
i

A Novel Mobile Transactional Payment Banking

Scheme

Mahmoud Saleh Mahmoud Obaid

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree

of

Doctor of Philosophy

in

Computer Engineering

Eastern Mediterranean University

 January 2020

 Gazimağusa, North Cyprus

ii

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy

Director

I certify that this thesis satisfies the requirements as a thesis for the degree of
Doctor of Philosophy in Computer Engineering.

Prof. Dr. Işık Aybay

Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate

in scope and quality as a thesis for the degree of Doctor of Philosophy in

Computer Engineering.

 Assoc. Prof. Dr. Zeki Bayram

Supervisor

 Examining Committee

1. Prof. Dr. Albert Levi __________________________________

2. Prof. Dr. Nesrin Özataç __________________________________

3. Prof. Dr. Serra Sarıoğlu _________________________________

4. Assoc. Prof. Dr. Zeki Bayram _________________________________

5. Assoc. Prof. Dr. Alexander Chefranov __________________________________

iii

ABSTRACT

A novel real-time mobile payment (MOP) system that utilizes mobile phones

together with interactive voice response technology (IVR) is proposed. The system

consists of a communication network built upon existing banking infrastructures,

thus minimizing the cost of adoption by banks. A sender or receiver communicates

only with his/her bank, using a regular mobile phone, and banks talk to each other

through a central authority, which acts as a broker. The communication of each

component with other components in the system is clearly specified. Provision is

made for the security of the whole system, making use of existing security

arrangements between each participating bank and its customers, as well as

established security practices of the banking industry. Rollbacks of transactions are

also available.

Our scheme aims to achieve a high level of security without sacrificing efficiency,

have a reliable infrastructure, minimize the overheads on all stakeholders and result

in time savings in implementation and marketing. Through our scheme, all bank

services involving transfer of funds between participants will become readily

available anytime and anywhere, regardless of the availability of Internet or smart

phones. For example, a user of the system will be able to pay for purchases, transfer

money, track payments, and receive money in real time, alleviating the need to carry

cash or credit cards.

Keywords: Communication network, real-time mobile payment, M-commerce,

Interactive Voice Response, protocol, transaction, security

iv

ÖZ

İnteraktif Ses Teknolojisi (IVR) ile birlikte mobil telefonları kullanan, yeni ve gerçek

zamanlı bir mobil ödeme sistemi (MOP) öneriyoruz. Sistem, varolan bankacılık

altyapısı üstüne kurulu olmasından dolayı bankaların sisteme dahil olmasının

maliyetini azaltan bir iletişim ağından oluşur. Gönderici veya alıcı sadece yalın bir

mobil telefon kullanarak kendi bankası ile iletişim kurar, ve bankalar da bir aracı

görevi gören merkezi otorite vasıtası ile haberleşirler. Sistemdeki tüm parçaların

diğer parçalarla haberleşmesi açıkça belirlenmiştir. Tüm sistemin güvenliği,

müşteriler ile bankaları arasında hali hazırda var olan güvenlik önlemleri, ve

bankacılık sektöründe kullanımda olan güvenlik uygulamaları üzerine inşa edilmiştir.

Hareketlerin geridönüşü de sağlanmıştır.

Yöntemimiz, verimlilikten ödün vermeden yüksek düzeyde güvenlik sağlamayı,

güvenli bir altyapıya sahip olmayı, tüm paydaşların mali yükünü en aza indirmeyi, ve

hem implementasyonda, hem de pazarlamada zaman kazandırmayı hedefler.

Yöntemimiz aracılığı ile, fon aktarımı içeren tüm bankacılık hizmetleri, İnternet ve

akıllı telefonlar olmadan, her zaman ve her yerde kolayca gerçekleştirilebilecektir.

Örneğin, bir sistem kullanıcısı, para veya kredi kartı taşımasına gerek kalmadan,

gerçek zamanlı olarak alış-verişleri için ödeme yapabilecek, para aktarımı

yapabilecek, ödemelerini takip edebilecek, ve ödeme alabilecektir.

Anahtar Kelimeler: İletişim ağı, gerçek zamanlı mobil ödeme, M-ticaret, interaktif

ses teknolojisi, protokol, hareket.

v

ACKNOWLEDGMENT

First, I would like to thank almighty ALLAH for I have finally finished the writing

of this thesis for my PhD degree in Computer Engineering despite all the difficulties

and the unstable situation in Palestine as a result of the Israeli occupation and travel

restrictions.

I would like to express my deepest gratitude to my supervisor Assoc. Prof. Dr. Zeki

Bayram for guiding me well throughout the research work, from the title’s selection

to finding the results. His immense knowledge, motivation and patience have given

me more power and spirit to excel in the research writing. Conducting the academic

study regarding such a difficult topic couldn’t be as simple as he made this for me.

He is my mentor and a better advisor for my doctorate study beyond the imagination.

I would like also to thank all the department staff who gave me the support and help I

needed during the writing of my thesis.

I would like to thank my wife Amena, my children Anhar and Rayan for their

endless support and understanding during this thesis process, and my brother Murad

for his support and encouragement.

In the end, I am grateful to my parents, siblings, friends and acquaintances who

remembered me in their prayers for the ultimate success. I consider myself nothing

without them. They gave me enough moral support, encouragement and motivation

to accomplish my personal goals.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ÖZ ... iv

ACKNOWLEDGMENT ... v

LIST OF TABLES ... xi

LIST OF FIGURES .. xi

LIST OF LISTINGS ...xv

LIST OF ABBREVIATIONS ... xvii

1 INTRODUCTION .. 1

1.1 Mobile Payment Definition ... 1

1.2 Reasons for the Development of Mobile Payment.. 2

1.3 Benefits of Mobile Payment .. 3

1.4 Outlook for Mobile Payments ... 3

1.5 Problems with Current Mobile Payment Systems... 4

1.6 A Novel Solution to the Current Problems of Mobile Payment Systems 5

1.7 Structure of this Thesis .. 5

2 RELATED WORKS .. 7

3 EXISTING MOBILE PAYMENT METHODS .. 13

3.1 PayPal .. 13

3.2 PayBox .. 13

3.3 PayForIt ... 14

3.4 Square .. 14

3.5 TIPS ... 15

4 PROPOSED SOLUTION (MOP SYSTEM) ... 16

vii

4.1 Overview of the Proposed System MOP .. 16

4.1.1 The Client Component .. 18

4.1.2 The Operator Component .. 19

4.2 Operation of the MOP System .. 19

4.3 Features of the Proposed System .. 24

4.4 How the System Works ... 24

4.5 Use Cases of the MOP System .. 29

4.5.1 Bank Admin Use Case – Create MOP User Account 29

4.5.2 MOP User Use Case – Follow up on Transactions 30

4.5.3 MOP Operator Use Case- Caller is not a MOP User 31

4.5.4 MOP Operator Use Case - Caller is a MOP User 32

4.5.5 MOP Bank Use Case ... 33

4.6 Security Features of MOP ... 36

4.7 Other Features of MOP ... 38

4.7.1 Confidentiality ... 38

4.7.2 Availability .. 38

5 HIGH-LEVEL SPECIFICATION OF MOP USING ABSTRACT CLASSES

AND METHODS ... 40

5.1 User Class .. 40

5.1.1 Methods of the User Class ... 41

5.1.2 Typical Sequence of Actions Using the User Class 41

5.2 MOP Operator Class ... 42

5.2.1 Methods of the MOP Operator Class .. 42

5.2.2 Typical Sequence of Actions Using the MOP Operator Class 42

5.3 Participating Bank MOP Class .. 43

viii

5.3.1 Methods of the Participating Bank MOP Class 43

 5.3.2 Typical Sequence of Actions Using the Participating Bank MOP Class

 .. 44

5.4 Central (Settlement) Bank MOP Class ... 44

5.4.1 Methods of the Central (Settlement) Bank MOP Class 44

5.4.2 Typical Sequence of Actions Using the Central Bank MOP Class 45

5.5 Participating Bank Infrastructure Class... 45

5.5.1 Methods of the Participating Bank Infrastructure Class 45

5.5.2 Typical Sequence of Actions Using the Participating Bank

Infrastructure Class ... 46

5.6 Central Bank Infrastructure Class ... 46

5.6.1 Methods of the Central Bank Infrastructure Class 46

5.6.2 Typical Sequence of Actions Using the Central Bank Infrastructure

Class ... 47

5.7 Message Traffic among Components of MOP .. 47

6 IMPLEMENTATION OF MOP .. 49

6.1 Hardware and Software Setup ... 49

6.2 High-Level Components of Our Implementation 52

6.3 MOP Operator ... 52

6.3.1 MOP Operator Web Pages .. 52

6.3.2 Functions Called from the Web Pages .. 53

6.3.3 Detailed Description of MOP Operator Functions and Methods 57

6.4 MOP Bank ... 65

6.4.1 Mop Bank Web Pages ... 65

6.4.2 Mop Bank Functions ... 66

ix

6.4.3 MOP Bank Functions and Methods .. 69

6.5 Security Implementation ... 77

7 DISCUSSION .. 78

7.1 Applicability .. 78

7.2 Innovative Features of MOP ... 78

7.3 How MOP Deals with the Security Issue .. 79

7.4 Comparison with Other Payment Systems .. 79

8 CONCLUSION AND FUTURE WORK ... 82

REFERENCES .. 84

APPENDICES ... 91

Appendix A: Critical Code for the “Client” module of the MOP Prototype 92

 Appendix B: Critical Code for the “Operator” module of the MOP Prototype

 ... 113

Appendix C: Critical Code for the “Bank” module of the MOP Prototype 131

Appendix D: Simulator for the MOP system .. 141

Appendix E: Critical Code for the Simulator .. 159

Appendix F: Raw Timing Data for Transactions in the Prototype

Implementation.. 176

x

LIST OF TABLES

Table 6.1: Technologies used in the implementation of the MOP system................. 50

Table 6.2: Web pages in MOP Operator. ... 52

Table 6.3: Functions used by PHP pages (MOP Operator) 54

Table 6.4: Functions used by Clientcontroller.php .. 54

Table 6.5: Web pages in MOP Bank. ... 65

Table 6.6: Functions used by PHP pages (MOP Bank) ... 66

Table 6.7: Functions used by Clientcontroller.php .. 67

Table 7.1: Payment methods compared. .. 80

Table F.1: Relevant timing data in tabular format ... 178

xi

LIST OF FIGURES

Figure 4.1: Solution Platform. .. 17

Figure 4.2: Messages Exchanges between Client and Core Bank System. 19

Figure 4.3: New Mobile Payment Behavior. ... 21

Figure 4.4: MOP Operator Component. ... 25

Figure 4.5: MOP Bank Component. .. 26

Figure 4.6: Inbound IVR Flow Chart. .. 27

Figure 4.7: Outbound IVR Flow Chart. ... 28

Figure 4.8: Create MOP User Account. ... 30

Figure 4.9: User Interface. ... 31

Figure 4.10: Caller is not a MOP User. .. 32

Figure 4.11: Caller is a MOP User. .. 33

Figure 4.12: MOP Bank. .. 35

Figure 5.1: Class and Methods for Users. .. 41

Figure 5.2: Class and Methods of the MOP Operator. ... 42

Figure 5.3: Class and Methods for Participating Bank. .. 43

Figure 5.4: Class and Methods for Central Bank. .. 44

Figure 5.5: Class and Methods for Participating Bank Infrastructure. 45

Figure 5.6: Class and Methods for Central Bank Infrastructure. 46

Figure 5.7: Sequence Diagram. .. 48

Figure 5.8: Communication Pathways among Classes and Methods of the MOP

System. ... 48

Figure 6.1: Network Architecture. ... 51

Figure 6.2: CheckcallAction Function. .. 57

xii

Figure 6.3: AddingtoinsertdbcAction Method ... 58

Figure 6.4: AddtooperatorAction Function. ... 59

Figure 6.5: Array2encryptAction Function. ... 60

Figure 6.6: AutoaddcdrAction Function. ... 61

Figure 6.7: CallbackstatusAction Function. ... 62

Figure 6.8: ChangestatusAction Function. ... 63

Figure 6.9: SendtrxreceiverbankAction Function. ... 64

Figure 6.10: ChecktransactionAction Function. .. 64

Figure 6.11: AddclienttoAnotherBankAction Function. .. 69

Figure 6.12: AddclientwaitingAction Function. .. 71

Figure 6.13: AddnewlimitAction Function. ... 72

Figure 6.14: AthinticationlevelAction Function. ... 72

Figure 6.15: AutochangestatusAction Function. .. 73

Figure 6.16: CallbackAction Function. .. 74

Figure 6.17: ChangestatusAction Function. ... 75

Figure 6.18: CheckpinAction Function. ... 76

Figure 6.19: FeesAction Function. ... 76

Figure 6.20: HSMAction Function. ... 76

Figure D.1: Simulation scenario .. 141

Figure D.2: Web service archetecture. ... 142

Figure D.3: Database structure for MOP operator. .. 144

Figure D.4: Database structure for MOP bank. ... 145

Figure D.5: Database structure for Central bank. .. 146

Figure D.6: MOP administrator login .. 147

Figure D.7: Add bank interface. ... 148

xiii

Figure D.8: Customers information. .. 149

Figure D.9: Adding a customer. ... 150

Figure D.10: Transaction details in the bank side. ... 151

Figure D.11: User main page. .. 153

Figure D.12: Transaction details for user. .. 154

Figure D.13: New transaction page. ... 155

Figure D.14: Insert PIN code page. .. 156

Figure D.15: Change password page. .. 157

Figure D.16: Search for transaction in central bank. ... 158

Figure D.17: Transaction details in central bank. .. 158

xiv

LIST OF LISTINGS

Listing 4.1: Actions Performed by the MOP Operator .. 21

Listing 4.2: Actions Performed by the Sender Bank.. 22

Listing 4.3: Actions Performed by the Receiver Bank .. 23

Listing 4.4: Actions Performed by the Settlement Bank.. 23

Listing A.1: CheckcallAction Function in File Client.php .. 92

Listing A.2: AddingtoinsertdbcAction Function in File Client.php 94

Listing A.3: AddtooperatorAction Function in File Client.php. 97

Listing A.4: AutoaddcdrAction Function in File Client.php. 100

Listing A.5: CallbackstatusAction Function in File Client.php. 103

Listing A.6: ChangestatusAction Function in File Client.php. 106

Listing A.7: SendtrxrecieverbankAction Function in File Client.php. 109

Listing A.8: AddtooperatorAction Function in File Client.php. 111

Listing B.1: MOP Operator Helper. ... 113

Listing B.2: MOP Operator API. ... 115

Listing B.3: MOP operator HomeController. .. 117

Listing B.4: Describe MOP Operator API Calls. ... 120

Listing B.5: Describe the MOP Operator Web route using API. 121

Listing B.6: MOP Bank Helper. ... 122

Listing B.7: MOP Bank API. ... 123

Listing B.8: MOP Bank Customer Controller. .. 127

Listing B.9: Describe MOP Bank API Calls .. 130

Listing C.1: MOP Bank Helper. ... 131

Listing C.2: MOP Bank API. ... 133

xv

Listing C.3: MOP Bank Customer Controller. .. 137

Listing C.4: MOP Bank API Calls ... 140

Listing E.1: MOP Operator Helper. ... 159

Listing E.2: MOP Operator API... 161

Listing E.3: MOP operator HomeController. ... 163

Listing E.4: MOP Operator API Calls. .. 166

Listing E.5: MOP Operator Web route using API. .. 166

Listing E.6: MOP Bank Helper. ... 167

Listing E.7: MOP Bank API. ... 168

Listing E.8: MOP Bank Customer Controller. ... 172

Listing E.9: Describe MOP Bank API Calls .. 175

Listing F.1: Database table for transaction details in the prototype implementation.

 ... 176

xvi

LIST OF ABBREVIATIONS

API Application Programming Interface

B2B Business to Business

B2P Business to Person

C2B Consumer to Business

GDP Gross Domestic Product

HSM Host Security Module

IVR Interactive Voice Response

MNOs Mobile Network Operators

MOP Mobile payment proposed system

M-Payment Mobile Payment

M-PESA Mobile Swahili for money

MSISDN Mobile Subscriber Integrated Services Digital Network

NFC Near Field Communication

P2B Person to Business

P2P Person to person

PDA Personal Digital Assistant

PIN Personal Identification Number

RTGS Real-Time Gross Settlement

SIM Subscriber Identity Module

SMS Short Message Service

TIPS Target Instant Payment Settlement

USSD Unstructured Supplementary Service Data

1

Chapter 1

INTRODUCTION

The adoption of digital innovation initiatives has resulted in the development of

disruptive technologies that have shaped traditional industries in many ways [1]. One

such invention was the development of the mobile payment platform that has

changed the dynamics of the financial sector. The platform that is also called M-

payment became the main idea of disruptive technologies and a boon for

organizations seeking a system for reimbursement in the 21st century [2]. Further, the

technology has no geographical limits and can be used both domestically and

internationally. Notably, it can be used to make payments to friends, institutions, and

governments. Thus, mobile money is any service that enables the transfer of funds

through devices such as smartphones, tablets, PDAs [3].

1.1 Mobile Payment Definition

Mobile payment (M-Payment) is an interesting field of work for the researchers in

areas like telecommunication, mobile computing, security and wireless networking.

It is defined as any type of payment for goods, services, bills, government fees,

transfers, or any other money transaction using mobile device or cell phone to

initiate, authorize and confirm the transaction. Another definition for mobile

payment which is more specific is: a transaction handled using mobile phone and

payment instruments such as banking i.e. (cash, bank account, credit card) or pooling

account i.e. (PayPal, wallet, ..etc.) and not using carrier billing or telebanking which

is not integrated with banking infrastructure [4].

2

Mobile payment forum defines the mobile payment to be the transactions of a

monetary with value via mobile telecommunication, mobile network, mobile users,

cellular telephones, smart phones or PDA’s, and mobile terminals. This process

manages all kinds of payments, service payment and purchases for a confirming

payment is preferable than the traditional payment card-based in terms of getting the

financial process anywhere for both the recipient and the bank [5].

1.2 Reasons for the Development of Mobile Payment

Firstly, the development of mobile payment platforms has mostly been promoted by

governmental regulations, technological changes, and industry competition. Notably,

governments across the world have passed legislation aimed at developing

innovations in the mobile phone sector [6].

Further, by allowing the sending and receiving of money through mobile phones,

governments opened up the development and adoption of mobile payments. Also,

technological changes have led to the mass development and production of

smartphones. The availability of these devices enabled developers to disrupt the

payments sector by developing systems that would make such services accessible to

consumers. Industry-wide competition among financial players and technology

companies like Apple, Google, and Samsung led to the development of mobile

payment applications such as Apple Pay and Google Wallet that led to the further

adoption of mobile payment. Thus, the technology developed out of the need for

organizations to improve service delivery and create a competitive advantage.

 Mobile commerce or M-commerce is a new kind of E-commerce conducted using

wired and wireless technologies. It’s beneficial for both a customers and

3

governments. Mobile payments can be considered as one of the most significant

tools of mobile commerce for its ability to replace other bank tools. Developments in

mobile commerce have naturally increased the need for mobile payments and fueled

their development.

1.3 Benefits of Mobile Payment

M-payment has had tremendous effects on businesses. It has helped fuel competition

as companies seek unique ways to use the technology to edge out rivals and improve

the quality of service delivery. Besides, mobile phone manufacturers such as Apple,

Google, and Samsung have also ventured into the mobile payments business with the

goal of diversifying their products. The diversification strategy has resulted in the

development of products such as Google Wallet, Apple Pay, and Samsung Pay

alongside well-known platforms such as PayPal and Stripe. Banks have also joined

the race to get a share of the mobile payments market and even remain relevant in an

industry that is fast going mobile [7]. For example, today many financial institutions

have a revenue-sharing agreement with mobile payment firms that allow them to

profit from every cash transaction made on mobile phones [8]. In so doing, they have

become a vital part of the mobile payments infrastructure. Thus, M-payments have

permeated the socio-economic aspects of society and changed the mode of business

in the 21st century.

1.4 Outlook for Mobile Payments

It was predicted that by 2019, the world would have about three billion smartphones

in active use [9]. The ownership of these devices on such a large scale would result

in the broad adoption and use of mobile payments. In fact, Gartner Group predicted

that the global M-payment market would exceed 450 million users coupled with

monetary transactions of over $930 billion [10]. Furthermore, significant parts of the

4

world still do not have an internet connection. As such, mobile phones remain the

device of choice for making payments as people adopt technologies such as

Interactive Voice Response (IVR), Short Message Service (SMS), and Unstructured

Supplementary Service Data (USSD) [11].

Mobile payment has, in our opinion, a bright future, since it finishes the need for any

other instruments of payment. It will replace all types of traditional and famous tools

of payment such as cash, cheques, debit card and credits. Also, the SIM card has a

great level of security, a very important consideration in any monetary transaction.

1.5 Problems with Current Mobile Payment Systems

Mobile Payment Systems have enabled the provision of a convenient, automated

means to transfer money without the need to handle cash, use credit cards or other

non-mobile based payment methods. However, the current implementations of

mobile payment systems have several limitations that prevent them from reaching

their full potential. Firstly, the system is dependent on external third parties (entities

or organizations outside of the financial system), which necessitates that customer

opens separate accounts that are different from the regular bank accounts. For

example, in some instances, accounts are dependent on one’s telephone number. In

this respect, customers have to operate accounts that are different from ones managed

by their bank, and they also must replenish them by either cash deposits or credit

cards. Furthermore, the process of managing mobile money customer accounts

entails getting bank guarantees to cover the transaction’s monetary value. Another

limitation is that any new updates to the system often require that customers and

agents replace their handsets or SIM chips. Besides, users must have accounts in one

bank only to conduct Real Time Person-to-Person (RT P2P) transactions. Lastly, the

5

nature of M-payments does not promote real-time payment because of the lengthy

process involved in transferring money from one bank to another. Thus, these factors

limit the full exploitation of mobile money payment technologies.

1.6 A Novel Solution to the Current Problems of Mobile Payment

Systems

In light of the problems specified above, we propose a unique communication

network and infrastructure that will overcome the hurdles that limit M-payment

transactions. Our proposed system MOP will connect banks to each other and to

customers to allow all mobile phone-based transactions and payments seamlessly and

securely. It will satisfy the needs of all stakeholders by creating an efficient and

secure system. It will allow users to pay, track, manage, and receive money as long

as they are using the system. Mobile financial services, in this case, will include P2P,

C2B, and B2B transactions, microfinance services, and mobile banking. Thus, it will

ensure an efficient and effective integration with other systems [11].

1.7 Structure of this Thesis

In this chapter, we gave the motivation for mobile payment, presented limitations of

current mobile payment systems, and proposed a novel mobile payment system that

overcomes these limitations. In Chapter 2 we present published research on mobile

payment systems. In chapter 3 we discuss existing mobile payment methods and

systems that are currently in use. Chapter 4 we give a detailed, yet high level,

description of our proposed mobile payment system. In chapter 5, we give a

specification of our implementation in the form of abstract classes and methods,

which define how components of the system communicate with each other. In

chapter 6, we describe a prototype implementation for the MOP system. We have

discussion on the benefits and limitations of the proposed system, as well as a

6

qualitative comparison with other payment systems in chapter 7. Finally, in chapter

8, we have the conclusion and future research directions. In appendices A, B and C

we present the critical sections of code used in the prototype implementation for our

proposed system. In appendix D we present a simulator for our proposed system.

Appendix E contains the source code of the simulator. In appendix F we have raw

timing data for transactions performed on the prototype implementation. Full code of

the prototype implementation and simulator is available both in the CD

accompanying this thesis, and online [47].

7

Chapter 2

RELATED WORKS

The disruptive nature of M-payment has prompted numerous studies on the dynamics

of the technology, more so, its ecosystem and adoption [2]. Some studies have

documented the impact of the technology on the banking and financial sector

including the resources and assets of these institutions [12]. Some scholars studied

the effect of the technology in Netherlands, more so, the relationship between banks

and mobile network providers (MNOs) [13]. Another research in Denmark revealed

how the digitalization of payments, as a technology innovation, affects the

competition and collaboration among traditional and new stakeholders in the

payment ecosystem at three levels of analysis [1]. A study by [14] showed that

timing has and significant effect on the impact on the success of the adoption of

mobile payment. Other scholars have studied the success of mobile payments in

developing and developed countries.

One of the most studied mobile payment systems is in Kenya where the development

of a service called M-PESA revolutionized the financial sector. The rapid adoption of

mobile phones in the country led to the introduction of a mobile payment system to

improve the circulation of money. The project was a success because, currently, M-

PESA payments make up a quarter of the country’s GDP [15]. The adoption of

mobile payments in rising exponentially. In countries like China, approximately 80

percent of internet users make payments using their smartphones [16]. A study by

8

[17] revealed that users would soon adopt contactless credit card payments with

smartphones that use radio frequency identification or near-field communication

technologies. These advancements will become the most used platforms for mobile

payments.

A person’s technological frame is essential in making them adopt NFC enabled

smartphones. In this respect, consumers need to have a good understanding of the

technology including how it will ensure the prevention of risks and threats associated

with money transfers [18, 19]. Besides, stakeholders need to provide adequate

information to help correct the negative perceptions of consumers towards the

technologies [17, 20].

Countries like Canada already use the NFC enabled phones in making payments

[21]. Thus, contactless payments are increasingly being adopted because they are

believed to be convenient, safe, and open to further development [22].

Research on the security of mobile payment systems revealed that there are risks

such as user masquerading, malware, man-in-the-middle attacks, and traffic

interception. The lack of a two-factor authentication increases the risks of sending

money to the wrong account or someone stealing a password [10]. Financial

institutions have responded to these threats by providing consumers and dealers with

trusted service managers that approve and verify any mobile-based transactions [23].

The process is geared towards making customers, and third parties trust the system

and ensuring the safety of all partners. The delicate nature of the transactions

between banks and mobile payment service providers also necessitates that any

conflicting issues be addressed efficiently to achieve set objectives [24].

9

Mobile payment technologies have been designed to appeal to users. For example,

they allow one to personalize the applications, use geo-targeting features, and even

integrate social networks. Besides, the data is user generated. As such, the future of

mobile payments looks promising [9]. Studies on the technology have reinforced the

need to integrate the system into everyday use without destabilizing traditional

payment methods [25]. The attainment of those goals requires the collaboration of all

stakeholders in the payment industry. On the other end, some researchers assert that

there is a need to overcome country-level institutional constraints including those

that govern access to resources, to ensure the successful implementation of m-

payment systems [26].

The success of mobile payment technologies is based on factors such as trust, user-

friendliness, perceived usefulness, cost, and mobility. Several studies have been

conducted to investigate the effects of these factors on mobile money adoption [2].

Other reviews focus on the cultural implications of the technology [27], while others

have studied how its adoption is influenced by the effect of mental accounting theory

[28]. A study by [29] which was based on learning theories, centered on the

technology usage habits of users influenced mobile payment adoption. Research by

[30] investigated payment habits of m-payment users, while [31] examined the effect

of trust and technological environment on use of mobile money services.

[25] investigates the relation between technology for m-payment and its influence

on the ecosystems, and how this payment can integrate with ecosystem without

unstable influence on other traditional payment and keep the ecosystem stable with

collaboration between these different stakeholders.

10

[26] claims that m-payment depends on country level institutional constraints. [12]

investigates the main impacts of mobile payment on banks and financial institutions

and requirements for m-payment from resources and different assets.

[13] investigates the collaboration between banks and mobile network operators

(MNO’s) in Netherlands.

[1] uses a new multi-level framework to study cooperation between different

ecosystems, business, technology and theory. Using Denmark as a case study this

article also differentiates between technology from both defensive and offensive

strategies in m-payment.

[14] studies the timing factor and its impact on the optimal decision for success and

completive advantage in mobile payment.

[24] analyses an in-depth case on collaboration between three major Dutch banks and

three Dutch telecom operators who jointly developed a trusted service manager for

mobile payment.

[27] examines the impact of espoused national cultural values on consumer’s

intention to use mobile payment devices using the UTAUT and Hofstede’s cultural

dimensions as the basis for the research framework.

[28] examines high speed rail (HSR) passengers’ acceptance of mobile ticketing

services, as indicated by their mobile access for ticketing information inquiries and

use of quick response codes (QR codes) for payment and gate entrance.

11

[32] presents a qualitative study based on experience of six NFC pilots implemented

in Finland, France, Italy, the Netherlands, Norway, and the UK. The research

findings confirm that a number of demand and supply barriers negatively affect the

rate of the penetration of the NFC payment. [33] tries to provide a clear account of

the knowledge that exists on mobile payments. [34] tries to unveil factors explaining

the failure of past mobile payment platforms. [24, 27, 28, 32-34].

The trust and risk are studied with the relation to the cost, social influence and

convenience as main factors to investigate in any m-payment services in addition to

the factors that have to be investigated in wide scientific scenarios that impact the

consumer acceptance of m-payment services like ease of use, added value (useful &

usefulness), compatibility, mobility, privacy, habit, quality, experience, income,

satisfaction, complexity and uncertainty avoidance. Many articles e.g. [27-29, 35, 36]

discuss one or more of such issues in each article or research studied using m-

payment in parking ,fare tickets and money transfer addressed the adoption factors

for different technologies [30] addressed the payment habit [31] investigated trust in

many stakeholders and issuers in mobile service provider, vendor, environment and

technology.

Overall, mobile payment technologies are developing at a blistering pace. Besides,

users keep increasing, which paints the picture of a promising future. Phone

manufacturers are also fast venturing into this market and keep adding new features

in smartphones that seek to advance the adoption of m-payment. However, the

successful adoption of the technology is pegged on factors such as trust, its user-

friendliness, governmental regulations, cost, and mobility. Several studies have been

conducted on the use of the technology and most of the reveal a rise in its use and its

12

positive disruptive nature in the banking and finance sector. In this respect, there is a

need to develop a system that would ensure seamless and secure transactions to

promote its continued use.

13

Chapter 3

EXISTING MOBILE PAYMENT METHODS

Presently, the modern digital world has various payment methods, each with its

unique operational techniques depending on the needs of the business models. Below

is a discussion of the popular M-payment systems, and how these services function.

3.1 PayPal

PayPal, a proprietary system owned by PayPal Holdings, Inc., functions by posing as

a third-party between the merchants and the customers. As [37] explains, all

transactions are performed via the merchant. Besides, PayPal does not charge the

sender for any transaction. Rather, all charges are incurred by the payment receiver.

PayPal users have the option of using three distinct payment methods: (i) payments

can be made through the web browsers, (ii) short messages (SMS), as well as (iii)

through phone calls. To start operating, PayPal only needs a mobile phone and a

PayPal account. However, the account should be activated by linking it to a

registered financial system, such as a bank account or a credit card.

3.2 PayBox

PayBox business model employs text messages, which are sent from the client's

phone number to the merchant. Subsequently, the merchant is required to send all the

client's information, including the expected cost to PayBox [38]. Next, PayBox

verifies the order placed by the client through a voice message. After the

authentication, the client proceeds with the payment by sending a PIN code to

PayBox. To complete the transaction, PayBox requests the bank to perform the

14

transaction and use an SMS report to notify the merchant that the process is

complete.

3.3 PayForIt

PayForIt is another payment method that allows users to purchase digital content and

services like videos, applications, as well as games. This mobile payment service is

very popular in the United Kingdom and has been adopted by a majority of the

mobile phone operators. The system can be used for micropayments, where the users

only need a mobile device to make payments [39]. The main users involved in the

operations of the application include the clients, merchants, operators, as well as

personnel tasked with authorizing the payment intermediary. The client is required to

sign a contract using their mobile device through an authorized payment

intermediary. A screen displaying the information regarding certain goods, costs, and

the respective merchant is presented to the consumer. To complete the process, the

operator is required to authorize the payment, upon which the cost is transferred to

the merchant’s mobile account.

3.4 Square

Square is a point-of-sale (POS) system that provides enterprises with fast and reliable

transactions. Square, which can either be used via the counter (cashier) or on the go,

allows its users to receive payments using their Android and IOS devices [40].

Square comprises a magnetic stripe reader that supports payments made through

credit and debit cards. Other add-on features include free downloadable software,

item management platform, as well as a real-time sales and inventory tracker. Square

uses the transaction-based business model, where users are charged a certain

percentage depending on the nature of the transaction.

15

3.5 TIPS

TARGET Instant Payment Settlement (TIPS) is a relatively new market

infrastructure service that was launched by the European Central Bank (ECB) to

facilitate real-time monetary transactions for all its service providers [41]. Instant

payment transactions verified via the TIPS platform are irreversible. Financial

institutions using this system must satisfy the liquidity threshold that is pre-defined

by the ECB to ensure payments are made in real time. Consequently, this fast and

instant payment (in any currency) assists users to avoid credit risks. Ultimately, the

TIPS system is valuable in enabling users to access financial services while ensuring

secure transactions.

TIPS achieves real-time settlement of payment transactions across all platforms

through the development of a middleware application that allows all payment

systems to complete successfully [41]. To promote this, ECB allows third-party

developers to develop and integrate their payment solutions to the TIPS middleware.

Consequently, ECB is responsible for ensuring that the different parties settle their

payments. The middleware categorizes clients into three distinct groups, with all the

parties required to have deposited funds at the central bank. End users can register

with their preferred parties.

16

Chapter 4

PROPOSED SOLUTION (MOP SYSTEM)

In this chapter, we describe our proposed mobile payment scheme in some detail.

4.1 Overview of the Proposed System MOP

Indeed, the invention of the mobile phone changed the banking industry in

tremendous ways. Today, most financial institutions have already adopted mobile

telephony in streamlining their services and connecting with their customers. These

changes have been mandated by the vast use of smartphones by people even in the

remotest parts of the world. The integration of mobile-based monetary transaction in

banking has permeated sectors such as P2P, B2B, and P2B and made it easy and

secure for people to access financial services through mobile phones.

In our proposal, there is no specific type of mobile phone required for the service.

Rather, it works on building a whole and unified service for all involved parties. The

main idea the exclusion of any external third party and relying on the current system

and its credibility. In general, a third party is an authorized online service provider

that has been introduced as part of Open Banking. It exists outside of your

relationship with your bank, but may be involved in the online transactions you carry

out, which means all money transactions will transfer to the third party first. Third

party in the banking and financial sector is any party who is outside the financial

sector that can authorize transactions and have a role as the controller for such

financial transactions (e.g. Mobile operators, wallets, etc.). This means that the

17

third party can own customer, merchant and transaction information in addition to

the sharing of fees. The connection between the old system and the new one saves

time and trust for the beneficiaries.

Figure 4.1: Solution Platform.

As shown in Figure 4.1, any recipient or sender should be connected to the bank

account through his/her mobile phone. Depending on the transaction type, a bank

may be an issuer (the party that sends money), or an acquirer (the party that receives

money). In this mechanism, private information about users is kept in the banks only.

Only the name, account number and mobile phone number are saved in the proposed

system. The central bank is the correspondent between the banks and is used to help

in making the financial movements of the clients of other banks in addition to its role

in monitoring, legislation and evaluation.

The system works on the powerful payments system which becomes a source of trust

and development for the users and beneficiaries. It excludes any external third party

as defined above, especially mobile network operators (MNO’s), which do not

always enjoy the trust of users. So, all processes are controlled by banks, the users,

beneficiaries, and monitory parties such as the central bank and financial institutions.

Most of the service suppliers and consumers have bank accounts, hence the positive

response to any proposed system involving banks that they trust. The central bank

18

and the financial governmental authorities support this system which helps in

monitoring, legislating and evaluation. This is the Real-time gross settlement system

(RTGS), i.e. A specialist funds transfer system where the transfer of money or

securities, takes place from one bank to another on a "real time" and on an economic

basis.

There are two sub-systems in our proposal: Client and operator. These are explained

below:

4.1.1 The Client Component

The client component will be used exclusively by the bank, connected to its core

banking system. To ensure the security and efficient transfer of data, ISO 8583 will

be used for data exchange. ISO 8583 provides a framework for creating protocols for

the exchange of financial transaction messages. Typically, these are messages that

involve transactions originating. It's important to realize that 8583 itself is not a

protocol, just as XML isn't a file format. XML can be considered a description of

how to specify file formats for structured data according to a set of rules. ISO 8583 is

a metaprotocol providing a set of rules for the definition of financial transaction

protocols. Also, the client’s data will be coded by the bank in the host security

module (HSM), which will keep all data related to the client. No part of the data,

except names, mobile phone numbers and account number of clients will be made

available to other parties. Requests will be sent from MOP operator to client bank by

TCP/8583 protocol. Firstly, the client will create a connection request by sign-ON.

At this time the server will accept the connection. Then the client will request the

transaction by message (8583 message), and server will send this request to the core

bank system. After the transaction is done successfully or cancelled, the server will

19

send response to this request. Finally, connection is terminated, as shown in Figure

4.2.

Figure 4.2: Messages Exchanges between Client and Core Bank System.

4.1.2 The Operator Component

The operator component will be installed in the central bank or any organization

appointed by the government to monitor the financial movements in the country.

This part connects all banks together without need to connect each bank directly to

other banks, thereby helping in preventing money laundering. The PIN and other

confidential information of any client, such as historical data, account details and

personal data will be authorized and used only by the customer’s bank. What will be

available to the MOP system is the name, mobile number, money amount and the

bank account number.

4.2 Operation of the MOP System

MOP will provide a fast, timely, and secure connection between old and modern

systems. Furthermore, the MOP system is user-friendly and provides a secure

medium that is based on modern technological tools. Its operation entails firstly

taking a command from the MOP operator through input mechanisms such as the

20

IVR, SMS, USSD, or browser. The system prompts the user to provide details such

as the acquirer MOP ID, amount to be transacted, and the currency. Secondly, the

details issued by the client are sent to the issuer’s bank for verification. Thirdly, the

transaction details are forwarded to both the financial institutions and settlement

bank once the request has been validated. The next step entails the issuer bank

requesting for the verification code sent to the sender by the MOP system. The code

helps in ensuring the integrity of the transaction to prevent any unauthorized

transactions. Afterwards, the issuer bank debits the client’s account and sends a

confirmation message to the settlement bank that also sends a message to the bank to

confirm the transactions. Lastly, the issuer bank and acquire bank send a notification

to the issuer and the acquirer to confirm the success of the transactions. Thus, this

mode of operation ensures the authenticity of the transactions and inspires trust in

customers.

As a behavior of the system when any transaction is initiated and created in the

operator, the transaction is directly replicated to the sender and receiver bank client,

and when any error (regardless of the reason) occurs and any of the sites change the

status of the transaction to “cancel”, the status of all sites will be replicated to cancel

the transaction. This property is called auto replication. Figure 4.3 depicts the

sequence of actions that need to take place in our proposed method.

21

Figure 4.3: New Mobile Payment Behavior.

The actions performed by each actor in the system are given in Listings 4.1 through

4.4 as pseudo-code. The function calls in the pseudo-code belong to our

implementation of the MOP system as a simulator.

Listing 4.1: Actions Performed by the MOP Operator

MOP_operator

 Wait for transaction request from customer, then create transaction by

ivrConnectionAction($url, $postdata) and autoaddcdrAction()
 Get MOP ID of the receiver, amount, and currency, then collect information by

getClient($MOP_id)
 Send eligibility query to sender_MOP bank by connectiontoserverAction($data,

$ip,$return=null), connoperatorAction($data, $ip).
 Wait for eligibility response from Sender_MOP bank, by using excuteurlAction

($cdr_url, $encry_data)
 Send transaction details (MOP ID of the sender, reciver, amount, and currency)

to sender_MOP bank, Receiver_MOP bank, and settlement bank by using

sendtrxreciverbankAction()
 If the connection failed, time is over 45 second, replay delay, or

canceled, the transaction will be rolled back by changing status using

changestatusAction() and autochangestatusAction()

22

Listing 4.2: Actions Performed by the Sender Bank

Sender_MOP

 Wait for request from MOP operator by using ivrConnectionAction($url, $postdata)
and autoaddcdrAction()

 Get MOP ID of the sender and receiver, amount, and currency using

getClient($MOP_id)
 Check MOP ID of the sender and receiver, sender found and limit, and receiver

black listed by using getBlacklistDao($MOP_id),
getTransOnMinDate($limitation_date, $phone_id,$MOP_id)

 Send response to MOP_operator by using responseMOPAction()

 Create connection to sender by making new call by using callbackAction()
 Wait for PIN code, confirmation of transaction from sender by using

athinticationlevelAction().
 Debit sender account by bank system and change status for transaction using

changestatusAction() and autochangestatusAction()

 Send “successful” message to the settlement bank by using cbAction($data, $ip)

 Send successfully messages to sender using sendSMSAction($phone,
$MessageBody)

 If the connection failed, time over 45 second, replay delay, or canceled, the

transaction will be rolled back by change status to canceled using

changestatusAction() and autochangestatusAction()

23

Listing 4.3: Actions Performed by the Receiver Bank

Receiver_MOP

 Wait for request from MOP_ operator, using getRecorde($MOP_id, $phone_id)
 Get MOP ID of the sender and receiver, amount, and currency by using

getClient($MOP_id).
 Wait for response from settlement bank for success transaction if status is

changed.

 Credit receiver account by bank system.

 Send successful messages to receiver by using sendSMSAction($phone,
$MessageBody).

Listing 4.4: Actions Performed by the Settlement Bank

Settlement bank

 Wait for request from MOP_ operator.

 Get MOP ID of the sender and receiver, amount, and currency by using

getClient($MOP_id).
 Wait for response from sender_MOP bank for success transaction if the status is

changed.

 Debit sender_Mop bank by bank system.

 Credit receiver_MOP bank by bank system.

 Send successful transaction status to receiver_MOP bank by using

changestatusAction() and autochangestatusAction()
 If the connection is failed, or time over 45 second, the transaction will be rolled

back: Send cancelled transaction using changestatusAction() and

autochangestatusAction()

24

4.3 Features of the Proposed System

This system will enable the user to:

1. Initiate a payment using his/her mobile or landline.

2. Easily track and manage his/her transactions.

3. Send/receive money for selling/buying products and services in an automated way.

4. MOP Solution will provide its users with a detailed history log of all performed

transactions, whether it was successful, canceled or an aborted transaction. Users can

view his transaction log either thorough the web interface of MOP system or by

calling MOP Operator.

5. The archive storage of our MOP Solution, whether hosted in the MOP operator or

at the bank, will store all the transaction details for the users.

6. MOP Number will be a short code that will be the same among all GSM operators

and hopefully land line service provider.

4.4 How the System Works

Users must have a valid unique MOP account number and PIN to use the system.

MOP system has two types of IVR: (i) a centralized inbound to receive requests from

users, which is part of MOP operator, and (ii) decentralized outbound placed in each

bank to contact the users and confirm their requests in order to proceed with the

transactions, which is part of MOP bank. One centralized server (MOP operator) is

responsible to manage, transfer, store, and update requests’ status, and stores all

MOP user accounts received from banks’ servers, as shown in Figure 4.4.

25

Firewall

Internet

LAN

Users

DatabaseIVR Server Engine Server Web Server

NAS

Figure 4.4: MOP Operator Component.

Many decentralized servers (MOP bank) placed in each bank are used to create, store

and send bank user MOP accounts to the MOP operator. Also, they are responsible

for receiving open requests, processes and updates. They inform the MOP operator

about their status.

Each one consists of two sub systems, (i) MOP interface which is the part that is

connected to MOP operator, and (ii) MOP bank segment that is connected to core

bank system. MOP operator has one database used to store all MOP accounts and

transactions, and two interfaces, one for bank admin to create MOP user accounts,

and the other one for users to check and print out transactions status as shown in

Figure 4.5.

26

Firewall

Internet

LAN

DatabaseIVR Server

NAS

Dot Matrix Printer

Users

Figure 4.5: MOP Bank Component.

To operate, the MOP user will be required to dial the Inbound IVR number and

either selects English or Arabic as the preferred language. After verifying the identity

of the user, the IVR will display a welcome message and inform the user about all

the information such as call cost, and prompt the visitor to select a payment service.

The system will query the user's transaction limit and check if the user is blacklisted

using the core bank system. Next, the user will be prompted to enter the receiver

MOP account number, the MOP receiver ID and the amount to be paid. After the

sender confirms the transaction, the IVR system then will display transaction details,

while the system checks if there are enough funds in the MOP sender bank account.

If so, the system will make a call to the user informing him/her that the transaction is

being processed. As a security measure, the user is only allowed to make three trials

for receiver number, after which the process is canceled. Figure 4.6 depicts the

inbound IVR flowchart.

27

 Figure 4.6: Inbound IVR Flow Chart.

Next, the MOP operator makes a request to the MOP bank, prompting the bank to

contact the sender as a security measure, describing the entire transaction details and

requesting the sender to enter his/her PIN number. If the correct PIN is entered

before the three trials, the IVR then confirms the message and the status of the

28

process changes to complete. Eventually, the MOP bank transmits a confirmation

message to the settlement bank and operator. The settlement bank then replies with a

confirmation message to the receiver bank. Figure 4.7 describes the outbound IVR

flow chart.

 Figure 4.7: Outbound IVR Flow Chart.

29

4.5 Use Cases of the MOP System

Below we describe typical use cases of the MOP system.

4.5.1 Bank Admin Use Case – Create MOP User Account

Bank admin accesses the web-based MOP admin interface in order to manage

needed MOP user accounts (create, modify, delete, and re-set PIN numbers). As

shown in Figure 4.8, which describes all the steps, the user requests an MOP user

account from the bank customer service desk, then the bank customer service

provides the user with MOP account application form. This form will vary based on

the user requesting an MOP account, as the form for individuals is different from the

form for corporate or service providers. After that, the user hands out the filled MOP

form to bank customer service. Bank customer service desk opens the MOP admin

interface in order to fill user information into the system based on the filled MOP

account form and assigns an MOP ID from the available IDs generated by MOP

operator. (MOP ID number will have 10 digits, 3 of them represent the country

code). MOP bank Segment will generate MOP PIN number for the user. This PIN

will be stored in the MOP bank database only and will not be transferred to the MOP

operator. (MOP bank Segment will be responsible to generate MOP PIN; MOP user

can have more than one PIN number for one MOP ID associated to his/her registered

call-back number/s). Once bank service desk creates the new MOP user account, all

information except sensitive ones will be sent to the MOP operator (Call-back

numbers, any other information that is confidential by the bank). Then, a certified

courier will send the PIN number to the user.

30

Figure 4.8: Create MOP User Account.

4.5.2 MOP User Use Case – Follow up on Transactions

After the bank admin creates MOP user account, the user can access the web-based

interface in order to follow up and manage his/her transactions. We can describe

these steps as shown in Figure 4.9 where we have a user accesses MOP user

interface. Then, the user enters MOP account and password. MOP bank will generate

the user interface password, which enables searching for needed transaction. Finally,

we have “check status”.

31

Figure 4.9: User Interface.

4.5.3 MOP Operator Use Case- Caller is not a MOP User

Inbound IVR detects that the caller is not an MOP user, described as shown in Figure

4.10. Here, the caller dials MOP inbound IVR number using his/her mobile or

landline number. Once the connection is started, inbound IVR will detect that caller

is not a MOP user. Then, inbound IVR will play MOP welcome message followed

by the call cost. After that, call will be handled by the non-MOP voice menu. One of

the choices is that caller can choose to listen to MOP promotion audio and how to

create an MOP account. List of banks registered with MOP can be presented to

him/her if needed.

32

Figure 4.10: Caller is not a MOP User.

4.5.4 MOP Operator Use Case - Caller is a MOP User

After obtaining his/her MOP account and PIN, the user can initiate the process by

calling the inbound IVR by following steps as shown in Figure 4.11. MOP user

places a connection with the inbound IVR server using his/her mobile or landline

number that is registered in the system. Once the connection started, inbound IVR

will detect MOP user ID from his/her MSISDN, after a while, a pre-recorded

welcome message will be played along with the call cost. A menu will be played for

the user to choose the needed service. The user will select “Payment services” to

perform the needed transaction. As an automatic mechanism, MOP operator will be

aware of the limit per transaction/day/week requested for this user and will recognize

if the client has been black listed by his bank or not. MOP operator will also be

aware and able to identify if the client’s PIN status is frozen or not. After the MOP

user enters MOP receiver number, it checks if MOP receiver account number is

correct or not. User has only three trials to re-enter MOP receiver account number,

besides, MOP user enters amount to be paid. After that, inbound IVR will play the

full transaction details, waiting for the caller to choose one of the following options

(Confirm, modify, or cancel). Once the user confirms the transaction, MOP operator

will check with MOP bank if there are enough funds in caller bank account or not. If

33

the user has enough funds, inbound IVR will ask him/her to wait for a call-back call

in order to proceed with the transaction process. The MOP operator will perform

many jobs after the call, which are: determining from MOP account number which

bank is responsible to process this request, sending request to the exact MOP bank,

updating request to “sent to MOP bank”, requesting will be processed in MOP bank.

We will discuss this in detail in the next use case. Outputting of the bank server

process will be sent to MOP operator through MOP interface at MOP bank and MOP

operator will update processed requests to the following status:

A. Success: If the request has been processed successfully.

B. Declined: For any reason if the request couldn’t be processed (no fund, wrong

MOP user receiver account).

C. Aborted: When the user decided to stop the process.

D. Error: If any error appeared in the system.

Figure 4.11: Caller is a MOP User.

4.5.5 MOP Bank Use Case

MOP bank segment will handle the processing of open requests received from MOP

operator through MOP Bank Interface and forward it to MOP Bank segment. Also, it

34

is responsible to provide MOP operator with request status. Each bank will receive

and process only its requests as shown in Figure 4.12, in which MOP operator keeps

sending all open requests to MOP banks interface. Once MOP bank segment receives

an open unprocessed request, outbound IVR calls back MOP user on his/her mobile

number or landline used to open this request. It also shows clearly that outbound IVR

plays the pre-recorded welcome message. And a full transaction message will be

played again waiting for MOP user to confirm or cancel the request. If MOP user

chooses to cancel the request outbound IVR will end the call, cancel the request and

archive it. At the time that MOP user confirms the transaction message, outbound

IVR will ask the user to enter his/her PIN number. User has only three trials to re-

enter MOP PIN number. If the PIN number entered three times incorrectly, the

transaction will be cancelled, and the user will be blocked from using MOP. Here

user will need to visit his/her bank and request to reactivate his/her PIN number

without the need to issue a new one. A status update about the client’s PIN will also

be forwarded to MOP operator. Next system will inform MOP user that the process

is completed successfully and end the call. On the other side, MOP bank will

perform many duties like, notifying MOP operator and Guarantee bank about request

status (completed successfully), sending SMS to MOP user. MOP operator and

Guarantee bank will send request (completed successfully) to MOP receiver bank. In

addition to that, MOP receiver bank will send SMS to MOP receiver user and can be

followed by a confirmation call. At the end, this way MOP receiver bank will receive

two confirmation messages, one from MOP operator and the other one from

Guarantee bank or settlement agency. Failing to receive either or one of these

messages will cancel the transaction and all parties will be informed.

35

Figure 4.12: MOP Bank.

In our solution the life cycle of the transaction will be finished by the final

authorization from the payee (sender) bank which will be the last step in the any

payment and for any reason (i.e. timeout, connection lost, ...etc.) if the cycle cut

anywhere during this cycle the transaction will marked as cancelled and any other

effect will be rolled back.

In the banking sector and financially many transactions can be done in the same time

and via different media, e.g. cheque withdrawal, loan settlement, mobile banking,

ATM, card payment, Internet shopping, mobile payment . etc. and this can affect the

balance inquiry for the customer. This is the well-known “concurrent access to

shared resources” problem in computer science, in this case the shared resource

being the customer account. In order to avoid any inconsistencies due to concurrent

access, at the time any transaction is requested and before the final authorization the

customer balance will be blocked by the amount of the transaction until the

transaction is finished.

36

4.6 Security Features of MOP

In our novel conceptual framework, there are many layers of security that can

increase both customer and merchant satisfaction by eliminating and decreasing

foreseeable vulnerabilities, which can be harmful the process life cycle, such as:

1. Unauthorized access to clients’ personal information, bank secrets: the

critical information for any client are saved in the core banking system and no

one can access this information via our system since it will be connected to

the banking system through the bank infrastructure which is very highly

secure and the connection is only through TCP/IP and 8583 message that

request only authentication or general information.

2. Access to sensitive information and system configuration data: to access this

setup information the attacker has to access at least two separate locations

which are highly secure and need many layers of authentication in addition to

many steps and multi users roles to change the settings in different locations;

also changing settings doesn’t mean in any way that he can do any

transactions due to many different access and authentication requirements

from different stake holders and different sites. Please see transaction life

cycle.

3. Fraud and theft: to do any transaction the attacker needs customer phone

device, customer PIN code, call back device, application password, and

customer SIM chip to make transaction normally, but if he wants to do it

internally from the system he needs to access three separate sites

simultaneously and do the transaction in a specific flow and using specific

information.

37

4. Gaining total control over the server, reading arbitrary files: the attacker

needs to access the banking system to get customer information, but our

system servers contain only general information about customers.

5. Denial of service of accounts: the attacker needs the customer mobile device

and SIM card in it just to initiate transaction.

6. Attacks on LAN resources: the financial LAN is a closed private network and

if he can access this network, he has to skip all banking security tools and has

the server’s passwords and access roles which mean he has access only to the

closed network and needs another journey to do any transaction through our

system.

In summary, the proposed solution seeks to mitigate security vulnerabilities by

adopting different measures. First, the system leverages on information only known

to the customer; i.e., the client's PIN code which is initiated by the customer's bank

HSM and only requested by the bank through its IVR system call back feature. The

second measure involves something possessed by the customer, i.e., mobile phone

and mobile SIM card. The third security feature is using several authentication

methods and process flow, i.e. PIN code, call back, mobile number and SIM chip.

Through this measure, the process is initiated by the operator. Afterward, the

transaction is split into 3 sections (sender's bank, operator, and receiver's bank).

Next, the sender bank requests for PIN code using the IVR call back to the sender's

phone number, who has the SIM card and knows PIN code. Later, the PIN code is

verified by the sender bank. Finally, the client's eligibility is determined by their

internal bank system and all transaction information flow are highly encrypted and

38

with no involvement of the other parts. The fourth safety measure is that a private

network connects all parties with a secure VPN.

4.7 Other Features of MOP

4.7.1 Confidentiality

VPN connection will be established between MOP Operator and MOP bank

segment. In addition, transaction requests will be encrypted using high-end

encryption algorithms. (E.g. SSL or SHA).

MOP Bank Segment will be responsible to generate MOP PINs; banks will be

responsible to provide users with their pins in order to use MOP system.

4.7.2 Availability

The system will be available to the intended audience 24 hours per day, 7 days a

week. Since our system is built over the banking infrastructure and as known

globally based on world reports the banks build their business continuity plan to be

available 24/7, so our system will be as well as the core banking system because they

use the same infrastructure.

Our system is not a third party system it will be owned by the bank exactly as any

other system the bank acquired i.e. mobile banking, internet banking, so they will be

aware off making it work 24/7.

Methods that will be used to ensure system availability:

1. System backup: MOP Solution will have backup procedure performed on

daily bases; MOP System hosted at the banks is treated as part of the core

banking solutions and is controlled 100% by the operating bank therefore

the backup service for MOP solution will be handled by the bank. MOP

39

operator will be equipped with a backup solution that will be performing

daily, weekly and monthly backups.

2. Disaster & Recovery Sites (D&R): as a pre-requisite by the Central Bank

each bank should have a D&R site for its core application; and as per

Central Bank mobile payment framework, each mobile payment

application should have a D&R site. As mentioned before MOP solution

that will be hosted at the bank will be part of the bank’s core banking

application and handled 100% by the operating bank, therefore an image

of MOP solution will be hosted at the bank’s D&R sites for high

availability.

40

Chapter 5

HIGH-LEVEL SPECIFICATION OF MOP USING

ABSTRACT CLASSES AND METHODS

In this chapter, we give an abstract, high level specification of the MOP system using

class and method definitions for the main components of MOP. Since MOP

components need to talk both to each other, and also to existing banking

infrastructures (i.e. each bank’s own computer system, and the central bank’s

computer system), we need APIs for each one of these. The method definitions, both

those belonging to the MOP system, as well as those belonging to the participating

banks and the central bank, taken as a whole, can be regarded as a protocol with

which banks’ existing systems can interact with the MOP system, and the MOP

components talk to each other.

5.1 User Class

The user class represents the person who sends or receives money. Since the user is

interacting with the system, we abstractly represent it as a class, with methods that

stand for its actions.

41

5.1.1 Methods of the User Class

Figure 5. 1: Class and Methods for Users.

 Get_PIN(). The customer enters the PIN code when the bank requests it.

 Transaction_status(Transaction_ID, Status). Method used

by core bank system to inform the user about the transaction.

5.1.2 Typical Sequence of Actions Using the User Class

The customer requests to create a MOP account from the bank class using

Create_Account(Full_Name,Phone_Number,Bank_Account_ID,Credit

, Limit_Transfer). This is done only one time, and the call returns a MOP_ID

to the user. For every transfer, the user requests a transaction from the MOP operator

by using add_transaction(Sender_phonenumber,

Receiver_phonenumber, Amount) method. After that the core bank requests

PIN code from the user by Get_PIN() method. The user receives information

about the transaction from core bank through a call to its

Transaction_Status(Transaction_ID, Status) method.

42

5.2 MOP Operator Class

The MOP operator class represents the entity with which users of the MOP system

interact, for example by using a Web browser.

5.2.1 Methods of the MOP Operator Class

Figure 5.2: Class and Methods of the MOP Operator.

 add_Transaction(Sender_phonenumber,

Receiver_phonenumber, Amount). Called by the user to initiate a

transfer to a receiver. The receiver’s phone number and amount are specified.

 transaction_status(Transaction_ID, Status). Used to

receive information from the Central Bank MOP class about the current status of

the transaction.

5.2.2 Typical Sequence of Actions Using the MOP Operator Class

The user makes a request by calling

add_Transaction(Sender_phonenumber, Receiver_phonenumber,

Amount). The operator checks the phone number and decides it is a MOP client.

The operator checks possible restrictions on the customer, such as if it is blacklisted,

43

by calling the Check_customer(Sender_phonenumber, Amount) method

of the user’s bank’s infrastructure class. If the user is eligible, then this transaction

is sent to all parties, i.e. sender bank, receiver bank, and settlement bank, using their

add_Transaction(Transaction_ID, Sender_phonenumber,

Receiver_phonenumber, Amount) method. The MOP operator requests the

account information from the user’s bank by calling getcustomer

(Bank_account_ID, Phone_number).

 5.3 Participating Bank MOP Class

This class represents the MOP component that resides with each participating bank.

5.3.1 Methods of the Participating Bank MOP Class

Figure 5. 3: Class and Methods for Participating Bank.

 Create_Account(Full_Name, Phone_Number,

Bank_Account_ID, Credit, Limit_transfer). Used to create a

MOP account for a customer.

 add_Transaction(Transaction_ID, Sender_phonenumber,

Receiver_phonenumber, Amount). Used to send transaction details.

44

 Getcustomer (Bank_account_ID, Phone_number). Gives all

general information about the customer.

 Transaction_status(Transaction_ID, Status). Used to

receive information from the Central Bank MOP class about the current status of

the transaction.

5.3.2 Typical Sequence of Actions Using the Participating Bank MOP Class

Upon receiving a call to its add_Transaction(Transaction_ID,

Sender_phonenumber, Receiver_phonenumber, Amount) method, it

sends the transaction to the core bank system and provides transaction status

information when its Transaction_Status(Transaction_ID, Status)

method is called.

5.4 Central (Settlement) Bank MOP Class

This class represents the MOP component that resides within the central bank.

5.4.1 Methods of the Central (Settlement) Bank MOP Class

Figure 5. 4: Class and Methods for Central Bank.

 add_Transaction (Transaction_ID, Sender Bank_ID,

Receiver Bank_ID, Amount). Used to receive transaction details.

45

5.4.2 Typical Sequence of Actions Using the Central Bank MOP Class

When central bank MOP class receives the transaction information from MOP Bank

using add_Transaction(Transaction_ID, Sender Bank_ID,

Receiver Bank_ID, Amount, currency), it sends the transaction status to

MOP Operator, sender bank and receiver bank using their transaction_status

(Transaction_ID, Status) method.

5.5 Participating Bank Infrastructure Class

This class represents the participating bank’s own computer system. Its methods

allow the MOP system to perform actions in the existing bank computer system.

5.5.1 Methods of the Participating Bank Infrastructure Class

Figure 5.5: Class and Methods for Participating Bank Infrastructure.

 Checkcustomer (phone_number, Amount). Used to check if the

user is black listed or not and any other restrictions for this user.

 add_Transaction (Transaction_ID, Sender Bank_ID,

Receiver Bank_ID, Amount). Used to send transaction details.

 Get_message (Transaction_ID, Status). Used to provide the

transaction status to the customer.

46

 Transaction_Status (Transaction_ID, Status). Used to

change the transaction status.

5.5.2 Typical Sequence of Actions Using the Participating Bank Infrastructure

Class

When the core bank system receives the transaction from MOP bank using

add_Transaction (Transaction_ID, Sender_Bank_Account,

Receiver_Bank_Account, Amount), it creates new call to the customer and

requests PIN code using Get_PIN(). When the transaction is completed and the

transaction status is changed, the bank informs the user about the transaction by

calling its Transaction_Status (Transaction_ID, Status) method

(simulating an SMS message).

5.6 Central Bank Infrastructure Class

This class represents the central bank’s own computer system. Its methods allow the

MOP system to perform actions in the existing central bank computer system.

5.6.1 Methods of the Central Bank Infrastructure Class

Figure 5.6: Class and Methods for Central Bank Infrastructure.

 add_Transaction (Transaction_ID, Sender Bank_ID,

Receiver Bank_ID, Amount). Used to receive transaction details.

47

 transaction_status(Transaction_ID, Status). Changes the

transaction status and sends the updated status to all involved parties, i.e. the

MOP operator, sender MOP bank, and receiver MOP bank.

5.6.2 Typical Sequence of Actions Using the Central Bank Infrastructure Class

The central core bank requests transaction details from central MOP bank using

add_Transaction (Transaction_ID, Sender Bank_ID, Receiver

Bank_ID, Amount), and then changes the transaction status using

Transaction_Status (Transaction_ID, Status).

5.7 Message Traffic among Components of MOP

Figure 5.7 depicts the sequence diagram of a typical transaction, and Figure 5.8 gives

us the communication pathways among classes and methods of the MOP System. We

can verbally describe what happens in the lifecycle of a transaction as follows: The

user requests an MOP account from MOP bank, and then a transaction from the

MOP operator. The MOP operator sends an eligibility request to the core bank to

check any restrictions on the user and if it is blacklisted or not. Then the MOP bank

requests transaction details from the MOP operator, the core bank requests financial

transaction details from the MOP bank, and the core bank requests verification code

from the user by PIN code. The central MOP bank requests financial transaction

details from MOP bank, and the central core bank requests financial transactions

from the central MOP bank. The last process is requesting the transaction status from

the central core bank, and the core bank sends a message to the user to inform

him/her of the transaction done.

48

Figure 5.7: Sequence Diagram.

Figure 5.8: Communication Pathways among Classes and Methods of the MOP

System.

49

Chapter 6

IMPLEMENTATION OF MOP

In this chapter we give implementation details of our MOP system prototype, which

has both hardware and software components.

6.1 Hardware and Software Setup

Our proposed system was implemented on a virtual machine. Given the diversity of

user devices, the system has web and mobile versions (iOS), thus allowing users to

make payments through calls, SMSs, USSD, Web browsers, or mobile applications.

We first built the network architecture as described by Figure 6.1, which was later

divided into three subsystems. The first entailed a MOP operator that contained a

data center (storage) SAN switch, two login servers, two IVR servers, two

authentication servers to load balance, and two database servers. The second

subsystem entailed MOP banks (client), for which every client included a database

and IVR server for a callback, which is connected using the service gateway SRX

550 (the third subsystem). Nations were connected to each other through the service

gateway international private leased circuit that includes a point to point private line

to enable communication among corporations.

The MOP System runs on the Linux platform, which provides high availability and

enhanced security. It can be installed on any certified platform of Linux such as

Debian, Ubuntu, Red Hat, among others.

50

Several software packages will be required for the installation and operation of the

MOP System. First, the latest version of the Debian Linux can be downloaded from

[42]. Secondly, Asterisk, an open free platform for building communication systems

that acts as the base of MOP System can be obtained from [43]. Apart from the

Asterisk setup, an additional two downloads are needed from Asterisk website; that

is, the DAHDI Library for communication interfaces and LIBPRI Library to

encapsulate the protocols used to communicate over ISDN Primary Rate Interfaces.

Thirdly, the MYSQL database will serve as the project's engine. Finally, users should

download the Apache Web server that will be used to manage the system web server.

Table 6.1 depicts the technologies used in the implementation of the MOP system.

Table 6.1: Technologies used in the implementation of the MOP system.
Technology Tool/Product Used

Open system UNIX or Linux

Platform Java Platform (J2EE Framework)

Application Server IBM WebSphere

Web Services J2EE and SOAP

Database Oracle (latest version)

Interface (TCP/IP based):

1. Web Services HTTPS

2. XML eXtensible Markup Language

3. Standard API Web API

4. Queue MSMQ, MQ-Series, JMS Compliant

Clustering HA Cluster, MySQL Cluster

51

Figure 6.1: Network Architecture.

52

6.2 High-Level Components of Our Implementation

In our proposed solution we have 2 parts: (i) the operator (SW, HW) that can be

installed and customized at the central bank or any other bank that can perform the

functions of a central bank; this part will be important for banks’ reconciliation and

connection to all other banks that are involved in this service, and (ii) the client (SW,

HW) which will be installed and customized at the banks (service members) by the

bank team. The client will be integrated with the banking core system using special

APIs.

6.3 MOP Operator

6.3.1 MOP Operator Web Pages

Administration access page is the page that allows the administrator to create and

manage other system administrators with fewer privileges. It also allows them to

access all modules in the system as; Agents, Manage banks, Services, Manage

clients, Services Provider, Service Type, Manage Country, Manage Currency,

Manage Prompts, Manage Setting and Transaction Type. All web pages in the MOP

operator are explained in Table 6.2.

Table 6.2: Web pages in MOP Operator.

Web Page Name Description

Agent.php This module relates to MOP Agents as;

Electricity Company, Telecom Company,

Water Company and any other company

which want to be a customer for MOP.

Bank.php This module is used when you want to add

new banks and choose a correspondent bank

between them, it is also used to edit a certain

bank or if you want to list existing banks.

53

Blacklist.php This module is used when you want to add

blacklisted customers.

Client.php This allows showing all MOP Clients in

different banks, it also gives you the ability

to search Clients using some options and you

also can filter clients from a specified bank.

Country.php The first thing to do when you create a new

operator in a new country is to Create

Country for that country for every country

which has a MOP Operator, then you have to

choose which one of them is your local

operator to detect remittance cases and how

to deal with these cases.

Currency.php List and edit currencies in this option.

Prompt.php This module is responsible for adding or

listing sound files for the user action on the

Interaction Voice Response (IVR) system.

Setting.php This module allows system administrators to

list and change settings for the system.

Transactiontype.php This module for commission and pricing for

every transaction type and you also can add

new transaction types.

Clientcontroller.php Is the most important page because each

function is called from this page. The list of

functions is explained in Table 6.3.

6.3.2 Functions Called from the Web Pages

Functions listed in Table 6.3 are called from the pages are given in Table 6.2 with

parameters that depend on the page.

54

Table 6.3: Functions used by PHP pages (MOP Operator)
Function Name Description

function getById($id) Get agent by given Id.

function getSubAgents($ Id) Get sub-agents of given agent.

function getSubCategories($bankId) Get sub-banks of given bank.

function add($) Add new agent.

function update($) Update agent.

function delete($) Delete agent.

function getTree() Build agent tree with depth for each item.

function getParents($ Id)
Get parent agents (From root to parent

one).

function getTranslatable($lang)
Get translate table items which haven't

been translated of the default language.

function getSource($)
Get translation item which was translated

to given agent.

Table 6.4: Functions used by Clientcontroller.php
Function name Description

function init()
Connection between bank to server to add the client details

in the server.

function checkcallAction() Check if this phone number is MOP user or not.

55

function

getRecordeByPhone($phon

e)

Get all user information by phone number.

function check($where) Check if the user is blacklisted or not.

function

addingtoinsertdbcAction()

Add the client in the MOP server (data coming from MOP

bank).

function

addphonesAction($data,

$RecordId = null, $action =

null)

Add phones numbers to phone table.

function

addaccountsnumAction($da

ta, $RecordId = null,

$action = null)

Insert client account information to client_account table.

function

transactionAction($pdf=nul

l)

Display report for all transaction as pdf file.

function

transactiondetailsAction()
Display the transaction details.

function

addtooperatorAction()
Add the record in the operator after a successful transaction.

function

connresponsebankAction($i

p, $mymo, $client_id)

Respond to the bank and send last used MOP.

function

array2encryptAction

($array)

Encrypt array of data.

function getTempTable()
When transaction is created then the information of this

transaction is inserted in temp table.

function Select client information and issuer_bank_ip from client,

56

getClient($MOP_id) bank table.

function

addcdrclientwaiting($phone

,$MOPid'',4,$type,$method

)

Insert call info to cdr table.

function

trxComm($trx_type,

$issuer_bank)

Get commission info to transaction_type, pricing table.

function

changeStauts($value)

Change status for cdr row depending on value that retrieve

from bank.

function insertCdr($cdr,

$cdr_comm,

$cdr_comm_updated)

Insert call information to cdr, cdr_commission,

cdr_commission_updated table.

function smsTransaction() Get all rows from received_sms table where status =’0’.

function

excuteurlAction($cdr_url,

$encry_data)

Send post request to autoaddcdr, waitingcallback function on

operator.

function

checkTransactionStatus($st

atus,$id)

Check cdr where status = 2 to insert in the cdr on the bank.

function

changestatusAction()

Get value from bank to check if transaction need to make

any change.

function

selectcdrclientwaiting(null,

null, "src_MOPid =

'$MOPid' AND id = '$id'

AND (status = '2' OR status

= '3') ")

Get transaction from cdr table depend on (src_MOPid,

status=2 OR 3).

57

6.3.3 Detailed Description of MOP Operator Functions and Methods

In this section, we explain the functions that are used by the MOP operator. The

notation we used in the figures are as follows: each circle means function name; the

arrows indicate that the function calls other functions from possibly different pages

and rectangle gives us where this function or database table exists, i.e. the path for

this function or table.

6.3.3.1 checkcallAction Function

In the first step we need to check if this phone number is MOP user or not, so we use

checkcallAction function. To get all user information by phone number, we

use getRecordeByPhone($phone). settingAction($setting_id,

$field_id) function calls getSetting function from Dao->pdo->mysql-

>Client.php. We check if the user is blacklisted or not by calling check($where)

from blacklist modules with path blacklist->dao->pdo->Blacklist.php.

Figure 6.2: CheckcallAction Function.

6.3.3.2 addingtoinsertdbcAction Function

To add the client into the MOP server data from MOP bank we use

addingtoinsertdbcAction function. keyAction($id) function calls

getKey($id) function from Dao->pdo->mysql->Client.php to encrypt or decrypt

58

from validation_key table. We decrypt data that comes from MOP bank depending

on the key by using decryptAction($key,$crypttext) function.

getBankId($value) is used to select bank ID depending on bank IP which is

written in bank config from the bank table. To generate random PIN number for

a phone number, we use generateNumberAction($length) function. To

insert client account information to client_account table, we use

addaccountsnumAction($data, $RecordId = null, $action =

null) function. We call add($answer) function from core modules Dao->pdo-

>mysql-> Translation.php to insert information to core_translation table.

Figure 6.3: AddingtoinsertdbcAction Method

6.3.3.3 addtooperatorAction Function

To add the record in the operator after a successful transaction, we use

addtooperatorAction function. It calls banks function from Dao->pdo-

>mysql->Client.php to get bank_id from bank where correspondent_bank=’1’ by

using banks($data) function. It sends data to bank (index.php/add-client-

waiting) to make a call-back for the client using

59

connectiontoserverAction($data, $ip,$return=null) function. It

calls changeStauts($value) function from Dao->pdo->mysql->Client.php to

change status for cdr row depending on the value that is retrieved from the bank.

After that it calls getClient($MOP_id) function from Dao->pdo->mysql-

>Client.php to get client information. Then, insertCdr($cdr, $cdr_comm,

$cdr_comm_updated) function is called from Dao->pdo->mysql-> Log.php to

insert call information to cdr, cdr_commission, cdr_commission_updated table.

Figure 6.4: AddtooperatorAction Function.

6.3.3.4 array2encryptAction Function

To encrypt array of data we use array2encryptAction ($array). Then we

call getKey ($id) function from Dao->pdo->mysql->Client.php to get

encrypt/decrypt key using keyAction ($id) from validation_key table.

60

Figure 6.5: Array2encryptAction Function.

6.3.3.5 autoaddcdraction Function

When a transaction is created the information of this transaction is inserted into temp

table. To do that, we use getTempTable function. Call

checkBankes($issuer_MOPid, null, 'issuer') function from Dao-

>pdo->mysql->Client.php to get the sender and receiver banks. Call

getClient($MOP_id) function from Dao->pdo->mysql->Client.php to select

client information and issuer_bank_ip from client and bank tables. Call

addcdrclientwaiting($phone,$MOPid'',4,$type,$method)

function from Dao->pdo->mysql->Client.php to insert call information to cdr table.

Call trxComm($trx_type, $issuer_bank) function from Dao->pdo-

>mysql->Client.php to get commission information for transaction_type from pricing

table. Call addTrxComm($data) function from Dao->pdo->mysql->Client.php.

Then inside this function call getDefaultOperator to insert commission

information to cdr_commission table.

61

Figure 6.6: AutoaddcdrAction Function.

6.3.3.6 callbackstatusAction Function

Call smsTransaction function from Dao->pdo->mysql->Client.php to get all

rows from received_sms table where status =’0’. Call insertTemp function from

Dao->pdo->mysql->Client.php to insert SMS information to temp table.

excuteurlAction($cdr_url, $encry_data) send post request

autoaddcdr, waitingcallback function to operator. Call

checkTransactionStatus($status,$id) function from Dao->pdo-

>mysql->Client.php from cdr table to check cdr where status = 2 to insert in the cdr

on the bank.

62

Figure 6.7: CallbackstatusAction Function.

6.3.3.7 changestatusAction Function

changestatusAction to get value from bank to check if transaction needs to

make any changes. Call selectcdrclientwaiting(null, null,

"src_MOPid = '$MOPid' AND id = '$id' AND (status = '2' OR

status = '3') ") function from Dao->pdo->mysql->Client.php to get

transaction from cdr table depending on (src_MOPid, status=2 OR 3). Call

getById function from agent modules Dao->pdo->mysql-> Agent.php to get agent

information depending on agent_id from agent table. Call updateAgent function

from agent modules Dao->pdo->mysql-> Agent.php to update agent information

depending on agent_id from agent_details table. Create connection with any IP

address you selected and send POST method by calling

directconnectionAction($agentDetails->link,$data) function.

Call changeStauts function from Dao->pdo->mysql->Client.php to change

status for cdr row depending on the value is retrieved from the bank.

63

connoperatorAction($data, $ip) send data to the bank using

addtooperator function.

Figure 6.8: ChangestatusAction Function.

6.3.3.8 sendtrxreciverbankAction Function

Send transaction to the bank by using sendtrxreciverbankAction function.

Call getClient($MOP_id) function from Dao->pdo->mysql->Client.php to get

client information from client table JOIN bank table on bank_id. Call

getRecorde($MOP_id, $phone_id) function from client modules Dao-

>pdo->mysql-> Log.php to get transaction information depending on id from cdr

table JOIN cdr_commission, cdr_commission_updated table ON cdr_id. Call

getCountry function from Dao->pdo->mysql->Client.php to get currency_code,

currency_number from country table JOIN currency on currency_id.

connoperatorAction to send data to bank by addtooperator function.

connectiontoserverAction is used to send data (post method) to bank

(index.php/add-client-waiting) to make call-back for client.

64

Figure 6.9: SendtrxreceiverbankAction Function.

6.3.3.9 checktransactionAction Function

Check transaction from IVR system by using checktransactionAction().

Then call getRecorde function from Dao->pdo->mysql->Client.php to get client

information from client table JOIN client_phone table depending on row MOP_id,

phone using getRecorde($MOP_id, $phone_id). Call getTransOnMinDate

function from Dao->pdo->mysql->Client.php to get transaction information from cdr

table JOIN cdr_commission table depending on row MOP_id, phone using

getTransOnMinDate ('ASC', $phone_id, $MOP_id).

Figure 6.10: ChecktransactionAction Function.

65

6.4 MOP Bank

6.4.1 Mop Bank Web Pages

The administration access page is the page that allows the administrator to create and

manage other system administrators with fewer privileges. It also allows them to

access all modules in the system as Manage Clients, Manage Integrations, Manage

ISO, Manage Prompts and Manage Settings as explained in Table 6.5.

Table 6.5: Web pages in MOP Bank.

Web Page Name Description

Client.php This module is used to manage users which

allow you to make and list users and groups

for MOP System. The important functions

are explained in Table 6.6.

Integration.php This module is responsible about system and

database integrations, which is used to make

connection between two different databases

system “as between MYSQL and

ORACLE”.

Iso.php This module is responsible for adding,

editing and listing ISO which is used for

connecting MOP System with Banking

System.

Prompt.php This module is responsible for adding or

listing sound files for the user action on the

Interaction Voice Response (IVR) system.

Setting.php This module allows you to list available

settings; you also can edit any setting.

66

6.4.2 Mop Bank Functions

In all the pages listed in Table 6.5, we use the functions that are listed in Table 6.6

with different parameters that depend on the page.

Table 6. 6: Functions used by PHP pages (MOP Bank)
Function Name Description

function getById($id) Get page by given Id.

function add($) Add new page.

function update($) Update page.

function updateOrder($) Update page order.

function delete($) Delete page.

function getTree() Build pages tree with depth for each item.

function getTranslatable($lang) Get items from translate table which

haven't been translated from the default

language.

function getSource($product) Get translation item which was translated

to given page.

function saveGallery($tableName, $data) Used to save all action done in the bank as

a backup.

function

getGalleryById($tableName,$className,$id)

Used to save all actions for each user as a

backup.

67

Table 6. 7: Functions used by Clientcontroller.php
Function Name Description

function addclientToAnotherBankAction() Add client transaction information to bank.

function addclientwailtingAction() Used to insert transaction information to cdr,

cdr_commission, cdr_commission_updated

tables.

function createClientFileAction($cdr_id,

$callbackNum, $method=

null,$authentication=null)

Create file in the bank root that has call back

number, file name of cdr ID for the client.

function correspondentBank() Used to select, insert, delete bank

information from correspondent_bank_ip

table depending on operation type.

function getSetting ($setting_id, $field_id) Used to get card information from setting

table depending on setting_id, field_id.

function selectcdrclientwaiting(null,"status

= '2' ", null,'id')

Used to get transaction information from cdr

table.

function getCallBackNum (id) Used to get callback number with call

checkMOPidExistInTheClient.

function getClient (MOPid) Used to get client information from client

table depending on MOP_id.

function connectiontoserverAction

($MOPid, $status, $id, $bank_ip)

Connect to another bank and send

transaction record with commission

information.

function changeStauts($id, 6,

$sender_bank_ip, $country_id)

Used to change status for cdr row depending

on value that is retrieved from the bank.

function getRecorde(dst_MOPid) Used to get client information from client

table to JOIN client_phone table depending

on row MOP_id.

function addnewlimitAction() Used to add new request limit from portal.

68

function decryptAction ($key, $post[0]) Used to decrypt data that comes from MOP

operator, portal depending on key.

function tempClient ($new,

$decrypt[0]['client_id'], 'insert')

Used to get or insert or delete client request

information from temp_client table

depending on client_id.

function getAuthintication($cdrID) Used to get authentication information from

cdr_authentication_level table depending on

cdr_id.

function ivrConnectionAction ($url,

$postdata).

Send call back information to IVR system.

function autochangestatusAction() Used to check if there are any transactions

without a callback.

function

checkMOPidExistInTheClient(MOP_id)

Used to check if MOP ID exists or not from

client table depending on MOP_id.

function getCallBack($phone, client_id) Used to get a call back information from

callback_phone table depending on phone,

client_id.

function cbAction ($data, $ip) Send transaction information to

correspondent bank.

function changestatusAction() Change cdr row status.

function checkpinAction() Check if PIN number is valid or not.

function getKey($id) Used to get key information from

validation_key table.

function hsmAction($data, 'check') Send post method to HSM to check pin

number.

function feesAction() Used to insert fees information to bank.

function fees ($row,'insert') Used to get or insert fees information from/to

client_fees table depending on id.

69

6.4.3 MOP Bank Functions and Methods

6.4.3.1 addclientToAnotherBankAction Function

Add client transaction information to bank using

addclientToAnotherBankAction(). Call addcdrclientwaiting

function from Dao->pdo->mysql->Client.php to insert transaction information to cdr,

cdr_commission, cdr_commission_updated tables using

addcdrclientwaiting($dataForm). Call correspondentBank

function from Dao->pdo->mysql->Client.php to select, insert, delete bank

information from correspondent_bank_ip table depending on operation type.

Figure 6.11: AddclienttoAnotherBankAction Function.

6.4.3.2 addclientwaitingAction Function

Check client information, then add client to cdr table by using

addclientwailtingAction(). Call settingAction function

smsipAction(). Call settingAction function from Dao->pdo->mysql-

>Client.php to get card information from setting table depending on setting_id,

field_id using getSetting ($setting_id, $field_id). Call

selectcdrclientwaiting(null,"status = '2' ", null,'id')

function from Dao->pdo->mysql->Client.php to get transaction information from cdr

table. Call addcdrclientwaiting($dataForm) function from Dao->pdo-

>mysql->Client.php to insert transaction information to cdr, cdr_commission,

70

cdr_commission_updated tables. Call getCallBackNum ($dataForm->id)

function from Dao->pdo->mysql->Client.php to get callback number calls to

checkMOPidExistInTheClient, and getCallBack functions. Call

getClient ($dataForm->src_MOPid) function from Dao->pdo->mysql-

>Client.php to get client information from client table depending on MOP_id. Call

getCallBackPhone ($client->client_id) function from Dao->pdo-

>mysql->phone.php to get callback information from callback_phone table

depending on client_id. Send data to bank (index.php/add-client-waiting/) to make a

call-back for client using connectiontoserverAction ($MOPid,

$status, $id). Call changeStauts($dataForm->id, 6,

$dataForm->sender_bank_ip, $dataForm->country_id) function

from Dao->pdo->mysql->Client.php to change status for cdr row depending on value

that is retrieved from the bank. Call getRecorde(dst_MOPid) function from

Dao->pdo->mysql->Client.php to get client information from client table JOIN

client_phone table depending on row MOP_id, phone.

71

Figure 6.12: AddclientwaitingAction Function.

6.4.3.3 addnewlimitAction Function

To add new request limit from portal we use addnewlimitAction(). Decrypt

data that comes from MOP operator, portal depending on key using

decryptAction ($key, $post[0]). Call

getClientPhone($data['phone']) function from Dao->pdo->mysql-

>Client.php to get client phone information from client_phone table depending on

phone. Call tempClient ($new, $decrypt[0]['client_id'],

'insert') function from Dao->pdo->mysql->Client.php to get or insert or delete

client request information from/to temp_client table depending on client_id.

72

Figure 6.13: AddnewlimitAction Function.

6.4.3.4 athinticationlevelAction Function

Call selectcdrclientwaiting (null, null, "p.id='$cdrID'")

function from Dao->pdo->mysql->Client.php to get transaction information from cdr

table. Call getAuthintication($cdrID) function from Dao->pdo->mysql-

>Client.php to get authentication information from cdr_authentication_level table

depending on cdr_id. Send call back information to IVR system using

ivrConnectionAction ($url, $postdata).

Figure 6.14: AthinticationlevelAction Function.

6.4.3.5 autochangestatusAction Function

Used to check if there are transactions without callback. Call

autoChangeStatus() function from Dao->pdo->mysql->Client.php, then call

73

getCallBackNum ($dataForm->id), createClientFile

($cdr_id, $callbackNum,

$method=null,$authentication=null). Call

checkMOPidExistInTheClient(MOP_id) function from Dao->pdo->mysql-

>Client.php to check if MOP ID exists or not from client table depending on

MOP_id. Call getCallBack($phone, client_id) function from Dao-

>pdo->mysql->Client.php to get call back information from callback_phone table

depending on phone, client_id.

Figure 6.15: AutochangestatusAction Function.

6.4.3.6 callbackAction Function

Get transaction information to create callback using callbackAction(). Call

selectcdrclientwaiting (null,"status = '2' ", null,'id')

function from Dao->pdo->mysql->Client.php to get transaction information from cdr

table.

74

Figure 6.16: CallbackAction Function.

6.4.3.7 changestatusAction Function

Send transaction information to correspondent bank using cbAction ($data,

$ip). Change cdr row status using changestatusAction().Call

settingAction() function using smsipAction(). Call changeStauts

function from Dao->pdo->mysql->Client.php to change status for cdr row depending

on value that is retrieved from bank. Call getDstMOPAcc() function from Dao-

>pdo->mysql->Client.php to get client information from client table JOIN

client_account table depending on MOP_id. Call inActiveClient

($getDstMymoAcc->client_id) function from Dao->pdo->mysql-

>Client.php to get client information from client table depending on is_active = '1'.

75

Figure 6.17: ChangestatusAction Function.

6.4.3.8 checkpinAction Function

Check if PIN number is valid or not using checkpinAction().Call

getClient(MOP_id) function from Dao->pdo->mysql->Client.php to get client

information from client table depending on MOP_id. Call getKey($id) function

from Dao->pdo->mysql->Client.php to get key information from validation_key

table. Send post method to HSM to check pin number using hsmAction($data,

'check').

76

Figure 6.18: CheckpinAction Function.

6.4.3.9 feesAction Function

Used to insert fees information to bank. Call fees ($row,'insert') function

from Dao->pdo->mysql->Client.php to get or insert fees information from

client_fees table depending on id.

Figure 6.19: FeesAction Function.

6.4.3.10 hsmAction Function

Send post request to HSM system to check or change client information using

hsmAction($data, $op). Call settingAction ($setting_id,

$field_id) function from Dao->pdo->mysql->Client.php to get setting

information from setting table depending on setting_id, field_id.

Figure 6.20: HSMAction Function.

77

6.5 Security Implementation

In our implementation we used the Hardware Security Module (HSM), also called

cryptographic accelerators, to enable secure cryptographic-key management and fast

cryptographic operations. They do the former by keeping cryptographic-key material

in special nonvolatile memory designed to erase its content when it’s tampered with.

They do the latter with circuits that facilitate arithmetic with long integers, on which

much public-key cryptography is based. Consequently, HSMs are used to generate

keys and certificates, store keys, and sign documents [44]. The HSM support Public-

key Cryptography Standard #11, Microsoft CryptoAPI, CryptoAPI Next Generation,

and Java Cryptography Architecture, Java Cryptography Extension. HSM establishes

secure channels by various methods such as[45] :

1. Asymmetric RSA (1024 bit), DSA, Diffie-Hellman and Elliptic Curve

Cryptography (ECDSA, ECDH, Ed25519, ECIES)

2. Symmetric AES, AES-GCM, DES, Triple DES, ARIA, SEED, RC2, RC4,

RC5, CAST, and more.

3. Hash/Message Digest/HMAC: SHA-1, SHA-2, SM3.

4. Random Number Generation: designed to comply with AIS 20/31 to DRG.4

using HW based true noise source alongside NIST 800-90A compliant CTR-

DRBG.

78

Chapter 7

DISCUSSION

In this chapter we highlight the advantages of MOP and discuss various aspects of

MOP in relation to other payment systems (mobile or otherwise).

7.1 Applicability

Our system is applicable at all times and places, for personal and electronic

purchases, transferring money (B2P, P2B, P2P), invoices and payments for all

services (e.g. water, electricity and taxes), governmental payments (passport fees,

licenses and other documents), school and university tuitions, speed cash, and

international transfers.

7.2 Innovative Features of MOP

Despite widespread adoption of mobile-based payment systems, an audit of the same

reveals several limitations, which MOP seeks to overcome [37]. To this end, MOP

will provide a platform for mobile-based transactions without the need for a new

SIM card. The process will include real-time person-to-person transactions between

users regardless of the banks they use, and without the need for a third party to

facilitate the transaction. MOP will be integrated into existing banking systems and

reliable financial institutions which will confirm and authorize all transactions. In

this respect, this proposal provides a mobile phone-based solution that will help

financial companies achieve seamless mobile integration of their systems and

services. Besides, it is worth noting that the technology does not require one to have

a specific type of mobile phone, thereby enabling the provision of unified services to

79

all stakeholders. Furthermore, the technology eliminates intermediaries and other

third parties with questionable credentials.

7.3 How MOP Deals with the Security Issue

The proposed solution seeks to mitigate security vulnerabilities by adopting different

measures. First, the system leverages on information only known to the customer;

i.e., the client's PIN code which is initiated by the customer's bank HSM and only

requested by the bank through its IVR system call back feature. The second measure

involves something possessed by the customer, i.e., mobile phone and mobile SIM

card. The third security feature is using several authentication methods and process

flow. Through this measure, the process is initiated by the operator. Afterward, the

transaction is split into 3 sections (sender's bank, operator, and receiver's bank).

Next, the sender bank requests for PIN code using the IVR call back to the sender's

phone number, who has the SIM card and knows PIN code. Later, the PIN code is

verified by the sender bank. Finally, the client's eligibility is determined by their

internal bank system and all transaction information flow are highly encrypted and

with no involvement of the other parts. The fourth safety measure is that a private

network connects all parties with a secure VPN. The trend these days for any

payment solution is to cover the most important points: real time settlement, security,

interoperability and user convention, and MOP addresses all of these points.

7.4 Comparison with Other Payment Systems

In table 7.1 we compare our proposed system (MOP) with other systems according to

third party, monthly fees, per transaction fee, need to new account, multi currency

support, country support and how much time is needed to make a transaction.

Information on other payment methods are obtained from [37-39, 46].

80

Table 7.1: Payment methods compared.

Payment Method Square VISA PayPal PayBox Pay for IT Authorize.Net Proposed System (MOP)

Third Party Yes Yes Yes Yes Yes Yes No

Monthly Fee 0$ 2$ 0$ 0$ 0$ 25$ 0$

Per-transaction

fee
2.9%+0.3$ 2.9%+0.3$ 2.9%+0.3$

Depends on

reseller

Depends on

MNO’s
2.9%+0.3$ 0.1%

New Account

needed
Yes Yes Yes Yes Yes Yes No

Multi Currency

Support
Yes USD Yes Yes Yes USD Yes

Countries 5
All

Countries
203 All Countries UK 190 All Countries

Time 1-3 Days 1-3 Days
Min. 6

Hours
1-2 Days 1-2 Days Min. 6 Hours

Average 70.10 seconds, with a

standard deviation of 15.67.

81

We can see that all other payment methods use an external third party, which casts

doubts about their security. The customer needs to open several accounts in each

payment method and charge this account to transfer money. Most of the payment

method are free, but get fees for each transaction, that means they are more

expensive.

The most important point is the time needed to transfer money: all payment methods

need more than 6 hours to transfer money, but in our system, after the user calls to

the MOP operator and gives the transaction details, the system needs on average

70.10 seconds, with a standard deviation of 15.67 seconds, to transfer money

(Appendix F contains the raw data for the transactions).

82

Chapter 8

CONCLUSION AND FUTURE WORK

In order to remedy the shortcomings of existing mobile payment systems, we

proposed a new mobile payment methodology, using a novel communication

network, while leveraging existing trusted banking infrastructure. The proposed

methodology has the following features: (i) it jointly connects the banks together and

allows the customers to process all kinds of transactions involving money transfer

with the use of their cell phones and without the need for a new SIM card; (ii) real-

time person to person transactions between users with similar or different bank

accounts can be processed without the need for a third party mediator; (iii) there is no

need for Internet or a smart phone to make a transfer; (iv) IVR is used for

communication of banks with their customers; and (v) the proposed communication

network is built over the already existing “banking system" infrastructures, with

processes approved by reliable financial institutions, which reinforces and

strengthens consumer confidence and reliability in the proposed methodology.

We also implemented a proof-of-concept prototype, as well as a web-based

simulator, of our proposal and collected timing data for performing transactions on

the prototype implementation. The collected timing data showed that our system

compares very favorably with other money transfer schemes.

83

 Blockchain technology has the potential for fraud reduction, secure, and fast

transactions, lower cost, improved data quality, smart contracts, payments, and can

provide a solid trading platform. For future work, we plan to investigate ways in

which blockchain technology can be incorporated into our proposal in order to

eliminate the banks’ and financial authorities’ concerns, answer the customers’ (both

merchants and retailers) needs for faster, safer, cheaper, real-time and secure

payments that eliminate the need for intermediary parties to approve and reconcile

the transaction, while reducing the operational risk, as all the transactions will be

transparent and practically unalterable.

84

REFERENCES

[1] J. Hedman and S. Henningsson, "The new normal: Market cooperation in the

mobile payments ecosystem," Electronic Commerce Research and

Applications, vol. 14, pp. 305-318, 2015.

[2] T. Dahlberg, J. Guo, and J. Ondrus, "A critical review of mobile payment

research," Electronic Commerce Research and Applications, vol. 14, pp. 265-

284, 2015.

[3] I. O. Oyefolahan, S. a. A. Ahmed, and A. Abubakar, "An empirical study of

customers' adoption of Mobile Money Transfer Services in Somaliland," in

Information and Communication Technology for The Muslim World

(ICT4M), 2014 The 5th International Conference on, 2014, pp. 1-5.

[4] Gartner. (2019, 20.3.2019). Gartner. Available: https://www.gartner.com/en.

[5] V. K. Raina, "Overview of mobile payment: technologies and security," in

Banking, Finance, and Accounting: Concepts, Methodologies, Tools, and

Applications, ed: IGI Global, 2015, pp. 180-217.

[6] J. Liu, R. J. Kauffman, and D. Ma, "Competition, cooperation, and regulation:

Understanding the evolution of the mobile payments technology ecosystem,"

Electronic Commerce Research and Applications, vol. 14, pp. 372-391, 2015.

https://www.gartner.com/en

85

[7] D. Shrier, G. Canale, and A. Pentland, "Mobile money & payments: Technology

trends," ed: MIT Connection Science’s series on financial technology, 2016.

[8] W. Jack and T. Suri, "Risk sharing and transactions costs: Evidence from Kenya's

mobile money revolution," The American Economic Review, vol. 104, pp.

183-223, 2014.

[9] E. Seth, "Mobile Commerce: A Broader Perspective," IT Professional, vol. 16,

pp. 61-65, 2014.

[10] J. T. Isaac and S. Zeadally, "Secure Mobile Payment Systems," IT Professional,

vol. 16, pp. 36-43, 2014.

[11] B. Singh and K. Jasmine, "Comparative study on various methods and types of

mobile payment system," in Advances in Mobile Network, Communication

and its Applications (MNCAPPS), 2012 International Conference on, 2012,

pp. 143-148.

[12] A. Gaur and J. Ondrus, "The role of banks in the mobile payment ecosystem: a

strategic asset perspective," in Proceedings of the 14th annual international

conference on electronic commerce, 2012, pp. 171-177.

[13] P. Ozcan and F. M. Santos, "The market that never was: Turf wars and failed

alliances in mobile payments," Strategic management journal, vol. 36, pp.

1486-1512, 2015.

86

[14] K. S. Staykova and J. Damsgaard, "The race to dominate the mobile payments

platform: Entry and expansion strategies," Electronic Commerce Research

and Applications, vol. 14, pp. 319-330, 2015.

[15] A. Mugambi, C. Njunge, and S. C. Yang, "Mobile-Money Benefits and Usage:

The Case of M-PESA," IT Professional, vol. 16, pp. 16-21, 2014.

[16] W.-M. To and L. S. Lai, "Mobile banking and payment in China," IT

Professional, vol. 16, pp. 22-27, 2014.

[17] K.-Y. Chen and M.-L. Chang, "User acceptance of ‘near field

communication’mobile phone service: an investigation based on the ‘unified

theory of acceptance and use of technology’model," The Service Industries

Journal, vol. 33, pp. 609-623, 2013.

[18] S. Chauhan, "Evaluating Acceptance of Mobile Money by Poor Citizens in

India: An Empirical Study," 2014.

[19] M. Cocosila and H. Trabelsi, "An integrated value-risk investigation of

contactless mobile payments adoption," Electronic Commerce Research and

Applications, vol. 20, pp. 159-170, 2016.

[20] F. Bar, M. S. Weber, and F. Pisani, "Mobile technology appropriation in a

distant mirror: Baroquization, creolization, and cannibalism," new media &

society, p. 1461444816629474, 2016.

87

[21] V. Mishra and S. S. Bisht, "Mobile banking in a developing economy: A

customer-centric model for policy formulation," Telecommunications Policy,

vol. 37, pp. 503-514, 2013.

[22] J. C. Aker, R. Boumnijel, A. McClelland, and N. Tierney, "Payment

Mechanisms and Antipoverty Programs: Evidence from a Mobile Money

Cash Transfer Experiment in Niger," Economic Development and Cultural

Change, vol. 65, pp. 1-37, 2016.

[23] J. Kaye, J. Vertesi, J. Ferreira, B. Brown, and M. Perry, "# CHIMoney:

Financial interactions, digital cash, capital exchange and mobile money," in

CHI'14 Extended Abstracts on Human Factors in Computing Systems, 2014,

pp. 111-114.

[24] M. de Reuver, E. Verschuur, F. Nikayin, N. Cerpa, and H. Bouwman,

"Collective action for mobile payment platforms: A case study on

collaboration issues between banks and telecom operators," Electronic

Commerce Research and Applications, vol. 14, pp. 331-344, 2015.

[25] J. Hedman and S. Henningsson, "Competition and collaboration shaping the

digital payment infrastructure," in Proceedings of the 14th Annual

International Conference on Electronic Commerce, 2012, pp. 178-185.

[26] R. Magnier-Watanabe, "An institutional perspective of mobile payment

adoption: The case of Japan," in 2014 47th Hawaii International Conference

on System Sciences, 2014, pp. 1043-1052.

88

[27] K. Alshare and A. Mousa, "The moderating effect of espoused cultural

dimensions on consumer’s intention to use mobile payment devices," 2014.

[28] Y.-H. Cheng and T.-Y. Huang, "High speed rail passengers’ mobile ticketing

adoption," Transportation Research Part C: Emerging Technologies, vol. 30,

pp. 143-160, 2013.

[29] L. Jia, D. Hall, and S. Sun, "The Effect of Technology Usage Habits on

Consumers’ Intention to Continue Use Mobile Payments," 2014.

[30] T. Dahlberg and A. Oorni, "Understanding changes in consumer payment

habits-do mobile payments and electronic invoices attract consumers?," in

System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International

Conference on, 2007, pp. 50-50.

[31] H. Xin, A. A. Techatassanasoontorn, and F. B. Tan, "Exploring the influence of

trust on mobile payment adoption," 2013.

[32] T. Apanasevic, "Factors Influencing the Slow Rate of Penetration of NFC

Mobile Payment in Western Europe," in ICMB, 2013, p. 8.

[33] J. P. de Albuquerque, E. H. Diniz, and A. K. Cernev, "Mobile payments: a

scoping study of the literature and issues for future research," Information

Development, p. 0266666914557338, 2014.

89

[34] A. Gannamaneni, J. Ondrus, and K. Lyytinen, "A post-failure analysis of mobile

payment platforms," in System Sciences (HICSS), 2015 48th Hawaii

International Conference on, 2015, pp. 1159-1168.

[35] T. Dahlberg, N. Mallat, J. Ondrus, and A. Zmijewska, "Past, present and future

of mobile payments research: A literature review," Electronic Commerce

Research and Applications, vol. 7, pp. 165-181, 2008.

[36] L. Goeke and K. Pousttchi, "A scenario-based analysis of mobile payment

acceptance," in Mobile Business and 2010 Ninth Global Mobility Roundtable

(ICMB-GMR), 2010 Ninth International Conference on, 2010, pp. 371-378.

[37] PayPal. (2019, 20.3.2019). Paypal. Available: https://www.paypal.com/us/home

[38] PayBox. (2019, 20.3.2019). PayBox. Available: https://www.pay-box.in/.

[39] PayforIT. (2019, 20.3.2019). PayforIT. Available: https://www.payforit.org/.

[40] Square. (2019, 20.3.2019). Square. Available: https://squareup.com/us/en.

[41] E. C. Bank. (2019, 12.5.2018). What is TARGET Instant Payment Settlement

(TIPS)? Available:

https://www.ecb.europa.eu/paym/target/tips/html/index.en.html.

[42].D. Linux. (2018). Debian Linux. Available:

http://cdimage.debian.org/debiancd/7.1.0/amd64/iso-dvd/.

https://www.paypal.com/us/home
https://www.pay-box.in/
https://www.payforit.org/
https://squareup.com/us/en
https://www.ecb.europa.eu/paym/target/tips/html/index.en.html
http://cdimage.debian.org/debiancd/7.1.0/amd64/iso-dvd/

90

[43].Asterisk. (2018). Asterisk. Available:

http://www.asterisk.org/downloads/asterisk/all-asterisk-versions.

[44] B. Köppel and S. Neuhaus, "Analysis of a hardware security module's high-

availability setting," IEEE Security & Privacy, vol. 11, pp. 77-80, 2013.

[45] D. Kim, Y. Jeon, and J. Kim, "A secure channel establishment method on a

hardware security module," in 2014 International Conference on Information

and Communication Technology Convergence (ICTC), 2014, pp. 555-556.

[46] WUFFO. (2019, 30.07). Available: https://www.wufoo.com/payments/payment-

gateway-comparison/.

[47].OneDrive (2020, 20.01). Available: https://aaujedu-

my.sharepoint.com/:u:/g/personal/mahmoud_obaid_aaup_edu/ETp8J5oLfhRJ

jF2oKqgdXoAB0tfFjWDiaPJ44DtToZlQQQ?e=NndIjW.

http://www.asterisk.org/downloads/asterisk/all-asterisk-versions
https://www.wufoo.com/payments/payment-gateway-comparison/
https://www.wufoo.com/payments/payment-gateway-comparison/

91

APPENDICES

92

Appendix A: Critical Code for the “Client” module of the MOP

Prototype

In this appendix, we give critical sections of the code in the “Client” module, with

some explanation to explain what the code does.

Listing A.1: CheckcallAction Function in File Client.php
public function checkcallAction() {

 $request = $this->getRequest();
 $phone = $request->getParam('phone');

 $getRecordeByPhone = $this->ObjectDao->getRecordeByPhone($phone);

 //Zend_Debug::dump($getRecordeByPhone);die;

 if(!$getRecordeByPhone)

 {// no user under this phone number ...
 $value = number_format(0);

 print($value);die;

 }

 $setting = $this->settingAction(null,20);

 $checkList = array();

 foreach($setting as $row)

 {
 if($row->value == 'on')

 {

 $checkList[] = $row->key;
 }

 }

 $where = '';

 foreach($checkList as $row)

 {
 if(isset($row) && $row == 'international_id')

 $where.= "cif_nation_code = '$getRecordeByPhone->national_id'";

 if(isset($row) && $row == 'name')

 {

 if($where)
 $where.=' AND ';

 $firstname = $getRecordeByPhone->firstname;
 $where.= "cif_first_name_eng = '$firstname'";

 if($getRecordeByPhone->middlename)
 {

 $middlename =$getRecordeByPhone->middlename;

 $where.= " AND cif_sec_name_eng = '$middlename'";
 }

 $fathername = $getRecordeByPhone->fathername;
 $where.= " AND cif_third_name_eng = '$fathername'";

 $familyname = $getRecordeByPhone->familyname;
 $where.= " AND cif_last_name_eng = '$familyname'";

 }

 }

 //echo $where;die;

93

 $blacklist = MOP_Model_Dao_Factory::getInstance()->setModule('blacklist')->getBlacklistDao();

 $blacklist->setDbConnection($this->conn);

 $blacklist = $blacklist->check($where);

 if($blacklist)

 {// black list
 $value = number_format(2);

 print($value);die;

 }
 //Zend_Debug::dump($getRecordeByPhone->MOP_id);die;

 print($getRecordeByPhone->MOP_id);die;

 }

In the first step we need to check if the phone number is a registered as a MOP user

or not, so we use the checkcallAction function. To get all user information by

phone number we use the getRecordeByPhone. settingAction function

calls getSetting function from Dao->pdo->mysql->Client.php. We check if

the user is black listed or not by calling check from blacklist module with Path

blacklist->dao->pdo->Blacklist.php.

94

Listing A.2: AddingtoinsertdbcAction Function in File Client.php
public function addingtoinsertdbcAction()
 {

 /**

 * add the client in the MOP server
 */

 $request = $this->getRequest();

 // post date from MOP bank depending on curl function
 $formData = $request->getPost();

 //Zend_Debug::dump($formData);die;

 /**
 *

 */

 if(isset($formData['main']) && $formData['main'])
 {

 $string = $formData['main'];

 $key = $this->keyAction(7);
 // decrypt

 $decry_data = $this->decryptAction($key, $string);

 $decry_data = rtrim($decry_data, "\0");
 $data_decrypt = json_decode($decry_data,true);

 //Zend_Debug::dump($data_decrypt);die;

 }

 /**
 *

 */

 $data_decrypt['validation'] = $formData['validation'];

 if(isset($formData['action']))

 $data_decrypt['action'] = $formData['action'];

 $formData = $data_decrypt;

 //Zend_Debug::dump($formData);die('dd');
 //echo $formData['validation'];die;

 //if($formData && isset($formData['validation']) && $formData['validation'] == MOP_Config::getConfig()->web-

>secretcode)
 //Zend_Debug::dump($formData);die;

 if($formData)

 {
 $moduleName = $this->module;

 $formDataExist = array();

 foreach($formData as $key => $value)

 {
 if($key != 'action' && $key != 'validation' && $key != 'bank_ip')

 $formDataExist[$key] = $value;

 // Select bank id depending on bank ip which we have written on bank config

 if($key == 'bank_ip')

 {
 $bank_id = $this->ObjectDao->getBankId($value);

 $formDataExist['bank_id'] = $bank_id;

 }

 }

 $className = ucfirst($moduleName).'_Models_'.ucfirst($moduleName);

 /*$objectName = 'get'.ucfirst($moduleName).'Dao';
 $conn_2 = MOP_Db_Connection::factory()->getMasterConnection();

 $ObjectDao_2 = MOP_Model_Dao_Factory::getInstance()->setModule($moduleName)->$objectName();

 $ObjectDao_2->setDbConnection($conn_2);*/

 if(isset($formData['action']) && $formData['action'] == 'edit')

 {
 $MOPserver_dataForm = new $className($formDataExist);

 $RecordId = $this->ObjectDao->update($MOPserver_dataForm, 'MOP_server');

 /***************************/

 if(isset($formData['extraData']) && is_array($formData['extraData']))

 {

95

 $this->addphonesAction($formData['extraData'], $formData['client_id'], $formData['action']);
 $this->addaccountsnumAction($formData['extraData']['account_num'], $formData['client_id'], $formData['action']);

 $this->addaccountsnumAction($formData['extraData']['account_num'], $formData['client_id'],$formData['action']);

 }

 /***************************/

 die;
 }

 else

 {
 $formDataExist['language'] = 'en';

 /*$data = array(
 'name' => $formData['name'],

 'phone' => $formData['phone'],

 'MOP_id' => $formData['MOP_id'],
 'bank_ip' => $formData['bank_ip'],

 'creation_date'=> $formData['creation_date'],

 'language' => 'en',
 'is_active' => $formData['is_active']

);*/

 //Zend_Debug::dump($MOPserver_dataForm);die;

 $MOPserver_dataForm = new $className($formDataExist);
 $RecordId = $this->ObjectDao->add($MOPserver_dataForm, 'MOP_server');

 /***************************/

 if(is_array($formData['extraData']))
 {

 $this->addphonesAction($formData['extraData'], $RecordId);

 }

 if(is_array($formData['extraData']['account_num']))

 {
 $this->addaccountsnumAction($formData['extraData']['account_num'], $RecordId);

 }

 /***************************/

 $MOP_id = array();

 $MOP_id['MOP_id'] = $formData['MOP_id'];
 //$this->ObjectDao->MOPLastUsed('delete',$MOP_id['MOP_id']);

 /**
 * old form to MOP id

 */

 //$this->ObjectDao->update_MOPid($MOP_id);

 /**

 * adding record to the traslate table
 */

 $source = Zend_Json::decode($request->getPost('sourceItem', '{"id": "", "language": ""}'));
 //Zend_Debug::dump($source['language']);die;

 $translationDao = MOP_Model_Dao_Factory::getInstance()->setModule('core')-

>getTranslationDao();
 $translationDao->setDbConnection($this->conn);

 $translationDao->add(new Core_Models_Translation(array(

 'item_id' => $RecordId,
 'item_class' => get_class($MOPserver_dataForm),

 'source_item_id' => ('' == $source['id']) ? $RecordId : $source['id'],

 'language' => 'en',

 'source_language' => ('' == $source['language']) ? null : $source['language'],

)));

 die(1);

 }

 }

 else

 {
 Zend_Layout::startMvc(array('layoutPath' => MOP_APP_DIR . DS . 'templates' . DS . 'default' . DS . 'layouts' . DS .

'en'));

96

 Zend_Layout::getMvcInstance()->setLayout('message');
 }

 }

In the bank, in order to add the client into the MOP server data from the MOP bank

we use addingtoinsertdbcAction function. keyAction function calls

getKey function from Dao->pdo->mysql->Client.php to encrypt or decrypt from

validation_key table. Decrypted data is obtained from the MOP bank depending on

the key by using decryptAction function. getBankId is used to Select bank

ID. To generate a random PIN for a phone number we use the

generateNumberAction function. To insert client account information to the

client_account table we use addaccountsnumAction function. We call

add function from core modules Dao->pdo->mysql-> Translation.php to insert

information to the core_translation table.

97

Listing A.3: AddtooperatorAction Function in File Client.php.
function addtooperatorAction() {

 // adding the recorde in the operator in the other country (after successfully Trx)

 $request = $this->getRequest();

 $postData = $request->getPost();

 if(isset($postData['disposition']))

 {

 $disposition = $postData['disposition'];
 }

 else

 {
 $disposition = null;

 }

 if(isset($postData['extra_data']))

 {

 $extra_data = $postData['extra_data'];
 }

 else

 {
 $extra_data = null;

 }

 $cdr = array(

 'id' => $postData['cdr_id'],
 'duration' => $postData['duration'],

 'dst_MOPid' => $postData['dst_MOPid'],

 'src_MOPid' => $postData['src_MOPid'],
 'issuer_bank' => $postData['issuer_bank'],

 'receiver_bank' => $postData['receiver_bank'],

 'amount' => $postData['amount'],
 'start' => $postData['start'],

 'answer' => $postData['answer'],

 'end' => $postData['end'],
 'src' => $postData['src'],

 'clid' => $postData['clid'],

 'channel' => $postData['channel'],
 'billsec' => $postData['billsec'],

 'disposition' => $disposition,

 'status' => $postData['status'],
 'trx_method' => $postData['trx_method'],

 'trx_type' => $postData['trx_type'],

 'extra_data' => $extra_data,
 'country_id' => $postData['country_id']

);

 if(isset($postData['trx_type_u']))

 {

 $updated = 1;
 }

 else

 {
 $updated = 0;

 }

 $cdr_comm = array(

 'trx_type' => $postData['trx_type'],

 'client_id' => $postData['client_id'],
 'MOP_comm' => $postData['MOP_comm'],

 'bank_comm' => $postData['bank_comm'],

 'merchant_comm' => $postData['merchant_comm'],
 'amount_sender' => $postData['amount_sender'],

 'amount_receiver' => $postData['amount_receiver'],

 'cdr_id' => $postData['cdr_id'],
 'updated' => $updated,

 'country_id' => $postData['country_id']

);

 $cdr_comm_updated = null;

 if(isset($postData['trx_type_u']))
 {

 $cdr_comm_updated = array(

98

 'trx_type' => $postData['trx_type_u'],
 'client_id' => $postData['client_id_u'],

 'MOP_comm' => $postData['MOP_comm_u'],

 'bank_comm' => $postData['bank_comm_u'],
 'amount' => $postData['amount_u'],

 'amount_sender' => $postData['amount_sender_u'],

 'cdr_id' => $postData['cdr_id'],
 'updated_date' => $postData['updated_date_u'],

 'updated_by' => $postData['updated_by_u'],

 'country_id' => $postData['country_id']
);

 }

 /**

 * to Correspondent Bank ...
 */

 $postData['correspondent_bank'] = 1;

 $bank = $this->ObjectDao->banks(null, true);

 if(isset($bank->ip))

 $bankCoo = $this->connectiontoserverAction($postData, $bank->ip);

 if(isset($postData['remittance']) && $bankCoo)

 $changeStauts = $this->ObjectDao->changeStauts($callback->id, 1, $callback->country_id);
 elseif(isset($postData['remittance']) && $bankCoo == 6)

 {

 $changeStauts = $this->ObjectDao->changeStauts($callback->id, 6, $callback->country_id);

 $value = number_format(6);

 print($value);die;
 }

 elseif(isset($postData['remittance']) && !$bankCoo)

 $changeStauts = $this->ObjectDao->changeStauts($callback->id, 5, $callback->country_id);

 if(!isset($postData['remittance']))
 {

 /**

 * to Receiver Bank ...
 */

 $getClient = $this->ObjectDao->getClient($postData['dst_MOPid']);

 if($getClient->issuer_bank_ip)
 {

 $receiver = $postData;

 $receiver['receiver_bank'] = 1;

 $receiverBankIp = $getClient->issuer_bank_ip;

 $bankCoo = $this->connectiontoserverAction($receiver, $receiverBankIp);
 }

 //Zend_Debug::dump($bank);die('dd 54 ALA');

 $phoneDao = MOP_Model_Dao_Factory::getInstance()->setModule('client')->getLogDao();

 $phoneDao->setDbConnection($this->conn);
 $cdrRecord = $phoneDao->insertCdr($cdr, $cdr_comm, $cdr_comm_updated);

 }

 die;

 }

Adding the record in the operator after a successful transaction we use

addtooperatorAction function. We call banks function from Dao->pdo-

99

>mysql->Client.php to get bank_id from the bank. We send data to bank

(index.php/add-client-waiting) to make call-back for client using

connectiontoserverAction function. We call changeStauts function

from Dao->pdo->mysql->Client.php to change status for cdr row depending on value

that is retrieved from the bank. After that we call getClient function from Dao-

>pdo->mysql->Client.php to get client information. We call insertCdr function

from Dao->pdo->mysql-> Log.php to insert call information to cdr, cdr_commission,

cdr_commission_updated tables.

100

Listing A.4: AutoaddcdrAction Function in File Client.php.
function autoaddcdrAction() {

 $getTempTable = $this->ObjectDao->getTempTable();

 $reuest = $this->getRequest();

 if($reuest->isPost())

 {
 $post = $reuest->getPost();

 //

 if(isset($post['respose']))
 $respose_false = $post['respose'];

 }

 foreach($getTempTable as $row)

 {

 $fields = explode('*',$row->data);
 //Zend_Debug::dump($fields);die;

 $phone_number = $fields[0];

 $MOP_reciver_id = $fields[1];
 $MOP_sender_id = $fields[2];

 $amount = $fields[3];

 $type = $fields[4];
 $method = $fields[5];

 $account = $fields[6];
 $currency = $fields[7];

 /**
 * Phone_Number*MOP_Reciver*MOP_Sender*Amount*Type*Method*Account*Currency*Extension*Trx_way

 */

 if (isset($fields[8]))

 $extension = $fields[8];

 else
 $extension = '';

 if (isset($fields[9]))
 $trxWay = $fields[9];

 else

 $trxWay = '';

 /**
 *

 */

 if($extension && is_numeric($extension))
 $extension = "extension=$extension";

 else

 $extension = '';

 if(!is_numeric($phone_number) ||
 !is_numeric($MOP_reciver_id) ||

 !is_numeric($MOP_sender_id) ||

 !is_numeric($amount)
)

 {

 //$value = number_format(0);
 //print($value);

 //die;

 }
 else

 {

 $banks = $this->checkBankesAction($MOP_sender_id, $MOP_reciver_id);

 if(!$account)

 $account = 1;

 $clientReceiver = $this->ObjectDao->getClient($MOP_reciver_id);

 $MOP_receiver = substr($MOP_reciver_id, 0, 3);

 $MOP_sender = substr($MOP_sender_id, 0, 3);

 if($type == 3 && $method == 3)

 {//bill trx

101

 $type = 3;
 $method = 3;

 $extension = "$fields[8]";
 }

 if($type == 14 && $method == 14)

 {
 $type = 14;

 $method = 14;

 }
 elseif(isset($clientReceiver->user_type))

 {//if exist then the trancefer is local

 $type = $clientReceiver->user_type;
 $method = $clientReceiver->user_type;

 }

 elseif($MOP_sender != $MOP_receiver)
 {//if not the trancefer is remetance

 $type = 13;

 $method = 13;
 }

 $transactionLast = $this->ObjectDao->addcdrclientwaiting($phone_number,

 $MOP_reciver_id,

 $MOP_sender_id,

 $amount,
 null,

 $type,
 $method,

 $trxWay,

 null,
 $banks['issuer_bank'],

 $banks['receiver_bank'],

 $account,
 $currency,

 $extension);

 /**

 * commission
 */

 $this->commissionAction($amount, $type, $banks['client_id_issuer'], $banks['issuer_bank'], $transactionLast);

 /**
 *

 */

 if(!$transactionLast)

 {

 //$value = number_format(0);
 //print($value);

 }

 else
 {

 if(!isset($respose_false))

 {
 $value = number_format($transactionLast);

 print($value);

 }
 }

 }

 /**
 *

 */

 $getTempTable = $this->ObjectDao->deleteTempTable($row->id);

 //$value = number_format(1);

 //print($value);

 //die;
 }

 //$value = number_format(00);
 //print($value);

 die;

 }

102

When a transaction is created, the information of this transaction is inserted in the

temp table to which we get using the getTempTable function. We call

checkBankes function from Dao->pdo->mysql->Client.php to get the sender and

receiver banks. We call the getClient function from Dao->pdo->mysql-

>Client.php to select client information and issuer_bank_ip from client bank table.

We call the addcdrclientwaiting function from Dao->pdo->mysql-

>Client.php to insert call information into the cdr table. We call trxComm function

from Dao->pdo->mysql->Client.php to get commission information. We call

addTrxComm function from Dao->pdo->mysql->Client.php; inside this function we

call getDefaultOperator to insert commission info to cdr_commission table.

103

Listing A.5: CallbackstatusAction Function in File Client.php.
function callbackstatusAction($status=null,$ip=null,$id=null)
 {

 $reuest = $this->getRequest();
 if($reuest->isPost())

 {

 $post = $reuest->getPost();
 //Zend_Debug::dump($post);die;

 if(isset($post['respose']))

 $respose_false = $post['respose'];
 }

 $sms = $this->ObjectDao->smsTransaction();
 if($sms)

 {

 foreach($sms as $row)
 {

 $details = explode('*',$row->keyword);

 if(count($details) && $details[0] && $details[1] && $details[2])

 {

 $senderPhone = $row->phone;
 $MOPSender = $this->ObjectDao->getRecordeByPhone($senderPhone);

 $MOPSender = $MOPSender->MOP_id;
 }

 else

 continue;

 $MOPReceiver = $details[0];

 $type = $details[1];
 $amount = $details[2];

 if(count($details) == 4)

 $billNumber = $details[3];

 /******************/

 $client = $this->ObjectDao->getClient($MOPReceiver);

 if ($client && $type == 1)
 {

 $type = $client->user_type;

 }
 elseif($client && $type == 2)

 {

 $AgentDao = MOP_Model_Dao_Factory::getInstance()->setModule('agent')->getAgentDao();

 $AgentDao->setDbConnection($this->conn);

 $agent = $AgentDao->getByMOPId($MOPReceiver);

 if($agent->agent_id)

 $extension = "agent=$agent->agent_id";

 $type = 3;

 $method = 3;

 }

 if(!$client)

 {

 //$client = $this->checkMOPidremittanceAction($MOPReceiver);
 $type = 13;

 }

 if(!isset($extension))
 $extension = '';

 $data = "$senderPhone*$MOPReceiver*$MOPSender*$amount*$type*$type*1*1*$extension*";

 $data_array = array(

 'id' => null,
 'section_id' => '1',

 'data' => $data);

104

 $insert = $this->ObjectDao->insertTemp($data_array);

 $ip_sms = $this->ObjectDao->getCountry("status='1'");
 $cdr_url = 'http://'.$ip_sms->operator_ip . $this->view->url(array(),'client_client_autoaddcdr',true);

 $response = $this->excuteurlAction($cdr_url,null,false);

 //$this->excuteurlAction($urlCallBack);

 /******************/
 $smsUpdate = $this->ObjectDao->smsUpdate($row->id);

 }

 }

 if($id && $ip)
 $records = $this->ObjectDao->checkTransactionStatus($status,$id);

 else

 $records = $this->ObjectDao->checkTransactionStatus($status);

 //Zend_Debug::dump($records);die;

 $ip_status = false;

 if($ip)

 {

 $ip = $ip;
 $ip_status = true;

 }

 foreach($records as $record)

 {
 if(!$ip_status)

 $ip = $record->issuer_bank_ip;

 $getClientAccount = $this->getClientAccountAction($record);

 //Zend_Debug::dump($getClientAccount);die('dd');

 $record->account_sender = $getClientAccount['sender'];

 $record->account_receiver = $getClientAccount['receiver'];

 /**

 *

 * [IF (Transaction in the local country but sender bank deferent from receiver bank)
 * NOTE: IF $record->receiver_ip == null then the trx is Remittance]

 * ELSEIF (Trx is Remittance)

 * ELSE (sender bank the same receiver bank so i don't need to send the record to CB')
 *

 */

 if($record->receiver_ip && $record->issuer_bank != $record->receiver_bank) {
 // sender

 $bank = $this->connectiontoserverAction($record, $ip, true);

 // receiver

 $receiver = $record;
 $receiver->receiver_bank = 1;

 $bank = $this->connectiontoserverAction($receiver, $record->receiver_ip, true);

 // CB

 $cb = $record;

 $cb->correspondent_bank = 1;
 $bank = $this->connectiontoserverAction($cb, $record->c_bank, true);

 }

 elseif(!$record->receiver_ip) {

 // sender

 $bank = $this->connectiontoserverAction($record, $ip, true);

 // CB
 $cb = $record;

 $cb->correspondent_bank = 1;

 $bank = $this->connectiontoserverAction($cb, $record->c_bank, true);

 /**

 * send trx to another operator
 */

 $receiver = $record;

 $receiver->receiver_bank = 1;

105

 $country_code_receiver = substr($receiver->dst_MOPid, 0, 3);

 $country_code_sender = substr($MOP_sender, 0, 3);

 //Zend_Debug::dump($cdrRecord);die('d52828d');
 if($country_code_receiver != $country_code_sender)

 {

 $getCountry = $this->ObjectDao->getCountry("code = '$country_code_receiver'");

 if(isset($getCountry->operator_ip) && $getCountry->operator_ip)

 {
 $operator_ip = $getCountry->operator_ip;

 $cdrRecord = $this->connoperatorAction($cdrRecord, $operator_ip);

 }
 //Zend_Debug::dump($getCountry);die('dd');

 }

 /**
 * end

 */

 }

 else

 {

 if(isset($ip->operator_ip))

 $ip = $ip->operator_ip;

 $bank = $this->connectiontoserverAction($record, $ip,true);
 }

 }

 if(!$status)

 die;
 }

We call smsTransaction function from Dao->pdo->mysql->Client.php to get all

rows from received_sms table where status =’0’. We call insertTemp function to

insert SMS information to temp table. excuteurlAction is used to send post

request to autoaddcdr, waitingcallback function in the operator. We call

checkTransactionStatus function to insert in the cdr at the bank.

106

Listing A.6: ChangestatusAction Function in File Client.php.
function changestatusAction()
 {

 $request = $this->getRequest();

 $postData = $request->getPost();

 //$phone = $postData['phone'];

 $MOPid = $postData['MOPid'];

 $id = $postData['id'];

 $status = $postData['status'];

// $MOPid = '1000056429';

// $id = '72';
 $callback = $this->ObjectDao->selectcdrclientwaiting(null, null, "src_MOPid = '$MOPid' AND id = '$id' AND (status =

'2' OR status = '3') ");

 /**

 * if request Credit send number to the client
 */

 if(isset($callback) && $callback->trx_method == 9)
 {

 $catID = $callback->extra_data;

 $catID = str_replace('category_id=','',$catID);

 //Zend_Debug::dump();die;

 $this->sendcreditsmsAction($catID,$callback->src);

 }

 /**

 * if trx methode = 3 -> the trx to bill bayment :)
 * here the extra data form = agent=[AGENT ID]

 */

 if(isset($callback) && $callback->trx_method == 3)
 {

 $billData = $callback->extra_data;

 $billData = explode('=',$billData);

 if(count($billData) == 2)

 {// if count = 2 then there only AgentID
 $conn = MOP_Db_Connection::factory()->getMasterConnection();

 $agentDao = MOP_Model_Dao_Factory::getInstance()->setModule('agent')->getAgentDao();

 $agentDao->setDbConnection($conn);

 $agentDetails = $agentDao->getById($billData[1]);

 $data = array('agent_id'=> $billData[1]);

 $agent = $agentDao->updateAgent($data);

 if($agentDetails->conn_type == 4)

 $send_data = $this->directconnectionAction($agentDetails->linklink,array('MOP_id'=> $callback->src_MOPid));

 }

 elseif(count($billData) == 4 && $billData[2] == 'bill_number')
 {

 $conn = MOP_Db_Connection::factory()->getMasterConnection();

 $agentDao = MOP_Model_Dao_Factory::getInstance()->setModule('agent')->getAgentDao();
 $agentDao->setDbConnection($conn);

 $agentDetails = $agentDao->getById($billData[1]);

 $data = array('agent_id'=> $billData[1],'bill_number' => $billData[3],'MOP_id' => $MOPid);

 $agent = $agentDao->updateAgent($data);

 if($agentDetails->conn_type == 4)
 $send_data = $this->directconnectionAction($agentDetails->link,$data);

 if($agentDetails->conn_type == 5)

107

 {
 $isoMessage = $billData[1].''.$MOPid.''.$billData[3];

 $data = array('iso'=>$isoMessage);

 $send_data = $this->directconnectionAction($agentDetails->link,$data);
 }

 }
 //Zend_Debug::dump();die;

 }

 if($callback)

 {

 $changeStauts = $this->ObjectDao->changeStauts($callback->id, $status, $callback->country_id);

 if(isset($postData['remittance']))

 {
 /**

 *

 */
 $country_code_receiver = substr($callback->dst_MOPid, 0, 3);

 $getCountry = $this->ObjectDao->getCountry("code = '$country_code_receiver'");

 if(isset($getCountry->operator_ip))

 {

 $operator_ip = $getCountry->operator_ip;

 $callback->remittance = true;
 $cdrRecord = $this->connoperatorAction($callback, $operator_ip);

 if($cdrRecord == 6)

 {

 $changeStauts = $this->ObjectDao->changeStauts($callback->id, 6, $callback->country_id);
 }

 }

 /**
 *

 */

 }

 $value = number_format(1);

 print($value);die;

 }
 else

 {

 $value = number_format(0);
 print($value);die;

 }

 }

changestatusAction is used to get value from the bank to check if

transaction needs to make any changes. We call selectcdrclientwaiting

function to get transaction from cdr table. We call getById function from agent

module Dao->pdo->mysql->Agent.php to get agent information depending on

agent_id from agent table. We call updateAgent function to update agent

information depending on agent_id from agent_details table. We create a connection

and send information by using the directconnectionAction function. We call

108

changeStauts function from Dao->pdo->mysql->Client.php to change the status

for a cdr row depending on the value that is retrieved from the bank.

connoperatorAction sends data to bank addtooperator function.

109

Listing A.7: SendtrxrecieverbankAction Function in File Client.php.
function sendtrxreciverbankAction() {

 $request = $this->getRequest();

 $postData = $request->getPost();

 if($postData['MOPid'])

 {
 $getClient = $this->ObjectDao->getClient($postData['MOPid']);

 $cdr_id = $postData['id'];

 $phoneDao = MOP_Model_Dao_Factory::getInstance()->setModule('client')->getLogDao();

 $phoneDao->setDbConnection($this->conn);
 //$cdrRecord = $phoneDao->getById($cdr_id, true);

 $cdrRecord = $phoneDao->getRecorde($cdr_id);

 $MOP_sender = $cdrRecord->src_MOPid;

 $country_code_receiver = substr($postData['MOPid'], 0, 3);
 $country_code_sender = substr($MOP_sender, 0, 3);

 //Zend_Debug::dump($cdrRecord);die('d52828d');

 if($country_code_receiver != $country_code_sender)
 //if(1)

 {

 $getCountry = $this->ObjectDao->getCountry("code = '$country_code_receiver'");

 if(isset($getCountry->operator_ip))

 {
 //$getRecord = $phoneDao->getRecorde($cdr_id);

 $operator_ip = $getCountry->operator_ip;
 $cdrRecord = $this->connoperatorAction($cdrRecord, $operator_ip);

 }

 //Zend_Debug::dump($getCountry);die('dd');
 }

 else

 $this->connectiontoserverAction($cdrRecord, $getClient->issuer_bank_ip);

 /**

 * to Correspondent Bank ...
 */

 /*$cdrRecord->correspondent_bank = 1;

 $bank = $this->ObjectDao->banks(null, true);

 if(isset($bank->ip))

 $bankCoo = $this->connectiontoserverAction($cdrRecord, $bank->ip);
 */

 $value = number_format(1);

 print($value);die;
 }

 else

 {
 $value = number_format(0);

 print($value);die;

 }

 //print($ip);die;

 }

We send transaction to a bank by using the sendtrxreciverbankAction

function. We call getClient function from Dao->pdo->mysql->Client.php to get

client information from the join of client table and bank table on bank_id. We call

110

the getRecorde function from the client module Dao->pdo->mysql-> Log.php to

get transaction information depending. We call getCountry function from Dao-

>pdo->mysql->Client.php to get currency_code and currency_number.

connoperatorAction is used to send data to the bank by using the

addtooperator function. connectiontoserverAction is used to send

data (post method) to the bank (index.php/add-client-waiting) to make call-back for

the client.

111

Listing A.8: AddtooperatorAction Function in File Client.php.
function addtooperatorAction() {

 // adding the recorde in the operator in the other country (after successfully Trx)

 $request = $this->getRequest();

 $postData = $request->getPost();

 if(isset($postData['disposition']))

 {

 $disposition = $postData['disposition'];
 }

 else

 {
 $disposition = null;

 }

 if(isset($postData['extra_data']))

 {

 $extra_data = $postData['extra_data'];
 }

 else

 {
 $extra_data = null;

 }

 $cdr = array(

 'id' => $postData['cdr_id'],
 'duration' => $postData['duration'],

 'dst_MOPid' => $postData['dst_MOPid'],

 'src_MOPid' => $postData['src_MOPid'],
 'issuer_bank' => $postData['issuer_bank'],

 'receiver_bank' => $postData['receiver_bank'],

 'amount' => $postData['amount'],
 'start' => $postData['start'],

 'answer' => $postData['answer'],

 'end' => $postData['end'],
 'src' => $postData['src'],

 'clid' => $postData['clid'],

 'channel' => $postData['channel'],
 'billsec' => $postData['billsec'],

 'disposition' => $disposition,

 'status' => $postData['status'],
 'trx_method' => $postData['trx_method'],

 'trx_type' => $postData['trx_type'],

 'extra_data' => $extra_data,
 'country_id' => $postData['country_id']

);

 if(isset($postData['trx_type_u']))

 {

 $updated = 1;
 }

 else

 {
 $updated = 0;

 }

 $cdr_comm = array(

 'trx_type' => $postData['trx_type'],

 'client_id' => $postData['client_id'],
 'MOP_comm' => $postData['MOP_comm'],

 'bank_comm' => $postData['bank_comm'],

 'merchant_comm' => $postData['merchant_comm'],
 'amount_sender' => $postData['amount_sender'],

 'amount_receiver' => $postData['amount_receiver'],

 'cdr_id' => $postData['cdr_id'],
 'updated' => $updated,

 'country_id' => $postData['country_id']

);

 $cdr_comm_updated = null;

 if(isset($postData['trx_type_u']))
 {

 $cdr_comm_updated = array(

112

 'trx_type' => $postData['trx_type_u'],
 'client_id' => $postData['client_id_u'],

 'MOP_comm' => $postData['MOP_comm_u'],

 'bank_comm' => $postData['bank_comm_u'],
 'amount' => $postData['amount_u'],

 'amount_sender' => $postData['amount_sender_u'],

 'cdr_id' => $postData['cdr_id'],
 'updated_date' => $postData['updated_date_u'],

 'updated_by' => $postData['updated_by_u'],

 'country_id' => $postData['country_id']
);

 }

 /**

 * to Correspondent Bank ...
 */

 $postData['correspondent_bank'] = 1;

 $bank = $this->ObjectDao->banks(null, true);

 if(isset($bank->ip))

 $bankCoo = $this->connectiontoserverAction($postData, $bank->ip);

 if(isset($postData['remittance']) && $bankCoo)
 $changeStauts = $this->ObjectDao->changeStauts($callback->id, 1, $callback->country_id);

 elseif(isset($postData['remittance']) && $bankCoo == 6)
 {

 $changeStauts = $this->ObjectDao->changeStauts($callback->id, 6, $callback->country_id);

 $value = number_format(6);

 print($value);die;

 }
 elseif(isset($postData['remittance']) && !$bankCoo)

 $changeStauts = $this->ObjectDao->changeStauts($callback->id, 5, $callback->country_id);

 if(!isset($postData['remittance']))

 {
 /**

 * to Receiver Bank ...

 */
 $getClient = $this->ObjectDao->getClient($postData['dst_MOPid']);

 if($getClient->issuer_bank_ip)

 {
 $receiver = $postData;

 $receiver['receiver_bank'] = 1;

 $receiverBankIp = $getClient->issuer_bank_ip;

 $bankCoo = $this->connectiontoserverAction($receiver, $receiverBankIp);

 }

 //Zend_Debug::dump($bank);die('dd 54 ALA');

 $phoneDao = MOP_Model_Dao_Factory::getInstance()->setModule('client')->getLogDao();

 $phoneDao->setDbConnection($this->conn);

 $cdrRecord = $phoneDao->insertCdr($cdr, $cdr_comm, $cdr_comm_updated);
 } die; }

113

Appendix B: Critical Code for the “Operator” module of the MOP

Prototype

In this appendix, we give critical sections of the code in the “Operator” module.

 Listing B.1: MOP Operator Helper.
namespace App\Helpers;

use App\Bank;

use App\Transaction;

use DateTime;
class Helper

{

 static public function callApi($method,$url,$data)
 {

 try {

 $client = new \GuzzleHttp\Client();
 if ($method == "POST") {

 $response = $client->post($url, ['form_params' => $data]);

 $reason = $response->getReasonPhrase();

 if ($reason == "OK")
 return json_decode($response->getBody()->getContents());

 return false;

 } elseif ($method == "GET") {

 $response = $client->request($method, $url);
 $reason = $response->getReasonPhrase();

 if ($reason == "OK") {
 $response = json_decode($response->getBody()->getContents());

 return $response;

 }
 }

 } catch (\Throwable $th) {

 return false ;
 }

 }

 static public function getUrlApi($bank,$operation)

 {
 $bank = Bank::find($bank);

 if($bank){

 return $bank->ip.$operation;
 }else {

 return false;

 }
 }

 static public function addTransaction($transaction)
 {

 $transactionM = Transaction::find($transaction->id);

 if(!$transactionM)
 {

 $transactionM = new Transaction;

 $transactionM->id = $transaction->id;
 }

 $transactionM->sender = $transaction->sender;
 $transactionM->is_bank = $transaction->is_bank;

 $transactionM->receiver = $transaction->receiver;

 $transactionM->status = $transaction->status;

 $transactionM->type = $transaction->type;

114

 $transactionM->amount = $transaction->amount;

 $transactionM->cancelation = $transaction->cancelation;
 $transactionM->bank = $transaction->bank;

 $transactionM->start_time = $transaction->start_time;

 $transactionM->end_time = $transaction->end_time;
 $transactionM->save();

 }

 static public function getStatus($status) {

 switch($status){
 case 0 : return "Success" ;

 case 1 : return "Failed" ;

 case 2 : return "pending" ;
 case 3 : return "Check Customers" ;

 case 4 : return "Ask Pin Code";

 case 5 : return "Check Pin Code";
 }

 }

 static public function sendSMS($mobileNumber,$text,$senderId = "TestApp"){

 //API URL

 $message = urlencode($text);

$url="http://josmsservice.com/smsonline/msgservicejo.cfm?numbers=".$mobileNumber.",&senderid=FlexService&AccName=
flexserv&AccPass=flexserv123&msg=".$message."&requesttimeout=5000000";

 $response = self::callApi("GET",$url,null);

 if($response)
 return $response;

 }

 static public function format_interval($start_date,$end_date) {
 $first_date = new DateTime($start_date);

 $second_date = new DateTime($end_date);

 $interval = $first_date->diff($second_date);

 $result = "";

 if ($interval->y) { $result .= $interval->format("%y years "); }
 if ($interval->m) { $result .= $interval->format("%m months "); }

 if ($interval->d) { $result .= $interval->format("%d days "); }

 if ($interval->h) { $result .= $interval->format("%h hours "); }
 if ($interval->i) { $result .= $interval->format("%i mins "); }

 if ($interval->s) { $result .= $interval->format("%s s "); }

 return $result;

 }

}

115

Listing B. 2: MOP Operator API.
 namespace App\Http\Controllers\Api;

use Illuminate\Http\Request;

use App\Http\Controllers\Controller;

use App\User;
use App\Bank;

use App\Transaction;

use App\Helpers\Helper;

use Illuminate\Support\Facades\Hash;

class ApiController extends Controller
{

 public function EditUser(Request $request){

 try {
 $user = User::find($request->id);

 $userMail = User::where('email',$request->email)->first();

 if($userMail)

 {

 if($userMail->id != $request->id){

 return response()->json([

 'message' => 'Email already exsit',

 'status' => false
]);

 }
 }

 if($user)

 {
 $user->phone_number = $request->phone_number;

 $user->national_id = $request->national_id;

 $user->name = $request->name;
 $user->save();

 return response()->json([

 'message' => 'User Edited !!',
 'status' => true

]);

 }else {
 return response()->json([

 'message' => 'User Does\'nt exsit !!',

 'status' => false
]);

 }

 } catch (\Throwable $th) {
 return response()->json([

 'message' => 'Error !',

 'status' => false,
 'object' => $th

]);

 }

 }

 public function AddUser(Request $request){

 $userc = User::where('email',$request->email)->first();

 if($userc)
 {

 return response()->json([

 'message' => 'Email Exist !!',
 'status' => false

]);

 }

 $pass = str_random(8);

 $codebank = $this->CodeBank($request->bank);
 $hashed_random_password = Hash::make($pass);

 $user = User::create([

 'name' => $request->name,

 'email' => $request->email,
 'account_number' => $codebank,

 'password' => $hashed_random_password,

 'bank' => $request->bank,

 'phone_number' => $request->phone_number,

116

 'national_id' => $request->national_id,

]);

 $text = "Hello ".$request->name." Your Account on OperatorBank Created Successufully : your password is: ".

 $pass;
 if($request->pin_code != 0)

 $text .= "|| Your pin code is :".$request->pin_code;

 Helper::sendSMS($request->phone_number,$text);
 return response()->json([

 'message' => 'User Added !!',

 'status' => true,
 'user' => $user,

]);

 }

 private function CodeBank($bank) {

 return $bank."BB".uniqid();

 }

 public function deleteUser($id)
 {

 $user = User::find($id);
 if($user)

 {

 Transaction::where('sender', $id)
 ->update(['sender' => $user->phone_number]);

 Transaction::where('receiver', $id)

 ->update(['sender' => $user->phone_number]);
 $user->delete();

 return response()->json([

 'message' => 'User Deleted !!',
 'status' => true,

]);

 }else {
 return response()->json([

 'message' => 'User doesn\'t exist !!',

 'status' => false,
]);

 }

 }

}

117

Listing B.3: MOP operator HomeController.

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Customer;
use App\Helpers\Helper;

use Validator;

use MercurySeries\Flashy\Flashy;
use App\Bank;

use App\Transaction;

use App\User;
use Illuminate\Support\Facades\URL;

use Illuminate\Support\Facades\Hash;

use DateTime;
use Illuminate\Support\Facades\Session;

class HomeController extends Controller

{
 /**

 * Create a new controller instance.

 *

 * @return void

 */

 public function __construct()
 {

 // $this->middleware('auth');
 }

 /**
 * Show the application dashboard.

 *

 * @return \Illuminate\Contracts\Support\Renderable
 */

 public function index()

 {
 $user = auth()->user();

 $data = null;

 $url = Helper::getUrlApi($user->bank,config("api.bank.getCustomer").$user->id);

 $data = Helper::callApi("GET",$url,null);
 $status = $data->status;

 if($data->status) {

 $data =$data->customer;

 return view('home',compact("data","user","status"));

 }
 $data =$data->message;

 return view('home',compact("data","user",'status'));

 }

 public function gettransaction()

 {
 $user = auth()->user();

 $transactions = null;

 $url = Helper::getUrlApi($user->bank,config("api.bank.gettransactions").$user->id);

 $transactions = Helper::callApi("GET",$url,null);

 $transactions = $transactions->transactions;

 // dd($transactions);

 return view('getTransactions',compact("transactions","user"));

 }

 public function addTransaction()

 {

 $user = auth()->user();
 if(!Session::has('transaction'))

 {

 $transactionM = new Transaction;

 $transactionM->id = time();

 $transactionM->sender = $user->id;

 $transactionM->status = 2;

118

 $transactionM->bank = $user->bank;

 $transactionM->cancelation = "Not Started";
 $transactionM->type = "OUT";

 $transactionM->receiver = "-";

 $transactionM->amount = "-";
 $transactionM->is_bank = false;

 $transactionM->start_time = date("Y-m-d H:i:s");

 $transactionM->end_time = date("Y-m-d H:i:s");
 $transactionM->save();

 session()->put('transaction', $transactionM->id);

 }

 $banks = Bank::get();

 return view('addTransaction',compact("user","banks"));

 }

 public function saveTransaction(Request $request)

 {

 Validator::make($request->all(), [

 'receiver' => 'required',

 'amount' => 'required',
 'pin_code' => 'required',

])->validate();
 /// Check Pin Code ///

 $transaction = Transaction::find(Session::get('transaction'));

 $transaction->status = 5;
 $transaction->cancelation = "Check Pin Code";

 $transaction->save();

 /// Check Pin Code ///
 $response = null;

 $data = $request->all();

 $user = auth()->user();
 $data['sender'] = $user->id;

 $data['type'] = 'OUT';

 $data['start_time'] = date("Y-m-d H:i:s");
 $is_bank = 0 ;

 if($user->bank == $request->bank){

 $is_bank = 1;
 }

 $data['senderphone'] = $user->phone_number;
 $data['is_bank'] = $is_bank;

 $data['idtrans'] = Session::get('transaction');

 $url = Helper::getUrlApi($user->bank,config("api.bank.addTransaction"));

 if($is_bank){

 $response = Helper::callApi("POST",$url,$data);
 if($response)

 {

 Helper::addTransaction($response->transactionOut);
 Helper::addTransaction($response->transactionIn);

 }else {

 Flashy::primary("There's a technical problem, please try again");
 return redirect(URL::previous());

 }

 $message = $response->message;
 } else {

 //dd($data);

 /*$url = Helper::getUrlApi($req->bank,config("api.bank.checkCustomer"). $data['receiver']);
 $checkreceiver = Helper::callApi("GET",$url,null);

 if(!$checkreceiver->status)

 Flashy::primary("The Receiver doesn't Exist !");
 return redirect(URL::previous());*/

 // var_dump($data);

 $responseIn = Helper::callApi("POST",$url,$data);

 if(!$responseIn)

 {
 Flashy::primary("There's a technical problem, please try again");

 return redirect(URL::previous());

 }
 $urlIn = Helper::getUrlApi($request->bank,config("api.bank.addTransactionin"));

 $data['sender'] = $user->phone_number;

119

 $data['type'] = 'IN';

 if($responseIn->status)
 {

 $responseOut = Helper::callApi("POST",$urlIn,$data);

 if(!$responseOut)
 {

 $dataroll['id'] = $responseIn->transactionOut->id;

 $UrlRoll = Helper::getUrlApi($user->bank,config("api.bank.rollbacktransaction"));
 $rollbackCall = Helper::callApi("POST",$UrlRoll,$dataroll);

 Flashy::primary($rollbackCall->message);
 return redirect(URL::previous());

 }else {

 if($responseOut->status)
 {

 $Urlend = Helper::getUrlApi($user->bank,config("api.bank.endtransactionsender"));

 $end = Helper::callApi("POST",$Urlend,$data);
 if(!$end)

 dd("there's a problem !!");

 }else {
 $dataroll['id'] = $responseIn->transactionOut->id;

 $UrlRoll = Helper::getUrlApi($user->bank,config("api.bank.rollbacktransaction"));

 $rollbackCall = Helper::callApi("POST",$UrlRoll,$dataroll);

 Flashy::primary($rollbackCall->message);
 return redirect(URL::previous());

 }

 }
 Helper::addTransaction($responseOut->transaction);

 }

 Helper::addTransaction($responseIn->transactionOut);
 $message = $responseIn->message;

 }

 session()->forget('transaction');

 Flashy::primary($message);

 return redirect(URL::previous());

 }

 public function profile(){

 $user = auth()->user();

 return view('profile',compact("user"));

 }

 public function editprofile(Request $request){

 $user = auth()->user();

 $obj_user = User::find($user->id);
 if($request['password'] != null)

 {

 $obj_user->password = Hash::make($request['password']);
 $obj_user->save();

 }

 Flashy::primary("Update information with success");
 return redirect(URL::previous());

 }

}

120

Listing B.4: Describe MOP Operator API Calls.

return [

 /*

 |--
 | Describe Api Calls

 |--

 |
 |

 |

 */

 'bank' => [

 'addCustomer' => "/api/savecustomerdetails",
 'getCustomer' => "/api/customer/",

 'gettransactions' => "/api/gettransaction/",

 'addTransaction' => "/api/addtransactionsender",
 'addTransactionin' => "/api/addtransactionreceiver",

 'checkCustomer' => "/api/checkcustomer/",

 'sendCustomerPin' => "/api/sendcustomerpin/",

 'endtransactionsender' => "/api/endtransactionsender/",

 'rollbacktransaction' => "/api/rollbacktransaction/",

],

];;

121

Listing B.5: Describe the MOP Operator Web route using API.
/*

|--
| Web Routes

|--

|
| Here is where you can register web routes for your application. These

| routes are loaded by the RouteServiceProvider within a group which

| contains the "web" middleware group. Now create something great!
|

*/

Auth::routes();

Route::post('/resetpassword', 'Auth\LoginController@resetpassword')->name('resetpassword');

Route::group(['middleware' => ['check.user','web']], function () {

 Route::get('/', 'HomeController@index')->name('home');
 Route::get('/addtransaction', 'HomeController@addTransaction')->name('transaction');

 Route::post('/addtransaction', 'HomeController@saveTransaction')->name('addtransaction');

 Route::get('/transactions', 'HomeController@gettransaction')->name('gettransaction');

 Route::post('/checkbeforesendpin', 'AjaxController@CheckBeforeSendPin')->name('checkbeforesendpin');

 Route::get('/profile', 'HomeController@profile')->name('profile');

 Route::post('/profile', 'HomeController@editprofile')->name('editprofile');

});

Route::group(['middleware' => ['check.admin','web']], function () {

 Route::get('/addbank', 'AdminController@bank')->name('bank');
 Route::post('/addbank', 'AdminController@addBank')->name('addbank');

});

122

Listing B.6: MOP Bank Helper.
namespace App\Helpers;

use App\Customer;

class Helper

{
 static public function callApi($method,$url,$data)

 {

 $client = new \GuzzleHttp\Client();
 if ($method == "POST") {

 $response = $client->post($url, ['form_params' => $data]);

 $reason = $response->getReasonPhrase();
 if ($reason == "OK")

 return json_decode($response->getBody()->getContents());

 return false;

 } elseif ($method == "GET") {
 $response = $client->request($method, $url);

 $reason = $response->getReasonPhrase();

 if ($reason == "OK") {

 $response = json_decode($response->getBody()->getContents());
 return $response;

 }
 }

 return true;
 }

 static public function sendSMS($mobileNumber,$text){
 $message = urlencode($text);

 //API URL

$url="http://josmsservice.com/smsonline/msgservicejo.cfm?numbers=".$mobileNumber.",&senderid=FlexService&AccName=

flexserv&AccPass=flexserv123&msg=".$message."&requesttimeout=5000000";

 $response = self::callApi("GET",$url,null);
 if($response)

 return $response;

 // init the resource

 // dd($response);

 //Print error if any
 }

 static public function SmsText($req,$status,$message,$whome = "sender"){

 if($whome == "sender")

 {

 if($status ==0)
 return "the transaction Completed with Success, You transfer ".$req->amount. " To ".

 $req->receiver;

 else {
 return "The transaction failed Cause: ".$message;

 }

 }else {
 $sender = Customer::find($req->sender);

 return "You recieved ".$req->amount. " USD From : ".$req->phone_number;

 }
 }

 static public function CheckPin($pin_code,$sender){

 if($sender->pin_code != 0)

 {

 if($sender->pin_code == $pin_code)

 return true;
 else

 return false;

 }else{
 if($sender->last_pin_code == $pin_code)

 return true;

 else
 return false;

 }

 }

}

123

Listing B.7: MOP Bank API.
namespace App\Http\Controllers\Api;

use App\Customer;

use App\Transaction;

use Illuminate\Http\Request;
use App\Http\Controllers\Controller;

use App\Helpers\Helper;

use DateTime;
class BankController extends Controller

{

 public function add_customer(Request $request){

 $customer = new Customer;

 $customer->id = $request->id;

 $customer->name = $request->name;
 $customer->account_number = $request->account_number;

 $customer->phone_number = $request->phone_number;

 $customer->national_id = $request->national_id;

 $customer->credit =$request->credit;

 $customer->email = $request->email;

 $customer->pin_code = $request->pin_code;
 $customer->limit_transfer = $request->limit_transfer;

 $customer->save();

 return response()->json([

 'message' => 'Customer Added !!',
 'customer' => $customer,

 'status' => true

]);

 }

 public function get_customer($id){

 $customerEntity = Customer::find($id);

 if($customerEntity){
 return response()->json([

 'customer' => $customerEntity,

 'status' => true
]);

 }else {

 return response()->json([
 'message' => 'Customer Doesn\'t find !!',

 'status' => false

]);
 }

 }

 public function check_customer($phone){

 $receiver = Customer::where('phone_number',$phone)->first();

 if($receiver){
 return response()->json([

 'customer' => $receiver,

 'status' => true

]);

 }else {

 return response()->json([
 'message' => 'Customer Doesn\'t find !!',

 'status' => false

]);
 }

 }

 public function get_transactions($id){

124

 $transactionEntity = Transaction::with('senderC')->with('receiverC')->where('receiver',$id)->orWhere('sender',$id)->get();
 if($transactionEntity->first()){

 return response()->json([

 'status' => true,
 'transactions' => $transactionEntity

]);

 }else {
 return response()->json([

 'status' => true,

 'transactions' => [],
]);

 }

 }

 public function add_transactionSender(Request $request) {

 $customerM = new Customer;
 $transactionM = new Transaction;

 $message = "Transaction Added Succesfully";

 $status = " ";
 $cstmr = $customerM->find($request->sender);

 $receiver = $request->receiver ;
 $isOnprocess = true;

 $transactionIn = null;

 $state = false;
 if(Helper::CheckPin($request->pin_code,$cstmr))

 {

 if($request->is_bank)
 {

 $receiver = $customerM->where('phone_number',$request->receiver)->first();

 if ($receiver) {
 $receiver = $receiver->id;

 // $this->addtransactionreceiver($request);

 } else {
 $message = "The Receiver Account doesn't exist ";

 $status = 1;

 $receiver = $request->receiver;
 $isOnprocess = false ;

 }

 }
 if($isOnprocess){

 if($cstmr->limit_transfer != 0 && $request->amount >= $cstmr->limit_transfer)
 {

 $message = "You across amount of limit transfer";

 $status = 1;
 }else {

 if ($cstmr->credit >= $request->amount)

 {
 $cstmr->update(["credit" => $cstmr->credit - $request->amount]);

 $status = 0;

 $state = true;
 if($request->is_bank)

 {

 $transactionIn = $this->addtransactionreceiver($request,$cstmr,$receiver,true);
 }

 }else {

 $message = "You don't have enough money to make this transaction";
 $status = 1;

 }

 }
 }

 }else {

 $message = "The pin code is wrong !";
 $status = 1;

 }

 $transactionM->id = $request->idtrans;
 $transactionM->sender = $cstmr->id;

 $transactionM->is_bank = $request->is_bank;

 $transactionM->receiver = $receiver;
 $transactionM->status = $status;

 $transactionM->type = $request->type;

125

 $transactionM->amount = $request->amount;

 $transactionM->start_time = $request->start_time;
 // $transactionM->end_time =new DateTime();

 $transactionM->end_time = date("Y-m-d H:i:s");

 $transactionM->cancelation =$message;
 $transactionM->bank = $request->bank;

 $transactionM->save();

 $text = Helper::SmsText($request,$status,$message);
 Helper::sendSMS($cstmr->phone_number,$text);

 if($transactionM->status == 0)

 {
 $text = Helper::SmsText($request,null,null,"receiver");

 Helper::sendSMS($request->receiver,$text);

 }

 return response()->json([
 'message' => $message,

 'transactionOut' =>$transactionM,

 'transactionIn' => $transactionIn,
 'status' => $state

]);

 }

 public function addtransactionreceiver($request,$cstmr,$receiver,$isIn)
 {

 $customerM = new Customer;

 $transactionM = new Transaction;
 if($isIn == true){

 $receiverE = $customerM->find($receiver);

 $receiverE->update(["credit" => $receiverE->credit + $request->amount]);
 $transactionM->id = time();

 $transactionM->sender = $cstmr->id;

 $transactionM->is_bank = $request->is_bank;
 $transactionM->receiver = $receiver;

 $transactionM->status = 0;

 $transactionM->type = 'IN';
 $transactionM->amount = $request->amount;

 $transactionM->start_time = $request->start_time;

 $transactionM->end_time = date("Y-m-d H:i:s");
 $transactionM->cancelation =' ';

 $transactionM->bank = $request->bank;

 $transactionM->save();
 return $transactionM;

 }else {

 $receiverE = $customerM->where('phone_number',$request->receiver)->first();
 $receiverE->update(["credit" => $receiverE->credit + $request->amount]);

 $transactionM->sender = $request->sender;
 $transactionM->is_bank = $request->is_bank;

 $transactionM->receiver = $receiverE->id;

 $transactionM->status =0;
 $transactionM->type = 'IN';

 $transactionM->start_time = date("Y-m-d H:i:s");

 $transactionM->end_time = date("Y-m-d H:i:s");
 $transactionM->amount = $request->amount;

 $transactionM->cancelation =' ';

 $transactionM->bank = $request->bank;
 $transactionM->save();

 return $transactionM;
 }

 }

 public function add_transactionReceiver(Request $request){

 $transactionM = $this->addtransactionreceiver($request,null,null,false);

 if($transactionM){

 $text = Helper::SmsText($request,null,null,"receiver");
 return response()->json([

 'status' => true,

 'transaction' => $transactionM
]);

 }else {

126

 return response()->json([

 'status' => false,
 'message' => "There's a problem!!!",

]);

 }

 }
 public function endtransactionsender($request){

 $customerM = new Customer;

 $cstmr = $customerM->find($request->sender);
 if($cstmr)

 {

 $cstmr->update(["credit" => $cstmr->credit - $request->amount]);
 return response()->json([

 'message' => "transaction end with success",

 'status' => true
]);

 }else {

 return response()->json([
 'message' => "customer doesn't exsit ",

 'status' => false

]);
 }

 }

 public function rollbacktransaction($request){

 $transactionM = new Transaction;
 $transaction = $transaction->find($request->id);

 if($transaction)

 {
 $transaction->update(["status" => 1,'cancelation' => "Transaction failed, Technical Error!"]);

 return response()->json([

 'message' => "Transaction failed, Technical Error!",
 'status' => true

]);

 }else {
 return response()->json([

 'message' => "transaction doesn't exsit ",

 'status' => false
]);

 }

 }

 public function sendCustomerPin($phone){

 $sender = Customer::where('phone_number',$phone)->first();

 if($sender){

 if($sender->pin_code != 0)
 {

 $text = "The pin code for the transaction is : ". $sender->pin_code;

 Helper::sendSMS($phone,$text);
 }else {

 $length = 4;

 $randomletter = substr(str_shuffle("912837465"), 0, $length);
 $sender->last_pin_code = $randomletter ;

 $sender->save();

 $text = "The pin code for the transaction is : ". $sender->last_pin_code;
 Helper::sendSMS($phone,$text);

 }

 return response()->json([
 'status' => true,

 'pin_code' => $sender->last_pin_code

]);

 }else {

 return response()->json([
 'message' => 'Customer Doesn\'t find !!',

 'status' => false

]);
 }

 return response()->json([

 'message' => 'Error !!',
 'status' => false

]); }}

127

Listing B.8: MOP Bank Customer Controller.
 namespace App\Http\Controllers;

use App\Customer;
use App\Transaction;

use Illuminate\Http\Request;

use Validator;
use App\Helpers\Helper;

use MercurySeries\Flashy\Flashy;

use Illuminate\Support\Facades\URL;
class CustomerController extends Controller

{

 /**

 * Create a new controller instance.

 *
 * @return void

 */

 public function __construct()
 {

 $this->middleware('auth');

 }

 /**

 * Display a listing of the resource.
 *

 * @return \Illuminate\Http\Response
 */

 public function index()

 {
 $customers = Customer::All();

 return view('customers',compact("customers"));

 }

 /**

 * Show the form for creating a new resource.
 *

 * @return \Illuminate\Http\Response

 */
 public function create()

 {

 return view('add');
 }

 /**
 * Store a newly created resource in storage.

 *

 * @param \Illuminate\Http\Request $request
 * @return \Illuminate\Http\Response

 */

 public function store(Request $request)
 {

 Validator::make($request->all(), [

 'name' => ['required', 'string', 'max:255'],
 'pin_code' => ['required', 'string', 'max:6'],

 'phone_number' => ['required', 'string', 'max:255'],

 'national_id' => ['required', 'string', 'max:255'],
 'credit' => ['required', 'Numeric'],

 'limit_transfer' => ['required', 'Numeric'],

 'email' => ['required', 'string', 'email', 'max:255', 'unique:users'],
])->validate();

 $data =$request->all();

 $data['bank'] = 1 ;

 $customer = new Customer;

 $url = env("URL_OPERATOR")."adduser";

 $response = Helper::callApi("POST",$url,$data);
 if($response){

 if($response->status)

 {
 $customer->id = $response->user->id;

 $customer->name = $request->name;

 $customer->account_number = $response->user->account_number;
 $customer->phone_number = $request->phone_number;

 $customer->national_id = $request->national_id;

 $customer->credit =$request->credit;

 $customer->email = $request->email;

128

 $customer->pin_code = $request->pin_code;

 $customer->limit_transfer = $request->limit_transfer;
 $customer->save();

 Flashy::primary("Customer Added with success ");

 return redirect(URL::previous());
 }else {

 Flashy::primary($response->message);

 return redirect(URL::previous());
 }

 }else {

 Flashy::primary("There's a technical problem, please try again");
 return redirect(URL::previous());

 }

 }

 /**

 * Display the specified resource.

 *
 * @param int $id

 * @return \Illuminate\Http\Response

 */
 public function show($id)

 {
 $customer = Customer::find($id);

 if($customer)

 return view("show",compact("customer"));

 abort(404);

 }

 /**

 * Show the form for editing the specified resource.
 *

 * @param int $id

 * @return \Illuminate\Http\Response
 */

 public function edit($id)

 {
 $customer = Customer::find($id);

 if($customer)

 return view("edit",compact("customer"));

 abort(404);

 }

 /**

 * Update the specified resource in storage.
 *

 * @param \Illuminate\Http\Request $request

 * @param int $id
 * @return \Illuminate\Http\Response

 */

 public function update(Request $request, $id)
 {

 $customer = Customer::find($id);

 Validator::make($request->all(), [
 'name' => ['required', 'string', 'max:255'],

 'pin_code' => ['required', 'string', 'max:6'],

 'phone_number' => ['required', 'string', 'max:255'],
 'national_id' => ['required', 'string', 'max:255'],

 'credit' => ['required', 'Numeric'],

 'limit_transfer' => ['required', 'Numeric'],
 'email' => ['required', 'string', 'email', 'max:255', 'unique:users,email,'.$customer->email],

])->validate();

 $data =$request->all();
 $data['id'] =$id;

 $url = env("URL_OPERATOR")."edituser";
 $response = Helper::callApi("POST",$url,$data);

 if($response){

 if($response->status)
 {

 $customer->name = $request->name;

129

 $customer->phone_number = $request->phone_number;

 $customer->national_id = $request->national_id;
 $customer->credit =$request->credit;

 $customer->email = $request->email;

 $customer->pin_code = $request->pin_code;
 $customer->limit_transfer = $request->limit_transfer;

 $customer->save();

 Flashy::primary("Customer Edited with success ");
 return redirect(URL::previous());

 }else {

 Flashy::primary($response->message);
 return redirect(URL::previous());

 }

 }else {
 Flashy::primary("There's a technical problem, please try again");

 return redirect(URL::previous());

 }
 }

 /**
 * Remove the specified resource from storage.

 *

 * @param int $id
 * @return \Illuminate\Http\Response

 */
 public function destroy($id)

 {

 $customer = Customer::find($id);
 if($customer)

 {

 Transaction::where('sender', $id)
 ->update(['sender' => $customer->phone_number]);

 Transaction::where('receiver', $id)

 ->update(['sender' => $customer->phone_number]);
 $url = env("URL_OPERATOR")."deleteuser/".$id;

 $response = Helper::callApi("GET",$url,null);

 if($response) {
 if($response->status)

 {

 $customer->delete();
 Flashy::primary("Customer Edited with success ");

 return redirect(URL::previous());

 }else {
 Flashy::primary($response->message);

 return redirect(URL::previous());

 }
 }else {

 Flashy::primary("There's a technical problem, please try again");

 return redirect(URL::previous());
 }

 }

 abort(404);

 }

}

130

Listing B.9: MOP Bank API Calls
 use Illuminate\Http\Request;

/*

|--

API Routes

|

| Here is where you can register API routes for your application. These
| routes are loaded by the RouteServiceProvider within a group which

| is assigned the "api" middleware group. Enjoy building your API!

|
*/

 Route::get('/customer/{id}', 'Api\BankController@get_customer')->name('getcostumer');
 Route::get('/checkcustomer/{phone}', 'Api\BankController@check_customer')->name('checkcustomer');

 Route::get('/sendcustomerpin/{phone}', 'Api\BankController@sendCustomerPin')->name('sendcustomerpin');

 Route::post('/savecustomerdetails', 'Api\BankController@add_customer')->name('addcostumer');
 Route::post('/endtransactionsender', 'Api\BankController@end_transactionSender')->name('end_transactionSender');

 Route::post('/rollbacktransaction', 'Api\BankController@rollbacktransaction')->name('rollbacktransaction');

 Route::post('/addtransactionsender', 'Api\BankController@add_transactionSender')->name('addtransactionsender');

 Route::get('/gettransaction/{id}', 'Api\BankController@get_transactions')->name('gettransaction');

 Route::post('/addtransactionreceiver', 'Api\BankController@add_transactionReceiver')->name('addtransactionreceiver');

131

Appendix C: Critical Code for the “Bank” module of the MOP

Prototype

In this appendix, we give critical sections of the code in the “Bank” module.

Listing C.1: MOP Bank Helper.
namespace App\Helpers;

use App\Customer;

class Helper

{
 static public function callApi($method,$url,$data)

 {

 $client = new \GuzzleHttp\Client();

 if ($method == "POST") {

 $response = $client->post($url, ['form_params' => $data]);

 $reason = $response->getReasonPhrase();
 if ($reason == "OK")

 return json_decode($response->getBody()->getContents());

 return false;

 } elseif ($method == "GET") {
 $response = $client->request($method, $url);

 $reason = $response->getReasonPhrase();

 if ($reason == "OK") {

 $response = json_decode($response->getBody()->getContents());
 return $response;

 }

 }

 return true;

 }

 static public function sendSMS($mobileNumber,$text){

 $message = urlencode($text);
 //API URL

$url="http://josmsservice.com/smsonline/msgservicejo.cfm?numbers=".$mobileNumber.",&senderid=FlexService&AccName=
flexserv&AccPass=flexserv123&msg=".$message."&requesttimeout=5000000";

 $response = self::callApi("GET",$url,null);

 if($response)
 return $response;

 // init the resource
 // dd($response);

 //Print error if any

 }
 static public function SmsText($req,$status,$message,$whome = "sender"){

 if($whome == "sender")

 {

 if($status ==0)

 return "the transaction Completed with Success, You transfer ".$req->amount. " To ".

 $req->receiver;

 else {
 return "The transaction failed Cause: ".$message;

 }

 }else {
 $sender = Customer::find($req->sender);

 return "You recieved ".$req->amount. " USD From : ".$req->phone_number;

 }
 }

 static public function CheckPin($pin_code,$sender){

 if($sender->pin_code != 0)

 {

132

 if($sender->pin_code == $pin_code)

 return true;
 else

 return false;

 }else{
 if($sender->last_pin_code == $pin_code)

 return true;

 else
 return false;

 }

 }

}

133

Listing C.2: MOP Bank API.
namespace App\Http\Controllers\Api;

use App\Customer;

use App\Transaction;

use Illuminate\Http\Request;
use App\Http\Controllers\Controller;

use App\Helpers\Helper;

use DateTime;
class BankController extends Controller

{

 public function add_customer(Request $request){

 $customer = new Customer;

 $customer->id = $request->id;

 $customer->name = $request->name;
 $customer->account_number = $request->account_number;

 $customer->phone_number = $request->phone_number;

 $customer->national_id = $request->national_id;

 $customer->credit =$request->credit;

 $customer->email = $request->email;

 $customer->pin_code = $request->pin_code;
 $customer->limit_transfer = $request->limit_transfer;

 $customer->save();

 return response()->json([

 'message' => 'Customer Added !!',
 'customer' => $customer,

 'status' => true

]);

 }

 public function get_customer($id){

 $customerEntity = Customer::find($id);

 if($customerEntity){
 return response()->json([

 'customer' => $customerEntity,

 'status' => true
]);

 }else {

 return response()->json([
 'message' => 'Customer Doesn\'t find !!',

 'status' => false

]);
 }

 }

 public function check_customer($phone){

 $receiver = Customer::where('phone_number',$phone)->first();

 if($receiver){
 return response()->json([

 'customer' => $receiver,

 'status' => true

]);

 }else {

 return response()->json([
 'message' => 'Customer Doesn\'t find !!',

 'status' => false

]);
 }

 }

 public function get_transactions($id){

134

 $transactionEntity = Transaction::with('senderC')->with('receiverC')->where('receiver',$id)->orWhere('sender',$id)->get();
 if($transactionEntity->first()){

 return response()->json([

 'status' => true,
 'transactions' => $transactionEntity

]);

 }else {
 return response()->json([

 'status' => true,

 'transactions' => [],
]);

 }

 }

 public function add_transactionSender(Request $request) {

 $customerM = new Customer;
 $transactionM = new Transaction;

 $message = "Transaction Added Succesfully";

 $status = " ";
 $cstmr = $customerM->find($request->sender);

 $receiver = $request->receiver ;
 $isOnprocess = true;

 $transactionIn = null;

 $state = false;
 if(Helper::CheckPin($request->pin_code,$cstmr))

 {

 if($request->is_bank)
 {

 $receiver = $customerM->where('phone_number',$request->receiver)->first();

 if ($receiver) {
 $receiver = $receiver->id;

 // $this->addtransactionreceiver($request);

 } else {
 $message = "The Receiver Account doesn't exist ";

 $status = 1;

 $receiver = $request->receiver;
 $isOnprocess = false ;

 }

 }
 if($isOnprocess){

 if($cstmr->limit_transfer != 0 && $request->amount >= $cstmr->limit_transfer)
 {

 $message = "You across amount of limit transfer";

 $status = 1;
 }else {

 if ($cstmr->credit >= $request->amount)

 {
 $cstmr->update(["credit" => $cstmr->credit - $request->amount]);

 $status = 0;

 $state = true;
 if($request->is_bank)

 {

 $transactionIn = $this->addtransactionreceiver($request,$cstmr,$receiver,true);
 }

 }else {

 $message = "You don't have enough money to make this transaction";
 $status = 1;

 }

 }
 }

 }else {

 $message = "The pin code is wrong !";
 $status = 1;

 }

 $transactionM->id = $request->idtrans;
 $transactionM->sender = $cstmr->id;

 $transactionM->is_bank = $request->is_bank;

 $transactionM->receiver = $receiver;
 $transactionM->status = $status;

 $transactionM->type = $request->type;

135

 $transactionM->amount = $request->amount;

 $transactionM->start_time = $request->start_time;
 // $transactionM->end_time =new DateTime();

 $transactionM->end_time = date("Y-m-d H:i:s");

 $transactionM->cancelation =$message;
 $transactionM->bank = $request->bank;

 $transactionM->save();

 $text = Helper::SmsText($request,$status,$message);
 Helper::sendSMS($cstmr->phone_number,$text);

 if($transactionM->status == 0)

 {
 $text = Helper::SmsText($request,null,null,"receiver");

 Helper::sendSMS($request->receiver,$text);

 }

 return response()->json([
 'message' => $message,

 'transactionOut' =>$transactionM,

 'transactionIn' => $transactionIn,
 'status' => $state

]);

 }

 public function addtransactionreceiver($request,$cstmr,$receiver,$isIn)
 {

 $customerM = new Customer;

 $transactionM = new Transaction;
 if($isIn == true){

 $receiverE = $customerM->find($receiver);

 $receiverE->update(["credit" => $receiverE->credit + $request->amount]);
 $transactionM->id = time();

 $transactionM->sender = $cstmr->id;

 $transactionM->is_bank = $request->is_bank;
 $transactionM->receiver = $receiver;

 $transactionM->status = 0;

 $transactionM->type = 'IN';
 $transactionM->amount = $request->amount;

 $transactionM->start_time = $request->start_time;

 $transactionM->end_time = date("Y-m-d H:i:s");
 $transactionM->cancelation =' ';

 $transactionM->bank = $request->bank;

 $transactionM->save();
 return $transactionM;

 }else {

 $receiverE = $customerM->where('phone_number',$request->receiver)->first();
 $receiverE->update(["credit" => $receiverE->credit + $request->amount]);

 $transactionM->sender = $request->sender;
 $transactionM->is_bank = $request->is_bank;

 $transactionM->receiver = $receiverE->id;

 $transactionM->status =0;
 $transactionM->type = 'IN';

 $transactionM->start_time = date("Y-m-d H:i:s");

 $transactionM->end_time = date("Y-m-d H:i:s");
 $transactionM->amount = $request->amount;

 $transactionM->cancelation =' ';

 $transactionM->bank = $request->bank;
 $transactionM->save();

 return $transactionM;
 }

 }

 public function add_transactionReceiver(Request $request){

 $transactionM = $this->addtransactionreceiver($request,null,null,false);

 if($transactionM){

 $text = Helper::SmsText($request,null,null,"receiver");
 return response()->json([

 'status' => true,

 'transaction' => $transactionM
]);

 }else {

136

 return response()->json([

 'status' => false,
 'message' => "There's a problem!!!",

]);

 }

 }
 public function endtransactionsender($request){

 $customerM = new Customer;

 $cstmr = $customerM->find($request->sender);
 if($cstmr)

 {

 $cstmr->update(["credit" => $cstmr->credit - $request->amount]);
 return response()->json([

 'message' => "transaction end with success",

 'status' => true
]);

 }else {

 return response()->json([
 'message' => "customer doesn't exsit ",

 'status' => false

]);
 }

 }

 public function rollbacktransaction($request){

 $transactionM = new Transaction;
 $transaction = $transaction->find($request->id);

 if($transaction)

 {
 $transaction->update(["status" => 1,'cancelation' => "Transaction failed, Technical Error!"]);

 return response()->json([

 'message' => "Transaction failed, Technical Error!",
 'status' => true

]);

 }else {
 return response()->json([

 'message' => "transaction doesn't exsit ",

 'status' => false
]);

 }

 }
 public function sendCustomerPin($phone){

 $sender = Customer::where('phone_number',$phone)->first();
 if($sender){

 if($sender->pin_code != 0)

 {
 $text = "The pin code for the transaction is : ". $sender->pin_code;

 Helper::sendSMS($phone,$text);

 }else {
 $length = 4;

 $randomletter = substr(str_shuffle("912837465"), 0, $length);

 $sender->last_pin_code = $randomletter ;
 $sender->save();

 $text = "The pin code for the transaction is : ". $sender->last_pin_code;

 Helper::sendSMS($phone,$text);
 }

 return response()->json([

 'status' => true,
 'pin_code' => $sender->last_pin_code

]);

 }else {
 return response()->json([

 'message' => 'Customer Doesn\'t find !!',

 'status' => false
]);

 }

 return response()->json([

 'message' => 'Error !!',

 'status' => false
]);

 }}

137

Listing C.3: MOP Bank Customer Controller.
 namespace App\Http\Controllers;

use App\Customer;
use App\Transaction;

use Illuminate\Http\Request;

use Validator;
use App\Helpers\Helper;

use MercurySeries\Flashy\Flashy;

use Illuminate\Support\Facades\URL;
class CustomerController extends Controller

{

 /**

 * Create a new controller instance.

 *
 * @return void

 */

 public function __construct()
 {

 $this->middleware('auth');

 }

 /**

 * Display a listing of the resource.
 *

 * @return \Illuminate\Http\Response
 */

 public function index()

 {
 $customers = Customer::All();

 return view('customers',compact("customers"));

 }

 /**

 * Show the form for creating a new resource.
 *

 * @return \Illuminate\Http\Response

 */
 public function create()

 {

 return view('add');
 }

 /**
 * Store a newly created resource in storage.

 *

 * @param \Illuminate\Http\Request $request
 * @return \Illuminate\Http\Response

 */

 public function store(Request $request)
 {

 Validator::make($request->all(), [

 'name' => ['required', 'string', 'max:255'],
 'pin_code' => ['required', 'string', 'max:6'],

 'phone_number' => ['required', 'string', 'max:255'],

 'national_id' => ['required', 'string', 'max:255'],
 'credit' => ['required', 'Numeric'],

 'limit_transfer' => ['required', 'Numeric'],

 'email' => ['required', 'string', 'email', 'max:255', 'unique:users'],
])->validate();

 $data =$request->all();

 $data['bank'] = 1 ;

 $customer = new Customer;

 $url = env("URL_OPERATOR")."adduser";

 $response = Helper::callApi("POST",$url,$data);
 if($response){

 if($response->status)

 {
 $customer->id = $response->user->id;

 $customer->name = $request->name;

 $customer->account_number = $response->user->account_number;
 $customer->phone_number = $request->phone_number;

 $customer->national_id = $request->national_id;

 $customer->credit =$request->credit;

 $customer->email = $request->email;

138

 $customer->pin_code = $request->pin_code;

 $customer->limit_transfer = $request->limit_transfer;
 $customer->save();

 Flashy::primary("Customer Added with success ");

 return redirect(URL::previous());
 }else {

 Flashy::primary($response->message);

 return redirect(URL::previous());
 }

 }else {

 Flashy::primary("There's a technical problem, please try again");
 return redirect(URL::previous());

 }

 }

 /**

 * Display the specified resource.

 *
 * @param int $id

 * @return \Illuminate\Http\Response

 */
 public function show($id)

 {
 $customer = Customer::find($id);

 if($customer)

 return view("show",compact("customer"));

 abort(404);

 }

 /**

 * Show the form for editing the specified resource.
 *

 * @param int $id

 * @return \Illuminate\Http\Response
 */

 public function edit($id)

 {
 $customer = Customer::find($id);

 if($customer)

 return view("edit",compact("customer"));

 abort(404);

 }

 /**

 * Update the specified resource in storage.
 *

 * @param \Illuminate\Http\Request $request

 * @param int $id
 * @return \Illuminate\Http\Response

 */

 public function update(Request $request, $id)
 {

 $customer = Customer::find($id);

 Validator::make($request->all(), [
 'name' => ['required', 'string', 'max:255'],

 'pin_code' => ['required', 'string', 'max:6'],

 'phone_number' => ['required', 'string', 'max:255'],
 'national_id' => ['required', 'string', 'max:255'],

 'credit' => ['required', 'Numeric'],

 'limit_transfer' => ['required', 'Numeric'],
 'email' => ['required', 'string', 'email', 'max:255', 'unique:users,email,'.$customer->email],

])->validate();

 $data =$request->all();
 $data['id'] =$id;

 $url = env("URL_OPERATOR")."edituser";
 $response = Helper::callApi("POST",$url,$data);

 if($response){

 if($response->status)
 {

 $customer->name = $request->name;

139

 $customer->phone_number = $request->phone_number;

 $customer->national_id = $request->national_id;
 $customer->credit =$request->credit;

 $customer->email = $request->email;

 $customer->pin_code = $request->pin_code;
 $customer->limit_transfer = $request->limit_transfer;

 $customer->save();

 Flashy::primary("Customer Edited with success ");
 return redirect(URL::previous());

 }else {

 Flashy::primary($response->message);
 return redirect(URL::previous());

 }

 }else {
 Flashy::primary("There's a technical problem, please try again");

 return redirect(URL::previous());

 }
 }

 /**
 * Remove the specified resource from storage.

 *

 * @param int $id
 * @return \Illuminate\Http\Response

 */
 public function destroy($id)

 {

 $customer = Customer::find($id);
 if($customer)

 {

 Transaction::where('sender', $id)
 ->update(['sender' => $customer->phone_number]);

 Transaction::where('receiver', $id)

 ->update(['sender' => $customer->phone_number]);
 $url = env("URL_OPERATOR")."deleteuser/".$id;

 $response = Helper::callApi("GET",$url,null);

 if($response) {
 if($response->status)

 {

 $customer->delete();
 Flashy::primary("Customer Edited with success ");

 return redirect(URL::previous());

 }else {
 Flashy::primary($response->message);

 return redirect(URL::previous());

 }
 }else {

 Flashy::primary("There's a technical problem, please try again");

 return redirect(URL::previous());
 }

 }

 abort(404);

 }

}

140

Listing C.4: MOP Bank API Calls
 use Illuminate\Http\Request;

/*

|--

API Routes

|

*/

 Route::get('/customer/{id}', 'Api\BankController@get_customer')->name('getcostumer');

 Route::get('/checkcustomer/{phone}', 'Api\BankController@check_customer')->name('checkcustomer');
 Route::get('/sendcustomerpin/{phone}', 'Api\BankController@sendCustomerPin')->name('sendcustomerpin');

 Route::post('/savecustomerdetails', 'Api\BankController@add_customer')->name('addcostumer');

 Route::post('/endtransactionsender', 'Api\BankController@end_transactionSender')->name('end_transactionSender');
 Route::post('/rollbacktransaction', 'Api\BankController@rollbacktransaction')->name('rollbacktransaction');

 Route::post('/addtransactionsender', 'Api\BankController@add_transactionSender')->name('addtransactionsender');

 Route::get('/gettransaction/{id}', 'Api\BankController@get_transactions')->name('gettransaction');

 Route::post('/addtransactionreceiver', 'Api\BankController@add_transactionReceiver')->name('addtransactionreceiver');

141

Appendix D: Simulator for the MOP system

In this appendix, we describe a simulator for the MOP system, which allows one to

get a feel for using the actual system. Our simulator carries out account creation and

transaction processing through the Internet. It makes use of four web services: one

for the MOP operator, two for MOP banks, and one for the central bank. In the

simulation, we have two banks and operator, as shown in figure D.1.

In order to create an account for a new user, the details of the customer and his

account are fed to the bank website through a registration form, which is validated by

the bank prior to addition to the database. Once the request is approved, the user can

remit the amount and open the account. All operations are done by using web

services. In order to transfer funds, the bank application gives the user ID and

password in order to perform online transactions. These are explained later in this

appendix.

Figure D.1: Simulation scenario

142

D.1 Web Services Overview

A Web service is software designed to perform a set of tasks which is accessed using

standard Internet technology. It provides a standardized way to communicate

between the client and server applications on the internet. In our simulation we use

the RESTfull Application Programming Interface (API’s), which is based

Representational State Transfer (REST) technology. figure D.2 shows how a

RESTfull web service works.

Figure D.2: Web service architecture.

D.2 Web Service Methods for MOP Operator

 Adduser(name, email, bank, account_number,

phone_number, national_id): used add a user to the operator

database.

 deleteUser(id): used to delete a user from operator database.

 editUser(name, email, bank, account_number,

phone_number, national_id): used to change user information in

operator database.

143

D.3 Web Service Methods for MOP Bank

 addCustomer (id, name, account_number, phone_number,

national_id, credit, email, pin_code,

limit_transfer, last_pin_code): used to add a customer to the

bank database.

 checkCustomer(phone_number): used to check customer by phone

number.

 getCustomer(id): it is used to get a customer details by customer ID.

 sendPinCode (phone_number): used to send PIN for customer by

phone number.

 addtransactionsender (id, sender, receiver, is_bank,

bank, amount, status, type, cancelation, start_time,

end_time): used to add transaction to the sender bank.

 addReceiverTransaction (id, sender, receiver,

is_bank, bank, amount, status, type, cancelation,

start_time, end_time): used to add receiver transaction to the bank.

 addtransaction (id, senderbank, receiverbank,

status, cancelation, start_time, end_time): used to add

a transaction to the central bank.

 endTransaction (id, sender, receiver, is_bank, bank,

amount, status, type, cancelation, start_time,

end_time): used to end transaction by edit customers credit.

 getTransaction (id): used to get a transaction details by customer ID

number.

144

 rollbackTransaction (id, sender, receiver, is_bank,

bank, amount, status, type, cancelation, start_time,

end_time): used to rollback the transaction for some technical error.

D.4 Web Service Methods for Central Bank

 addtransaction (id, senderbank, receiverbank,

status, cancelation, start_time, end_time): used to add

a transaction to the central bank database.

D.5 Database Structure for MOP Components

Figures D.3, D.4 and D.5 depict the database structures for MOP operator, MOP

bank and Central bank respectively.

Figure D. 3: Database structure for MOP operator.

145

Figure D.4: Database structure for MOP bank.

146

Figure D.5: Database structure for Central bank.

D.6 Guide to using the MOP Simulator

In this section we describe the user guide for each part in simulator, and explain how

the process works.

D.6.1 MOP Operator

The process starts in the operator by setting up a new bank server. An administrator

logs in to the operator web-application (at www.1stbs.online) using admin email and

user/password. The users table in the operator has a record for the admin with

encrypted password.

147

Figure D.6: MOP administrator login

Once the admin logs in to the web-application, the only page that appears in the

system is adding banks inside the operator server. When we add a new bank record

in the UI, this is reflected in the banks table in the database. As part of the setting up

process, bank details such as the IP address are entered into the banks table.

148

Figure D.7: Add bank interface.

D.6.2 MOP Bank

The bank administrator will login to the bank web application to setup the bank’s

customers, and synchronize the records with operator customers table. The bank

admin can add/edit/delete customers. After synchronizing the customers with the

operator database, a welcome message will be sent to the customer with the

generated password in the operator database. After that, the process will continue on

the bank side by the customer logging in to the web-application (at www.bank-

1.online)

149

Figure D.8: Customers information.

We can get the customer details by calling API (getCustomer(customer-id) method)

from bank IP server, or we can call API (checkCustomer(phone) method) to check if

the customer exists in the bank database.

The administrator of a bank can add a new customer in the same web-application

(Add Customer Menu). This function is done using the API (addCustomer method)

on the bank server.

150

Figure D.9: Adding a customer.

When the administrator adds/edits/deletes any customer, users table inside the

operator database will be modified by using API methods

(addUser/editUser/deleteUser methods). The welcome SMS message will be sent to

the user from the bank that a login was created, and the password will be sent to him

to use for login on operator side. After that, the customer can login to operator web-

151

application to manage his transaction between banks using his email and the same

password that was sent to his mobile phone.

The administrator in the bank can search and see all transactions from one date to

another date using transaction button in the left side.

Figure D.10: Transaction details in the bank side.

D.6.3 MOP User

The customer can login to the operator web application to initiate a transaction, view

transaction, and change password.

The transaction will start in the operator, which will save a new record in the

transaction table with “pending” status and “Not started” in status description, and

input amount and phone number to transfer the money. The operator will check that

both customers exist in both banks depending on the records that exists at the

152

operator, and update this in status description “Check customers” for the current

transaction. The operator will ask the customer’s bank to send a PIN code to the

customer, and update this in status description “Ask Pin Code” for the current

transaction. The operator will ask the customer to enter the PIN code for the current

transaction, the operator will check with the bank that the entered PIN code for

current transaction is the same that was sent to client via SMS to transfer the amount,

and update this in status description “Verify Pin Code” for the current transaction.

The bank will record the transaction with same transaction ID from the operator,

send the transaction with same ID to the central bank and return the 0 if success, or

negative value for failed, then show error/success message on the operator web

application. If the transaction was successful, the transaction log will be updated in

the operator as “transaction completed” and recorded in Bank B with same

transaction ID that was sent from the operator. Two messages will be sent via SMS

(customer A and customer B) to inform them that the money is already transferred.

If a connection error happened with banks or when checking amount or when asking

PIN code, then the transaction record will be updated to failed with “Technical

Error” in status description using rollback API. The total of amount of customer A

will be decreased and the total money of customer B will be increased by the transfer

amount after a successful transaction. In case of transaction failure, the transaction

record will be updated with failure information in the three sites involved. The

transaction log will be recorded in the bank and operator with same as transaction ID

that was sent from bank, and one message will be sent via SMS to customer A with

error message.

153

The customer can reset his password from the login screen, and the new password

will send by SMS on his mobile. After customer login, the dashboard will appear

with the basic information for the current user; this information is obtained by calling

API (getCustomer method).

Figure D.11: User main page.

The customer can view his transaction from the transaction in the left menu, obtained

by a call to API (getTransaction method).

154

Figure D.12: Transaction details for user.

The customer can transfer money to any mobile number on the MOP network, which

can be completed by calling below APIs:

i. addTransactionSender Method: add transaction record in sender bank database.

ii. addTransactionReceiver Method: add transaction record in receiver bank database.

iii. add_transaction Method: add transaction record in central bank database.

iv..endTransactionSender Method: calculate amount for sender/receiver and

complete transaction successfully, or cancel the transaction by calling API

(rollbackTransaction method) to roll back the transaction at all database actors.

155

Figure D.13: New transaction page.

When the customer clicks on send money button in the UI, the operator will connect

sender bank to:

i. Check the sender customer balance is above than the amount that the customer

wants to send.

ii. Check if the sender limit is greater than the amount that wants to send.

iii. Check if there is a valid record for receiver customer.

If the above is successful, the PIN code will be sent to the customer on his mobile via

SMS; the PIN can be fixed, or generated if the bank administrator put 0 in the PIN

field for this customer, by calling API (sendCustomerPIN Method).

156

Figure D.14: Insert PIN code page.

When the customer receives the SMS and enters the correct PIN code, then the

operator will connect with the bank to do the money transfer with the entered PIN

code. After that, the system will show a message that transfer is done, or any

message for errors (Technical error). If success, the SMS messages will be sent to the

sender and receiver on their mobile numbers to let them know that the money already

transferred. If failed, the SMS message will be sent to the sender’s mobile that the

money was not transferred.

The customer can change his password by clicking on the right corner icon, and

select edit password.

157

Figure D.15: Change password page.

D.6.4 Central Bank

The central bank has the banks information and banks transaction only if transaction

is done between a customer in bank-1 and a customer in bank –2, in which case the

transaction detail will be insert in the central bank transaction table. The transaction

is inserted in the central bank only if it is successfully completed. There is no need to

add any transaction if both customers are from the same bank. The administrator can

see all transactions from one date to another date using transaction button in the left

side.

158

Figure D. 16: Search for transaction in central bank.

Figure D.17: Transaction details in central bank.

159

Appendix E: Critical Code for the Simulator

In this appendix we give the critical code for the simulator.

 Listing E.1: MOP Operator Helper.
namespace App\Helpers;

use App\Bank;

use App\Transaction;
use DateTime;

class Helper

{
 static public function callApi($method,$url,$data)

 {

 try {
 $client = new \GuzzleHttp\Client();

 if ($method == "POST") {

 $response = $client->post($url, ['form_params' => $data]);
 $reason = $response->getReasonPhrase();

 if ($reason == "OK")
 return json_decode($response->getBody()->getContents());

 return false;

 } elseif ($method == "GET") {
 $response = $client->request($method, $url);

 $reason = $response->getReasonPhrase();

 if ($reason == "OK") {

 $response = json_decode($response->getBody()->getContents());

 return $response;
 }

 }

 } catch (\Throwable $th) {
 return false ;

 }

 }

 static public function getUrlApi($bank,$operation)
 {

 $bank = Bank::find($bank);

 if($bank){
 return $bank->ip.$operation;

 }else {

 return false;
 }

 }

 static public function addTransaction($transaction)

 {

 $transactionM = Transaction::find($transaction->id);
 if(!$transactionM)

 {

 $transactionM = new Transaction;
 $transactionM->id = $transaction->id;

 }

 $transactionM->sender = $transaction->sender;

 $transactionM->is_bank = $transaction->is_bank;

 $transactionM->receiver = $transaction->receiver;
 $transactionM->status = $transaction->status;

 $transactionM->type = $transaction->type;

 $transactionM->amount = $transaction->amount;
 $transactionM->cancelation = $transaction->cancelation;

 $transactionM->bank = $transaction->bank;

 $transactionM->start_time = $transaction->start_time;

160

 $transactionM->end_time = $transaction->end_time;

 $transactionM->save();

 }

 static public function getStatus($status) {

 switch($status){

 case 0 : return "Success" ;
 case 1 : return "Failed" ;

 case 2 : return "pending" ;

 case 3 : return "Check Customers" ;
 case 4 : return "Ask Pin Code";

 case 5 : return "Check Pin Code";

 }
 }

 static public function sendSMS($mobileNumber,$text,$senderId = "TestApp"){
 //API URL

 $message = urlencode($text);

$url="http://josmsservice.com/smsonline/msgservicejo.cfm?numbers=".$mobileNumber.",&senderid=FlexService&AccName=

flexserv&AccPass=flexserv123&msg=".$message."&requesttimeout=5000000";

 $response = self::callApi("GET",$url,null);
 if($response)

 return $response;
 }

 static public function format_interval($start_date,$end_date) {

 $first_date = new DateTime($start_date);
 $second_date = new DateTime($end_date);

 $interval = $first_date->diff($second_date);
 $result = "";

 if ($interval->y) { $result .= $interval->format("%y years "); }

 if ($interval->m) { $result .= $interval->format("%m months "); }
 if ($interval->d) { $result .= $interval->format("%d days "); }

 if ($interval->h) { $result .= $interval->format("%h hours "); }

 if ($interval->i) { $result .= $interval->format("%i mins "); }
 if ($interval->s) { $result .= $interval->format("%s s "); }

 return $result;
 }

}

161

Listing E.2: MOP Operator API.
namespace App\Http\Controllers\Api;

use Illuminate\Http\Request;

use App\Http\Controllers\Controller;

use App\User;
use App\Bank;

use App\Transaction;

use App\Helpers\Helper;

use Illuminate\Support\Facades\Hash;

class ApiController extends Controller
{

 public function EditUser(Request $request){

 try {
 $user = User::find($request->id);

 $userMail = User::where('email',$request->email)->first();

 if($userMail)

 {

 if($userMail->id != $request->id){

 return response()->json([

 'message' => 'Email already exsit',

 'status' => false
]);

 }
 }

 if($user)

 {
 $user->phone_number = $request->phone_number;

 $user->national_id = $request->national_id;

 $user->name = $request->name;
 $user->save();

 return response()->json([

 'message' => 'User Edited !!',
 'status' => true

]);

 }else {
 return response()->json([

 'message' => 'User Does\'nt exsit !!',

 'status' => false
]);

 }

 } catch (\Throwable $th) {
 return response()->json([

 'message' => 'Error !',

 'status' => false,
 'object' => $th

]);

 }

 }

 public function AddUser(Request $request){

 $userc = User::where('email',$request->email)->first();

 if($userc)
 {

 return response()->json([

 'message' => 'Email Exist !!',
 'status' => false

]);

 }

 $pass = str_random(8);

 $codebank = $this->CodeBank($request->bank);
 $hashed_random_password = Hash::make($pass);

 $user = User::create([

 'name' => $request->name,

 'email' => $request->email,
 'account_number' => $codebank,

 'password' => $hashed_random_password,

 'bank' => $request->bank,

 'phone_number' => $request->phone_number,

162

 'national_id' => $request->national_id,

]);

 $text = "Hello ".$request->name." Your Account on OperatorBank Created Successufully : your password is: ".

 $pass;
 if($request->pin_code != 0)

 $text .= "|| Your pin code is :".$request->pin_code;

 Helper::sendSMS($request->phone_number,$text);
 return response()->json([

 'message' => 'User Added !!',

 'status' => true,
 'user' => $user,

]);

 }

 private function CodeBank($bank) {

 return $bank."BB".uniqid();

 }

 public function deleteUser($id)
 {

 $user = User::find($id);
 if($user)

 {

 Transaction::where('sender', $id)
 ->update(['sender' => $user->phone_number]);

 Transaction::where('receiver', $id)

 ->update(['sender' => $user->phone_number]);
 $user->delete();

 return response()->json([

 'message' => 'User Deleted !!',
 'status' => true,

]);

 }else {
 return response()->json([

 'message' => 'User doesn\'t exist !!',

 'status' => false,
]);

 }

 }

}

163

Listing E.3: MOP operator HomeController.

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Customer;
use App\Helpers\Helper;

use Validator;

use MercurySeries\Flashy\Flashy;
use App\Bank;

use App\Transaction;

use App\User;
use Illuminate\Support\Facades\URL;

use Illuminate\Support\Facades\Hash;

use DateTime;
use Illuminate\Support\Facades\Session;

class HomeController extends Controller

{
 /**

 * Create a new controller instance.

 *

 * @return void

 */

 public function __construct()
 {

 // $this->middleware('auth');
 }

 /**
 * Show the application dashboard.

 *

 * @return \Illuminate\Contracts\Support\Renderable
 */

 public function index()

 {
 $user = auth()->user();

 $data = null;

 $url = Helper::getUrlApi($user->bank,config("api.bank.getCustomer").$user->id);

 $data = Helper::callApi("GET",$url,null);
 $status = $data->status;

 if($data->status) {

 $data =$data->customer;

 return view('home',compact("data","user","status"));

 }
 $data =$data->message;

 return view('home',compact("data","user",'status'));

 }

 public function gettransaction()

 {
 $user = auth()->user();

 $transactions = null;

 $url = Helper::getUrlApi($user->bank,config("api.bank.gettransactions").$user->id);

 $transactions = Helper::callApi("GET",$url,null);

 $transactions = $transactions->transactions;

 // dd($transactions);

 return view('getTransactions',compact("transactions","user"));

 }

 public function addTransaction()

 {

 $user = auth()->user();
 if(!Session::has('transaction'))

 {

 $transactionM = new Transaction;

 $transactionM->id = time();

 $transactionM->sender = $user->id;

 $transactionM->status = 2;

164

 $transactionM->bank = $user->bank;

 $transactionM->cancelation = "Not Started";
 $transactionM->type = "OUT";

 $transactionM->receiver = "-";

 $transactionM->amount = "-";
 $transactionM->is_bank = false;

 $transactionM->start_time = date("Y-m-d H:i:s");

 $transactionM->end_time = date("Y-m-d H:i:s");
 $transactionM->save();

 session()->put('transaction', $transactionM->id);

 }

 $banks = Bank::get();

 return view('addTransaction',compact("user","banks"));

 }

 public function saveTransaction(Request $request)

 {

 Validator::make($request->all(), [

 'receiver' => 'required',

 'amount' => 'required',
 'pin_code' => 'required',

])->validate();
 /// Check Pin Code ///

 $transaction = Transaction::find(Session::get('transaction'));

 $transaction->status = 5;
 $transaction->cancelation = "Check Pin Code";

 $transaction->save();

 /// Check Pin Code ///
 $response = null;

 $data = $request->all();

 $user = auth()->user();
 $data['sender'] = $user->id;

 $data['type'] = 'OUT';

 $data['start_time'] = date("Y-m-d H:i:s");
 $is_bank = 0 ;

 if($user->bank == $request->bank){

 $is_bank = 1;
 }

 $data['senderphone'] = $user->phone_number;
 $data['is_bank'] = $is_bank;

 $data['idtrans'] = Session::get('transaction');

 $url = Helper::getUrlApi($user->bank,config("api.bank.addTransaction"));

 if($is_bank){

 $response = Helper::callApi("POST",$url,$data);
 if($response)

 {

 Helper::addTransaction($response->transactionOut);
 Helper::addTransaction($response->transactionIn);

 }else {

 Flashy::primary("There's a technical problem, please try again");
 return redirect(URL::previous());

 }

 $message = $response->message;
 } else {

 //dd($data);

 /*$url = Helper::getUrlApi($req->bank,config("api.bank.checkCustomer"). $data['receiver']);
 $checkreceiver = Helper::callApi("GET",$url,null);

 if(!$checkreceiver->status)

 Flashy::primary("The Receiver doesn't Exist !");
 return redirect(URL::previous());*/

 // var_dump($data);

 $responseIn = Helper::callApi("POST",$url,$data);

 if(!$responseIn)

 {
 Flashy::primary("There's a technical problem, please try again");

 return redirect(URL::previous());

 }
 $urlIn = Helper::getUrlApi($request->bank,config("api.bank.addTransactionin"));

 $data['sender'] = $user->phone_number;

165

 $data['type'] = 'IN';

 if($responseIn->status)
 {

 $responseOut = Helper::callApi("POST",$urlIn,$data);

 if(!$responseOut)
 {

 $dataroll['id'] = $responseIn->transactionOut->id;

 $UrlRoll = Helper::getUrlApi($user->bank,config("api.bank.rollbacktransaction"));
 $rollbackCall = Helper::callApi("POST",$UrlRoll,$dataroll);

 Flashy::primary($rollbackCall->message);
 return redirect(URL::previous());

 }else {

 if($responseOut->status)
 {

 $Urlend = Helper::getUrlApi($user->bank,config("api.bank.endtransactionsender"));

 $end = Helper::callApi("POST",$Urlend,$data);
 if(!$end)

 dd("there's a problem !!");

 }else {
 $dataroll['id'] = $responseIn->transactionOut->id;

 $UrlRoll = Helper::getUrlApi($user->bank,config("api.bank.rollbacktransaction"));

 $rollbackCall = Helper::callApi("POST",$UrlRoll,$dataroll);

 Flashy::primary($rollbackCall->message);
 return redirect(URL::previous());

 }

 }
 Helper::addTransaction($responseOut->transaction);

 }

 Helper::addTransaction($responseIn->transactionOut);
 $message = $responseIn->message;

 }

 session()->forget('transaction');

 Flashy::primary($message);

 return redirect(URL::previous());

 }

 public function profile(){

 $user = auth()->user();

 return view('profile',compact("user"));

 }

 public function editprofile(Request $request){

 $user = auth()->user();

 $obj_user = User::find($user->id);
 if($request['password'] != null)

 {

 $obj_user->password = Hash::make($request['password']);
 $obj_user->save();

 }

 Flashy::primary("Update information with success");
 return redirect(URL::previous());

 }

}

166

Listing E.4: MOP Operator API Calls.

return [

 /*

 |--
 | Describe Api Calls

 |--

 |
 |

 |

 */

 'bank' => [

 'addCustomer' => "/api/savecustomerdetails",
 'getCustomer' => "/api/customer/",

 'gettransactions' => "/api/gettransaction/",

 'addTransaction' => "/api/addtransactionsender",
 'addTransactionin' => "/api/addtransactionreceiver",

 'checkCustomer' => "/api/checkcustomer/",

 'sendCustomerPin' => "/api/sendcustomerpin/",

 'endtransactionsender' => "/api/endtransactionsender/",

 'rollbacktransaction' => "/api/rollbacktransaction/",

],

];;

Listing E.5: MOP Operator Web route using API.
/*

|--
| Web Routes

|--

|

| Here is where you can register web routes for your application. These

| routes are loaded by the RouteServiceProvider within a group which

| contains the "web" middleware group. Now create something great!
|

*/

Auth::routes();

Route::post('/resetpassword', 'Auth\LoginController@resetpassword')->name('resetpassword');

Route::group(['middleware' => ['check.user','web']], function () {

 Route::get('/', 'HomeController@index')->name('home');
 Route::get('/addtransaction', 'HomeController@addTransaction')->name('transaction');

 Route::post('/addtransaction', 'HomeController@saveTransaction')->name('addtransaction');

 Route::get('/transactions', 'HomeController@gettransaction')->name('gettransaction');
 Route::post('/checkbeforesendpin', 'AjaxController@CheckBeforeSendPin')->name('checkbeforesendpin');

 Route::get('/profile', 'HomeController@profile')->name('profile');

 Route::post('/profile', 'HomeController@editprofile')->name('editprofile');

});

Route::group(['middleware' => ['check.admin','web']], function () {

 Route::get('/addbank', 'AdminController@bank')->name('bank');

 Route::post('/addbank', 'AdminController@addBank')->name('addbank');

});

167

Listing E.6: MOP Bank Helper.
namespace App\Helpers;

use App\Customer;

class Helper

{
 static public function callApi($method,$url,$data)

 {

 $client = new \GuzzleHttp\Client();
 if ($method == "POST") {

 $response = $client->post($url, ['form_params' => $data]);

 $reason = $response->getReasonPhrase();
 if ($reason == "OK")

 return json_decode($response->getBody()->getContents());

 return false;

 } elseif ($method == "GET") {
 $response = $client->request($method, $url);

 $reason = $response->getReasonPhrase();

 if ($reason == "OK") {

 $response = json_decode($response->getBody()->getContents());
 return $response;

 }
 }

 return true;
 }

 static public function sendSMS($mobileNumber,$text){
 $message = urlencode($text);

 //API URL

$url="http://josmsservice.com/smsonline/msgservicejo.cfm?numbers=".$mobileNumber.",&senderid=FlexService&AccName=

flexserv&AccPass=flexserv123&msg=".$message."&requesttimeout=5000000";

 $response = self::callApi("GET",$url,null);
 if($response)

 return $response;

 // init the resource

 // dd($response);

 //Print error if any
 }

 static public function SmsText($req,$status,$message,$whome = "sender"){

 if($whome == "sender")

 {

 if($status ==0)
 return "the transaction Completed with Success, You transfer ".$req->amount. " To ".

 $req->receiver;

 else {
 return "The transaction failed Cause: ".$message;

 }

 }else {
 $sender = Customer::find($req->sender);

 return "You recieved ".$req->amount. " USD From : ".$req->phone_number;

 }
 }

 static public function CheckPin($pin_code,$sender){

 if($sender->pin_code != 0)

 {

 if($sender->pin_code == $pin_code)

 return true;
 else

 return false;

 }else{
 if($sender->last_pin_code == $pin_code)

 return true;

 else
 return false;

 }

 }

}

168

Listing E.7: MOP Bank API.
namespace App\Http\Controllers\Api;

use App\Customer;

use App\Transaction;

use Illuminate\Http\Request;
use App\Http\Controllers\Controller;

use App\Helpers\Helper;

use DateTime;
class BankController extends Controller

{

 public function add_customer(Request $request){

 $customer = new Customer;

 $customer->id = $request->id;

 $customer->name = $request->name;
 $customer->account_number = $request->account_number;

 $customer->phone_number = $request->phone_number;

 $customer->national_id = $request->national_id;

 $customer->credit =$request->credit;

 $customer->email = $request->email;

 $customer->pin_code = $request->pin_code;
 $customer->limit_transfer = $request->limit_transfer;

 $customer->save();

 return response()->json([

 'message' => 'Customer Added !!',
 'customer' => $customer,

 'status' => true

]);

 }

 public function get_customer($id){

 $customerEntity = Customer::find($id);

 if($customerEntity){
 return response()->json([

 'customer' => $customerEntity,

 'status' => true
]);

 }else {

 return response()->json([
 'message' => 'Customer Doesn\'t find !!',

 'status' => false

]);
 }

 }

 public function check_customer($phone){

 $receiver = Customer::where('phone_number',$phone)->first();

 if($receiver){
 return response()->json([

 'customer' => $receiver,

 'status' => true

]);

 }else {

 return response()->json([
 'message' => 'Customer Doesn\'t find !!',

 'status' => false

]);
 }

 }

 public function get_transactions($id){

169

 $transactionEntity = Transaction::with('senderC')->with('receiverC')->where('receiver',$id)->orWhere('sender',$id)->get();
 if($transactionEntity->first()){

 return response()->json([

 'status' => true,
 'transactions' => $transactionEntity

]);

 }else {
 return response()->json([

 'status' => true,

 'transactions' => [],
]);

 }

 }

 public function add_transactionSender(Request $request) {

 $customerM = new Customer;
 $transactionM = new Transaction;

 $message = "Transaction Added Succesfully";

 $status = " ";
 $cstmr = $customerM->find($request->sender);

 $receiver = $request->receiver ;
 $isOnprocess = true;

 $transactionIn = null;

 $state = false;
 if(Helper::CheckPin($request->pin_code,$cstmr))

 {

 if($request->is_bank)
 {

 $receiver = $customerM->where('phone_number',$request->receiver)->first();

 if ($receiver) {
 $receiver = $receiver->id;

 // $this->addtransactionreceiver($request);

 } else {
 $message = "The Receiver Account doesn't exist ";

 $status = 1;

 $receiver = $request->receiver;
 $isOnprocess = false ;

 }

 }
 if($isOnprocess){

 if($cstmr->limit_transfer != 0 && $request->amount >= $cstmr->limit_transfer)
 {

 $message = "You across amount of limit transfer";

 $status = 1;
 }else {

 if ($cstmr->credit >= $request->amount)

 {
 $cstmr->update(["credit" => $cstmr->credit - $request->amount]);

 $status = 0;

 $state = true;
 if($request->is_bank)

 {

 $transactionIn = $this->addtransactionreceiver($request,$cstmr,$receiver,true);
 }

 }else {

 $message = "You don't have enough money to make this transaction";
 $status = 1;

 }

 }
 }

 }else {

 $message = "The pin code is wrong !";
 $status = 1;

 }

 $transactionM->id = $request->idtrans;
 $transactionM->sender = $cstmr->id;

 $transactionM->is_bank = $request->is_bank;

 $transactionM->receiver = $receiver;
 $transactionM->status = $status;

 $transactionM->type = $request->type;

170

 $transactionM->amount = $request->amount;

 $transactionM->start_time = $request->start_time;
 // $transactionM->end_time =new DateTime();

 $transactionM->end_time = date("Y-m-d H:i:s");

 $transactionM->cancelation =$message;
 $transactionM->bank = $request->bank;

 $transactionM->save();

 $text = Helper::SmsText($request,$status,$message);
 Helper::sendSMS($cstmr->phone_number,$text);

 if($transactionM->status == 0)

 {
 $text = Helper::SmsText($request,null,null,"receiver");

 Helper::sendSMS($request->receiver,$text);

 }

 return response()->json([
 'message' => $message,

 'transactionOut' =>$transactionM,

 'transactionIn' => $transactionIn,
 'status' => $state

]);

 }

 public function addtransactionreceiver($request,$cstmr,$receiver,$isIn)
 {

 $customerM = new Customer;

 $transactionM = new Transaction;
 if($isIn == true){

 $receiverE = $customerM->find($receiver);

 $receiverE->update(["credit" => $receiverE->credit + $request->amount]);
 $transactionM->id = time();

 $transactionM->sender = $cstmr->id;

 $transactionM->is_bank = $request->is_bank;
 $transactionM->receiver = $receiver;

 $transactionM->status = 0;

 $transactionM->type = 'IN';
 $transactionM->amount = $request->amount;

 $transactionM->start_time = $request->start_time;

 $transactionM->end_time = date("Y-m-d H:i:s");
 $transactionM->cancelation =' ';

 $transactionM->bank = $request->bank;

 $transactionM->save();
 return $transactionM;

 }else {

 $receiverE = $customerM->where('phone_number',$request->receiver)->first();
 $receiverE->update(["credit" => $receiverE->credit + $request->amount]);

 $transactionM->sender = $request->sender;
 $transactionM->is_bank = $request->is_bank;

 $transactionM->receiver = $receiverE->id;

 $transactionM->status =0;
 $transactionM->type = 'IN';

 $transactionM->start_time = date("Y-m-d H:i:s");

 $transactionM->end_time = date("Y-m-d H:i:s");
 $transactionM->amount = $request->amount;

 $transactionM->cancelation =' ';

 $transactionM->bank = $request->bank;
 $transactionM->save();

 return $transactionM;
 }

 }

 public function add_transactionReceiver(Request $request){

 $transactionM = $this->addtransactionreceiver($request,null,null,false);

 if($transactionM){

 $text = Helper::SmsText($request,null,null,"receiver");
 return response()->json([

 'status' => true,

 'transaction' => $transactionM
]);

 }else {

171

 return response()->json([

 'status' => false,
 'message' => "There's a problem!!!",

]);

 }

 }
 public function endtransactionsender($request){

 $customerM = new Customer;

 $cstmr = $customerM->find($request->sender);
 if($cstmr)

 {

 $cstmr->update(["credit" => $cstmr->credit - $request->amount]);
 return response()->json([

 'message' => "transaction end with success",

 'status' => true
]);

 }else {

 return response()->json([
 'message' => "customer doesn't exsit ",

 'status' => false

]);
 }

 }

 public function rollbacktransaction($request){
 $transactionM = new Transaction;

 $transaction = $transaction->find($request->id);

 if($transaction)
 {

 $transaction->update(["status" => 1,'cancelation' => "Transaction failed, Technical Error!"]);

 return response()->json([
 'message' => "Transaction failed, Technical Error!",

 'status' => true

]);
 }else {

 return response()->json([

 'message' => "transaction doesn't exsit ",
 'status' => false

]);

 }
 }

 public function sendCustomerPin($phone){

 $sender = Customer::where('phone_number',$phone)->first();

 if($sender){

 if($sender->pin_code != 0)
 {

 $text = "The pin code for the transaction is : ". $sender->pin_code;

 Helper::sendSMS($phone,$text);
 }else {

 $length = 4;

 $randomletter = substr(str_shuffle("912837465"), 0, $length);
 $sender->last_pin_code = $randomletter ;

 $sender->save();

 $text = "The pin code for the transaction is : ". $sender->last_pin_code;
 Helper::sendSMS($phone,$text);

 }

 return response()->json([
 'status' => true,

 'pin_code' => $sender->last_pin_code

]);
 }else {

 return response()->json([

 'message' => 'Customer Doesn\'t find !!',
 'status' => false

]);

 }
 return response()->json([

 'message' => 'Error !!',

 'status' => false
]);

 }}

172

Listing E.8: MOP Bank Customer Controller.
namespace App\Http\Controllers;

use App\Customer;
use App\Transaction;

use Illuminate\Http\Request;

use Validator;
use App\Helpers\Helper;

use MercurySeries\Flashy\Flashy;

use Illuminate\Support\Facades\URL;
class CustomerController extends Controller

{

 /**

 * Create a new controller instance.

 *
 * @return void

 */

 public function __construct()
 {

 $this->middleware('auth');

 }

 /**

 * Display a listing of the resource.
 *

 * @return \Illuminate\Http\Response
 */

 public function index()

 {
 $customers = Customer::All();

 return view('customers',compact("customers"));

 }

 /**

 * Show the form for creating a new resource.
 *

 * @return \Illuminate\Http\Response

 */
 public function create()

 {

 return view('add');
 }

 /**
 * Store a newly created resource in storage.

 *

 * @param \Illuminate\Http\Request $request
 * @return \Illuminate\Http\Response

 */

 public function store(Request $request)
 {

 Validator::make($request->all(), [

 'name' => ['required', 'string', 'max:255'],
 'pin_code' => ['required', 'string', 'max:6'],

 'phone_number' => ['required', 'string', 'max:255'],

 'national_id' => ['required', 'string', 'max:255'],
 'credit' => ['required', 'Numeric'],

 'limit_transfer' => ['required', 'Numeric'],

 'email' => ['required', 'string', 'email', 'max:255', 'unique:users'],
])->validate();

 $data =$request->all();

 $data['bank'] = 1 ;

 $customer = new Customer;

 $url = env("URL_OPERATOR")."adduser";

 $response = Helper::callApi("POST",$url,$data);
 if($response){

 if($response->status)

 {
 $customer->id = $response->user->id;

 $customer->name = $request->name;

 $customer->account_number = $response->user->account_number;
 $customer->phone_number = $request->phone_number;

 $customer->national_id = $request->national_id;

 $customer->credit =$request->credit;

 $customer->email = $request->email;

173

 $customer->pin_code = $request->pin_code;

 $customer->limit_transfer = $request->limit_transfer;
 $customer->save();

 Flashy::primary("Customer Added with success ");

 return redirect(URL::previous());
 }else {

 Flashy::primary($response->message);

 return redirect(URL::previous());
 }

 }else {

 Flashy::primary("There's a technical problem, please try again");
 return redirect(URL::previous());

 }

 }

 /**

 * Display the specified resource.

 *
 * @param int $id

 * @return \Illuminate\Http\Response

 */
 public function show($id)

 {
 $customer = Customer::find($id);

 if($customer)

 return view("show",compact("customer"));

 abort(404);

 }

 /**

 * Show the form for editing the specified resource.
 *

 * @param int $id

 * @return \Illuminate\Http\Response
 */

 public function edit($id)

 {
 $customer = Customer::find($id);

 if($customer)

 return view("edit",compact("customer"));

 abort(404);

 }

 /**

 * Update the specified resource in storage.
 *

 * @param \Illuminate\Http\Request $request

 * @param int $id
 * @return \Illuminate\Http\Response

 */

 public function update(Request $request, $id)
 {

 $customer = Customer::find($id);

 Validator::make($request->all(), [
 'name' => ['required', 'string', 'max:255'],

 'pin_code' => ['required', 'string', 'max:6'],

 'phone_number' => ['required', 'string', 'max:255'],
 'national_id' => ['required', 'string', 'max:255'],

 'credit' => ['required', 'Numeric'],

 'limit_transfer' => ['required', 'Numeric'],
 'email' => ['required', 'string', 'email', 'max:255', 'unique:users,email,'.$customer->email],

])->validate();

 $data =$request->all();
 $data['id'] =$id;

 $url = env("URL_OPERATOR")."edituser";
 $response = Helper::callApi("POST",$url,$data);

 if($response){

 if($response->status)
 {

 $customer->name = $request->name;

174

 $customer->phone_number = $request->phone_number;

 $customer->national_id = $request->national_id;
 $customer->credit =$request->credit;

 $customer->email = $request->email;

 $customer->pin_code = $request->pin_code;
 $customer->limit_transfer = $request->limit_transfer;

 $customer->save();

 Flashy::primary("Customer Edited with success ");
 return redirect(URL::previous());

 }else {

 Flashy::primary($response->message);
 return redirect(URL::previous());

 }

 }else {
 Flashy::primary("There's a technical problem, please try again");

 return redirect(URL::previous());

 }
 }

 /**
 * Remove the specified resource from storage.

 *

 * @param int $id
 * @return \Illuminate\Http\Response

 */
 public function destroy($id)

 {

 $customer = Customer::find($id);
 if($customer)

 {

 Transaction::where('sender', $id)
 ->update(['sender' => $customer->phone_number]);

 Transaction::where('receiver', $id)

 ->update(['sender' => $customer->phone_number]);
 $url = env("URL_OPERATOR")."deleteuser/".$id;

 $response = Helper::callApi("GET",$url,null);

 if($response) {
 if($response->status)

 {

 $customer->delete();
 Flashy::primary("Customer Edited with success ");

 return redirect(URL::previous());

 }else {
 Flashy::primary($response->message);

 return redirect(URL::previous());

 }
 }else {

 Flashy::primary("There's a technical problem, please try again");

 return redirect(URL::previous());
 }

 }

 abort(404);

 }

}

175

Listing E.9: Describe MOP Bank API Calls
use Illuminate\Http\Request;

/*

|--

API Routes

|

| Here is where you can register API routes for your application. These
| routes are loaded by the RouteServiceProvider within a group which

| is assigned the "api" middleware group. Enjoy building your API!

|
*/

 Route::get('/customer/{id}', 'Api\BankController@get_customer')->name('getcostumer');
 Route::get('/checkcustomer/{phone}', 'Api\BankController@check_customer')->name('checkcustomer');

 Route::get('/sendcustomerpin/{phone}', 'Api\BankController@sendCustomerPin')->name('sendcustomerpin');

 Route::post('/savecustomerdetails', 'Api\BankController@add_customer')->name('addcostumer');
 Route::post('/endtransactionsender', 'Api\BankController@end_transactionSender')->name('end_transactionSender');

 Route::post('/rollbacktransaction', 'Api\BankController@rollbacktransaction')->name('rollbacktransaction');

 Route::post('/addtransactionsender', 'Api\BankController@add_transactionSender')->name('addtransactionsender');

 Route::get('/gettransaction/{id}', 'Api\BankController@get_transactions')->name('gettransaction');

 Route::post('/addtransactionreceiver', 'Api\BankController@add_transactionReceiver')->name('addtransactionreceiver');

176

Appendix F: Raw Timing Data for Transactions in the Prototype

Implementation.

In this appendix we give the raw data relating to 20 transactions carried out in the

prototype implementation of MOP. Listing F.1 gives the table definition and table

contents as provided by the database server. Table F.2 contains the relevant part of

the data provided by the database server in tabular form.

Listing F.1: Database table for transaction details in the prototype implementation.
-- Table structure for table `cdr`

--

DROP TABLE IF EXISTS `cdr`;
/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `cdr` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `duration` varchar(10) DEFAULT NULL,
 `dst_mopid` varchar(100) DEFAULT NULL,

 `src_mopid` varchar(100) DEFAULT NULL,

 `amount` varchar(10) DEFAULT NULL,
 `start` datetime DEFAULT NULL,

 `answer` datetime DEFAULT NULL,

 `end` datetime DEFAULT NULL,
 `src` varchar(50) DEFAULT NULL,

 `clid` int(11) DEFAULT NULL,

 `channel` varchar(50) DEFAULT NULL,
 `billsec` int(10) DEFAULT NULL,

 `disposition` varchar(255) DEFAULT NULL,

 `status` enum('0','1','2','3','4','5','6','7') NOT NULL DEFAULT '0' COMMENT '1 = Success Payment | 2 = waiting call back | 0
= Error | 3 = Calling Now | 4 = Request | 5 = Error from CB | 6 = Error from receiver bank | 7 = Froud',

 `trx_method` int(11) DEFAULT NULL,

 `extra_data` varchar(255) DEFAULT NULL,
 `country_id` int(11) NOT NULL,

 `currency` int(3) DEFAULT NULL,

 `account` int(11) DEFAULT NULL,
 `receiver_bank_ip` varchar(255) DEFAULT NULL,

 `sender_bank_ip` varchar(255) DEFAULT NULL,

 `account_receiver` varchar(255) DEFAULT NULL,
 `account_sender` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`id`,`country_id`)

) ENGINE=MyISAM AUTO_INCREMENT=191 DEFAULT CHARSET=utf8;
/*!40101 SET character_set_client = @saved_cs_client */;

-

-- Dumping data for table `cdr`
--

LOCK TABLES `cdr` WRITE;
/*!40000 ALTER TABLE `cdr` DISABLE KEYS */;

INSERT INTO `cdr` VALUES (320,'71','4008','4006','12','2018-12-10 18:47:54','2018-12-10 18:48:16','2018-12-10

18:49:05','0786945106',0,'DAHDI/63-
1',49,'ANSWERED','1',1,'',1,400,1,'192.168.15.102',NULL,'889977','1010905'),(321,'44','4006','4004','30','2018-12-10

18:55:01','2018-12-10 18:55:20','2018-12-10 18:55:46','0799113799',0,'DAHDI/63-

1',25,'ANSWERED','1',1,'',1,1,1,'192.168.15.102',NULL,'1010905','1010905'),(322,'67','4006','4004','10','2018-12-10
18:56:48','2018-12-10 18:57:07','2018-12-10 18:57:56','0799113799',0,'DAHDI/63-

1',49,'ANSWERED','1',1,'',1,1,1,'192.168.15.102',NULL,'1010905','1010905'),(323,'87','4006','4004','40','2018-12-10

20:05:24','2018-12-10 20:05:56','2018-12-10 20:06:51','0799113799',0,'DAHDI/63-
1',54,'ANSWERED','1',1,'',1,1,1,'192.168.15.102',NULL,'1010905','1010905'),(324,'70','4006','4009','20','2018-12-10

21:00:35','2018-12-10 21:00:53','2018-12-10 21:01:46','0799010693',0,'DAHDI/63-

1',53,'ANSWERED','1',1,'',1,400,1,'192.168.15.102',NULL,'1010905','5555444'),(325,'0','4009','4004','25','2018-12-11
08:56:00','2018-12-11 08:56:00','2018-12-11

177

08:56:00','0799113799',0,'0',0,'','2',1,'',1,400,1,'192.168.15.102',NULL,'5555444','1010905'),(326,'70','4006','4004','12','2018-

12-11 09:05:52','2018-12-11 09:06:10','2018-12-11 09:07:02','0799113799',0,'DAHDI/63-

1',52,'ANSWERED','1',1,'',1,400,1,'192.168.15.102',NULL,'1010905','1010905'),(327,'46','4006','4004','14','2018-12-11
09:30:11','2018-12-11 09:30:30','2018-12-11 09:30:58','0799113799',0,'DAHDI/63-

1',27,'ANSWERED','0',1,'',1,400,1,'192.168.15.102',NULL,'1010905','1010905'),(328,'0','4006','4004','35','2018-12-11

09:30:06','2018-12-11 09:30:06','2018-12-11
09:30:06','0799113799',0,'0',0,'','3',1,'',1,1,1,'192.168.15.102',NULL,'1010905','1010905'),(329,'0','4006','4004','14','2018-12-11

09:39:05','2018-12-11 09:39:05','2018-12-11

09:39:05','0799113799',0,'0',0,'','1',1,'',1,1,1,'192.168.15.102',NULL,'1010905','1010905'),(330,'0','4006','4004','12','2018-12-11
09:41:47','2018-12-11 09:41:47','2018-12-11

09:41:47','0799113799',0,'0',0,'','1',1,'',1,1,1,'192.168.15.102',NULL,'1010905','1010905'),(331,'118','4006','4004','15','2018-12-

11 09:49:02','2018-12-11 09:49:21','2018-12-11 09:51:01','0799113799',0,'DAHDI/63-
1',99,'ANSWERED','1',1,'',1,1,1,'192.168.15.102',NULL,'1010905','1010905'),(332,'66','4006','4004','15','2018-12-11

09:54:20','2018-12-11 09:54:39','2018-12-11 09:55:27','0799113799',0,'DAHDI/63-

1',48,'ANSWERED','1',1,'',1,1,1,'192.168.15.102',NULL,'1010905','1010905'),(333,'65','4006','4004','17','2018-12-11
10:10:14','2018-12-11 10:10:32','2018-12-11 10:11:19','0799113799',0,'DAHDI/63-

1',47,'ANSWERED','1',1,'',1,1,1,'192.168.15.102',NULL,'1010905','1010905'),(334,'70','4006','4004','40','2018-12-11

12:16:01','2018-12-11 12:16:21','2018-12-11 12:17:11','0799113799',0,'DAHDI/63-
1',50,'ANSWERED','1',1,'',1,400,1,'192.168.15.102',NULL,'1010905','1010905'),(335,'80','4006','4006','11','2018-12-11

12:34:17','2018-12-11 12:34:48','2018-12-11 12:35:38','0786945106',0,'DAHDI/63-

1',50,'ANSWERED','1',1,'',1,400,1,'192.168.15.102',NULL,'1010905','1010905'),(336,'0','4008','4006','88','2018-12-11
12:31:52','2018-12-11 12:31:52','2018-12-11

12:31:52','0786945106',0,'0',0,'','2',1,'',1,400,1,'192.168.15.102',NULL,'889977','1010905'),(337,'0','4006','4004','20','2018-12-

11 01:17:24','2018-12-11 01:17:24','2018-12-11
01:17:24','0799113799',0,'0',0,'','3',1,'',1,1,1,'192.168.15.102',NULL,'1010905','1010905'),(338,'0','40012','4006','43','2018-12-

11 01:17:40','2018-12-11 01:17:40','2018-12-11

01:17:40','0786945106',0,'0',0,'','2',1,'',1,1,1,'192.168.15.102',NULL,'44444444','1010905'),(339,'72','40012','4009','20','2018-
12-11 15:44:02','2018-12-11 15:44:20','2018-12-11 15:45:15','0799010693',0,'DAHDI/63-

1',54,'ANSWERED','1',1,'',1,400,1,'192.168.15.102',NULL,'44444444','5555444'),(340,'65','40012','4009','30','2018-12-11

15:53:13','2018-12-11 15:53:32','2018-12-11 15:54:19','0799010693',0,'DAHDI/63-
1',46,'ANSWERED','1',1,'',1,400,1,'192.168.15.102',NULL,'44444444','5555444'),(341,'85','4008','4006','66','2018-12-11

16:15:52','2018-12-11 16:16:11','2018-12-11 16:17:17','0786945106',0,'DAHDI/63-

1',65,'ANSWERED','1',1,'',1,400,1,'192.168.15.102',NULL,'889977','1010905'),(342,'0','4009','4004','12','2018-12-11
04:15:22','2018-12-11 04:15:22','2018-12-11

04:15:22','0799113799',0,'0',0,'','2',1,'',1,1,1,'192.168.15.102',NULL,'5555444','1010905'),(343,'0','4004','4008','20','2018-12-11

04:16:11','2018-12-11 04:16:11','2018-12-11
04:16:11','0785199013',0,'0',0,'','3',1,'',1,400,1,'192.168.15.102',NULL,'1010905','889977'),(344,'0','4006','4004','111','2018-12-

11 04:22:48','2018-12-11 04:22:48','2018-12-11

04:22:48','0799113799',0,'0',0,'','2',1,'extension=1',1,1,1,'192.168.15.102',NULL,'1010905','1010905'),(345,'78','4006','4004','12'
,'2018-12-11 17:53:26','2018-12-11 17:53:43','2018-12-11 17:54:45','0799113799',0,'DAHDI/63-

1',61,'ANSWERED','1',1,'',1,1,1,'192.168.15.102',NULL,'1010905','1010905'),(346,'0','4009','40012','10','2018-12-12

05:17:05','2018-12-12 05:17:05','2018-12-12
05:17:05','0796388863',0,'0',0,'','3',1,'',1,1,1,'192.168.15.102',NULL,'5555444','44444444'),(347,'68','4006','4004','20','2018-12-

12 13:10:13','2018-12-12 13:10:37','2018-12-12 13:11:21','0799113799',0,'DAHDI/63-

1',44,'ANSWERED','1',1,'',1,400,1,'192.168.15.102',NULL,'1010905','1010905'),(348,'0','4006','4004','11','2018-12-12
08:19:33','2018-12-12 08:19:33','2018-12-12

08:19:33','0799113799',0,'0',0,'','2',1,'',1,1,1,'192.168.15.102',NULL,'1010905','1010905'),(349,'60','4004','40012','12','2018-12-

12 16:42:56','2018-12-12 16:43:13','2018-12-12 16:43:57','0796388863',0,'DAHDI/63-
1',44,'ANSWERED','1',1,'',1,400,1,'192.168.15.102',NULL,'1010905','44444444'),(350,'55','4004','40012','7','2018-12-12

16:45:16','2018-12-12 16:45:33','2018-12-12 16:46:12','0796388863',0,'DAHDI/63-

1',39,'ANSWERED','1',1,'',1,1,1,'192.168.15.102',NULL,'1010905','44444444'),(351,'65','40012','4009','20','2018-12-12
17:09:48','2018-12-12 17:10:06','2018-12-12 17:10:54','0799010693',0,'DAHDI/63-

1',47,'ANSWERED','1',1,'',1,1,1,'192.168.15.102',NULL,'44444444','5555444'),(352,'70','40012','4009','200','2018-12-12
17:40:01','2018-12-12 17:40:25','2018-12-12 17:41:12','0799010693',0,'DAHDI/63-

1',47,'ANSWERED','1',1,'',1,1,1,'192.168.15.102',NULL,'44444444','5555444'),(353,'68','40012','4009','15','2018-12-12

17:43:53','2018-12-12 17:44:10','2018-12-12 17:45:01','0799010693',0,'DAHDI/63-
1',51,'ANSWERED','0',1,'',1,400,1,'192.168.15.102',NULL,'44444444','5555444'),(354,'0','4006','4009','50','2018-12-17

08:28:24','2018-12-17 08:28:24','2018-12-17

08:28:24','0799010693',0,'0',0,'','2',1,'',1,1,1,'192.168.15.102',NULL,'1010905','5555444');
/*!40000 ALTER TABLE `cdr` ENABLE KEYS */;

UNLOCK TABLES;

178

Table F.1: Relevant timing data in tabular format.

Number Start Time Answer Time End Time Duration

1
12/10/2018

18:47:54
12/10/2018

18:48:16
12/10/2018

18:49:05
71

2
12/10/2018

18:55:01
12/10/2018

18:55:20
12/10/2018

18:55:46
44

3
12/10/2018

18:56:48
12/10/2018

18:57:07
12/10/2018

18:57:56
67

4
12/10/2018

20:05:24
12/10/2018

20:05:56
12/10/2018

20:06:51
87

5
12/10/2018

21:00:35
12/10/2018

21:00:53
12/10/2018

21:01:46
70

6
12/11/2018

9:05:52
12/11/2018

9:06:10
12/11/2018

9:07:02
70

7
12/11/2018

9:30:11
12/11/2018

9:30:30
12/11/2018

9:30:58
46

8
12/11/2018

9:49:02
12/11/2018

9:49:21
12/11/2018

9:51:01
118

9
12/11/2018

9:54:20
12/11/2018

9:54:39
12/11/2018

9:55:27
66

10
12/11/2018

10:10:14
12/11/2018

10:10:32
12/11/2018

10:11:19
65

11
12/11/2018

12:16:01
12/11/2018

12:16:21
12/11/2018

12:17:11
70

12
12/11/2018

12:34:17
12/11/2018

12:34:48
12/11/2018

12:35:38
80

13
12/11/2018

15:44:02
12/11/2018

15:44:20
12/11/2018

15:45:15
72

14
12/11/2018

15:53:13
12/11/2018

15:53:32
12/11/2018

15:54:19
65

15
12/11/2018

16:15:52
12/11/2018

16:16:11
12/11/2018

16:17:17
85

16
12/11/2018

17:53:26
12/11/2018

17:53:43
12/11/2018

17:54:45
78

17
12/12/2018

13:10:13
12/12/2018

13:10:37
12/12/2018

13:11:21
68

18
12/12/2018

16:42:56
12/12/2018

16:43:13
12/12/2018

16:43:57
60

19
12/12/2018

16:45:16
12/12/2018

16:45:33
12/12/2018

16:46:12
55

20
12/12/2018

17:09:48
12/12/2018

17:10:06
12/12/2018

17:10:54
65

Average duration: 70.10 seconds

Standard Deviation of the duration: 15.67 seconds.

