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ABSTRACT 

Watson-Crick (abbreviated as WK) finite automata are working on double stranded 

DNA molecule that is also called Watson-Crick tape. Subsequently, these automata 

have two reading heads, one for each strand. While in traditional WK automata both 

heads read the whole input in the same physical direction, in 5′ → 3′ WK automata 

the heads start from the two extremes (say 5′ end of the strands) and read the input in 

opposite direction. In sensing 5′ → 3′ WK automata the process on the input is finished 

when the heads meet. Since the heads of a WK automaton may read longer strings in 

a transition, in previous models a so-called sensing parameter took care for the proper 

meeting of the heads (not allowing to read the same positions of the input in the last 

step). We have investigated a new model which works without the sensing parameter 

(it is done by an appropriate change of the concept of the configuration). In this thesis, 

the nondeterministic and deterministic automata in the new model are studied. 

Consequently, for the nondeterministic part, the accepted language classes of variants 

are changed and various hierarchy results are proven. For the deterministic part, it is 

proven to accept the language class 2detLIN defined by the deterministic variant of 

the earlier version. However, using some of the restricted variants, e.g., all-final 

automata, the classes of the accepted languages are changed showing a finer hierarchy 

inside the class of linear context-free languages, hierarchy. 

Keywords: nondeterministic Watson-Crick automata, deterministic Watson-Crick 

automata, 5′ → 3′ WK automata, finite automata, deterministic computations, linear 

context-free languages 
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ÖZ 

Watson-Crick (WK olarak kısaltılmıştır) sonlu otomataları, Watson-Crick bandı 

olarak da adlandırılan çift sarmallı DNA molekülü üzerinde çalışmaktadır. Bundan 

dolayı, bu otomatalar her bir tel için birer tane olmak üzere iki okuma kafasına sahiptir. 

Geleneksel WK otomatlarında her iki kafa da tüm girişi aynı fiziksel yönde okurken, 

5′ → 3′  WK otomatlarında kafalar iki uçtan başlar (iplikçiklerin 5 ′ ucu gibi) ve girişi 

ters yönde okur. 5′ → 3′  WK otomat algılamasında, kafalar buluştuğunda girişteki 

işlem tamamlanır. Bir WK otomatının kafaları bir geçişte daha uzun dizeler 

okuyabildiğinden, önceki modellerde, kafaların düzgün bir şekilde toplanması için bir 

algılama parametresi kullanıldı (son adımda girişin aynı pozisyonlarını okumaya izin 

vermiyor). Algılama parametresi olmadan çalışan yeni bir model araştırdık 

(konfigürasyon kavramının uygun bir şekilde değiştirilmesi ile yapılır). Bu tezde yeni 

modeldeki deterministik ve deterministik olmayan otomatlar incelenmiştir. Sonuç 

olarak, deterministik olmayan kısım için, varyantların kabul edilen dil sınıfları 

değiştirilir ve çeşitli hiyerarşi sonuçları kanıtlanır. Deterministik kısım için, önceki 

versiyonun deterministik varyantı tarafından tanımlanan 2detLIN dil sınıfını kabul 

ettiği kanıtlanmıştır. Bununla birlikte, kısıtlı varyantların bazıları, örn., Tümüyle son 

otomatik veriler kullanılarak, kabul edilen dillerin sınıfları, doğrusal bağlamsız diller, 

hiyerarşi sınıfında daha ince bir hiyerarşi gösterecek şekilde değiştirilir.  

Anahtar Kelimeler: Deterministik olmayan Watson-Crick otomatları, deterministik 

Watson-Crick otomatları, 5′ → 3′  WK otomatları, sonlu otomatlar, deterministik 

hesaplamalar, doğrusal bağlamdan bağımsız diller  
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Chapter 1

INTRODUCTION

From the end of the last century, DNA computing has appeared as a relatively new

computational paradigm [1,26]. In contrast, automata theory is from the middle of the

last century and it is one of the bases of computer science. An interesting

combination of these two fields, the theory of Watson-Crick-automata (abbreviated as

WK automata, from the initial of the name Watson and the last letter of the name

Crick), was introduced in [5] as a branch of DNA computing. They have important

relations to formal language and automata theory. To read more about these automata

the book [26] and the survey [3] are recommended. WK automata work on

double-stranded tapes called Watson-Crick tape (i.e., DNA molecule), whose strands

are scanned separately by read only heads. The symbols in the corresponding cells of

the double-stranded tapes are related by (the Watson-Crick) complementarity relation.

Restricted classes having either or both restriction on the states, e.g., all states are

final, or on the transitions, e.g., only one of the heads can read in a transition, are

analysed. The relationships between various classes of the Watson-Crick automata are

investigated in [5, 10, 26]. About applications of WK automata we may refer to [28].

The two strands of a DNA molecule have opposite 5′ → 3′ orientation. Considering

the reverse and the 5′ → 3′ variants, they are more realistic in the sense, that both

heads use the same biochemical direction (that is opposite physical

directions) [5, 12–14]. A WK automaton is sensing if it has the information whether

the heads are at the same position. Some variants of the 5′ → 3′ Watson-Crick
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automaton with sensing parameter, i.e., with a feature which tells whether the upper

and the lower heads are within a fixed small distance (or meet at the same position)

are discussed in [15, 16, 18]. The heads of these automata start from the opposite ends

of the input, assuming the complementary relation to be bijective (as it is in the

nature), the automaton already has information about the whole input at the point

where the heads meet. Consequently, the automaton makes the decision on

acceptance at that point and the process on the input is finished. It was shown that the

linear context-free languages and some of their subclasses (e.g., the class of even

linear languages) can be characterised by these models [12–18]. Since the heads of a

WK automaton may read longer strings in a transition, in these models the sensing

parameter took care of the proper meeting of the heads sensing if the heads are close

enough to meet in the next transition. This parameter could also be used to deny

acceptance of some strings, e.g., by not allowing to read the last letter(s) to finish the

process in that way. This idea led to the fact that there is no difference of the language

classes accepted by arbitrary and all-final automata. The motivation of the new

model, recently introduced in [22] is to erase the rather artificial term of sensing

parameter from the model. Here, the accepted language classes of the new model are

analyzed. Variations such as all-final, simple, 1-limited, and stateless 5′ → 3′

Watson-Crick automata are also detailed. The deterministic counterpart is also

investigated [24]. As one of the main results, we prove that the new deterministic

model accept exactly the same class of languages, namely 2detLIN, that is accepted

by the deterministic variant of the model with sensing parameter. This is an

interesting class of languages containing, e.g., all even linear languages [2, 14, 16].

Even linear and other special subclasses of linear context-free languages are of recent
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interests of various research papers, see, e.g., [7, 11, 30], due to their learnability

property in formal languages [4, 29]. Here, the accepted language classes of various

restricted classes of WK automata and their relations are analyzed showing a finer

hierarchy than the previous model has provided. A related model, deterministic

stateless 5′ → 3′ WK counter machine is analysed in [6]. Recently other 2-head

automata models working in a similar manner as 5′→ 3′ WK automata, with jumping

feature [9], with tranclucent letter [21], with pushdown stack [19], and with

output [20] were also investigated.

1.1 Layout of thesis

This thesis include of five chapters. Chapter 2 describes briefly the structure of DNA,

Chomsky hierarchy. Also, the basic definitions and notations are explained. Chapter 3

represents nondeterministic sensing 5′ → 3′ Watson-Crick automata which work

without sensing parameter and all language classes accepted by various types of this

model. Chapter 4 describes the deterministic sensing 5′→ 3′ Watson-Crick automata

without sensing parameter and the classes of the accepted languages by various types

of this model. Chapter 5 is dedicated to conclusion and future work.

3



Chapter 2

BASIC DEFINITIONS AND NOTATIONS

In this chapter, we describe the structure of DNA molecule briefly. After we recall

some concepts of formal language theory. In the last section, we determine some basic

definitions and notations for our model.

2.1 DNA’s structure

Strung monomers which are called deoxyribonucleotides construct a polymer named

a DNA. For simplicity, we use “nucleotide” term rather than deoxyribonucleotides.

Each nucleotide includes three elements: a sugar, a phosphate group and a

nitrogenous base. The sugar consists of five carbon atoms which are numbered from

1′ through 5′. The phosphate group and the base are attached to the 5′ and 1′ carbon,

respectively. There exists a hydroxyl group (OH) connected to the 3′ carbon atom in

the sugar structure. The diversity of nucleotides refers to their base. There exist four

possible bases: Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). The figure

2.1 depicts the structure of a nucleotide (in a very simplified model) where B shows

one the four bases (C, G, T, A), P illustrates the phosphate group and five carbon

atoms of sugar base which are numbered from 1′ to 5′.
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Figure 2.1: The structure of the nucleotide.

Two nucleotides can be connected in two different ways:

1. The 5′-phosphate group of a nucleotide is connected to the 3′ hydroxyl group of

another by covalent bond (one of the strongest chemical bonds). It is shown in

figure 2.2. Note that the connection of the 3′-OH group of one nucleotide to the

5′-phosphate group of the next one gives the directionality to the molecule; it

can be the 3′−5′ direction or the 5′−3′ direction. The directionality is decisive

to figure out the processing and the functionality of DNA.

Figure 2.2: Phosphodiester bond.

2. The bases of two nucleotides can be interacted together by hydrogen bond which
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is weaker than covalent bond. The bonding leads to the following constraint on

the base pairing: A and T can be connected through two hydrogen bonds, while

C and G can be connected by three hydrogen bonds. Other pairings are not

possible. Therefore, the pairing between C and G is stronger than the pairing

between A and T. The figure 2.3 shows the pairing principle.

Figure 2.3: Hydrogen bond.

The rule of pairing called as the Watson-Crick complementarity (James D. Watson and

Francis H. C. Crick who obtained the Nobel Prize for showing the DNA’s double helix

structure). This rule expresses that one nucleotide can be joint to another one which is

its complement. The figure 2.4 represents the Watson–Crick complementarity rule for

bonding two single stranded molecules by hydrogen bonds. This fact means that in the

double stranded molecule two single strands must be in the opposite direction: the 5′

direction of one strand in one nucleotide is connected to the 3′ end of another strand
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of the next nucleotide. It is standard convention that the upper strand moves from 5′ to

3′ direction (left to right) and the lower strand moves from 3′ to 5′ direction (right to

left).

Figure 2.4: Forming double strands.

2.2 Formal languages and automata theory

Now some language families related to Chomsky hierarchy are recalled; for full

definitions, readers refer to [8, 27]. A grammar is a quadruple G = (N,T,S,P), where

N,T are called the non-terminal and terminal alphabet, S ∈ N is the initial letter and P

is called a finite set of production rules of (N ∪ T )∗N(N ∪ T )∗× (N ∪ T )∗. A rule

(v,w) of P is written in the form v→ w. For v,w ∈ (N∪T )∗ we write:

v⇒ w if and only if there exist v1v2v′w′ ∈ (N ∪T )∗ such that v = v1v′v2,w = v1w′v2

and v′→ w′ ∈ P. A grammar G generates the language L consists of set of terminal

words which are derived from the initial letter L(G) = {w|S⇒∗ w∧w ∈ T ∗}. We
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denote the empty word by λ. Two grammars are equivalent if they can generate the

same language modulo λ. On the other hand G1 = G2 if L(G1)−{λ}= L(G2)−{λ}.

We can classify the Chomsky grammars according to the form of their rules [26].

• Monotonous: if for all v→ w ∈ P we have |v| ≤ |w|.

• Context-Sensitive grammars (CS): if each rule holds the form uAv→ uwv with

A ∈ N,u,v,w ∈ (N∪T )∗,w 6= λ.

• Context-Free grammars (CF): if each rule holds the form A→ v with A ∈ N

and v ∈ (N∪T )∗.

– Linear grammars (LIN): every rule holds the form A→ v,A→ vBw; A,B ∈

N;v,w ∈ T ∗.

∗ Right linear grammars: if each rule v→ w ∈ P has v ∈ N and w ∈

T ∗∪T ∗N.

∗ Left linear grammars: if every rule v→ w ∈ P has v ∈ N and w ∈

T ∗∪NT ∗.

• Regular grammars (REG): if each rule has the following forms A→ w,A→

wB; where A,B ∈ N and w ∈ T ∗.

The monotonous, CS, CF, and REG are also known as type 0, type 1, type 2, and type

3, respectively.

Note that, the class of linear context-free grammars generates the family LIN of linear

context-free languages. In general, for a generating or accepting device A, we assign

its generated or accepted language L(A).
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2.3 Definitions, preliminaries

In this section, we follow the basic definitions and notations of a Watson-Crick

automaton, after which we recall some restricted variants of Watson-Crick automata

definition of sensing 5′→ 3′ Watson-Crick automaton with sensing parameter and the

concept of determinism.

We assume that the reader is familiar with basic concepts of formal languages and

automata, otherwise she or he is referred, e.g., to [8, 27]. The set of non-negative

integers is denoted by N.

Now we describe the automata model we are interested in. The two strands of the

DNA molecule have opposite 5′→ 3′ orientations. This proposes taking into account a

variant of Watson-Crick finite automata that parse the two strands of the Watson-Crick

tape in opposite directions. Figure 2.5 indicates the initial configuration of such an

automaton on the left. The 5′→ 3′ WK automaton is sensing, if the heads sense that

they are meeting. We are working with models that finish the computing process at

that phase. In Figure 2.5, this moment can be seen on the right. We note that there

are also models which are continuing the process and they can also accept some non-

context-free languages.

Figure 2.5: A sensing 5′→ 3′ WK automaton in the initial configuration and in an
accepting configuration (with a final state q).
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Here, we follow the definition and description from [22]. (Later on we will also recall

the earlier concept using sensing parameter from, e.g., [18] to show some results

connecting the two models.)

Formally, a Watson-Crick automaton is a 6-tuple M = (V,ρ,Q,q0,F,δ), where: V is

the (input) alphabet, ρ ⊆ V ×V denotes a complementarity relation, Q represents a

finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final (also called

accepting) states and δ is called transition mapping, it is of the form δ : Q×

(
V ∗

V ∗

)
→

2Q, such that it is non empty only for finitely many triplets (q,u,v),q ∈ Q,u,v ∈ V ∗.

In sensing 5′ → 3′ WK automata every pair of positions in the Watson-Crick tape

is read by exactly one of the heads in an accepting computation, and therefore the

complementarity relation cannot play importance, instead, for simplicity, we assume

that it is the identity relation. Thus, it is more convenient to consider the input as a

normal word instead the double stranded form. Note here that complementarity can be

excluded from the traditional models as well, see [10] for details.

Since δ is not empty only for a finite set of triplets, there is/are a/some word(s) with

maximal length that can be read in a transition by a given automaton. Consequently,

let us define the radius r of an automaton by the maximum of the sum of the lengths of

the substrings of the input that can be read by the automaton in a transition.

Further, a configuration of a Watson-Crick automaton is a pair (q,w) where q is the

current state of the automaton and w is the part of the input word which has not been

processed (read) yet. For w′,x,y ∈ V ∗,q,q′ ∈ Q, we write a transition between two
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configurations as: (q,xw′y)⇒ (q′,w′) if and only if q′ ∈ δ(q,x,y). We denote the

reflexive and transitive closure of the relation⇒ (one step of a computation, that is, a

transition) by ⇒∗ (computation). Therefore, for a given w ∈ V ∗, an accepting

computation is a sequence of transitions (q0,w)⇒∗ (qF ,λ), starting from the initial

state and ending in a final state with no input left.

The language accepted by a WK automaton M is:

L(M) = {w ∈V ∗|(q0,w)⇒∗ (qF ,λ),qF ∈ F}.

It was shown in [22] that the class of sensing 5′ → 3′ WK automata that we have

recalled accept exactly the class of linear context-free languages, LIN.

It is well known that over the unary alphabet the class of regular, linear and context-

free languages coincide. Thus, in this thesis, we assume that the alphabet consists of

at least two symbols.

The shortest nonempty word accepted by M is denoted by ws, if it is uniquely

determined. Otherwise we may use the notation ws for any of them (in case there are

more than one word with this condition).

There are some restricted variants of WK automata which are widely known:

F: all-final, i.e., with only final states: if Q = F ;

N: stateless, i.e., with only one state: if Q = F = {q0};

S: simple (at most one head moves in a step) δ : (Q× ((λ,V ∗)∪ (V ∗,λ)))→ 2Q;

1: 1-limited (exactly one letter is being read in each step) δ : (Q× ((λ,V )∪ (V,λ)))→

2Q.
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Clearly, all N WK automata are F WK automata at the same time. Also, by definition,

all 1 WK automata are, in fact, S WK automata also. However, since the restrictions

N and F are about the states, and the restrictions S and 1 are about the length of the

words that can be read in a transition (step of a computation), additional variants are

also understood by using mixed constrains such as F1, N1, FS, NS WK automata.

Now, as an example, we show the language L = {anbm | n,m≥ 0} that can be accepted

by an N1 sensing 5′→ 3′ WK automaton (Figure 2.6).

Figure 2.6: A sensing 5′→ 3′ WK automaton of type N1 accepting the language
{anbm | n,m≥ 0}.

So far, we have not given anything about determinism. We are using the following

definition. If at each possible configuration at most one transition step is possible, then

a WK automaton is deterministic. It means, a WK automaton is deterministic if and

only if ∀w ∈ V ∗ and ∀q ∈ Q there exists at most one w′ ∈ V ∗ and q′ ∈ Q such that

(q,w)⇒ (q′,w′).

We note that for the traditional WK automata reading both strands completely, there

are various definitions of determinism (allowing also to play with the complementarity

relation), but for our automata there is only one type of determinism.

Determinism is a feature that is orthogonal to the earlier special restrictions, thus we
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will study here, deterministic sensing 5′ → 3′ WK automata (without any further

restriction), deterministic F sensing 5′ → 3′ WK automata, deterministic N sensing

5′ → 3′ WK automata, deterministic S sensing 5′ → 3′ WK automata, . . . ,

deterministic F1 sensing 5′→ 3′ WK automata, etc.

Now the concept of sensing 5′→ 3′ WK automaton with sensing parameter is recalled

from [15, 18]. A 6-tuple M = (V,ρ,Q,q0,F,δs) is a sensing 5′ → 3′ WK automaton

with sensing parameter where, V , ρ, Q, q0 and F are exactly the same as in our model

and δs is the transition mapping. It is defined using the sensing condition in the

following way:

δs :

(
Q ×

(
V ∗

V ∗

)
× D

)
→ 2Q, where the sensing distance set is defined by

D = {0,1, . . . ,r,+∞} where r is the radius of the automaton. The set D gives the

distance between two heads from 0 to r, and gives +∞, when the distance of the two

heads is more than r. On the other hand, by the set D, the automaton controls the

appropriate meeting of the heads. Some transitions are allowed or denied depending

on the actual distance of the positions of the heads (if it is not more than r) taking care

of reading only string(s) having their length not more than the distance of the heads.

In a sensing 5′ → 3′ WK automaton with sensing parameter a configuration(
w1

w2

)
(q,s)

(
w′1

w′2

)
contains the state q ∈ Q, the sensing distance s ∈ D, where the

input is

(
w1w′1

w2w′2

)
with the condition w1w′1 = w2w′2. The part w1 has been already

processed by the left head (upper strand) and the part w′2 has been processed by the

right head (lower strand). A transition between two configurations can be written as:

13



(
w1

w2y

)
(q,+∞)

(
xw′1

w′2

)
⇒

(
w1x

w2

)
(q′,s)

(
w′1

yw′2

)
for w1,w2,w′1,w

′
2,x,y ∈ V ∗

with |w2y| − |w1| > r, q,q′ ∈ Q if and only if w1xw′1 = w2yw′2 and

q′ ∈ δs

(
q,

(
x

y

)
,+∞

)
, further s =

{
|w2|− |w1x|, if |w2|− |w1x| ≤ r,

+∞, otherwise,
and

(
w1

w2y

)
(q,s1)

(
xw′1

w′2

)
⇒

(
w1x

w2

)
(q′,s)

(
w′1

yw′2

)
for w1,w2,w′1,w

′
2,x,y ∈ V ∗

with 0 ≤ |w2y| − |w1| = s1 ≤ r, and q,q′ ∈ Q if and only if w1xw′1 = w2yw′2 and

q′ ∈ δs

(
q,

(
x

y

)
,s1

)
, further s = |w2|− |w1x|.

A sensing 5′ → 3′ WK automaton M with sensing parameter accepts a string w if

and only if

(
λ

w

)
(q0,s0)

(
w

λ

)
⇒∗

(
w′1

w′1

)(
q f ,0

)( w′′2

w′′2

)
for q f ∈ F where s0

is +∞ if |w| > r, otherwise it is |w|. The automaton M accepts the language L(M)

consisting of all such strings. Note that we have recalled and used here the original

two-strand description of the sensing 5′ → 3′ WK automata. In fact both this old

model and the new model without the sensing parameter can be defined and used both

on string languages and on double strands (where the complementarity is a bijection).

(We are using the string language form for the new model only for brevity.) The

deterministic sensing 5′→ 3′ WK automata with sensing parameter was also defined.

If there is at most one transition step that can occur in each configuration, then the

automaton is deterministic. The language class that can be accepted by deterministic

5′ → 3′ WK automata with sensing parameter is denoted by 2detLIN, as these are

exactly those languages that are accepted by the deterministic counterpart of a 2-head

machine model capable to accept the linear context-free languages. It is known that
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2detLIN is incomparable with the class of deterministic linear languages accepted by

deterministic one-turn pushdown automata [18].
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Chapter 3

A NEW SENSING 5′→ 3′ WATSON-CRICK AUTOMATA

CONCEPT

3.1 Hierarchy by sensing 5′→ 3′ WK automata

Theorem 3.1.1. The following classes of languages coincide:

• the class of linear context-free languages defined by linear context-free

grammars,

• the language class accepted by sensing 5′→ 3′ WK finite automata,

• the class of languages accepted by S sensing 5′→ 3′ WK automata,

• the class of languages accepted by 1 sensing 5′→ 3′ WK automata.

Proof. For DNA computing reasons (and for simplicity) we work with λ-free

languages. The proof is constructive, first we show that the first class is included in

the last one. Let G = (N,T,S,P) be a linear context-free grammar having productions

only in the forms A→ aB,A→ Ba,A→ a with A,B ∈ N, a ∈ T . Then the 1 sensing

5′→ 3′ WK automaton M = (T, id,N ∪{q f },S,{q f },δ) is defined with B ∈ δ(A,u,v)

if A → uBv ∈ P and q f ∈ δ(A,u,λ) if A → u ∈ P (u,v ∈ T ∪ {λ}). Clearly, each

(terminated) derivation in G coincides to a(n accepting) computation of M, and vice

versa. Thus the first class is included in the last one.

The inclusions between the fourth, third and second classes are obvious by definition.

To close the circle, we need to show that the second class is in the first one. Let
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the sensing 5′→ 3′ WK automaton M = (V, id,Q,q0,F,δ) be given. Let us construct

the linear context-free grammar G = (Q,V,q0,P) with productions: p→ uqv if q ∈

δ(q,u,v) and p→ uv ∈ P if q ∈ δ(q,u,v) and q ∈ F (p,q ∈ Q, u,v ∈ V ∗). Again, the

(accepting) computations of M are in a bijective correspondence to the (terminated)

derivations in G. Thus, the proof is finished.

Based on the previous theorem we may assume that the considered sensing 5′ → 3′

WK automata have no λ-movements, i.e., at least one of the heads is moving in each

transition.

Lemma 3.1.2. Let M be an F1 sensing 5′→ 3′WK automaton and let the word w∈V+

that is in L(M). Let |w|= k, then for each l, where 0≤ l ≤ k, there is at least one word

wl ∈ L(M) such that |wl|= l.

Proof. According to the definition of F1 sensing 5′ → 3′ WK automaton, w can be

accepted in k steps such that in each step, the automaton can read exactly one letter.

Moreover, each state is final, therefore by considering the first l steps of the k steps,

the word wl = w′lw
′′
l is accepted by M, where w′l is read by the left head and w′′l is read

by the right head during these l steps, respectively.

Remark 3.1.3. Since, by definition, every N1 sensing 5′ → 3′ WK automaton is F1

WK automaton at the same time, Lemma 3.1.2 applies for all N1 sensing 5′→ 3′ WK

automata also.

Theorem 3.1.4. The class of languages that can be accepted by N1 sensing 5′→ 3′WK

automata is properly included in the language class accepted by NS sensing 5′ → 3′

WK automata.
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Proof. Obviously, these automata have exactly one state. In NS machines, the reading

head may read some letters in a transition, while the input should be read letter by letter

by N1 machines. The language L = {a3nb2m | n,m ≥ 0} proves the proper inclusion.

In this language ws is bb and in an NS automaton it can be accepted by any of the

following transitions: (bb,λ), (λ,bb). Although by Lemma 3.1.2, ws cannot be the

shortest nonempty accepted word in a language accepted by an N1 sensing 5′→ 3′WK

automaton. Figure 3.1 shows that language L can be accepted by an NS sensing 5′→ 3′

WK automaton. Therefore, the proper inclusion stated in the theorem is proven.

Figure 3.1: A sensing 5′→ 3′ WK automaton of type NS accepting the language
{a3nb2m | n,m≥ 0}.

Theorem 3.1.5. The class of languages that can be accepted by NS sensing 5′ → 3′

WK automata is properly included in the language class accepted by N sensing 5′→ 3′

WK automata.

Proof. The language L = {a(2n+m)b(2m+n) | n,m ≥ 0} proves the proper inclusion.

Suppose that there is an NS sensing 5′ → 3′ WK automaton that accepts L. The NS

sensing 5′→ 3′ WK automaton has exactly one state and one of the heads can move

at a time. The ws of L is aab (or abb). It can be accepted by one of the following loop

transitions: (aab,λ), (λ,aab), (abb,λ) or (λ,abb) by an NS sensing 5′ → 3′ WK

automaton. Each of the mentioned transitions can lead to accept different language

from the language {a(2n+m)b(2m+n) | n,m ≥ 0}. For instance, using several times the
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transition (aab,λ), the language {(aab)n | n ≥ 0} is accepted which is not a subset of

the language L. Therefore, the language {a(2n+m)b(2m+n) | n,m ≥ 0} cannot be

accepted by NS sensing 5′ → 3′ WK automata. Figure 3.2 shows that this language

can be accepted by an N sensing 5′ → 3′ WK automaton. Hence, the theorem

holds.

Figure 3.2: An N sensing 5′→ 3′ WK automaton of type N accepting the language
{a2n+mb2m+n | n,m≥ 0}.

The next three theorems highlight the difference between the new model and the model

with sensing parameter.

Theorem 3.1.6. The class of languages that can be accepted by F1 sensing 5′ → 3′

WK automata is properly included in the language class of FS sensing 5′ → 3′ WK

automata.

Proof. Obviously, all states of these automata are final and F1 sensing 5′ → 3′ WK

automata should read the input letter by letter, while FS sensing 5′→ 3′ WK automata

may read some letters in a transition. To show proper inclusion, consider the language

L = {(aa)n(bb)m | m ≤ n ≤ m+ 1,m ≥ 0}. The word ws can be aa and by Lemma

3.1.2, ws cannot be the shortest nonempty accepted word for an F1 sensing 5′ → 3′

WK automaton. However, L can be accepted by an FS sensing 5′→ 3′ WK automaton

as it is shown in Figure 3.3. The theorem is proven.
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Figure 3.3: A sensing 5′→ 3′ WK automaton of type FS accepting the language
{(aa)n(bb)m | m≤ n≤ m+1,m≥ 0}.

Theorem 3.1.7. The language class accepted by FS sensing 5′→ 3′ WK automata is

properly included in the language class of F sensing 5′→ 3′ WK automata.

Proof. The language L = {a2n+qc4mb2q+n | n,q ≥ 0,m ∈ {0,1}} proves the proper

inclusion. Let us assume, contrary that L is accepted by an FS sensing 5′ → 3′ WK

automaton. Let the radius of this automaton be r. Let w = a2n+qb2q+n ∈ L with

n,q ≥ r such that |w| = 3n+ 3q > r. Then the word w cannot be accepted by using

only one of the transitions (from the initial state q0), i.e., δ(q0,a2n+qb2q+n,λ) or

δ(q0,λ,a2n+qb2q+n) is not possible. Therefore, by considering the position of the

heads after using any of the transitions from the initial state q0 in FS sensing 5′→ 3′

WK automaton (all states are final and one of the heads can move), it is clear that

either a prefix or a suffix of w with length at most r is accepted by the automaton. But

neither a word from a+, nor from b+ is in L. This fact contradicts to our assumption,

hence L cannot be accepted by any FS sensing 5′→ 3′ WK automata. However, it can

be accepted by F 5′ → 3′ WK automata, since the two heads can move at the same

time and they can read both blocks of a’s and b’s simultaneously. In Figure 3.4, an

all-final 5′→ 3′ WK automaton can be seen which accepts L.

20



Figure 3.4: A sensing 5′→ 3′ WK automaton of type F accepting the language
{a2n+qc4mb2q+n | n,q≥ 0,m ∈ {0,1}}.

The following result also shows that the new model differs from the one that is using

the sensing parameter in its transitions.

Theorem 3.1.8. The language class accepted by F sensing 5′ → 3′ WK automata is

properly included in the language class of sensing 5′→ 3′ WK automata.

Proof. The language L = {ancbnc | n ≥ 1} can be accepted by a sensing 5′→ 3′ WK

automaton (without restrictions) (see Figure 3.5). Now we show that there is no F

sensing 5′ → 3′ WK automaton which accepts L. Assume the contrary that the

language L is accepted by an F sensing 5′→ 3′ WK automaton. Let the radius of the

automaton be r. Let w = amcbmc ∈ L with m ≥ r. Thus the word w cannot be

accepted by applying exactly one transition from the initial state q0. Now, suppose

that there exists q ∈ δ(q0,w1,w2) such that w can be accepted by using transition(s)

from q. Since in F sensing 5′ → 3′ WK automaton all states are final, then the

concatenation of w1 and w2 is accepted, thus, it must be in L (i.e. w1w2 ∈ L).

Therefore w1w2 = am′cbm′c where 2m′+ 2 ≤ r ≤ m. To expand both blocks a+ and

b+ to continue the accepting path of w, the left head must be before/in/right after the

subword am′ , and the right head must be right before/in/right after the subword bm′ .

However, this is contradicting the fact that the two heads together already read
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am′cbm′c. Hence, it is not possible to accept w by an F sensing 5′→ 3′ WK automaton

and the language L cannot be accepted by an F sensing 5′→ 3′ WK automaton.

Figure 3.5: A sensing 5′→ 3′ WK automaton accepts the language {ancbnc | n≥ 1}.

Proposition 3.1.9. The language L = {anbm | n = m or n = m+1} can be accepted by

F1 sensing 5′→ 3′ WK automata, but cannot be accepted by N1, NS and N sensing

5′→ 3′ WK automata.

Proof. As it is shown in Figure 3.6, L can be accepted by an F1 sensing 5′→ 3′ WK

automaton. Suppose that L can be accepted by an N sensing 5′→ 3′ WK automaton.

The ws of L is a, therefore at least one of the loop-transitions (a,λ) and (λ,a) is

possible from the only state. Since this automaton has only one state, using any of

these transitions leads to accept an for any n ≥ 2 which are not in L. Thus this

language cannot be accepted by an N, N1, NS sensing 5′→ 3′ WK automaton.

Figure 3.6: An F1 sensing 5′→ 3′ WK automaton accepts the language
L = {anbm | n = m or n = m+1}.
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Remark 3.1.10. The following statements follow from Proposition 3.1.9:

(a) The class of languages that can be accepted by N1 sensing 5′→ 3′ WK automata

is properly included in the language class accepted by F1 sensing 5′ → 3′ WK

automata.

(b) The class of languages that can be accepted by NS sensing 5′→ 3′ WK automata

is properly included in the language class accepted by FS sensing 5′ → 3′ WK

automata.

(c) The class of languages that can be accepted by N sensing 5′→ 3′ WK automata

is properly included in the language class accepted by F sensing 5′ → 3′ WK

automata.

3.1.1 Incomparability results

Theorem 3.1.11. The class of languages that can be accepted by N sensing 5′ → 3′

WK automata is incomparable with the classes of languages that can be accepted by

FS and F1 sensing 5′→ 3′ WK automata under set theoretic inclusion.

Proof. The language L = {wwR |w∈ {a,b}∗} can be accepted by an N sensing 5′→ 3′

WK automaton (Figure 3.7). Suppose that an FS sensing 5′ → 3′ WK automaton

accepts L. Let the radius of this automaton be r. Let w2 = w1wR
1 ∈ L with w1 =

(bbbaaa)m and m > r. The word w2 cannot be accepted by using only one of the

transitions from the initial state q0, i.e., δ(q0,w1wR
1 ,λ) or δ(q0,λ,w1wR

1 ) is not possible

(because the length of w2 ). Therefore there exists either q ∈ δ(q0,w3wR
3 ,λ), w3 ∈ V ∗

or q∈ δ(q0,λ,w3wR
3 ), w3 ∈V ∗ such that w2 can be accepted by using transition(s) from

q. Since the word w3wR
3 should be in the language L (i.e., it is an even palindrome) and

the length of bbb and aaa patterns in w2 is odd, the only even palindrome proper prefix

(suffix) of w2 is bb. Thus w3wR
3 = bb must hold.
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Without loss of generality, assume that there exists q ∈ δ(q0,bb,λ) in the automaton.

By continuing the process, we must have at least one of q′ ∈ δ(q,w4,λ) or

q′ ∈ δ(q,λ,w4) such that bbw4 ∈ L and w4 is either the prefix or the suffix of the

remaining unread part of word w2, i.e., ba3(b3a3)m−1(a3b3)m, with length less than m.

Clearly, w4 cannot be a prefix, and it can be only the suffix bb. Thus, in q′ the

unprocessed part of the input is ba3(b3a3)m−1(a3b3)m−1a3b. Now the automaton

must read a prefix or a suffix of this word, let us say w5 such that bbw5bb ∈ L, that is

w5 itself is an even palindrome, and its length is at most r < m. But such a word does

not exist, the length of bbb and aaa patterns in the unread part is odd and their length

is more than r. We have arrived to a contradiction, thus L cannot be accepted by any

FS sensing 5′→ 3′ WK automaton.

To prove the other direction, let us consider the language L = {anbm | n = m or n =

m+ 1}. This language can be accepted by an F1 sensing 5′ → 3′ WK automaton as

it is shown in Figure 3.6. Moreover, by Proposition 3.1.9 this language cannot be

accepted by any N sensing 5′→ 3′ WK automata.

Figure 3.7: A sensing 5′→ 3′ WK automaton of type N accepting the language of
even palindromes {wwR | w ∈ {a,b}∗}.

Theorem 3.1.12. The language class accepted by NS sensing 5′→ 3′ WK automata is

incomparable with the language class accepted by F1 sensing 5′→ 3′ WK automata.

Proof. Consider the language L = {a3nb2m | n,m ≥ 0}. An NS sensing 5′ → 3′ WK
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automaton can move one of its heads at a time. Therefore it can read three a’s by the

left head or two b’s by the right head (see Figure 3.1). Although, according to Lemma

3.1.2, ws is bb and it cannot be the shortest nonempty accepted word for an F1 sensing

5′→ 3′ WK automaton. Therefore, this language cannot be accepted by an F1 sensing

5′→ 3′ WK automaton.

Now let us consider the language L = {anbm | n = m or n = m+ 1}. This language

can be accepted by an F1 sensing 5′→ 3′ WK automaton as it is shown in Figure 3.6.

By Proposition 3.1.9, it is already shown that L cannot be accepted by any N sensing

5′→ 3′ WK automata and obviously it cannot be accepted by any NS sensing 5′→ 3′

WK automata, neither.

Table 3.1: Some specific languages belonging to language classes accepted by various
classes of WK automata. Reference to figures indicate a specific automaton that accept
the given language. 7 indicates that the language cannot be accepted by the automata
type of the specific column. Trivial inclusions are also shown, e.g., in the first line N1
in, e.g., column F means that every N1 automaton is, in fact, also an F automaton.

Language N1 NS N F1 FS F WK

{anbm | n,m≥ 0} Fig. 2.6 N1 N1 N1 N1 N1 N1

{a3nb2m | n,m≥ 0} 7 Fig. 3.1 NS 7 NS NS NS

{wwR | w ∈ {a,b}∗} 7 7 Fig. 3.7 7 7 N N

{anbm | n = m or n = m+1} 7 7 7 Fig. 3.6 F1 F1 F1

{(aa)n(bb)m | m≤ n≤ m+1,m≥ 0} 7 7 7 7 Fig. 3.3 FS FS

{a2n+qc4mb2q+n | n,q≥ 0,m ∈ {0,1}} 7 7 7 7 7 Fig. 3.4 F

{ancbnc | n≥ 1} 7 7 7 7 7 7 Fig. 3.5
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Figure 3.8: Hierarchy of sensing 5′→ 3′ WK finite automata languages in a Hasse
diagram (the language classes accepted by various types of sensing 5′→ 3′ WK finite
automata, the types of the automata are displayed in the figure with the abbreviations:

N: stateless, F: all-final, S: simple, 1: 1-limited; Lin stands for the class of linear
context-free languages). Labels on the arrows indicate where the proof of the proper

containment was presented (Th stands for Theorems, Re stands for Remark). The
language classes for which the containment is not shown are incomparable.
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Chapter 4

ON DETERMINISTIC SENSING 5′→ 3′

WATSON-CRICK FINITE AUTOMATA

4.1 Characterizing 2detLIN with the new model

In this section, we show that some of the restrictions are not real restrictions

(regarding the class of accepted languages), but more like normal forms. We also

prove that our deterministic WK automata accepts exactly the class 2detLIN defined

by the deterministic counterpart of the model working with sensing parameter.

We start the results with a general result on deterministic sensing 5′ → 3′ WK

automata. Allowing long strings to read with both heads may confuse the users to

immediately see whether an automaton, in fact, is deterministic. Therefore, we start

with a characterisation of the deterministic WK automata.

Proposition 4.1.1. The 5′→ 3′ WK automaton (V, id,Q,q0,F,δ) is not deterministic

5′ → 3′ WK automaton if and only if there exist q,q1,q2 ∈ Q and

wL,wR,uL
1 ,u

L
2 ,u

R
1 ,u

R
2 ∈ V ∗ such that q1 ∈ δ(q,wLuL

1 ,u
R
1 wR) and q2 ∈ δ(q,wLuL

2 ,u
R
2 wR)

where either

• for each i ∈ {L,R} there is a ji ∈ {1,2} such that ui
1ui

2 = ui
ji , moreover,

uL
1uL

2uR
1 uR

2 6= λ,

or
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• uL
1uR

1 uL
2uR

2 = λ and q1 6= q2.

Proof. Let us assume that ∃q,q1,q2 ∈ Q such that q1 ∈ δ(q,wLuL
1 ,u

R
1 wR) and q2 ∈

δ(q,wLuL
2 ,u

R
2 wR) where either |ui

1|+ |ui
2| = max{|ui

1|, |ui
2|} when ∃ui

j 6= λ or q1 6= q2

when uL
1uR

1 uL
2uR

2 = λ. Also, let uL = uL
1uL

2 and uR = uR
1 uR

2 . By using configuration

(q,wLuLuRwR), it is clear that by reading two possible transitions δ(q,wLuL
1 ,u

R
1 wR) and

δ(q,wLuL
2 ,u

R
2 wR), two different configurations (q1,uL

2uR
2 ) and (q2,uL

1uR
1 ) are reached,

respectively. Therefore, the automaton is not deterministic 5′→ 3′ WK.

Now, let us assume that the automaton is not deterministic 5′ → 3′ WK automaton.

Thus, ∃q,q1,q2 ∈ Q, w ∈ V ∗ such that (q,w)⇒ (q1,w1) and (q,w)⇒ (q2,w2) where

w1,w2 ∈ V ∗. Let w = wL1w1wR1,w = wL2w2wR2 where wLi,wRi ∈ V ∗, i = 1,2.

Moreover, let wL =

{
wL1 if |wL1| ≤ |wL2|

wL2 if |wL2|< |wL1|
and wR =

{
wR1 if |wR1| ≤ |wR2|

wR2 if |wR2|< |wR1|
.

Thus, ∃uL
1 ,u

R
1 ,u

L
2 ,u

R
2 ∈ V ∗ such that wLi = wLuL

i and wRi = uR
i wR, i = 1,2. Therefore,

there exist q1,q2 ∈ Q such that q1 ∈ δ(q,wLuL
1 ,u

R
1 wR) and q2 ∈ δ(q,wLuL

2 ,u
R
2 wR)

where either |ui
1|+ |ui

2| = max{|ui
1|, |ui

2|} when ∃ui
j 6= λ or q1 6= q2 when w1 = w2

(i.e. uL
1uR

1 uL
2uR

2 = λ).

We note here, that in a not deterministic 5′→ 3′ WK automaton, to have two different

transitions at a configuration does not necessarily imply to have two different

successor configurations. Both can map a given configuration to a unique successor.

For example, both transitions q′ ∈ δ(q,ab,b) and q′ ∈ δ(q,a,bb) map the

configuration (q,abb) to (q′,λ). However, in all these cases (assuming an alphabet

with at least two letters) there are also configurations such that the given transitions

map them to different configurations. In the mentioned example, consider, e.g., the
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configuration (q,ababb).

The first case of the condition of the proposition allows the cases when exactly one

of the strings uL
1 ,u

L
2 ,u

R
1 ,u

R
2 is not empty, and cases, when exactly two of them are

nonempty, especially, when uL
1 6= λ, uR

2 6= λ and when uL
2 6= λ, uR

1 6= λ. In the second

case of the condition all four of these words are empty. It never happens that exactly

three of these words are nonempty. Assuming that both uL
1 6= λ and uL

2 6= λ, there are

two cases. If one of them (let us say uL
1) is a prefix of the other (i.e. uL

2 = uL
1um where

um maybe empty), then by choosing w′L = wLuL
1 implies the existence of u′L1 = λ and

u′L2 = um. In the other case, when none of the words uL
1 and uL

2 is a prefix of the other,

then there is no configuration where both of the transitions are allowed. A similar

argument works if both uR
1 6= λ and uR

2 6= λ.

As we have already seen in Proposition 4.1.1 that deterministic WK-automata may

have some not obvious transitions. Consider, e.g., transitions reading pairs of strings

(aa,babab) and (aaac,bbab) in a state. It is easy to see that to divide each of those

transitions to two transitions allowing only to read the same strings head by head one

after the other, and then, letter by letter, we receive an automaton that is not

deterministic any more. Thus, considering the simple and 1-limited WK-automata,

we cannot use the technique which can easily be used in the nondeterministic case to

show their equivalence to the unrestricted case regarding the accepted language class.

We need to work out a more careful technique.

Theorem 4.1.2. The accepted language classes of deterministic S and 1 sensing

5′ → 3′ WK finite automata are equal to the language class that can be accepted by

29



deterministic sensing 5′→ 3′ WK finite automata (without restrictions).

Proof. The proof is constructive. Let A = (V, id,Q,q0,F,δ) be a deterministic sensing

5′→ 3′WK automaton. Let us start with a simple modification of A if it has a transition

with (λ,λ). Having a transition |δ(q,λ,λ)|> 0 for a state q is possible in a deterministic

sensing 5′→ 3′ WK automaton if and only if there is no other transition from state q,

but the only one, let say, p = δ(q,λ,λ). In this case the transitions of states p should be

copied also to q, instead its original only one transition. In this way all (λ,λ) transitions

can be eliminated. Further, we assume that A does not have a state with that type of

transition.

Now, we construct a deterministic 1 sensing 5′ → 3′ WK automaton B = (V, id,Q×

V≤r×V≤r,(q0,λ,λ),F×{λ}×{λ},δ′) to accept L(A) where r is the radius of A.

We will do the construction by obtaining a finite sequence of automata of the form

Bi = (V, id,Q×V≤r×V≤r,(q0,λ,λ),F ×{λ}× {λ},δ′i), such that in the end of the

sequence we obtain the 1-limited automaton B.

We start the process with B0 defined as follows. In each automaton Bi the state (q,λ,λ)

corresponds to q ∈ Q in A. Let us copy, first, all transitions of A to B0 by adding

(p,λ,λ) = δ′0((q,λ,λ),w1,w2) if and only if δ(q,w1,w2) = p. Clearly, B0 is equivalent

to A, they accept the same language.

Now, we simulate the original transitions by shortening them step by step.

We have a loop that should be executed for each q ∈ Q, one after the other. Let us
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consider a state q ∈ Q that has not been considered yet and the automaton Bi with the

highest index that is obtained so far.

Since the automaton A is deterministic, it is impossible to have both transitions (w1,λ)

and (λ,w2) with w1,w2 ∈V+ from state q.

If each transition from q has a nonempty string read by the left head, then let the

transitions δ′i+1 in Bi+1 from (q,λ,λ) be defined as follows: for each a ∈V ,

• let δ′i+1((q,λ,λ),a,λ) = (p,λ,λ) if there is state p such that δ(q,a,λ) = p (actually,

we copy that transition from δ′i), otherwise

• let δ′i+1((q,λ,λ),a,λ) = (q,a,λ) if a is the first letter of at least one of the words

that can be read by the left head in a transition from q.

Moreover, we also add transitions from the states (q,a,λ) (for each appropriate a∈V ):

• let δ′i+1((q,a,λ),w1,w2) = (p,λ,λ) if p = δ(q,aw1,w2).

If there is a transition from q such that the left head reads the empty word, then

(symmetrically), for each a ∈V ,

• let δ′i+1((q,λ,λ),λ,a) = (p,λ,λ) if there is state p such that δ(q,λ,a) = p, otherwise

• let δ′i+1((q,λ,λ),λ,a) = (q,λ,a) if a is the last letter of at least one of the words that

can be read by the right head in a transition from q.

Moreover, if the latter case occurs, we also add transitions from the states (q,λ,a)

(a ∈V ):

• let δ′i+1((q,λ,a),w1,w2) = (p,λ,λ) if p = δ(q,w1,w2a).
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In this step, only the transitions from states of the form (q,u,v) (with u,v∈V ∪{λ}) are

changed, all other transitions will be copied form δ′i to δ′i+1. In this way, the automaton

Bi+1 is equivalent to Bi, accepting exactly the same language. Moreover, based on

Proposition 4.1.1, it can be seen, that we have preserved the deterministic property.

However, the lengths of the read words from state (q,λ,λ) have been reduced to have

1-letter transitions and then, the rest read in a subsequent transition (from state (q,a,λ)

or (q,λ,a) for a ∈V ).

Further, we iterate this process. Let i be the index of the last automaton created. Till

there is a transition from a state (q,u,v) (u,v ∈ V ∗) in which more than one letter is

being read (or both heads read), then the process should be done for state (q,u,v) as

well:

Since the automaton Bi is deterministic, it is impossible to have both transitions (w1,λ)

and (λ,w2) with w1,w2 ∈V+ from state (q,u,v).

If each transition from (q,u,v) has a nonempty string read by the left head, then let the

transitions δ′i+1 in Bi+1 from (q,u,v) be defined as follows: for each a ∈V ,

• let δ′i+1((q,u,v),a,λ) = (p,λ,λ) if there is state p such that δ(q,ua,v) = p (actually,

we copy that transition from δ′i), otherwise

• let δ′i+1((q,u,v),a,λ) = (q,ua,v) if a is the first letter of at least one of the words

that can be read by the left head in a transition from (q,u,v) in Bi.

Moreover, we also add transitions from the states (q,ua,v) (for each appropriate a∈V ):

• let δ′i+1((q,ua,v),w1,w2) = (p,λ,λ) if p = δ(q,uaw1,w2v).

If there is a transition from (q,u,v) such that the left head reads the empty word, then
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for each a ∈V ,

• let δ′i+1((q,u,v),λ,a)= (p,λ,λ) if there is state p such that δ(q,u,av)= p, otherwise

• let δ′i+1((q,u,v),λ,a) = (q,u,av) if a is the last letter of at least one of the words

that can be read by the right head in a transition from (q,u,v) in Bi.

Moreover, if the latter case occurs, we also add transitions from the states (q,u,av)

(a ∈V ):

• let δ′i+1((q,u,av),w1,w2) = (p,λ,λ) if p = δ(q,uw1,w2av).

Furthermore, all transitions from other states than (q,u,v) will be copied form δ′i to

δ′i+1.

Finally, a deterministic automaton B j is constructed such that in each transition exactly

one letter is being read by either head while the other head reads nothing. Let, then

B = B j which is also equivalent to A.

Based on the construction, we have shown that the language classes accepted by

deterministic sensing 5′ → 3′ WK automaton is included in the language classes

accepted by deterministic 1 sensing 5′ → 3′ WK automata. Since this latter is a

special case of the former one, this can happen only if these two classes are the same.

Since, in fact all deterministic 1 sensing 5′ → 3′ WK automata are deterministic S

sensing 5′→ 3′ WK automata, the theorem is completely proven.

Remark 4.1.3. Notice that in deterministic S, and so 1 sensing 5′→ 3′ WK automata,

in each state at most one of the heads is allowed to read. Consequently, the states can
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be partitioned to two subsets depending on whether the first (left) head is allowed to

move or not.

Although the deterministic sensing 5′→ 3′ WK automata with sensing parameter (the

old model) is deterministic also, the possible transitions depend on the distance of

the heads. It is an important difference between the models that Remark 4.1.3 does

not hold for deterministic S, and so 1 sensing 5′ → 3′ WK automata with sensing

parameter. In any state, the transitions should be uniquely defined only for every fixed

sensing parameter. Thus, it may happen that a transition reading an a with the left

head is allowed with sensing parameter +∞, but the right head may read an a when the

sensing distance is 1 such that the automaton still deterministic. Thus, it is not evident

at all if our weaker model (without the additional tool, the parameter) is able to accept

the same language class.

However, we can establish the following important result.

Theorem 4.1.4. The language class accepted by deterministic sensing 5′ → 3′ WK

automata without sensing parameter equals to the class of languages that can be

accepted by deterministic sensing 5′→ 3′ WK automata with sensing parameter.

Proof. By Theorem 4 in [18] and our Theorem 4.1.2, it is enough to show that the

language class accepted by deterministic 1 sensing 5′ → 3′ WK automaton without

sensing parameter equals to the class of languages that can be accepted by a

deterministic 1 sensing 5′→ 3′ WK automaton with sensing parameter. It is obvious

that in these latter automata the sensing parameter set D could include only values ∞

and 1. The proof is constructive in both directions.
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Let us consider, first, the direction to show that the language class accepted by

deterministic 1 sensing 5′→ 3′ WK automata without sensing parameter is included

in the language class accepted by deterministic 1 sensing 5′→ 3′ WK automaton with

sensing parameter.

Let A′ = (V, id,Q,q0,F,δ′) be a sensing 5′ → 3′ WK automaton without sensing

parameter. Let the sensing 5′ → 3′ WK automaton with sensing parameter

A = (V, id,Q,q0,F,δs) be defined as follows. For each transition q′ ∈ δ′(q,a,λ) where

a ∈ V , let q′ ∈ δs

(
q,

(
a

λ

)
,+∞

)
be the transition in sensing 5′ → 3′ WK

automaton with sensing parameter when q′ /∈ F . Otherwise, if q′ ∈ F then both

q′ ∈ δs

(
q,

(
a

λ

)
,1

)
and q′ ∈ δs

(
q,

(
a

λ

)
,+∞

)
. Similarly this can be done for

transition q′ ∈ δ′(q,λ,a). It is clear that the automaton A accepts exactly L(A′) having

essentially the same accepting computation.

Now, considering the other direction, we show that the language class accepted by

deterministic 1 sensing 5′ → 3′ WK automata with sensing parameter is included in

the language class accepted by deterministic 1 sensing 5′→ 3′ WK automata without

sensing parameter. Notice that at transitions with sensing parameter 1 we can reach

the accepting state by using either head to read the last letter of the input, these steps,

in fact are equivalent.

Let A = (V, id,Q,q0,F,δs) be a sensing 5′ → 3′ WK automaton with sensing

parameter. Now, let A′ = (V, id,Q′,q′0,F
′,δ′) be the sensing 5′ → 3′ WK automaton

without sensing parameter where Q′ = Q∪Q×F ∪{q f } represents the finite set of
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states where q f 6∈ Q and F ′ = Q× F ∪ {q f }. If q0 ∈ F , then let q′0 = (q0,q0),

otherwise let q′0 = q0. Further, the transition function δ′ is defined in the following

way. For each state of A we are considering the transitions with sensing parameter

+∞ to put them in the partitions. If in a state q transitions with the left (first) head are

allowed with this parameter then we use these states for left head transitions. (More

precisely, the first partition of states includes the ones satisfying the following: there

is a transition with the left head with parameter +∞ or there is no transition at all with

parameter +∞. This condition is equivalent to the following one: there is no transition

with the right head with this parameter in A from state q.) Formally, for each q ∈ Q

and a ∈V do the following:

• If q1 ∈ δs(q,

(
a

λ

)
,+∞), q2 ∈ δs(q,

(
λ

a

)
,1) where q2 ∈ F then let (q1,q2) ∈

δ′(q,a,λ) (notice that (q1,q2) ∈ F ′).

• If q1 ∈ δs(q,

(
λ

a

)
,+∞), q2 ∈ δs(q,

(
λ

a

)
,1) where q2 ∈ F then let (q1,q2) ∈

δ′(q,λ,a).

• If q1 ∈ δs(q,

(
a

λ

)
,+∞), q2 ∈ δs(q,

(
a

λ

)
,1) where q2 ∈ F then let (q1,q2) ∈

δ′(q,a,λ).

• If q1 ∈ δs(q,

(
λ

a

)
,+∞), q2 ∈ δs(q,

(
a

λ

)
,1) where q2 ∈ F then let (q1,q2) ∈

δ′(q,λ,a).

Further, continue as follows:

• If q1 ∈ δs(q,

(
a

λ

)
,+∞), but there is no transition with either head reading an a at

state q with parameter 1 then let q1 ∈ δ′(q,a,λ) (notice that q1 /∈ F ′).
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• If q1 ∈ δs(q,

(
λ

a

)
,+∞), but there is no transition with either head reading an a at

state q with parameter 1 then let q1 ∈ δ′(q,λ,a).

• If q1 ∈ δs(q,

(
a

λ

)
,1) with q1 ∈ F , and there is no transition with either head

reading an a at state q with parameter +∞, but there is a letter b ∈ V such that

|δs(q,

(
b

λ

)
,+∞)|= 1 then let q f ∈ δ′(q,a,λ).

• If q1 ∈ δs(q,

(
λ

a

)
,1) with q1 ∈ F , and there is no transition with either head

reading an a at state q with parameter +∞, but there is a letter b ∈ V such that

|δs(q,

(
b

λ

)
,+∞)|= 1 then let q f ∈ δ′(q,a,λ).

• If q1 ∈ δs(q,

(
a

λ

)
,1) with q1 ∈ F , and there is no transition with either head

reading an a at state q with parameter +∞, but there is a letter b ∈ V such that

|δs(q,

(
λ

b

)
,+∞)|= 1 then let q f ∈ δ′(q,λ,a).

• If q1 ∈ δs(q,

(
λ

a

)
,1) with q1 ∈ F , and there is no transition with either head

reading an a at state q with parameter +∞, but there is a letter b ∈ V such that

|δs(q,

(
λ

b

)
,+∞)|= 1 then let q f ∈ δ′(q,λ,a).

• If q1 ∈ δs(q,

(
a

λ

)
,1) with q1 ∈ F , and there is no transition with either head

reading any letter at state q with parameter +∞, then let q f ∈ δ′(q,a,λ).

• If q1 ∈ δs(q,

(
λ

a

)
,1) with q1 ∈ F , and there is no transition with either head

reading any letter at state q with parameter +∞, then let q f ∈ δ′(q,a,λ).

The extension of the transition mapping to the pairs of states is based on the first
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element of the pair: for each q ∈ Q,a ∈V , consider each state (q, f ) ∈ Q×F with the

following transitions:

• If q1 ∈ δs(q,

(
a

λ

)
,+∞), q2 ∈ δs(q,

(
λ

a

)
,1) where q2 ∈ F then let (q1,q2) ∈

δ′((q, f ),a,λ).

• If q1 ∈ δs(q,

(
λ

a

)
,+∞), q2 ∈ δs(q,

(
λ

a

)
,1) where q2 ∈ F then let (q1,q2) ∈

δ′((q, f ),λ,a).

• If q1 ∈ δs(q,

(
a

λ

)
,+∞), q2 ∈ δs(q,

(
a

λ

)
,1) where q2 ∈ F then let (q1,q2) ∈

δ′((q, f ),a,λ).

• If q1 ∈ δs(q,

(
λ

a

)
,+∞), q2 ∈ δs(q,

(
a

λ

)
,1) where q2 ∈ F then let (q1,q2) ∈

δ′((q, f ),λ,a).

Further, consider the next steps.

• If q1 ∈ δs(q,

(
a

λ

)
,+∞), but there is no transition with either head reading an a at

state q with parameter 1 then let q1 ∈ δ′((q, f ),a,λ).

• If q1 ∈ δs(q,

(
λ

a

)
,+∞), but there is no transition with either head reading an a at

state q with parameter 1 then let q1 ∈ δ′((q, f ),λ,a).

• If q1 ∈ δs(q,

(
a

λ

)
,1) with q1 ∈ F , and there is no transition with either head

reading an a at state q with parameter +∞, but there is a letter b ∈ V such that

|δs(q,

(
b

λ

)
,+∞)|= 1 then let q f ∈ δ′((q, f ),a,λ).

• If q1 ∈ δs(q,

(
λ

a

)
,1) with q1 ∈ F , and there is no transition with either head
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reading an a at state q with parameter +∞, but there is a letter b ∈ V such that

|δs(q,

(
b

λ

)
,+∞)|= 1 then let q f ∈ δ′((q, f ),a,λ).

• If q1 ∈ δs(q,

(
a

λ

)
,1) with q1 ∈ F , and there is no transition with either head

reading an a at state q with parameter +∞, but there is a letter b ∈ V such that

|δs(q,

(
λ

b

)
,+∞)|= 1 then let q f ∈ δ′((q, f ),λ,a).

• If q1 ∈ δs(q,

(
λ

a

)
,1) with q1 ∈ F , and there is no transition with either head

reading an a at state q with parameter +∞, but there is a letter b ∈ V such that

|δs(q,

(
λ

b

)
,+∞)|= 1 then let q f ∈ δ′((q, f ),λ,a).

• If q1 ∈ δs(q,

(
a

λ

)
,1) with q1 ∈ F , and there is no transition with either head

reading any letter at state q with parameter +∞, then let q f ∈ δ′((q, f ),a,λ).

• If q1 ∈ δs(q,

(
λ

a

)
,1) with q1 ∈ F , and there is no transition with either head

reading any letter at state q with parameter +∞, then let q f ∈ δ′((q, f ),a,λ).

Finally, there is no transition from the state q f .

One may easily check that the constructed automaton A′ is also deterministic. Further

it simulates the computation of the original automaton with the same states or by the

first element of the pair of states, but the very last step of the accepting computations,

where it accepts based on the second element of a pair of states. Consequently, it

accept L(A).

Therefore, the two models of deterministic WK automata are proven to be equivalent.
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One can summarize the main results of this section as:

Corollary 4.1.5. The class of languages accepted by arbitrary deterministic sensing

5′ → 3′ WK automata without sensing parameter is exactly the language class

2detLIN. Moreover, the same class of languages is accepted by the class of

deterministic 1 sensing 5′→ 3′ WK automata without sensing parameter.

We close the results of this section by showing how the new model is applicable to

know more about the language class 2detLIN. Note that some closure properties of

2detLIN were already established in [18]. It was shown that this family is not closed

under the regular operations, i.e., it is not closed under any of the operations union,

concatenation and Kleene-closure. We complement those results by showing the

closure properties under other set theoretic operations, i.e., under complementation

and intersection.

Proposition 4.1.6. The language class 2detLIN is closed under the operation set

theoretic complement.

Proof. Let M be a deterministic 1 sensing 5′ → 3′ WK automaton without sensing

parameter that accepts the 2detLIN language L. Should some transitions be not defined

at M, that is, it may get stuck on some input reaching a configuration. Then, we should

add a new state which will be the sink state. By Remark 4.1.3, for every state we may

add the missing transitions (i.e., the missing letters will be read by the given head)

to the sink state. Now, the automaton can fully read and process any input word and

make the decision of the acceptance at that stage. Finally, by complementing the set
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of accepting states, we obtain a new automaton that accepts exactly those words that

were not accepted by the original automaton.

Applying the previous result, knowing that the class is not closed under union, by the

De Morgan’s law, we can infer also the following property.

Corollary 4.1.7. The language class 2detLIN is not closed under intersection.

4.2 Hierarchy results

In this section, our focus is to establish hierarchy results among the classes of accepted

languages. We are focusing on the restricted classes deterministic N1, NS, N, F1, FS

and F sensing 5′→ 3′ WK automata.

We start from the most restricted class of WK automata to show that there are

languages that are accepted by them:

Example 4.2.1. The language L1 = {an|n ∈ N} is accepted by a deterministic N1

sensing 5′→ 3′ WK automaton as Fig. 4.1 shows. In fact, L1 is accepted by any of

the restricted and unrestricted classes of deterministic sensing 5′→ 3′ WK automata,

since by definition an N1 automaton satisfies any of the constraints we have defined.

Figure 4.1: A deterministic N1 sensing 5′→ 3′ WK automaton accepting the
language L1 = {an|n ∈ N}.

In fact, since only one of the heads can read in a deterministic N1 sensing 5′→ 3′ WK

automaton, exactly the same class of languages are accepted by them, as the class
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accepted by stateless finite automata. This implies that, if we have the strong

restriction on the states (no state), the strong restriction on the transitions (letter by

letter, exactly 1 letter in a transition), moreover, our automaton is deterministic, we do

not gain anything by adding the second head.

We continue our studies by the following observation. Any input with at most length

r can be processed in one step; for every longer input the automaton must make more

steps of computation before accepting them. Formally, we can state and prove a related

statement about some classes of languages accepted by restricted variants.

Lemma 4.2.2. Let M be an F1 sensing 5′→ 3′ WK automaton and let the word w ∈

V+be in L(M). Let |w| = n, then for each m, where 0 ≤ m ≤ n, there is at least one

word uv ∈ L(M) such that |uv|= m, w = uxv and u,x,v ∈V ∗.

Proof. By considering the definition of F1 sensing 5′→ 3′ WK automaton, w can be

accepted in n steps such that in each step, the automaton can read exactly one letter.

Moreover, each state is final, therefore by considering the first m steps of the n steps,

the word uv is accepted by M, where u is read by the left head and v is read by the right

head during these m steps, respectively.

Although this lemma is more general and works also for nondeterministic WK

automata, it will also be very helpful studying the deterministic variants. Remember,

that all N1 WK automata are also F1 WK automata.

The next series of results provides us separating languages for the various classes

defined by restricted variants of WK automata.
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Lemma 4.2.3. The language L2 = {(ab+b)∗} is accepted by

• deterministic NS sensing 5′→ 3′ WK automata,

• deterministic N sensing 5′→ 3′ WK automata,

• deterministic F1 sensing 5′→ 3′ WK automata,

• deterministic FS sensing 5′→ 3′ WK automata,

• deterministic F sensing 5′→ 3′ WK automata.

However, L2 is not accepted by any

• deterministic N1 sensing 5′→ 3′ WK automata.

Proof. We show a deterministic NS sensing 5′ → 3′ WK automaton in Fig. 4.2 (a)

that accepts exactly L2. That is clear that the automaton is deterministic, and the two

transitions are corresponding to the words ab and b. This automaton is also a

deterministic N (and F) sensing 5′→ 3′ WK automaton.

L2 is also accepted by a deterministic F1 sensing 5′→ 3′ WK automaton, as Fig. 4.2

(b) displays a solution. This automaton is also a deterministic FS and F sensing 5′→ 3′

WK automaton.

Finally, we show that L2 is not accepted by any N1 sensing 5′→ 3′ WK automata. Let

us suppose, contrary, that an N1 sensing 5′→ 3′ WK automaton accepts L2. Since L2

contains words which contain the letter a, e.g., ab, it is possible only if the automaton

has a loop transition by reading exactly one letter a. However, this loop transition leads

to accept words a, aa, etc., which are not in L2. This contradiction proves the last part

of the theorem.
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(a) (b)

Figure 4.2: (a) A deterministic NS sensing 5′→ 3′ WK automaton and (b) a
deterministic F1 sensing 5′→ 3′ WK automaton accepting the language L2.

Lemma 4.2.4. The language L3 = {(ab)n|n ∈ N} is accepted by

• deterministic NS sensing 5′→ 3′ WK automata,

• deterministic N sensing 5′→ 3′ WK automata,

• deterministic FS sensing 5′→ 3′ WK automata,

• deterministic F sensing 5′→ 3′ WK automata.

However, L3 is not accepted by any

• deterministic F1 sensing 5′→ 3′ WK automata,

• deterministic N1 sensing 5′→ 3′ WK automata.

Proof. Considering the language L3 = {(ab)n|n ∈ N}, the word ws is ab and in an NS

sensing 5′→ 3′ WK automaton it can be accepted by one of the transitions: (λ,ab) or

(ab,λ). Indeed, L3, as shown in Figure 4.3, is accepted by an NS sensing 5′→ 3′ WK

automaton. In fact this automaton is also N, FS and F sensing 5′→ 3′ WK automaton.

On the other hand, by Lemma 4.2.2, ws cannot be the shortest nonempty word accepted

by an F1 or an N1 sensing 5′→ 3′ WK automaton.
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Figure 4.3: A deterministic NS sensing 5′→ 3′ WK automaton accepting the
language {(ab)n|n ∈ N}.

Lemma 4.2.5. Let us consider the linear context-free grammar ({S},{a,b},S,{S→

aSb,S→ Sa,S→ λ}). Let L4 denote the language generated by this grammar. Then,

L4 is accepted by

• deterministic N sensing 5′→ 3′ WK automata,

• deterministic F1 sensing 5′→ 3′ WK automata,

• deterministic FS sensing 5′→ 3′ WK automata,

• deterministic F sensing 5′→ 3′ WK automata.

However, L4 is not accepted by any

• deterministic NS sensing 5′→ 3′ WK automata,

• deterministic N1 sensing 5′→ 3′ WK automata.

Proof. L4 is an infinite language with the following properties: Each nonempty word

of L4 starts with a letter a, this can be seen easily seeing the productions of the given

grammar. There are words in L4 that contain some b’s, however, the number of b’s in

each word of L4 is less than or equal to the number of a’s in that word. Actually, L4

contains each word, which starts with at least as many a’s as the number of b’s in it

(whenever a b is derived, by the first production, an additional a is put in the beginning

of the word).
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Now, we present a deterministic N sensing 5′→ 3′ WK automaton and a deterministic

F1 sensing 5′→ 3′ WK automaton (that also FS and F WK automaton) accepting the

language L4, in Figure 4.4 (a) and (b), respectively. By the usual method (see,

e.g., [22]) how a sensing 5′→ 3′ WK automaton can be transformed to an equivalent

grammar, it is clear that the deterministic N sensing 5′ → 3′ WK automaton is

equivalent to the grammar of the language L4.

Our deterministic F1 sensing 5′→ 3′ WK automaton can be transformed to the linear

context-free grammar ({S,A},{a,b},S,{S→ aA,A→ Sb,A→Aa,S→ λ,A→ λ}). As

one may check, this grammar generates also exactly L4.

Now we turn to the last two statements of the theorem. The word ws of L4 is a and a

deterministic NS sensing 5′→ 3′WK automaton can accept ws by one of the transitions

(a,λ) or (λ,a).

Let us consider the case when the automaton has the loop transition (a,λ). In this case,

since the automaton is deterministic, all transitions must be in the form of (wi,λ) with

wi ∈ V ∗. Since there are words that contain b’s, there must be at least one transition

(w j,λ) such that w j contains the letter b. However, each wi must be in L4, thus each

of them start with a. This, however, leads to the contradiction: a deterministic NS

automaton cannot have both transitions (a,λ) and (w j,λ) since a is a prefix of the

word w j.

Now let us consider the other case, i.e., if the NS automaton has the transition (λ,a).

Since the automaton is deterministic, now, all the transitions are loops with (λ,wi)
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with some wi ∈V ∗. Moreover, since the automaton is deterministic, each word wi ends

with a letter b. The word ab is in L4. One option is if ab is accepted by one transition

(λ,ab). However, then, by iterative use of this transition, the word abab would also

be accepted, but clearly abab 6∈ L4. The other option is if ab is accepted by applying

transition (λ,b) followed by the application of (λ,a). In this case, however, not only

the latter one, but also (λ,b) is in the automaton. But, in this case, the word b would

also be accepted, which is not in L4.

Therefore this language is not accepted by any deterministic NS and so, N1 sensing

5′→ 3′ WK automata.

(a) (b)

Figure 4.4: The language L4 is accepted by (a) a deterministic N sensing 5′→ 3′ WK
automaton and (b) a deterministic F1 sensing 5′→ 3′ WK automaton.

Lemma 4.2.6. Let us consider the linear context-free grammar ({S},{a,b},S,{S→

aaSb,S→ Saa,S→ λ}). Let L5 denote the language generated by this grammar. Then,

L5 is accepted by

• deterministic N sensing 5′→ 3′ WK automata,

• deterministic FS sensing 5′→ 3′ WK automata,

• deterministic F sensing 5′→ 3′ WK automata.

However, L5 is not accepted by any
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• deterministic F1 sensing 5′→ 3′ WK automata,

• deterministic NS sensing 5′→ 3′ WK automata,

• deterministic N1 sensing 5′→ 3′ WK automata.

Proof. L5 is obtained from L4 by replacing each occurrence of the letter a by the word

aa. Consequently, L5 is accepted by a deterministic N and by an FS sensing 5′→ 3′

WK automata shown in Figure 4.5.

Now, we prove that there is no deterministic F1 sensing 5′ → 3′ WK automata that

accept L5. The word ws of L5 is aa but by Lemma 4.2.2, aa cannot be the shortest

nonempty accepted word for any deterministic F1 (and N1) sensing 5′ → 3′ WK

automata.

To show that there is no deterministic NS sensing 5′→ 3′ WK automata that accept L5

is going by a similar argument as for the language L4 replacing all a’s in the proof by

the word aa.

(a) (b)

Figure 4.5: (a) A deterministic N sensing 5′→ 3′ WK automaton and (b) a
deterministic FS sensing 5′→ 3′ WK automaton accepting the language L5.

Lemma 4.2.7. The language L6 = {a2nb2n|n ∈ N} is accepted by

• deterministic N sensing 5′→ 3′ WK automata,

48



• deterministic F sensing 5′→ 3′ WK automata.

However, L6 is not accepted by any

• deterministic FS sensing 5′→ 3′ WK automata,

• deterministic F1 sensing 5′→ 3′ WK automata,

• deterministic NS sensing 5′→ 3′ WK automata,

• deterministic N1 sensing 5′→ 3′ WK automata.

Proof. First, Figure 4.6 shows a deterministic N sensing 5′→ 3′ WK automaton that

clearly accepts L6. It is in fact also an F WK automaton.

Second, we prove that L6 is not accepted by any deterministic FS sensing 5′→ 3′ WK

automata (which proves also the last three statements of the lemma). Contrary, let us

assume that L6 is accepted by a deterministic FS sensing 5′→ 3′ WK automaton. Let

the radius of this automaton be r. Let w = a2mb2m ∈ L with m > r
4 . Then the word

w cannot be accepted by using only one of the transitions from initial state q0, i.e.,

δ(q0,a2mb2m,λ) or δ(q0,λ,a2mb2m) is not possible. Since, all states are final and every

word of L has the same number of a’s and b’s then neither a prefix nor a suffix of w can

be accepted by a transition from q0. This fact contradicts to our assumption, hence this

language cannot be accepted by any deterministic FS sensing 5′ → 3′ WK automata

and obviously by any of F1, NS and N1 sensing 5′→ 3′ WK automata.

Figure 4.6: A deterministic N sensing 5′→ 3′ WK automaton accepting the language
{a2nb2n|n ∈ N}.
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Lemma 4.2.8. The language L7 = {anbm|n ∈ N,m ∈ {0,1}} is accepted by

• deterministic F1 sensing 5′→ 3′ WK automata,

• deterministic FS sensing 5′→ 3′ WK automata,

• deterministic F sensing 5′→ 3′ WK automata.

On the other hand, L7 is not accepted by any

• deterministic N sensing 5′→ 3′ WK automata,

• deterministic NS sensing 5′→ 3′ WK automata,

• deterministic N1 sensing 5′→ 3′ WK automata.

Proof. We prove, first, that the language L7 is accepted by a deterministic F1 sensing

5′→ 3′ WK automaton: Figure 4.7 shows the solution. In fact, this automaton is also

deterministic FS, and so, F sensing 5′→ 3′ WK automaton.

On the other hand, the transitions in a deterministic N sensing 5′→ 3′ WK automaton

are loop transitions. The word b is in L7, the automaton must have a transition to accept

it. But any loop transition containing b causes that the automaton can accept the words

having more than one b which results words not in L. Since all NS and N1 sensing

5′→ 3′ WK automata are N sensing 5′→ 3′ WK automata, the argument also applies

for them.

Figure 4.7: Language L7 = {anbm|n ∈ N,m ∈ {0,1}} is accepted by a deterministic
F1 sensing 5′→ 3′ WK automaton.
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Lemma 4.2.9. The language L8 = {(ab)n(cc)m|n ∈ N,m ∈ {0,1}} is accepted by

• deterministic FS sensing 5′→ 3′ WK automata,

• deterministic F sensing 5′→ 3′ WK automata.

However, L8 is not accepted by any

• deterministic F1 sensing 5′→ 3′ WK automata,

• deterministic N sensing 5′→ 3′ WK automata,

• deterministic NS sensing 5′→ 3′ WK automata,

• deterministic N1 sensing 5′→ 3′ WK automata.

Proof. On one hand, L8 is accepted by an FS sensing 5′ → 3′ WK automaton (see

Figure 4.8). Obviously this is also an F sensing 5′→ 3′ WK automaton.

On the other hand, first we show that no F1 sensing 5′→ 3′ WK automaton accepts

L8. The word ws of this language is ab or cc which can be accepted by transitions

(λ,ab), (ab,λ), (cc,λ), or (λ,cc) in an FS sensing 5′→ 3′ WK automaton. However,

according to Lemma 4.2.2, ws cannot be the shortest nonempty accepted word in F1

sensing 5′→ 3′ WK automaton.

Finally, we show that no N sensing 5′→ 3′ WK automaton accepts L8. Since c is not in

L8, but cc ∈ L8, the stateless automaton must have a transition to accept cc in one step:

at least one of the loop transitions (λ,cc), (c,c), or (cc,λ) must be in the automaton.

However, the iterated use of this transition leads to accept words, e.g., cccc which are

not in L8. This contradiction shows that no N, and thus, no NS and N1 sensing 5′→ 3′

WK automaton accepts L8.
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Figure 4.8: A deterministic FS sensing 5′→ 3′ WK automaton accepting the
language L8 = {(ab)n(cc)m|n ∈ N,m ∈ {0,1}}.

Lemma 4.2.10. The language L9 = {a2n(ccccc)qb2n|n ∈N,q ∈ {0,1}} is accepted by

• deterministic F sensing 5′→ 3′ WK automata.

However, L9 is not accepted by any

• deterministic FS sensing 5′→ 3′ WK automata,

• deterministic F1 sensing 5′→ 3′ WK automata,

• deterministic N sensing 5′→ 3′ WK automata,

• deterministic NS sensing 5′→ 3′ WK automata,

• deterministic N1 sensing 5′→ 3′ WK automata.

Proof. First we present a deterministic F sensing 5′→ 3′ WK automaton that accepts

L9: see Figure 4.9.

Now, let us assume, contrary, that L9 is accepted by a deterministic FS sensing 5′→ 3′

WK automaton. Let the radius of this automaton be r. Let w = a2mb2m ∈ L with m > r
4 .

Then the word w cannot be accepted by using only one of the transitions from initial

state q0, i.e., δ(q0,a2mb2m,λ) or δ(q0,λ,a2mb2m) is not possible. Since, all states are

final and every word of L has the same number of a’s and b’s then neither a prefix

nor a suffix of w can be accepted by a transition from q0. This fact contradicts to

our assumption, hence L9 is not accepted by any deterministic FS sensing 5′ → 3′
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WK automata. This implies also that there is no deterministic F1, NS and N1 sensing

5′→ 3′ WK automata that accept L9.

Finally, we need also to prove that L9 is not accepted by any deterministic N sensing

5′→ 3′ WK automaton. Assume that L9 is accepted by a stateless automaton. Since

ccccc is in L9, but not any of the words c,cc,ccc,cccc are in L9, there must be a

transition in which exactly 5 c’s are read. But then, applying this loop transition

iteratively, words like c10 are also accepted. Since they are not in L9, we got a

contradiction, which proves our statement.

Figure 4.9: A deterministic F sensing 5′→ 3′ WK automaton accepting the language
{a2nc5qb2n|n ∈ N,q ∈ {0,1}}.

Lemma 4.2.11. The language L10 = {andbnc|n ∈ N} is accepted by

• deterministic sensing 5′→ 3′ WK automata.

However, L10 is not accepted by any

• deterministic F sensing 5′→ 3′ WK automata,

• deterministic FS sensing 5′→ 3′ WK automata,

• deterministic F1 sensing 5′→ 3′ WK automata,

• deterministic N sensing 5′→ 3′ WK automata,

• deterministic NS sensing 5′→ 3′ WK automata,

• deterministic N1 sensing 5′→ 3′ WK automata.
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Proof. The language L10 = {andbnc|n ≥ 1} is accepted by a deterministic sensing

5′ → 3′ WK automaton (without restrictions) as it is shown in Figure 4.10. In the

proof of Theorem 6 in [22], we showed that the language L10 cannot be accepted

by any nondeterministic F sensing 5′ → 3′ WK automaton. Therefore, there is no

deterministic F, FS, F1, N, NS and N1 sensing 5′ → 3′ WK automata that accept

L10.

Figure 4.10: A deterministic sensing 5′→ 3′ WK automaton accepts the language
{andbnc|n≥ 1}.

Finally, we recall that 2detLIN is a proper subset of the family of linear context-free

languages, e.g., the language L11 = {anban | n ∈ N} ∪ {anca2n | n ∈ N} is a linear

language and it is not in 2detLIN.

Now, we are ready to state the hierarchy results for the classes accepted by the various

restricted variants of WK automata.

Theorem 4.2.12. The following proper inclusions hold for the language classes

accepted by the variants of deterministic sensing 5′ → 3′ WK automata without

sensing parameter:

N1 ( NS ( N ( F ( 2detLIN ( LIN

N1 ( F1 ( FS ( F and NS ( FS
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(The abbreviations of the type of the automata above denote the language class

defined by the given restricted class, while LIN denotes the class of linear

context-free languages.)

Proof. First, we notice that all the subset relations included in the theorem are trivial

by considering the constraints of the variants and by knowing that, by Corollary 4.1.5,

the class 2detLIN is the class accepted by the class of arbitrary deterministic sensing

5′→ 3′ WK automata with sensing parameter.

To show the properness of the inclusions, we provide the separating languages L2,

L4, L7, L10 and L11 for the first line (applying Lemmas 4.2.3, 4.2.5, 4.2.8 and 4.2.11,

respectively).

For the second line, the separating languages L2, L3, L6 and L8 can be used, based on

Lemmas 4.2.3, 4.2.4, 4.2.7 and 4.2.9, respectively.

Among these hierarchy results some highlight the difference between the new model

(without sensing parameter) and the old model [18].

Remark 4.2.13. Deterministic F1 sensing 5′ → 3′ WK automata with sensing

parameter are as powerful as the deterministic sensing 5′ → 3′ WK automata with

sensing parameter without any additional restrictions. In the new model, opposite to

this, we have a finer hierarchy: The language class accepted by deterministic F1

sensing 5′ → 3′ WK automata is a proper subset of the language class accepted by

deterministic FS sensing 5′→ 3′ WK automata. Further, the language class accepted

by deterministic FS sensing 5′→ 3′ WK automata is a proper subset of the language
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class accepted by deterministic F sensing 5′ → 3′ WK automata. Finally, the class

accepted by deterministic F sensing 5′ → 3′ WK automata is a proper subset of

2detLIN.

We can complement the previous results by some incomparability results.

Theorem 4.2.14. The pairs of language classes accepted by the following pairs of

classes of deterministic sensing 5′ → 3′ WK automata are incomparable under set

theoretical inclusion:

1. classes of deterministic F1 and NS sensing 5′→ 3′ WK automata,

2. classes of deterministic F1 and N sensing 5′→ 3′ WK automata,

3. classes of deterministic FS and N sensing 5′→ 3′ WK automata.

Proof. The first two statement follows from Lemmas 4.2.4 and 4.2.8, by the properties

of languages L3 and L7. The last statement follows from Lemmas 4.2.7 and 4.2.8, by

the properties of languages L6 and L7.

To complete the picture we show further relations among the language classes defined

by variants of deterministic sensing 5′→ 3′ WK automata.

Theorem 4.2.15. The intersections of the language classes accepted by the following

pairs of classes of deterministic sensing 5′→ 3′ WK automata contain languages that

are not in the third class:

• (F1∩NS)\N1 6= /0,

• (F1∩N) \NS 6= /0,

• (FS∩N) \NS 6= /0.
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(The abbreviations denotes the classes of accepted languages, respectively.)

Proof. Consider the languages L2, L4, L5 from Lemma 4.2.3, 4.2.5, 4.2.6, respectively.

The complete picture is shown in Figure 4.11, where the abbreviations of the specific

automata models represent the class of accepted languages, respectively.

Figure 4.11: Hierarchy and incomparability results of deterministic sensing 5′→ 3′

WK finite automata languages (where the abbreviations of various automata classes
stand for the defined language classes) in a Venn-Euler diagram: 2detLIN and its

special subclasses are displayed inside LIN, the class of linear context-free languages.
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Chapter 5

CONCLUSION

The general nondeterministic variants (the automata without using any restrictions) of

the new model without sensing parameter and the old model with sensing parameter

have the same accepting power, i.e., exactly the linear context-free languages [14, 18,

22]. However, by our proofs, the new model gives a more finer hierarchy, as it is

displayed in Figure 3.8. Table 3.1 gives some specific languages that separate some of

the language classes. Further comparisons of related language classes and properties

of the language classes defined by the new model are left to the future.

In this thesis we have shown that this is also true for their deterministic counterparts,

both of them characterise the class 2detLIN. This result was not straightforward, since

the sensing parameter gave more freedom in the old model allowing different set of

transitions when the heads are close to the meeting point and when they are not.

However, we have efficiently simulated the original automata with the new model

keeping it deterministic. In this way, by our results, the class 2detLIN can be further

analysed using these newer and simpler automata without the very technical sensing

parameter. We have proven here that this class is closed under complementation, but

not under intersection. A summary of our hierarchy results is shown in Figure 4.11.

We note that the deterministic hierarchy of languages investigated in Chapter 4 is very

similar to the hierarchy shown for the nondeterministic model which is described in

Chapter 3, although the classes are different. Already nondeterministic N1 automata
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are more powerful than their deterministic variants. We should also recall that, in the

nondeterministic case, it was trivial to simulate the string reading feature of the

automata by having the restriction to read exactly 1 letter in each transition. This was

more technical in the deterministic case (that we have managed here in Theorem

4.1.2). On the other side, the hierarchy presented here is finer (containing 7 classes)

than the hierarchy obtained by the model with sensing parameter (containing only 4

classes including 2detLIN, [18]).
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