
Overset Grid Assembler and Flow Solver with
Adaptive Spatial Load Balancing

Orhan Shibliyev

Submitted to the
Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Mechanical Engineering

Eastern Mediterranean University
December 2021

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor
of Philosophy in Mechanical Engineering.

Prof. Dr. Hasan Hacışevki
Chair, Department of Mechanical

Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Doctor of Philosophy in Mechanical
Engineering.

Prof. Dr. İbrahim Sezai
Supervisor

Examining Committee

1. Prof. Dr. Hasan U. Akay

2. Prof. Dr. Uğur Atikol

3. Prof. Dr. Hasan Hacışevki

4. Prof. Dr. Mehmet Ş. Kavsaoğlu

5. Prof. Dr. İbrahim Sezai

ABSTRACT

In the present study, a parallel unsteady and coupled flow solver is developed to solve

fluid flow around relatively moving components using a system of multiple unstructured

meshes overlapping each other in a parallel computing environment. The use of multiple

overlapping meshes is also referred as overset mesh methodology, which is convenient

in solving fluid flow problems involving moving components such as flow around

helicopters and wind farms.

Traditional single grid generation around all the components of a system is time

consuming. Also, quality of the resultant single grid is usually unsatisfactory for

critical regions of flow such as boundary layers and bodies in close proximity.

Additionally, in unsteady flow simulations, excessive mesh stretching causes the

solution accuracy to diminish significantly. Overset mesh methodology allows each

component mesh to be generated independently with desired local properties. In this

thesis, an overset grid assembler is developed to establish connectivity across

component meshes in a parallel computing environment, where all meshes are

partitioned into multiple mesh-blocks and processed on multiple cores. The cells are

classified into 1) field cells on which the discretized Euler equations are solved, 2)

receptors which interpolate data from (donor) field cells and 3) hole cells which are

excluded from the flow solution due to overlapping invalid regions of space such as

holes. Alternating Digital Tree and stencil walking are implemented to reduce the time

spent on the overset mesh connectivity. Hole map is used to identify hole cells and

integrated to the mesh connectivity algorithm in order to cut holes exactly.

iii

Unlike traditional mesh partitioning where each partition contains similar number of

cells, component meshes are partitioned spatially so that overlapping mesh-blocks

reside in the same partitions. Spatial partitioning is performed using an octree to which

mesh-blocks are registered. The octree is refined adaptively until octree-bins can be

distributed to processors evenly. Load balancing is repeated whenever load imbalance

exceeds a predefined threshold.

Validity of the developed code is tested on several test cases including the case of

complex flow around a generic helicopter configuration in near hover condition and

evaluated in terms of rotor-fuselage interaction, load balance, scalability and memory

usage.

Even though load (re-)balancing was found to be the most time consuming task, it

was shown that frequent load balancing reduced total simulation time considerably.

The time saved with load rebalancing was 13% which added up periodically for every

quarter rotation.

Speed-up results for combination of tasks (hole cut, donor search and overlap

minimization) in the present work were compared with Suggar++ [1] which provided

speed-up results for up to 8 processors. It was observed that present speed-up results

showed linear behaviour compared to non-linear speed-up in Suggar++. Additionally,

higher speed-up was obtained compared with Suggar++.

Keywords: Computational fluid dynamics; numerical algorithms; overset grid

methodology; load balancing

iv

ÖZ

Bu çalışmada, paralel bir hesaplama ortamında birbiriyle örtüşen çoklu

yapılandırılmamış ağlardan oluşan bir sistem kullanarak, nispeten hareket eden

bileşenlerin etrafındaki sıvı akışını çözmek için bir paralel kararsız ve birleştirilmiş akış

çözücü geliştirilmiştir. Helikopter ve rüzgar santrali gibi hareketli bileşenleri içeren sıvı

akışı problemlerinin çözümünde çoklu ağların kullanımı örtüşen sayısal ağ yöntemi

olarak da adlandırılır.

Bir sistemin tüm bileşenleri etrafında geleneksel tek sayısal ağ üretimi, zaman alan bir

işlemdir dolayısıyle pratik değildir. Ayrıca, sonuçta ortaya çıkan tek sayısal ağın

kalitesi, sınır katmanı ve yakın cisimler gibi kritik akış bölgeleri için genellikle

yetersizdir. Ek olarak, hareketli sayısal ağlı kararsız akış simülasyonlarında, sonraki

zaman adımlarında aşırı sayısal ağ gerilimi, çözüm doğruluğunun önemli ölçüde

azalmasına neden olur. Örtüşen sayısal ağ yöntemi, her bir bileşen sayısal ağın istenen

yerel özelliklerle bağımsız olarak oluşturulmasına izin verir. Bu çalışmada, tüm sayısal

ağların birden çok sayısal ağ bloğuna bölündüğü ve birden çok çekirdek üzerinde

işlendiği paralel bir hesaplama ortamında bileşen sayısal ağları arasında bağlantı

kurmak için bir örtüşen sayısal ağ kurucusu geliştirilmiştir. Hücreler, 1) ayrıklaştırılmış

Euler denklemlerinin çözüldüğü alan hücreleri, 2) (donör) alan hücrelerinden gelen

verileri enterpolasyon yapan reseptörler ve 3) geçersiz bölgeler ile kesişmesi nedeniyle

akış çözümünden dışlanan delik hücreleri olarak sınıflandırılır. Örtüşen sayısal ağ

kurumumda harcanan zamanı azaltmak için Alternating Digital Tree ve stencil walking

algoritmaları uygunlanmıştır. Delik hücrelerini tanımlamak için delik haritası

v

kullanılmıştır ve delikleri tam olarak kesmek için donör aramasına entegre edilmiştir.

Her bölümün benzer sayıda hücre içerdiği geleneksel sayısal ağ bölümlemesinden

farklı olarak, bileşen sayısal ağları uzamsal olarak bölümlere ayrılır, böylece örtüşen

sayısal ağ blokları aynı bölümlerde bulunur. Uzamsal bölümleme, sayısal ağ

bloklarının kaydedildiği bir octree kullanılarak gerçekleştirilmiştir. Octree,

octree-kutuları işlemcilere eşit olarak dağıtılıncaya kadar uyarlanabilir şekilde

bölünmüştür. Yük dengesizliği önceden tanımlanmış bir eşiği aştığında yük dengeleme

tekrarlanmıştır.

Geliştirilen kodun geçerliliği, genel bir helikopter konfigürasyonu etrafındaki karmaşık

akış durumunda, havada asılı kalma durumunda test edilip, rotor-gövde etkileşimi, yük

dengesi, ölçeklenebilirlik ve bellek kullanımı açısından değerlendirilmiştir.

Anahtar Kelimeler: Hesaplamalı akışkanlar dinamiği; sayısal algoritmalar; örtüşen

sayısal ağ yöntemi; yük dengelenmesi

vi

ACKNOWLEDGMENTS

I would like to thank to my supervisor Prof. Dr. İbrahim Sezai for his continuous

support through my PhD study. It has been an invaluable opportunity to work with him

and source of motivation for future studies.

I am thankful to my family for their patience and every kind of support. This work

would not be completed without them.

I would like to thank my committee members Prof. Dr. Uğur Atikol, Prof. Dr. Hasan

Hacışevki, Prof. Dr. Hasan U. Akay and Prof. Dr. Mehmet Ş. Kavsaoğlu for their

contributions and insightful reviews. Further, I appreciate the support by TUBITAK

ULAKBIM for computational resources.

vii

TABLE OF CONTENTS

ABSTRACT . iii

ÖZ . v

ACKNOWLEDGMENTS . vii

LIST OF TABLES. xi

LIST OF FIGURES . xii

LIST OF SYMBOLS AND ABBREVIATIONS .xvii

1 INTRODUCTION . 1

1.1 Motivation . 5

1.2 Scope and objectives . 7

1.3 Dissertation outline . 8

2 LITERATURE REVIEW .. 9

2.1 Parallel communication . 9

2.2 Parallel Overset Mesh Methodology . 12

2.3 Load balance . 14

2.4 Donor search . 15

2.5 Hole cutting . 16

3 METHODOLOGY . 18

3.1 Overview . 18

3.2 Spatial partitioning . 19

3.3 Load balancing . 25

3.3.1 Space partitioning data structure . 26

3.3.2 Load calculation . 28

viii

3.3.3 Weighted graph partitioning . 29

3.4 Data transfer . 30

3.5 Donor search . 36

3.5.1 Hole cutting. 37

3.5.2 Core algorithm. 41

3.5.3 Interpolation scheme . 48

3.6 Mathematical formulation . 49

3.6.1 Overview. 49

3.6.2 Governing equations . 50

3.6.3 Flux approximation with Roe . 59

3.6.4 Flux approximation with HLLC . 61

3.6.5 Spatial discretization . 65

3.6.6 Implicit formulation . 67

3.6.7 Temporal discretization . 69

3.6.8 Dual time step approach . 70

3.6.9 Solution of linear system of equations . 72

4 RESULTS AND DISCUSSION . 73

4.1 Validation of the overset mesh solver . 73

4.1.1 Shock tube . 73

4.1.2 Steady transonic flow over airfoil . 75

4.1.3 Pitching airfoil . 79

4.1.4 Steady transonic flow over ONERA M6 wing . 84

4.1.5 Rotor-fuselage interaction . 92

4.1.5.1 CAD models and meshes . 92

ix

4.1.5.2 Solver parameters . 99

4.1.5.3 Boundary conditions .103

4.1.5.4 Validation of aerodynamic coefficients .103

4.1.5.5 Unsteady pressure coefficients .105

4.1.5.6 Time-averaged pressure coefficients .110

4.2 Parallel performance results .112

5 CONCLUSIONS .120

5.1 Future work .124

REFERENCES .125

APPENDICES .143

Appendix A: Coefficients in super-ellipse equations .144

Appendix B: Scripts. .146

x

LIST OF TABLES

Table 3.1: Mesh-files to be read by processors. 20

Table 3.2: The coefficient and higher order term for different temporal

discretizations. 70

Table 4.1: Initial conditions for the shock tube. 74

Table 4.2: Free-stream conditions for steady transonic airfoil problem. 78

Table 4.3: Harmonic oscillation parameters . 79

Table 4.4: Aerodynamic force coefficients on the ONERA M6 wing. 89

Table 4.5: Control parameters.. 93

Table 4.6: Number of cells in each mesh. 97

Table 4.7: Time-averaged computational and experimental aerodynamic

coefficients. .104

Table 4.8: Coordinates of control points on the fuselage. .106

Table 4.9: Relative error of time-averaged pressure coefficients. 111

Table 4.10: Hardware specifications. .113

xi

LIST OF FIGURES

Figure 1.1: Mesh types as displayed in Reference [2]. 2

Figure 1.2: Hybrid mesh with structured mesh in the boundary layer as displayed in

Reference [3]. 2

Figure 1.3: Components of a helicopter configuration as displayed in Reference [4]. 3

Figure 1.4: Left: Field cells of a structured Cartesian mesh and an unstructured overset

mesh after donor search. Right: The structured mesh after donor search. Gray: Field

cell, Orange: Hole cell, Light blue: Receptor, Blue: Mandatory receptor. 5

Figure 2.1: Shared memory architecture as displayed in Reference [18]. 10

Figure 2.2: Partitions of an airfoil mesh with cell-based partitioning. 13

Figure 3.1: Overview of the overset mesh solver. 19

Figure 3.2: Different stages of domain partitioning.. 21

Figure 3.3: Four mesh-blocks of a rotor blade mesh.. 22

Figure 3.4: Mesh-blocks in a processor before and after spatial partitioning.. 23

Figure 3.5: Spatial partitioning of rotor blade meshes with co-axial cylindrical volumes

[1].. 25

Figure 3.6: Octree space partitioning. 27

Figure 3.7: Different types of bounding volumes as displayed in Reference [61].. . 27

Figure 3.8: Registration of a cell with triangle shape to a quad-tree based on

intersections of AABBs of the cell and bins of the quad-tree. 28

Figure 3.9: A quad-tree and its graph representation. 30

Figure 3.10: A simple user-define data type.. 31

Figure 3.11: Description of user-defined data type to MPI. 31

xii

Figure 3.12: The template for data transfer. The arguments of the functions are missing

for simplification. 34

Figure 3.13: The generic send function. The arguments of the functions are missing for

simplification.. 35

Figure 3.14: The generic receive function. The arguments of the functions are missing

for simplification. 35

Figure 3.15: The generic send/recv function. The arguments of the functions are missing

for simplification. 36

Figure 3.16: Direct cutting. 39

Figure 3.17: Hole mapping.. 42

Figure 3.18: Insertion of points into a 2D ADT. Black and white filled circles indicate

partitioning of domain in x- and y-axis. 43

Figure 3.19: Donor search with ADT of AABBs. 44

Figure 3.20: Donor search using ADT . 45

Figure 3.21: Stencil walk algorithm starts from seed cell (shaded cell) and using cell-to-

cell connectivity walk towards the cell which contains the target (shown as a cross in

circle). 46

Figure 3.22: Flowchart of the flow solver. 51

Figure 3.23: Schematic of finite volume formulation on an unstructured mesh. 53

Figure 3.24: t-x diagram. 57

Figure 4.1: Shock tube. 74

Figure 4.2: Pressure profile in the shock tube. 75

Figure 4.3: The unstructured mesh for steady transonic airfoil test case with different

levels of view. 77

xiii

Figure 4.4: The background and airfoil mesh for steady transonic airfoil test case. 78

Figure 4.5: Pressure coefficient on the airfoil. 78

Figure 4.6: Lift coefficient hysteresis. 81

Figure 4.7: Pressure conntours around the NACA0012 airfoil at the mean angle of

attack (α = 0.016◦) during pitching up. 82

Figure 4.8: Pressure contours around the NACA0012 airfoil at the maximum angle of

attack (α = 2.51◦). 82

Figure 4.9: Pressure contours around the NACA0012 airfoil at the mean angle of attack

(α = 0.016◦) during pitching down. 83

Figure 4.10: Pressure contours around the NACA0012 airfoil at the minimum angle of

attack (α =−2.51◦). 83

Figure 4.11: Mach contours around the NACA0012 airfoil at the maximum angle of

attack (α = 2.51◦). 84

Figure 4.12: Isometric and top views of CAD model of the half-span ONERA M6

wing. 85

Figure 4.13: Isometric and top views of the mesh boundaries of the ONERA M6

wing. 86

Figure 4.14: Mesh-system with two different airfoil mesh sizes for ONERA M6 test case.

The outer-most boundary belongs to the background mesh. (a) overset-far configuration

where the airfoil mesh extends far away the solid surface, (b) overset-close configuration

where the airfoil mesh boundary is close to the solid surface. 87

Figure 4.15: Different views of the ONERA M6 mesh. 88

Figure 4.16: Pressure coefficients at 44% profile of ONERA M6 wing. 90

xiv

Figure 4.17: Pressure contours at 44% profile of ONERA M6 wing obtained with the

single mesh approach. 91

Figure 4.18: Pressure contours at 44% profile of ONERA M6 wing obtained with

overset-close configuration. 91

Figure 4.19: Mach contours at 44% profile of ONERA M6 wing obtained with the

single mesh approach. 92

Figure 4.20: Lateral cyclic pitch, A1, longitudinal cyclic pitch, B1 and coning angle C

which is assumed to be zero. Adapted from Reference [98].. 93

Figure 4.21: Variation of cyclic pitch with azimuth angle. 93

Figure 4.22: Sketch of a rotor blade in generic helicopter configuration and the spanwise

collective pitch. 94

Figure 4.23: CAD model of generic helicopter configuration. 96

Figure 4.24: Cross-sections of component meshes. 96

Figure 4.25: A slice of field cells after donor search. Each mesh is shown with a

different color. The cell enclosed in yellow circle was an orphan converted to a field

cell. 98

Figure 4.26: Slice of fuselage mesh before and after overlap minimization. 98

Figure 4.27: Sign conventions for forces and moments. The figure is taken from

Reference [97]. .102

Figure 4.28: Convergence of thrust coefficient with the number of rotor revolutions.105

Figure 4.29: The control points at top centerline of the fuselage.105

Figure 4.30: The control points around the fuselage at x/l = 0.89.106

Figure 4.31: Unsteady modified pressure coefficients at different control points on top

centerline of fuselage. 107

xv

Figure 4.32: Unsteady modified pressure coefficients at different stations around the

fuselage at x/l = 0.89. .109

Figure 4.33: Averaged modified pressure coefficients at different control points on top

centerline of the fuselage. 111

Figure 4.34: The most time consuming tasks in a time step. The task durations belong

to the slowest processor. .114

Figure 4.35: Run time of simulation in each time step with and without load rebalance.

Area under each curve represents total run time over 90◦ rotation of rotor.115

Figure 4.36: Reduction of load imbalance with increasing number of octree refinements.

Dashed line indicates the threshold under which refinement stops.116

Figure 4.37: Run time and speed-up over 90◦ of rotor rotation. 117

Figure 4.38: Speed-up for combination of tasks hole cutting, donor search, and overlap

minimization. .119

xvi

LIST OF SYMBOLS AND ABBREVIATIONS

φ Azimuth angle

α Shaft angle

µ Advance ratio

σ Rotor solidity

ω Angular blade speed

τ Pseudo time

Φ Slope limiter

ρ∞ Freestream density

θc Collective pitch at the root of a blade

θc,75 Collective pitch at 75% of a blade

θt Twist angle

A Rotor disc area

A1 Lateral cyclic pitch

B1 Longitudinal cyclic pitch

CA Axial force coefficient

Cl Roll coefficient

Cm Pitch coefficient

CN Normal force coefficient

Cn Yaw coefficient

Cp Pressure coefficient

CT Thrust coefficient

CY Lateral force coefficient

xvii

p∞ Freestream pressure

pd Modified dynamic pressure

R Rotor radius

T Thrust

t Real time

V∞ Freestream velocity

Vt Blade tip velocity

AABB Axis-aligned bounding box

ADT Alternating Digital Tree

BTL Byte Transfer Layer

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy condition

HLL Harten, Lax and van Leer, Riemann solver

HLLC HLL Riemann solver including contact discontinuity

MPI Message Passing Interface

OBB Oriented bounding box

OGA Overset Grid Assembly

OMM Overset Mesh Methodology

SMA Shared Memory Architecture

xviii

Chapter 1

INTRODUCTION

Numerical simulations, if performed in conjuction with experimental flow analysis, can

considerably reduce the number of experiments, saving both time and expenses.

Simulations can also be useful in situations when experimental environment is

cumbersome to setup or open to hazards.

On the other hand, serious challenges are present in execution of simulations. First, the

mathematical domain which is continous in nature needs to be discretized into discrete

domain in the process called meshing. Structured grids (see Figure 1.1) that organize

grid elements in a structured order are particularly effective in adjusting the alignment

of elements according to flow characteristics. For example, the aspect ratio of elements

is higher in wall-surface direction in boundary layer flows. Figure 1.2 shows a hybrid

mesh with structured mesh in the boundary layer surrounded by an unstructured mesh.

Also, from computational point of view, structured grids conserve degree of accuracy

of derivatives to an extent after discretization. Gradient reconstruction, for example,

has a higher accuracy on structured grids compared to unstructured grids.

With increasing geometric complexity, meshing algorithms may generate unsatisfactory

mesh that does not fit well to the characteristics of local flow-field. In most complex

cases, generation of structured grid is not possible. In these cases, generation of

1

(a) Structured mesh. (b) Unstructured mesh.
Figure 1.1: Mesh types as displayed in Reference [2].

Figure 1.2: Hybrid mesh with structured mesh in the boundary layer as displayed in
Reference [3].

2

Figure 1.3: Components of a helicopter configuration as displayed in Reference [4].

unstructured grids with algorithms such as Delaunay triangulation and Advancing

Front requires less effort. However, without structured element-to-element connectivity

information, accuracy of temporal and spatial discretizations degrade.

Regardless of mesh type, structured or unstructured, there are configurations where

the generated grid is bound to perform poorly. A typical case is unsteady simulation

of flow involving multiple relatively moving components. For instance, a helicopter

configuration [5], as show in Figure 1.3 has components such as fuselage, main and

tail rotor blades and hub that are rotating in relative motion. As the components move

relative to each other, the mesh need to be regenerated in every time step. If mesh

regeration is avoided and the initial single grid is used, solution accuracy, unless proper

mesh deformation technique is implemented, would degrade due to excessive stretching

after many time steps.

3

It is possible to avoid mesh regeneration and use structured grids with a technique

called Overset Mesh Methodology (OMM) which was first introduced in Reference [6]

as Chimera grid technique. Regardless of the number and geometric complexity of

components, OMM allows component meshes to be generated only once and

independent from other components with desired mesh topology.

Since each mesh is generated independently from other meshes, there is no cell-to-cell

connectivity between the meshes. As a result, it is necessary to identify overlapping

cells to interpolate flow variables between meshes. In general, cells are classified into

different types which are mainly

• the field cells on which flow solution is computed;

• the receptor cells which interpolate flow variables from field cells across

overlapping mesh cells;

• the hole cells which are excluded from flow solution due to overlapping invalid

regions of domain such as holes.

Identification of the cell types is the core task of assembler and is called donor search.

Figure 1.4 shows several cell types of structured Cartesian and unstructured overset

mesh after donor search. In each time step, the assembler identifies and transfers the

cell types to the developed parallel flow solver which, in turn, solves the Euler equations

on the field cells. As the component meshes are free to move, donor search has to be

repeated after relocation of component meshes.

4

Figure 1.4: Left: Field cells of a structured Cartesian mesh and an unstructured overset
mesh after donor search. Right: The structured mesh after donor search. Gray: Field

cell, Orange: Hole cell, Light blue: Receptor, Blue: Mandatory receptor.

1.1 Motivation

Contrary to traditional single grid flow solvers for which work-load is characterized by

only the number of cells, in overset mesh methodology, additionally spatial location

of cells contribute to the work load. Cells which are overlapped by other cells cost

more time compared to the non-overlapped cells since the overlapped cells may involve

in data interpolation. It is, therefore, natural to gather the overlapping cells to the

same partitions/processors termed as Spatial Partitioning/Decomposition [1]. However,

spatial decomposition is not sufficient for load balancing, per se.

In Reference [1], mesh-system is spatially partitioned into pre-defined volumes, such

as co-axial cylinders and Cartesian mesh depending on the geometry of the problem.

Pre-defined shapes causes the spatial partitioning to be problem-dependent. Moreover,

in Reference [1], spatial partitioning is not followed by load balancing. In order to avoid

problem-dependent spatial partitioning, in this study, an octree is utilized for spatial

5

partitioning. The octree is work-load adaptive, that is, the octree is successively refined

at the most-loaded bins until balanced work-load distribution is achieved.

Cells are mapped to the octree based on intersection of bounding boxes of cells and

octree-bins. Ideal partitioning is computed after each iteration by weighted graph

partitioner, METIS [7]. Weight is defined in terms of number of cells which, unlike

traditional load balancing, can belong to different meshes. The weight definition is what

makes adaptive spatial partitioning novel and different from traditional partitioning and

non-adaptive spatial partitioning.

In traditional load balancing, cells are permanently assigned to partitions. Therefore,

after mesh motion, partitions move with the associated cells together. In spatial

decomposition, however, partitions remain stationary during displacement of cells. As

an analogy, traditional load balancing is Lagrangian while load balancing with spatial

decomposition is Eulerian.

The only study, according to the knowledge of the present author, that implemented load

balancing with traditional partitioning is Reference [8]. In that study, load balance is

restored after mesh motion by examining task durations in previous time steps. Excess

loads are exchanged between processors temporarily and once the remote processors

processed the loads received from the host processors, the processed loads are returned

back to the host processors. In other words, the load distribution is corrected at the

end of a time step. In the current study, load distribution is aimed to be predicted in

the beginning of a time step. Compared to Reference [8], the current load balancer is

predictive rather than corrective.

6

Permanent load balance is impossible in moving mesh simulations and load balancer has

to dynamically recompute load distribution irrespective of the method of partitioning.

Another merit of the current of partitioning method compared to Reference [8] is that

as overlapping cells always reside in the same partitions/processors, loads do not need

to be sent from remote processors back to the host processors. The present method

however, has the extra burden of relocating cells to proper partitions/processors after

mesh motion.

1.2 Scope and objectives

This study aims to contribute to the field of numerical solution techniques by improving

spatially partitioned overset mesh technique pioneered by Reference [1] and enhancing

the technique with load balancing capability. Due to its simplicity, overwhelmingly,

traditional partitioning techniques are used for overset meshes. It is aimed to contribute

to the literature by evaluating parallel performance of the developed overset mesh

solver which is specificially spatially partitioned and load-balanced. It is useful to

add the capability of traditional partitioning in order to compare against the spatial

partitioning technique. However, considering the the amount of time investment,

traditional partitioning technique is out of the scope of this study.

Another objective of the study is to apply the practical knowledge and experience

gained from this study to well-established open-source solvers which do not have spatial

partitioning capability. The overset mesh solver developed in this study is mostly

self-sufficient and important modules such as computational geometry and generic

data exchange are developed in-house. As internal implementation details are under-

documented in the literature, the present study provides an insight to the overset mesh

7

solvers.

1.3 Dissertation outline

In this thesis, chapters and their contents are organized as shown below.

Chapter 2 Discusses history and past research about overset mesh methodology in

terms of donor search techniques, parallelization and load balancing.

Chapter 3 Covers overset mesh methodology and discretization of the Euler

equations, flux reconstruction and the gradient limiter. It also covers

parallelization, partitioning, load balancing and donor search techniques

in detail.

Chapter 4 Presents CAD model of the test case of generic helicopter configuration.

Then, results for validation of the overset grid assembler are

presented. Computational data is compared against experimental data.

Subsequently, this chapter presents parallel performance results in terms

of dominant tasks and speed-up of parallel algorithm. Finally, the

conclusions are drawn based on the findings.

Chapter 5 Summarizes the methodology and results of the dissertation. Conclusions

are drawn based on the findings.

8

Chapter 2

LITERATURE REVIEW

2.1 Parallel communication

Initial overset mesh packages executed sequentially [9–14]. With the ever increasing

demand for more computing resources to solve realistic problems, packages started to

run on multi-core computers.

Parallel computations can be performed with Central Processing Units, CPUs, or

General Purpose Graphical Processing Units, GPGPUs. Both CPUs and GPUs consist

of processing units called cores. The number of cores in a CPU may go up to 64

cores without hyperthreading (AMD EPYC 7002 Series) and 128 processors with

hyperthreading (Ampere Altra Max). Whereas, a GPGPU may contain a few thousand

cores such as GeForce GTX TITAN Z containing 5760 cores. Although a GPGPU

contains a two-order of magnitude more number of cores, the GPGPU cores perform

slower than CPU cores. GPGPU is useful for highly parallel programs, thanks to high

amount of cores. Overset mesh methodology has been successfully implemented on

GPGPU devices in numerous studies [15–17].

Another important metric besides the number of cores is the memory management. At

present, there are two different memory management types: shared and distributed.

Figure 2.1 shows a typical Shared Memory Architecture (SMA) configuration. Data

9

Figure 2.1: Shared memory architecture as displayed in Reference [18].

access rate from a core to L1 cache, L2 cache and RAM (system or main memory in

other context) decreases in descending order. Therefore, it is advantageous to store

the frequently used variables in memory locations as close as possible. Compilers can

optimize this procedure although, explicit management by developer is also possible.

Since RAM is shared by all the cores, data read/write may not be concurrent. If no

careful measures are taken, data race conditions may happen causing the overwrite of

data during a read operation. When cores attempt to read/write data, locks/mutex are

used in order to avoid race conditions.

Shared memory machines has a limited maximum number of cores and additional cores

cannot be added since the circuitry is designed for a specific heat dissipation rate. In

this case, multiple shared memory machines are inter-connected physically via cables

with either Ethernet or InfiniBand protocols to form a cluster or wireless which is

referred as cloud computing. Data bandwith rate is higher in physical connections than

10

wireless. Each shared memory machine in the cluster is called a node. There is no upper

limit on the number of nodes in the cluster. Node-to-node data access rate is slower

than that of in-node as transfer of data across nodes is bound to protocol dictated by

Ethernet/InfiniBand.

Message Passing Interface (MPI) [19] is the de facto library for communication across

nodes as well in-node cores in distributed memory arrangement systems. MPI as

its name suggests, is merely an interface and it has several implementations such as

OpenMPI [20], MPICH [21] and Intel MPI [22]. MPI is independent of programming

languages, therefore, can be used with any language. Data transfer is controlled by

user explicitly with point-to-point and collective communication routines. In addition

to point-to-point communication that requires both the sender and the receiver to be

involved in data transfer, one-sided communication which involves only the sender is

also available. MPI is especially useful in transfer of data structures which contains

standard type members such as integer and float; for example, an array of integers and

floats. One of the biggest difficulties, since MPI is not aware of programming language,

is the transfer of user-defined data structures. The layout of user-defined data structure

such as struct/class have to be described to MPI in terms of bytes. Extra care should

be spent if the data structure contain members which are in different location of heap

memory. This difficulty is absent in programming languages which have embedded

parallelization capabilities such as Chapel [23], Julia [24], Coarray Fortran [25]. Another

way of avoiding explicit description of data layouts is language specific (C++) libraries

such as Boost MPI which use Boost Serialization to serialize/deserialize data for

communication at the cost of time.

11

Research institutions usually own clusters to be managed by specific personnel. The

burden of installation of packages such as operating system, compilers, libraries,

resource management software such as SLURM [26] and also maintenance of

disfunctioning hardware such as user/server nodes and cables are transferred from the

users to maintenance personnel. Another alternative, although not as popular, is

commercial vendors such as Google Cloud, Microsoft Azure and Amazon Web

Services (AWS). Service can be obtained as pay to go or via subscription for a certain

time. In this case, the users are responsible from the maintenance of their own cluster.

Opensource projects such as ElastiCluster [27] greatly reduce the time needed to setup

cluster nodes, however, all the capabilities of an in-house cluster still cannot be

attained.

2.2 Parallel Overset Mesh Methodology

Computational solution of Partial Differential Equations (PDE) requires the PDE to

be transformed to discrete PDE which is solved on discrete points in computational

domain. Finite Volume method discretizes spatial domain into control volumes or cells.

The collection of cells is called a mesh. Discrete PDE is solved on the cells where

solution is of interest.

Parallelism in CFD applications is usually achieved via data parallelism, especially,

control volume parallelism. Mesh is partitioned/decomposed into chunks containing

approximately equal number of cells and each chunk is allocated to a processor. The

load of a partition is based on the number of cells the partition contains, hence the name,

cell-based partitioning. Figure 2.2 shows partitions of an airfoil mesh with cell-based

partitioning.

12

Figure 2.2: Partitions of an airfoil mesh with cell-based partitioning.

In the early works [28–30], the number of partitions were equal to the number of

processors which is called coarse grain parallelism [31]. In subsequent works [8,10,32–

48], the number of partitions exceeded the number of processors which is called fine

grain parallelism [49]. When a single mesh is used for the whole computational domain,

cell-based partitioning is effective in distribution of work-load among processors as

each cell usually has the same computational cost. For example, most of the time,

the same governing equations are solved on all cells. Since cell-based partitioning

ignores spatial locality, overlapping mesh-blocks can reside in different processors

and as a result, overlapping mesh-blocks have to be exchanged for donor search and

processed information need to be sent back to the host processor. In most of the parallel

overset mesh studies, predominantly, an implementation of MPI is used for distributed

parallel computing. However, shared memory implementations with OpenMP are also

available [50].

13

In Reference [1], cells which can belong to different meshes were distributed to

processors based on their spatial location. The main difference of spatial partitioning

from cell-based partitioning is that cells which occupy the same region of space are

partitioned together and partitions are not optimized to have approximately equal

number of cells. Spatial domain was subdivided into an auxiliary Cartesian or

cylindrical mesh to which cells are registered. Finally, cells are relocated to processors

which own associated bins. In Reference [1], this is called Spatial Decomposition

Volume. In both cell-based and spatial partitioning, at some point, overlapping cells are

exchanged to reside in the same processors. However, in the case of cell-based

partitioning the remote cells are sent back to their host processor after donor search,

while, this step is not required for spatial partitioning. Therefore, spatial partitioning

saves time by skipping one way of transfer. It is possible to use two different

partitioning layouts for the assembler and the solver. For example, in Reference [51],

the assembler was partitioned spatially while the solver was partitioned based on the

number of cells. However, dual partitioning duplicates memory usage which is a

valuable resource in high performance computing.

2.3 Load balance

In overset mesh methodology, computational cost of each cell may vary greatly

depending on the type of cell. Discrete PDE are solved on field cells, flow variables are

interpolated between donor and receptor cells and hole cells do not participate in any

task, therefore, have no computational cost. Assemblers that are partitioned with

cell-based partitioning for which, each cell is assumed to have the same computational

cost, are bound to result in high load-imbalance. In previous works, cell-based

partitioning has been used commonly [8, 10, 28–30, 32–48], however, only few of

14

them [8, 52] attempted to fix load-imbalance.

In Reference [8,52] a cell-based partitioning is used and high load-imbalance is reported.

Subsequently, a dynamic load-balance algorithm is implemented to alleviate load-

imbalance. In Reference [52], resultant partitioning layout is also applied to the flow

solver causing huge imbalance for the solver. In Reference [8] partitioning layout

never changes or implicitly changes temporarily. In addition, domain connectivity was

assumed to be the most time consuming task and was correlated with the number of

‘query points’ for which the type (field, receptor, etc.) is sought for. Query points are

distributed among processors iteratively until loads in each processor drops under a

threshold. It was reported that total assembly time is reduced from 2.1 seconds to 0.5

seconds. However, no relative temporal load-imbalance, that is, the ratio of slowest to

the fastest processor time was reported. This metric, which is provided in the results

section of the dissertation, is important in order to judge correlation of connectivity task

to the number of points.

2.4 Donor search

Donor search is basically comprised of determination of overlapping cells. In this

context, the centroid of a cell is called a query point and is subjected to a search

operation to find the cell (donor) which contains the query point. A primitive way of

donor search is stencil walking/jumping [10]. With this algorithm, a starting or seed

cell is chosen and the cell (target) which contains the query point is reached by walking

from cell to cell assuming that cell-to-cell connectivity is already established. Proximity

of the seed to the target determines the cost of the algorithm. The choice of seed can

be improved by registering the spatial domain to auxiliary Cartesian meshes or inverse

15

maps. Each sub-block of the auxiliary mesh may contain one or more cells [8, 53].

Another alternative of inverse maps is Alternating Digital Tree [54] (ADT) which is a

type of binary tree with alternating axes. As inverse map, ADT can be used to improve

seed selection, however, it can also be used as standalone [1, 8, 40, 55], that is, does not

need to be integrated to the donor search.

2.5 Hole cutting

Hole cutting which is for identification of hole cells is executed in two ways: Direct

[1, 56] and approximate [8, 10, 37, 53, 57–59].

In direct hole cutting, the cells of overset grid that overlap boundaries of a hole are

determined. Subsequently, the interior cells are identified with flood/fill algorithm.

Direct hole cutting determines hole cells exactly and no approximation is involved.

However, it is more time consuming compared to approximate hole cutting and also

prone to geometric errors.

In approximate hole cutting, simple geometries, mostly rectangles, are used to represent

holes. The method remains approximate if no further operation follows. The method

or specifically ‘hole mapping’ can be exact if it is integrated to donor search operation

[8]. In Reference [8], an initial axis-aligned bounding box which contains the hole

geometry is adaptively refined until each sub-blocks contains either none or only one

kind of boundary element such as outer or hole boundary element. The cost of hole

mapping is proportional to the proximity of outer and hole boundaries, that is, more

refinements/resolution is needed when hole and outer boundaries are in close proximity.

For refinements typically quadtree and octree are used for two- and three-dimensional

16

geometries. Reference [60] improves hole mapping by minimizing the overlap.

Initial input mesh-system consisting of all the background and component meshes,

is usually partitioned with unweighted graph partitioning which produces partitions

containing approximately equal number of cells based on cell connectivity. With overset

mesh methodology, in the absence of cell-to-cell connectivity, overset meshes require

interpolation of flow variables across overlapping mesh cells. Mesh cells are partitioned

spatially so that the ones which occupy the same region reside in the same partition

therefore, communication time for interpolation of variables is diminished. Although

spatial partitioning reduces total run time by localizing interpolation of flow variables,

it does not alleviate load imbalance. Spatial partitioning is performed adaptively by

refining the most loaded bin of an octree until balanced partitions are obtained.

17

Chapter 3

METHODOLOGY

3.1 Overview

The overset mesh solver is composed of successive stages as shown in Figure 3.1.

The solver takes a partitioned mesh-system, which contains arbitrarily overlapping

background and component meshes, as an input. The input mesh-system is already

partitioned and can be processed in parallel. However, the current partitioning layout

causes severe load imbalance for the overset mesh solver unlike a single-mesh solver.

The mesh-system is re-partitioned and load-balanced spatially and distributed to the

processors. At this stage, the processors contain overlapping and disconnected (no

cell-to-cell connectivity) mesh-cells belonging to different meshes. Even the cells that

belong to same meshes are disconnected due to being partitioned in parallel environment.

The assembler identifies the cells to be used as links between disconnected meshes

(donor-receptor pairs) and also partitions (ghost cells). The assembler also determines

the cells to be excluded from the mesh system due to overlapping invalid regions of

spatial domain. The flow solver solves the discretized Euler equations on the meshes

based on the information provided by the assembler. For example, the discretized

equations are not solved on receptor cells which only interpolate data from their donors.

If the problem to be solved is a moving body problem, positions of moving meshes

are updated based on total force and moment on respective component unless the

path of the component is prescribed. Since the cells are partitioned spatially, after

18

Mesh-system

Re-partition

Assemble

Solve

Move meshes

Exchange cells
Final
time

reached

Balanced

Exit
Yes

No

No

Yes

Figure 3.1: Overview of the overset mesh solver.

mesh motion, moving cells are relocated to new partitions/processors. The overset

mesh solver exists if the final time is reached in an unsteady problem otherwise the

mesh-system is re-partitioned if the re-computed load imbalance exceeds the prescribed

threshold.

3.2 Spatial partitioning

In overset mesh technique, component meshes are generated independently, therefore,

the component meshes can potentially overlap and have no cell-to-cell connectivity. In

order to represent a region of space uniquely and transmit flow variables across

component meshes, overlapping cells must be identified. As mentioned earlier,

identification and classification of overlapping cells is called donor search.

19

Table 3.1: Mesh-files to be read by
processors.

Processor 1 Processor 2

fuselage_1.vtk fuselage_2.vtk
blade_A_1.vtk blade_A_2.vtk
blade_B_1.vtk blade_B_2.vtk
blade_C_1.vtk blade_C_2.vtk
blade_D_1.vtk blade_D_2.vtk

In a parallel computing environment, data or particularly mesh-system (all the

component meshes) need to be decomposed into chunks of meshes called mesh-blocks

to be distributed to processors. Figure 3.3 shows four mesh-blocks of a rotor blade

mesh. In order to simplify visualization, mesh-blocks are displaced in Figure 3.3. A

processor may store multiple mesh-blocks belonging to different meshes. Figure 3.2

shows the flowchart of the decomposition/partitioning algorithm that is used in this

study. There are three main processes of partitioning: 1) initial un-weighted graph

partitioning, 2) geometric partitioning and 3) weighted graph partitioning.

Un-weighted graph partitioning starts with decomposition of each component mesh into

n mesh-blocks, where, n is the number of processors. If there are m component meshes,

the total number of mesh-blocks, hence, mesh-files is n×m. Each processor reads the

corresponding mesh-file. For example, suppose that there are a total of two processors

and five components: Fuselage and four blades. The fuselage mesh is decomposed

into two mesh-blocks and named as fuselage_1.vtk and fuselage_2.vtk. The

other component meshes would be decomposed and the respective mesh-files would be

named similarly. Processors would read mesh-files as shown in Table 3.1.

20

Geometric partitioning

Weighted graph partitioning

Un-weighted graph partitioning

Partition each component mesh into n partitions

Processor i reads partition i of component mesh

Construct an octree in each processor

Register local cells to the octree

Compute load in each bin of octree

Refine the most-loaded bin of octree

Register local cells in refined bin to sub-bins

Convert the octree to a graph.

Compute optimum distribution Balanced

Exit

No

Yes

Figure 3.2: Different stages of domain partitioning.

21

Figure 3.3: Four mesh-blocks of a rotor blade mesh.

Mesh decomposition is performed by the graph partitioner, METIS [7]. METIS

decomposes each component mesh separately and, by default, allocates approximately

equal number of cells in mesh-blocks belonging to a mesh. For example, the number of

cells in fuselage_1 and fuselage_2 are approximately equal. As each component

mesh is decomposed separately, the number of cells in blade_A_1 and blade_B_1 are

different. Allocating equal number of cells in mesh-blocks is a result of un-weighted or

uni-weighted graph partitioning/decomposition of METIS. It is possible to assign

different weights to cells. Cells with similar weights would be gravitated to be

partitioned together. In the case of un-weighted graph partitioning, each cell has the

same weight. Even decomposition of meshes is suitable for applications for which

execution time of tasks are expected to be a function of number of cells. Typical

applications are flow solvers involving iterative solution of the same discretized

22

(a) This partition contains mesh-blocks
that are not spatially overlapping.

(b) Spatial partitioning contains
mesh-blocks are that are spatially

overlapping.
Figure 3.4: Mesh-blocks in a processor before and after spatial partitioning.

governing equations on all cells. In other words, for flow solvers, unless different tasks

are performed by the cells, the time-cost of all the cells are identical. In overset mesh

assembly, however, the aim is to determine overlapping cells, therefore, non-overlapped

cells cost no time compared to overlapped cells.

As mentioned, for donor search, the overlapping cells which, at this stage, reside in

different processors, must be transferred to the correct processors to be stored together.

For this purpose, the mesh-system is re-partitioned after un-weighted partitioning based

on spatial location of cells. This kind of partitioning is termed as Spatial Partitioning [1].

Figure 3.4 shows two partitions before and after spatial partitioning. In Figure 3.4a,

mesh-blocks belonging to four different component meshes are assigned to the partition

based on the number of cells. In Figure 3.4b mesh-blocks that belong to four different

component meshes are assigned to the spatial partition based on their spatial locations,

therefore, the mesh-blocks are overlapping.

In spatial partitioning, as the mesh-system is non-stationary, different mesh-cells arrive

23

to and leave the partitions the processors are assigned with. On the other hand, in

traditional approach, mesh-cells are permanently assigned to processors regardless of

motion of mesh-system. One of the merits of the traditional approach is that cell-to-cell

connectivity does not need to be maintained since there is no disconnection/reconnection

of moving cells. In addition, no time is spent for re-partitioning of mesh-system

spatially. However, the overlapping mesh-blocks are still required to be brought together

regardless of the approach followed. The traditional approach solves this problem by

transferring overlapping mesh-blocks and sending processed information back to the

host processor. Downside of this approach is that the communication has to be repeated

twice in every time step. In spatial partitioning, time is saved by eliminating the need for

sending processed information back to the host processor since overlapping mesh-blocks

reside in the same partitions.

In Reference [1], mesh-system is decomposed into pre-determined volumes based

on expected path of the component meshes. As an example, rotor blade meshes are

decomposed into cylindrical volumes as shown in Figure 3.5. Cylindrical volume is

an appropriate choice for the rotor blade problem since the cells do not move across

cylindrical partitions during rotor revolution, therefore, the cells do not need to be

transferred across partitions/processors to be in correct spatial partitions. However, the

choice of pre-determined volumes depends on the path of the components, therefore,

spatial partitioning is problem-dependent.

24

Figure 3.5: Spatial partitioning of rotor blade meshes with co-axial cylindrical
volumes [1].

3.3 Load balancing

Regardless of decomposition volume, the total number of cells in spatial partitions are

expected to greatly vary as some of the partitions would have more overlapping cells at

a particular time. Even if partitions are somehow made to have equal number of cells,

in subsequent time steps, after relative motion of components, the ideal decomposition

becomes imbalanced. In Reference [1], no further load balancing is attempted after

spatial partitioning.

Distribution of n spatial partitions to n processors would result in high load imbalance.

However, possibility of even distribution is more likely if the number of spatial partitions

is higher than the number of processors. It is possible to increase the resolution of

data structure, for example, co-axial radial mesh, in order to have more partitions

25

than number of processors. However, uniform increase of resolution is demanding in

memory storage. In this study, an adaptive approach is adopted and resolution of only

the most-loaded volumes are increased.

3.3.1 Space partitioning data structure

Initially, a 2x2x2 Cartesian mesh is constructed in each processor. Figure 3.6a shows

the Cartesian mesh in the process of refinement. Each sub-block of the Cartesian mesh

is called a bin. Bins of the Cartesian mesh is divided into eight bins (two bins in each

coordinate axis). After sub-divisions the data structure is not a Cartesian mesh any

more but called an octree. The dimensions of the octree is the same as the dimensions

of the mesh-system. As processors contain only mesh-blocks of components meshes,

processors are unaware of the dimensions of the mesh-system. Dimensions of the octree

are obtained by gathering and merging bounding volumes of the local mesh blocks.

There several ways of representing a three-dimensional geometry with a bounding

volume as shown in Figure 3.7. The cost of constructing the bounding volume increases

and the accuracy of representation decreases from left to right in Figure 3.7. For

example, Oriented Bounding Box (OBB) requires determination of principal axes and

is more time consuming to construct compared to spherical bounding volume which

requires only a centroid and a radius. For the case of Axis Aligned Bounding Box

(AABB), the principal axes are aligned with coordinate axes, hence, no time is needed

to be spent for determination of the principal axes. Since the octree and its bins are also

axis-aligned, AABB is the ideal choice of bounding volume.

Processors register cells to octree-bins based on intersection of AABB of cells and bins.

26

(a) Computational domain in the process
of adaptive spatial partitioning.

(b) Slice view shows refinements in the
most loaded regions.

(c) Close up view of the slice.
Figure 3.6: Octree space partitioning.

Sphere AABB OBB 8-DOP Convex hull
Figure 3.7: Different types of bounding volumes as displayed in Reference [61].

27

Figure 3.8: Registration of a cell with triangle shape to a quad-tree based on
intersections of AABBs of the cell and bins of the quad-tree.

Figure 3.8 shows registration of a triangle-shaped cell to the octree (only some portion

of the octree is shown). The cell is registered to the octree based on intersection of

AABB (shown with dashed rectangle) and the bins. Since the AABB intersects all bins

in the figure, the cell is assigned to all the bins, although the triangle does not intersect

all the bins. Registration of a cell to an incorrect bin due to AABB intersection test is

preferable compared to cost of using expensive polygonal intersection tests. Intersection

tests based on AABBs cause cells to be duplicated in different octree-bins. In order

avoid redundant operations, such as solution of governing equations on duplicate cells,

the spatial partition which contains the centroid of the cell (shown as a filled circle in

Figure 3.8) is assigned as the ‘owner’ of the cell and the cell is tagged as a ‘resident’ of

the spatial partition. In flow solution, for example, the governing equations are solved

only on the resident cells.

3.3.2 Load calculation

The load in each bin is calculated by summing up the number of cells. However, it is

possible to calculate load differently depending on the objective of specific operation.

From assembler point of view, the aim is to determine overlapping cells, hence, the load

of a bin is zero unless there are at least two mesh-blocks in the bin. On the other hand,

28

for flow solver, load of a bin is proportional to the number of cells irrespective of parent

meshes. As shown in the results section, solver is more time-consuming than assembler,

therefore, bin loads are calculated based on cost definition of flow solver.

Load distribution in the octree is communicated in all processors in order to identify the

the most loaded bin of the octree synchronously. Each processors communicates the

local octree and the loads in bins are summed up to obtain the global load distribution.

The most loaded bin is refined to a 2x2x2 sub-bin and all cells in the parent bin are

registered to the sub-bin. After the refinement, the geometry of the octree still remains

identical in all processors as the most loaded bin to be refined is the same in all

processors. However, since processors possess different mesh-blocks, identical bins

have different loads in different processors.

3.3.3 Weighted graph partitioning

The bins of octree are input to METIS as graph-vertices. Figure 3.9 shows a two-

dimensional version of octree (for visualization purpose) and its graph representation.

Connectivity of bins are provided to METIS in order to obtain connected graph which

is needed for contiguous partitions. A connection between two bins is made if the bins

share a common face. For example, in Figure 3.9, bins 1 and 3 are not connected as

they only share a vertex, not a face.

The load of each bin corresponds to the weight of each graph-vertex.

METIS_PartGraphKway function of METIS computes a k-way partitioning where k is

the number of processors. If no partitioning with less than 10% imbalance is found, the

algorithm returns back to octree refinement as shown in Figure 3.2. The k-way

29

1

2 3

4 5

6
7 8

9 10

1

2 3

4 5

6
7 8

9 10

Figure 3.9: A quad-tree and its graph representation.

partitioning algorithm of METIS disregards the partitioning layout computed in

previous refinement stage. After every refinement, the partitioning layout is

recomputed from scratch. The algorithm, which makes use of the partitioning layout of

previous iterations, can be significantly reduce the partitioning time.

Once a satisfactory partitioning is obtained after all refinements, each partition

(containing multiple bins) are distributed to respective processors. Finally, the

mesh-blocks corresponding to the same parent meshes in partitions are merged in order

to reduce intra-processor communication. Note that, ParMETIS, which is the parallel

version of METIS, cannot be used at this stage since distribution of octree bins to

processors in unknown.

3.4 Data transfer

MPI is a library independent of any programming language. Although this feature

allows MPI to be used by a programming language, it also complicates communication

of data types. Communication of native types such as int and double is relatively

30

struct S
{

int i[3];
double d[5];

};

Figure 3.10: A simple user-define data type.

data_type [0]= MPI_INT;
data_type [1]= MPI_DOUBLE;

block_length [0]=3;
block_length [1]=5;

displacement [0]=0;
displacement [1]=12;

MPI_Type_create_struct (2, block_length ,
displacement , data_type , &S);

MPI_Type_commit (&S);

Figure 3.11: Description of user-defined data type to MPI.

much easier than communication of derived or user-defined data types. Derived data

type which is usually expressed in a container, specifically class or struct form

in C++, need to be described to MPI byte-by-byte with correct relative positions of

members. Figure 3.10 shows a simple user-defined data type and Figure 3.11 shows the

description of the user-defined data to MPI in C++ programming language. Description

of more complicated user-defined data types is cumbersome and error prone. In a worse

scenario, when a user-defined data structure contains a mixture of members stored in

stack and heap memories, MPI either fails to execute the communication or require

time consuming work-arounds.

Boost MPI which is a library in C++ extends the capabilities of MPI by allowing users

to work in C++ environment but, especially simplifies data transfer by using Boost

31

Serialization library underneath. The serialization library serializes any data in

binary/ASCII/XML and other formats without forcing users to expose data types

manually. Temporarily serialized data is deserialized in receiver processor as a

background process. The main shortcomings of the serialization library is slower data

transfer and higher memory usage. However, at initial stages of development, Boost

libraries speed-up the development and at the same time, reduces code complexity.

The template class Exchanger as shown in Figure 3.12 is specialized/implemented

for communication of different data types such as communication of spatial partitions

after load balancing or communication of cell types after assembly. Note that

specializations are required to inherit from class Exchanger and implement the

virtual prepare_storage function.

The data to be sent are grouped into groups of struct Group by the destination rank so

that the data can be sent once for each destination. Figure 3.13 shows the function that

sends and receives data. Note that for a specific group, another send operation would

not begin until the previous one is completed. However, meanwhile receive operation

can be processed, thus, the send communication is non-blocking. This method is more

efficient than sending and receiving all data for once. It is possible that all send and

receive operations to be completed after this function. However, usually, more receive

operations are left over. The receive operation shown in Figure 3.14 is repeated until no

more receive requests left. The whole send/recv process can be seen in Figure 3.15.

The main drawback of the method is that once the communication is completed, the class

instance is deallocated after the class instance gets out of scope. Although this routine

32

is recommended in C++ programming, in the case of MPI it is problematic. The buffers

that are used for sending/receiving data need to be reused. Otherwise, as explained in

Reference [62], even though class instance is deallocated, the chunk of memory used by

the buffers cannot be reused. As a result, memory usage of the developed assembler and

the solver keep increasing until they get out of memory. The serialization/deserizalition

library which is used for data transfer is also used for saving/restoring data files to

restart the simulation. Reusage of the buffers is one of the future works of the study.

33

template <typename T> using ArrCon = std::vector <T>;
template <typename T>
class Exchanger
{

protected:

struct Group
{

int dest_rank_;
int dest_tag_;
std::deque <T> data_;

void add(const T& data);

Group ();
};

public:

Exchanger ();
void exchange ();
const ArrCon <T>& arrival () const;
ArrCon <T>& arrival ();
const std::deque <Group >& group() const;

protected:

void send_recv ();
void add();
std::deque <Group >& group ();
ArrCon <T> arrival_;

private:

const boost ::mpi:: communicator* comm_;
std::vector <int > global_nrecv_;
int nrecv_;
std::deque <Group > group_;
int total_nrecv_;

void prepare ();
void inform_receivers ();
void send ();
void recv ();
virtual void prepare_storage () = 0;

};

Figure 3.12: The template for data transfer. The arguments of the functions are missing
for simplification.

34

template <typename T>
void Exchanger <T>:: send()
{

for (Group& gr: group_)
{

boost::mpi:: request req =
comm.isend(gr.dest_rank_ , gr.dest_tag_ , gr.data_);

while (true)
{

auto status = req.test ();

if (status)
{

break;
}

recv(rank);
}

}
}

Figure 3.13: The generic send function. The arguments of the functions are missing for
simplification.

void Exchanger <T>:: recv()
{

if (nrecv_ == total_nrecv_) {
return;

}

auto status =
comm_ ->iprobe(
boost::mpi::any_source , boost::mpi:: any_tag);

if (! status) {
return;

}

int nincoming = global_nrecv_[status ->source ()];

std::vector <T> temp;
comm_ ->recv(status ->source(), status ->tag(), temp);
nrecv_ += nincoming;
std::copy(temp.begin(), temp.end(),
std:: back_inserter(arrival_));

}

Figure 3.14: The generic receive function. The arguments of the functions are missing
for simplification.

35

template <typename T>
void Exchanger <T>:: send()
{

nrecv_ = 0;

arrival_.clear ();

send(*comm_ , verbose , rank , "", profiler);

while (nrecv_ != total_nrecv_) {
recv(verbose , rank , "", profiler);

}

comm_ ->barrier ();
}

Figure 3.15: The generic send/recv function. The arguments of the functions are
missing for simplification.

3.5 Donor search

Donor search categorizes all mesh-cells into certain types to be fed to flow solver which

invokes different algorithms based on the type of cells. Definitions of cell types are

listed below.

• Field or computational cell on which governing equations are solved.

• Receptor cell on which governing equations are not solved, but flow variables

are interpolated from a (donor) field cell. Since component meshes are generated

independently and there is no cell-to-cell connectivity across component meshes,

flow variables need to be interpolated from donors to receptors across meshes.

• Mandatory receptor cell which is located next to an intergrid boundary submerged

inside another mesh. Since boundary condition cannot be applied intrinsically, it

is mandatory to interpolate flow variables.

• Hole cell on which neither governing equations are not solved nor, flow variables

are interpolated.

36

• Orphan cell is a mandatory receptor cell whose donor cell is also a receptor cell.

It can be avoided by converting the type of donor cell from receptor to field cell.

Several cell types of structured Cartesian and unstructured overset mesh after donor

search are shown in Figure 1.4. As explained in the following sections, in the case of

multiple overlapping cells coexisting in a region of space, the cell which has the smallest

volume is chosen to be the (donor) field cell and the remaining cells are assigned to be

receptor cells. This is why the Cartesian mesh, in Figure 1.4, being a coarser mesh, do

not have any field cells.

Regardless of order of interpolation between donors and receptors, interface fluxes will

not be conserved in whole mesh-system due to non-conforming faces of intergrid cells.

Conservation of fluxes can be maintained by regenerating mesh in intergrid region so that

intergrid faces of mesh-blocks conforms perfectly [63, 64] or by using auxiliary mesh

in the intergrid region [65]. In this work, neither of the flux-conservation methods are

implemented and conservative variables are interpolated resulting in non-conservative

interface fluxes.

In the following sections, details about identification of cell types are explained. In

Sections 3.5.1 and 3.5.2, identification of the hole cells and the remaining cell types,

respectively, are explained.

3.5.1 Hole cutting

Components are non-porous and closed volumes through which fluid cannot flow. In

the context of hole cutting, these volumes are defined as holes.

Hole cutting task is for determining hole cells, that is, the cells which overlap one or

37

more holes in another mesh. There are broadly two approachs to hole cutting: Exact

and approximate cutting.

Direct cutting which is an exact cutting method identifies hole cells in two stages.

Consider an unstructured mesh and a hole as shown in Figure 3.16a. The cells of the

unstructured mesh that intersect the hole are to be developed. The hole is represented

by the boundary faces (shown in red in Figure 3.16b) and AABB of the hole. In parallel

overset grid assembly, usually, only fragments of entire hole boundary are present in

processors. In this case, processors communicate AABBs of fragments of holes to set

up the AABB of the entire hole boundary.

First, geometric search operations are performed to identify the cells of the unstructured

mesh (shown in blue in Figure 3.16c that overlap the boundary of the hole. These blue

cells are also called boundary profile. In order to speed up geometric search, a data

structure, such as binary or quad tree, which stores unstructured cells, can be used.

Second, the remaining cells that are interior to the hole (shown in green in Figure 3.16d

are identified with one of the variants of flood/fill algorithm [66].

The flood/fill algorithm in direct cutting starts with a seed cell which is known to be

interior to the boundary profile. The algorithm is not robust as the unstructured mesh

cells inside the hole profile may be multiply connected, that is, some of the interior cells

may be separated by the hole profile. In this case, multiple interior seeds are required.

Once an interior seed is found, the seed tags the neighbor (untagged, white) cells as hole

cells. The tagging operation continues recursively until no more neighbor untagged cell

is left. If recursive tagging spils out of the AABB of the hole, all the cells are untagged

38

(a) A hole on an unstructured mesh. (b) The cells on and inside the red hole
boundary are to be identified.

(c) The blue cells indicate the cell which
overlap the hole boundary.

(d) Green interior cells are identified with
flood/fill algorithm.

Figure 3.16: Direct cutting.

until the root of the search tree. Usage of AABB for stopping the recursive search is

required in case the seed happens to be exterior to the hole profile.

Approximate methods, on the other hand, relies on simple geometric shapes in order

to identify the hole cells. One of the popular approximate structure is hole map which

is a Cartesian mesh. In Figure 3.17a, a green hole boundary and a red outer boundary,

are shown. First, a Cartesian mesh is set on the hole. Initial resolution of the Cartesian

mesh is optional and even an AABB (Cartesian mesh with only one bin) is sufficient to

39

represent the hole. The aim of hole mapping method is to refine the Cartesian mesh until

no bins of the Cartesian mesh intersects both hole and outer boundaries. Figure 3.17b

shows an intermediate stage of hole mapping. Note that, some of the bins still intersects

both hole and outer boundaries. Figure 3.17c shows the final resolution of the Cartesian

mesh. Next, in Figure 3.17d, the hole boundary is approximated with (green) bins of

the Cartesian mesh. Comparison of Figure 3.16c and Figure 3.17d shows that in the

former, the hole boundary is represented with unstructured mesh cells exactly whereas

in the latter, the hole boundaries are approximated with the bins of the Cartesian mesh.

Similar to direct cutting, the bins interior to the hole are identified with flood/fill

algorithm as shown in Figure 3.17e, however, in this case, flood algorithm is more

robust due to working on simpler geometric shapes (quadrangles in hole map versus

polygons in unstructured grid, in two-dimensional space). For the same reason, non-

robust flood/fill algorithm using interior seeds are avoided and scan-line flood/fill

algorithm is implemented similar to Reference [8]. Scan-line algorithm traverse each

row/line in the hole map and tags bins located between already tagged bins.

The final Cartesian mesh or the hole map is used in order to identify the hole cells. If

centroid of an unstructured mesh cell such as in Figure 3.16 is contained by any green

bin of the hole map, the cell is tagged as a hole cell. It is possible that an unstructured

mesh cell intersects a green bin of the hole map but the centroid of the cell is exterior to

any green bin of the hole map. In this case, the unstructured mesh cell would be, falsely,

tagged as a non-hole cell as the hole mapping method is approximate. However, if the

hole cutting is used in conjunction with the core algorithm (explained in Section 3.5.2),

40

hole cells are identified correctly.

3.5.2 Core algorithm

In the first time step, donor search is performed with Alternating Digital Tree (ADT) [54]

which is a space partitioning binary tree. ADT splits spatial domain into portions with

axis-aligned cutting planes, recursively. The axis of cutting plane alternates in cyclic

order in accordance with the levels in ADT. In three dimensional space, there are three

cutting planes with cutting axes parallel to x-, y-, z-axis. The position of cutting plane

along the cutting axis depends on the number of dimensions required to define an

object to be inserted. For example, if a point (zero-dimensional) is to be inserted to

an ADT, positions of cutting planes would be (x, y, z) coordinates of the point along

the respective cutting axes. Moreover, if the inserted object is a rectangle, positions

of cutting planes would be the six (xmin, ymin, zmin, xmax, ymax, zmax) dimensions of

the rectangle in the respective orientations of the cutting plane. In general, objects to

be inserted to ADT are n-orthotopes or hyperrectangles. In the example above, point

and rectangle are 1- and 2-orthotopes. In this work, the objects are AABB, which is

3-orthotope, of mesh-cells. Therefore, both the domain and objects to be inserted are

six dimensional.

For visualization of insertion operation into ADT, Figure 3.18 demonstrates insertion of

points into ADT in two dimensional space. In the root level, point A is the median in

x-axis and it is associated with the whole domain, ΩA. Domain ΩA is divided by a plane

with cutting axis parallel to the x-axis at point A. Next, cutting axis is changed to be the

y-axis. Point B which is one of the points in the left portion of ΩA and is the median

in y-axis is assigned to ΩB which is the left portion of ΩA. Point C is inserted similar

41

(a) Red outer boundary and green hole
boundary.

(b) Some of the bins intersect both outer and
hole boundaries.

(c) Hole map is refined until none of the bins
intersect both outer and hole boundaries.

(d) Bins which intersect the hole boundary are
identified as hole profile.

(e) Interior cells are identified with scan-line
flood/fill algorithm.

Figure 3.17: Hole mapping.

42

A

B

C

D

E

F

G

A

B

D F

C

G E
Figure 3.18: Insertion of points into a 2D ADT. Black and white filled circles indicate

partitioning of domain in x- and y-axis.

to Point B except that it belongs to the right portion of ΩA. The rest of the points are

inserted to sub-branches of the tree in the same fashion.

Higher-dimensional objects such as polygons are inserted to ADT with their AABBs.

Figure 3.19a shows some of the cells of unstructured mesh. AABB of each cell, as

shown in Figure 3.19b, is inserted to ADT by one of their six components, (xmin,

ymin, zmin, xmax, ymax, zmax) depending on the current cutting axis. Note that, unlike

cell/polygon of the unstructed mesh, the AABBs are overlapping.

Search operation on ADT is similar to insertion operation. Given a query point, as

shown in Figure 3.19c, AABBs which overlap the query point are returned. If the query

point is outside the hypercube of the ADT, search operation returns an empty array

meaning that none of AABBs in the tree overlaps the query point. Assuming that the

query point is inside the hypercube of the tree, the search operates recursively by always

starting from the root node. First, it is tested whether the query point is contained by

the AABB in the current node. If so, the AABB is added to the array which is to be

returned after the recursive search operation is completed. Regardless of containment

43

(a) Some of the cells of an unstructured grid. (b) Red AABBs around the cells.

(c) Green query point is inside the AABB but
outside the polygon of the cell.

Figure 3.19: Donor search with ADT of AABBs.

of the query point by the AABB, the query point is redirected to one or both portions

of the current node by testing the dimension of the query point against the cutting axis

associated with the current level.

Note that the geometric shape of mesh-cells are polyhedra which are not axis-aligned in

an unstructured grid. However, ADT accepts only axis-aligned objects to be inserted.

Therefore, given a mesh-block, Mi, AABB and associated ID of each mesh-cell is

inserted to the respective ADT Ti. Once an ADT tree is constructed for every mesh-

block, candidate donor cell for each mesh-cell in Mi is searched out by providing the

centroid (query point) of the cell as input to all trees Tj where, j 6= i. As the output of

search operation, each tree Tj returns an array of IDs corresponding to the mesh-cells in

44

M j. Although the query point intersects one of the AABBs in the returned array such

as in the case of Figure 3.19c, the query point may not be contained by the polygon

of the associated cell. Therefore, the query point is tested for containment by each

polyhedron corresponding to the returned ID. The mesh-cell which contains the query

point is added to the list of candidate donors. The procedure is shown in Figure 3.20.

foreach Mesh-block Mi do
foreach Tree Tj where j 6= i do

foreach Mesh-cell ci in Mi do
Query-point qp = centroid of ci;
array[ID1, · · · , IDn] = Tj.search(qp);
foreach ID in array do

if M j.cell(ID).polyhedron contains qp then
Add M j.cell(ID) to the list of candidate donors of ci;

end
end

end
end

end
Figure 3.20: Donor search using ADT

In the first time step, ADT is used for donor search. In subsequent time steps, donor

search is performed with stencil walk algorithm if a cell had a donor in previous time

step, otherwise ADT is used as in the first time step. Referring to Figure 3.21, stencil

walk algorithm starts with choosing a starting or seed cell (shaded) and walking towards

the query point (marked with a cross) by using cell-to-cell connectivity. First, a search

line is drawn between the centroid of the seed cell and the query point. The search

line is tested for intersection by the faces of the seed cell. The current cell (which was

initially the seed cell) is updated to be the neighbor cell which shares the intersected

45

Figure 3.21: Stencil walk algorithm starts from seed cell (shaded cell) and using
cell-to-cell connectivity walk towards the cell which contains the target (shown as a

cross in circle).

face. When the current cell is near a boundary, and therefore, has no neighbor which

shares the intersected face, all other faces of that boundary are tested for intersection

by the search line. If an intersected boundary face found, the current cell is updated

to be the interior cell of that boundary. If no other boundary face is found, then the

algorithm stops indicating that no cell containing the query point is found. When none

of the faces of the current cell intersects the search line, the current cell is added to the

list of candidate donor cells.

The reason of using stencil walk algorithm in the subsequent time steps is the absence

of seed cells in the first time step. For receptors, the seeds are chosen to be the centroid

of donor cells. For other cells types, seeds are not available, therefore, as mentioned,

ADT is used for donor search. Since stencil walk algorithm involves costly geometric

intersections tests, high number of walks is avoided by not picking random seed cells

46

and using ADTs whenever proper seed cells are not available.

After donor search, if no candidate donor cell is found for a mesh-cell, the query point

is either outside of M j or inside a hole (if exists) in M j. If M j has a hole, and if the

query point is inside any of the bins of hole map of M j, then the mesh-cell is labelled

as hole cell. Once a mesh-cell is labelled as a hole cell, its type cannot be changed

regardless of interaction of the mesh-cell with other mesh-blocks. Otherwise, if the

mesh-cell is not a hole cell, it is labelled as field cell.

If a candidate donor cell is found and the volume of the query cell is larger than that of

the candidate donor cell, then the mesh-cell is labelled as receptor cell. A receptor cell

may have multiple candidate donor cells. In this case, the candidate donor cell which

has the smallest volume is assigned as the donor of the mesh-cell. If the mesh-cell has a

smaller volume than a candidate donor cell, the mesh-cell is labelled as field cell. The

reason for choosing the cell with smaller volume is to represent the domain with the

highest resolution possible. Another option is to choose the cell closest to respective

boundary. This kind of selection is beneficial in preserving boundary layer cells.

The cells which have a hole neighbor or are located next to an intergrid boundary are

labelled as mandatory receptor cells. These receptor cells serve as intergrid boundary

conditions.

Volume of intersection between mesh-blocks can be reduced in order to save time by

avoiding redundant interpolation of variables from donors to receptors. Minimization

of overlapped region is performed by excluding receptors having no field neighbor from

47

flow solution.

Once donor search is completed, if the assembler and the solver have different

partitioning layouts, the assembler maps cell types and donor IDs to the layout of the

solver. In the case of sharing of the same partitioning layout, no further operation is

required.

3.5.3 Interpolation scheme

For overset mesh methodology, several interpolation schemes are possible to interpolate

flow variables from donor cells to receptor cells [67]. The first possibility is the first

order inverse distance scheme that uses weighted average of multiple donor cells in

order to find interpolated function as shown in Equation (3.1).

Ur =
∑ωUd

∑ω
(3.1)

where, Ur and Ud are conservative variables for the receptor and donor cells, respectively.

The weight for each donor cell is defined as the inverse distance between the centroids

of the donor cell and the receptor cell as shown in Equation (3.2). The interpolated

function is guaranteed to be bounded by the flow variables of donor cells, therefore, no

further use of limiters is required. In Equation (3.2), −→xr - −→xd is the distance vector from

the receptor cell centroid to the donor cell centroid.

ω =
1∥∥−→xr −−→xd

∥∥ . (3.2)

The scheme used in this work is a second order scheme that involves the gradient of

flow variables (∇Ud) at a single donor cell as shown in Equation (3.3). Compared to

the inverse distance scheme, the interpolated value can be greater than extrema of flow

48

variables at donor cells. In order to limit the interpolated flow variables to the extrema

of donor cells, a limiter Φ is required. Details of the limiter function are explained in

Section 3.6.5.

Ur = Ud +Φ∇Ud · (−→xr −−→xd) (3.3)

3.6 Mathematical formulation

3.6.1 Overview

The Euler equations model fluid flow problems when inertial or convective force

dominates the flow and the effect of viscosity through solid-fluid and fluid-fluid is

negligible. They have the advantage of admitting discontinuous solutions such as shock

wave. In the case of Navier-Stokes equations, shock capturing is cumbersome as shock

wave has a definite thickness, therefore, the validity of continuum assumptions becomes

questionable. In absense of viscous forces, solution of governing equations simplifies

without sacrificing important features of flow. In the case of rotor-fuselage interaction,

the Euler equations are satisfactory for prediction of pressure estimations. However, the

Euler equations have drawbacks in capturing rotor wake structure.

Figure 3.22 shows the flowchart of the flow solver. The algorithm operates within each

physical time step. If the numerical formulation is implicit or dual-time step approach

is used, multiple non-linear iterations are needed to solve the non-linear system of

equations. In the beginning of the algorithm, receptors interpolate variables from their

donors. If the numerical formulation is implicit, a linear system of equations is solved

to compute the change in conserved variables. In the case of explicit solver, the change

in conserved variables is computed explicitly without solving the linear system of

49

equations. Face fluxes are computed with different methods: Roe’s method and HLLC

as explained in Sections 3.6.3 and 3.6.4. In the algorithm, global residual corresponds

to the maximum of residuals among all processors. As the mesh-system is partitioned,

ghost cells in remote partitions are updated after solution of flow variables.

3.6.2 Governing equations

Differential form of the time dependent and three dimensional Euler equations [68] is

Ut +Fx +Gy +Hz = 0 (3.4)

where, U is vector of conserved variables

U =

ρ

ρu

ρv

ρw

E

(3.5)

and F, G and H are vectors of fluxes in x-, y- and z- directions, respectively.

F =

ρu

ρu2 + p

ρuv

ρuw

u(E + p)

, G =

ρv

ρuv

ρv2 + p

ρvw

v(E + p)

, H =

ρw

ρuw

ρvw

ρw2 + p

w(E + p)

(3.6)

In equations Equation (3.5) and Equation (3.6), ρ is density, u, v and w are velocity

components in x-, y- and z- directions, respectively, E is total energy and p is static

pressure.

50

Go to next iteration

Pick next component mesh-block

Update donors

Set boundary conditions

Compute fluxes

Compute change in conserved variables

Evolve solution

Compute residual Component
mesh left

Compute global residual

Update ghost cellsConverged

Go to next time step

Yes

No
Yes

No

Figure 3.22: Flowchart of the flow solver.

51

In order to admit discontinuous solutions such as shocks and contact discontinuity,

integral form of Euler equations is considered as follows:

∂

∂ t

ˆ
V

UdV +

ˆ
A
H ·ndA = 0 (3.7)

where, V is a control volume, A is area of one of the faces of V , n is the outward unit

vector normal to the area A and H is tensor of fluxes H = (F,G,H).

Conservative variables U in Equation (3.7) are assumed to be constant throughout the

unit volume V . This assumption causes a loss of spatial accuracy inversely proportional

to the unit volume. This kind of formulation is called Finite Volume Formulation. In

this context, the unit volume corresponds to a finite volume or a cell. Moreover, cell-

centered discretization is used, that is, conservative variables are stored at the centroid

of a cell, as shown in Figure 3.23. Orientation of fluxes H depends on the solution and

may, in fact, be in opposite direction. Alternative of cell-centered discretization is node-

centered discretization which stores variables at cell vertices. Both discretizations have

merits and drawbacks explained in Reference [69]. Mainly, node-centered discretization

is more suitable to high order spatial discretizations. In this work, second order spatial

accuracy is targeted, therefore, cell-centered discretization is appropriate. Finally, the

finite volume formulation is used on unstructured mesh with no limitation to geometry

of cells. Mathematical formulation can be applied to any polyhedral geometry such as

tetrahedron and hexadedron.

The term H ·ndA represents flux component normal to the face A, and is found by

rotating fluxes F, G and H to face-normal direction with the rotation matrix

52

Ui

U jUk

Um

H

H

H

Figure 3.23: Schematic of finite volume formulation on an unstructured mesh.

T =

1 0 0 0 0

0 cosθ (y) cosθ (z) cosθ (y) sinθ (z) sinθ (y) 0

0 −sinθ (z) cosθ (z) 0 0

0 −sinθ (y) cosθ (z) −sinθ (y) sinθ (z) cosθ (y) 0

0 0 0 0 1

(3.8)

where, θ (y) and θ (z) are found from components of unit normal vector [nx,ny,nz]
T or

explicitly

nx = cosθ
(y) cosθ

(z)

ny = cosθ
(y) sinθ

(z)

nz = sinθ
(y)

(3.9)

such that

θ
(z) = atan2(ny,nx)

θ
(y) = sin−1(nz)

(3.10)

atan2 is another version of tan−1 and by taking two arguments instead of one, it returns

53

a unique value unlike tan−1.

Rotational invariance of Euler equations reads

H ·n = T−1F(TU) (3.11)

After the rotation, the variables ρ and E in U are unaffected by the rotation however,

the velocity components in rotated frame of reference have become

û = cosθ
(y) cosθ

(z)u+ cosθ
(y) sinθ

(z)v+ sinθ
(y)w (3.12)

v̂ =−sinθ
(z)u+ cosθ

(z)v (3.13)

ŵ =−sinθ
(y) cosθ

(z)u+−sinθ
(y) sinθ

(z)v+ cosθ
(y)w (3.14)

In Finite Volume formulation, U is uniform throughout the control volume, therefore,

the first term of Equation (3.7) can be simplified such that

V
∂U
∂ t

+

ˆ
A

T−1F(TU)dA = 0 (3.15)

It is also possible to rewrite Equation (3.15) as follows

T−1
[
V

∂ (TU)

∂ t
+

ˆ
A

F(TU)dA
]
= 0 (3.16)

Defining rotated conserved variables as Û = [ρ, û, v̂, ŵ,E]T ≡ TU and dropping T−1 in

Equation (3.16) leads to

V
∂ Û
∂ t

+

ˆ
A

F(Û)dA = 0 (3.17)

Discretizing the second term as summation of flux through each face of a control

volume:

54

V
∂ Û
∂ t

+
nface

∑
f

F(Û)A f = 0 (3.18)

Returning back to the differential form:

Ût +F(Û)x = 0 (3.19)

Equation (3.19) is called x-split Riemann problem. It is solved at faces of control

volumes with initial values

Û(x, t = 0) =

ÛL if x < 0,

ÛR if x > 0,

(3.20)

where, ÛL and ÛR are data states at left and right cells of an arbitrary face. x in

Equation (3.20) is the coordinate in face-normal direction and its origin is on the face in

local frame of reference. In the rest of the chapter, the cap notation, (̂), is dropped for

simplicity.

In quasi-linear form, with chain rule:

Ut +AUx = 0 (3.21)

where, A is the Jacobian of the flux F. Equation (3.21) is three-dimensional hyperbolic

partial differential equations; have five real eigenvalues with corresponding five right

eigenvectors. The eigenvalues are

λ1 = u−a,λ2 = λ3 = λ4 = u,λ5 = u+a (3.22)

and the corresponding right eigenvectors which satisfies AK(i) = λiK(i) are

55

K(1) =

1

u−a

v

w

H−ua

K(2) =

1

u

v

w

k

K(3) =

0

0

1

0

v

K(4) =

0

0

0

1

w

K(5) =

1

u+a

v

w

H +ua

(3.23)

Each characteristic field (eigenvalue and associated eigenvector) corresponds to a

particular wave structure. The characteristic fields are shown in the t-x diagram in

Figure 3.24. In the diagram, the region between the left and the right data states or

between the λ1 and λ5 characteristic fields is called the star region. For Euler equations

with Equations of State as closure conditions, there are three possible wave structures:

Shock wave, contact discontinuity, rarefaction or expansive wave, and shear wave. K(1)

and K(5) correspond to either shock wave or rarefaction wave across which primitive

variables change, discontinuously and smoothly, respectively. Waves that belong to λ2

family of characteristics are all coincident and correspond to contact discontinuity across

which pressure and normal velocity are constant and density changes discontinuously.

In addition, in three-dimensional space, tangential velocities v (λ3) and w (λ4) also

change discontinuously across shear waves that are coincident to contact discontinuity.

In general, solution at an arbitrary space and time is obtained by superposition of local

waves that emanate from each face. In Finite Volume formulation, as solution is uniform

throughout a control volume, solution inside a control volume is found by simply adding

fluxes through the cell faces.

In order to determine the variables which change across waves, Generalized Riemann

Invariants [70] is used

56

x

t

λ2,λ3,λ4 λ5λ1

Left state Right state

star region

Figure 3.24: t-x diagram.

dU1

K(i)
1

=
dU2

K(i)
2

=
dU3

K(i)
3

=
dU4

K(i)
4

=
dU5

K(i)
5

(3.24)

where, the subscripts in Equation (3.24) corresponds to the components of vector of

conserved variables or the associated right eigenvector and superscript, i indicates the

λi-wave family.

Split Riemann problem Equation (3.19) is similar to one-dimensional Riemann problem

for Euler equations except the additional shear waves, thus, simplifying the application

of Riemann solver. Equation (3.19) is shown in order to show similarity with one-

dimensional case and also to show wave possible wave structures, and for solution of

Euler equations integral form will be used instead of differential form.

In overset mesh methodology, each (component or background) mesh is independent

from other meshes, and also can move relative to other meshes. Therefore, the

mesh-system is not fixed in space but also does not move with material or fluid.

57

Moving mesh velocities are incorporated to Euler equations with Arbitrary

Lagrangian-Eulerian (ALE) so that meshes move with predetermined velocities. Mesh

velocity components [bx,by,bz]
T in rotated frame of reference are substracted from

Eulerian velocity components as follows:

u = u−bx

v = v−by

w = w−bz

(3.25)

Exact solution of Riemann problem for Euler equations require numerical solution of

an implicit equation and no analytical solution is possible. From computational point of

view, considering that Riemann problem is to be solved for each face and in every time

step, exact solution of Riemann problem is impractical, therefore, fluxes are computed

approximately. In general, there are two ways to approximately solve Riemann problem:

Evaluating flux function with an approximate state as in Primitive Variable Riemann

Solvers (PVRS) and Two-Rarefaction Riemann Solver (TRRS) and approximating flux

directly as in Roe family of solvers [71–76], Osher family of solvers, HLL (Harten, Lax

and van Leer) family of solvers [76–80]. Roe Riemann solvers are known to produce

rarefaction shock which is an unphysical solution violating the entropy condition unless

appropriate entropy fix is applied. One of the advantages of HLL family of solvers is

positivity preservation, that is, density and dependent properties such as internal energy

and speed of sound is always positive. Of HLL family of solvers, HLLC (C stands

for contact discontinuity) [80] which is a three-wave model corresponding to three

characteristic fields. The one-dimensional Euler equations consist of three characteristic

fields: Rarefaction, shock and contact discontinuity. Pure HLL solver which is based on

58

two-wave model ignores contact discontinuity, therefore, it is an incomplete Riemann

solver for Euler equations. HLLC, on the other hand, being a three-wave model is a

complete Riemann solver for the Euler equations. In three-dimensional space, note

that, the contact discontinuity has multiplicity of three and out of five characteristics

only three are distinct. Hence, HLLC is also a complete Riemann solver for the Euler

equations in three-dimensional space.

3.6.3 Flux approximation with Roe

With Roe Riemann solver, face flux is approximated by replacing the Jacobian in

Equation (3.21) with approximate Roe Jacobian calculated with Roe-averaged variables.

F =

[
FL +FR

2
+

Ã(UL−UR)

2

]
A f (3.26)

where, Ã is the Roe Jacobian

Ã = K̃|λ̃ |K̃−1 (3.27)

and K̃ and K̃−1 are the right and the left eigenvectors and |λ̃ | are the absolute eigenvalues

|λ̃ |=

|ũ− ã| 0 0 0 0

0 |ũ| 0 0 0

0 0 |ũ| 0 0

0 0 0 |ũ| 0

0 0 0 0 |ũ+ ã|

(3.28)

59

K̃ =

1 1 0 0 1

ũ− ã ũ 0 0 ũ+ ã

ṽ ṽ 1 0 ṽ

w̃ w̃ 0 1 w̃

H̃− ãũ k̃ ṽ w̃ H̃ + ãũ

(3.29)

K̃−1 =

H̃ + ã(ũ− ã)/γ∗ −(ũ+ ã/γ∗) −ṽ −w̃ 1

−2H̃ +4ã2/γ∗ 2ũ 2ṽ 3w̃ −2

−2ṽã2/γ∗ 0 2ã2/γ∗ 0 0

−2w̃ã2/γ∗ 0 0 2ã2/γ∗ 0

H̃− ã(ũ+ ã)/γ∗ −ũ+ ã/γ∗ −ṽ −w̃ 1

(3.30)

calculated with approximate Roe variables

ρ̃ =

√
ρR

ρL

ũ =
uL + ρ̃uR

1+ ρ̃

ṽ =
vL + ρ̃vR

1+ ρ̃

w̃ =
wL + ρ̃wR

1+ ρ̃

H̃ =
HL + ρ̃HR

1+ ρ̃

k̃ =
ũ2 + ṽ2 + w̃2

2

ã =

√
(γ−1)(H̃− k̃).

(3.31)

In Equation (3.31), ρ̃ , ũ, H̃, k̃, ã are the Roe-averaged density, normal velocity, total

enthalpy, kinetic energy and speed of sound and ṽ and w̃ are the Roe-averaged tangential

velocities.

60

3.6.4 Flux approximation with HLLC

The HLLC solver, in addition to HLL solver which only considers two-wave model,

accounts for contact discontinuity and shear waves in order to completely solve Riemann

problem for Euler equations.

The differential form of Euler equations in face-normal coordinate frame in

Equation (3.32) is valid on control volume centered at cell centroid. Equation (3.32) is

also valid on a face such that

Ut +Fx = 0 (3.32)

where, x is face-normal coordinate and x = 0 at a face. The conservation law in integral

form:

d
dt

ˆ xR

xL

dx = F(U(xL, t))−F(U(xR, t)) (3.33)

Considering a wave which can be shock, contact or head of rarefaction wave at position

s(t) which is located between xL and xR, the left side of equation above becomes:

d
dt

ˆ s(t)

xL

dx+
d
dt

ˆ xR

s(t)
dx = F(U(xL, t))−F(U(xR, t)) (3.34)

Using relation:

d
dα

ˆ
ξ2(α)

ξ1(α)
f (ξ ,α)dξ =

ˆ
ξ2(α)

ξ1(α)

∂ f
∂α

dξ + f (ξ2,α)
dξ2

dα
− f (ξ1,α)

dξ1

dα
(3.35)

for the above equation:

S[U(sL, t)−U(sR, t)]+
ˆ s(t)

xL

Ut(x, t)dx+
ˆ xR

s(t)
Ut(x, t)dx = F(U(xL, t))−F(U(xR, t))

(3.36)

61

where, S is the speed of the discontinuity and U(sL, t) and U(sR, t) are the vector of

conservative variables when approaching the discontinuity from left and right,

respectively. Shrinking the control volume up to wave or approaching the wave from xL

and xR vanishes the integral terms:

S[U(sL, t)−U(sR, t)] = F(U(xL, t))−F(U(xR, t)) (3.37)

Equation (3.37) can be expressed simply as

∆F = S∆U (3.38)

which is called the Rankine-Hugoniot relation. Applying the Rankine-Hugoniot relation

to the fastest waves, that is, except the middle wave:

F∗K = FK +SK(U∗K−UK) (3.39)

where, superscript ∗ corresponds to the star region in Figure 3.24, K = L for the left

and K = R for the right wave.

Pressure and normal velocity across middle wave (contact discontinuity or shear wave)

are constant and tangential velocities jump:

p∗L = p∗R = p∗

u∗L = u∗R = u∗ = S∗

v∗L = vL

v∗R = vR

(3.40)

From tangential momentum equation (3rd or 4th rows) in Equation (3.39):

62

ρ∗ = ρK
uK−SK

S∗−SK
(3.41)

From momentum equation in normal direction (2nd row in the system of equations) in

Equation (3.39) and replacing ρ∗L with Equation (3.41):

p∗ = pK +ρK(SK−uK)(S∗−uK) (3.42)

From energy equation (5th row) in Equation (3.39):

E∗ = ρK
SK−uK

SK−S∗

[
EK

ρK
+(S∗−uK)

[
S∗+

pK

ρK(SL−uK)

]]
(3.43)

Setting above equations:

S∗ =
pR− pL +ρLuL(SL−uL)−ρRuR(SR−uR)

ρL(SL−uL)−ρR(SR−uR)
(3.44)

As a result, U∗K is:

U∗K = ρK

(
SK−uK

SK−S∗

)

1

S∗

vK

wK

EK
ρK

+(S∗−uK)
[
S∗+

pK
ρK(SK−uK)

]

(3.45)

Now everything is known in Rankine-Hugoinot equation.

63

Fhllc
i+ 1

2
=

FL if 0≤ SL,

F∗L if SL ≤ 0≤ S∗,

F∗R if S∗ ≤ 0≤ SR,

FR if 0≥ SR

(3.46)

There are several ways for the estimation of the wave speeds such as 1) directly

obtaining from data states, 2) using Roe-averaged quantities and 3) solving pressure-

based equation. Direct methods are impractical for real problems. In this work, pressure-

based estimation [80] is followed. SL and SR are estimated as:

SL = uL−aLqL (3.47)

SR = uR +aRqR (3.48)

qK =

1 if p∗ ≤ pK[
1+ γ+1

2γ
(p∗/pK−1)

]1/2
if p∗ ≥ pK

(3.49)

where, K = L for the left state and K = R for the right state. Pressure in the star

region is approximated with pressure derived with Primitive Variable Riemann Solvers

(PVRS) [81]:

ppvrs =
1
2
(pL + pR)−

1
2
(uR−uL)ρ̄ ā (3.50)

where,

ρ̄ =
1
2
(ρL +ρR) (3.51)

ā =
1
2
(aL +aR) (3.52)

64

where, aL and aR are speed of sound at the left and the right states.

3.6.5 Spatial discretization

Left and right states at faces are computed with MUSCL (Monotonic Upstream-centered

Scheme for Conservation Laws) scheme [82]. Second order spatial accuracy is obtained

by linear extrapolation of cell-averaged primitive variables to cell faces.

The gradients are found with least-squares optimization [83]. For cell i, value of a

conservative variable u at neighbor j is found with

u j = ui +
∂ui

∂x
∆x+

∂ui

∂y
∆y+

∂ui

∂ z
∆z (3.53)

where, u j is the conservative variable at neighbor j and ui is the conservative variable at

the centroid of the cell i. If the same equation is written for each neighbor of the cell

i, the result is a system of algebraic equations Ax = b. Each matrix and vector in the

system of algebraic equations are shown in Equation (3.54). Note that the coefficient

matrix A has size of N×3, where N is the number of neighbors. Considering that the

minimum of neighbors is four for a three-dimensional cell and therefore, N > 3, the

linear system is over-determined.

A =

x1− xi y1− yi z1− zi

...
...

...

x j− xi y j− yi z j− zi

...
...

...

xN− xi yN− yi zN− zi

x =

∂ui
∂x

∂ui
∂y

∂ui
∂ z

b =

u1−ui

...

u j−ui

...

uN−ui

(3.54)

In matrix A, the number of rows is higher than the number of columns, therefore, A is

65

not invertible. The over-determined system cannot be solved but can be approximated

by minimizing least-squares problem:

∑(b− b̂)2 = ∑(b−Ax̂)2 (3.55)

where, b̂ is the approximate right-hand side vector and x̂ is the approximate solution.

After solution of least-squares problem, the gradients are as shown in Equation (3.56)

[84].

x̂ =

∂ui
∂x

∂ui
∂y

∂ui
∂ z

=
N

∑
j

αi j,1− r12

r11
αi j,2 +Ψαi j,3

αi j,2− r23
r22

αi j,3

αi j,3

(u j−ui) (3.56)

Defining ∆(·)i j = (·) j − (·)i, coefficients in Equation (3.56) are shown in

Equation (3.57).

αi j,1 =
∆xi j

r2
11

, αi j,2 =
1

r2
22

(
∆yi j−∆xi j

r12

r11

)
Ψ =

r12r23− r13r22

r11r22

αi j,3 =
1

r2
33

(
∆z2

i j−
r23

r22
∆yi j +Ψ∆xi j

)

r11 =

√√√√ N

∑
j

∆x2
i j, r12 =

1
r11

N

∑
j

∆xi j∆yi j

r13 =
1

r11

N

∑
j

∆xi j∆zi j, r22 =

√√√√ N

∑
j

∆y2
i j− r2

12

r23 =
1

r22

 N

∑
j

∆yi j∆zi j− r12r13

r33 =

√√√√ N

∑
j

∆z2
i j− (r2

13 + r2
23)

(3.57)

66

After the gradients are calculated, conservative variables at a face can be constructed

from the conservative variables at cell centroid with

Ui(
−→r −−→ri) = Ui +Φ∇Ui · (−→r −−→ri) (3.58)

by setting the position vector, −→r to the position of face centroid such as −→r =−→r f . Φ is

either the Barth-Jespersen (BJ) limiter [85] which is known to be satisfactory for shock

capturing or the Venkatakrishnan limiter [86] which is a differentiable unlike Barth-

Jespersen limiter. In order to calculate Φ, first the minimum ∆Umin
i = min(U j−Ui) and

maximum ∆Umax
i = max(U j−Ui) differences in U between the cell and the neighbors

are found. Subsequently, the unlimited values are found at each neighbor as Ui j =

Ui(
−→r j −−→ri). Then, the limiter Φ is calculated with

Φi j =

min
(

1, ∆Umax
i

Ui j−Ui

)
if Ui j−Ui > 0

min
(

1, ∆Umin
i

Ui j−Ui

)
if Ui j−Ui < 0

1 if Ui j−Ui = 0

(3.59)

Finally, Φ is found as Φ = min(Φi j).

3.6.6 Implicit formulation

In order to avoid constraining time steps, an implicit formulation is used. If the vector

of conservative variables at new level, Un+1 appears on both sides of semi-discretized

equations such as

V
dU
dt

= ∑T−1F(TUn+1)A f (3.60)

then the Euler equations need to be solved implicitly. The RHS of the equation above is

linearized to get

67

T−1F(TUn+1)A f = T−1F(TUn)A f +T−1 ∂F(TUn)

∂ (TUn)
∆(TUn)A f . (3.61)

In the following evaluation of the Jacobian (the last term in Equation (3.61)), for

simplicity, superscript ()n is dropped. Derivative of flux function is evaluated with

respect to the left and right states such that

T−1 ∂F(TU)

∂ (TU)
∆(TU) = T−1

[
∂F(TUL)

∂ (TUL)
∆(TUL)+

∂F(TUR)

∂ (TUR)
∆(TUR)

]
. (3.62)

Since Roe Jacobian Ã has constant coefficients, derivative of Ã with respect to

conservative variables is zero. Substituting derivatives of Roe flux in Equation (3.26),

T−1 ∂F(TU)

∂ (TU)
∆(TU) = T−1

[
AL + Ã

2
∆(TUL)+

AR− Ã
2

∆(TUR)

]
. (3.63)

Taking rotation matrix out in ∆(TUL) and ∆(TUR),

T−1 ∂F(TU)

∂ (TU)
∆(TU) = T−1

[
AL + Ã

2
T∆UL +

AR− Ã
2

T∆UR

]
. (3.64)

Equation (3.61) becomes

T−1 ∂F(TU)

∂ (TU)
∆(TU)A f = ML∆UL−MR∆UR (3.65)

where,

ML =

(
T−1 AL + Ã

2
T

)
∆ULA f , (3.66)

MR =−

(
T−1 AR− Ã

2
T

)
∆URA f . (3.67)

Substituting Equation (3.65) into Equation (3.61),

T−1F(TUn+1)A f = T−1F(TUn)A f +ML∆UL−MR∆UR. (3.68)

68

Substituting Equation (3.68) into the right hand side of Equation (3.60),

N f

∑
f

T−1F(TUn+1)A f =
N f

∑
f

T−1F(TUn)A f +
N f

∑
f

ML∆Un
L−

N f

∑
f

MR∆Un
R. (3.69)

Defining R(U) = ∑
N f
f T−1F(TU)A f ,

R(Un+1) = R(Un)+
N f

∑
f

ML∆Un
L−

N f

∑
f

MR∆Un
R. (3.70)

In general, for a cell i, Equation (3.70) can be written as

R(Un+1
i) = R(Un)+

N f

∑
f

Mi∆Un
i +

N f

∑
f

M j∆Un
j (3.71)

where, subscript () j represents a neighbor value and

Mi =

ML if i is on the left of the face f

−MR if i is on the right of the face f

(3.72)

M j =

−MR if i is on the left of the face f

ML if i is on the right of the face f .

(3.73)

3.6.7 Temporal discretization

Consider a generic implicit temporal discretization

αV
∆Ui

∆t
−H+R(Un+1

i) = 0. (3.74)

where, α is a coefficient depending on temporal discretization and H is the higher order

terms of the temporal discretization. Substituting Equation (3.71) into Equation (3.74)

and rearranging,

69

Table 3.2: The coefficient and higher order
term for different temporal discretizations.

Implicit Scheme α H

Euler 1 0T

Three-time level 3
2

1
2

V
∆t (U

n−Un−1)

α
V
∆t

+
N f

∑
f

Mi

∆Ui =−R(Ui)+
N f

∑
f

M j∆U j +H. (3.75)

Consider three-time level backward Euler discretization

V
3Un+1

i −4Un
i +Un−1

i
2∆t

=−R(Un+1
i). (3.76)

Separation of the first and higher order terms in the temporal term yields

V
3Un+1

i −4Un
i +Un−1

i
2∆t

=
3
2

V
∆t

∆Ui−
1
2

V
∆t

(Un
i −Un−1

i). (3.77)

In the form of Equation (3.75),

(
3
2

V
∆t

+Mi

)
∆Ui =−R(Un

i)+
N f

∑
f

M j∆U j +
1
2

V
∆t

(Un−Un−1). (3.78)

In the case of three-time-level backward Euler method, α = 3/2 and H = 1
2

V
∆t (U

n−

Un−1). Table 3.2 shows α and H for the first and second order Euler methods. If a

steady state solution is sought, ∆t is set to an infinitely high number.

3.6.8 Dual time step approach

For overset mesh simulation, time step needs to be as high as possible in order to reduce

the number of time steps, hence, load rebalance. In order to lower the time step, dual

time step (DTS) approach [87] is used. DTS solves the unsteady equation as if a steady

equation by introducing a pseudo time step in addition to physical time step. Usage of

70

local pseudo time steps speeds up convergence to a solution.

Consider three-time level backward Euler method with first and higher order terms

separated in pseudo time

3
2

V
∆t

(Un+1−Un)− 1
2

V
∆t

(Un−Un−1) =−R(Un+1). (3.79)

Denoting new time level as s+1 instead of n+1

3
2

V
∆t

(Us+1−Un)− 1
2

V
∆t

(Un−Un−1) =−R(Us+1). (3.80)

Adding pseudo temporal term to the left hand side

V
∆τ

(Us+1−Us)+
3
2

V
∆t

(Us+1−Un)− 1
2

V
∆t

(Un−Un−1) =−R(Us+1) (3.81)

where, ∆τ is the pseudo local time step calculated as

∆τ = CFL
V

∑
nface
f max(|λ |)A f

. (3.82)

and max(|λ |) is the maximum absolute eigenvalue among all faces of a cell.

In the beginning of a dual time step solution, the conservative variables at pseudo and

physical times are equal, that is, Us = Un.

Substracting 3V
2∆t Us from both sides and rearranging

(
V
∆τ

+
3
2

V
∆t

)
∆Us =−R(Us+1)− V

2∆t
(3Us−4Un +Un−1). (3.83)

where, ∆Us = Us+1−Us. Equation (3.83) is solved to steady state that is ∆Us→ 0.

71

When steady state is reached Equation (3.79) is recovered. The conservative variables

at the new time level are updated as Un+1 =U s+1.

3.6.9 Solution of linear system of equations

Combining Equation (3.78) and Equation (3.83)

(
V
∆τ

+
3
2

V
∆t

+Mi

)
∆Us

i =−R(Us
i)+

N f

∑
f

M j∆Us
j−

V
2∆t

(3Us
i −4Un

i +Un−1
i). (3.84)

By defining

Di =
V
∆τ

+
3
2

V
∆t

+Mi, (3.85)

O j =−
N f

∑
f

M j, (3.86)

bi =−R(Us
i)−

V
2∆t

(3Us
i −4Un

i +Un−1
i), (3.87)

x = ∆Us (3.88)

Equation (3.84) is written in Ax = b form where,

A =

D1 O2 · · · On

...
... · · · ...

O1 O2 · · · Dn

 . (3.89)

Equation (3.89) is block matrix having 5× 5 block at each entry. The linear system

of equations is solved by AMGCL [88] with an algebraic multigrid solver which uses

smoothed aggregation at coarsening, incomplete LU factorization at relaxation and

GMRES as iterative solver.

After solution of the linear system of equations, the conservative variables at new pseudo

time are updated as Us+1 = Us +∆Us

72

Chapter 4

RESULTS AND DISCUSSION

4.1 Validation of the overset mesh solver

This section includes test cases to evaluate validity of both the assembler and the flow

solver. Some of the settings are common in all test cases. First, the working fluid

is assumed to be air which has the ratio of specific heats γ = 1.4 and the ideal gas

equation is used to close the Euler equations. Second, the flow solver is developed to

handle three-dimensional problems therefore, lower dimensional problems are solved

in three-dimensional context by assigning empty boundary conditions to appropriate

surfaces. Third, only the Roe’s Riemann solver is used with the implicit formulation.

Finally, tolerance of numerical error is set as 10−12.

4.1.1 Shock tube

Shock tube problem is a one-dimensional problem useful in validating the accuracy of

Riemann solvers. Two gases with different densities and pressures are separated by

a discontinuous membrane (contact discontinuity) in middle of 1 unit-length tube as

shown in Figure 4.1. Initial conditions are shown in Table 4.1. Both end of the tube are

set to Dirichlet boundary condition. Flux through the remaining surfaces of the tube

are ignored by setting them to empty boundary condition. This allows solution of one-

and two-dimensional problems in three-dimensional framework. The number of cells is

100.

73

Table 4.1: Initial
conditions for the shock
tube.

Variable Left Right

Density 1.0 0.125
Pressure 1.0 0.1
Velocity 0.0 0.0

L = 1

Membrane x = L/2

High density
High pressure

Low density
Low pressure

Figure 4.1: Shock tube.

At t = 0, the membrane disappears and three different types of waves emerge: A

rarefaction wave that travels to the left, a shock wave that travels to the right and a contact

discontinuity in-between. Figure 4.2 shows pressure profile at t = 0.2 seconds obtained

with the HLLC Riemann solver. It is obvious that second order MUSCL scheme with

Venkatakrishnan and Barth-Jespersen limiters produce more accurate results than first

order upwind scheme. Setting the coefficient K = 0.3 for Venkatakrishnan limiter

captures discontinuities better than Barth-Jespersen limiter however, in this case, the

former is not TVD (Total Variation Diminishing), hence, produces overshoots.

74

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

Pr
es

su
re

Exact
First order

Venka.
Barth-J.

Figure 4.2: Pressure profile in the shock tube.

4.1.2 Steady transonic flow over airfoil

This is a two-dimensional problem featuring steady transonic flow past a NACA 0012

airfoil with chord length c = 1. Figure 4.3 shows the O-shaped unstructred mesh around

the airfoil. The mesh contains 48468 triangular prismatic cells. The radius of outer

boundary is 30 chord length. Free-stream pressure is set such that the speed of sound is

unity. Airfoil is rotated 1.25◦ clock-wise to attain angle of attack. Flow conditions are

shown in Table 4.2. Initial flow field is set to free-stream values.

The Euler equations are solved implicitly with backward Euler method. As the flow is

steady, first order temporal discretization is preferred over the second order three-time

level Euler method. MUSCL scheme with Venkatakrishnan limiter is used to obtain

second order spatial accuracy. CFL number of set to 10.

Slip-wall boundary condition is applied to the airfoil surface. Normal velocity

component at the wall is set to the opposite of that of the neighbor interior cell to

75

prevent mass flux throught wall surfaces. At the farfield, Riemann invariant boundary

condition [89] is preferred over Dirichlet boundary condition which is known to

undesirably reflect transient flow back the computational domain. The remaining

surfaces are set to empty boundary condition.

The same problem is solved with overset mesh approach. A cubic background mesh

with sides 40 unit length is added to the mesh-system. Radius of the airfoil mesh is

shrinked from 30 to 10 unit length. Figure 4.4 shows the background and the airfoil

mesh. The farfield boundary condition on the outer overset mesh boundary is assigned

to the background mesh surfaces and replaced with overset mesh boundary condition.

Figure 4.5 shows pressure coefficient on the airfoil. The present results are in good

agreement with the inviscid reference data [90]. The maximum difference between the

pressure coefficients of the single mesh method and Reference [90] is ∆Cp ≈ 30.1%

occuring right after the shock on the upper surface of the airfoil. The single and overset

mesh approaches are perfectly matching with the maximum difference in pressure

coefficients ∆Cp ≈ 10−3% among all points on the airfoil. The good agreement between

the results of the single and overset mesh methods is expected since the outer overset

mesh boundary is sufficiently away from the airfoil surface.

76

Figure 4.3: The unstructured mesh for steady transonic airfoil test case with different
levels of view.

77

Table 4.2: Free-stream
conditions for steady
transonic airfoil problem.

Parameter Value

Mach 0.8
Angle of attack 1.25◦

Pressure 1.0 / γ

Density 1.0

Figure 4.4: The background and airfoil mesh for steady transonic airfoil test case.

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x

−
C

p

Present-single
Present-overset

Ref. [90]

Figure 4.5: Pressure coefficient on the airfoil.

78

4.1.3 Pitching airfoil

In this test case, the unstructured mesh around NACA 0012 used in steady transonic flow

test case undergoes a forced harmonic oscillation around 25% of the airfoil. Initially,

the airfoil is rotated 0.016◦. Angle of attack is determined with

α = αmean +αamp sin(ωt) (4.1)

where, angular frequency ω is found from definition of reduced frequency k such as

k =
ωc
2u∞

(4.2)

and c is the chord length and u∞ is free-stream velocity which is equal to Mach number

since free-stream pressure is normalized to make speed of sound unity. Table 4.3 shows

parameters used in Equations (4.1) and (4.2).

In order to validate moving mesh formulation, the airfoil mesh is rotated rigidly in each

time step with the amount of

∆α = α̇∆t (4.3)

where, α̇ is the angular velocity

Table 4.3: Harmonic oscillation
parameters

Parameter Symbol Value

Mean pitch αmean 0.016◦

Amplitude αamp 2.51◦

Reduced frequency k 0.0814
Chord c 1
Mach M 0.755

79

α̇ = αampω cos(ωt). (4.4)

Tangential face velocity which is to be substracted from flow velocity at a position r is

computed with

b = α̇× r. (4.5)

Similar to steady transonic flow case, slip-wall boundary condition is applied on the

airfoil surface, however, face velocities are substracted from flow velocity before

reversing the direction of interior normal velocity. In addition, pressure gradient is

non-zero due to non-zero acceleration and is determined from normal momentum

equation

d p
dn

=−ρnb̈. (4.6)

where, n is the face normal vector and b̈ = α̈ × r = −αampω2 sin(ωt)× r is the

tangential acceleration.

In addition to the airfoil mesh shown in Figure 4.3, a background mesh with similar

cell sizes is used. The background mesh is of rectangular shape (disregarding the depth)

with 40-chord length sides in order to assure that pitching airfoil does not get out of

bounds of the computational domain. Farfield boundary condition is applied on the

surfaces of the background mesh. At the outer surface of the airfoil mesh, overset

boundary condition is used to so that the airfoil mesh interpolate flow variables from

the background mesh at mandatory receptor cell and also after mesh motion.

Unsteady flow is solved in each time step with implicit second order three-time level

80

−3 −2 −1 0 1 2 3
−0.4

−0.2

0

0.2

0.4

α(◦)

C
l

Present
Ref. [91]

Experiment [92]

Figure 4.6: Lift coefficient hysteresis.

Euler discretization. In order to allow a relatively large time step ∆t = 0.1, dual-time

step formulation is used. Similar to steady transonic flow case, CFL number is taken as

10.

Lift coefficient hysteresis with changing airfoil angle of attack is shown in Figure 4.6.

Present results are close to numerical results obtained by Reference [91]. The reason of

discrepancy from experimental result [92] is due to inviscid numerical solution.

Figures 4.7, 4.8, 4.9 and 4.10 show pressure contours at different angle of attacks and

airfoil pitching directions. At the slip wall, there is no pressure gradient and mass flux

causing the flow to speed up at the cost of reduced pressure at the top plane.

Mach contours at the maximum angle of attack are shown in Figure 4.11. At the farfield,

pressure is constant due to Riemann boundary condition. It is observed that Mach

number is around M = 0.755 at the farfield which proves that the farfield boundary

81

Figure 4.7: Pressure conntours around the NACA0012 airfoil at the mean angle of
attack (α = 0.016◦) during pitching up.

Figure 4.8: Pressure contours around the NACA0012 airfoil at the maximum angle of
attack (α = 2.51◦).

82

Figure 4.9: Pressure contours around the NACA0012 airfoil at the mean angle of attack
(α = 0.016◦) during pitching down.

Figure 4.10: Pressure contours around the NACA0012 airfoil at the minimum angle of
attack (α =−2.51◦).

83

Figure 4.11: Mach contours around the NACA0012 airfoil at the maximum angle of
attack (α = 2.51◦).

condition is appropriate. As mentioned, slip wall boundary condition prevents pressure

and mass flux through the wing wall, resulting in higher Mach number at the top plane.

4.1.4 Steady transonic flow over ONERA M6 wing

This test case features three-dimensional inviscid transonic flow with Mach number

M = 0.8395 over an ONERA M6 wing with angle of attack α = 3.06◦. Geometric

details are explained in Reference [93]. Isometric and top views of the wing half span

are shown in Figure 4.12. The reason of showing only half span is because the wing is

symmetric at the root.

Figure 4.13 shows the mesh boundaries used in the simulation. A box with 20 span-

length in stream-wise and wall-normal dimensions and 10 span-length in span-wise

dimension is used to model outer boundaries. In order to reduce the number of cells,

symmetry boundary condition is applied on the boundary of the box which coincides

with the root of the wing. On the remainder of the box boundaries far-field boundary

84

Figure 4.12: Isometric and top views of CAD model of the half-span ONERA M6
wing.

condition is applied. On the wing surface slip-wall boundary condition is applied.

The problem is solved using both a single grid and two different overset grid systems.

Farfield boundary condition on the outer boundary of the airfoil mesh is replaced with

overset mesh boundary condition for overset mesh approach. On outer boundary of the

background mesh farfield boundary condition is applied.

In the overset grid case two different grid configurations are used, differing in the size

of the airfoil mesh while the background mesh is kept the same in both configurations.

Figure 4.14 shows the two overset mesh configurations. Background mesh is of 20×20

span-length dimensions in both overset mesh configurations. However, in the first

configuration shown in Figure 4.14a, the airfoil mesh dimensions are 10×10, while

in the second configuration, which is shown on the right (Figure 4.14b), the airfoil

dimensions are 5×1 span lengths.

Figure 4.15 shows the different views of the volumetric and surface mesh. The airfoil

mesh contains approximately 1.74, 1.51 and 1.20 million tetrahedral elements in the

single and overset mesh approaches, respectively. The unstructured background mesh

85

Figure 4.13: Isometric and top views of the mesh boundaries of the ONERA M6 wing.

86

(a) (b)
Figure 4.14: Mesh-system with two different airfoil mesh sizes for ONERA M6 test

case. The outer-most boundary belongs to the background mesh. (a) overset-far
configuration where the airfoil mesh extends far away the solid surface, (b)

overset-close configuration where the airfoil mesh boundary is close to the solid
surface.

resolution is similar to that of the airfoil mesh and contains approximately 1.70 million

tetrahedral elements.

The Euler equations are solved implicitly with backward Euler method. MUSCL

scheme with Venkatakrishnan limiter is used to obtain second order spatial accuracy.

CFL number of set to 10.

Table 4.4 shows the computed lift and drag coefficients on the ONERA M6 wing together

with the coefficients from a viscous turbulent simulation [94]. In the table, Overset-

far results correspond to the configuration where the dimensions of the airfoil outer

boundary is half of that of the background mesh and is sufficiently away from the airfoil

surface as shown in Figure 4.14a. Similarly, Overset-close results correspond to the

configuration where the dimensions of the airfoil outer boundary is much smaller than

87

Figure 4.15: Different views of the ONERA M6 mesh.

88

Table 4.4: Aerodynamic force coefficients on the ONERA M6
wing.

Force coef. Single Overset-far Overset-close Ref. [94]

Lift 0.283 0.283 0.291 0.260
Drag 0.009 0.009 0.011 0.0175

that of the background mesh and is close to the airfoil surface as shown in Figure 4.14b.

First, it is clear that the closer the interpolation zone to the solid surface, the higher

the discrepancy from the single mesh solution due to interpolation between the airfoil

and the backgroung mesh where the gradients are higher than the far away zone from

the surface. This is why in overset mesh applications require more attention to mesh

generation than single mesh applications. Second, the reason of discrepancy of lift

coefficient between that of Reference [94] and the present work is the absence of

turbulent boundary layer interacting with the shock to produce a recirculation zone at

the upper surface as explained in Reference [94]. Inviscid drag coefficient is expected to

be lower than the viscous counterpart since the only source of drag is the pressure drag.

Figure 4.16 shows pressure coefficients along the 44% of the wing span obtained by

the present overset mesh configurations, numerical reference [95] which also solves

the Euler equations and experimental reference [96]. As shown in the figure, there is a

good agreement between the present, reference numerical and reference experimental

results. The main difference between two numerical methods is the resolution of

shock at x/c = 0.6. In Reference, [95] the jump in shock remains in the range of

experimental values. On the other hand, with the present method the change in shock

profile is more abrupt, therefore, resolves discontinuity better than Reference [95]. Also,

pressure difference between the upper and lower surfaces of the wing is higher for the

89

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x/c

−
C

P

Present - Overset-far
Present - Overset-close

Ref. num. [95]
Ref. exp. [96]

Figure 4.16: Pressure coefficients at 44% profile of ONERA M6 wing.

overset-close configuration than the overset-far configuration resulting in a higher lift.

Figure 4.17 shows pressure contours at 44% of the wing span obtained by the single

mesh approach. Similar to pitching airfoil test case, at the slip wall, in the absence

pressure gradient and mass flux, the flow at the top plane speeds up at the cost of

reduced pressure whereas, at the farfield, pressure is constant due to Riemann boundary

condition. Figure 4.18 also shows the pressure contours, however, for overset-close

configuration. Compared to Figure 4.17, the transition of pressure contours from the

overset to the background mesh is not smooth which is expected due to unconservative

interpolation of flow variables across overset meshes.

Figure 4.19 shows Mach contours at 44% of the wing span obtained by the single mesh

approach. Mach number is around M = 0.8 at the farfield as expected.

90

Figure 4.17: Pressure contours at 44% profile of ONERA M6 wing obtained with the
single mesh approach.

Figure 4.18: Pressure contours at 44% profile of ONERA M6 wing obtained with
overset-close configuration.

91

Figure 4.19: Mach contours at 44% profile of ONERA M6 wing obtained with the
single mesh approach.

4.1.5 Rotor-fuselage interaction

A generic helicopter configuration based on Reference [97] consisting of a fuselage,

pylon, hub and four NACA0012-profiled rotor blades is considered to evaluate a three-

dimensional unsteady flow.

4.1.5.1 CAD models and meshes

In Reference [97], several flight modes are tested whereas in this simulation only the

near hover mode is considered. Control parameters are shown in Table 4.5. Note

that the collective pitch of θc,75 = 9.4◦ is measured at 75 percent of the blade radius.

Built-in linear twist is θt =−8◦. The lateral and longitudinal cyclic pitches, shown in

Figure 4.20, are A1 =−0.1 and B1 = 0.2. Note that in Reference [97], coning angle is

not mentioned, therefore, in this study, coning angle is assumed to be zero. Variation of

cyclic pitch with azimuth angle, φ is shown in Figure 4.21.

Sketch of a blade and the spanwise collective pitch are shown in Figure 4.22. The total

pitch of a blade is calculated with

92

C
B1 A1

Figure 4.20: Lateral cyclic pitch, A1, longitudinal cyclic pitch, B1 and coning angle C
which is assumed to be zero. Adapted from Reference [98].

Table 4.5: Control parameters.

Parameter Value

Collective pitch, θc,75 9.4◦

Linear twist, θt −8◦

Lateral cyclic pitch, A1 −0.1◦

Longitudinal cyclic pitch, B1 0.2◦

Shaft angle, αs 0◦

Advance ratio, µ 0.01

0

30

60
90

120

150

180

210

240
270

300

330

0 0.1 0.2

Figure 4.21: Variation of cyclic pitch with azimuth angle.

93

7.8

15.8

θ
c

(◦
)

rotor
center

root
cutout

blade
tip

R = 33.88 in

0.24R chord = 2.61 in

Figure 4.22: Sketch of a rotor blade in generic helicopter configuration and the
spanwise collective pitch.

θ = θc−
r
R

θt +A1 sinφ +B1 cosφ (4.7)

where, r is the radial position of a blade and R is the rotor radius as shown in Figure 4.22.

Datum azimuth position, φ = 0, is located at the tail of the fuselage. In Equation (4.7),

θc is the collective pitch at the blade root and can be deduced by setting A1 = B1 = 0 or,

in other words, keeping the swashplate perpendicular to the shaft axis.

The shapes of the fuselage and pylon are defined with super-ellipse equations:

H(x/l)

W (x/l)

Z0(x/l)

N(x/l)

=C6 +C7

(
C1 +C2

∣∣∣∣x/l +C3

C4

∣∣∣∣C5
)1/C8

. (4.8)

x/l is the non-dimensional longitudinal coordinate with limits [0, 1.997] for fuselage

and [0.400, 1.018] for pylon and l is the desired length of fuselage which is 78.57 inches.

Dimensions given in imperial units in Reference [97] were not converted to metric

units to avoid ambiguity. Coefficients (C1 to C8) are shown in Table A.1 in appendices.

94

Cross-sectional coordinates y/l and z/l are obtained with

y/l = r sinφ

z/l = r cosφ +Z0

where, φ ranges from 0 to 2π and r is defined as

r =

(

HW
4

)N

∣∣∣H
2 sinφ

∣∣∣N +
∣∣∣W2 cosφ

∣∣∣N

1/N

. (4.9)

Equation (4.8) and the coefficients provided in Reference [97] are modified since their

original counterparts caused problems such as division by zero. Equations (4.8) and (4.9)

are different from the counterparts by modulus operator around x/l+C3
C4

, and H
2 sinφ and

W
2 cosφ . The modified coefficients are encircled in Table A.1.

Figure 4.23 shows CAD models of fuselage, pylon, four rotor blades, and hub modelled

with FreeCAD [99]. Leading and trailing faces of fuselage are blunted slightly in order

to have satisfactory mesh quality. Hub is modelled as cylinder with diameter 0.1 m and

length 0.05 m and extensions which connect the hub to the blades have the same profile

and angle of attack with the roots of respective blades. The extensions span from the

hub such that they overlap 5% of respective blades. FreeCAD Python scripts to generate

the fuselage and the rotor blades are provided in Figures B.1 and B.2 in Appendix B.

CAD models are transferred to the mesh generator, GMSH [100] to generate tetrahedral

mesh for each component. Rotor blades have cylindrical meshes with diameter 10×

chord and length 20× chord. Fuselage has a spherical mesh with diameter of 20 inches

enclosing all blade and hub meshes. The hub also has a spherical mesh with diameter

95

Figure 4.23: CAD model of generic helicopter configuration.

(a) Fuselage (b) Closer view of fuselage

(c) Rotor blade (d) Hub and extensions
Figure 4.24: Cross-sections of component meshes.

scaling with root cutout length such that 1.5×0.24R. Figure 4.24 shows cross-sections

of the fuselage, one of the blades, and the hub. Element size s on fuselage, blade, and

hub surfaces are 3 mm, 1 mm, and 2 mm. Volumetric element size is calculated with

s+d/5 for all components where, s = 0.01 is the element size on any component wall

surface and d is the shortest distance from respective wall surface. Table 4.6 shows the

number of cells in each mesh.

96

Table 4.6: Number of cells in
each mesh.

Fuselage & pylon 1,645,011
Blade 1 1,066,344
Blade 2 1,067,491
Blade 3 1,067,878
Blade 4 1,066,421
Hub 510,924
Total 5,356,578

Figure 4.25 shows a slice of field cells after donor search. Each color corresponds

to a different mesh. In the figure, there are cells that are undesirably larger than the

surrounding cells such the one enclosed in yellow circle. These cells were receptors

having candidate donors which themselves were mandatory receptors or by definition,

they were orphans. Since they have to be the donors of mandatory receptors, they are

converted to field cells.

Flow variables interpolated via receptor cells are used by the neighbor field cells. A

receptor which has only receptor neighbors can be excluded from the mesh-system as

the flow variables interpolated via the receptor would not be used by the neighbor

receptors. The procedure of excluding redundant receptors is called overlap

minimization. Figure 4.26a shows receptors of a slice of fuselage mesh and

Figure 4.26b shows the same mesh after exclusion of redundant receptors. Overlap

minimization reduces the number of interpolations, hence, total simulation time.

The computational results are compared against experimental results of Reference [97]

in terms of aerodynamic coefficients and unsteady and averaged-pressure coefficients.

97

Figure 4.25: A slice of field cells after donor search. Each mesh is shown with a
different color. The cell enclosed in yellow circle was an orphan converted to a field

cell.

(a) Before (b) After
Figure 4.26: Slice of fuselage mesh before and after overlap minimization.

98

4.1.5.2 Solver parameters

Helicopter configuration is tested in near hover conditions with advance ratio, µ = 0.01.

Advance ratio is defined as

µ =
V∞

Vt
(4.10)

where, V∞ is the freestream velocity and Vt is the blade tip velocity calculated with

Vt = ω× r. The angular speed is calculated as ω = 2π(2000rev/min)/(60s/min) ≈

209m/s. Blade span length is r = 33.88inch×0.0254m/inch ≈ 0.86m. As a result,

the blade tip velocity is Vt ≈ 180m/s. From Equation (4.10), freestream velocity is

V∞ = 0.01×180m/s = 1.8m/s.

For an explicit scheme, physical time step has to be

∆t = CFL
L
Vt

(4.11)

where, L is the characteristic length and is calculated as cubic root of the volume of cell

at the tip of a blade such as L =
3√10−12 = 10−4. Characterictic length is particularly

considered at the tip of a blade in order to compute the minimum physical time step.

CFL for the explicit formulation has to be CFL < 1 in real time, hence, it is taken as

CFL = 0.9. Therefore, from Equation (4.11)

∆t = CFL
L
Vt

= 0.9
10−4 m
180m/s

≈ 10−7 s (4.12)

Pseudo steady state is reached in 10 pseudo time steps by iteratively computing flux F

and updating U s+1. Once pseudo steady is reached, conservative variables at new time

level is updated as Un+1 =U s+1 =U s.

99

In hover conditions, aerodynamic coefficients would yield high values since free-stream

variables such as velocity, and in turn dynamic pressure, is much lower than forward

flight. Therefore, pressure coefficient is calculated with modified dynamic pressure

using blade tip speed instead of free-stream velocity. Modified dynamic pressure is

pd = ρ∞V 2
t (4.13)

and modified pressure coefficient is

Cp =
p− p∞

pd
(4.14)

In order to avoid confusion, sign conventions for forces and moments are the same as in

Reference [97] as shown in Figure 4.27. In the figure, CY , CA and CN are lateral, axial

and normal force coefficients acting on the fuselage. Cn, Cm and Cl are yaw, pitch and

roll coefficients acting on the fuselage.

Rotor thrust, T , is calculated by summing up the axial (x), lateral (y) and normal (z)

force components acting on surfaces of the rotor blades such that

T = ∑
face

Fx +Fy +Fz (4.15)

Similar to pressure coefficient, rotor thrust coefficient is also calculated with modified

thrust coefficient:

CT =
|T|
pdA

(4.16)

where, A = πR2 is the rotor disc area. Other force coefficients on the fuselage are

calculated with the same dynamic pressure and rotor disc area as shown in

100

Equation (4.17).

CN =
Fz

pdA
, CA =

Fx

pdA
, CY =

Fy

pdA
(4.17)

Moment coefficients are additionaly divided by rotor radius, R as shown in

Equation (4.18).

Cm =
My

pdAR
, Cn =

Mz

pdAR
, Cl =

Mx

pdAR
(4.18)

In Equation (4.18), Mx, My and Mz are moments around x-, y- and z- axis, respectively,

acting on the fuselage about the center point (0.696L f ,0,0.322L f), where,

L f = 78.57inch is the longitudinal length of the fuselage.

As in Reference [101], aerodynamic coefficients are corrected with the ratio of

computational to experimental thrust coefficient such as

Ci =
CT

CT,exp
Ci (4.19)

where, Ci is a force or moment coefficient.

Of various components in the experimental configuration, it is common to model only

the fuselage and the blades and exclude the hub and the fuselage support [101–104].

However, exclusion of the hub and the support is known to reduce solution accuracy at

the upper and the lower regions of the fuselage [104]. In the present simulation, the hub

is modelled along with the fuselage and the blades, however, the support is omitted.

101

Figure 4.27: Sign conventions for forces and moments. The figure is taken from
Reference [97].

102

4.1.5.3 Boundary conditions

At the outer surface of the fuselage mesh farfield boundary condition with a free-stream

velocity of V∞ = 1.8m/s is applied. At the surfaces of all the components, slip-wall

boundary condition is used. Face velocities are added to the flow velocities in order

assure no mass flows through wall surfaces. Finally, at the outer surfaces of the blades

and the hub, overset mesh boundary condition is used.

4.1.5.4 Validation of aerodynamic coefficients

Periodic steady state is achieved in nearly 22 rotor revolutions as shown in Figure 4.28.

Simulation is run until 40 rotor revolutions in order to avoid any transitional effects.

Average rotor thrust coefficient is approximately 0.00602 which is higher than the

experimental thrust coefficient 0.004018 (multiplied by the rotor solidity, σ = 0.098).

The difference in thrust coefficients is 33% which is not unordinary for this problem.

Reference [105] which solves the same problem with overset mesh technique and Euler

equations but with advance ratio µ = 0.15, reports 41% difference in thrust coefficients.

In Reference [97], convergence history of thrust coefficient is not provided, therefore,

the experimental thrust coefficient is shown as a straight line. It is possible to adjust

blade pitch angles until the experimental and the computational thrust coefficients match

however, in this case, the pitch angles are kept the same as in Reference [97].

Table 4.7 lists time-averaged computational aerodynamic coefficients obtained from the

present work, the numerical Reference [105] and the experimental Reference [97]. The

computed download, that is negative normal force coefficient, CN and longitudinal or

axial force coefficient, CA are lower than their experimental counterpart. Since viscosity

is ignored in the Euler equations, lower computational download and axial forces are

103

Table 4.7: Time-averaged computational and experimental
aerodynamic coefficients.

Coefficient Computational Experimental [97]

Vertical force, CN −1.3×10−5 −1.5084×10−4

Longitudinal force, CA −3.5×10−8 −1.2363×10−5

Lateral force, CY 1.2×10−5 3.9706×10−4

Pitch moment, Cm 1.1×10−7 1.2228×10−5

Yaw moment, Cn −3.1×10−6 −4.7272×10−5

Roll moment, Cl 0.2×10−7 4.4642×10−7

expected. As shown in Figure 4.21, due to the cyclic pitch, the rotor is inclined towards

the advancing side, therefore, causing fuselage to drift towards 120◦ direction. As a

result, axial and lateral (CY) forces are in negative and positive directions, respectively.

Since the flight mode is near hover, the flow is dominated by rotor speed and freestream

wind is insufficient to result in net positive axial force.

Similar to force coefficients, moment coefficients are lower than experimental

counterparts, especially the pitch moment, Cm which is due to the higher pressure on

the nose and the lower pressure on the tail boom, computational pitching moment is

much lower than the experimental pitching moment. Yaw moment, Cn, as expected, is

in the direction of rotor rotation. In real case, when the rotor and the fuselage are

physically attached, fuselage would rotate in the reverse direction of the rotor. In that

case, tail rotor would be added to balance the yaw moment of the fuselage. There is a

slight positive roll due to drifting in 120◦ direction.

104

0 10 20 30 40

0.004

0.005

0.006

0.007

Number of rotor revolutions

C
T

Ref. exp. (ave.) [97]
Present

Figure 4.28: Convergence of thrust coefficient with the number of rotor revolutions.

D5
D6

D7 D8
D17 D18 D22

D26
D14 D15 D16

x/l = 0.05 x/l = 0.47 x/l = 0.89 x/l = 1.55
Figure 4.29: The control points at top centerline of the fuselage.

4.1.5.5 Unsteady pressure coefficients

Once periodic steady state is reached, unsteady modified pressure coefficients are

evaluated in a time step and on different control points on upper centerline of the

fuselage (Figure 4.29) and around the fuselage (Figure 4.30). Exact locations of the

control points are shown in Table 4.8.

Figure 4.31 shows modified unsteady pressure coefficients at some of the control points

locations. Similar to Reference [104], the experimental data is shifted in phase by 252◦

in order to accomodate for measurement lag of experimental equipment. Four pulses

105

D3

D4
D19

D12
D13

D25
D23D22

D1 D10
Figure 4.30: The control points around the fuselage at x/l = 0.89.

Table 4.8: Coordinates of control points on the fuselage.

Top centerline Circumferential

Point x/l y/l z/l Point x/l y/l z/l

D5 0.052 0.007 0.004 D1 0.897 -0.091 -0.117
D6 0.096 0.006 0.037 D3 0.895 -0.117 0.080
D8 0.201 0.007 0.090 D4 0.895 -0.096 0.106
D9 0.256 0.007 0.110 D19 0.895 -0.067 0.125
D17 0.467 0.007 0.185 D22 0.895 0.007 0.200
D18 0.600 0.007 0.202 D23 0.895 0.067 0.150
D22 0.896 0.007 0.200 D25 0.895 0.067 0.125
D26 1.001 0.007 0.150 D13 0.895 0.094 0.109
D14 1.180 0.007 0.100 D12 0.897 0.116 0.086
D15 1.368 0.007 0.087 D10 0.897 0.094 -0.115
D16 1.556 0.007 0.073

106

0.15

0.2

0.25

0.3 D5

C
p
×

10
0

Experiment [97]
Present

0.04

0.06

0.08

0.1D17

0 90 180 270 360

−0.04

−0.02

0

0.02 D26

Blade azimuth, φ (◦)

C
p
×

10
0

90 180 270 360
−0.15

−0.1

−0.05

0

0.05

0.1D16

Blade azimuth, φ (◦)

Figure 4.31: Unsteady modified pressure coefficients at different control points on top
centerline of fuselage.

in the figures correspond to four blades each passing over the control points. In most

locations, the experimental pulses are clearly distinguisable however, the experimental

pulses are more oscillatory at D17 and D26 as they are located underneath the hub

where blades exert approximately equal amount of pressure on the fuselage.

Pressures in all but tail control points are over-predicted by the simulation. The results

at positions close to the nose of the fuselage such as D5 match better compared to other

control points.

The present and experimental results over the pylon such as D17 and D26 are not in

107

good agreement due to complex intergrid region at the intersection of meshes of the

fuselage, four blades and the hub. The number of interpolations in this overlapping

region is much higher than the rest of the field, causing the solution accuracy to lower

significantly. Another source of discrepancy is due to the fact that interpolation between

meshes does not conserve intercell fluxes.

It is known from Reference [106] which simulates a viscous flow around the generic

helicopter configuration, that the flow separates at the end of the pylon or from D26 to

D14 points. Since the flow seperation is not captured in the simulation, the pressure at

D26 is higher than the experimental value.

The D16 point is located at the tail boom and is in the downwash of rotor where tip

vortices, in the experimental case, pass over. As a result, pressure is under-predicted at

tail points in the absence of tip vortices from the blades.

Figure 4.32 shows unsteady modified pressure coefficients on some of the control points

around the fuselage at x/l = 0.89. Locations of control points are shown in Figure 4.30.

Asymmetry in experimental results on advancing (e.g. D1 and D3) and retreating sides

of (e.g. D10 and D12) is obvious from Figure 4.32. It is expected that the asymmetry

is because of the blade root attachments that are located at advancing side of the rotor.

At lower points of the fuselage (D1 and D10) due to absence of fuselage support,

computational results show some discrepancy relative to experimental ones.

108

−0.02

0

0.02

0.04

0.06

0.08 D1

C
p
×

10
0

Experiment [97]
Present

0.074

0.076

0.078

0.08

0.082

D10

0 90 180 270 360

−0.1

−0.05

0

0.05

0.1
D3

Blade azimuth, φ (◦)

C
p
×

10
0

90 180 270 360
0.04

0.06

0.08

0.1
D13

Blade azimuth, φ (◦)

Figure 4.32: Unsteady modified pressure coefficients at different stations around the
fuselage at x/l = 0.89.

109

4.1.5.6 Time-averaged pressure coefficients

In Reference [97], coefficients are averaged for 30 revolutions. In this study, since data

files consume considerable memory, some of the intermediate data files are deleted

during simulation to save memory. As a result, pressure coefficients are averaged for

the last revolution.

Figure 4.33 shows averaged pressure coefficients calculated in the last revolution. From

the figure, it is shown that pressure is over-estimated from the nose to the end of the

pylon and under-predicted there on over the tail boom. In addition, Table 4.9 shows

relative errors of the time-averaged pressure coefficients. It is clear that over the pylon

(D17, D18, D22 and D26) the discrepancy is increasing compared to the nose due

to interpolations between overset meshes. At D26, particularly, due to inability to

capture of flow seperation, the discrepancy is even higher than the rest of the pylon

control points. Towards the tail boom the discrepancy increases due to insufficient

solution of vortex detachments from the blades that hit the tail boom and increase

pressure coefficient. At critical regions such as over the pylon and tail boom, mesh

resolution should be higher and overset mesh region should be as far as possible from

the component surfaces in order to capture physical features.

110

D5 D6 D8 D9
D17 D18 D22 D26 D14 D15 D16

0

0.2

0.4

Control points

C
p
×

10
0

Experiment
Present

Figure 4.33: Averaged modified pressure coefficients at different control points on top
centerline of the fuselage.

Table 4.9: Relative error of
time-averaged pressure
coefficients.

Control point Relative Error

D5 -0.00015
D6 -0.00016
D8 -0.00014
D9 -0.00018
D17 -0.00011
D18 -0.00021
D22 -0.00022
D26 -0.00034
D14 0.00029
D15 0.00073
D16 0.00096

111

4.2 Parallel performance results

Test cases are run on TRUBA’s [107] clusters. In order to reduce queue time for

initialization of the simulation, computations are run on different set/family of nodes

having different specifications, as shown in Table 4.10. When a certain number of cores

is requested, the resource manager provides a mixture of cores that belong to nodes

of Barbun, Sardalya and Levrek groups. However, in this heteregenous computing

environment where nodes can have different specifications, load balance results are

expected to vary depending on the variety of node specifications. Note that, in High

Performace Computing jargon, a node may refer to a server to execute a specific task

such as computing, user login and data transfer. In this context, a node specifically

refers to a computing server which contains a motherboard with multiple cores, several

layers of memory storage and network sockets. For example, a node in Barbun group,

in Table 4.10, contains 20 cores and 384 GB of RAM. In this work, hyperthreading is

not used and virtual processors are mapped to cores, therefore, processor is an alias for

core for the rest of the paper. Since a node can have a maximum 20 cores, for a job

requesting more than 20 processors, cores cannot fit into a single node, but, they will

belong to different nodes. Therefore, data transfer takes place between cores having

both shared memory and distributed memories. Open MPI’s Byte Transfer Layer (BTL)

framework uses the best component such as shared memory, TCP, Infiniband and so

on for data transfer between cores. Again, in order to reduce queue time, the number

of nodes is left to be determined by resource manager. The results in this section are

obtained by using maximum allowable number of processors per user (128) usually

distributed over 7-10 nodes belonging to different set of nodes.

112

Table 4.10: Hardware specifications.

Group Processor Model Core per node RAM (GB)

Barbun Intel Xeon Scalable 6148 20 384
Sardalya Intel Xeon E5-2690 V4 14 256
Levrek Intel Xeon i5-2690 16 256

The most intensive memory usage is observed during data exchange between processors.

Exchange of spatial partitions during load (re)balance and exchange of mesh cells after

mesh motion are two major tasks involving intensive MPI communication. Although

it is verified by Valgrind [108] that no memory leak occurs, memory usage increases

after the mentioned tasks. It is expected that the reason for increasing memory usage is

memory fragmentation caused by frequent allocation/deallocation of buffers leaving

fragmented chunks of memory space. An obvious solution is using fixed buffers for

data exchange. However, after load rebalance partitioning layout changes, therefore,

the buffers used for data exchange have to be deallocated. Once memory usage hits the

memory limit (8 GB per core), the simulation is halted by resource manager. In order

not to lose progress, crucial data structures of assembler and solver are serialized with

Boost’s serialization library (which is also used by Boost MPI for data transfer), and

written to binary archives for every quarter (90◦) rotation. Processors read deserialized

data from respective archives and restart simulation with reset memory space.

The most time consuming tasks per time step are shown in Figure 4.34. These tasks

remain to be the most time consuming in all time steps. However, note that Rebalance

may not be needed for all time steps. The execution time of Solve is based on the

maximum number of pseudo time steps (10 in this study) to solve Euler equations.

Since the assembler constitutes less time compared to the solver, it is unnecessary to

113

Re
ba

la
nc

e

So
lv

e

A
ss

em
bl

e
Ex

ch
an

ge
Re

co
nn

ec
t

0

50

100

Ta
sk

du
ra

tio
ns

(s
)

Figure 4.34: The most time consuming tasks in a time step. The task durations belong
to the slowest processor.

optimize load balance for the assembler. As discussed in Section 3.2, it is possible to

have separate partitions for the assembler and the flow solver in order to optimize load

balance differently. However, having two separate partitions requires mapping of data

across different partitioning layouts. The case with two different partitions is also tested

and it is found that mapping of data increases total run time of simulation.

Frequency of load rebalance depends on relative time-cost of load rebalancing and the

solver. In the case of 10 pseudo time steps for the solver, rebalancing is more costly

than the solver, therefore, Rebalance is called when the ratio of the maximum to the

minimum number of cells across processors exceeds 1000. The rebalance threshold is

not the optimum and can be improved by an algorithm involving relative costs of tasks.

Figure 4.35 shows the run time per time step with and without rebalance. Areas under

each curve represents total run time over quarter rotation of rotor. The time saved with

load rebalancing is 13% which adds up periodically for every quarter rotation due to

114

0 45 90

100

200

300

400

500

Rotor azimuth angle (◦)

R
un

tim
e

(s
)

W/o rebalance
With rebalance

Figure 4.35: Run time of simulation in each time step with and without load rebalance.
Area under each curve represents total run time over 90◦ rotation of rotor.

the fact that the initial spatial partitioning is restored for every quarter rotation.

Downside of the proposed load balancing method is that the whole load balancing

procedure (octree construction and adaptive refinement) should be repeated from scratch.

One of the main reasons of high cost of load rebalancing is high number of bins resulting

from refinement of octree. As explained in Section 3.2, bins are merged after refinement

of octree in order to reduce communication among bins. Time spent on merging

of octree bins is proportional to the number of octree bins. In order to reduce load

imbalance across processors below 10%, 344 refinement steps are executed, as shown

in Figure 4.36 resulting in 1040 bins. Merging all 1040 bins into 128 (the number

of processors) bins causes the load balancing to be the most time consuming task.

Frequency of load rebalancing is also related to the number of merged octree bins. The

higher the number of merged octree bins, the more is the number of mesh cells that

move across octree bins after mesh motion in every time step.

115

0 50 100 150 200 250 300 350
0

20

40

60

80

100

10

Number of refinements

M
ax

im
um

di
ff

er
en

ce
of

nu
m

be
ro

fc
el

ls
ac

ro
ss

pr
oc

es
so

rs
(%

)

Figure 4.36: Reduction of load imbalance with increasing number of octree
refinements. Dashed line indicates the threshold under which refinement stops.

The tasks Exchange and Reconnect are for exchange of mesh cells after mesh motion

and reconnection of arrival mesh cells to the local mesh-blocks. Exchange has to be

called in every time step in order to keep mesh cells in correct partitions/processors

even though load rebalancing is to be executed.

Figure 4.37 shows total run time and speed-up for different number of processors.

Speed-up is calculated by dividing run time by the run time for 64 processors. One of

the reasons of speed-up, as expected, is distribution of computational load among more

computational resources. Another reason of speed-up, in the particular case of partially

shared memory computing, may be the increase in shared memory. Resource manager

allocates 8 GB memory per core. Although memory is provided per core basis, cores

are free to read/write any portion of cumulative shared memory space assigned to a

user.

The number of ‘walks’ in stencil walk algorithm ranged from 3 to more than 1000.

116

64 96 128

2.6

2.8

3

Number of processors

R
un

tim
e

(h
ou

rs
)

64 96 128

1

1.2

1.4

1.6

1.8

2

Number of processors

Sp
ee

d-
up

Figure 4.37: Run time and speed-up over 90◦ of rotor rotation.

117

Whenever the number of walks exceeded 1000, donor search algorithm switched from

stencil walking to ADT. Usage of stencil walk algorithm saves 5% percent of time of

donor search compared with only using ADT in every time step. However, in problems

where time step is sufficiently large and current donor cells are sufficiently far away

from the seeds, the high number of cell-to-cell walks will cause stencil walk algorithm

to perform slower than ADT.

Although some of the tasks (e.g. donor search) are common in research papers

pertaining overset mesh methodology [1, 8, 109], due to lack of exact definitions and

implementation details of tasks, comparisons of parallel performance parameters can be

misleading even if better results are obtained. In terms of partitioning method, this

paper is an improvement over Suggar++ [1] by usage of adaptive refinement instead of

predetermined volumes for spatial partitioning, therefore, it is useful to compare

parallel performance results of Suggar++ with the results obtained in this paper. In

Reference [1], wall clock time of combination of tasks that are hole cut, donor search

and overlap minimization and respective speed-up are presented for the case of

helicopter fuselage and blades for up to 8 processors. Since problem sizes (the number

of cells) are different in Reference [1] and in this study, it is appropriate to compare

speed-up results only. Figure 4.38 shows speed-up for the mentioned tasks. The main

inhibitor of speed-up is hole cutting task as it requires inter-processor communication

for AABB of mesh walls. However, for up to 8 processors communication cost across

processors is not substantial. Donor search and overlap minimization are completely

local tasks meaning that there is no inter-processor communication required. Therefore,

speed-up for these three tasks remains nearly linear for up to 8 processors. Note that, in

118

1 2 4 8

2

4

6

8

Number of processors

Sp
ee

d-
up

Adaptive
Suggar++

Ideal

Figure 4.38: Speed-up for combination of tasks hole cutting, donor search, and overlap
minimization.

this work, hole cutting is an integral part of donor search as opposed to Suggar++’s

direct hole cutting which is a standalone task. As implementation details of Suggar++

are unknown, it is unclear why Suggar++ shows such non-linear behavior. It should

also be noted that spatial partitioning is a memory intensive operation. Since memory

cannot explicitly be requested and is provided per core basis in this work, some of the

modules such as the flow solver have to be deactivated in order to obtain performance

results for 8 and less number processors.

119

Chapter 5

CONCLUSIONS

In the present study, an unsteady compressible flow solver with Overset Mesh capability

was developed for running in distributed computing environment. Domain connectivity

was achieved with a developed overset grid assembler. Overlapping cells were identified

with Alternating Digital Tree (ADT) of cell AABBs in the first time step. In subsequent

time steps, stencil walk algorithm was implemented by starting from a seed cell and

‘walking’ to the containing cell using cell-to-cell connectivity. The overlapping cells that

were identified in the first time step with ADT were used as seeds in the stencil-walk

algorithm. It was found that usage of stencil walk algorithm saved 5% percent of time

spent on domain connectivity compared to ADT in every time step.

In Reference [1], pre-defined volumes were used for spatial partitions and no load

balancing was performed. This study improved the spatial partitioning approach in

Reference [1] by avoiding problem dependent usage of pre-defined volumes and also

by implementing adaptive load balancing after spatial partitioning. Load balancing has

usually been ignored in Overset Mesh simulations and, to the knowledge of the present

author, has never been applied to spatially partitioned mesh-systems.

It was observed that time-consuming tasks remain to be the same in all time steps. Even

though load (re-)balancing was found to be the most time consuming task, it was shown

120

that frequent load balancing reduced total simulation time considerably. The time saved

with load rebalancing was 13% which added up periodically for every quarter rotation.

The main reason for the high cost of load balancing was the high number of octree bins

resulting from refinement of octree in order to reduce imbalance under a predefined

threshold.

Downside of the proposed load balancing method was that the whole load balancing

procedure (octree construction and adaptive refinement) had to be repeated from scratch

in subsequent time steps. One of the main reasons of high cost of load rebalancing was

high number of bins resulting from refinement of octree. Merging all bins resulted in

the load balancing to be the most time consuming task.

Frequency of load rebalance depended on relative time-cost of load rebalancing and

the solver. The re-balancing algorithm was executed when the ratio of the maximum

to the minimum number of cells across processors exceeded a pre-defined threshold.

The rebalance threshold was not the optimum and can be improved by an algorithm

involving relative costs of tasks.

The assembler constituted less time compared to the solver, therefore, it was unnecessary

to have separate partitions for the assembler and the flow solver in order to optimize

load balance differently for the assembler and the solver. The case with two different

partitions was also tested and it was found that having two separate partitions increased

total run time of simulation because of mapping of data across different partitioning

layouts.

121

Speed-up results for combination of tasks (hole cut, donor search and overlap

minimization) in the present work were compared with Suggar++ [1] which provided

speed-up results for up to 8 processors. It was observed that present speed-up results

showed linear behaviour compared to non-linear speed-up in Suggar++. Additionally,

higher speed-up was obtained compared with Suggar++. In this work, the main

inhibitor of speed-up was hole cutting task as it required inter-processor

communication for AABB of wall boundaries. However, for up to 8 processors

communication cost across processors was not substantial.

Memory usage after major tasks of the assembler and the solver were recorded. It was

found that data exchange across processors was the most memory intensive operation.

Memory usage kept increasing throughout the simulation. The reason of constant

increase in memory usage was the allocation/deallocation of instances after data

exchange. OpenMPI which is an implementation of Message Passing Interface (MPI)

tends to reuse send/receive buffers and does not return buffer memory even if requested.

Improvement of the assembler and the solver by reusage of send/receive buffers is one

of the future works of this study. In order to restart the simulation after running out of

memory, data files were serialized/deserialized at certain time step intervals.

In order to validate the assembler and the solver, several test cases were simulated

including the rotor-fuselage interaction on a generic helicopter configuration which

consisted of six components, namely, a fuselage, four NACA0012 blades and a hub.

The present results were compared with experimental results in Reference [97]. The

experimental configuration in Reference [97] additionally included two attachments:

122

One for connecting the hub to the ceiling and another one for attaching the fuselage to

the floor. In flow simulations around generic helicopter configurations, usually, only

the fuselage and the blades are included. In this study, the hub was also included in the

CAD model to further increase the accuracy of flow solution.

A near hover flight condition with advance ratio of 0.01 was evaluated. Thrust coefficient

was over-predicted by the simulation. Over-prediction of the thrust coefficient is usual

in flow simulations. However, computational coefficients were found to be lower than

the experimental counterparts by about one order of magnitude. The discrepancy in

coefficients was partly due to the Euler equations for which viscous effects were ignored.

Unsteady pressure coefficients were compared with the experimental measurements at

control points located on top centerline of the fuselage and around the fuselage at the

end of the pylon. On all control points, phases of four pulses corresponding to the four

blades were accurately captured. However, magnitudes of pressure coefficients showed

some discrepancy at some control points. Computational pressure coefficients were in

good agreement at the regions closer the nose of the fuselage. Towards the pylon, where,

all component meshes overlap, there was a discrepancy between the computational

and the experimental pressure coefficients due to extensive amount of interpolations

across the component meshes. Although the Euler equations provided useful insight

to the flow simulation around the generic helicopter configuration, assessing from the

discrepancy in pressure coefficients between computational and experimental results

due to flow separation and tip vortex shedding, viscous effects need to be accounted for

better results.

123

5.1 Future work

Some improvements can be implemented to the overset mesh solver in order to speed

up the execution time.

First, whenever load imbalance exceeds a threshold, the whole load balancing

procedure (octree construction and adaptive refinement) had to be repeated from

scratch in subsequent time steps. As load-balancing is the bottleneck, high speed-up is

expected if load recomputation involves previous iteration without constructing the

octree.

Second, frequency of load rebalance depends on relative time-cost of load rebalancing

and the solver. The re-balancing algorithm is executed when the ratio of the maximum

to the minimum number of cells across processors exceeded a pre-defined threshold.

This approach is definitely not the optimum and can be improved by an algorithm

involving relative costs of tasks.

Third, data exchange across processors is the most memory intensive operation.

Memory usage keep increasing throughout the time-consuming simulations due to the

allocation/deallocation of instances after data exchange. Usage of global buffers for

send and receive buffers would solve the constly increasing memory usage.

124

REFERENCES

[1] R. W. Noack, D. A. Boger, R. F. Kunz, and P. M. Carrica, “SUGGAR++: An

improved general overset grid assembly capability,” Proceedings of the 47th

AIAA Aerospace Science and Exhibit, pp. 22–25, 2009.

[2] H. Hiester, M. Piggott, P. Farrell, and P. Allison, “Assessment of spurious mixing

in adaptive mesh simulations of the two-dimensional lock-exchange,” Ocean

Modelling, vol. 73, pp. 30–44, 2014.

[3] “Comsol,” https://www.comsol.com/blogs/your-guide-to-meshing-techniques-

for-efficient-cfd-modeling/.

[4] “Air craft systems,” https://www.aircraftsystemstech.com/p/helicopter-structures.

html.

[5] B. G. van der Wall, C. L. Burley, Y. Yu, H. Richard, K. Pengel, and P. Beaumier,

“The HART II test – measurement of helicopter rotor wakes,” Aerospace Science

and Technology, vol. 8, no. 4, pp. 273–284, Jun. 2004.

[6] J. Benek, J. Steger, and F. C. Dougherty, “A flexible grid embedding technique

with application to the Euler equations,” in 6th Computational Fluid Dynamics

Conference, 1983, p. 1944.

125

https://www.comsol.com/blogs/your-guide-to-meshing-techniques-for-efficient-cfd-modeling/
https://www.comsol.com/blogs/your-guide-to-meshing-techniques-for-efficient-cfd-modeling/
https://www.aircraftsystemstech.com/p/helicopter-structures.html
https://www.aircraftsystemstech.com/p/helicopter-structures.html

[7] G. Karypis and V. Kumar, “METIS: Unstructured graph partitioning and

sparse matrix ordering system, version 5.0,” Department of Computer Science,

University of Minnesota, Tech. Rep., 1995.

[8] B. Roget and J. Sitaraman, “Robust and efficient overset grid assembly for

partitioned unstructured meshes,” Journal of Computational Physics, vol. 260,

pp. 1–24, 2014.

[9] G. Chesshire and W. D. Henshaw, “Composite overlapping meshes for the

solution of partial differential equations,” Journal of Computational Physics,

vol. 90, no. 1, pp. 1–64, 1990.

[10] N. Suhs and R. Tramel, “PEGSUS 4.0 user’s manual,” Arnold Engineering

Development Center, Tech. Rep., 1991.

[11] W. M. Chan and P. G. Buning, “User’s manual for FOMOCO utilities-force and

moment computation tools for overset grids,” NASA Technical Memorandum,

Tech. Rep., 1996.

[12] D. Brown, W. Henshaw, and D. Quinlan, “Overture-object-oriented tools for

overset grid applications,” in 17th Applied Aerodynamics Conference, 1999, p.

3130.

[13] N. A. Petersson, “An algorithm for assembling overlapping grid systems,” SIAM

126

Journal on Scientific Computing, vol. 20, no. 6, pp. 1995–2022, 1999.

[14] Z. Wang, V. Parthasarathy, and N. Hariharan, “A fully automated Chimera

methodology for multiple moving body problems,” International Journal for

Numerical Methods in Fluids, vol. 33, no. 7, pp. 919–938, 2000.

[15] D. D. Chandar, J. Sitaraman, and D. J. Mavriplis, “A GPU-based incompressible

Navier–Stokes solver on moving overset grids,” International Journal of

Computational Fluid Dynamics, vol. 27, no. 6-7, pp. 268–282, 2013.

[16] K. Soni, D. D. Chandar, and J. Sitaraman, “Development of an overset grid

computational fluid dynamics solver on graphical processing units,” Computers

& Fluids, vol. 58, pp. 1–14, 2012.

[17] A. Mishra, D. Jude, and J. D. Baeder, “A GPU accelerated adjoint solver for

shape optimization,” in 2018 Fluid Dynamics Conference, 2018, p. 3557.

[18] A. Marongiu and L. Benini, “Efficient OpenMP support and extensions

for MPSoCs with explicitly managed memory hierarchy,” in 2009 Design,

Automation & Test in Europe Conference & Exhibition. IEEE, 2009, pp.

809–814.

[19] M. P. Forum, “MPI: A message-passing interface standard,” University of

Tennessee, USA, Tech. Rep., 1994.

127

[20] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,

V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,

R. L. Graham, and T. S. Woodall, “Open MPI: Goals, concept, and design of a

next generation MPI implementation,” in Proceedings, 11th European PVM/MPI

Users’ Group Meeting, Budapest, Hungary, September 2004, pp. 97–104.

[21] W. Gropp, “MPICH2: A new start for MPI implementations,” in European

Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting.

Springer, 2002, pp. 7–7.

[22] “Intel MPI library,” https://software.intel.com/content/www/us/en/develop/tools/

oneapi/components/mpi-library.html.

[23] B. L. Chamberlain, Chapel (Cray Inc. HPCS Language). Boston, MA: Springer

US, 2011, pp. 249–256. [Online]. Available: https://doi.org/10.1007/978-0-387-

09766-4_54

[24] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach

to numerical computing,” SIAM review, vol. 59, no. 1, pp. 65–98, 2017. [Online].

Available: https://doi.org/10.1137/141000671

[25] C. L. Weeks, “Concurrent extensions to the FORTRAN language for parallel

programming of computational fluid dynamics algorithms,” NASA Technical

Memorandum, Tech. Rep., 1986.

128

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html
https://doi.org/10.1007/978-0-387-09766-4_54
https://doi.org/10.1007/978-0-387-09766-4_54
https://doi.org/10.1137/141000671

[26] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility for

resource management,” in Workshop on job scheduling strategies for parallel

processing. Springer, 2003, pp. 44–60.

[27] “Elasticluster,” https://github.com/elasticluster/elasticluster.

[28] N. C. Prewitt, D. M. Belk, and W. Shyy, “Parallel computing of overset grids for

aerodynamic problems with moving objects,” Progress in Aerospace Sciences,

vol. 36, no. 2, pp. 117–172, 2000.

[29] J. Cai, H. M. Tsai, and F. Liu, “An overset grid solver for viscous computations

with multigrid and parallel computing,” in 16th AIAA Computational Fluid

Dynamics Conference, 2003, p. 4232.

[30] M. J. Djomehri and R. Biswas, “Performance enhancement strategies for multi-

block overset grid CFD applications,” Parallel Computing, vol. 29, no. 11-12, pp.

1791–1810, 2003.

[31] N. Suhs, S. Rogers, and W. Dietz, “Pegasus 5: An automated pre-processor for

overset-grid CFD,” in 32nd AIAA Fluid Dynamics Conference and Exhibit, 2002,

p. 3186.

[32] M. J. Djomehri, R. Biswas, and N. Lopez-Benitez, “Load balancing strategies

for multi-block overset grid applications.” in Computers and Their Applications,

129

https://github.com/elasticluster/elasticluster

2003, pp. 373–378.

[33] E. Kim, J.-H. Kwon, and S. H. Park, “Parallel performance assessment of moving

body overset grid application on PC cluster,” in Parallel Computational Fluid

Dynamics, vol. 18. Amsterdam; Oxford; Elsevier, 2006, pp. 59–66.

[34] J. Cai, H. M. Tsai, and F. Liu, “A parallel viscous flow solver on multi-block

overset grids,” Computers & Fluids, vol. 35, no. 10, pp. 1290–1301, 2006.

[35] J. J. Alonso, S. Hahn, F. Ham, M. Herrmann, G. Iaccarino, G. Kalitzin,

P. LeGresley, K. Mattsson, G. Medic, P. Moin et al., “Chimps: A high-

performance scalable module for multi-physics simulations,” in Proceedings

of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,

Sacramento, CA, July, 2006, pp. 9–12.

[36] J. Sitaraman, M. Floros, A. Wissink, M. Potsdam, and V. Sankaran, “Parallel

unsteady overset mesh methodology for a multi-solver paradigm with adaptive

Cartesian grids,” in 26th AIAA Applied Aerodynamics Conference, 2008, p. 7177.

[37] G. Zagaris, M. T. Campbell, D. J. Bodony, E. Shaffer, and M. D. Brandyberry,

“A toolkit for parallel overset grid assembly targeting large-scale moving body

aerodynamic simulations.” in IMR. Springer, 2010, pp. 385–401.

[38] J. Sitaraman, M. Floros, A. Wissink, and M. Potsdam, “Parallel domain

130

connectivity algorithm for unsteady flow computations using overlapping and

adaptive grids,” Journal of Computational Physics, vol. 229, no. 12, pp. 4703–

4723, 2010.

[39] P. G. Buning and T. H. Pulliam, “Cartesian off-body grid adaption for viscous

time-accurate flow simulations,” in 20th AIAA Computational Fluid Dynamics

Conference, 2011, pp. 27–30.

[40] B. Landmann and M. Montagnac, “A highly automated parallel Chimera method

for overset grids based on the implicit hole cutting technique,” International

Journal for Numerical Methods in Fluids, vol. 66, no. 6, pp. 778–804, 2011.

[41] E. J. Nielsen and B. Diskin, “Discrete adjoint-based design for unsteady turbulent

flows on dynamic overset unstructured grids,” AIAA Journal, vol. 51, no. 6, pp.

1355–1373, 2013.

[42] M. J. Brazell, J. Sitaraman, and D. J. Mavriplis, “An overset mesh approach for

3D mixed element high-order discretizations,” Journal of Computational Physics,

vol. 322, pp. 33–51, 2016.

[43] C. Liu, “A stabilized finite element dynamic overset method for the Navier–

Stokes equations,” Ph.D. dissertation, University of Tennessee at Chattanooga,

2016.

131

[44] G. K. Kenway, A. Mishra, N. R. Secco, K. Duraisamy, and J. Martins, “An

efficient parallel overset method for aerodynamic shape optimization,” in

58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials

Conference, 2017, p. 0357.

[45] X. Hu, Z. Lu, J. Zhang, W. Yuan, X. Liu, and N. Nie, “An efficient parallel

Chimera grid flow solver based on implicit hole cutting method,” in AIP

Conference Proceedings, vol. 1978, no. 1. AIP Publishing LLC, 2018, p.

230002.

[46] J. Crabill, F. D. Witherden, and A. Jameson, “A parallel direct cut algorithm for

high-order overset methods with application to a spinning golf ball,” Journal of

Computational Physics, vol. 374, pp. 692–723, 2018.

[47] X. Chang, R. Ma, N. Wang, and L. Zhang, “Parallel implicit hole-cutting method

for unstructured Chimera Grid,” Acta Aeronautica et Astronautica Sinica, vol. 39,

no. 6, pp. 48–58, 2018.

[48] W. Wang, C. Yan, S. Wang, Y. Huang, and W. Yuan, “An efficient, robust

and automatic overlapping grid assembly approach for partitioned multi-block

structured grids,” Proceedings of the Institution of Mechanical Engineers, Part

G: Journal of Aerospace Engineering, vol. 233, no. 4, pp. 1217–1236, 2019.

[49] R. Meakin and A. Wissink, “Unsteady aerodynamic simulation of static and

132

moving bodies using scalable computers,” in 14th Computational Fluid Dynamics

Conference, 1999, p. 3302.

[50] L. Dagum and R. Menon, “OpenMP: An industry standard API for shared-

memory programming,” Computational Science & Engineering, IEEE, vol. 5,

no. 1, pp. 46–55, 1998.

[51] N. Prewitt, D. Belk, and W. Shyy, “Distribution of work and data for parallel grid

assembly,” in 37th Aerospace Sciences Meeting and Exhibit, 1999, p. 913.

[52] A. M. Wissink and R. L. Meakin, “On parallel implementations of dynamic

overset grid methods,” in SC’97: Proceedings of the 1997 ACM/IEEE Conference

on Supercomputing. IEEE, 1997, pp. 15–15.

[53] R. Meakin, “A new method for establishing intergrid communication among

systems of overset grids,” in 10th Computational Fluid Dynamics Conference,

1991, p. 1586.

[54] J. Bonet and J. Peraire, “An Alternating Digital Tree (ADT) algorithm for

3D geometric searching and intersection problems,” International Journal for

Numerical Methods in Engineering, vol. 31, no. 1, pp. 1–17, jan 1991.

[55] L. Hall and V. Parthasarathy, “Validation of an automated Chimera/6-dof

methodology for multiple moving body problems,” in 36th AIAA Aerospace

133

Sciences Meeting and Exhibit, 1998, p. 753.

[56] D. Belk and R. Maple, “Automated assembly of structured grids for moving body

problems,” in 12th Computational Fluid Dynamics Conference, 1995, p. 1680.

[57] S. Pissanetzky and F. G. Basombrío, “Efficient calculation of numerical values

of a polyhedral function,” International Journal for Numerical Methods in

Engineering, vol. 17, no. 2, pp. 231–237, 1981.

[58] M. Khoshniat, G. R. Stuhne, and D. A. Steinman, “Relative performance

of geometric search algorithms for interpolating unstructured mesh data,” in

International Conference on Medical Image Computing and Computer-Assisted

Intervention. Springer, 2003, pp. 391–398.

[59] B. Roget and J. Sitaraman, “Wall distance search algorithm using voxelized

marching spheres,” Journal of Computational Physics, vol. 241, pp. 76–94, 2013.

[60] I.-T. Chiu and R. Meakin, “On automating domain connectivity for overset grids,”

in 33rd Aerospace Sciences Meeting and Exhibit, 1995, p. 854.

[61] G. Mei, “Realmodel: A system for modeling and visualizing sedimentary rocks,”

Ph.D. dissertation, University of Freiburg, 2014.

134

[62] “MPI memory,” https://stackoverflow.com/questions/13088772/mpi-send-takes-

huge-part-of-virtual-memory.

[63] K. Chand, “Component-based hybrid mesh generation,” International Journal

for Numerical Methods in Engineering, vol. 62, no. 6, pp. 747–773, 2005.

[64] M. S. Jung and O. J. Kwon, “A conservative overset mesh scheme via intergrid

boundary reconnection on unstructured meshes,” in 19th AIAA Computational

Fluid Dynamics, 2009, p. 3536.

[65] E. Rinaldi, P. Colonna, and R. Pecnik, “Flux-conserving treatment of non-

conformal interfaces for finite-volume discretization of conservation laws,”

Computers & Fluids, vol. 120, pp. 126–139, 2015.

[66] K. P. Fishkin and B. A. Barsky, “An analysis and algorithm for filling propagation,”

in Computer-generated Images. Springer, 1985, pp. 56–76.

[67] S. Lemaire, G. Vaz, and S. Turnock, “On the need for higher order interpolation

with overset grid methods,” 2019.

[68] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A

Practical Introduction. Springer Science & Business Media, 2013.

[69] B. Diskin and J. L. Thomas, “Comparison of node-centered and cell-centered

135

https://stackoverflow.com/questions/13088772/mpi-send-takes-huge-part-of-virtual-memory
https://stackoverflow.com/questions/13088772/mpi-send-takes-huge-part-of-virtual-memory

unstructured finite-volume discretizations: inviscid fluxes,” AIAA journal, vol. 49,

no. 4, pp. 836–854, 2011.

[70] A. Jeffrey, “Quasilinear hyperbolic systems and waves,” London, 1976.

[71] P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference

schemes,” Journal of Computational Physics, vol. 43, no. 2, pp. 357–372, 1981.

[72] P. Roe and J. Pike, “Efficient construction and utilisation of approximate Riemann

solutions,” in Proc. of the sixth Int’l. Symposium on Computing methods in

Applied Sciences and Engineering, VI, 1985, pp. 499–518.

[73] A. Harten and J. M. Hyman, “Self adjusting grid methods for one-dimensional

hyperbolic conservation laws,” Journal of Computational Physics, vol. 50, no. 2,

pp. 235–269, 1983.

[74] P. L. Roe, “Sonic flux formulae,” SIAM Journal on Scientific and Statistical

Computing, vol. 13, no. 2, pp. 611–630, 1992.

[75] F. Dubois and G. Mehlman, “Nonparameterized entropy fix for Roe’s method,”

AIAA Journal, vol. 31, no. 1, pp. 199–200, 1993.

[76] B. Einfeldt, C.-D. Munz, P. L. Roe, and B. Sjögreen, “On Godunov-type methods

near low densities,” Journal of Computational Physics, vol. 92, no. 2, pp. 273–

136

295, 1991.

[77] A. Harten, P. D. Lax, and B. v. Leer, “On upstream differencing and Godunov-

type schemes for hyperbolic conservation laws,” SIAM Review, vol. 25, no. 1, pp.

35–61, 1983.

[78] S. Davis, “Simplified second-order Godunov-type methods,” SIAM Journal on

Scientific and Statistical Computing, vol. 9, no. 3, pp. 445–473, 1988.

[79] B. Einfeldt, “On Godunov-type methods for gas dynamics,” SIAM Journal on

Numerical Analysis, vol. 25, no. 2, pp. 294–318, 1988.

[80] E. F. Toro, M. Spruce, and W. Speares, “Restoration of the contact surface in the

HLL–Riemann solver,” Shock Waves, vol. 4, no. 1, pp. 25–34, 1994.

[81] E. Toro, “A linearized Riemann solver for the time-dependent Euler equations

of gas dynamics,” Proceedings of the Royal Society of London. Series A:

Mathematical and Physical Sciences, vol. 434, no. 1892, pp. 683–693, 1991.

[82] B. Van Leer, “Towards the ultimate conservative difference scheme. v. a second-

order sequel to godunov’s method,” Journal of computational Physics, vol. 32,

no. 1, pp. 101–136, 1979.

[83] J. A. White, H. Nishikawa, and R. A. Baurle, “Weighted least-squares cell-

137

average gradient construction methods for the VULCAN-CFD second-order

accurate unstructured grid cell-centered finite-volume solver,” in AIAA Scitech

2019 Forum, 2019, p. 0127.

[84] A. Haselbacher and J. Blazek, “Accurate and efficient discretization of navier-

stokes equations on mixed grids,” AIAA journal, vol. 38, no. 11, pp. 2094–2102,

2000.

[85] T. Barth and D. Jespersen, “The design and application of upwind schemes on

unstructured meshes,” in 27th Aerospace Sciences Meeting, 1989, p. 366.

[86] V. Venkatakrishnan, “On the accuracy of limiters and convergence to steady state

solutions,” in 31st Aerospace Sciences Meeting, 1993, p. 880.

[87] S. Venkateswaran and C. Merkle, “Dual time-stepping and preconditioning for

unsteady computations,” in 33rd Aerospace Sciences Meeting and Exhibit, 1995,

p. 78.

[88] D. Demidov, “AMGCL – A C++ library for efficient solution of large sparse

linear systems,” Software Impacts, vol. 6, p. 100037, 2020. [Online]. Available:

https://doi.org/10.1016/j.simpa.2020.100037

[89] G. Mengaldo, D. De Grazia, F. Witherden, A. Farrington, P. Vincent, S. Sherwin,

and J. Peiro, “A guide to the implementation of boundary conditions in compact

138

https://doi.org/10.1016/j.simpa.2020.100037

high-order methods for compressible aerodynamics,” in 7th AIAA Theoretical

Fluid Mechanics Conference, 2014.

[90] L. Manzano, J. Lassaline, and D. Zingg, “A newton-krylov algorithm for the

euler equations using unstructured grids,” in 41st Aerospace Sciences Meeting

and Exhibit, 2003, p. 274.

[91] V. Venkatakrishnan and D. Mavriplis, “Implicit method for the computation of

unsteady flows on unstructured grids,” Journal of Computational Physics, vol.

127, no. 2, pp. 380–397, 1996.

[92] R. Landon, “Data from AGARD Report 702: NACA 64 A 006 Oscillating Flap;

NACA 012 Oscillatory and Transient Pitching; NLR 7301 Supercritical Airfoil

Oscillatory Pitching and Oscillating Flap; and ZKP Wing, Oscillating Aileron,”

2000., 2000.

[93] V. Schmitt, “Pressure distributions on the ONERA M6-wing at transonic mach

numbers, experimental data base for computer program assessment,” AGARD

AR-138, 1979.

[94] G. Araya, “Turbulence model assessment in compressible flows around complex

geometries with unstructured grids,” Fluids, vol. 4, no. 2, p. 81, 2019.

[95] M. K. Singh, V. Ramesh, and N. Balakrishnan, “Implicit scheme for meshless

139

compressible euler solver,” Engineering Applications of Computational Fluid

Mechanics, vol. 9, no. 1, pp. 382–398, 2015.

[96] P. Cook, M. Mcdonald, and M. Firmin, “Experimental data base for computer

program assessment,” AGARD AR, vol. 138, 1979.

[97] R. E. Mineck, Steady and periodic pressure measurements on a generic helicopter

fuselage model in the presence of a rotor. NASA Langley Research Center,

2000.

[98] M. Insulander, “Development of a helicopter simulation for operator interface

research,” Master’s thesis, Institution for Man-System Interaction, Swedish

Defense Research Agency, 2008.

[99] J. Riegel, W. Mayer, and Y. van Havre, “FreeCAD (version 0.18.4),” http://www.

freecadweb.org.

[100] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-D finite element mesh generator with

built-in pre-and post-processing facilities,” International Journal for Numerical

Methods in Engineering, vol. 79, no. 11, pp. 1309–1331, 2009.

[101] B. Kubrak and D. Snyder, “CFD code vailidation of rotor/fuselage interaction

using the commercial software STAR-CCM+ 8.04,” SIEMENS, Tech. Rep.,

2013.

140

http://www.freecadweb.org
http://www.freecadweb.org

[102] Y. Tanabe, I. Otani, and S. Saito, Validation of computational results of

rotor/fuselage interaction analysis using rFlow3D code. Japan Aerospace

Exploration Agency, 2010.

[103] B.-S. Lee, M.-S. Jung, O.-J. Kwon, and H.-J. Kang, “Numerical simulation

of rotor-fuselage aerodynamic interaction using an unstructured overset mesh

technique,” International Journal of Aeronautical and Space Sciences, vol. 11,

no. 1, pp. 1–9, 2010.

[104] A. R. Kenyon and R. E. Brown, “Wake dynamics and rotor-fuselage aerodynamic

interactions,” Journal of the American Helicopter Society, vol. 54, no. 1, pp.

12 003–12 003, 2009.

[105] H. Xu and S. Zhang, “Aerodynamic investigation of unsteady flow past robin

helicopter with four-bladed rotor in forward-flight,” in 32nd European Rotorcraft

Forum, 2006.

[106] R. E. Mineck, “Application of an unstructured grid Navier–Stokes solver to a

generic helicopter body,” NASA Technical Memorandum, Tech. Rep., 1999.

[107] “TRUBA,” https://www.truba.gov.tr/index.php/en/main-page/.

[108] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight dynamic

binary instrumentation,” ACM Sigplan notices, vol. 42, no. 6, pp. 89–100, 2007.

141

https://www.truba.gov.tr/index.php/en/main-page/

[109] W. J. Horne and K. Mahesh, “A massively-parallel, unstructured overset method

for mesh connectivity,” Journal of Computational Physics, vol. 376, pp. 585–596,

Jan 2019.

142

APPENDICES

143

Appendix A: Coefficients in super-ellipse equations

Table A.1: Coefficients for the shape of fuselage

0.0 < x/l < 0.4

C1 C2 C3 C4 C5 C6 C7 C8

H 1.0 -1.0 -0.4 0.4 1.8 0.0 0.25 1.8
W 1.0 -1.0 -0.4 0.4 2.0 0.0 0.25 2.0
Z0 1.0 -1.0 -0.4 0.4 1.8 -0.08 0.08 1.8
N 2.0 3.0 0.0 0.4 1.0 0.0 1.0 1.0

0.4≤ x/l < 0.8

C1 C2 C3 C4 C5 C6 C7 C8

H 0.0 0.0 0.0 0.0 0.0 0.25 0.0 0.0
W 0.0 0.0 0.0 0.0 0.0 0.25 0.0 0.0
Z0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0

0.8≤ x/l < 1.9

C1 C2 C3 C4 C5 C6 C7 C8

H 1.0 -1.0 -0.8 1.1 1.5 0.05 0.2 0.6
W 1.0 -1.0 -0.8 1.1 1.5 0.05 0.2 0.6
Z0 1.0 -1.0 -0.8 1.1 1.5 0.04 -0.04 0.6
N 5.0 -3.0 -0.8 1.1 1.0 0.0 1.0 1.0

1.9≤ x/l < 2.0

C1 C2 C3 C4 C5 C6 C7 C8

H 1.0 -1.0 -1.9 0.1 2.0 0.0 0.05 2.0
W 1.0 -1.0 -1.9 0.1 2.0 0.0 0.05 2.0
Z0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0
N 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0

144

Table A.2: Coefficients for the shape of pylon

0.4 < x/l < 0.8

C1 C2 C3 C4 C5 C6 C7 C8

H 1.0 -1.0 -0.8 0.4 3.0 0.0 0.145 3.0
W 1.0 -1.0 -0.8 0.4 3.0 0.0 0.166 3.0
Z0 0.0 0.0 0.0 0.0 0.0 0.125 0.0 0.0
N 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0

0.8≤ x/l < 1.018

C1 C2 C3 C4 C5 C6 C7 C8

H 1.0 -1.0 -0.8 0.218 2.0 0.0 0.145 2.0
W 1.0 -1.0 -0.8 0.218 2.0 0.0 0.166 2.0
Z0 1.0 -1.0 -0.8 1.1 1.5 0.065 0.06 0.6
N 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0

145

Appendix B: Scripts

import sys
import math
import numpy
import Part
import BOPTools.JoinAPI
from mesh import *
from coef_fuselage import *
from coef_pylon import *
from make_component import *
from constant import *
from modify_geo import *

doc = FreeCAD.newDocument(’newdoc ’)
fuselage_start = 0.001
fuselage_end = 1.997
pylon_start = 0.40001
pylon_end = 1.018
radial_start = 0.00001
nx_fuselage = 10
nx_pylon = 10
np = 10
L_inch = 78.57
L = L_inch * INCH_TO_METER / fuselage_end
dia = 50

px_fuselage = numpy.linspace(
fuselage_start , fuselage_end , nx_fuselage)
px_pylon = numpy.linspace(
pylon_start , pylon_end , nx_pylon)
pr = numpy.linspace(radial_start , 2.0* math.pi, np)
fuselage = make_component(Fuselage , px_fuselage , pr, L)
pylon = make_component(Pylon , px_pylon , pr, L) # make pylon.
helicopter = BOPTools.JoinAPI.connect ([fuselage , pylon])
solid_helicopter = Part.Solid(helicopter)
sphere = Part.makeSphere(dia ,FreeCAD.Vector (1,0,0))
cut = sphere.cut(solid_helicopter)
cut_object = doc.addObject("Part:: Feature","Cut")
cut_object.Shape = cut
mesh(cut_object , ’main_body ’, doc)
file_name = "fuselage_pylon"
modify_geo(file_name , ’Cut’)

Figure B.1: FreeCAD Python script for the generic fuselage model.

146

import sys
import numpy
import BOPTools.JoinAPI
from mesh import *
from make_component import *
from constant import *
from modify_geo import *
from NACA0012 import *
from blade_helper import *

doc = App.newDocument(’newdoc ’)
fuselage_end = 1.997
L_inch = 78.57
L = L_inch * INCH_TO_METER / fuselage_end
chord_inch = 2.61
chord = chord_inch * INCH_TO_METER
aoa = 4;
twist = 8;
blade_radius_inch = 33.88
blade_radius = blade_radius_inch * INCH_TO_METER
root_cut_out = 0.24 * blade_radius
blade_length = blade_radius - root_cut_out
nx = 10;
hub_center = [0.696 * L, 0, 0.322 * L]
cylinder_radius = chord * 10
cylinder_length = cylinder_radius * 2

x = numpy.linspace (0.00001 , chord , nx)
points = make_NACA0012_points(x, chord)
blade = [make_blade(points , aoa , twist , blade_length)

for i in range (4):
if i == 0 or i == 2:

ref_blade = blade [0]
if i == 1 or i == 3:

ref_blade = blade [1]
pos = reposition_blade(
ref_blade , blade[i], i, blade_radius , hub_center , chord)
blade_object = doc.addObject("Part:: Feature","Blade"+str(i))
blade_object.Shape = blade[i]
cylinder = make_cylinder(i, cylinder_radius , chord ,
cylinder_length , blade_length , hub_center [2], pos)
cut = cylinder.cut(blade)
cut_object = doc.addObject(
"Part:: Feature","Cut" + str(i))
cut_object.Shape = cut
mesh(cut_object , ’blade’, doc)
file_name = "blade" + str(i)
modify_geo(file_name , ’Cut’, hub_center)

Figure B.2: FreeCAD Python script for the rotor blades.
147

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	1 INTRODUCTION
	1.1 Motivation
	1.2 Scope and objectives
	1.3 Dissertation outline

	2 Literature review
	2.1 Parallel communication
	2.2 Parallel Overset Mesh Methodology
	2.3 Load balance
	2.4 Donor search
	2.5 Hole cutting

	3 METHODOLOGY
	3.1 Overview
	3.2 Spatial partitioning
	3.3 Load balancing
	3.3.1 Space partitioning data structure
	3.3.2 Load calculation
	3.3.3 Weighted graph partitioning

	3.4 Data transfer
	3.5 Donor search
	3.5.1 Hole cutting
	3.5.2 Core algorithm
	3.5.3 Interpolation scheme

	3.6 Mathematical formulation
	3.6.1 Overview
	3.6.2 Governing equations
	3.6.3 Flux approximation with Roe
	3.6.4 Flux approximation with HLLC
	3.6.5 Spatial discretization
	3.6.6 Implicit formulation
	3.6.7 Temporal discretization
	3.6.8 Dual time step approach
	3.6.9 Solution of linear system of equations

	4 RESULTS and DISCUSSION
	4.1 Validation of the overset mesh solver
	4.1.1 Shock tube
	4.1.2 Steady transonic flow over airfoil
	4.1.3 Pitching airfoil
	4.1.4 Steady transonic flow over ONERA M6 wing
	4.1.5 Rotor-fuselage interaction
	4.1.5.1 CAD models and meshes
	4.1.5.2 Solver parameters
	4.1.5.3 Boundary conditions
	4.1.5.4 Validation of aerodynamic coefficients
	4.1.5.5 Unsteady pressure coefficients
	4.1.5.6 Time-averaged pressure coefficients

	4.2 Parallel performance results

	5 CONCLUSIONS
	5.1 Future work

	REFERENCES
	APPENDICES
	A Coefficients in super-ellipse equations
	B Scripts

