
Controllability of Deterministic Systems

Erol Azmidolu

Submitted to the
Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science
in

Mathematics

Eastern Mediterranean University
February 2021
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ABSTRACT

This thesis is focused on the controllability of deterministic systems in Hilbert spaces.

We basically consider linear systems in finite and infinite dimensional spaces and then

mostly, we examine the existing controllability concepts of linear deterministic

systems in both finite and infinite dimensional spaces. In Chapter 2, various concepts

and their properties are given such as Kalman Rank condition with its proof,

definitions of exact and approximate controllability, resolvent conditions, and partial

controllability with its conditions. Moreover, controllability of semilinear systems are

examined by using contraction mapping theorem and its generalization.

Keywords: Exact controllability; Approximate controllability; Partial controllability;

Deterministic systems; Kalman Rank Condition; Resolvent Conditions; Contraction

mapping
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ÖZ

Bu tezin konusu, Hilbert uzaylarında deterministik sistemlerin kontrol edilebilirliğine

odaklanmıştır. Temel olarak doğrusal sistemleri sonlu ve sonsuz boyutlu uzaylarda

ele alıyoruz, daha sonra çoğunlukla, doğrusal deterministik sistemlerin hem sonlu

hem de sonsuz boyutlu uzaylarda mevcut kontrol edilebilirlik kavramlarını

inceliyoruz. Doğrusal deterministik sistemlerin Kontrol Edilebilirliği bölümünde,

ispatıyla birlikte Kalman Sırası koşulu, kesin ve yaklaşık kontrol edilebilirlik

tanımları, çözücü koşulları ve koşullarıyla kısmi kontrol edilebilirlik gibi çeşitli

kavramlar ve özellikleri verilmiştir. Ayrıca, yarı doğrusal sistemlerin kontrol

edilebilirliği, büzülme haritalama teoremi ve genellemesi kullanılarak incelenmiştir.

Anahtar Kelimeler: Tam kontrol edilebilirlik; yaklaşık kontrol edilebilirlik; kısmi

kontrol edilebilirlik; Deterministic sistemler; Kalman sıra koşulu; çözücü koşullar;

büzülme haritası
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Chapter 1

INTRODUCTION

There are large number of processes or systems to be controlled in the field of control

engineering. The control engineers have a duty to build and receive the desired

response from controller so that the constructed controller can have an interactive

communication with such systems. However, it may not be possible to control these

systems easily. Thus, controllability plays a key role in many issues of control

including the reliability of dysfunctional systems through feedback or optimal control

who are essential features of a control system. Rudolf E. Kalman is the first

researcher who has the reputation for publishing a work about deterministic linear

systems for the controllability concept and as a definition, a control system is

controllable if any initial point can be transferred to any final destination point within

a finite duration considering admissible controls.

Before passing through the controllability concepts, derivation of the Variation of

Constant formula is introduced by supplying suitable linear systems in finite

dimensional space that this formula is also a unique solution for a linear system. After

that, the important equations are defined which are heat equation, wave equation and

delay equation for infinite dimensional space. Derivation of heat and wave equation

are described with related examples. Considering the controllability concepts,

Kalman’s rank condition is a significant method to check the controllability of a

control system which is perfectly useful for finite dimensional linear deterministic

control systems, but if we switch the finite dimension to infinite dimension, then this
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method cannot be as beneficial as it is used to be. According to this fact, in order to

have a better control on linear deterministic control systems in infinite dimensions,

researchers have developed the controllability concept into two main parts which are

exact controllability and approximate controllability. The difference between these

two concepts is the concept of exact controllability is similar with the defined

controllability method by Kalman so that it is a stronger version in comparison with

approximate controllability.

The controllability concept have been improved by further studies of Bashirov and

Mahmudov (1999) related with resolvent conditions. Then, the concept of partial

controllability is initiated and by making enlargement onto ordinary controllability

conditions, partial controllability concepts are obtained [2]. Partial controllability

concepts are more helpful for the control systems including wave and delay equations

and higher-order differential equations instead of using the normal controllability

concepts, because basic concepts are too strong for these equations so, by expanding

the state space’s dimension, it will be possible to rewrite and show the related

equations in a more preferred form (first-ordered linear differential equation). The

next and final concept is the controllability of semilinear systems. Description of

these systems are divided into two parts which are exact controllability and

approximate controllability concepts. Here only sufficient conditions are considered

and in general, fixed point theorems and contraction mapping theorem and its

generalization are introduced and used.

This dissertation is organized as follows: In Chapter 2, some general information is

given that is mostly used and needed while considering the theorems and proofs. Then,

a brief review is made for finite dimensional space. Also, for infinite dimensional
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space, three important equations are introduced and related examples are supplied for

them. At the end of Chapter 2, a short introduction is made for semilinear systems.

In Chapter 3, the concept of controllability for linear deterministic control systems are

defined in both finite and infinite dimensions. Partial controllability concept is briefly

introduced as well. Chapter 4 provides information about semilinear controllability

concept.
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Chapter 2

DETERMINISTIC SYSTEMS

In this chapter, our aim is to provide some fundamental information for the following

chapters where the proofs, lemmas, propositions, etc. will be more understandable and

clear. The provided concepts which are definitions, corollaries, propositions in this

section can also be used in the upcoming topics in this research therefore the reader

will have a chance of struggling less to notice where the origin of the definitions or

properties of the theorems came from. These beneficial facts will be expressed without

proofs since there are a lot of books that the facts can be found inside them and simply

give the required clarifications.

2.1 Linear Systems

2.1.1 General Definition

Definition 2.1: A vector space (linear space) V is defined over a field R that has two

binary conditions as addition and scalar multiplication. The following properties must

be hold for all u,v,w ∈V and t,r ∈ R.

i) For every u,v ∈V,u+ v = v+u (Commutativity with addition)

ii) For every u,v,w ∈V,(u+ v)+w = u+(v+w) (Associativity with addition)

iii) ∃0 ∈V such that 0+u = u+0 = u,∀u ∈V (Additive Identity)

iv) For every u ∈V,∃−u ∈V such that u+(−u) = 0 (Additive inverse)

v) For every u ∈V , 1u = u (Identity with multiplication)

vi) For every t,r ∈ R and for every u ∈ V , (tr)u = t(ru) (Associativity with

multiplication)

4



vii) For every t ∈ R and for every u,v ∈V , t(u+ v) = tu+ tv (Left distributivity)

viii) For every t,r ∈ R and for every u ∈V , (t + r)u = tu+ ru (Right distributivity)

Definition 2.2: Let the linear vector space K be a normed space. The expression ‖x‖

(norm of x) satisfies the following three properties;

i) For all x ∈ K, ‖x‖ ≥ 0 and ‖x‖= 0 if and only if x = 0

ii) For all c ∈ R and x ∈ K, ‖cx‖= |c| ‖x‖

iii) For all x,y ∈ K, ‖x+ y‖ ≤ ‖x‖+‖y‖ (Triangle Inequality)

Given x and y be vectors with a norm ‖.‖. An expression can be given for the length

between the vectors x and y as

d(x,y) = ‖x− y‖

and (K,‖.‖) together is called a normed space K.

Definition 2.3: Let K be a normed space. To be able to stress that K is a Banach space,

a condition needs to be hold which is every Cauchy sequence has to be convergent in

K.

Definition 2.4: Let K be a vector space over R. An inner product on K is a function

that assigns to each pair of vectors u,v in K, a scalar in R, denoted by 〈u,v〉 if the

followings hold;

i) ∀u,v,z ∈ K, 〈u+ z,v〉= 〈u,v〉+ 〈z,v〉

ii) ∀u.v ∈ K, 〈u,v〉= 〈v,u〉

iii) ∀u ∈ K, 〈u,u〉 ≥ 0

iv) ∀u ∈ K, 〈u,u〉= 0 ⇐⇒ x = 0

v) ∀u,v ∈ K and ∀c ∈ R, 〈cu,v〉= c〈u,v〉
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Definition 2.5: Let A and B be two vector spaces. The operator N : A→ B is said to

be linear, if

N(ay1 +by2) = aN(y1)+bN(y2)

for every y1,y2 ∈ A and for every a,b ∈ R.

Definition 2.6: Let Y and Z be two normed vector spaces. The linear operator N : Y →

Z is said to be a bounded linear operator, if

‖Ny‖Z ≤ m‖y‖Y

for m > 0 and for all y ∈ Y.

Here, m becomes an operator norm for N when m has the smallest possible number

that holds the condition above and represented by

‖N‖= sup
‖y‖=1

‖Ny‖Z .

Definition 2.7: Assume that collection of all linear operators from Y to Z is denoted

by L. Define Y and Z be two Banach spaces, where N ∈ L(Y,Z). N∗ is the adjoint of

the operator N that N∗ ∈ L(Y ∗,Z∗) therefore ∀y ∈ Y and ∀z∗ ∈ Z∗,

(N∗z∗)y = z∗(Ny).

If the previous definition is considered in Hilbert space, the expression of the adjoint

operator N∗ for N : Y −→ Z is

〈Ny,z〉Z = 〈y,N∗z〉Y ∀y ∈ Y,∀z ∈ Z.

Definition 2.8: Let Y be Hilbert space with N ∈ L(Y,Y ) = L(Y ). If N = N∗, then N is

self-joint such that the following properties hold:
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i) Nonnegative if ∀w ∈ Y, 〈Nw,w〉 ≥ 0.

ii) Positive if ∀w ∈ Y except w = 0, 〈Nw,w〉> 0.

iii) Coercive if there exists a positive c value such that ∀w ∈ Y, 〈Nw,w〉 ≥ c‖w‖2 .

Definition 2.9: Let Y and Z be two Banach spaces. If a sequence {Nn} ∈ L(Y,Z) is

said to converge to the operator N ∈ L(Y,Z), then

i) Nn converges uniformly if ‖Nn−N‖ goes to 0 as n−→ ∞.

ii) Nn converges strongly for all y ∈ Y if ‖Nny−Ny‖ goes to 0 as n−→ ∞.

iii) Nn converges weakly for all y∈Y and z∗ ∈ Z∗ if z∗((Nn−N)y)−→ 0 as n−→∞.

Definition 2.10: Suppose Z is a Banach space and the operator G maps Z into itself.

G is called a contraction mapping if there is 0≤ c < 1 so that ∀x,y ∈ Z,

‖G(x)−G(y)‖ ≤ c‖x− y‖ .

Theorem 2.1: Let the operator G : Z→ Z be a contraction mapping and Z be a Banach

space. Then, there exists only one fixed point z0 ∈ Z so that G(z0) = z0.

Theorem 2.2: Assume Z is a Banach space and the nonlinear operator G maps Z

into itself. Let G1 = G, G2 = G ◦G, · · · ,Gn = Gn−1 ◦G for every n ∈ N. If Gn is a

contraction mapping for some n ∈ N, then G has a unique fixed point in Z.

Theorem 2.3: (Fubini’s Theorem) Let g : K = [x,y]× [m,n] → R is integrable

concerning total variable (a,b) ∈ [x,y]× [m,n]. If ∀b ∈ [m,n], g(a,b) is integrable

concerning a ∈ [x,y] and the integral of function b,
� y

x g(a,b) da is integrable on

[m,n]. Then
�

K
g(a,b)dK =

� n

m

(� y

x
g(a,b)da

)
db =

� y

x

(� n

m
g(a,b)db

)
da.
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In addition, if g(a,b) = f (a)h(b), then
�

K
g(a,b)dK =

(� y

x
f (a)da

)(� n

m
h(b)db

)
.

Theorem 2.4: (Gronwall’s Inequality) Suppose the function h≥ 0 exists on [x,y]∈R

that holds

h(t)≤ d1 +d2

� t

x
h(s) ds, x≤ t ≤ y,

where d1 and d2 are both positive constants. Then

h(t)≤ d1ed2(t−x), x≤ t ≤ y.

Theorem 2.5: (Lebesgue’s dominated convergence theorem) Assume Z is a Hilbert

space and also Λ⊆R. Let {gn} be sequence of Lebesgue integrable functions L1 (Λ;Z)

so that fn (r)→ f (r) for n→ ∞ on Z. Assume there exists an integrable function h ∈

L1 (Λ) so that ∀n ∈ N, | fn(r)| ≤ h(r) on Z. Then, f is Lebesgue integrable on Z and

lim
n→∞

�
Z gn(r) dr =

�
Z g(r) dr.

2.1.2 Finite Dimensional Linear Systems

This section aims to give information about ordinary differential equations by

investigating them with vector space form and also to show the derivation of Variation

of Constants formula. The controllability concepts for finite dimensional systems will

not be included in this section; however, for the upcoming chapters, their properties

and proofs related to controllability will be stressed and explained.

First, we will use the following facts for vector spaces.

i) Recall Definition 2.1 that the axioms are in R.

ii) Let Dn [d0,d1] define n− tuples that are continuous at time t ∈ [d0,d1] . The
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elements can be expressed as vectors:

a =



a1

a2

...

an


and a(t) =



a1(t)

a2(t)

...

an(t)


.

iii) Assume Rn×m define all the set of n by m real numbers as follows:

b11 b12 ... b1m

b21 b22 ... b2m

...
... . . . ...

bn1 bn2 ... bnm


.

Now, let us consider a system with first order equations

z′1(t) = f1 [z1(t), ...,zn(t), t]

z′2(t) = f2 [z1(t), ...,zn(t), t] (2.1)

...

z′n(t) = fn [z1(t), ...,zn(t), t]

It is possible to set the following higher order scalar equations in this form

xn(t) = f
[
x(t),x1(t), ...,x(n−1)(t), t

]
,

by assuming z j = x( j−1) for j = 1, ...,n to obtain

z′1(t) = z2(t)

z′2(t) = z3(t)

...

z′n(t) = f [z1(t), ...,zn(t), t] .
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It is also possible to enlarge this form to simultaneous higher order equations in a form

of a single vector differential equation

z′(t) = f [z(t), t] ,

where z is a column vector.

Borrowing (2.1) and assuming they are homogeneous, we can rewrite (2.1) as follows,

z′1(t) = a11(t)z1(t)+a12(t)z2(t)+ · · ·+a1n(t)zn(t)

z′2(t) = a21(t)z1(t)+a22(t)z2(t)+ · · ·+a2n(t)zn(t)

... (2.2)

z′n(t) = an1(t)z1(t)+an2(t)z2(t)+ · · ·+ann(t)zn(t)

where

z(t) =



z1(t)

z2(t)

...

zn(t)


, A =



a11 a12 · · · a1n

a21 a22 · · · a2n

...
... . . . ...

an1 an2 · · · ann


,

therefore, one can express (2.2) as

z′(t) = A(t)z(t). (2.3)

Now, consider two common initial-valued first order linear differential equation,

z′(t) = A(t)z(t)+ f (t) (2.4)

z′(t) = A(t)z(t), z(t0) = z0. (2.5)

Here the aim is to show derivation of Variation of Constants formula by using (2.4)

and (2.5). The solution of the homogeneous equation (2.5) is known as

z(t) = z(t0)exp
(� t

t0
A(r) dr

)
= z0 exp(A(t− t0)). (2.6)
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Since

z′(t)
z(t)

= A(t) =
d
dt

log |z(t)| ,

then

log |z(t)|= c+
� t

t0
A(r) dr

|z(t)|= exp(c)exp
(� t

t0
A(r) dr

)
z(t) =±exp(c)exp

(� t

t0
A(r) dr

)
.

Now, let us consider the inhomogeneous equation (2.4) by rearranging it as:

z′(t)−A(t)z(t) = f (t). (2.7)

By introducing an integrating factor µ(t) and applying it for the equation (2.7), we

have

µ(t)z′(t)−A(t)µ(t)z(t) = µ(t) f (t). (2.8)

It is assumed that in some sense, the left-hand sides of both (2.7) and (2.8) are formed

as the result of an application of the product rule, so according to that idea, left-hand

side of the equation (2.8) will change as,

µ
′(t)z(t)+µ(t)z′(t) = µ(t) f (t), (2.9)

d
dt

(µ(t)z(t)) = µ(t) f (t). (2.10)

In order to figure out if the previous assumption can be applicable, the integrating

factor µ(t) needs to satisfy (2.6). Therefore, by considering (2.8) and (2.9), we get

µ
′(t) =−A(t)µ(t),

µ(t) = z(t0)exp
(
−
� t

t0
A(r) dr

)
. (2.11)

From (2.11), it is approved that it is possible to understand the left-hand sides as the

result of an application of the product rule if the integrating factor µ(t) is chosen as
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(2.11). Moreover, by applying integration on both sides of (2.10), we obtain

µ(t)z(t) =
� t

t0
µ(r) f (r) dr+ c,

z(t) = µ(t)−1c+µ(t)−1
� t

t0
µ(r) f (r) dr. (2.12)

By substituting (2.12) into (2.6),

z(t) = exp
(� t

t0
A(r) dr

)
c+ exp

(� t

t0
A(r) dr

)� t

t0
exp
(
−
� r

t0
A(s) ds

)
f (r) dr

So,

z(t) = z0 exp
(� t

t0
A(r) dr

)
+

� t

t0
exp
(� t

r
A(s) ds

)
f (r) dr. (2.13)

The equation (2.13) is also known as the Variation of Constants formula that is a unique

solution of (2.4). Its look can vary according to the given initial value so that if the

initial value changes to z(0) = z0, then we get

z(t) = exp(At)z0 +

� t

0
exp(A(t− r)) f (r) dr. (2.14)

which is a well-known general version of the Variation of Constants formula.

2.1.3 Heat Equation

In this section, we will examine infinite dimensional systems that are quite beneficial

when the systems are defined by partial differential equations because finite

dimensional systems are just perfectly suitable for ordinary differential equations, not

for partially. There are 3 important equation concepts that play a vital role for these

systems which are heat, wave and delay equations. Firstly, a brief information will be

given about heat equation and then derivation of heat equation with a

one-dimensional solution concept will be introduced by Fourier method. Heat is a

representative physical energy that can be transferred depending on the variation of

temperature in that body such as moving from a certain area of higher temperature to

a region with lower temperature.
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(Derivation of Heat Equation) Firstly, an equation is defined as G = cmT that shows

heat energy on a homogenous body which is proportional to its temperature T and mass

m. There is also a representation for the heat capacity of the body as a constant c. The

defined equation above will have its general form for any changement for temperature

within time t and space variable y as follows:

G(t) = cp
� � �

A
T (t,y) dy

Here A is the area in three dimensional space used by an object. By considering

constant mass density which is p = µ

γ(A) , we get

G′(t) = cp
� � �

A
T ′(t,y) dy. (2.15)

Let the derivative and triple integral be interchangeable (have the same meaning).

Apart from that, as an assumption, there is no heat flow within the area A, then there

is a connection proportionally between the rate of heat transfer across the partial

derivative of A and the total of outer normal components of ∇T over the partial

derivative of A which implies

G′(t) = φ

� �
∂A

∇T (t,y) ·R(y) ds,

where constant φ refers to heat conductivity. By the derivation of generic conservation

equation, we obtain

G′(t) = φ

� � �
A

∇ ·∇T (t,y) dy. (2.16)

Equating the right sides of (2.15) and (2.16),
� � �

A
(cpT ′(t,y)−φ∇

2T (t,y)) dy = 0.

Choosing A arbitrarily,

T ′(t,y) =
φ

cp
∇

2T ′(t,y).
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Assuming positive constant α2 = φ

cp , we have the heat equation as

T ′(t,y) = α
2
∇

2T (t,y). (2.17)

Solution of Heat Equation by Fourier Method:

Consider one-dimensional heat equation

T ′t (t,y) = T ′′yy(t,y), α = 1 (2.18)

with the boundary condition

T (t,0) = T (t,1) = 0 (2.19)

where t ≥ 0 and y ∈ [0,1].

and initial condition as

T (0,y) = f (y), 0≤ y≤ 1. (2.20)

The assumption of α = 1 represents the heat on a homogenous rod and as it is

insulated, the heat cannot penetrate into the rod so that it only moves along the body.

By separation of variables, we get

T (t,y) = w(t)z(y). (2.21)

When either w or z is 0, T = 0 which is a trivial solution but this contradicts with the

initial condition that is not 0. According to this fact, let w and z be non-zero functions

by considering (2.19),

z(0) = z(1) = 0. (2.22)

Substituting (2.21) into (2.18),

w′(t)z(y) = w(t)z′′(y)

w′(t)
w(t)

=
z′′(y)
z(y)

.

14



In the previous equality, left and right-hand sides are independent on t and y so if we

rewrite by defining them with k, we have

w′(t) = kw(t) and z′′(y) = kz(y).

Let k = 0, then assuming a and b as constants, z(y) = ay+ b. Considering (2.22), a

and b equals to 0, so z = 0. On the other hand, accepting k > 0 will lead to z(y) =

asinh
√

ky+bcosh
√

ky and again z = 0 according to (2.21). Therefore k ≥ 0 causes a

trivial solution meaning T = 0. In addition, when k < 0 with an assumption of k =−µ2

for some µ 6= 0, the previous equations of w and z will be

w′(t) =−µ
2w(t) and z′′(y) =−µ

2z(y)

with a solution

w(t) = Aexp(−µ
2t) and z(y) = Bsin µy+C cos µy

where A,B and C are constants. By (2.22), we have C = 0 and µ = mT that m is the

set of all integers. From the fact that Bsin(−mπy) = −Bsin(mπy), one can accept m

as a set of all positive integers so every one of

Tm(t,y) = Hm exp(−m2
π

2t)sin(mπy) (2.23)

can be a problem solver for obtaining a nontrivial function of two variables that (2.18)–

(2.20) holds. In general, linear combination of two solutions in (2.18) satisfying (2.19)

is acceptable as a solution again. Therefore it is vital to search a possible solution in

(2.18)–(2.20) in the form

T (t,y) =
∞

∑
m=1

Tm(t,y) =
∞

∑
m=1

Hm exp(−m2
π

2t)sin(mπy).

Here Hm can be denoted from (2.20) as:

f (y) =
∞

∑
m=1

Hm sin(mπy)

where Hm = 2
� 1

0 f (r)sinmπr dr and the function f (y) is the half range fourier sine
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expansion. By assuming f (y) converges, one can have a unique solution for (2.18)–

(2.20) as:

T (t,y) = 2
∞

∑
m=1

exp(−m2
π

2t)sin(mπy)
� 1

0
f (r)sin(mπr) dr.

Let T1 and T2 be two solutions then as the function above is zero, D = T1− T2 that

(2.18)–(2.20) holds. To prove D = 0, suppose

S(t) =
� 1

0
D(t,y)2 dy

then,

S′(t) = 2
� 1

0
DD′t dy = 2

� 1

0
DD′′yy dy = 2

� 1

0
((DD′y)

′
y− (D′y)

2) dy

= [2DD′y|10−2
� 1

0
(D′y)

2 dy =−2
� 1

0
(D′y)

2 dy≤ 0

Thus, S is a decreasing function that leads to

0≤ S(t)≤ S(0) = 0 showing that D = 0.

2.1.4 Wave Equation

Another significant partial differential equation (PDE) is the wave equation that

contributes to define the oscillations of a material’s waves. The following

demonstration (Derivation of Wave Equation) has an aim to extract an equation for z

that has the following properties:

i) A homogeneous elastic string is set on a horizontal plane(u-axis).

ii) It is pulled tightly in an interval [0,L] where L refers to length.

iii) Initially when time is zero, it is released to form a vibration.

iv) Vertical displacement of the string is defined by z(t,u) at the point (t,u).

Assume a part of the string is stretched and released between the point [u,u+∆u] on

the horizontal axis then that point after the release changes its position of movement

vertically creating the function’s graph on [u,u+∆u]. Considering the tension that
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occurs in the chosen part of the string with the forces F(t,u) and F(t,u+∆u), if both

F(t,u) and u-axis have an angle β (t,u), then one can notice the absence of horizontal

movement since F(t,u) · expu = F(t,u+∆u) · expu meaning

‖F(t,u)‖cosβ (t,u) = ‖F(t,u+∆u)‖cosβ (u+∆u) = F (2.24)

Besides horizontal movement, vertical movement also exists. By using Newton’s

Second Law,

F(t,u+∆u) · expz−F(t,u) · expz = ma

where acceleration a = z′′tt(t,u) and mass m = p∆u that p is the mass density per unit

length. By considering these in (2.24),

‖F(t,u+∆u)‖sinβ (u+∆u)−‖F(t,u)‖sinβ (t,u) = pz′′tt(t,u)∆u (2.25)

From (2.24) & (2.25),

‖F(t,u+∆u)‖sinβ (t,u+∆u)
‖F(t,u+∆u)‖cosβ (t,u+∆u)

=
‖F(t,u)‖sinβ (t,u)
‖F(t,u)‖cosβ (t,u)

=
p
F

z′′tt(t,u)∆u.

Moreover,

tanβ (t,u+∆u)− tanβ (t,u)
∆u

=
p
F

z′′tt(t,u).

Since tanβ (t,u) = z′u(t,u),

z′u(t,u+∆u)− z′u(t,u)
∆u

=
p
F

z′′tt(t,u).

As ∆u approaches to 0 through the limit, we have

z′′tt(t,u) = c2z′′uu(t,u). (2.26)

Here the constant c = (F
p )

1
2 , c > 0. In order to express (2.26) in a higher order form

when n > 1, z′′uu(t,u) is altered with ∇2z to have the following wave equation

z′′tt(t,u) = c2
∇

2z(t,u).
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Solution of Wave Equation by Fourier Method:

Consider one-dimensional wave equation

z′′tt(t,u) = z′′uu(t,u), c = 1 (2.27)

with the boundary condition as

z(t,0) = z(t,π) = 0 (2.28)

and initial condition

z(0,u) = f (u), z′t(0,u) = g(u), 0≤ u≤ π (2.29)

First, by separation of variables, let z(t,u) = w(t)φ(u). By substituting the equality

into (2.27), we have

w′′(t)φ(u) = w(t)φ ′′(u)

w′′(t)
w(t)

=
φ ′′(u)
φ(u)

.

In the previous equality, left and right-hand sides are independent on t and u, so if we

rewrite by defining them with k, we obtain

w′′(t) = kw(t) and φ
′′(u) = kφ(u),

by using the solution method for the heat equation, one can see that we have a trivial

solution z(t,u) = 0 occured when k ≥ 0 so when k < 0, we get

w′′(t) =−µ
2w(t) and φ

′′(u) =−µ
2
φ(u) where µ 6= 0

with a solution

w(t) = Acos µt +Bsin µt and φ(u) =C sin µu+Dcos µu

where A,B,C and D are constants.

Respectively,

z(t,u) = (Acos µt +Bsin µt)(C sin µu+Dcos µu).
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Verification of (2.28) causes D = 0 and µ becomes the set of all integer numbers but

due to the fact of sin(-µt) =−sin(µt). It is possible to accept just µ = 1,2,3, ... Then

every one of

zm(t,u) = (am cosmt +bm sinmt)sinmu (2.30)

can be a problem solver for obtaining a nontrivial function of two variables that (2.27)–

(2.29) holds. In general, linear combination of two solutions in (2.27) that (2.28) holds

as well is again acceptable as a solution. Therefore, it is vital to search a possible

solution in (2.27)–(2.29) as follows:

z(t,u) =
∞

∑
m=1

zm(t,u) =
∞

∑
m=1

(am cosmt +bm sinmt)sinmu (2.31)

Here both am and bm can be denoted from (2.29) as:

f (u) = z(0,u) =
∞

∑
m=1

am sinmu

g(u) = z′t(0,u) =
∞

∑
m=1

mbm sinmu.

The above equations are the half range fourier sine expansions belonging to the

functions f (u) and g(u). Furthermore,

am =
2
π

�
π

0
f (r)sinmr dr and bm =

2
mπ

�
π

0
g(r)sinmr dr (2.32)

with an assumption of keeping the fourier series convergent that

∞

∑
m=1

a2
m < ∞ and

∞

∑
m=1

m2b2
m < ∞.

Therefore, (2.31) and (2.32) solve the problem for (2.27)–(2.29).

For checking the uniqueness of this solution, assume z1 and z2 are two solutions.

Equations (2.27)–(2.29) are satisfied by S = z1− z2 with f = g = 0. Consider

R(t) =
1
2

�
π

0
(S′t(t,u)

2 +S′u(t,u)
2) du.

Then,
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R′t =
�

π

0
(S′tS

′′
tt +S′uS′′ut) du

=

�
π

0
S′tS
′′
tt du+[S′uS′t |π0 −

�
π

0
S′tS
′′
uu du

=

�
π

0
S′t(S

′′
tt−S′′uu) du = 0.

Thus, R(t) is constant. Since R(0) = 0, it leads to R(t) = 0 meaning S′t = S′u = 0 that

shows S is constant. Moreover S = 0 as it satisfies the condition (2.27)–(2.29), so

z1 = z2.

What’s more, after describing both heat and wave equations, a discussion can be made

between initial and boundary conditions. The initial condition from the heat equation

declares the initial temperature distribution inside the rod so it can be called as initial

state instead, but when boundary condition is the case and gathers with heat equation,

then the formation of them likely shares the initial state to other non-initial states. In

comparison with wave equation of this fact, not only will there be one initial state

z(0,u) but also z′t(0,u) will be included. Therefore, the expression of wave equation

will be

z(t,u) =

 z(t,u)

z′t(t,u)


and as a matrix, (2.27) is stated as: z

z′t


′

t

(t,u) =

 0 1

∂ 2

∂u2 0


 z

z′t

(t,u).
Furthermore, z(t,u) from (2.31) is came together with

z′t(t,u) =
∞

∑
m=1

(−mam sinmt +mbm cosmt)sinmu

concluding,
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 z

z′t

(t,u) = ∞

∑
m=1

sinmu

 cosmt m−1 sinmt

−msinmt cosmt


 fm

gm


where fm = am and gm = mbm are nth coefficients of the Fourier sine expansions of f

and g respectively.

2.1.5 Delay Equations

Delay is a well-known used feature in differential equations especially for the

engineers that has an interest in control systems which likely contributes to the

developing models to act close to a real system and will also make the related

processes more precisely predicted. As a definition, time-delayed systems are also

used for Delay Differential Equations (DDEs) that leads to do actual delays and time

lags because by doing that, solving high order models will have a simplified approach

which are a good contributor for the simplification of higher order models. A typical

form of a delay equation can be represented as

x′(t) = f (t,x(t),x(t− τ)), x(t) ∈ R,

and positive delay τ is constant. The following examples will show the semigroups of

delay equation.

Let X ∈ H, let [x,y] be a finite interval in R and let W 1,ρ (x,y;X) be the class of all

functions f : [x,y]→ X that can be expressed in the form

ft = fx +

� t

x
gr dr = fb−

� y

t
gr dr, x≤ t ≤ y,

for some g ∈ Lρ (x,y;X) , 1 ≤ ρ ≤ ∞. The notation W n,ρ (x,y;X) , where n = 2,3, ...

and 1 ≤ ρ ≤ ∞, will denote the class of functions f : [x,y]→ X which have (n−1)st

derivative in W 1,ρ (x,y;X) . Under the corresponding norm, W n,ρ (x,y;X) is a Banach

space. Particularly, W 1,2 (x,y;X) is a Hilbert space in which a scalar product can be
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defined by

〈 f ,g〉W 1,2 =
〈

fy,gy
〉
+

� y

x

〈
f ′t ,g

′
t
〉

dt.

Proposition 2.1: Consider X ∈ H and assume the interval [x,y] is finite in R.

1. The differential operator d
dr ∈ L̃(L2(x,y;X)) where the operator is defined as

D(
d
dr

) = {b ∈W 1,2(x,y;X) : by = 0},

and the adjoint of the operator ( d
dr )
∗ equals to − d

dr with

D(− d
dr

) = {b ∈W 1,2(x,y;X) : bx = 0}.

2. The differential operator d2

dr2 ∈ L̃(L2(x,y;X)) where the operator is defined as

D(
d2

dr2 ) = {b ∈W 2,2(x,y;X) : bx = by = 0},

and the adjoint of the operator ( d2

dr2 )
∗ equals to d2

dr2 .

Example 2.1: Let us consider a partial differential equation as

∂

∂ t
xt,ω =

∂

∂ω
xt,ω , t > 0

with its initial and boundary conditions respectively

x0,ω = fω , − ε ≤ ω ≤ 0, f ∈W 1,2(−ε,0;X)

xt,0 = 0, t ≥ 0,

that has a solution as

xt,ω =


fω+t , ω + t ≤ 0

0, ω + t > 0

 , [−ε,0], t ≥ 0.

Assume X̃ be the space L2(−ε,0;X) and also accept d
dω

as a differential operator with

D(
d

dω
) =

{
b ∈W 1,2(−ε,0;X) : b0 = 0

}
.
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By using Proposition 2.1, since d
dω

is densely defined closed linear operator, it can be

expressed as d
dω
∈ L̃(X̃). By considering yt = [xt ] and

[T ∗t b]ω =


bω+t , ω + t ≤ 0

0, ω + t > 0

 , [−ε,0], t ≥ 0, b ∈ X̃ , (2.33)

the mentioned problem above and solution of it can be expressed as

y′t =
d

dω
yt , t > 0, y0 = f ∈ D(

d
dω

) where yt = T ∗t f , t ≥ 0.

The notation indicates the differential operator d
dω

generates the notation T ∗t in (2.33)

so that it becomes continuous semigroup in a strong topology and also the notation T ∗

is called a semigroup of left translation.

Example 2.2: Suppose from Example 2.1, the assumptions are also valid here. Let

ε > 0, and X̃ = L2(−ε,0;X) and also the differential operator d
dω
∈ L̃(X̃). Again by

using Proposition 2.1, it is known that ( d
dω

)∗ =− d
dω

with

D(− d
dω

) = {b ∈W 1,2(−ε,0;X) : b−ε = 0}.

From (2.33), one can say that T is generated by the operator− d
dω

which is a continuous

semigroup in a strong topology and has an expression as

[Ttb]ω =


bω−t, ω− t ≥−ε

0, ω− t <−ε

 , [−ε,0], t ≥ 0, b ∈ X̃ . (2.34)

The definition above shows the semigroup of right translation.

Example 2.3: Consider the following one-dimensional semilinear system

x′(t) = ax(t)+bx(t− ε)+u(t)+ f (t,x(t),u(t)), (2.35)

since a delay exists above, the system (2.35) is in infinite dimensional space and

controlled by a first-order partial differential equation. Here ε > 0 and b must be

non-zero in order to keep the existence of the delay in (2.35) that is shown as
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bx(t− ε). Then, according to the following assumed initial conditions;

x(0) = λ and x(φ) = κ(φ), where − ε ≤ φ ≤ 0,

it is possible for the state space to be defined as X = R×L2(−ε,0) that means R and

square integrable functions in a border of [−ε,0]. It is known that

x̃(t) =

 x(t)

x̄(t)

 , so
d
dt

x̃(t) =

 d
dt x(t)

d
dt x̄(t)

=

 x′(t)

x′(t +φ)

 ,
where x̄(t) is the function between the values of t and t− ε.

Suppose a linear operator is defined as A, then

A

 λ

κ

=

 aλ +bκ(−ε)

d
dφ
(κ−λ )

 , (2.36)

with an expression for its domain,

D(A) = {

 λ

κ

 ∈ X such that
d

dφ
κ ∈ L2(−ε,0) and κ(0) = λ}. (2.37)

Moreover

d
dt

 x(t)

x̄(t)

 =

 ax(t)+bx(t− ε)

d
dφ

x(t +φ)

 +

 1

0

 u(t)+

 f (t,x(t),u(t))

0

 (2.38)

where

x̃(t) =

 x(t)

x̄(t)

 , x̃(0) =

 λ

κ

 , B =

 1

0

 , F(t, x̃,u) =

 f (t,x,u)

0

 , (2.39)

with

[x̄(t)](φ) =


x(t +φ) i f t +φ > 0

κ(t +φ) i f t +φ ≤ 0.

 . (2.40)

In (2.38), we know that x̄(t) = x(t + φ) and if separately the derivative of x̄(t) with

respect to t and x(t + φ) with respect to φ are taken, then it is clear that an identity

solution of x′(t + φ) occurs. By considering this fact, it is not possible to be in one
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dimensional space anymore as the combination of the two spaces R and L2 will create

infinite dimensional space and this result aids the system to be able to get rid of the

delay in (2.35). Therefore, the system (2.35) can be rewritten as

d
dt

x̃(t) = Ax̃(t)+Bu(t)+F(t, x̃(t),u(t)). (2.41)

2.2 Semilinear Systems

Consider the following linear system

z′(t) = Az(t)+ f (t), 0 < t ≤ T (2.42)

z(0) = z0 ∈ Z.

Here the following assumptions are made:

i) Z is a separable Hilbert space

ii) f ∈ L1(0,T ;Z)

iii) A : D(A) ⊆ Z → Z is densely defined linear closed operator on Z generating a

strongly continuous semigroup eAt .

If Z is a finite dimensional Euclidean space, then according to variation of constant

formula,

z(t) = eAtz0 +

� t

0
eA(t−r) f (r) dr (2.43)

is a unique solution of (2.42), but in infinite dimensional spaces, z(t) defined by (2.43)

may not belong to D(A), so (2.43) is not a solution of (2.42) in ordinary(strong) sense

however as the function in (2.43) is still considered as a mild solution of (2.42). By

developing this idea, one can consider f in (2.42) depending on z and obtain semilinear

differential equation which is

z′(t) = Az(t)+ f (t,z(t)), 0 < t ≤ T (2.44)

z(0) = z0 ∈ Z.
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Under mild solution of equation (2.44), it is possible to understand the solution of

integral equation

z(t) = eAtz0 +

� t

0
eA(t−r) f (r,z(r)) dr. (2.45)

It is known that (2.45) has unique solution (which stands for mild solution for (2.44))

under these conditions that f : [0,T ]×Z→ Z holds:

i) ∀z ∈ Z, f (·,z) is strongly measurable

ii) there exists H ∈ L1(0,T ) such that
| f (t,z)− f (t,x)| ≤ H(t) |z− x| ,

| f (t,0)≤ H(t)| ,

 (2.46)

iii) ∀z,x ∈ Z and ∀t ∈ [0,T ].

Theorem 2.6: Let the previous assumptions for A are hold and f be continuous on

[0,T ] and Lipschitz continuous on Z. Then ∀z ∈ Z, the equation (2.42) has only one

mild equation z ∈ C(0,T ;Z). Furthermore, from Z into z ∈ C(0,T ;Z), mapping of

z0→ z is Lipschitz continuous.

Proof. let z0 ∈ Z, then by the equation

(Fz)(t) = eAtz0 +

� t

0
eA(t−r) f (r,z(r)) dr, [0,T ] (2.47)

it is possible to create a mapping

F : z ∈ C(0,T ;Z)→ z ∈ C(0,T ;Z).

Since ‖z‖
∞
∈ C(0,T ;Z), by the definition of F,

‖(Fz)(t)− (Fw)(t)‖ ≤MKt ‖z−w‖
∞

(2.48)

where M represents the boundedness of ‖T (t)‖ on [0,T ]. By (2.47) & (2.48) and

applying induction method on µ,

‖(Fµz)(t)− (Fµw)(t)‖ ≤ (MKt)µ

µ!
‖z−w‖

∞
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thus, ∥∥∥∥‖Fµz−Fµw‖ ≤ (MKT )µ

µ!
‖z−w‖

∞

∥∥∥∥ . (2.49)

In the case of having µ large enough (MKT )µ

µ! < 1 and considering the contraction

principle will lead to a unique fixed point z that F has in C(0,T ;Z). This result shows

the existence of the mild solution (2.45) .

Assume that w is a solution of (2.42) with an initial value w0 on [0,T ]. Then,

‖z(t)−w(t)‖ ≤
∥∥∥eAtz0− eAtw0

∥∥∥+� t

0

∥∥∥eA(t−r)[ f (r,z(r))− f (r,w(r))]
∥∥∥ dr

≤M ‖z0−w0‖+MK
� t

0
‖z(r)−w(r)‖ dr (2.50)

which indicates by Gronwall’s Inequality,

‖z(t)−w(t)‖ ≤MeMKT ‖z0−w0‖

so,

‖z−w‖
∞
≤MeMKT ‖z0−w0‖ .

This shows the uniqueness of z and the Lipschitz continuity of the map z0→ z.
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Chapter 3

CONTROLLABILITY OF LINEAR DETERMINISTIC

SYSTEMS

In this chapter, some controllability concepts and their conditions will be introduced

and explained which are related to controllability of Linear Deterministic Systems.

Firstly, we will consider finite dimensional system that Kalman’s rank condition takes

place. Originally, controllability was introduced by Rudolf E. Kalman in 1960 that is

a significant property of control systems and as a definition, a control system is

controllable if it can transfer any initial state to any final state within a finite time

using admissible controls. The rank condition is the most valuable in finite

dimensional systems; however, in infinite dimensional systems, it does not work.

Therefore, two major concepts of controllability are developed which are exact and

approximate controllability. These two concepts are defined for infinite dimensional

systems and will be examined in upcoming sections.

3.1 Controllability in Finite Dimensions for Linear Deterministic

Systems

The aim of this part is to study the Kalman’s rank condition that is only used in finite

dimensions and also to discuss the controllability concept of linear systems for finite

dimensions. Therefore, the basic form of the initial valued linear control system is

shown below:

z′(t) = Az(t)+Bu(t), 0 < t ≤ T (3.1)

z0 = β ∈ Z
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In the system (3.1), A ∈ M(n× n) and B ∈ M(n×m) are defined as matrices of

respective dimensions. M(n×m) notation gathers all the matrices together in a set

where n and m are rows and columns respectively. By considering the presence of

Euclidean spaces Rn and Rm, let the state and control spaces be Z = Rn and U = Rm

respectively. The system (3.1) has only one solution as follows:

z(t) = eAtz0 +

� t

0
eA(t−r)Bu(r) dr, 0 < t ≤ T. (3.2)

The control u has a task of moving the initial state a to the final state b within a finite

time T > 0 and this process can be represented with za,u(T ) = b. The notation can also

be explained as b is reachable or attainable from a. For the system (3.1), QT matrix

also exists that is called the controllability Gramian and is shown as follows:

QT =

� T

0
eArBB∗eA∗r dr, (3.3)

where QT is a matrix and A∗ and B∗ are defined as the transpose of the A and B matrices

respectively.

Proposition 3.1: If QT is non-singular matrix, then

i)
u(r) =−B∗eA∗(T−r)Q−1

T (eAT c−d) (3.4)

is the control that moves state c to final state d at T > 0 for every c,d ∈ Rn

where r ∈ [0,T ].

ii) The functional
� T

0 |u(r)|
2 dr considered over all controls transferring c to d takes

minimal value at u(r) defined in (3.4). Moreover for u from (3.4),
� T

0
|u(r)|2 dr =

〈
Q−1

T (eAT c−d),eAT c−d
〉

(3.5)

Proof. Combining (3.4) and solution of control system (3.2), we have
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zc,u(T ) = eAT c−
(� T

0
eA(T−r)BB∗eA∗(T−r)dr

)
(Q−1

T (eAT c−d))

= eAT c−QT Q−1
T (eAT c−d)

= eAT c− eAT c+d = d.

By showing this, (i) is achieved.

For (ii), let us observe the expansion of the integral (3.5):
� T

0
|u(r)|2 dr =

� T

0

∣∣∣B∗eA∗(T−r)Q−1
T (eAT c−d)

∣∣∣2 dr

=

〈� T

0
eA(T−r)BB∗eA∗(T−r)(Q−1

T (eAT c−d)) dr,Q−1
T (eAT c−d)

〉
=
〈

QT Q−1
T (eAT c−d),Q−1

T (eAT c−d)
〉

=
〈

Q−1
T (eAT c−d),eAT c−d

〉
.

Moreover, for any arbitrary control u(·) that transfers c to d at time T, can be assumed

that u(·) is square integrable on 0≤ r ≤ T. Then,
� T

0
〈u(r), û(r)〉 dr =−

� T

0

〈
u(r),B∗eA∗(T−r)Q−1

T (eAT c−d)
〉

dr

=−
〈� T

0
eA(T−r)Bu(r) dr,Q−1

T (eAT c−d)
〉

=
〈

eAT c−d,Q−1
T (eAT c−d)

〉
.

Thus,
� T

0
〈u(r), û(r)〉 dr =

� T

0
〈û(r), û(r)〉 dr.

By considering the previous equivalence, we get
� T

0
|u(r)|2 dr =

� T

0
|u(r)|2 dr+

� T

0
|u(r)− û(r)|2 dr.

Proposition 3.2: If for any state d ∈ Rn is reachable from 0, then for any T > 0, the

matrix QT is non-singular.
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Proof. Assume the following integral is an expression of a linear operator that is taken

from UT = L1[0,T : Rm] into Rn,

GT u =

� T

0
eAyBu(T − y) dy. (3.6)

Note that

GT u = z0,u(T ). (3.7)

Considering (3.7), one can have a result DT is non-decreasing on T > 0 where DT =

GT (UT ). Since all the elements of DT are in Rn, one can define DT̃ = Rn for some T̃

according to the dimensions of DT . For any T > 0, w ∈ Rn and u ∈UT ,

〈QT w,w〉=
〈(� T

0
eAyBB∗eA∗y dy

)
w,w

〉
=

� T

0

∣∣∣B∗eA∗yw
∣∣∣2 dy. (3.8)

〈GT u,w〉=
� T

0

〈
u(y),B∗eA∗(T−y)w

〉
dy. (3.9)

According to (3.8) and (3.9), one can get QT w = 0 if one of the two conditions are

satisfied which are the linear space QT is orthogonal to v or B∗eA∗(·)w has an equality

with zero on 0 ≤ y ≤ T. Therefore the function equals to 0 everywhere leading to

QT w = 0 ∀T > 0 and in addition QT̃ w = 0. It is given that DT̃ = Rn, so w = 0 and

proof is achieved.

Theorem 3.1: Consider the polynomial h(µ) = µn + c1µn−1 + ...+ cn and any A ∈

M(n×n), then

An + c1An−1 + ...+ cnI = 0.

The following theorem will introduce Kalman’s Rank Condition that is beneficial for

finite dimensional control systems and it can be taken into account as necessary and
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sufficient condition of controllability of linear systems in finite dimensions. For any

assigned matrices such as A ∈M(n× n) and B ∈M(n×m), the linear system (3.1) is

controllable if rank[B,AB,A2B, ...,An−1B] = n. This means that the number of n× n

(row) is less than the number of n×m (column) so the rank is n. In addition, the matrix

[A : B] has a representation as [B,AB, ...,An−1B] ∈M(n×nm).

Theorem 3.2: [15] The following statements are equivalent:

i) An arbitrary state b ∈ Rn is reachable from 0.

ii) The control system (3.1) is controllable which means from the initial state µ ,

every state in Rn is reachable.

iii) QT is non-singular for some T > 0.

iv) QT is non-singular for an arbitrary T > 0.

v) rank[A : B] = n.

Propositions 3.1 and 3.2 give the proof for the implications (i)− (v), but to prove the

implications for (iv), the next lemma should be considered.

Lemma 3.1: Suppose dn has an identical image with the transformation GT and

particularly, GT is onto if and only if dn is onto.

Proof. First, let dn be a linear mapping with an expansion as follows:

dn(u0, ...,um−1) =
m−1

∑
i=0

AiBui, where ui ∈ Rm, i = 0,1, ...,m−1

then arbitrarily choosing w ∈ Rn,u ∈ L1[0,T ;Rm],ui ∈ Rm, i = 0,1, ...,m−1 :

〈GT u,w〉=
� T

0

〈
u(r),B∗eA∗(T−r)w

〉
dr,

〈dn(u0,u1, ...,um−1),w〉= 〈u0B∗w〉+ ...+
〈
um−1,B∗(A∗)m−1w

〉
.

Let 〈dn(u0,u1, ...,um−1),w〉 = 0, then B∗w = 0, ...,B∗(A∗)m−1w = 0. Considering
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Theorem 3.1, and using matrix A∗, one can obtain

(A∗)m =
m−1

∑
z=0

kz(A∗)z, where constant k = k0,k1, ...,km−1.

Application of induction will result for any j = 0,1, ... ∃k j,0, ...,k j,m−1 such that

(A∗)m+1 =
m−1

∑
z=0

k j,z(A∗)z.

Thus,

B∗(A∗)zw = 0 for z = 0,1, ...

Furthermore,

B∗eA∗(s)w =
∞

∑
z=0

B∗(A∗)z wsz

z!
, s≥ 0,

we conclude that

B∗eA∗(s)w = 0 for any T > 0 with an interval 0≤ s≤ T,

therefore,

〈GT u,w〉= 0 where u ∈ L1[0,T ;Rm].

Now, let us consider u reversely that for any u ∈ L1[0,T ;Rn], 〈GT u,w〉= 0. After that,

B∗eA∗(s)w = 0 and differentiation of the next identity

∞

∑
z=0

B∗(A∗)z wsz

z!
= 0, 0≤ s≤ T,

0,1, ...,(m − 1) times and assigning ∀s = 0, we get B∗(A∗)zw = 0 where

z = 0,1,2, ...,m−1. According to that,

〈dn(u0,u1, ...,um−1),w〉= 0 for any u0,u1, ...,um−1 ∈ Rm.

By considering the system(3.1) as controllable, system will conclude the

transformation GT is onto Rn for all T > 0 and with previous lemma that has been
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proved, the matrix [A : B] equals to rank of n. Reversely, considering rank[A : B] = n

will lead to dn to be onto Rn, thus, the transformation GT is onto Rn,so (iv)− (i)

equivalences are also satisfied.

Example 3.1: Assume that matrix A and vector B exists in R2 with a control system

(3.1)

A =

1 2

0 −4

 , B =

−1

2

 .
It can be calculated:

rank[A : B] = rank

−1 3

2 −8

= 2.

Here, by using Theorem 3.2, the system (3.1) is controllable.

Example 3.2: Assume that matrix A and vector B exists in R2 with a control system

(3.1)

A =

 3 0

−2 −1

 , B =

 2

−1

 .
Obviously after some calculations,

rank[A : B] = rank

 2 6

−1 −3

= 1 6= dimR2 = 2.

Therefore, considering Theorem 3.2 and since the dimR2 doesn’t match with the rank

number 1, then the system (3.1) is not controllable.

3.2 Controllability in Infinite Dimensions for Linear Deterministic

Systems

This section will contribute to understand the two concepts which are exact and

approximate controllability for infinite dimensional spaces. The infinite case is
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similar to the finite case that the control system (3.1) can be used here as well but the

properties of that will alter in this case. Let z and u be the state and control processes,

therefore consider the following linear system

z′(t) = Az(t)+Bu(t), 0 < t ≤ T, u ∈Uad = L2(0,T ;U)

z0 = β ∈ Z. (3.10)

Here, Z and U are separable Hilbert spaces and A is the generator of a strongly

continuous semigroup eAt on Z and B is bounded operator from U to Z.

3.2.1 Exact Controllability For Linear Systems

Now, before passing through the definition of exact controllability, it is required to

define an attainable set with time t ∈ [0,T ] which is

Dβ

t = {zβ ,u
t such that u ∈Uad}, β ∈ Z. (3.11)

Definition 3.1: Let Z be the state space then the system (3.10) is said to be exactly

controllable if Dβ

T = Z for time T > 0 for all β ∈ Z.

R(µ,−QT ) is defined as the resolvent of the operator −QT that

R(µ,−QT ) = (µI +QT )
−1, where QT ≥ 0 and T > 0. (3.12)

The linear operator (µI +QT )
−1 is coercive and therefore well-defined for µ > 0.

Theorem 3.3: The following properties are equivalent:

i) The system (3.10) is exactly controllable,

ii) QT is coercive,

iii) R(µ,−QT ) converges in a uniform topology as µ → 0,

iv) R(µ,−QT ) converges in a strong topology as µ → 0,

v) R(µ,−QT ) converges in a weak topology as µ → 0,

35



vi) µR(µ,−QT ) converges in a uniform topology to the zero operator as µ → 0.

Proof. The equivalences of (i)↔ (ii) is clarified in plenty of books such as [1, 6].

As it is mentioned in the previous brief description for the resolvent operator, (ii) is

also well-defined linear operator, therefore for the beginning of the proof, these two

properties (ii)→ (iii) will be considered. Assume QT is coercive then there exists

n > 0 such that ∀z ∈ Z and ∀µ ≥ 0,

〈z,(µI +QT )z〉 ≥ (µ +n)‖z‖2 .

The following equality shows the boundedness of ‖R(µ,−QT )‖ for µ ≥ 0,

‖R(µ,−QT )‖=
∥∥(µI +QT )

−1∥∥≤ 1
µ +n

≤ 1
n
.

Then we obtain,∥∥R(µ,−QT )−Q−1
T

∥∥= ∥∥(µI +QT )
−1−Q−1

T

∥∥
=
∥∥Q−1

T (QT −µI−QT )(µI +QT )
−1∥∥

≤ µ
∥∥Q−1

T

∥∥∥∥(µI +QT )
−1∥∥

≤ µ

n2 .

As a conclusion, R(µ,−QT ) converges to Q−1
T uniformly as µ → 0.

The proof of the implications (iii)⇒ (iv)⇒ (v), by checking Definition 2.9 which has

a content of the properties of convergent sequences of operators are trivial results. The

proof of the implications of (v)⇒ (vi) will be straightforward consequence due to the

boundedness of a weakly convergent sequence of operators.

Eventually, for (vi)⇒ (i), assume that

µ ‖R(µ,−QT )‖= µ
∥∥(µI +QT )

−1∥∥→ 0, as µ → 0. (3.13)

Then, the following equation will form below after the application of square root on

both sides to (3.13),
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µ
1
2

∥∥∥(µI +QT )
− 1

2

∥∥∥→ 0, as µ → 0.

One can obtain for a sufficiently small µ0 > 0,

µ
1
2

∥∥∥(µI +QT )
− 1

2

∥∥∥≤ 1√
2
.

Therefore, ∀z ∈ Z,

‖z‖2 =

∥∥∥∥(µ 1
2
0 (µ0I +QT )

− 1
2 )(µ

− 1
2

0 (µ0I +QT )
1
2 )z
∥∥∥∥2

≤ 1
2

∥∥∥∥µ
− 1

2
0 (µ0I +QT )

1
2 z
∥∥∥∥2

=
1
2
〈
µ
−1
0 (µ0I +QT )z,z

〉
,

implying

〈
µ
−1
0 (µ0I +QT )z,z

〉
≥ 2‖z‖2

and finally,

〈QT z,z〉 ≥ µ0 ‖z‖2 .

This tells that QT is coercive and as (i) is satisfied, the proof is completed.

3.2.2 Approximate Controllability for Linear Systems

Exact controllability allows the system to move from any initial point into any final

point but unfortunately, application of this concept may not be possible for some of

the control systems that are in infinite dimensional spaces. According to that fact, a

new concept of controllability has to be revealed so that is where approximate

controllability takes place. It enables the system to move from any point to the set

which is dense in that state space and because of that, the concept of approximate

controllability is a weaker version in comparison with exact controllability. In this

section, approximate controllability for deterministic systems will be initiated.

Definition 3.2: Suppose the control system (3.10) is given. It is said to be an
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approximately controllable if ∀β ∈ Z,
¯

Dβ

T = Z for T > 0.

Lemma 3.2: For µ > 0 and f ∈ Z, there exists only one optimal control uµ ∈ Uad

where the following functional obtains its minimum value according to (3.10):

J(u) = ‖zu
T − f‖2 +µ

� T

0
‖ut‖2 dt. (3.14)

For every 0≤ t ≤ T,

uµ

t =−B∗eA∗(T−t)R(µ,−QT )(eAT
µ− f ), (3.15)

and

zuµ

T − f = µR(µ,−QT )(eAT
µ− f ), (3.16)

where R(µ,−QT ) is defined as the resolvent of the operator −QT .

Proof. There is only one optimal control uµ ∈ Uad for the functional (3.14) that by

computing the variation of the functional J, an optimal solution uµ will be obtained as

uµ

t =− 1
µ

B∗eA∗(T−t)(xuµ

t − f ), a.e. 0≤ t ≤ T. (3.17)

Substituting (3.17) into the equation (3.10),

zuµ

T = eAT
β +

1
µ

� T

0
eA(T−r)BB∗eA∗(T−r)(zuµ

T − f ) dr

= eAT
β − 1

µ
QT (zuµ

T − f ).

Then,

µzuµ

T = µeAT
β −QT (zuµ

T − f ), (3.18)

which implies

(µI +QT )zuµ

T = µeAT
β +QT f . (3.19)

Since (µI +QT )
−1 exists, we get

38



zuµ

T = (µI +QT )
−1

µeAT
β +(µI +QT )

−1(µI +QT −µI) f

= µ(µI +QT )
−1(eAT

β − f )+ f ,

and eventually,

zuµ

T − f = µR(µ,−QT )(eAT
β − f ). (3.20)

This proves (3.16). In order to obtain (3.15), just substitute (3.16) into (3.17).

Theorem 3.4: The following properties are equivalent

i) The system (3.10) is approximately controllable,

ii) QT > 0,

iii) For every t ∈ [0,T ], the equality B∗eA∗tz = 0 points out that z = 0,

iv) µR(µ,−QT ) converges in a strong topology to the zero operator as µ → 0,

v) µR(µ,−QT ) converges in a weak topology to the zero operator as µ → 0.

Proof. The equivalences of (i) ⇔ (ii) and (i) ⇔ (iii) are all clarified and shown in

various books for instance [1,6]. To show the proof of (i)⇔ (iv), let the control system

(3.10) be approximately controllable. Then by considering Lemma 3.2, for arbitrary

k ∈ Z, the sequence {sr} that is in Uad exists such that∥∥∥zsr

T − f
∥∥∥→ 0 as r approaches to ∞. (3.21)

After that, for uµ as a control and since µ is positive, the given functional in Lemma

3.2 takes on its minimum value so,∥∥∥zuµ

T − f
∥∥∥2
≤
∥∥∥zuµ

T − f
∥∥∥2

+µ

� T

0

∥∥uµ

t
∥∥2 dt (3.22)

≤
∥∥∥zsr

T − f
∥∥∥2

+µ

� T

0
‖sr‖2 dt.

Accepting ε > 0 and choosing sufficiently large r will lead to∥∥∥zsr

T − f
∥∥∥< ε√

2
, (3.23)
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and then one can accept α > 0 as a sufficiently small value so for 0 < µ < α,

µ

� T

0
‖sr

t ‖
2 dt ≤ ε2

2
. (3.24)

In addition, substituting (3.23) and (3.24) into (3.22), one can get
∥∥∥zuµ

T − f
∥∥∥ ≤ ε2 for

all 0 < µ < α that concludes the convergence of zuµ

T to f as µ → 0. By borrowing

(3.16) from Lemma 3.2,∥∥∥zuµ

T − f
∥∥∥= ∥∥∥µR(µ,−QT )(eAT

µ− f )
∥∥∥≤ ε,

for arbitrary f ∈ Z, the strong convergence of µR(µ,−QT )→ 0 as µ→ 0 which is the

statement (iv) holds.

Reversely from (iv) ⇒ (i), let (iv) be satisfied then, considering Lemma 3.2, µ is

chosen as a sufficiently small value such that∥∥∥zuµ

T − f
∥∥∥= ∥∥∥µR(µ,−QT )(eAT

µ− f )
∥∥∥ . (3.25)

With respect to the statement (iv) and (3.25),
∥∥∥zuµ

T − f
∥∥∥→ 0 and eventually, zuµ

T → f

as µ → 0. This tells that the system (3.10) is approximately controllable.

For (iv) ⇔ (v), it is known that (iv) ⇒ (v) exists directly as this is a true fact in

functional analysis so to prove its reverse (v)⇒ (iv), assume (v) holds meaning for

all a,b ∈ Z,

〈µR(µ,−QT )a,b〉 → 0 as µ → 0.

To imply strong convergence, the fact R(µ,−QT )≥ 0 is required to be used, so that

‖µR(µ,−QT )a‖2 = 〈µR(µ,−QT )a,µR(µ,−QT )a〉

≤ (‖µR(µ,−QT )‖2)
1
2 µ 〈R(µ,−QT )a,a〉

≤ 〈µR(µ,−QT )a,a〉 → 0 as µ → 0.

Here, a is an arbitrary value that a ∈ Z, therefore µR(µ,−QT ) is strongly convergent

which also proves (iv) and satisfies the theorem.
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Example 3.3: Assume that there is a control system as follows:

v′(t) = Av(t)+Bu(t), 0 < t ≤ T, v0 ∈ Z. (3.26)

Here Z = l2 is considered as a Hilbert space that is formed by numerical sequences

{zn} which satisfy the condition
∞

∑
m=1

z2
m < ∞. For Hilbert space, the inner product is

shown below:

〈(zm,vm)〉=
∞

∑
m=1

zmvm. (3.27)

In addition, there is a fundamental basis set for this space as,

R = {e1 = (1,0,0, ...), e2 = (0,1,0, ...), e3 = (0,0,1,0, ...), ...}.

Choosing A = 0 will lead to eAt = eA∗t = I and consider a matrix B,

B =



1 0 0 0 0 · · ·

0 1
2 0 0 0 · · ·

0 0 1
3 0 0 · · ·

0 0 0 1
4 0 · · ·

...
...

...
...

... . . .


.

The third implication in Theorem 3.4 will be used to check if the control system (3.26)

is approximately controllable, so clearly,

∞

∑
m=1
〈Bem,Bem〉= B2

∞

∑
m=1
〈em,em〉=

∞

∑
m=1

1
m2 < ∞.

Here B is represented as a Hilbert-Schmidt operator on l2 so that B ∈ L(l2) and since

B = B∗,

B∗eA∗tz = 0 points Bz = 0,

which clearly concludes that z = 0. Therefore, the system (3.26) is approximately

controllable. Besides checking its approximate controllability, let us consider the

other case that if it can be exactly controllable. As B = B∗,
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QT =

� T

0
eArBB∗eA∗r dr = T B2.

Thus,

〈QT em,em〉= T
〈
B2em,em

〉
=

T
m2 → 0 as m→ ∞.

Since no value is found for d > 0 to show the inequality 〈QT em,em〉 ≥ d ‖em‖2 holds,

the operator QT is not coercive and this fact implies that the system (3.26) is not exactly

controllable.

3.2.3 Partial Controllability Concepts for Linear Systems

Until this section, concept of controllability of linear deterministic systems is studied

in both finite and infinite dimensional spaces. According to Bashirov (2003), some

control systems with higher order differential equations can be rewritten as a first-order

differential equations (standard-formed systems) basically by expanding the dimension

of the state space. This new concept is called partial controllability that is a weaker

case in comparison with the conditions of ordinary deterministic control systems as the

expanded state space is already involved in those conditions. Now, let us consider the

following control system,

z(t) = Az(t)+Bu(t), 0 < t ≤ T, u ∈Uad = L2(0,T ;U)

z0 = β ∈ Z. (3.28)

As it is mentioned before, z and u are state and control processes respectively. Let Z,

U, A and B has the identical properties with the system (3.10). There is only one mild

solution for the system (3.28) as

z(t) = eAtz0 +

� t

0
eA(t−r)Bu(r) dr, 0 < t ≤ T. (3.29)

It is known that the controllability gramian QT has a vital role in controllability theory

that its partial version Q̃T has a similar role in partial controllability theory. Therefore,
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by enlarging the controllability gramian into its partial version, it is possible to have

Q̃T = LQT L∗, [0,T ]. (3.30)

As the partial version Q̃T has an identical function with QT , it has also similar

properties meaning, for all [0,T ], R(µ,−Q̃T ) is expressed as the resolvent of the

operator −Q̃T then R(µ,−Q̃T ) = (µI + Q̃T )
−1 is well-defined for µ > 0 where

Q̃T ≥ 0.

Definition 3.3: Suppose Z is a separable Hilbert space and H⊂ Z is a closed subspace

of Z. Let the operator L project Z onto H as well. Then,

i) If Dβ

T = H for all β ∈ Z, the control system (3.28) is L-partially exactly

controllable.

ii) If
¯

Dβ

T = H for all β ∈ Z, the control system (3.28) is L-partially approximately

controllable.

Theorem 3.5: The following properties are equivalent considering the conditions and

notation in this section.

i) The control system (3.28) is L-partially exactly controllable,

ii) Q̃T is coercive,

iii) R(µ,−Q̃T ) converges in a uniform topology as µ → 0,

iv) R(µ,−Q̃T ) converges in a strong topology as µ → 0,

v) R(µ,−Q̃T ) converges in a weak topology as µ → 0,

vi) µR(µ,−Q̃T ) converges in a uniform topology to the zero operator as µ → 0.

Proof. When Z = H, controllability concept of L-partially deterministic systems are

similar to the concept of controllability for ordinary deterministic systems so the proof

of this theorem can coincide with the proof of Theorem 3.3. Therefore, by changing

the notation of controllability gramian QT with its partial version which is Q̃T , it is
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possible to prove it again so no need for repetition of this proof.

Theorem 3.6: The following properties are equivalent considering the conditions and

notation in this section.

i) The control system (3.28) is L-partially approximately controllable,

ii) Q̃T > 0,

iii) For every t ∈ [0,T ], the equality B̃∗eÃ∗tz = 0 points out that z = 0,

iv) µR(µ,−Q̃T ) converges in a strong topology to zero as µ → 0,

v) µR(µ,−Q̃T ) converges in a weak topology to zero as µ → 0.

Example 3.4: Consider the following non-linear system

y(n)(t) = f (t,y(t),y′(t), ...,y(n−1)(t),u(t)). (3.31)

R is considered as the state space of the system (3.31) where y ∈ R. One can express

the system (3.31) as a first-order differential equation

z′(t) = Az(t)+F(t,z(t),u(t)) (3.32)

where

z(t) =



z(t)

z′(t)

...

z(n−2)(t)

z(n−1)(t)


, A =



0 1 · · · 0 0

0 0 · · · 0 0

...
... . . . ...

...

0 0 · · · 0 0

0 0 · · · 0 0


,

and
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F(t,z,u) =



0

0

...

0

f (t,y,y′, ...,y(n−1),u)


.

For the system (3.32), the n-dimensional Euclidean space Rn is considered as the state

space and equivalently, its reachable set becomes a subset of Rn. Thus, controllability

concepts for the system (3.32) are stronger than the ones in the system (3.31). On the

other hand, by considering the following projection operator L

L = [1 0 · · · 0 0] : Rn→ R,

it will be possible to keep the L-partial controllability concepts for the systems (3.31)

and (3.32) similar.

Example 3.5: Consider the following semilinear wave equation

∂ 2zt,η

∂ t2 =
∂ zt,η

∂η2 + f (t,zt,η ,∂ zt,η/∂ t,ut), (3.33)

where z is a real-valued binary function with t ≥ 0 and 0≤ η ≤ 1. L2(0,1) is assigned

as the state space of (3.33) that represents the space of all Lebesque measurable and

square integrable functions. It is likely to express (3.33) in a form of first-order

differential equation as follows:

x′t = Axt +F(t,xt ,ut) (3.34)

where

xt =

 zt,η

∂ zt,η/∂ t

 , A =

 0 I

d2/dη2 0

 ,
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F(t,x,u) =

 0

f (t,x1,x2,u)

 , B =

0

b

 .

Here x ∈ L2(0,1)× L2(0,1). By enlarging the state space of the system (3.33),

L2(0,1)× L2(0,1) is obtained which is the state space of the system (3.34). The

concepts of controllability for (3.33) is strong in comparison with (3.34), therefore by

constructing the operator L

L = [I 0] : L2(0,1)×L2(0,1)→ L2(0,1),

the L-partial controllability concepts for the system (3.34) can be similar with the same

concepts for the system (3.33).

46



Chapter 4

CONTROLLABILITY OF SEMILINEAR SYSTEMS

The sufficient conditions for the concept of controllability of semilinear control

systems will be observed and studied in this chapter, since researches in necessary

conditions are not well-known for the controllability of semilinear control systems.

For the sufficient conditions, mostly fixed-point theorems are considered so that the

given problems in controllability can be converted into a fixed-point problem. Not

only fixed-point theorems are considered, but also principle of contraction mapping

will be used in this chapter. It is likely to divide this chapter into two sections as exact

controllability and approximate controllability of semilinear systems that both of

them will contain results belonging to contraction mapping principles.

Let us consider a semilinear system in its general form

z(t) = Az(t)+Bu(t)+ f (t,z(t),u(t)), 0 < t ≤ T (4.1)

z(0) = β ∈ Z.

As usual, the state and control are respectively z ∈ Z and u ∈Uad = C(0,T ;U). The

following assumptions are made according to this system :

i) Z and U are separable Hilbert spaces,

ii) A is the generator of a strongly continuous semigroup eAt on Z and B is a bounded

operator from U to Z,

iii) The bounded function f is continuous on [0,T ]×Z×U,

iv) The function f is Lipschitz continuous with respect to z and u, that is ∀u,w ∈U
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and ∀z,x ∈ Z,
‖ f (t,z,u)− f (t,x,w)‖ ≤ D(‖z− x‖+‖u−w‖)

where ∀t ∈ [0,T ] and for some D≥ 0.

Considering the previous assumptions, for all u ∈ Uad and β ∈ Z, there exists a

continuous function z ∈ C(0,T ;Z) that consists of a unique mild solution satisfying

the system (4.1) which is

zt = eAt
β +

� t

0
eA(t−r)(Bu(r)+ f (r,x(r),u(r))) dr. (4.2)

4.1 Exact Controllability for Semilinear Systems

Contraction mapping principle will be considered in this section to observe the

sufficient conditions of exact controllability in semilinear systems.

Let Z̃ = C(0,T ;Z) . Then,
(
Z̃×Uad,‖(·, ·)‖

)
is a Banach space with

‖(·, ·)‖= ‖(·, ·)‖Z̃×Uad
= ‖·‖Z̃ +‖·‖Uad

.

Lemma 4.1: Let Z and U be separable Hilbert spaces. Assume that A is a closed

operator generating C0−semigroup eAt and B is a bounded operator. Then, the

following inequality holds

‖Qt‖ ≤ ‖QT‖ , t ∈ [0,T ] .

Proof. It is obvious that Qt = Q∗t and 〈Qtz,z〉 ≥ 0 for all z ∈ Z. Thus,

‖Qt‖= sup
‖z‖=1

〈Qtz,z〉 .

Therefore,
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〈QT z,z〉=
� T

0

〈
eArBB∗eA∗ rz,z

〉
dr

= 〈Qtz,z〉+
� T

t

〈
eArBB∗eA∗ rz,z

〉
dr

= 〈Qtz,z〉+
� T

t

〈
B∗eA∗ rz,B∗eA∗ rz

〉
dr

= 〈Qtz,z〉+
� T

t

∥∥∥B∗eA∗ rz
∥∥∥2

dr

≥ 〈Qtz,z〉 .

So, this points out ‖Qt‖ ≤ ‖QT‖ .

Lemma 4.2: Let Z and U be separable Hilbert spaces. Suppose the bounded function

f is continuous on [0,T ]×Z×U and also ∃d > 0 such that 〈QT z,z〉 ≥ d ‖z‖2 ∀z ∈ Z.

By considering these properties, for any arbitrary c ∈ Z, the non-linear operator D :

Z̃×Uad → Z̃×Uad, that is defined by

D(x,w)(t) = (X(t),W (t)) , for all 0≤ t ≤ T, (4.3)

where

X(t) = QteA∗(T−t)Q−1
T

(
c− eAT

β −
� T

0
eA(T−t) f (r,x(r),w(r)) dr

)
+ eAt

β +

� t

0
eA(t−r) f (r,x(r),w(r)) dr, (4.4)

W (t) = B∗eA∗(T−t)Q−1
T

(
c− eAT

β

)
−B∗eA∗(T−t)Q−1

T

� T

0
eA(T−r) f (r,x(r),w(r)) dr,

(4.5)

holds the inequality

‖D(x,w)(t)−D(y,s)(t)‖ ≤
(

1+‖QT‖N +‖B‖N
µ

)
MKT (‖x− y‖+‖w− s‖) ,

(4.6)

where

M = sup
0≤ t ≤T

∥∥∥eAt
∥∥∥ .
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Proof. Assume the space Z̃ ×Uad contains two functions (x,w) and (y,s) where

D(x,w) = (X ,W ) and D(y,s) = (Y,S). Then,

‖D(x,w)−D(y,s)‖Z̃×Uad
= ‖X−Y‖Z̃ +‖W −S‖Uad

. (4.7)

As a first step, let us make an estimation for ‖X−Y‖Z̃ :

‖X−Y‖= max
0≤ t ≤T

∥∥∥∥� t

0
eA(t−s) ( f (r,x(r),w(r))− f (r,y(r),s(r))) dr

−
� t

0
eA(t−ρ)BB∗eA∗(t−ρ)eA∗(T−t)Q−1

T

×
� T

0
eA(T−r) ( f (r,x(r),w(r))− f (r,y(r),s(r))) dr dρ

∥∥∥∥
= max

0≤ t ≤T

∥∥∥∥� t

0
eA(t−r) ( f (r,x(r),w(r))− f (r,y(r),s(r))) dr

−
� T

0

� t

0
eA(t−ρ)BB∗eA∗(t−ρ)eA∗(T−t)Q−1

T eA(T−r)× ( f (r,x(r),w(r))− f (r,y(r),s(r))) dρ dr
∥∥∥∥

= max
0≤ t ≤T

∥∥∥∥� t

0
eA(t−r) ( f (r,x(r),w(r))− f (r,y(r),s(r))) dr

−
� T

0
QteA∗(T−t)Q−1

T eA(T−r) ( f (r,x(r),w(r))− f (r,y(r),s(r))) dρ dr
∥∥∥∥

≤ max
0≤ t ≤T

(
M+‖Qt‖M2)� T

0

∥∥Q−1
T ( f (r,x(r),w(r))− f (r,y(r),s(r)))

∥∥ dr

≤ 1+‖QT‖M
µ

M
� T

0
‖( f (r,x(r),w(r))− f (r,y(r),s(r)))‖ dr

≤ 1+‖QT‖M
µ

MK
� T

0
(‖x(r)− y(r)‖+‖w(r)− s(r)‖) dr

≤ 1+‖QT‖M
µ

MKT (‖x− y‖+‖w− s‖) . (4.8)

Now, for the next step consider ‖W −S‖Uad
,
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‖W −S‖= max
0≤ t ≤T

∥∥∥∥−B∗eA∗(T−t)
� t

0
Q−1

T eA(T−r) ( f (r,x(r),w(r))− f (r,y(r),s(r))) dr
∥∥∥∥

≤ ‖B‖M2

µ

� T

0
‖( f (r,x(r),w(r))− f (r,y(r),s(r)))‖ dr

≤ ‖B‖M
µ

MK
� T

0
(‖x(r)− y(r)‖+‖w(r)− s(r)‖) dr

≤ ‖B‖M
µ

MKT (‖x− y‖+‖w− s‖) . (4.9)

By putting (4.8) and (4.9) into together, we obtain

‖D(x,w)(t)−D(y− s)(t)‖ ≤
(

1+‖QT‖M
µ

MKT +
‖B‖M

µ
MKT

)
(‖x− y‖+‖w− s‖)

=

(
1+‖QT‖M+‖B‖M

µ

)
MKT (‖x− y‖+‖w− s‖) .

(4.10)

This shows the proof.

In order to get rid of the complex form of large coefficient in (4.10), let

R =

(
1+‖QT‖M+‖B‖M

µ

)
MKT. (4.11)

Lemma 4.3: Let Z and U be separable Hilbert spaces and assume the assumption (iv)

is hold. If

R < 1, (4.12)

then operator D which transforms Z̃×Uad into Z̃×Uad, has only one fixed point (z,u)∈

Z̃×Uad.

Proof. Firstly as it is stressed above, there is a transformation from Z̃×Uad into Z̃×

Uad by the operator D. By means of Lemma 4.2, since D is a contraction mapping on

the Banach space Z̃×Uad, then D has a unique fixed point (z,u) ∈ Z̃×Uad.
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Theorem 4.1: Let Z and U be separable Hilbert spaces and the assumption (iv) satisfy.

Suppose there exists d > 0 so that 〈QT z,z〉 ≥ d ‖z‖2 ∀z ∈ Z. If

R < 1 (4.13)

satisfies, then the system (4.1) is exactly controllable.

Proof. Take any β ∈ Z and c ∈ Z. The aim is to show ∃u ∈Uad such that c = zT , so

now consider the following equality,

ut = B∗eA∗(T−t)Q−1
T

(
c− eAT

β

)
−
� T

0
B∗eA∗(T−t)Q−1

T eA(T−r) f (r,z(r),u(r)) dr.

(4.14)

By substituting (4.14) into (4.2) and applying Theorem 2.3,

zt = eAt
β +

� t

0
eA(t−r)BB∗eA∗(t−r)eA∗(T−t)Q−1

T

(
c− eAT

β

)
dr (4.15)

−
� t

0
eA(t−ρ)BB∗eA∗(t−ρ)eA∗(T−t)

� T

0
Q−1

T eA(T−r) dr dρ

+

� t

0
eA(t−r) f (r,z(r),u(r)) dr

= eAt
β +QteA∗(T−t)Q−1

T (c− eAT
β )+

� t

0
eA(t−r) f (r,z(r),u(r)) dr

−
� T

0
QteA∗(T−t)Q−1

T eA(T−r) f (r,z(r),u(r)) dr.

Considering Lemma 4.3, fixed point (z,u) ∈ Z̃×Uad exists that satisfies both (4.14)

and (4.15). Therefore, u ∈Uad. Furthermore, when t = T, we get

zT = QT Q−1
T

(
c− eAT

β −
� T

0
eA(T−r) f (r,z(r),u(r)) dr

)
eAT

β +

� T

0
eA(T−r) f (r,z(r),u(r)) dr

= c.

Thus, the control system (4.1) is exactly controllable.

4.2 Approximate Controllability for Semilinear Systems

Theorem 4.1 indicates that strongly improving the conditions imposed on the

Lipschitz coefficient is a necessity to use contraction mapping theorem. For the
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upcoming section, since approximate controllability concept is weaker than the

complete one, generalized contraction mapping theorem will be applied to clarify the

proof of sufficient conditions of approximate controllability of semilinear control

systems. Suppose the previous assumptions and notation are taken into consideration

similarly in this section as well.

Lemma 4.4: Let Z and U be separable Hilbert spaces. Assume that the assumption

(iv) holds. Then, considering c∈ Z arbitrarily, and µ > 0, the operator Dµ : Z̃×Uad→

Z̃×Uad, that is described by

Dµ(x,w)(t) = (Xµ(t),Wµ(t)), ∀t ∈ [0,T ], (4.16)

where

Xµ(t) = eAt
β +QteA∗(T−t)(µI +QT )

−1(c− eAT
β ) (4.17)

−
� t

0
Qt−reA∗(T−t)(µI +QT−r)

−1eA(T−r) f (r,x(r),w(r)) dr

+

� t

0
eA(t−r) f (r,x(r),w(r)) dr,

Wµ(t) = B∗eA∗(T−t)(µI +QT )
−1(c− eAT

β ) (4.18)

−
� t

0
B∗eA∗(T−t)(µI +QT−r)

−1eA(T−r) f (r,x(r),w(r)) dr,

has only one fixed point in Z̃×Uad.

Proof. Assume there exists two functions (x,w) and (y,s) in Z̃ ×Uad so that

Dµ(x,w) = (Xµ ,Wµ) and Dµ(y,s) = (Yµ ,Sµ). Borrowing the same procedure that is

followed by Lemma 4.2, it is likely to get,
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∥∥Dµ(x,w)(t)−Dµ(y,s)(t)
∥∥≤ (1+‖QT‖M+‖B‖M

µ

)
MK

� t

0
(‖x(r)− y(r)‖+‖w(r)− s(r)‖) dr

=

(
1+‖QT‖M+‖B‖M

µ

)
MKt (‖x− y‖+‖w− s‖)

= Rµt (‖x− y‖+‖w− s‖) . (4.19)

Then, one can get the following by repeating the argument on D2
µ in a similar way,∥∥D2

µ(x,w)(t)−D2
µ(y,s)(t)

∥∥≤ Rµ

� t

0

∥∥Dµ(x,w)(r)−Dµ(y,s)(r)
∥∥ dr

≤ R2
µ (‖x− y‖+‖w− s‖)

� t

0
r dr

= R2
µ

t2

2!
(‖x− y‖+‖w− s‖) . (4.20)

After that, ∥∥D2
µ(x,w)(t)−D2

µ(y,s)(t)
∥∥≤ R2

µ

T 2

2!
(‖x− y‖+‖w− s‖) . (4.21)

Eventually, by the induction method for n≥ 1,∥∥Dn
µ(x,w)(t)−Dn

µ(y,s)(t)
∥∥≤ Rm

µ

T m

m!
(‖x− y‖+‖w− s‖) . (4.22)

Since

lim
m→∞

(Rµ)
m T m

m!
= 0, (4.23)

the inequality below satisfies for sufficiently large m,

0≤ (Rµ)
m T m

m!
< 1. (4.24)

For large enough m, Dm
µ is a contraction mapping on Z̃×Uad, and thus Dµ also does.

By considering this fact, it can be concluded that Dµ has only one fixed point (z,u) ∈

Z̃×Uad where z related to u is a solution of the system (4.1).

Theorem 4.2: Let Z and U be separable Hilbert spaces and the assumption (iv) hold.

Suppose µR(µ,−QT )→ 0 uniformly as µ→ 0 for all 0 < t ≤ T. By considering these
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properties, the system (4.1) is approximately controllable.

Proof. Suppose β ∈ Z and c ∈ Z. Here the aim is to show that ∃u ∈ Uad such that

‖c− zT‖ → 0 as µ → 0 where zT is a solution of system (4.1) at time T. In order to

achieve this, let u has such an expression:

ut = B∗eA∗(T−t)(µI +QT )
−1(c− eAT

β ) (4.25)

−
� t

0
B∗eA∗(T−t)(µI +QT−r)

−1eA(T−r) f (r,x(r),u(r)) dr

Applying substitution from (4.25) into (4.2) and also Theorem 2.3, we have

zt = eAt
β +

� t

0
eA(t−r)BB∗eA∗(t−r)eA∗(T−t)(µI +QT )

−1(c− eAT
β ) dr

−
� t

0
eA(t−ρ)BB∗eA∗(t−ρ)eA∗(T−t)

�
ρ

0
(µI +QT−r)

−1eA(T−r) f (r,z(r),u(r)) dr dρ

+

� t

0
eA(t−r) f (r,z(r),u(r)) dr

= eAt
β +QteA∗(T−t)(µI +QT )

−1(c− eAT
β )+

� t

0
eA(t−r) f (r,z(r),u(r)) dr

−
� t

0

� t

r
eA(t−ρ)BB∗eA∗(t−ρ)eA∗(T−t)(µI +QT−r)

−1eA(T−r) f (r,z(r),u(r)) dρ dr

= eAt
β +QteA∗(T−t)(µI +QT )

−1(c− eAT
β )+

� t

0
eA(t−r) f (r,z(r),u(r)) dr

−
� t

0
Qt−reA∗(T−t)(µI +QT−r)

−1eA(T−r) f (r,z(r),u(r)) dr. (4.26)

By means of Lemma 4.4, only one point (x,u) ∈ Z̃ ×Uad satisfies both (4.25) and

(4.26). Thus, u ∈Uad. Moreover, we have
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zT = eAT
β +QT (µI +QT )

−1(c− eAT
β )+

� T

0
eA(T−r) f (r,z(r),u(r)) dr

−
� T

0
QT−r(µI +QT−r)

−1eA(T−r) f (r,z(r),u(r)) dr

= eAT
β +QT (µI +QT )

−1(c− eAT
β )+

� T

0
eA(T−r) f (r,z(r),u(r)) dr

+µ(µI +QT )
−1(c− eAT

β )−µ(µI +QT )
−1(c− eAT

β )

+µ

� T

0
(µI +QT−r)

−1eA(T−r) f (r,z(r),u(r)) dr

−µ

� T

0
(µI +QT−r)

−1eA(T−r) f (r,z(r),u(r)) dr

= c−µ(µI +QT )
−1(c− eAT

β )−µ

� T

0
(µI +QT−r)

−1eA(T−r) f (r,z(r),u(r)) dr.

Thus,

‖zT − c‖=
∥∥∥∥µ(µI +QT )

−1(c− eAT
β )−µ

� T

0
(µI +QT−r)

−1eA(T−r) f (r,z(r),u(r)) dr
∥∥∥∥

≤ µ

∥∥∥µ(µI +QT )
−1(c− eAT

β )
∥∥∥+∥∥∥∥µ

� T

0
(µI +QT−r)

−1eA(T−r) f (r,z(r),u(r)) dr
∥∥∥∥

≤
∥∥∥µ(µI +QT )

−1(c− eAT
β )
∥∥∥+N

� T

0

∥∥µ(µI +QT−r)
−1 f (r,z(r),u(r)) dr

∥∥ .
Recalling Theorem 2.3 and applying it on the integral term,

N
� T

0

∥∥µ(µI +QT−r)
−1
∥∥ · ‖ f (ρ,z(ρ),u(ρ))‖dρ → 0 as µ → 0, ∀0 ≤ r < T, since∥∥µ(µI +QT−r)

−1
∥∥→ 0 as µ → 0 and

∥∥µ(µI +QT )
−1(c− eAT β )

∥∥→ 0 as µ → 0.

Hence, ‖zT − c‖ → 0 as µ → 0. Therefore, the system (4.1) is approximately

controllable.
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