6-2. Time of MFCC and K-means clustering in seconds. 

Algorithm CPU CPU Parallel CUDA (GTX 285) CUDA (GTX 570) 

MFCC 216.6 111.47 310 254 

K-means 59.36 14.25 2 2 

 

6.1.1 MFCC 

We observe that our MFCC algorithm has poor performance compared to traditional 

CPU algorithm. The reasons for this are the following: 

 The only parallelized function within MFCC was discrete flourier transform 

algorithm. Although we reduced the complexity in theory, given the size of our 

problem for a single DFT run, it is not feasible to distribute the sub-problem into 
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too many threads. For our experiment the size of outer loop was 240 and hence 

240 threads were activated, but because of the low occupancy level the time 

needed to read from/write on device global memory affected the performance. 

 The other reason is low throughput of memory transfer between host and device. 

The DFT algorithm is called almost 4000 times for every speaker and each time 

it copies the window frames from host to device and copies the results of DFT 

back to host memory. 

6.1.2 K-means clustering 

In K-means clustering we see a considerable performance improvement when data-

parallelism is compared to single threaded CPU. However the time taken on both GPU 

architectures is the same. The cause of such performance anomaly can be analyzed in the 

following way: 

 The lack of use of shared memory to benefit from the architecture specific 

advantages. The problem targeted in this thesis requires more shared memory 

than the available amount to perform faster operations. There are two ways to 

resolve this. One is to activate fewer threads per block so the total required 

memory to fit our data will be less than the size of available shared memory. 

The other method is to split the operations inside of each thread into multiple 

rounds, caching each round for the next round. This requires us to create 

several kernel functions that represent the original kernel. The second method 

by itself will cause introducing more memory transfers and it implicitly 

introduces more of shared memory demand. Therefore this is to be evaluated 

on problem-specific basis.  
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 Our algorithm may suffer from memory partition camping [28]. Global 

memory accesses go through partitions. Successive 256-byte regions of 

global memory are assigned to successive partitions. The problem of partition 

camping is when global memory accesses at an instant use a subset of 

partitions. This may hide the true potential of speedup scalability across 

cores. For optimal performance GPU accesses should be distributed evenly 

among partitions.  

6.2 Expectation Maximization Module 

The results of EM algorithm are measured in parts to show the execution times more 

clearly. The logical behavior of this algorithm is similar in all stages of SV. However the 

speedups differ relative to the size of input. The difference between EM in UBM 

modeling and EM in Adaptation or Testing is the size of the problem introduced to each 

stage as well as the number of executions. UBM deals with all speakers of a gender as 

one universal model and iterates through them many times. In this thesis our iteration 

limit was 50 to satisfy the level of convergence (see Algorithm  2-1). In adaptation and 

testing the EM is performed separately for each speaker and it is one iteration per 

speaker.  Table  6-3, Table  6-4 and Table  6-5 illustrate the results of EM in UBM, 

Adaptation and Test respectively. 

 

 

Table 6-3. Expectation Maximization of UBM in seconds. 

EM Step CPU CPU Parallel CUDA GTX 285 CUDA GTX 570 

SUM_P Per EM Iteration 56 17 3 2 

Updating Mean,Var & Weight 

Per EM Iteration 
159 45.27 27 10 

EM Total Per Iteration 215 62.27 30 12 



34 

 

Table 6-4. Average time of EM of Adaptation for every speaker in seconds. 

EM Step CPU CPU Parallel 
CUDA 

GTX285 

CUDA 

GTX570 

SUM_P and P_i 13.311 3.55 0.309 0.121 

Adaptation for mean, weight & variance 24.027 7.45 0.527 0.318 

Adaptation for all mixutres 0.015 0.15 0.048 0.047 

EM Total 24.042 7.6 0.575 0.365 

 

Table 6-5. Average time of EM in Testing stage for every speaker in seconds. 

EM Step CPU CPU Parallel CUDA GTX285 CUDA GTX570 

Likelihood UBM 13.921 4.473 3.165 3.004 

Likelihood Speaker 5.601 0.724 0.032 0.031 

EM Total 19.522 5.197 3.197 3.035 

 

Again we can see the faster calculations on more cores and further on many cores of 

GPU. This proves the scalability of cores.  

6.3 Speedup  

The speedup for each module is calculated using: 

 

   
  
  

 ( 6-1) 

 

where: 

 p is the number of processors 

    is the execution time of the sequential algorithm 

    is the execution time of the parallel algorithm with p processors 
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The speedup of UBM, Adaptation and Test steps are shown in Table  6-6, Table  6-7 and 

Table  6-8 respectively. Figure  6-1, Figure  6-2 and Figure  6-3 are graphs corresponding 

to the latter tables.  

 

 

 

Table 6-6. Speedup of UBM step. 

Step CPU CPU Parallel CUDA GTX 285 CUDA GTX 570 

MFCC 1 1.94 0.69 0.85 

K-Mean 1 4.16 29.68 29.68 

EM 1 3.45 7.16 17.91 

 
Figure 6-1. UBM Speedup 

 

Table 6-7. Speedup of Adaptation Step 

Step CPU CPU Parallel CUDA GTX 285 CUDA GTX 570 

MFCC 1 3.51 0.77 0.84 

EM 1 3.16 41.81 65.86 
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Figure 6-2. Adaptation Speedup 

 

Table 6-8. Speedup of Test step 

Step CPU  CPU Parallel CUDA GTX 285 CUDA GTX 570 

MFCC 1 3.64 0.82 0.93 

EM 1 3.75 6.1 6.43 

 
Figure 6-3. Test speedup 

6.4 Further Result Analysis 

We would like to bring the attention to speed up of K-Means clustering for the case of 

CPU parallelism in Table  6-6. As we have presented the specification of our machine at 
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the start of this chapter, the number of cores available in Core i7 cpu is 4 (p=4). From 

( 6-1), the theoretical maximum speedup should be      in ideal situation [29] while in 

our case it is 4.16 which is greater than 4. In some cases we may get speedup larger than 

p which may be confusing. This is called super speedup and it may happen for various 

reasons. One known cause is caching effect. Modern machines have advanced 

techniques for caching data into different memory hierarchies and therefore preventing 

the redundant calculations. 

As can be seen in latter figures, the increase in the number of processing cores 

considerably increases the speedup of Expectation Maximization algorithm. This shows 

that the nature of EM is suitable for parallelization.  

However, this can be even further optimized by applying advanced GPU techniques that 

are not extensively discussed in this thesis. An example of such techniques are presented 

in [24] which the calculations are improved by utilizing shared memory. The speedup in 

their case is 164 times faster than a single-threaded CPU. However, the problem that 

was introduced in [24] is not directly comparable to this thesis. One is that their target 

architecture is G80 and GT200 while our target is GT200 and Fermi. The other fact is 

that the number of mixtures in their model is only 32 while in this thesis it is discussed 

to be 2048 which concludes in the different problem sizes. 

In CPU architecture most of the execution steps including the context-switching are out 

of control of the users. They are mostly handled by the processor vendors and operating 

systems. When programming over GPU architectures such as CUDA, execution steps 
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can be explicitly manipulated or in some cases they can be modified. Therefore, the 

hardware characteristics should be taken into consideration. In the rest of this chapter, 

we will discuss issues that will directly affect the performance of our system. 

6.4.1 Number of Threads in a Block 

The strategy of choosing the correct grid and block sizes is a vital factor in performance. 

Too little threads in a block may race against the occupancy of the active blocks [14]. 

Too many threads in a block may prevent us to use shared memory since there is a limit 

of 16KB on GTX 285 and 48KB on GTX 570 models per block. In our study, we 

provided a naïve GPU code that uses the global memory. The number of threads we 

have used per CUDA block varies from 1 to 32. That is because our algorithms 

performed better in low block dimension sizes. According to [16] in some cases such as 

[17] a better performance may be achieved in very low block sizes. 

In order to find the optimal number of threads per block we have experimented with 

different block sizes of threads. Note that only the core kernels are shown since the total 

performance of some algorithms like MFCC feature extraction may not fully 

demonstrate the effect of different block sizes. In MFCC we focused on Discrete Fourier 

Transform (DFT). Since the window size is fixed, the DFT performance does not differ 

in different steps of SV. 

The following figures illustrate the achieved results with different block sizes. 
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Figure 6-4. Effect of different block sizes on DFT Algorithm 

 

As you may observe from Figure  6-4 there is no effect on DFT algorithm when changing 

block size. This means that the performance is dominated by some other factors. One 

could be the excessive memory reads during its execution. We have already calculated 

and cached our sine and cosine tables on CPU and transferred the result to GPU memory 

to be accessed by those threads. In detail, we have around 3072 memory read/writes 

from sine-cosine tables and windowed frame on every thread of DFT kernel. 
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Figure 6-5. Effect of different block sizes in K-means clustering algorithm 

 
Figure 6-6. Effect of different block sizes in Expectation Maximization Algorithm 

 

Figure  6-5 and Figure  6-6 show the increase of calculation time when block size exceeds 

32 in all stages of SV. Several reasons for better utilization in lower block sizes are 

discussed in section 6.1.2. There are also other factors for this choice: 

 Register Pressure: Since the number of registers per block is fixed. An ideal 

compiler tries to maximize the number of registers used in all architectures. 
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Register pressure is an issue when the number of available registers is less than 

that of optimal. This forces the compiler to perform register spilling and 

reloading [14]. Register spilling is the task of copying the registers to the local 

memory of the thread so higher priority variables can be loaded to registers for 

that particular moment. In the end the original register values are again reloaded 

from local memory. This drastically increases global memory accesses and 

therefore slowing down the performance of the system. By choosing smaller 

block sizes we reduce the register pressure resulting in higher speeds. 

 Block sizes of smaller than 16 will result in slowdown since the cost of 

activating blocks will exceed the calculation cost per block. This is also referred 

to as occupancy of a block. In almost most cases the performance is memory 

bound. This means threads are usually awaiting data from memory to perform 

operations. 

6.4.2 Shared Memory and Memory coalescing 

In this thesis we did not use shared memory for our calculation due to various reasons 

explained through the thesis. One issue of using shared memory is the read access. The 

memory coalescing is a technique that is used to improve read accesses to global 

memory. Each thread first reads data from global memory into shared memory before 

performing arithmetic on them. When multiple memory reads is requested, the data in 

the global memory is reordered in a way that the words read by consecutive threads fall 

into consecutive address locations. For example if there are 64 threads and if each thread 

requests to read 4-bytes (float type) from global memory and if the addresses are 

sequential then it results in 2 read transactions of 128 bytes chunks, instead of 64 

transactions. This is advantageous if the threads have sequential memory accesses. It 
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even becomes more suitable when the size of the requested data is smaller. For example 

the short data type is only 2 bytes and consecutive reads of 64 short numbers only needs 

a single read transaction of 128 bytes and this greatly improves the performance. 

However, in our thesis most of our data is in double size (8 bytes) which decreases the 

chance of coalescing and it may even become counterproductive since a misaligned 8 

byte word is more difficult to fit than a 4 byte word. 

6.4.3 Accuracy 

Unfortunately the only double-precision floating point arithmetic followed by CUDA 

technology is IEEE 754 [18]. There round-to-nearest-even is the only supported 

rounding mode for reciprocal, division, and square root. In [30] it is shown that the 

difference in accuracy error is small enough to neglect. However, in the case of this 

thesis the results were identical to CPU implementation and did not affect the output of 

speaker verification. 
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Chapter 7 

7 CONCLUSION 

In this thesis, we introduced a CUDA based implementation of a speaker verification 

system. We also presented the CPU parallelism of the mentioned algorithms for better 

comparison. The results demonstrate the advantage of parallelization, specifically using 

GPUs to speed up calculation of k-means algorithm to almost 30 times and EM to 65 

times faster than a single threaded CPU. It is noted that the use of GPU will benefit 

applications with less cost as the amount of DP computational power is to be increased 

on GPUs to 6 gigaflops per watt on 2011 and to 15 gigaflops per watt by the end of 2013 

which is much faster than the increase rate on traditional CPUs [31].  

It should be kept in mind that the GPU implementation of current technologies is very 

architecture specific and a slight modification in the strategy may drastically change the 

performance of the system. Therefore, analysis of the architecture is advised.  

In the future, the effects of using shared memory on the performance of Speaker 

Verification will be studied. Additionally, running the algorithms concurrently on 

multiple GPUs will be presented to show how GPUs can benefit from cross device 

memory access and how the load balancing should be applied for optimal performance 

[14]. Advantage of multi-stream processing on CUDA will also be observed. 

Furthermore, a comparison between the performance hits of single-precision and double-
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precision floating point calculation will be observed and different data sizes will be 

experimented. 
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