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ABSTRACT 

Security is one of the major concerns of human beings in the 21st century. Many 

forensic and governmental sections now have trusted biometric systems to provide 

high levels of security for them. Lots of researchers have also worked on many 

different biometric modalities to both ensure the security and the convenience of the 

end-users. Nowadays, concerning the magnificent potentials of hand based 

biometrics, they are a trending choice for a wide range of applications since it is 

commonly accepted by the society and is not considered to be intrusive while it can 

offer plenty of features that are abundant to identify humans on a large scale. This 

thesis uses three different hand-based biometric modalities, namely palmprint, palm 

vein, and dorsal hand vein to create a secure, efficient, and accurate multimodal 

hand-based biometric system. Additionally, four different feature extraction methods, 

namely Principal Component Analysis (PCA), Local Binary Patterns (LBP), Scale 

Invariant Feature Transforms (SIFT) and Speeded-Up Robust Features (SURF), are 

exploited to perform person identification. Experiments are conducted on the CASIA 

palmprint database, Tongji palm vein database, and Bosphorus dorsal vein database. 

Unimodal and multimodal experimental results are presented on all databases. 

Moreover, we propose a new multimodal method on palmprint, palm vein, and dorsal 

hand vein biometrics employing Feature-Level Fusion and Decision-Level Fusion 

techniques. Finally, the results are presented on six different datasets obtained from 

the aforementioned palmprint, palm vein, and dorsal vein databases. 

 

Keywords: Person Identification, Biometrics, Palmprint Biometrics, Palm Vein 

Biometrics, Dorsal Vein Biometrics, Information Fusion. 
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ÖZ 

21. yüzyılda insanlığı etkileyen en önemli şeylerden biri de güvenliktir. Birçok adli 

tıp ve devlet biriminin yüksek seviyede güvenlik sağlamak için güvenilir biyometri 

sistemleri vardır. Çoğu araştırmacı, güvenliği sağlamak ve kullanıcıların hayatını 

kolaylaştırmak için farklı biyometrik özellikler üzerinde çalışmışlardır. Bugünlerde, 

ele dayalı biyometrik özelliklerin yüksek potansiyeli göz önüne alındığında, el 

biyometrisinin geniş çaplı uygulamalar için tercih edilen bir seçenek olduğu 

gözlemlenmektedir. Ayrıca, el biyometrisi geniş çapta insan tanıma işlemi için 

birçok özellik içerir, toplum tarafından yaygın olarak kabul edilir ve güvenilirdir. Bu 

tezde, güvenilir, etkili ve doğru çalışan ele dayalı çoklu bir biyometri sistemi 

yaratmak için avuçiçi, avuçiçi damarları ve el üst damarları kullanılmıştır. Ana 

Bileşenler Analizi (PCA), Yerel ikili Örüntü (LBP), Ölçekten Bağımsız Öznitelik 

Dönüşümü (SIFT) ve Hızlandırılmış Sağlam Öznitelikler (SURF) gibi dört değişik 

öznitelik çıkarma yöntemi de insan tanıma için kullanılmıştır. Deneyler, CASIA 

avuçiçi veritabanı, Tongji avuçiçi damar veritabanı ve Bosphorus el üst damarları 

veritabanı üzerinde yapılmıştır. Tekli ve çoklu biyometriğe dayalı deney sonuçları 

tüm veritabanları üzerinde sunulmuştur. Buna ek olarak, Öznitelik-Seviyesi 

Kaynaşımı ve Karar-Seviyesi Kaynaşımı teknikleri kullanılarak,  avuçiçi, avuçiçi 

damarları ve el üst damarları birleştirilip, yeni çoklu bir yöntem önerilmiştir. Son 

olarak, bahsedilen avuçiçi, avuçiçi damarları ve el üst damarları veritabanlarından 

elde edilen altı farklı veri kümesi üzerinde sonuçlar sunulmuştur. 

 

Anahtar Kelimeler: Insan Tanıma, Biyometri, Avuçiçi Biyometrisi, Avuçiçi Damar 

Biyometrisi, El Üst Damar Biyometrisi, Bilgi Kaynaşımı. 



v 

 

ACKNOWLEDGMENT  

I wish to express my deepest gratitude to my family for their support, prayers, and 

for their proper upbringing with all that is needed to be a complete human morally, 

psychologically, and socially. Your efforts will not go in vain. 

I would also like to pay my special regards to my supervisor Prof. Dr. Önsen Toygar. 

It is whole-heartedly appreciated that your great advice for my study was a milestone 

in the completion of this project.  

Finally, I would like to recognize the invaluable assistance of my friends, and all the 

people who aided me throughout my journey. Your advice proved monumental 

towards the success of this study.   



vi 

 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................ iii 

ÖZ ............................................................................................................................... iv 

ACKNOWLEDGMENT .............................................................................................. v 

LIST OF TABLES ...................................................................................................... ix 

LIST OF FIGURES ..................................................................................................... x 

LIST OF ABBREVIATIONS .................................................................................... xii 

1 INTRODUCTION .................................................................................................... 1 

1.1 Statement of the Problem .................................................................................... 1 

1.2 Background on Hand-based Biometrics ............................................................. 2 

1.3 Background on Multimodal Hand-based Biometrics ......................................... 3 

1.4 The Work Done in This Thesis ........................................................................... 4 

2 LITERATURE REVIEW ......................................................................................... 6 

2.1 Palmprint ............................................................................................................. 6 

2.1.1 Holistic-based Palmprint Recognition Techniques ..................................... 7 

2.1.2 Local-based Palmprint Recognition Techniques ......................................... 8 

2.1.2.1 Coding-based Methods ........................................................................ 8 

2.1.2.2 Local-texture-descriptor-based Methods ............................................. 8 

2.1.2.3 Deep Learning-based Methods ............................................................ 9 

2.1.3 Comparison of Several Palmprint Recognition Studies .............................. 9 

2.2 Palm Vein .......................................................................................................... 11 

2.2.1 Geometry-based Palm Vein Recognition Methods ................................... 13 

2.2.2 Statistical-based Palm Vein Recognition Methods ................................... 14 

2.2.3 Local-invariant-based Palm Vein Recognition Methods........................... 15 



vii 

 

2.2.4 Appearance-based Palm Vein Recognition Methods ................................ 15 

2.2.5 Comparison of Several Palm Vein Recognition Studies ........................... 15 

2.3 Dorsal Hand Vein ............................................................................................. 16 

2.3.1 Comparison of Several Dorsal Hand Vein Recognition Studies ............... 17 

2.4 Multimodal Systems ......................................................................................... 19 

3 FEATURE EXTRACTION METHODS ................................................................ 22 

3.1 Principal Component Analysis (PCA) .............................................................. 23 

3.1.1 Standardization of the Data ....................................................................... 24 

3.1.2 Computing the Covariance Matrix ............................................................ 25 

3.1.3 Calculating the Eigenvectors and Eigenvalues .......................................... 25 

3.1.4 Computing the Principal Components ....................................................... 25 

3.1.5 Reducing the Dimensions of the Dataset ................................................... 26 

3.2 Local Binary Patterns (LBP) ............................................................................. 26 

3.3 Scale Invariant Feature Transformation (SIFT) ................................................ 29 

3.4 Speeded Up Robust Features (SURF) ............................................................... 32 

4 PROPOSED METHOD .......................................................................................... 36 

4.1 Preprocessing .................................................................................................... 37 

4.2 Feature Extraction ............................................................................................. 37 

4.3 Feature-Level Fusion ........................................................................................ 38 

4.4 Matching and Classification.............................................................................. 39 

4.5 Decision-Level Fusion ...................................................................................... 39 

5 DATABASES ......................................................................................................... 41 

5.1 Tongji Contact-less Palm Vein Dataset ............................................................ 41 

5.2 Bosphorus Hand Vein Database ....................................................................... 43 

5.3 CASIA Multi-Spectral Palmprint Image Database ........................................... 44 



viii 

 

6 EXPERIMENTAL RESULTS ................................................................................ 46 

6.1 Description of Experimental Setups ................................................................. 46 

6.2 Uni-modal Experiments .................................................................................... 47 

6.3 Multimodal Experiments with Feature-Level Fusion ....................................... 51 

6.4 Multimodal Experiments with Decision-Level Fusion ..................................... 52 

6.5 Proposed Multimodal Experiments with Feature-Level Fusion Incorporated 

with Weighted Decision-Level Fusion ................................................................... 53 

7 CONCLUSION ....................................................................................................... 59 

REFERENCES .......................................................................................................... 60 

 

  



ix 

 

LIST OF TABLES 

Table 1: Accuracy of palmprint methods in literature ............................................... 10 

Table 2: Accuracy of palm vein methods in literature ............................................... 16 

Table 3: Accuracy of dorsal hand vein methods in literature .................................... 18 

Table 4: Accuracy of multimodal methods vs unimodal methods in literature ......... 21 

Table 5: Different Training and Testing Sets used in the experiments ...................... 47 

Table 6: Unimodal experimental results using PCA algorithm ................................. 49 

Table 7: Unimodal experimental results using LBP algorithm ................................. 49 

Table 8: Unimodal experimental results using SIFT algorithm ................................. 50 

Table 9: Unimodal experimental results using SURF algorithm ............................... 51 

Table 10: Multimodal experiments using all four algorithms with feature-level fusion

 .................................................................................................................................... 52 

Table 11: Multimodal experiments using all four algorithms with Decision-Level 

Fusion ......................................................................................................................... 53 

Table 12: Experiments to determine the best feature extraction method with 

Decision-Level Fusion ............................................................................................... 56 

Table 13: Results of our proposed method, Multimodal experiments with Feature-

Level Fusion combined with Decision-Level Fusion along with weighted decisions.

 .................................................................................................................................... 58 

  



x 

 

LIST OF FIGURES 

Figure 1: Sample images of different hand-based biometrics including (a-b) dorsal 

hand vein samples, (c) two distinct fingerprint samples, (d-e-f) raw and cropped 

palmprint samples, (g) palm vein samples, (h) hand geometry samples. .................... 3 

Figure 2: A general multimodal biometric system based on palmprint and palm vein 4 

Figure 3: Sample 5x5 LBP window ........................................................................... 27 

Figure 4: Local Binary Patterns (LBP) procedure. .................................................... 27 

Figure 5: Model of LBP transformation pixels. P and R represent the distance of the 

sampling points from the center pixel and the number of the sampling points to be 

used, respectively. ...................................................................................................... 28 

Figure 6: One hundred strong keypoints within the image ........................................ 30 

Figure 7: Matched points between an object and its recognized figure in a larger 

image .......................................................................................................................... 31 

Figure 8: Demonstration of Laplacian of Gaussian approximation ........................... 33 

Figure 9: SURF orientation assignment illustration .................................................. 33 

Figure 10: SURF keypoints with their orientation assignments ................................ 34 

Figure 11: Contrast checking of SURF algorithm in matching stage ........................ 35 

Figure 12: Block diagram of the proposed method. .................................................. 36 

Figure 13: Sample images from the Tongji Palm Vein Database. ............................. 42 

Figure 14: ROI extraction. (a) Obtained keypoints for ROI extraction. (b) The final 

extracted ROI palm vein image. ................................................................................ 43 

Figure 15: Sample images from the Bosphorus Hand Vein Database ....................... 44 

Figure 16: Sample images from CASIA-MS-Palmprint Database ............................ 45 

Figure 17: Feature-Level Fusion Block Diagram ...................................................... 51 

file:///C:/Users/Abdolrahman/Desktop/Abdolrahman%20Farshgar_Thesis%20-%20Final%20Version_corrected%20-%20Right%20Format.docx%23_Toc51778576


xi 

 

Figure 18: Decision-Level Fusion Block Diagram .................................................... 53 

Figure 19: Feature-Level Fusion with Decision-Level Fusion Block Diagram......... 55 

Figure 20: Block Diagram of Feature-Level Fusion with Weighted Decision-Level 

Fusion of our multimodal proposed system ............................................................... 57 

  



xii 

 

LIST OF ABBREVIATIONS 

AE    Auto Encoder 

BSIF    Binarized Statistical Image Features 

CNN    Convolutional Neural Networks  

DL    Deep Learning 

DWT    Discrete Wavelet Transform 

IITD    IIT Delhi Touchless Palmprint Database  

LBP    Local Binary Patterns  

NIR    Near-Infrared 

PolyU II   PolyU Multispectral Palmprint Database  

RELM    Regularized Extreme Learning Machine  

SIFT     Scale-Invariant Feature Transform 

SVM    Support Vector Machine 

THUPALMLAB  Tsinghua 500PPIpalmprint Database  

WLD    Weber Local Descriptor 

  



1 

 

Chapter 1 

INTRODUCTION 

In recent years, with the ever-growing development of digital systems, more users 

are attracted to digital-based financial platforms and e-commerce. One of the most 

important challenges of these systems is security. Traditional methods of user 

authentication like knowledge-based and token-based methods had been used 

exhaustively up to now, but these old-fashioned methods cannot accommodate all the 

security requirements that are necessary for the ubiquity of brand-new online systems 

[1]. Biometric-based systems that are inherently more secure have been suggested as 

an alternative to automatically authenticate users [2]. Biometrics is an 

interdisciplinary concept which studies human biological unique traits by statistical 

analysis ways [3]. Human biometric traits can be categorized into extrinsic traits 

(fingerprint, palmprint, iris, etc.) and intrinsic traits (palm vein, dorsal hand vein, 

etc). While intrinsic traits are mostly subcutaneous and lie under human vessels 

which makes them generally more robust against counterfeits and identity thefts, 

extrinsic traits are more vulnerable to spoofing attacks since they are naturally more 

accessible [4].  

1.1 Statement of the Problem 

We used three biometrics in this thesis, namely, palmprint, palm vein, and dorsal 

hand vein and combined them for person identification. The main idea of choosing 

these three biometric modalities was to create an accurate biometric system which 

also provides high levels of security. To this end, we included Palmprint trait in our 
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system since it is a well-known biometric trait which accurate systems can be built 

based on it. However, Palmprint has a significant vulnerability against spoofing 

attacks. For instance, if someone holds a glass of water, his or her Palmprint will get 

left over the glass and it can be copied and replicated to attack a Palmprint-based 

biometric system. As a result, we decided to include not just one but two vein-based 

modalities to provide the security that we intended to have since vein-based systems 

are harder to be attacked and they also provide liveness detection. In this thesis, palm 

vein and dorsal hand vein modalities were both selected to be accompanied by 

palmprint.  

1.2 Background on Hand-based Biometrics 

Up to now, researchers have discovered several biometric traits that had been proven 

to be unique among individuals and are potentially suitable for human identification 

with hand-based biometrics, i.e. palmprint, palm vein, dorsal hand vein, hand 

geometry, etc. Hand-based traits have some innate attributes that make them slightly 

a better choice in comparison with other characteristics for the sake of their 

persistence over time, non-invasiveness due to not requiring very private information 

and substantially being acceptable by the public, and their feature-rich essence, thus 

leading to high-accuracy authentication [5, 6]. 

The acquisition of hand biometric information is also possible to be contact-less; 

therefore, this will enable self-positioning and convenience which also makes the 

procedure more secure as previous handprints on the acquisition devices cannot be 

replicated to perform spoofing attacks [7]. Also, since the users do not have to touch 

any surfaces, the operation is hygienic as well and potential contamination, grease, or 

water may not alleviate the ground truth of the presented biometric information [8]. 
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Figure 1 illustrates a few different samples images of hand-based biometrics.  

Figure 1: Sample images of different hand-based biometrics including (a-b) dorsal 

hand vein samples, (c) two distinct fingerprint samples, (d-e-f) raw and cropped 

palmprint samples, (g) palm vein samples, (h) hand geometry samples. 

1.3 Background on Multimodal Hand-based Biometrics 

The amalgamation of two or more biometric sources is called multimodal biometrics. 

Utilization of these systems can yield robustness, accuracy, and a decline in identity 

theft. Recently, these systems have gained lots of attention from the research 

community due to some challenges that unimodal systems are facing for 

identification [9]. 

Unimodal setups are cost-efficient because the information can be gathered by just 

one sensor, hence making the acquisition procedure easier, more user-friendly, and 

less computationally expensive. However, using only one biometric characteristic to 

identify an individual, generally limits the universality and the number of features 

that can be extracted and used for further processes. What is more, in real-life 
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applications, noisy information, partial occlusions, high intra-class variations, and 

inter-class similarities have intrigued researchers to exploit a collection of traits and 

fused them to fabricate a vigorous authentication system to be used for commercial, 

forensics, and personal purposes [10, 11].  

Figure 2 illustrates a general multimodal biometric system with the necessary steps 

required for a typical system to operate.  

Figure 2: A general multimodal biometric system based on palmprint and palm vein 

1.4 The Work Done in This Thesis 

We used four feature extraction methods, namely PCA, LBP, SIFT and SURF to 

acquire necessary information that were inside the three selected biometric 

modalities (i.e. palmprint, palm vein, and dorsal hand vein) to perform person 

identification experiments. Additionally, sample images of the selected biometric 

modalities were obtained from three publicly available databases. CASIA database 

was chosen for Palmprint, Tongji database for palm vein, and Bosphorus database 

for dorsal hand vein. 

The rest of the thesis is organized as follows. Literature review is discussed in 

Chapter 2. Four feature extraction methods used in this thesis are described in 

Chapter 3. Our proposed method is explained in Chapter 4. Details of the exploited 
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databases in this thesis are expanded in Chapter 5. Results of the conducted 

experiments are illustrated and explained in Chapter 6. Finally, Chapter 7 concludes 

the thesis with our findings.  
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Chapter 2 

LITERATURE REVIEW 

During the last two decades, researches have worked on many human biometric traits 

and have published many articles around this subject. Specifically, face and 

fingerprint have attracted more attention than any other biometric characteristics in 

the literature. This study is focused on hand-based biometric traits namely, 

palmprint, palm vein, and dorsal hand vein. Each one of these traits has its pros and 

cons that are discussed in the following sections.  

2.1 Palmprint 

Palmprint matching is a pattern recognition problem that relies on the unique palm 

surface features and yet another popular modality among researchers which enables 

high accuracy identification of individuals through a very easy and convenient 

acquisition procedure [8, 12]. Palmprint contains some of fingerprint intrinsic 

characteristics such as friction ridges, persistent and rich features, easy self-

positioning, and non-invasiveness which makes it a desirable choice for personal 

identification [7].  

There exist two different approaches in capturing palmprint samples from the users 

discussed in the literature based on whether users touch the sensors or keeping their 

hands at a distance in the acquisition stage. Contact-based methods can acquire user 

samples more accurately and prevent pose variations to some extent, but some 

factors like grease, water, and pressure level of the hand can create spurious lines and 
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wrinkles which can lead to misidentification, let alone the contamination problems 

that can cause hygiene issues for users. An alternative is to use a camera at a distance 

to capture palm images. This way, the acquisition procedure would be less 

constrained and even low cost and widespread cameras can collect user palm images. 

However, variations in holding out the hand and posing increase intra-class 

variations hence raise the need for more intense preprocessing and invariant robust 

feature extraction algorithms which in time reduces the overall performance of the 

system [6, 7]. 

Palm images that had been taken by low-resolution cameras with lower than 200dpi 

of precision are only suitable for extracting first-level features like lines and creases. 

On the other hand, more discriminant second-level features such as minutiae and 

ridges which are more reliable and potentially may result in more accurate matches 

can only be extracted from images with a resolution of more than 500dpi. Choosing 

the right resolution depends on the levels of accuracy and precision required for the 

task ahead. For instance, although, some forensic cases usually have to deal with 

degraded and distorted palm images left on the crime scenes which consequently can 

constraint the outcome of the biometric systems, with the help of robust and highly 

discriminative features, identifications suitable for a lawsuit can be conducted by 

utilizing second-level features [13].  

Two main palmprint recognition techniques have been introduced by previous 

research studies, Holistic-based and Local-based techniques that are discussed in the 

following subsections [7].  

2.1.1 Holistic-based Palmprint Recognition Techniques 

Images in the holistic-based techniques are projected to another sub-space 
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subsequent to feature extraction of the whole image to minimize the dimensionality 

of the feature vector. As for the shortcomings of the technique, blur, noise, and 

variations in the lightning induce palmprint distortions [7]. 

2.1.2 Local-based Palmprint Recognition Techniques 

Local-based recognition techniques are divided into three sub-categories as Coding-

based methods, Local-texture-descriptor-based methods, and Deep Learning-based 

methods. These categories are explained in the following subsections.  

2.1.2.1 Coding-based Methods 

In Coding-based methods, with the application of multiple filters on the palm 

images, orientation, phase, and magnitude of filter responses from the palm lines are 

coded into a simple and efficient representation. Later on, the results will be encoded 

into templates and then a global matching technique such as Hamming Distance is 

employed to compare templates for recognition and identification. Feature vectors in 

coding-based methods are small in size and to that end enable fast authentications. 

Nonetheless, as Hamming Distance algorithms that are used for matching, are 

sensitive to variations in rotations which makes them incapable of dealing with 

unconstrained contactless databases [7, 12].  

2.1.2.2 Local-texture-descriptor-based Methods 

Local-texture-descriptor-based methods try to code a one-dimensional feature vector 

which represents the biometric template given by the user with common descriptors 

that are robust against orientation, and geometric transformations. Finally, distance 

measure algorithms such as Euclidian Distance, Chi-Squared Distance, etc. are 

exploited for template matching. Among the most commonly implemented methods 

in the literature based on local-texture-descriptor, Scale-Invariant Feature Transform 

(SIFT), and Local Binary Patterns (LBP) can be mentioned.  
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Local-texture-descriptor-based methods can match unconstrained database images 

slightly better than coding-based methods since they account for pose variations but 

indeed, this will make their feature vector size relatively large and making the whole 

recognition and identification process slower accordingly. In short, because of the 

long comparison time, this method is not feasible for large-scale identifications [7, 

12].  

2.1.2.3 Deep Learning-based Methods 

In Deep Learning-based methods, Convolutional Neural Networks (CNNs) which are 

often entangled with supervised trained classifiers (e.g. Support Vector Machine 

(SVM) which is a supervised machine learning model) is utilized for extracting the 

palm image features. Later on, distance measure algorithms or some other classifiers 

compare the extracted biometric templates for matching. Unfortunately, classifiers 

used in this method are not originally trained for extracting palm specific features 

and they must be prepared in a supervised learning procedure [12]. 

2.1.3 Comparison of Several Palmprint Recognition Studies 

All in all, palmprint is a biometric trait that has strong stability and has features that 

are persistent and do not change noticeably over time thus accurate biometric 

systems can be built using palmprints. In Table 1, a few state-of-the-art research 

methods are compared based on their identification rates.  

Deshpande et al. [9] investigated palmprint recognition with the Discrete Wavelet 

Transform (DWT) feature extraction method to create an accurate palmprint 

recognition system based on the iterative weights optimization algorithm. Hezil and 

Boukrouche [11] investigated a multimodal biometric system with ear and palmprint 

using local texture descriptor methods which included some unimodal experiments 

on palmprint as well. The related results to palmprint unimodal experiments are 
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provided in Table 1. Genovese et al. [12] researched on a touchless palmprint 

recognition system and developed a novel method based on Convolutional Neural 

Networks (CNNs) with interpolation of Gabor filter responses. Genovese et al.’s 

proposed method not only yielded more uniform and accurate results than other 

conventional methods but also worked well against heterogeneous databases. 

Almaghtuf and Khelifi [14] investigated palmprint recognition with the SIFT feature 

extraction method on full and partial palmprint databases. The key idea in Almaghtuf 

and Khelifi’s research study is to remove false matched keypoints of the SIFT 

algorithm to increase the genuine recognition rates. Gumaei et al. [15] investigated a 

fast method to perform palmprint recognition based on Auto Encoder (AE) and 

Regularized Extreme Learning Machine (RELM) techniques. The main concept of 

Gumaei et al.’s proposed method is to cut down on the number of features that are 

describing a palmprint without degrading the quality and the accuracy of the whole 

system to provide more recognition speed. 

Table 1: Accuracy of palmprint methods in literature 
Reference No Database(s) Feature Extractor(s) Accuracy 

[9] 
Lab-made database 

COEP 
Proposed Modified DWT 

 

Lab-made database: 99.25% 

COEP: 99.20% 

 

[11] IITD 

LBP 

WLD 

BSIF 

LBP: 88.23% 

WLD: 66.46% 

BSIF: 97.73% 

 

[12] 

 

 

CASIA 

 

 

PalmNet-Gabor CNN 

 

99.77% 

 

[14] 

IITD 

PolyU II 

PolyU M_B 

THUPALMLAB 

SIFT-SGR 

IITD: 99.28% 

PolyU II: 97.67% 

PolyU M_B: 99.93% 

THUPALMLAB: 97.50% 

    

[15] MS-PolyU 
AE and RELM 

with NGist Descriptor 

Blue: 100% 

Green: 99.93% 

Red: 99.93% 

NIR: 99.70% 
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2.2 Palm Vein 

Palm vein is invisible interior biometric information that has attracted lots of 

attention because of the high levels of security that it can offer and the number of 

details that can be extracted and exploited for human identification [16]. 

The network of blood vessels is captured using near-infrared (NIR) camera and near-

infrared illumination because it is not fully visible to the human eyes as they lie 

under human skin. NIR light is absorbed by the blood hemoglobin, thus result in a 

dark pattern indicating vein structures. These structures are believed to be unique 

even among identical twins [1, 17]. 

Using palm vein for identification has lots of benefits including security, accuracy, 

user-acceptance, ease of acquisition, cost-efficient, and the last but not the least, 

liveness detection. Palm vein is secure because vein structures are subcutaneous and 

are not easily accessible like other external biometric traits let alone the fact that they 

can only be extracted using NIR illumination. Consequently, in general, it has anti-

counterfeit attack robustness which makes it harder for intruders to forge their access 

[17].  

Vascular patterns are a feasible choice to devise accurate systems since they contain 

a rich amount of details to produce plentiful features such as geometrical parameters 

of vein vessels like angle, length, and minutiae that can perform well in identification 

systems [17]. 

Acquiring palm vein samples does not need a complicated procedure and can be 

conducted via a low-cost camera while the hand is illuminated with NIR light in a 
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contactless sheltered environment; therefore, it is fast, simple, and convenient for the 

end-users. Besides, since the acquisition is contactless, environment conditions like 

wet hand surface, pollution, and scattering will not have any impact on the acquired 

samples and also contaminations will not be an issue for the users [16]. 

Palm vein can only be detected when the blood that is flowing in veins absorb the 

NIR light. Without blood flow and the liveness of the provided sample vein patterns 

will disappear. This fact will neutralize lots of intruder’s plans to attack vein-based 

systems with photos and not live samples [1].  

With all that being said, despite the benefits of using palm vein for classification and 

identification, it has some shortcomings that limit the performance of those systems. 

For instance, veins are not evenly positioned under the skin and the thickness of hand 

tissues varies in different parts. Skin scattering and optical blurring also have an 

adverse effect on vein detection. Subsequently, veins in the thinner parts are less 

detectable than in the thicker parts [1, 16]. 

In the literature, the issue of captured vein images being low-contrast has been 

discussed quite a lot and multiple solutions had been proposed to tackle this issue but 

still, it seems the problem persists and is open for further researches. Because palm 

vein images are captured with NIR illumination and with conventional camera 

sensors that only take 8-bit photos, typically images appear darker with low-contrast, 

and the full luminance dynamic range will be lost, but if too much illumination is 

used the images would become saturated. Another solution for having a uniform 

illumination is to customize the light for capturing each sample but since it contains 

modifications in the light sources for each acquisition, it is time-consuming [1].  
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Contrast enhancement techniques are yet another solution for low-contrast palm vein 

images that usually take place in the preprocessing stages. Even still, these methods 

are not very successful in recovering all the details that had been lost in the low-

contrast images because of underexposure or overexposure in the images. Some 

conventional contrast enhancement techniques are Histogram Equalization (HE), 

Contrast Limited Adaptive Histogram Equalization (CLAHE), Circular Gabor Filter 

(CGF), Local Ridge Enhancement (LRE), and High-Frequency Emphasis Filtering 

(HFE) [1, 17].  

The utilization of contrast enhancement methods is quite common in vein-based 

systems and it seems to be a fair reaction to deal with contrast problems. However, 

these techniques will sometimes produce spurious vein patterns that disrupt the 

performance of identification systems [17].  

Algorithms designed for palm vein detection must account for variations in the hand 

positioning and lightening conditions. Therefore, they have to ignore negligible 

features and avoid using spuriously created vein structures while detecting genuine 

veins.  

Conventional palm vein-based biometric techniques are divided into four categories 

as Geometry-based methods, Statistical-based methods, Local-invariant-based 

methods, and Appearance-based methods. These methods are explained in the 

following subsections.  

2.2.1 Geometry-based Palm Vein Recognition Methods 

These methods use point, line, curvature, and generally vascular structure features to 

represent palm veins and they are dependent on the estimation of palm vein point 
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data which must be calculated and extracted accurately in the region of interest 

segmentation stage in advance to perform precise pattern recognition and 

classifications. On one hand, skin scattering and blurring, and on the other hand, not 

very powerful vein detection capabilities under NIR illumination with low-contrast 

images will result in poor performance when using geometry-based methods for 

identification. They are also vulnerable to variations in the scaling, rotation, and hand 

displacements [17, 18].  

2.2.2 Statistical-based Palm Vein Recognition Methods 

Discriminative vein structures represented and recognized with mathematical 

statistics mean is used for pattern recognition in statistical-based methods. There 

exist two approaches that are commonly adopted in the literature, namely local and 

global statistics-based methods [18]. 

 

Local statistics-based methods consist of local discriminative features that are 

suitable for pattern comparisons. Among these methods, Local Binary Patterns 

(LBP), Local Derivative Pattern (LDP), Weber Local Descriptors (WLD), and their 

variations have extensively been utilized. Local statistics-based methods also suffer 

from variations in the scaling, rotation, and displacements and would not perform 

well under those conditions [18].  

 

On the other hand, Global statistics-based techniques exploit statistical information 

of invariant features and moments that are robust against scaling, rotation, and 

displacements. Nonetheless, texture information from some samples is not rich 

enough to produce highly accurate and distinguishable features for identification [16, 

18].  
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2.2.3 Local-invariant-based Palm Vein Recognition Methods 

Palm vein features that are locally invariant and robust against rotations and 

displacements are extracted using these methods. Scale-Invariant Feature Transform 

(SIFT) is a popular local-invariant-based method. Although it exhibits outstanding 

performance in touchless-based systems that the acquired samples usually include 

some pose variations while a specific hand holder is not utilized, it suffers from low 

speed. Additionally, the SIFT algorithm does not perform well when the resolution 

of samples is low [16, 18]. 

2.2.4 Appearance-based Palm Vein Recognition Methods 

Appearance-based methods that are also referred to as subspace methods take the 

image as a whole and use extracted coefficients of the subspace of veins as features 

for performing classification and pattern recognition. Principal Component Analysis 

(PCA) is a well-known example of these methods [18].  

2.2.5 Comparison of Several Palm Vein Recognition Studies 

Overall, despite all the challenges and problems that were discussed in the literature, 

selecting palm vein for creating a biometric system seems to be satisfactory and 

principled as it provides security, user convenience, and high accuracy if 

meticulously designed. Table 2 depicts some state-of-the-art methods along with the 

accuracy achieved using different feature extraction algorithms.  

Ahmad [4] investigated palm vein recognition through ways that preserved the 

privacy of users by using templates that were non-invertible which could prevent 

identity theft and could also be stored in small storage. Ahmad’s Wave Atom 

Transform (WAT) method was accurate while being lightweight with privacy-

preserving templates. Thapar [19] investigated contactless palm vein recognition 

with Deep Learning feature extraction methods on several trending palm vein 
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databases. Zhang [20] investigated palmprint and palm vein recognition based on 

Deep Convolutional Neural Network (DCNN) on a newly created large-scale lab-

made palm vein database (Tongji). Super Vector Machine (SVM) classifier was used 

for identification and Euclidian Distance method was utilized for recognition in 

Zhang’s proposed method to create a palmprint and palm vein recognition system 

which was more accurate than its predecessors.  

Table 2: Accuracy of palm vein methods in literature 
Reference No Database(s) Feature Extractor(s) Accuracy 

[4] PolyU Wave Atom Transform (WAT) 

 

98.78% 

 

    

[19] CASIA CNN-based PVSNet 85.16% 

    

    

[19] IITI CNN-based PVSNet 97.47% 

    

    

[19] PolyU CNN-based PVSNet 98.78% 

    

    

[20] Tongji DCNN-based PalmRCNN                 100% 

    

2.3 Dorsal Hand Vein 

In most of the vein-based biometric systems, the fundamental steps are pretty much 

the same that consists of the acquisition, feature extraction, classification, and 

matching. Dorsal hand vein-based systems are not an exception and all the steps used 

for creating these systems and different algorithms that researchers had used for 

enhancing the quality of images in the preprocessing stage and extracting and 

representing features for the identification phase had been already discussed in the 

previous sections.  
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Dorsal hand vein has to be captured in the presence of near-infrared illumination and 

CCD cameras that ensures the liveness of the samples. Liveness detection is major 

merit that has motivated numerous researchers to choose this biometric characteristic 

to study. Dorsal vein patterns that are not fully visible to human eyes are difficult to 

be replicated and forged, hence, it provides high security and anti-counterfeit 

capacity. Even so, NIR illumination makes captured images appear dark and with 

low-contrast that in time will restrict the performance of the identification system 

and makes it hard for feature extraction methods to represent and describe vein 

patterns to perform matching. In palm vein systems, researchers had used contrast 

enhancement techniques to improve the quality of the captured palm vein images, 

likewise, dorsal hand vein systems include a preprocessing stage to unify the 

illumination of acquired images and reduce the noise and contrast problems caused 

by near-infrared light.  

Deep Convolutional Neural Network (DCNN) is one of the feature extraction 

techniques that is extensively used in literature for representing dorsal hand veins 

which yields promising outcomes. However, DCNN requires large-scale databases to 

train its models and has lots of difficulties when dealing with small-size datasets 

which sometimes is the case with a dorsal hand vein. A way to address this problem 

is through using already trained models and transferring their knowledge to other 

systems, but this method has lots of implementation complexities that prevent 

researchers from adopting and deploying this approach in their systems [21]. 

2.3.1 Comparison of Several Dorsal Hand Vein Recognition Studies 

Different state-of-the-art techniques from literature are provided in Table 3 to 

illustrate the potential of dorsal hand vein-based systems and enable a quick 

comparison between different models.  
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Wang et al. [21] investigated dorsal hand vein recognition based on Deep 

Convolutional Neural Network (DCNN) with a novel Minutiae-based Weighting 

Aggression (MWA) method instead of other conventional methods since the features 

extracted with DCNN models from a network of blood vessels are sparse and hard to 

be accurately classified with a pre-trained DCNN model. Gupta et al. [22] 

investigated hand geometry and dorsal hand vein images taken with near-infrared 

(NIR) illumination to perform biometric identification. Gupta’s method includes a 

quality estimation stage that reduces the number of spurious features by putting less 

emphasis on pixels that contain hair or skin texture. Yüksel et al. [23] developed a 

Dorsal Hand Vein database with near-infrared (NIR) light and utilized three hand 

recognition schemes that were quite different in nature. Independent Component 

Analysis (ICA) and Non-negative Matrix Factorization (NMF) considered the whole 

image and applied two different subspace methods. The third scheme, Line Edge 

Map (LEM), is based on distances between the contours representing the hands, 

hence, it is shape-based. 

Table 3: Accuracy of dorsal hand vein methods in literature 
Reference No Database(s) Feature Extractor(s) Accuracy 

[21] Lab-made database DCNN 

 

96.81% 

 

    

[22] 
Palm Dorsal  

GPDS Vein 
Multi-scale matched filter and variational 98.15% 

    

[23] Bosphorus Independent Component Analysis (ICA) 97.33% 

    

    

[23] Bosphorus 
Non-negative Matrix Factorization 

(NMF) 
89.67% 

    

    

[23] Bosphorus Line Edge Map (LEM) 78.00% 

    

    



19 

 

2.4 Multimodal Systems 

To escalate the system performance and accuracy of unimodal biometric systems, 

multimodal systems had been proposed. Unimodal biometric systems have limited 

functionality since there are a certain number of features that can be extracted from a 

biometric trait and thus enhancing the accuracy and security of systems requires 

more efforts and more sophisticated algorithms and techniques which makes them 

not feasible or even slow to be used in real case scenarios. In addition, sometimes an 

individual cannot present a specific trait because of an injury or a disability that also 

restricts the functionality and the universality of the biometric system [3].  

By combining different biometric characteristics, more features will be available for 

extraction and representation which would help the matching and classification 

algorithms to perform better and grant more accurate conclusions on the identity of 

an individual. Furthermore, when users are challenged to present more than one 

biometric information, ingenuine models and attackers would have a hard time to 

infiltrate those systems and replicate all the necessary information to bypass the 

security protocols [11].  

In order to create hybrid systems, the results and features from single-mode 

biometrics should be fused together and this fusion must depict more efficient 

outcomes comparing with their former single modality origins. There are currently 

four types of fusions in literature, namely, Sensor-Level Fusion, Feature-Level 

Fusion, Score-Level Fusion, and Decision-Level Fusion [11].  

Table 4 demonstrates state-of-the-art methods and algorithms used on different 

modalities which further shows the power of multimodal systems over unimodal 
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systems. 

Hezil and Boukrouche [11] investigated a multimodal biometric system with ear and 

palmprint using local texture descriptor methods fused with Feature-Level Fusion 

that attained a one-hundred percent recognition rate. Gupta et al. [22] investigated 

hand geometry and dorsal hand vein images taken with near-infrared (NIR) 

illumination to perform biometric identification. Gupta et al.’s method includes a 

quality estimation stage that reduces the number of spurious features by putting less 

emphasis on pixels that contain hair or skin texture. Additionally, results from the ear 

and palmprint modalities were fused together at the Score-Level Fusion. 
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Table 4: Accuracy of multimodal methods vs unimodal methods in literature 
Reference No Database(s) Feature Extractor(s) Modality Accuracy 

     

[11] IIT Delhi-2 ear  Local Binary Patterns (LBP) Ear 95.02% 

     

[11] IIT Delhi Palmprint Local Binary Patterns (LBP) Palmprint 88.23% 

     

[11] 
IIT Delhi-2 ear and IIT Delhi 

Palmprint 
Local Binary Patterns (LBP) 

Multimodal 

Ear & Palmprint 
98.64% 

     

[11] IIT Delhi-2 ear Weber Local Descriptor (WLD) Ear 89.59% 

     

[11] IIT Delhi Palmprint Weber Local Descriptor (WLD) Palmprint 66.46% 

     

[11] 
IIT Delhi-2 ear and IIT Delhi 

Palmprint 
Weber Local Descriptor (WLD) 

Multimodal Ear & 

Palmprint 
96.03% 

     

[11] IIT Delhi-2 ear 
Binarized Statistical Image 

Features (BSIF) 

Ear 
98.90% 

     

[11] IIT Delhi Palmprint 
Binarized Statistical Image 

Features (BSIF) 

Palmprint 
97.73% 

     

[11] 
IIT Delhi-2 ear and IIT Delhi 

Palmprint 

Binarized Statistical Image 

Features (BSIF) 

Multimodal Ear & 

Palmprint 
100% 

     

[22] 
Palm Dorsal  

GPDS Vein 

Multi-scale matched filter and 

variational 

Palm dorsal vein 
98.15% 

     

[22] IITK-Pdv 
Multi-scale matched filter and 

variational 

Hand Geometry 
90.66% 

     

[22] GPDS Vein and IITK-Pdv 
Multi-scale matched filter and 

variational 

Multimodal Palm dorsal 

vein and Hand Geometry 
99.34% 
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Chapter 3 

FEATURE EXTRACTION METHODS 

The most complicated and difficult stage of biometric systems is the feature 

extraction method design. In this stage which happens right after preprocessing, we 

tend to find, localize, and represent the inherent features and information which lies 

in the captured images of the biometric traits. Some feature extraction methods try to 

represent the information by mathematical statistics means while others may try to 

extract texture information and make comparisons between similarities and 

differences of pixels or image frames. Choosing the right feature extraction method 

depends on many aspects such as the database being created in a controlled or 

uncontrolled environment, the scale of the database whether it is large or small, 

computational time and space complexity restrictions, the biometric modality used, 

etc. Consequently, when the researchers finish with previous steps they will be 

forced to choose feature extraction techniques that are suitable for their work. The 

methods have to bring high performance to their system and must be easy to 

implement and deploy.  

In this research, we decided to choose PCA among appearance-based feature 

extraction methods and LBP among texture-based methods and the last but not the 

least, SIFT and SURF from texture-based scale-invariant techniques. They will all be 

explained in the following sections.  
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3.1 Principal Component Analysis (PCA) 

PCA is one of the famous appearance-based methods that are also referred to as 

subspace methods that take the image as a whole and use extracted coefficients of the 

subspace of the images as features for performing classification and pattern 

recognition.  

PCA is based on correlations and dependencies between image features so it is really 

important to specify the features that are excessively related to each other as they are 

biased, and thus tend to lower the final functionality [24].  

Eigenvector and eigenvalues which are a prominent part of the PCA algorithm are 

produced using the covariance matrix. Eigenvalue depicts the fundamental integrants 

of the samples and eigenvector is a vector consisting of all eigenvalues. After 

creating the eigenvector, sorting the items according to their values in descending 

order has to be done as the greatest values indicate more important features and 

correlations. After rearranging data, all non-zero eigen vector values can be used to 

differentiate samples and find similarities or differences between enrolled images 

using a wide range of distance measurement techniques such as Manhattan distance 

or Euclidean distance methods [25].  

PCA summarizes data from a full set of variables into fewer variables by performing 

a specific alteration on them. The transformation is utilized in a way that linearly 

correlated variables alter into uncorrelated variables. Correlation indicates that there 

is redundancy in data. Data redundancy can be decreased; thus, information can be 

packed. For instance, if there is a pair of variables in the variable set which are 

highly correlated, then one variable can be removed from the pair because one 
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variable can be shown as the linear combination of the other. In such situations, PCA 

transfers the variance of the secondary variable into the first variable by rotation and 

translation of original axes and projecting data over new axes. The area of projection 

is defined using eigenvalues and eigenvectors. So, the first few transformed points 

(A.K.A  Principal Components) are rich with information, whereas the last features 

carry mostly noise with negligible data in them. This transferability hold the first few 

principal components; thus, decreasing the number of variables significantly with the 

least loss of data. Stages of PCA algorithm are described one by one in the following 

subsections. 

3.1.1 Standardization of the Data 

The first stage in the PCA algorithm is to perform the standardization of the data. It 

is evident that skipping on standardization will presumably result in biased results. 

Standardization is all about comparing the data in a way that all the variables and 

their contents lie within a similar range. An example related to the standardization of 

data is when there are two variables in a dataset; one has values differing between 

10-100, and the other one has values between 1000-5000. In such circumstances, it is 

evident that the production estimated by handling these predictor variables will be 

biased since the variable with a greater area will have a more visible influence on the 

outcome. Hence, standardizing the data into a similar range is essential. 

Standardization is carried out by deducting each variable value in the data from the 

mean and dividing it by the overall deviation in the dataset. It can be measured as 

follows: 

Z = 
𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒   −   𝑚𝑒𝑎𝑛

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
                           (3.1) 

where Z is the standardized variable, and in this way, all the variables in the data are 

balanced across a standard and comparable scale. 
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3.1.2 Computing the Covariance Matrix 

PCA identifies the correlation and dependencies between the features in a dataset. A 

covariance matrix reveals the correlation between the diverse variables in the dataset. 

It is necessary to identify heavily dependent variables because they carry biased and 

redundant information, which decreases the overall performance of the image. 

Mathematically, a covariance model is a p × p matrix, where p describes the 

dimensions of the dataset. Each entry in the pattern describes the covariance of the 

identical variables. Covariance matrix (C) is calculated as follows, where Z is 

standardized vector. 

𝐶 =  𝑍𝑍𝑇                   (3.2) 

3.1.3 Calculating the Eigenvectors and Eigenvalues 

Eigenvectors and eigenvalues are the mathematical constructs that are calculated 

from the covariance matrix to discover the principal components of the dataset. 

Eigenvalues, on the other hand, represent the scalars of the eigenvectors. Hence, 

eigenvectors and eigenvalues will be used to obtain the principal components of the 

dataset. 

3.1.4 Computing the Principal Components 

Once the eigenvectors and eigenvalues are calculated, they have to be sorted in 

descending order, because the eigenvector with the highest eigenvalue is the most 

important and thus forms the first principal component. The principal components of 

lesser importance can be excluded in order to decrease the dimensions of the data. 

The last step in calculating the Principal Components is to form a model known as 

the feature matrix that holds all the essential data variables that possess maximum 

information about the data. 
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3.1.5 Reducing the Dimensions of the Dataset 

The final step in applying PCA is to re-arrange the primary data with the final 

principal components, which describes the maximum and the essential information of 

the dataset. The maximum number of nonzero eigenvectors that can be used is equal 

to the number of images minus one in the training stage.  

3.2 Local Binary Patterns (LBP) 

LBP feature extraction method is considered to be one of the most famous texture-

based algorithms that can classify and recognize patterns between multiple images to 

a great degree of accuracy. Basically, this algorithm calculates pixel values according 

to their neighboring pixels and recreates a pattern in the processed images that makes 

them suitable for comparisons. LBP has some windows that will traverse the whole 

image and replace the central pixel of the windows based on the binarized values of 

its neighboring pixels. The window sizes can be 3x3 or 5x5 or etc. Whenever that a 

neighbor value is greater than the central pixel value that pixel will be assigned 1 and 

if not it will be assigned 0. Also, when the windows overflow the image edges the 

neighboring pixel values will be assumed to be 0. Then, the binarized values will 

form a decimal number that will replace the central pixel value and represent its 

intensity. This process will continue until all the pixels of the image are traversed 

[26, 27].  

Figure 3 shows a 5x5 sample LBP window. This method consists of one anchor point 

or so-called central pixel along with sixteen neighboring pixels. The neighboring 

pixels have to be binarized starting from 1 to 16. The zeros inside the matrix indicate 

the neutrality effect of those pixels on the result. In this thesis, we have exploited a 

5x5 LBP window because it was producing a better outcome rather than other 
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combinations. 

 

 

 

To perform identification or recognition based on LBP, processed images are 

compared with each other using similarity or different measurement techniques like 

it was explained in the PCA.  

The first computational level of the LBP is to build a central image that illustrates the 

original image in a better way by highlighting the prominent components of the 

image. To do so, the algorithm uses a sliding window based on the parameters such 

as radius and adjacency. Figure 4 shows LBP procedure on a palmprint image. 

Figure 3: Local Binary Patterns (LBP) procedure. 

The LBP procedure can be described as follows. A section of the sample image is 

selected as a window of 3x3 pixels. It can also be described as a 3x3 matrix 

(including the intensity of each pixel, which is from 0 to 255). Then, it is required to 

hold the central value of the matrix to be applied as a threshold. This value will be 

Figure 3: Sample 5x5 LBP Window 
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used to set new values from the eight neighbors. For each neighbor of the central-

value (threshold), a new binary value is initiated. For values similar to or higher than 

the threshold 1 and for values below the threshold 0 will be set. At the end of this 

stage, the matrix will carry only binary values. By concatenating each binary value 

from their locations on the matrix (e.g., 10001101) and then transforming this binary 

value to a decimal value, the new central value of the matrix which is genuinely a 

pixel from the original image will be calculated. The LBP stages above result into a 

new model that represents the characteristics of the original image in a better way. 

Figure 5 shows different possible number of adjacent blocks that can be selected.  

Using the model created in LBP feature extraction for each pixel as shown in Figure 

4, the image can be split into multiple grids. The histogram of each region can be 

obtained as follows: each histogram (from each grid) will carry only 256 positions 

(0~255), since the image is in grayscale,  serving the occurrences of any pixel 

intensity Then, it is required to concatenate each histogram to generate a new and 

larger histogram.  

 

Figure 4: Model of LBP transformation pixels. P and R represent the distance of 

the sampling points from the center pixel and the number of the sampling points 

to be used, respectively. 
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In the recognition stage, histograms built based on the previous instructions are used 

to draw each model from the training dataset. So, given an input image, previous 

steps must be completed again for this new image to create a histogram that 

represents the image. Consequently, to find the model that matches the input image, 

it is required to match two histograms to return the image with the most resembling 

histogram. Different distance measures can be utilized to compare the histograms 

(calculate the distance between two histograms), for example, Euclidean distance, 

chi-square, absolute value, etc. In this thesis, Manhattan distance is used. The output 

of the algorithm is the ID from the model with the closest histogram.  

3.3 Scale Invariant Feature Transformation (SIFT) 

SIFT is a powerful invariant-based feature extraction method that can perform well 

in the presence of uncontrolled environment conditions such as pose variations. The 

author, David G. Lowe, has come up with a method to obtain distinctive key points 

and features from an image that are robust to image scale and variations, and also 

matching between images and object recognition can be done with the help of these 

features. This distinctiveness among key points is achieved by assembling a high-

dimensional vector representing the image gradients within a local region of the 

image [28].  

The algorithm can be broken down into four major steps: 

1. Feature point (keypoint) detection 

2. Keypoint localization 

3. Orientation assignment 

4. Feature descriptor generation. 
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A keypoint is a characteristic of an object that only is meaningful at a certain scale or 

orientation. Figure 6 shows one hundred strong keypoints of the image.  

SIFT includes a feature detector and a feature descriptor. The detector extracts from 

an image a collection of frames or key points. These are oriented disks attached to 

structures of the image. The frames are covariant, in a way that they track image 

rotations and scalings. The effect of such transformations can then be undone by 

canonization, which is by warping the frames to a canonical disk. The descriptor is 

the statistics of the gradients of the frame. As a result of canonization, the descriptors 

are invariant to translations, rotations, and scalings of the image. Because of their 

statistical nature, they are also pretty robust to other sources of noise as well [28]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: One hundred strong keypoints within the image 

The highly discriminative key points that are extracted using the SIFT algorithm can 

be used to accurately match images from a large database of key points. The key 

points have been shown to be invariant to image rotation and scale and robust across 

a range of distortion, noise, and illumination [28]. 
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Despite the spectacular performance of the SIFT method, it has some drawbacks that 

have to be considered and dealt with accordingly. Image gradient magnitude and 

orientations are sampled around the keypoint location, which uses the scale of the 

key point to select the level of Gaussian blur for the image. The orientation of the 

histogram is also used for the same reason. But generally, it does not work well with 

lighting changes and blur. Additionally, the SIFT keypoint and feature detection 

algorithm is computationally expensive and takes a long time to be extracted, 

therefore; it is not meant to be used for real-time purposes and only works for 

greyscale images. Another yet challenging problem of SIFT is that some keypoint 

pairs may mistakenly mismatch with each other which will later increase the false 

acceptance rate (FAR) of the biometric system substantially [28].  

Figure 7 is a sample of the way that the SIFT algorithm finds the keypoints and 

matches them together.  

Figure 6: Matched points between an object and its recognized figure in a larger 

image 
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3.4 Speeded Up Robust Features (SURF) 

In the previous section, the SIFT algorithm introduced, and among its drawbacks, 

low speed was very noticeable. SURF algorithm is mostly similar to its predecessor, 

SIFT with some small changes that have made the method to detect and match the 

keypoints way faster. This will enable the method to be used in real-time scenarios 

that require a short time for the matching process to be performed. SURF utilizes 

square-like filters as an estimation of Gaussian smoothing, while the SIFT method 

integrates cascaded filters to identify scale-invariant points. SURF can have a fast 

computation of operators using box filters [29].  

In SIFT, Lowe [28] approximated Laplacian of Gaussian (LOG) with Difference of 

Gaussian for finding scale-space. SURF goes a little further and approximates LoG 

with Box Filter. Below Figure 8 shows a demonstration of such an approximation. 

One big advantage of this approximation is that, convolution with box filter can be 

easily calculated with the help of integral images. And it can be done in parallel for 

different scales. Also the SURF rely on determinant of Hessian matrix for both scale 

and location. 
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Figure 7: Demonstration of Laplacian of Gaussian approximation 

Like SIFT method, SURF also has orientation assignment step. For orientation 

assignment, SURF uses wavelet responses in horizontal and vertical direction for a 

neighborhood of size 6s. Adequate Gaussian weights are also applied to it. Then they 

are plotted in a space as given in Figure 9. The dominant orientation is estimated by 

calculating the sum of all responses within a sliding orientation window of angle 60 

degrees. Interestingly, wavelet response can be find out using integral images very 

easily at any scale. For many applications, rotation invariance is not required, so 

there is no need of finding this orientation, which speeds up the process.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8: SURF orientation assignment illustration 
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Similar to SIFT, SURF also has feature description step, and thus SURF uses 

Wavelet responses in horizontal and vertical direction (again, use of integral images 

makes things easier). A neighborhood of size 20sX20s is taken around the keypoint 

where s is the size. It is divided into 4x4 subregions. For each subregion, horizontal 

and vertical wavelet responses are taken and a vector is formed like this: 

𝑣 = (∑ 𝑑𝑥, ∑ 𝑑𝑦, ∑|𝑑𝑥|, ∑|𝑑𝑦|)                  (3.3) 

The SURF feature descriptor vector will have total of 64 dimensions. The lower the 

dimension, the higher the speed of computation and matching, but higher feature 

descriptor vector dimension provides better distinctiveness of features. Figure 10 

shows detected keypoints with SURF algorithm along with their orientation 

assignment on a sample picture.  

 

 

 

 

 

 

 

Figure 9: SURF keypoints with their orientation assignments 

Another important improvement in SURF method over SIFT method is the use of 

sign of Laplacian (trace of Hessian Matrix) for underlying interest point. It adds no 

computation cost since it is already computed during detection. The sign of the 

Laplacian distinguishes bright blobs on dark backgrounds from the reverse situation. 

In the matching stage, we only compare features if they have the same type of 

contrast as shown in Figure 11. This minimal information allows for faster matching, 
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without reducing the descriptor’s performance. 

 

 

Figure 10: Contrast checking of SURF algorithm in matching stage 

Overall, SURF adds a lot of features to improve the speed in every step. Analysis 

shows it is three times faster than SIFT while performance is comparable to SIFT. 

SURF is good at handling images with blurring and rotation, but not good at 

handling viewpoint change and illumination change. 
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Chapter 4 

PROPOSED METHOD 

The proposed method employed in this thesis has four fundamental parts namely, 

pre-processing, feature extraction, matching, and classification. Figure 12 shows a 

graphical depiction of the sequential steps. Detailed mechanism of the adopted stages 

is given below.  

Figure 11: Block diagram of the proposed method. 
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4.1 Preprocessing  

Pre-processing is a significant phase in any biometric system. In this study, pre-

processing algorithms are employed according to each feature extraction method that 

is going to be used to reduce noise, blur, and adjust the size of images to a proper 

scale and make the input images ready for the next step which is feature extraction.  

Next, based on the feature extraction method selected in this phase, training and 

testing images will both undergo certain operations for their inherent features to be 

extracted as biometric templates.  

Later on, these templates will be matched together using Euclidian Distance or 

Manhattan Distance measurement techniques according to the selected feature 

extraction method for finding the percentage of individuals who have been identified 

truly by the system.  

All the above stages are somewhat common between unimodal biometric systems to 

perform matching and identification. In this thesis study, since three different 

biometric modalities have to be considered and matched together, the results from 

each modality must be fused with others to come up with a unanimous decision to 

determine the success or failure of the identification. Among the available fusion 

techniques, Feature-Level, and Decision-Level Fusions are selected and utilized to 

combine the unimodal results.  

4.2 Feature Extraction  

In image processing, feature extraction starts from an initial set of measured data and 

builds derived values (features) intended to be informative and non-redundant, 

facilitating the subsequent learning and generalization steps, and in some cases 
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leading to better human interpretations. Feature extraction is related to 

dimensionality reduction. When the input data to an algorithm is too large to be 

processed and it is suspected to be redundant then it can be transformed into a 

reduced set of features (also named a feature vector). Determining a subset of the 

initial features is called feature selection. The selected features are expected to 

contain the relevant information from the input data, so that the desired task can be 

performed by using this reduced representation instead of the complete initial data. 

In this research, we decided to choose PCA among appearance-based feature 

extraction methods and LBP among texture-based methods and the last but not the 

least, SIFT and SURF from invariant-based techniques. 

4.3 Feature-Level Fusion  

Many multimodal biometric systems have used Feature-Level Fusion that is 

accomplished before matching extensively to combine feature sets extracted from 

different sources. The amalgamation of two or more feature sets in the Feature-Level 

fusion will result in a new consolidated feature vector that can represent the 

information of an individual more comprehensively and remove some limitations of 

a unimodal system [30]. 

Feature-level Fusion does not require the biometric system to be modified or 

normalized. However, it is still hard to be performed especially when the nature of 

utilized biometric modalities that are to be combined are very different from each 

other. In that case, multi-dimensional feature vectors can be created to combine 

different varieties. Additionally, Feature-Level Fusion encodes features together 

instead of primary training features and that creates some insubstantial, noisy, 
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redundant data, and ignores some relationships between features that impact the 

performance of the system adversely [11, 31]. 

4.4 Matching and Classification 

Biometric matching and classification refer to the process of the degree of match 

(usually in the form of a match score) between two biometric signatures, one usually 

collected at the biometric enrollment stage and the other collected at the biometric 

verification or identification stage. Biometric matching is a critical component in 

biometric recognition systems. Biometric recognition systems encompass both 

biometric verification systems (that compare a presented test biometric signature to 

an enrolled signature corresponding to a claimed identity) and biometric 

identification systems (where a presented test biometric signature is compared to 

several stored signatures in order to determine the identity of the test subject).  

4.5 Decision-Level Fusion  

Decision-level Fusion which is also called abstract-level fusion is the easiest fusion 

that can be implemented to combine the individual decisions resulted from matchers 

succeeding the matching stage among all other fusion techniques. The fusion at the 

Decision-Level is carried out by the help of some rules such as AND, OR, Bayesian, 

and Majority voting. The most common method is majority voting to evaluate the 

final decision since it is not obligatory to have prior knowledge about the individual 

matchers [30].  

Decision-Level Fusion only yields straight to the point final decision about the 

combination of the biometric modalities and does not provide lots of other 

information and that makes it undemanding to implement [30]. 
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Another decision-making technique that can be used with this fusion method is the 

weighted majority voting. This compound technique first collects the decisions 

coming from different matchers, then, based on the veracity and precision of 

individual decisions it assigns a weight to each of them to escalate the accuracy of 

the final decision.  

 

 

 

 

  



41 

 

Chapter 5 

DATABASES 

Three benchmark databases for each selected biometric modality, namely palmprint, 

palm vein, and dorsal hand vein, are used in this thesis. The number of subjects and 

samples per individuals in all three databases are different, to that end, a collection of 

images from the benchmark databases were selected to create a more homogeneous 

and balanced dataset of images to carry out experiments specifically for multimodal 

observations. In the following sections, all three databases are discussed in detail. 

5.1 Tongji Contact-less Palm Vein Dataset 

Tongji is a large-scale contact-less palm vein database created by researchers of the 

Tongji University in Shanghai, China. There was not an abundance in publicly 

available large-scale palm vein databases while the researchers were working on 

their palm-vein-based biometric systems. Therefore, they decided to construct a 

large-scale database of individuals’ palm vein images using their convenient contact-

less self-manufactured acquisition device. With irradiation of NIR light to palm 

surfaces, some black lines appear which represent veins under the palm skin. Then a 

camera can take the picture of NIR illuminated palm surfaces to acquire the essential 

samples [20].  

The database embraces 12,000 palm vein images from 600 different palms taken in 

two distinct sessions with a two-month time interval between each session. 300 

volunteers including 192 males and 108 females had presented their biometric 
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information for the creation of this database. Most of the samples (235 individuals) 

belong to subjects aged between 20 to 30 and the rest belong to people between 30 to 

50 years old. Each subject’s palm was captured 10 times in each session. That is to 

say, 40 images were collected from two palms of each subject. The resolution of 

taken images is 800 × 600 pixels [32]. 

Two sample images from the Tongji Palm Vein database is provided in Figure 13.  

Figure 12: Sample images from the Tongji Palm Vein Database. 

Since the hand images of Tongji palm vein database are taken in a contact-less 

manner, pose variations of different samples of each individual result in high intra-

class variations which can restrict the efficiency of the feature extraction stage. 

Therefore, palm vein images have to be carefully aligned and their ROI have to be 

extracted to be ready for further operations. For that reason, a ROI of 128 × 128 has 

been extracted from original palm vein images to account for geometrical 

transformations by the authors [20]. 

Figure 14 depicts the way that researchers extracted the region of interest on the 

whole palmprint image.  



43 

 

 

Figure 13: ROI extraction. (a) Obtained keypoints for ROI extraction. (b) The final 

extracted ROI palm vein image. 

5.2 Bosphorus Hand Vein Database 

Bosphorus hand vein database, created by researchers at the Boğaziçi University 

located on the European side of the Bosphorus strait in Istanbul, Turkey, contains 

1575 images of 100 individual’s dorsal hand veins (41 female and 59 male subjects). 

To capture database images, the researchers have illuminated subject’ hands with 

two IR lights and then used a near-infrared CCD camera equipped with an infrared 

lens for acquisition. The resolution of images is 300 × 240 pixels stored in 8-bit grey-

scale format with .bmp extension [23].  

Images in the database have been taken under different circumstances to provide 

cover for different scenarios in real-life applications. Most of the images have been 

acquired from the left dorsal hand of volunteers except a small set comprising 3 

samples per each subject from the right dorsal hand under normal circumstances. 

Similarly, there is a set of 3 samples per each subject taken under normal conditions 

from the left dorsal hand. Additionally, researchers have made the volunteers hold a 

bag weighted 3 kilograms for one minute, applied a pack of ice to the back of their 

hands, and in another case, they have made subjects to squeeze an elastic ball for one 

(a) (b) 
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minute before the acquisition of some samples distinctively to create variety but in 

the same way by taking 3 samples from each subject. There is also another set 

devoted to 25 number of volunteers that had come back after 3-5 months after the 

first acquisition stage to give their hand vein biometric information to create a dataset 

with a time interval from the first group [33].  

Figure 15 shows a few sample images from the Bosphorus Hand Vein database.  

Figure 14: Sample images from the Bosphorus Hand Vein Database 

5.3 CASIA Multi-Spectral Palmprint Image Database 

CASIA Multi-Spectral Palmprint Image Database V1.0 (or CASIA-MS-Palmprint-

V1.0 for short) comprises 7200 palm images from 100 individuals. The Chinese 

Academy of Sciences’ Institute of Automation (CASIA) created the multi-spectral 

palmprint database captured under six different electromagnetic spectrum 

wavelengths ranging from the visible light spectrum to infrared i.e. 460nm, 630nm, 

700nm, 850nm, 940nm, and white light. Images are all 8-bit grey-scale with a 

resolution of 768 × 576 pixels with JPEG extension [34].  

Six groups of LEDs were utilized to irradiate the subject’ palm hands and the 

reflection of the lights representing the structure of palm was captured with a NIR 

CCD camera in a sheltered environment to prevent illumination variations with no 
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hand-holder in a contact-less manner to avoid possible contaminations and provide 

better hygienic practices. The database images were taken from subjects in two 

separate sessions with a one-month time interval. In each session, 3 images for each 

mentioned electromagnetic spectrum wavelength were taken from the left palm of 

volunteers and similarly 3 images from their right palms while allowing some pose 

variations in capturing images [35].  

Figure 16 illustrates a few sample images from the CASIA-MS-Palmprint database.  

Figure 15: Sample images from CASIA-MS-Palmprint Database 
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Chapter 6 

EXPERIMENTAL RESULTS 

6.1 Description of Experimental Setups  

Experiments were conducted on a Computer running a Core-i7 CPU using both 

MATLAB and Python programming languages to code feature extraction methods. 

PCA and LBP based methods were implemented using MATLAB while SIFT and 

SURF based methods were coded in Python by interpolating OpenCV Python 

Library V4.3.0. 

Two virtual datasets from palmprint, palm vein, and dorsal hand vein databases were 

created to perform experiments. There are 100 individuals in both datasets that each 

of them has three different samples from all three databases.  

For building the first dataset, from the CASIA palmprint database, three left-hand 

palmprints were selected among images that were captured with the help of 460nm 

electromagnetic spectrum wavelength lights from the first session of the acquisition 

stage. And, from the Tongji palm vein database, for each subject, three samples were 

selected from the first session. Finally, from the Bosphorus dorsal hand vein 

database, three samples were chosen among left dorsal hand vein images of subjects 

taken under normal conditions. 

Similarly, for building the second dataset, from the CASIA palmprint database, three 
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right-hand palmprints were selected among images that had been captured with the 

help of 460nm electromagnetic spectrum wavelength lights from the first session of 

the acquisition stage. And, from the Tongji palm vein database, for each subject, 

three samples were selected from the second session. Finally, from the Bosphorus 

dorsal hand vein database, three samples were chosen among right dorsal hand vein 

images of subjects taken under normal conditions. 

After the creation of virtual datasets, we needed to decide on which samples should 

be used for training and which samples should be used for testing. To cover all 

possible scenarios and define the best compound of training and testing sets, we 

tested all possible combinations of the samples and named the subsets accordingly to 

facilitate their usage and increase readability. Table 5 demonstrates different training 

sets used in the experiments. 

Table 5: Different Training and Testing Sets used in the experiments 
Set No Training Sample Numbers Testing Sample Number Virtual Dataset No 

    

Set #1 Sample 1 & Sample 2 Sample 3 Dataset 1 

    

Set #2 Sample 1 & Sample 3 Sample 2 Dataset 1 

    

Set #3 Sample 2 & Sample 3 Sample 1 Dataset 1 

    

Set #4 Sample 1 & Sample 2 Sample 3 Dataset 2 

    

Set #5 Sample 1 & Sample 3 Sample 2 Dataset 2 

    

Set #6 Sample 2 & Sample 3 Sample 1 Dataset 2 

    

     

6.2 Uni-modal Experiments 

For this thesis, four different feature extraction methods are selected, that is to say, 
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PCA, LBP, SIFT, and SURF. These four algorithms have been tested on three 

modalities i.e. palmprint, palm vein, and dorsal hand vein. For each selected 

biometric modality one database has been assigned. As a result, we have conducted 

twelve different unimodal experiments on each database using all four feature 

extraction methods to test out their potential and capabilities and to determine the 

future steps and decisions.  

In the following tables, the results of all the experiments have been provided. Some 

database names are used in the tables that each of them is related to a specific 

biometric trait:   

• Tongji database is related to palm vein 

• Bosphorus database is related to dorsal hand vein 

• CASIA database is related to palmprint. 

Table 6 indicates three unimodal experiments conducted on all three biometric 

modalities, namely, palm vein, dorsal hand vein, and palmprint using the PCA 

algorithm. While the PCA algorithm has performed very well on the Tongji database 

(i.e. palm vein images), it has had a hard time identifying Bosphorus database images 

related to dorsal hand vein samples because the images inside the Bosphorus 

database have a low resolution and the presence of near-infrared light to indicate 

veins has made them blurred and has further decreased their quality. The results of 

identification rates of the PCA algorithm on palmprint images are again not very 

impressive and peaked at about 51% for the first set of training and testing samples.  
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Table 6: Unimodal experimental results using PCA algorithm 

Experimental Setup Set #1 Set #2 Set #3 Average 1-3 Set #4 Set #5 Set #6 Average 4-6 

         

Unimodal PCA on Tongji 82% 90% 83% 85% 61% 73% 67% 67% 

         

Unimodal PCA on Bosphorus 14% 16% 15% 15% 21% 28% 27% 25.33% 

         

Unimodal PCA on CASIA 51% 46% 46% 47.66% 42% 46% 27% 38.33% 

         

Table 7 depicts the outcome of the LBP algorithm on all three modalities. LBP has 

shown outstanding performance on the Tongji database with one hundred percent 

accuracy. Similarly, CASIA database samples were identified to a satisfactory rate 

and topped at 82%, but again the dorsal hand vein image identification results are 

still very low with the LBP method since the Bosphorus database images have been 

degraded while captured using the near infrared light and the image blurs prevent the 

necessary features to be extracted using the LBP extraction technique.  

Table 7: Unimodal experimental results using LBP algorithm 

Experimental Setup Set #1 Set #2 Set #3 Average 1-3 Set #4 Set #5 Set #6 Average 4-6 

         

Unimodal LBP on Tongji 100% 100% 100% 100% 100% 100% 100% 100% 

         

Unimodal LBP on Bosphorus 21% 21% 23% 21.66% 26% 30% 32% 29.33% 

         

Unimodal LBP on CASIA 74% 82% 66% 74% 74% 79% 62% 71.6% 

         

Table 8 demonstrates the experimental results of the SIFT feature extraction method 

on our selected unimodal biometric traits. The algorithm has shown more 
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consistency in results than the other two previous methods and almost all database 

samples have been identified to a satisfactory degree. CASIA database images have a 

higher resolution and the samples belonging to this database had been better 

identified by the SIFT algorithm since more keypoints can be found in larger images 

in comparison with low-resolution images. The experimental results related to the 

Tongji database with SIFT is similar to PCA but lower than LBP. However, SIFT 

has proved to be efficient on the Bosphorus database while PCA and LBP were not 

able to have better results than 29.33% on average of the identification rate.  

Table 8: Unimodal experimental results using SIFT algorithm 

Experimental Setup Set #1 Set #2 Set #3 Average 1-3 Set #4 Set #5 Set #6 Average 4-6 

         

Unimodal SIFT on Tongji 85% 87% 87% 86.33% 71% 81% 77% 76.33% 

         

Unimodal SIFT on Bosphorus 70% 66% 77% 71% 69% 77% 82% 76% 

         

Unimodal SIFT on CASIA 97% 96% 93% 95.33% 91% 97% 92% 93.33% 

         

Table 9 is related to all unimodal experiments conducted on all three modalities 

using the SURF feature extraction algorithm. The results for palm vein and palmprint 

identifications are higher than those in the SIFT table, but the dorsal hand vein 

identification rates are a bit lower than the previous method. Also, the SURF 

algorithm was way faster than the SIFT algorithm and the experiments with SURF 

were less computationally expensive which was a noticeable change while 

conducting the experiments.  
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Table 9: Unimodal experimental results using SURF algorithm 

Experimental Setup Set #1 Set #2 Set #3 Average 1-3 Set #4 Set #5 Set #6 Average 4-6 

         

Unimodal SURF on Tongji 91% 97% 96% 94.66% 81% 89% 82% 84% 

         

Unimodal SURF on Bosphorus 49% 51% 56% 52% 60% 64% 72% 65.33% 

         

Unimodal SURF on CASIA 100% 99% 92% 97% 95% 97% 92% 94.66% 

6.3 Multimodal Experiments with Feature-Level Fusion  

After conducting all the unimodal experiments, it was about time to choose a fusion 

technique to accumulate the results and create the multimodal hybrid system. All 

three modalities were fused together using Feature-Level Fusion within the selected 

feature extraction algorithms to again determine the best method out of the 

experiment results. 

Figure 17 illustrates the block diagram of the Feature-Level Fusion stages conducted 

in our tests.  

 

Figure 16: Feature-Level Fusion Block Diagram 

Table 10 shows multimodal experiment results using PCA, LBP, SIFT, and SURF 
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with Feature-Level Fusion on all datasets. The table depicts that the PCA method has 

the worst results among all and is not a feasible choice for performing Feature-Level 

Fusion in creating a multimodal system based on it with respect to our selected 

modalities. On the other hand, LBP has shown significant results and all the 

outcomes of the LBP-based experiments seem to be stable and well above all others. 

SIFT and SURF methods are also appropriate with SURF performing better than 

SIFT in this area with close results on the first virtual dataset but with a slight 

reduction in performance in the second virtual dataset in comparison with LBP. 

Table 10: Multimodal experiments using all four algorithms with feature-level fusion 

Experimental Setup Set #1 Set #2 Set #3 Average 1-3 Set #4 Set #5 Set #6 Average 4-6 

         

Multimodal PCA 42% 43% 36% 40.33% 45% 52% 36% 44.33% 

         

Multimodal LBP 98% 100% 100% 99.33% 98% 99% 95% 97.33% 

         

Multimodal SIFT 85% 87% 87% 86.33% 71% 81% 77% 76.33% 

         

Multimodal SURF 91% 97% 96% 94.66% 81% 89% 82% 84% 

         

6.4 Multimodal Experiments with Decision-Level Fusion 

To further test out all the possibilities of our system, we decided to perform 

Decision-Level Fusion on three modalities as well with the majority voting to fuse 

the decision results of individual decisions to form a multimodal system.  

Figure 18 illustrates Decision-Level Fusion stages performed in our tests. 
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Figure 17: Decision-Level Fusion Block Diagram 

As indicated in Table 11, the PCA feature extraction method still falls behind other 

methods and LBP, SIFT, and SURF methods are at a close range to each other with 

some fluctuations within different testing sets.  

Table 11: Multimodal experiments using all four algorithms with Decision-Level 

Fusion 

Experimental Setup Set #1 Set #2 Set #3 Average 1-3 Set #4 Set #5 Set #6 Average 4-6 

         

Multimodal PCA 66% 60% 54% 60% 53% 58% 51% 54% 

         

Multimodal LBP 78% 80% 75% 77.66% 82% 86% 79% 82.33% 

         

Multimodal SIFT 85% 87% 87% 86.33% 71% 81% 77% 76.33% 

         

Multimodal SURF 91% 97% 96% 94.66% 81% 89% 82% 84% 

         

6.5 Proposed Multimodal Experiments with Feature-Level Fusion 

Incorporated with Weighted Decision-Level Fusion 

After witnessing the results from Feature-Level Fusion and Decision-Level Fusion 

techniques, we decided to escalate the stability and accuracy of our system with not 

just one fusion technique and combine both Feature-Level and Decision-Level 

Fusions together to form our proposed method.  
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First, we again tested Feature-Level Fusion on a combination of modalities by 

selecting each time two distinct traits and calculating their identification results using 

a distinct feature extraction technique. There are four different selected feature 

extraction techniques in this thesis and there is a three possible combination of 

different mixtures of databases which results in twelve different experiments that we 

conducted to determine the best feature extraction method among all of them.  

As a result, three separate identification experiments were conducted on 

combinations of the databases. Each time, two distinct modalities were chosen and 

all the template features in the feature extraction stages were fused together to form a 

consolidated template using Feature-Level Fusion to produce an independent 

decision. Then, all three independent decisions resulted from the experiments were 

combined through a Decision-Level Fusion to form the final identification decision 

concerning the impact of each decision taken from the first fusion-level.  

Figure 19 is related to the block diagram of the Feature-Level Fusion with Decision-

Level Fusion on the distinctive decisions that are resulted from the Feature-Level 

Fusions with Majority Voting.  
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Figure 18: Feature-Level Fusion with Decision-Level Fusion Block Diagram 

According to Table 12, the LBP feature extraction method has the highest results 

among all, and therefore; we selected this method to continue our work. Then, the 

decisions produced by each matcher considered through a Decision-Level Fusion to 

form the final identification decision based on the LBP method.  
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Table 12: Experiments to determine the best feature extraction method with 

Decision-Level Fusion  

After choosing the right feature extraction method, we decided to put a weight on 

different decisions to come up with better results. Figure 20 shows the block diagram 

of this procedure. Basically, it was witnessed that the decision that is produced from 

the palmprint and palm vein modalities have more accurate results and have more 

veracity than other combinations; therefore, more decision weight was put on this 

modality to come up with a more complimentary performance at the end. 

Experimental Setup Set #1 Set #2 Set #3 Average 1-3 Set #4 Set #5 Set #6 Average 4-6 

Multimodal PCA Tongji & Bosphorus 14% 18% 18% 16.66% 21% 28% 27% 25.33% 

Multimodal LBP Tongji & Bosphorus 92% 98% 96% 95.33% 95% 98% 95% 96% 

Multimodal SIFT Tongji & Bosphorus 85% 87% 87% 86.33% 71% 81% 77% 76.33% 

Multimodal SURF Tongji & Bosphorus 91% 97% 96% 94.66% 81% 89% 82% 84% 

Multimodal PCA Tongji & CASIA 49% 47% 47% 42.33% 43% 47% 31% 40.33% 

Multimodal LBP Tongji & CASIA 100% 100% 100% 100% 99% 100% 97% 98.66% 

Multimodal SIFT Tongji & CASIA 85% 87% 87% 86.33% 71% 81% 77% 76.33% 

Multimodal SURF Tongji & CASIA 91% 97% 96% 94.66% 81% 89% 82% 84% 

Multimodal PCA Bosphorus & CASIA 42% 44% 37% 41% 41% 49% 32% 40.66% 

Multimodal LBP Bosphorus & CASIA 63% 71% 65% 66.33% 72% 79% 71% 74% 

Multimodal SIFT Bosphorus & CASIA 85% 87% 87% 86.33% 71% 81% 77% 76.33% 

Multimodal SURF Bosphorus & CASIA 91% 97% 96% 94.66% 81% 89% 82% 84% 
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Figure 19: Block Diagram of Feature-Level Fusion with Weighted Decision-Level 

Fusion of our multimodal proposed system 

The first row of Table 13 is the plain combination of Feature-Level Fusion with 

Decision-Level Fusion where the distinct decisions from feature-fused individual 

matches were combined together using Majority Voting in the Decision-Level stage 

to form the final decision. Decision one (D1) belongs to the Feature-Fusion of 

palmprint and palm vein. Decision two (D2) is related to palmprint and dorsal hand 

vein, and the last decision (D3) has come from palm vein and dorsal hand vein. The 

subsequent rows belong to experiments that had a specific weight on the individual 

Feature-Fused matcher decisions. It is evident that when decision one (D1) which is 

related to palmprint and palm vein combination has a greater impact in terms of 

decision weights the final results are more impressive. Also, according to Table 12, 

the palmprint and palm vein combination has yielded better results in LBP 

comparing with other mixtures. As a result, when the decision one (D1) is set to have 
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0.5 weight and the other two decisions (D2 and D3) left to have 0.25 weight, the best 

possible result, i.e. 99.66%, of the identification rate achieved.  

Table 13: Results of our proposed method, Multimodal experiments with Feature-

Level Fusion combined with Decision-Level Fusion along with weighted decisions.  

Experimental Setup Set #1 Set #2 Set #3 Average 1-3 Set #4 Set #5 Set #6 Average 4-6 

         

Multimodal LBP 98% 99% 99% 98.66% 99% 99% 99% 99% 

         

Multimodal LBP  

Weights: D1: 0.33  D2: 0.33  D3: 0.33 

95% 98% 98% 97% 99% 99% 99% 99% 

         

Multimodal LBP 

Weights: D1: 0.50 D2: 0.25 D3: 0.25 

99% 100% 100% 99.66% 99% 100% 100% 99.66% 

         

Multimodal LBP 

Weights: D1: 0.25  D2: 0.50  D3: 0.25 

77% 82% 82% 80.33% 86% 91% 81% 86% 

         

Multimodal LBP 

Weights: D1: 0.25  D2: 0.25  D3: 0.50 

94% 98% 98% 96.66% 96% 98% 97% 97% 

         

Multimodal LBP 

Weights: D1: 0.40  D2: 0.30  D3: 0.30 

98% 100% 100% 99.33% 99% 100% 100% 99.66% 
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Chapter 7 

CONCLUSION 

In this thesis, a hand-based biometric identification method is proposed to identify 

individuals based on their hand features, namely, palmprint, palm vein, and dorsal 

hand vein. The purpose behind this work is to combine all the merits of all three 

biometric modalities and overcome the limits of unimodal systems to bring more 

robustness, stability, universality and security to biometric systems. Palmprint is a 

powerful method for human identification since it includes rich distinctive features 

that are unique among all individuals but it is not as secure as vein-based biometrics. 

Palmprint biometric trait can be replicated because it is visible to human eyes and 

hand leftover patterns can be fetched among object surfaces to perform spoofing 

attacks to unimodal palmprint-based systems. Consequently, we had an idea to 

amalgamate hand veins that are harder to be forged and replicated with already high-

performance palmprint-based biometrics to increase its security while ensuring its 

accuracy. Our method uses Feature-Level Fusion along with weighted Decision-

Level Fusion to combine the results from unimodal biometrics and form a fully 

functioning multimodal system. Our proposed method uses three biometric 

modalities that had never been combined together. The proposed method creates a 

unified system and has shown significant results that are comparable to the state-of-

the-art multimodal systems that are using different biometric modalities and also 

unimodal systems with 99.66% of accuracy in the identification of individuals.  

  



60 

 

REFERENCES 

[1] E.Piciucco, E.Maiorana, P.Campisi, Palm vein recognition using a high dynamic 

range approach, IET Biometrics, Vol.7, No.5, pp.439-446, 2018. (8 pages) 

[2] G.Wang, C.Sun, A.Sowmya, Multi-Weighted Co-Occurrence Descriptor 

Encoding for Vein Recognition, IEEE Transactions of Information Forensics and 

Security, Vol.15, pp.375-390, 2019. (16 pages) 

[3] D.Zhong, H.Shao, X.Du, A Hand-Based Multi-Biometrics via Deep Hashing 

Network and Biometric Graph Matching, IEEE Transactions on Information 

Forensics and Security, Vol.14, No.12, pp.3140-3150, 2019. (11 pages) 

[4] F.Ahmad, L.M.Cheng, A.Khan, Lightweight and Privacy-Preserving Template 

Generation for Palm-Vein-Based Human Recognition, IEEE Transactions on 

Information Forensics and Security, Vol.15, pp.184-194, 2019. (11 pages) 

[5] S.Zhao, B.Zhang, Robust and adaptive algorithm for hyperspectral palmprint 

region of interest extraction, IET Biometrics, Vol.8, No.6, pp.391-400, 2019. (10 

pages) 

[6] L.Carreira, S.Singh, P.L.Correia, L.D.Soares, Personal identification from 

degraded and incomplete high resolution palmprints, IET Biometrics, Vol.4, 

No.2, pp.53-61, 2015. (9 pages) 

[7] A.S.ElSayed, H.M.Ebeid, M.I.Roushdy, Z.T.Fayed, Masked SIFT with align-



61 

 

based refinement for contactless palmprint recognition, IET Biometrics, Vol.8, 

No.2, pp.150-158, 2019. (9 pages) 

[8] A.Kumar, Toward More Accurate Matching of Contactless Palmprint Images 

Under Less Constrained Environments, IEEE Transactions on Information 

Forensics and Security, Vol.14, No.1, pp.34-47, 2018. (14 pages) 

[9] P.D.Deshpande, P.Mukherji, A.S.Tavildar, Accuracy enhancement of biometric 

recognition using iterative weights optimization algorithm, EURASIP Journal on 

Information Security, No.6, 2019. (16 pages) 

[10] W.Kabir, M.O.Ahmad, M.N.S.Swamy, Normalization and Weighting 

Techniques Based on Genuine-Impostor Score Fusion in Multi-Biometric 

Systems,  IEEE Transactions on Information Forensics and Security, Vol.13, 

No.8, pp.1989-2000, 2018. (12 pages) 

[11] N.Hezil, A.Boukrouche, Multimodal biometric recognition using human ear and 

palmprint, IET Biometrics, Vol.6, No.5, pp.351-359, 2017. (9 pages) 

[12] A.Genovese, V.Piuri, K.N.Plataniotis, F.Scotti, PalmNet: Gabor-PCA 

Convolutional Networks for Touchless Palmprint Recognition, IEEE 

Transactions on Information Forensics and Security, Vol.14, No.12, pp.3160-

3174, 2019. (15 pages) 

[13] H.Soleimani, M.Ahmadi, Fast and efficient minutia-based palm print matching, 

IET Biometrics, Vol.7, No.6, pp.573-580, 2018. (8 pages)  



62 

 

[14] J.Almaghtuf, F.Khelifi, Self-geometric relationship filter for efficient SIFT key-

points matching in full and partial palmprint recognition, IET Biometrics, Vol.7, 

No.4, pp.296-304, 2018. (9 pages) 

[15] A.Gumaei, R.Sammouda, A.M.S.Al-Salman, A.Alsanad, An Improved 

Multispectral Palmprint Recognition System Using Autoencoder with 

Regularized Extreme Learning Machine, Computational Intelligence and 

Neuroscience, Vol.2018, Article ID 8041609, 2018. (13 pages) 

[16] W.Wu, S.J.Elliott, S.Lin, W.Yuan, Low-cost biometric recognition system 

based on NIR palm vein image, IET Biometrics, Vol.8, No.3, pp.206-214, 2019. 

(15 pages)  

[17] J.Wang, G.Wang, Quality-Specific Hand Vein Recognition System, IEEE 

Transactions on Information Forensics and Security, Vol.12, No.11, pp.2599-

2610, 2017. (12 pages) 

[18] X.Ma, X.Jing, H.Huang, Y.Cui, J.Mu, Palm vein recognition scheme based on 

an adaptive Gabor filter, IET Biometrics, Vol.6, No.5, pp.325-333, 2017. (9 

pages) 

[19] T.Daksh, J.Gaurav, N.Aditya, K.vivek, PVSNet: Palm Vein Authentication 

Siamese Network Trained using Triplet Loss and Adaptive Hard Mining by 

Learning Enforced Domain Specific Features, IEEE 5th International 

Conference on Identity, Security, and Behavior Analysis (ISBA), pp.1-8, 2019. (8 

pages) 



63 

 

[20] L.Zhang, Z.Cheng, Y.Shen, D.Wang, Palmprint and Palmvein Recognition 

Based on DCNN and A New Large-Scale Contactless Palmvein Dataset, 

Symmetry, Vol.10, No.4, 2018. (15 pages)  

[21] J.Wang, K.Yang, Z.Pan, G.Wang, M.Li, Y.Li, Minutiae-Based Weighting 

Aggregation of Deep Convolutional Features for Vein Recognition, IEEE 

Access, Vol.6, pp.61640-61650, 2018. (11 pages) 

[22] P.Gupta, S.Srivastava, P.Gupta, An accurate infrared hand geometry and vein 

pattern based authentication system, Knowledge-Based Systems, Vol.103, 

pp.143-155, 2016. (13 pages) 

[23] A.Yuksel, L.Akarun, B.Sankur, Biometric Identification Through Hand Vein 

Patterns, International Workshop on Emerging Techniques and Challenges for 

Hand-Based Biometrics, pp.1-6, 2010. (6 pages) 

[24] W.S.Yambor, Analysis of PCA-Based and Fisher Discriminant-Based Image 

Recognition Algorithms, Master's thesis, Colorado State University, 2000. (76 

pages) 

[25] V.Perlibakas, Distance Measures for PCA-Based Face Recognition, Pattern 

Recognition Letters, Vol.25, No.6, pp.711-724, 2004. (14 pages) 

[26] T.Ahonen, A.Hadid, M.Pietikäinen, Face Recognition with Local Binary 

Pattern, European Conference on Computer Vision (ECCV), pp.469-481, 2004. 

(13 pages) 



64 

 

[27] T.Ahonen, A.Hadid, M.Pietikäinen, Face Description with Local Binary 

Patterns: Application to Face Recognition, IEEE Transactions on Pattern 

Analysis and Machine Intelligence, Vol.28, No.12, 2006. (5 pages) 

[28] D.G.Lowe, Distinctive Image Features from Scale-Invariant Keypoints, 

International Journal of Computer Vision, Vol.60, pp.91-110, 2004. (20 pages) 

[29] H.Bay, A.Ess, T.Tuytelaars, L.V.Gool, Speeded-Up Robust Features (SURF), 

Computer Vision and Image Understanding, Vol.110, No.3, pp.346-359, 2008. 

(14 pages) 

[30] D.T.Meva, C.K.Kumbharana, Comparative study of different fusion techniques 

in multimodal biometric authentication, International Journal of Computer 

Applications, Vol.66, No.19, pp.16-19, 2013. (4 pages) 

[31] G.Chaudhary, S.Srivastava, S.Bhardwaj, Multi-level Fusion of Palmprint and 

Dorsal Hand Vein, Information Systems Design and Intelligent Applications, 

pp.321-330, 2016. (10 pages) 

[32] Tongji Contactless Palmprint Dataset. Available online: 

https://sse.tongji.edu.cn/linzhang/contactlesspalm/index.htm 

[33] Bogazici University Bosphorus Hand Database. Available online: 

http://bosphorus.ee.boun.edu.tr/hand/Home.aspx 

[34] CASIA-MS-PalmprintV1, http://biometrics.idealtest.org/ 



65 

 

[35] Y.Hao, Z.Sun,T.Tan, C.Ren, Multi-Spectral Palm Image Fusion for Accurate 

Contact-free Palmprint Recognition, Proceedings of IEEE International 

Conference on Image Processing, pp.281-284, 2008. (4 pages) 


