
Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Metaheuristic-Based Approaches for Solving the

Controller Placement Problem in Software-Defined

Wireless Sensor Networks (SDWSNs)

Nivine Samarji

Eastern Mediterranean University

June 2021

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy

Director

Prof. Dr. Işık Aybay

 Chair, Department of Computer

Engineering

Assoc. Prof. Dr. Mohammed Salamah

Supervisor

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Doctor of Philosophy in Computer Engineering.

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Doctor of Philosophy in Computer

Engineering.

Examining Committee

1. Prof. Dr. Cüneyt F. Bazlamaçcı

2. Prof. Dr. Mehmet Ufuk Çağlayan

3. Assoc. Prof. Dr. Adnan Acan

4. Assoc. Prof. Dr. Gürcü Öz

5. Assoc. Prof. Dr. Mohammed Salamah

iii

ABSTRACT

Software-Defined Networking (SDN) is well-known as a master solver for many

traditional networks restrictions. Network management flexibility is the SDN core

characteristic that recently becomes a hot topic for many researchers to improve

network performance. A critical issue arises specifically for the multi-controller

SDN-based network, namely the controller placement problem (CPP), known as an

NP-hard problem. Solving such problems in a reasonable amount of time is usually

carried out using metaheuristic algorithms. This thesis presents different approaches

for solving the CPP which are based on metaheuristic algorithms such as the genetic

algorithm (GA) and the greedy randomized adaptive search procedure (GRASP). The

first approach is a fault tolerance metaheuristic-based scheme (FTMBS) that we

proposed for solving the CPP in wireless software-defined networks. The FTMBS is

a multi-objective-based scheme aiming to maximize network connectivity and the

load balance among controllers, minimize the network worst-case latency, and

maximize the network lifetime in the presence of faulty nodes. In the presence of

conflicting multi-objective metrics, the decision-maker or the network administrator

decides on the compromise between these conflicting metrics. We defined the

selection criteria for the number of SDN controllers ahead of time that achieves the

targeted average percentage of network improvement. Simulations carried out for

three and five controllers showed that three controllers were enough for such

networks. We have shown the efficiency of the proposed FTMBS scheme under

various percentages of faulty nodes as it has lower latency compared to the random

distribution of controllers among cluster heads and the cluster-based network

partition algorithm (CNPA). Also, we have verified the goodness of the solutions by

iv

showing that the GA solutions have a good approximation to the Pareto optimal

solutions provided by the Non-dominating Sorting Genetic Algorithm (NSGA-II). In

addition, the proposed FTMBS scheme showed its superiority over various state-of-

the-art schemes for different network performance metrics on the cost of having a bit

higher complexity.

The second approach, namely the ALBATROSS scheme, is an energy-efficient

strategy for WSNs, which is a modification of the FTMBS scheme. The albatross

bird's dynamic soaring scheme is adopted in the cluster heads selection algorithm,

and the selected cluster heads are taken as inputs for the heuristic algorithm to solve

the CPP. Simulation results showed that the ALBATROSS scheme saves the

network energy and outperforms other existing energy-aware schemes found in

literature. However, it has a bit higher complexity than other schemes.

Besides, in Appendix A, we have provided an example of using the SDN technology

in a practical environment other than WSNs, such as wireless body area networks

(WBANs).

Keywords: Software-defined networking, controller placement problem, meta-

heuristic algorithm, network performance enhancement.

v

ÖZ

Yazılım Tanımlı Ağ Oluşturma (SDN), geleneksel ağın karşılaştığı birçok geleneksel

kısıtlamalara karşı ana bir çözücü olarak iyi bilinir. Ağ yönetimi esnekliği, birçok

araştırmacı için ağ performansını geliştirme konusunda ilgi alanı haline gelmiş olan

SDN temel özelliğidir. Çok denetleyicili SDN tabanlı ağ için kritik bir sorun olan ve

NP-zor problem olarak da bilinen denetleyici yerleştirme sorunu (CPP) ortaya

çıkmaktadır. Bu tür problemlerin makul bir sürede çözülmesi genellikle meta-

sezgisel algoritmalar kullanılarak gerçekleştirilir. Bu tezde, genetik algoritma (GA)

ve açgözlü randomize uyarlamalı arama prosedürü (GRASP) gibi meta-sezgisel

algoritmalara dayanan CPP'nin çözümü için farklı yaklaşımlar sunmaktadır. İlk

yaklaşım, FTMBS olarak adlandırılan kablosuz yazılım tanımlı ağlarda CPP'yi

çözmek için önerdiğimiz hata toleransı meta-sezgisel tabanlı bir şemadır. FTMBS, ağ

bağlantısını ve denetleyiciler arasındaki yük dengesini en üst düzeye çıkarmayı,

denetleyicilerin kendileri arasındaki en kötü durum gecikmesini en aza indirmeyi ve

hatalı düğümlerin varlığında ağ ömrünü en üst düzeye çıkarmayı amaçlayan çok

amaçlı bir şemadır. Birbiri ile çatışan çok amaçlı ölçümlerin varlığında, karar verici

veya ağ yöneticisi bu sözkonusu ölçümler arasındaki uzlaşmaya karar verir.

Hedeflenen ortalama ağ iyileştirme yüzdesine ulaşan SDN denetleyicilerinin sayısı

için seçim kriterleri önceden belirlenmiştir. Üç ve beş denetleyici için simülasyonlar

yapılmış olup, bu tür ağlar için üç denetleyicinin yeterli olduğu belirlenmiştir.

Önerilen FTMBS şemasının verimliliğini, çeşitli hatalı düğüm yüzdeleri altında,

kontrolörlerin küme kafaları ve küme tabanlı ağ bölümleme algoritması (CNPA), ve

rastgele dağılımına kıyasla daha düşük gecikme süresine sahip olduğunu gösterdik.

Ayrıca, GA çözümlerinin, Baskın Olmayan Sıralama Genetik Algoritması (NSGA-

vi

II) tarafından sağlanan Pareto optimal çözümlerine iyi bir yaklaşıma sahip olduğunu

göstererek çözümlerin iyiliğini doğruladık. Ek olarak, önerilen FTMBS şeması, biraz

daha yüksek karmaşıklığa sahip olma maliyetiyle farklı ağ performans ölçütleri için

çeşitli son teknoloji şemalara göre üstünlüğünü göstermiştir.

İkinci yaklaşım, yani ALBATROSS şeması, FTMBS şemasının bir modifikasyonu

olan WSN'ler için enerji verimli bir stratejidir. Ağ enerjisinden tasarruf etmeyi

amaçlayan albatross kuşunun dinamik yükselme şeması, SDN denetleyicilerinin

seçimleri için dikkate alınacak ağ küme kafalarını etkin bir şekilde seçmek için

benimsenmiştir. Simülasyon sonuçları, ALBATROSS şemasının ağ enerjisini

koruduğunu ve literatürde bulunan farklı mevcut enerjiye duyarlı şemalardan daha

iyi performans gösterdiğini ortaya çıkarmıştır.

Ayrıca, Ek A'da, kablosuz vücut alanı ağları (WBANs) gibi WSN'ler dışında pratik

bir ortamda SDN teknolojisinin kullanımına bir örnek sunduk.

Anahtar Kelimeler: Yazılım tanımlı ağ oluşturma, denetleyici yerleştirme problemi,

meta-sezgisel algoritma, ağ performansı geliştirme.

vii

DEDICATION

I would like to dedicate my work to my father's soul, mom, brothers, husband, and

my world LARA.

viii

ACKNOWLEDGMENT

I want to show my sincere appreciation to Assoc. Prof. Dr. MOHAMMED

SALAMAH for his supervision, advice, and management from the beginning of my

thesis work till this stage. He was my guiding mentor who did not hesitate even for a

second to keep enriching me with his extraordinary experiences throughout the work.

He played an essential role in being a psychological guide, ensuring that I do not lose

this enthusiasm, especially during the publication stage. He was an easy-going

proficient, a teacher, and a friend. His encouragement and support were endless and a

true inspiration to think outside the box. I owe him a lot that even words are not

enough to show him gratitude.

I also want to show appreciation to the department chair, Prof. Dr. AYBAY, and

vice-chair, Assoc. Prof. Dr. BITIRIM, for their kind-heartedness and their

generosity. Also, I want to show gratitude to the monitoring committee members for

their helpful advice and assistance, especially Assoc. Prof. Dr. ADNAN ACAN for

supporting and guiding me without any regrets. Also, not to forget to mention Assoc.

Prof. Dr. GURCU ÖZ, for her involvements. I thank them all for their significant

contribution and comments that added great quality to my thesis work. My thanks go

to Prof. Dr. ADHAM MACKIEH, who did not hesitate to help and guide me. He is

one of the best professors who endlessly gives support and advice.

Finally, I raise my chapeaux to every staff at the department mostly Mr. Erdal Altun,

Mr. Mehmet Topal, Ms. Çiğdem Vudalı , Mrs. Deniz Gök, Mrs. Semiha Sakalli.

They were like a second family whom I will never forget.

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... v

DEDICATION .. vii

ACKNOWLEDGMENT ... viii

LIST OF TABLES .. xii

LIST OF FIGURES ... xiii

LIST OF SYMBOLS AND ABBREVIATIONS ... xv

1 INTRODUCTION ... 1

1.1 Software-Defined Networking .. 1

1.2 The Use of SDN in WSN .. 2

1.3 Controller Placement Problem .. 6

1.4 The Aim of the Study .. 9

1.5 Thesis Contributions ... 10

2 LITERATURE REVIEW .. 11

2.1 Integrating Evolutionary Algorithms in Solving the CPP 11

2.2 Solving the CPP Based on Load Balancing .. 13

2.3 Solving the CPP Based on Decreasing Latency.. 18

2.4 Solving the CPP Based on Reliability and Energy-Efficiency 19

2.5 Solving the CPP Based on Network Lifetime Enhancement 21

3 THE PROPOSED FAULT TOLERANCE METAHEURISTIC-BASED

SCHEME (FTMBS) ... 23

3.1 Problem Description ... 23

3.2 Methodology ... 25

x

3.2.1 K-way Spectral Clustering ... 25

3.3 Network Structure .. 26

3.4 System Description .. 28

3.5 Metaheuristic Algorithms .. 32

3.5.1 Genetic Algorithm ... 32

3.5.1.1 Chromosome Definition .. 33

3.5.1.2 Population Representation ... 34

3.5.2 Greedy Randomized Adaptive Search Procedure Algorithm

 .. 35

3.6 Balance State System (BSS) .. 35

4 PERFORMANCE EVALUATION ... 44

4.1 Worst-Case Latency .. 45

4.1.1 Worst-Case Latency Analysis for FTMBS .. 46

4.1.2 Worst-Case Latency Analysis for Different Algorithms 47

4.2 Network Lifetime .. 50

4.3 Execution Time of Balance State System ... 51

4.4 SDN Controller's Average Response Time ... 52

4.5 Average Controllers' Load under GA and GRASP Algorithms 53

4.6 Percentage of Successfully Received Packets .. 55

4.7 Complexity Analysis ... 56

4.8 Discussions ... 56

4.9 Verification using NSGA-II .. 58

5 THE ALBATROSS SCHEME .. 60

5.1 Dynamic Energy Soaring Scheme (DESS) ... 60

5.2 Performance Evaluation .. 66

xi

5.2.1 Worst-Case Latency... 67

5.2.2 Network Lifetime... 68

5.2.3 Percentage of Successfully Received Packets ... 69

5.2.4 Energy Consumption ... 70

5.3 Applying ALBATROSS Scheme on Real Internet Topologies 71

5.4 Computational Complexity ... 73

5.5 Discussion ... 74

6 CONCLUSION ... 76

REFERENCES ... 79

APPENDICES .. 103

Appendix A: Energy-efficient Routing and QoS-Supported Traffic

Management Scheme for SDWBANs .. 104

Appendix B: Confidence Interval Estimation... 132

Appendix C: Simulation Code .. 142

xii

LIST OF TABLES

Table 1: SDN Frameworks in WSN...5

Table 2: Pseudo-code of GA...33

Table 3: Balance State Awareness (BSA)..40

Table 4: Balance State Warranty (BSW)..40

Table 5: Load distribution of Faulty Controllers (LFC)...41

Table 6: Simulation Parameters..45

Table 7: Network Lifetime for 3 Controllers..50

Table 8: Network Lifetime for 5 Controllers..51

Table 9: Execution Time (sec) of BSS...51

Table 10: Controller's Average Response Time (ns)..53

Table 11: Average Controllers' Load for 3 Controllers..54

Table 12: Average Controllers' Load for 5 Controllers..54

Table 13: Percentage of Network Performance Improvement of 5 Controllers over 3

Controllers...57

Table 14: Euclidean Distance for GA Solutions...59

Table 15: Latency and Execution Time comparison..73

xiii

LIST OF FIGURES

Figure 1: Traditional Network Structure vs. SDN-Based Network Structure..............2

Figure 2: Distributed SDWSN..3

Figure 3: SDN-Based Approaches for WSNs...4

Figure 4: Proposed Network Structure...27

Figure 5: Population Representation...35

Figure 6: Controller's Average Response Time vs. Load...38

Figure 7: FTMBS Flowchart ..43

Figure 8: Network Latency for 3 Controllers under GA………….............................46

Figure 9: Network Latency for 5 Controllers under GA …………............................47

Figure 10: Network Latency for 3 Controllers under GRASP …………..................47

Figure 11: Network Latency for 5 Controllers under GRASP …………..................47

Figure 12: Latency Analysis for Different Algorithms………………………...…....49

Figure 13: Percentage of Execution Time Difference Comparison............................52

Figure 14: API of Controller's Average Response Time Comparison........................53

Figure 15: Percentage of Successful Received Packets under GA and BSS..............55

Figure 16: Percentage of Successful Received Packets under GRASP and BSS

…………..56

Figure 17: Fitness Value for Different Percentages of Falty Nodes…………….…..57

Figure 18: Heart Rate Levels of the Albatross Bird...61

Figure 19: Flowchart of DESS Algorithm..65

Figure 20: Flowchart of the ALBATROSS Scheme…..66

Figure 21: Latency Comparison...68

Figure 22: Network Lifetime Comparison...69

xiv

Figure 23: Percentage of Successfully Received Packets Comparison......................70

Figure 24: Network Energy Consumption Comparison...71

xv

LIST OF SYMBOLS AND ABBREVIATIONS

API Average Percentage of Improvements

BIP Binary Interger Program

BS Base Station

BSA Balance State Awareness

BSS Balance State System

BSW Balance State Warranty

CCPP Capacitated Controller Placement Problem

CH Cluster Head

CNPA Clustering-based Network Partition Algorithm

COLBAS Cooperative Load Balancing Scheme

CPP Controller Placement Problem

Croot Root controller

DBCP Density-Based Cluster Placement

DESS Dynamic Energy Soaring Scheme

E2E End-to-End

EA Evolutionary Algorithms

EASM Efficiency-Aware Switch Migration

EEFCA Energy-Efficient Fault-Tolerant Clustering Algorithm

ERQTM Energy-Efficient Routing and QoS Supported Traffic Management

FTMBS Fault Tolerance Metaheuristic-Based Scheme

GA Genetic Algorithm

GCEEC Gateway Clustering Energy-Efficient Centroid

GRASP Greedy Randomized Adaptive Search Procedure

xvi

LFC Load distribution of Faulty Controller

ms Milliseconds

NOS Network Operating System

ns Nanoseconds

NSGA Nondominated Sorting Genetic Algorithm

ONOS Open Network Operating System

O Time and Space Complexity

pps Packets Per Second

PSA Pareto Simulated Annealing

QoS Quality of Service

ROC Rank Order Centroid

SA Simulated Annealing

SDN Software-Defined Networking

SDWBAN Software-Defined Wireless Body Area Network

SDWSN Software-Defined Wireless Sensor Network

SOF Sensor OpenFlow

SSOA Salp Swarm Optimization Algorithm

TDMA Time Division Multiple Access

WBAN Wireless Body Area Network

WSN Wireless Sensor Network

μs Microseconds

1

Chapter 1

INTRODUCTION

1.1 Software-Defined Networking

Nowadays, the world represents a vast linked digitalized society with the help of the

internet, making almost everything accessible and connected. The traditional internet

fundamental infrastructure embodies the vertical integration between the control and

data planes residing on the same device. Hence, controlling and managing the

network becomes a challenging task with the bulk network growth. Moreover, this

vertical integration sets further restrictions on network configuration for predefined

policies and responding to various network changes. Initially, Software-defined

networking (SDN) idea is proposed to handle several challenges in wired IP

networks, such as the network complexity and the difficulty of configuring the

network behavior [1]. Due to the challenges mentioned above, thumbs are pointed

toward the SDN technology. SDN is a new emerging paradigm that promises to

change this state of affairs [2] by simply releasing the vertical integration, separating

the network’s control logic (control plane) from the network devices (data plane),

and allowing flexibility in managing policies [3] and reconfiguration of the network.

As a result of this decoupling, the network devices become simple forwarding

devices, and the extracted control logic is inserted at a centralized controller or

network operating system (NOS) [4]. The routing decisions and policies are handled

by the controller and deployed in the switch's flow table. Figure 1 shows the

traditional network structure versus SDN network structure.

2

Figure 1: Traditional Network Structure vs. SDN-Based Network Structure [2]

1.2 The Use of SDN in WSN

WSN is made up of several cheap and low-powered stationary or mobile sensor

nodes. Currently, WSN is integrated with industrial areas and with many innovative

technologies such as smart building (Heating, Ventilation, and Air conditioning

(HVAC)) systems to comply with the user requirements. These technologies aim at

achieving energy-efficient resource utilization. The core purpose of WSN is to sense

and collect event-driven data in a particular field. However, the main WSN

limitations [5], [6] are the changes in the network topology and the limited energy

supply of the sensor nodes [7], [8], which in case of quick depletion can cause

network disconnection. Hence, well-managed strategies and protocols can save

energy as a scarce resource. In addition to energy, the integration of control and data

plane makes the network extension and management complicated and costly [4], [1].

The first implementation of SDN in WSN is presented in [9], where the authors

proposed the Sensor OpenFlow (SOF) as the communication protocol between the

data plane and control plane. The data plane corresponds to the sensor nodes that are

flow-based packet forwarding elements, receiving the forwarding rules from the

control plane that corresponds to the controller, known as the network brain which

handles all the decisions. SDN is characterized by releasing management challenges

in wireless sensor networks.The integration of the SDN paradigm in the WSNs (SD-

WSN) [10], [5], [11], [12], [13] has recently established widespread concentration

3

where researchers focused on applying SDN in WSNs [1] in regards to architecture

and network topology [9], [14], routing protocols [15], [16], [17], [18], [19], node

scheduling and energy-saving [20], [21], data transmission and load balancing [22],

[23] as well as network security [24]. The network topology in SDWSN refers to the

physical layout of various sensor devices interconnected by transmission media [1].

The SDWSN network topology can be both fixed and mobile [25]. Fixed topology is

either centralized topology deployed in a small-scale network or distributed topology

deployed in a large-scale network. This thesis focused on distributed SDWSN, where

the sensor nodes are arranged into clusters according to a distributed SDWSN model.

The SDN main controller is deployed at the gateway, i.e., the sink that manages and

coordinates the sub-controllers. The cluster heads manage sensor nodes in each

cluster where each cluster is considered as the zone or domain of the SDN sub-

controllers, as shown in Figure 2.

Figure 2: Distributed SDWSN

Although SDN can release all the challenges faced with traditional networks; a

severe factor that an SDN-based network needs to provide is the reliability [26], [27].

In other words, an SDN-based network should not be affected by a single point of

4

failure. Consequently, this will lead to total network breakage since the control plane

provides all the network information to the data plane; hence, any disconnection

between them ends the network performance. There are different studies of using the

concept of SDN in WSNs as shown in Figure 3. In this thesis we have followed a

multiobjective approach in which we considered energy efficiency (lifetime, and

clustering), and reliability issues to solve the CPP.

Figure 3: SDN-Based Approaches for WSNs [27]

Based on our knowledge, few frameworks are used for implementing SDN-based

WSN such as SDN-WISE [28], SDWN-ONOS [29], and TinySDN [30], [31].

However, these frameworks have several drawbacks, i.e., their codes do not comply

with the WSN firmware, making it inapplicable to the existing WSNs.

SDWN-ONOS is the first to provide the Open Network Operating System (ONOS)

[5], which uses the existing SDN controller in the wired network. To make ONOS

relevant in SDN-based WSNs, WSN devices such as SDN-WISE Emulated mote and

SDN-WISE Emulated sink [28] were adopted from SDN-WISE. However, these

devices were designed based on a different standard than IEEE 802.15.4 standard,

5

making their integration in WSNs inappropriate. Hence, further investigations and

studies should be carried out to make SDN-WISE, SDWN-ONOS, and TinySDN

appropriate to be implemented in WSNs. In fact, integrating the concept of SDN

with WSNs has been investigated by many reasearchers in literature. Table 1

illustrates some of these state-of-the-art frameworks.

 Table 1: SDN Frameworks in WSNs [32]

Year

SD-WSN

Features

Simulation Performance

Evaluation

WSN
Compa-

rison

2012
Sensor

OpenFlow

[9]

Propose a

concept of
SD-WSN

No No No

2012
SDWN [5] Propose a

concept of

SD-WSN

No No No

2014
Smart

WSN-

SDN [14]

Propose a

concept of
SD-WSN

No No No

2014
TinySDN

[30]

Provide an

SD-WSN

framework

Cooja Response

time,

memory

No

2015

SDN

ECCKN

[33]

A

centralized

sleep

scheduling
algorithm

MATLAB

Network

Lifetime

Yes

2015
SDWN

ONOS

[29]

Provide an

SDN-IoT
framework

Cooja,

Mininet

No No

2015

Multi-

Task

SDSN [34]

A

centralized

algorithm

to optimize

energy

efficiency

Gurobi

Optimizer

Sensing

rate,

reschedulin

g time,

power

efficiency

No

2015
SDN-

WISE [28]

Provide an

SD-WSN

framework

Cooja RTT,

efficiency,

response

time

No

6

2016

Routing

SDWSN

[35]

Energy-

efficient

algorithm

for

SD-WSN

MATLAB

Network

Lifetime

Yes

2016
WARM

[36]

Provide an

SD-WSN

framework

Cooja Comm.

overhead,

memory

No

2016
SDN-TAP

[37]

Provide an

SD-WSN

framework

Cooja Delay,

packet loss

No

2016
SDWSN-

IoT [38]

Propose a

concept of

SDN-IoT

No No No

1.3 Controller Placement Problem

The controller placement problem (CPP) incorporates the number of controllers [39]

and includes the controllers' proper positions in an SDN-based network. Researchers

have widely focused on solving the CPP to enhance the overall network performance

and meet acceptable QoS levels. Efficiently allocating switches to controllers without

causing overwhelming the controllers was presented in [40], aiming to minimize

network latency, maximize the network fault tolerance and reliability, and minimize

the number of controllers and node consumption energies. Therefore, the number

and location of SDN controllers known as CPP can dramatically affect the overall

network performance. Heller et al. in [41] investigate a significant issue dealing with

the number of SDN controllers to be implemented at particular topology positions to

meet the network requirements. For instance, a good placement aims to reduce the

propagation latency among the nodes and SDN controllers in wide area networks

(WAN). It is good to note that in WAN, the edges' weights represent the propagation

latencies which can be obtained using the Haversine formula [42], [43], [44]. Hence,

7

in the case of having two disjoint islands, the best controller placement which

reduces the average latency is at the midpoint of the distance between the two

islands. However, in the case of two controllers, the placement of one controller at

each island will remarkably reduce the total network latency.

As stated previously, the main three layers of SDN are the data plane, control plane,

and application plane. The control plane is the brain of the network [45]. All

decisions, policies, and forwarding rules are defined by the controller, so that the

data plane comprises only policy recipients forwarding devices. The application logic

[2] is set by the application plane located on top of the control plane. Upon existence,

the SDN-based network was made up of only one controller. Researchers then found

out that one SDN controller can't cope with the fast network growth, and as a result,

can't handle all the control requests coming from the data plane. This issue is known

as scalability. Besides scalability issues, reliability problems caused by a single point

of failure were behind focusing on the use of multi-controllers [46] in SDN-based

networks. Remarkable network performance improvement was recorded with the

implementation of a multi-controller. Nevertheless, a critical factor accompanied by

the multi-controller implementation which directly affects the overall network

performance is the controller placement problem (CPP) [41].

Solving the CPP is not a straightforward approach, since it defines the necessary

number of SDN controllers and their best positions in the network. The number of

SDN controllers is essential since excessive use of SDN controllers affects the cost

of implemention and leads to unnecessary delays [47] caused by many control

requests. Since CPP is an NP-hard problem [46], solving such problems is usually

carried out using evolutionary algorithms. Therefore, solving the CPP in a multi-

8

controller-based network is actually finding both the controllers' optimum number

and location.

The issue of CPP was investigated firstly by [41]. The authors focused on latency

issue as a critical factor affecting real-world network performance. However, the

load balancing factor between the controllers was missed in their work. In wireless

networks, the communication link and available bandwidth are shared by the data

and control planes, leading to unnecessary delays in the presence of load imbalance.

Hence, the presence of a load balancing algorithm highly limits the occurrence of

unnecessary delays. Accordingly, the network performance is directly affected by

network reliability and network delay exposed by the propagation and queuing

latencies [48].

Authors of [41] have motivated researchers to provide network solutions for

improving network performance. Nowadays, SDN is integrated with Google,

Facebook, cloud computing, and many applications [45], [11].

Evolutionary algorithms are efficient optimization methods that give near-optimal

solutions satisfying the specified network constraints. Hence, evolutionary

algorithms are widely used to solve the CPP in an SDN-based network where CPP is

considered an NP-hard problem [49], [50], [51], [52]. When applying evolutionary

algorithms, researchers usually define the network constraints and the objective

function satisfying the defined constraints.

Cisco APIC [53] uses a minimum of three SDN controllers. The analysis showed that

using k controllers instead of one controller will not reduce the latency by 1/k factor

9

[41]. In networks where topology changes frequently, it is found that the controller

placement is very significant to minimize the packet propagation latency [54].

Ideally, the number of controllers should be minimized for cost issues, while

minimizing communication latency at the same time. Network latency includes the

time it takes to transmit the packets, time spent in the switch buffer before processing

(queueing time), and the time it takes for the controller to process the packets.

Latencies do not weigh equally for different networks. For example, in WAN, only

the time it takes for the packets to be transmitted and the time it takes for the

controller to process the packets are considered [5]. Packet transmission latency is

directly affected by the distance between controllers and switches. Therefore, in

assigning switches to controllers, the shortest path is usually considered. The

controller's processing latency is affected by loads of the controllers [48]; hence, this

justifies why researchers are being attracted by a controller placement solution that

leads to flow balance among controllers.

1.4 The Aim of the Study

In Literature, necessary conditions are absent and should be considered while solving

the CPP in an SDN-based network. The presence of node and path failures and the

steady-state network attainment after executing the load balancing algorithm should

be considered. These two conditions are taken into consideration in this study. We

used metaheuristic algorithms to solve the CPP, aiming to maximize the network

connectivity, balance the load, minimize the network delay, and increase the network

lifetime. Specifically, we applied the genetic algorithm and GRASP algorithm [55],

[56] to solve the CPP. Keeping the network in a steady-state is achieved by

proposing the Balance State System (BSS) algorithm which balances the loads

among the controllers and ensures no overwhelming controller(s) exists after

10

distributing the load of the faulty controller(s). Besides the above-mentioned aspires,

an important aim to be achieved in SDN-based WSN is saving network energy and

enhancing network lifetime. This aim is achieved by using the ALBATROSS

algorithm described in Chapter 6. Shifting towards the software-defined wireless

body area network, an important metric to be achieved is network reliability,

ensuring a delay-free transmission of the emergency data. Hence, as a practical

example, we proposed the ERQTM algorithm, presented in Appendix A.

1.5 Thesis Contributions

The contributions of our work-study are:

a) Achieving network reliability by applying the spatial clustering algorithm that

produces alternative paths in the presence of path failure or node failure.

b) Applying the Genetic algorithm and GRASP algorithm to provide near-optimal

solutions in a reasonable amount of time, satisfying various network constraints in

the presence of faulty nodes, and optimizing the network Quality of Service (QoS).

c) Considering a variable flow rate in the proposed BSS algorithm that achieves a

dynamic load balance among controllers by adopting the network traffic changes.

Thus, improving the network efficiency. Besides network efficiency, BSS achieves

the network steady-state with minimum latency.

d) Carrying a comprehensive study for solving the CPP that incorporates the

presence of faulty nodes and a tradeoff between different conflecting network

objectives.

e) Introducing the ALBATROSS algorithm which had a positive impact on the

WSN's lifetime enhancement.

f) Proposing the ERQTM algorithm which achieves the SDWBAN reliability.

11

Chapter 2

LITERATURE REVIEW

The related literature is reviewed in five sections. In section 2.1, the studies on

solving the CPP using evolutionary algorithms have been mentioned. Solving the

CPP while focusing on load balancing among different controllers is showed in

section 2.2. Solving the CPP while focusing on decreasing the network latency is

given in section 2.3. Solving the CPP while focusing on increasing network

reliability and energy efficiency is presented in section 2.4. Finally, section 2.5

mentions the studies that focus on enhancing the network lifetime while solving the

CPP.

2.1 Integrating Evolutionary Algorithms in Solving the CPP

Different literature metrics are alleged to have a direct influence on the placement of

the SDN controllers. These metrics are included in multi-objective approaches to

solve the CPP [1], [4], [57], [58]. The main metrics include network latency [59],

[60], network management [27], reliability and resilience [61], deployment cost

[62], and energy consumption [63], [64]. In the network management, the control

messages between controllers and switches are transmitted in a dedicated channel

(out-band mode) and are generally small-sized flows in comparison to the dense

flows in the data plane. The placement of controllers significantly affects the metrics

[58], [65] mentioned above. The CPP is viewed as a multi-objective combinatorial

optimization problem (MOCO) [66]. Solving this multi-objective problem is usually

achieved by finding the Pareto-frontier [67], where a decision-maker selects the most

12

appropriate solution which is based on the type of studied environment. This multi-

objective combinatorial optimization problem can efficiently find the Pareto-optimal

in a reasonable amount of time in small to medium-size networks. However, the

drawback lies when the network size to be analyzed is large, since the time is directly

proportional to the network size, i.e., placing k controllers in n nodes is a

combinatorial problem

 placement [45]. For this reason, heuristic approaches are

used to solve multi-objective problems [45]. Mohanty et al. [68] considered the

propagation latency and the cost metrics using a modified version of the genetic

algorithm to solve the CPP. However, they have used a fixed cost of placing a

controller at a specific location, which lacks further explanation. Sanner et al. [69]

have also solved the CPP based on evolutionary algorithms to maximize the average

cluster connectivity and balance the load among clusters. They have conducted their

algorithm based on NSGA-II [70] framework that deals with CPP. Their proposed

GA lacks a fundamental operator, the crossover operator, where they have claimed to

consider for future work. Jalili et al. [52] solved the CPP based on NSGA-II [71],

focusing on optimizing the inter-controller and intra-controller latencies. Champagne

et al. [49] have proposed a multi-objective genetic algorithm for the CPP that aims to

minimize inter-controller latency, load distribution, and the number of controllers

with fitness sharing. The proposed GA approach provides diversity in fitness value

for different solution spaces, and the diversity provides more solution spaces with

various fitness values. One reason is that the local search improves the population

quality by producing different solution in every iteration [72]. Therefore diversity in

their algorithm is critical since it can provide various choices, especially for dynamic

network reconfiguration. Their algorithm also provides adaptive solutions to real

network architectures such as the United States backbone and Japanese backbone

13

networks. Lokesh et al. in [73] have proposed node fault detection and a recovery

scheme for the CPP based on a genetic algorithm. Their scheme aims to eliminate

faulty nodes by forcing the sleep mode when assigning the controllers based on

energy and link efficiency. Another heuristic approach based on Simulated

Annealing (SA) was proposed by Lange et al. [51] to solve the CPP. Their approach

uses Pareto Simulated Annealing (PSA) and aims to minimize the average latency

between controllers. The PSA algorithm explores 2.5% of the search space. Authors

in [74] presented latency and cost-aware controller placement dynamic optimization

algorithms, namely Salp Swarm Optimization Algorithm (SSOA). Their algorithm

dynamically checks the optimum number of controllers by evaluating the network

load changes, which puts controllers to sleep mode to decrease the communication

overhead in case of a low-load network or adds controllers to handle the network's

load in the presence of an overloaded controller. They conducted their search study

on large-scale SDN networks. Hock et al. [50] have proposed a resilient-based

Pareto-optimal controller placement method considering different factors such as

latency and failure resilience. Their results showed no optimal value for both latency

and failure resilience when considered simultaneously; instead, a tradeoff should be

considered. Kwon and Kang [75] have proposed a genetic algorithm-based

metaheuristic scheme to balance the controllers' load. Their load balancing scheme

has a triggering factor which is a specific load threshold. Whenever the system

detects load imbalance revealed by the load threshold, the load balance scheme is

executed.

2.2 Solving the CPP Based on Load Balancing

Liao et al. [76] solved the CPP by presenting a density-based cluster placement

(DBCP) algorithm which takes each controller's density into account. DBCP

14

separates the network into several connected sub-networks and assigns a controller

for each cluster to achieve high network connectivity. In other words, DBCP

converts the multi-controller placement problem into a single controller placement

problem. DBCP can be easily implemented as it is mainly based on one parameter,

the distance threshold. An increase in the number of clusters is related to either too

small or too large threshold. Therefore, the distance threshold should be set as [0.3-

0.5] times network diameter, and in their case, the distance threshold is set to 0.3

times network diameter.

Selvi et al. [77] presented a Cooperative Load Balancing Scheme for Hierarchical

SDN Controllers (COLBAS). In their scheme, one controller is assigned as a super

controller to manage other controllers' flow requests. When the super controller

detects flow imbalance, i.e., the flow requests exceed an upper bound threshold, it

uses a greedy algorithm to reassign different flow setups to proper controllers and

redistribute the flows to reach a lower bound threshold. Installation of allocation

rules on switches for load balancing is achieved by keeping a low-cost reassignment,

i.e., assigning the flow to the lowest cost controller till the lower bound is met.

Cui et al. [48] have investigated multiple overloaded controllers and developed a

load balancing strategy based on the controller's response time, where real-time of

the controller's response variation is considered. By selecting the appropriate

response time threshold, overloaded controllers could be identified if their response

time is above the threshold, and non-overloaded controllers could be identified if

their response time is below or equal to the selected threshold. By identifying the

overloaded and non-overloaded controllers, the authors applied the migration

algorithm. The heaviest switch belonging to the most prominent response time

15

controller is migrated to the lowest loaded controller iteratively. Their migration

algorithm deals with multiple overloaded controllers simultaneously to palance the

load. However, their strategy can't be considered as a bottom line for checking

overloaded controllers, for instance, a controller could be faulty and not overloaded.

In this case, the scheme can't work well. Also, their scheme lacks further

investigation for the migration cost, which they left for future work.

In the case of a controller failure, achieving high availability is a challenging task.

Rao et al. [78] presented a multi-controller cluster-based scheme where multiple

controllers are organized in clusters form. In each cluster, one primary controller

handles the work, and others synchronize the controller state information, including

network topology, network services, applications and data synchronization. If a

primary controller fails, the election strategy will be executed on the other

controllers, and the one with the highest priority will be elected as the primary

controller. Besides the election, the load balancing strategy is executed on the

OpenVswitch which distributes the load on different servers in a round-robin fashion

to prevent overwhelmed servers.

Yao et al. [78] considered both the SDN controllers' capacity and the maximum

latency, so their algorithm is an alternative to the capacitated k-center problem

(Capacitated Controller Placement Problem-CCPP). Their algorithm is based on the

Integer Programming model to find the minimum number of needed controllers.

However, their approach has a bit high time complexity. Their results show that a

reduction in the number of controllers and the most capacitated controller load can be

achieved for each placement.

16

Yao et al. [65] have introduced a new HybridFlow approach to use multi-controller

for large wide-area wireless networks. They have proposed a balancing scheme

based on double thresholds where controllers are arranged in many clusters. A super

controller controls all these clusters. Each controller checks the load balance in its

cluster and communicates with its neighboring controller to balance the load.

Whenever the cluster load exceeds a specific limit, controllers in this overloaded

cluster will transfer all requests to the super controller, which transfers the excessive

load to other non-overloaded clusters. HybridFlow reduces the super controller

overhead requests by letting the controllers manage the load within the cluster. Only

the super controller will manage load balance in case one of these clusters is

overloaded. Their simulation showed that the HybridFlow outperforms BalanceFlow

[79] by reducing the super controller overhead requests and workload. Generally, the

load among controllers is not static; it may vary according to spatial and temporal

variation in traffic conditions. For that reason, Dixit et al. [80] presented a load

balancing mechanism which adapts to traffic variations. Their algorithm keeps

monitoring the load conditions among controllers. If load imbalance is detected,

switches automatically migrate from the overloaded controller to the less loaded

controller. The algorithm extends or shrinks the controller pool whenever necessary.

That is, if the aggregate traffic load is higher/smaller than controller capacity, the

controller pool scales down/up by adding a new node to the pool or removing a node

from the pool. Their simulation results are pretty efficient regarding the response

time, which lasts for 2ms even when the load rate increases or decreases.

In the sense of a multi-objective scheme, Ruiz-Rivera et al. [81] have proposed an

efficient approach to balance the load among SDN controllers. Their approach limits

17

the delay to an upper bound and saves the energy by turning off as many links as

possible, keeping the connection available among switches and controllers.

Yang and Wang in [82] proposed a path selection k-Dijkstra based algorithm for the

load balancing module which can adapt to traffic changes on one side and reduce

network delay and packet loss rate on the other side.

Killi and Rao in [83] solved the CPP by considering the load of controllers, latency,

and network reliability revealed by the controller failure avoidance ahead of time.

However, their strategy's drawback is the communication overhead done by switches

that repeatedly send packet-in messages to the nearest controller without knowing its

status. Another load balancing mechanism was introduced by Yu et al. [84], where

each switch is connected to one master controller and several slave controllers.

Whenever the master controller becomes overloaded, the switch with the highest

flow rate is chosen to migrate to one of the slave controllers based on the recipient

controller's highest cost, keeping the targeted controller's load below a specific

threshold. Their results showed an increase in the throughput within a reasonable

amount of time to complete the load balancing mechanism.

Hu et al. [85] solved the CPP by considering both the delay and load balancing

concurrently. They claimed that an insignificant increase in the load is caused while

optimizing the delay. They have suggested the use of a heuristic algorithm to

optimize the delay along with the load balance for future work. Another efficient

load balancing algorithm presented by Hu et al. [86] focused on the migration cost

that the switch encounters when migrating from its associated overwhelmed

controller to a less loaded one. They claim that the switch migration may increase the

18

recipient controller's response delay and decrease the throughput. By taking into

consideration, the migration cost that represents the added load on the recipient

controller, their proposed efficiency-aware switch migration (EASM) strategy results

in load-balanced controllers, in addition to high controller throughput and low

migration cost.

2.3 Solving the CPP Based on Decreasing Latency

Hu et al. in [87] have addressed the controller placement problem based on the

network energy consumption performance metric. The control paths and capacity of

controllers are modeled as binary integer program (BIP). In their model, the network

energy consumption is minimized under the control paths' delay and controllers'

loads' constraints. Due to the high complexity of BIP, the authors have suggested the

use of a heuristic algorithm, specifically the genetic algorithm, to find the near-

optimal solution. Results conducted on different topologies with various controllers'

numbers reflect the indirect proportion between the number of controllers and the

number of control path links. Also, results have shown that delays on all control

paths satisfy the delay threshold, in addition to energy savings. However, their model

aimed at energy saving in the control plane, and discarded the forwarding plane,

which they claim to include as a future work for an energy-aware SDN model.

Abdelaziz et al. in [88] presented cluster-based distributed SDN controllers where

three controllers are placed in a cluster; one of them is selected as the primary

controller, and the others are backup controllers to assure the reliability and

availability of the network. Their experiments show that when the number of

switches exceeds 75, their algorithm reduces the latency from 8.1% (when no

19

clustering is done on the distributed controllers) to 1.6% when clustering exists.

Also, the packet drop is reduced from 3.99% to 3.53%.

Another latency-based improving algorithm is presented by Wang et al. [89], where

different aspects of latency have been considered that can affect the network

performance. For instance, they have suggested using the Clustering-based Network

Partition Algorithm (CNPA). The CNPA partitions the network to reduce the overall

end-to-end latency, unlike traditional clustering algorithms. In such algorithms as k-

mean and k- center, the end-to-end latency can't be reduced with the increase in the

number of subnetworks. In addition to the end-to-end latency, they have investigated

the queuing latency for switches modeled as M/M/m queueing system. Accordingly,

they placed controllers at switches and iteratively increased the number of controllers

so that the maximum latency is upper bounded by a given threshold. They found out

that when eight controllers are deployed, the average total latency achieved by their

algorithm is almost three times smaller than those achieved by k-means and k-center

algorithms. The authors used the Haversine formula to find the shortest path between

nodes instead of the Euclidean distance where the physical links may not exist in the

path of the Euclidean distance between two nodes [90], and the shortest path distance

between nodes is based on Dijkstra's theorem [91].

2.4 Solving the CPP Based on Reliability and Energy-Efficiency

Many researchers have handled the controller placement problem focusing on

increasing reliability and allowing the overall system to be resilient to connectivity

failure. Heuristic approaches such as l-w greedy [92] and simulated annealing have

been adopted in [27], [92]. Authors in [27] have represented the reliability metric as

the percentage of control paths' failure and as an expected percentage of valid control

20

paths where switches' failures vary within [0.015-0.025], and links failures vary

within [0.035-0.045]. The authors in [92] have represented the reliability metric same

as in [27] with different intervals as [0-0.02] and [0-0.04] respectively. Although, the

reliability increases with the number of controllers, however, deploying an excessive

number of controllers will have a negative impact on the reliability [92]. Therfore,

authors in [92] illustrated that the number of controllers varies in the interval

[0.035n-0.117n] where n is the number of nodes in the network. They have used the

simulated annealing method to solve the controller placement problem. They have

compared their results with the Brute Force search [93] technique which is regarded

as the most straightforward meta-heuristic technique that works well and gives

optimal results in limited size problems. Their findings show a decrease in reliability

metric when optimizing the latency and an increase in latency when optimizing the

reliability metric. These were their findings when three controllers are used.

However, in the case of one controller, optimizing the latency leads to optimized

reliability.

Since the network failure leads to a disconnection between control and data planes,

achieving reliability for the controller placement problem was the aim of Zhang et

al. [61]. The authors presented an algorithm to reduce the connectivity failure

between controllers and switches based on a minimum cut (min-cut) algorithm to

maximize network resilience to failure. Their proposed method showed better

reliability improvements than greedy and random schemes. Hu et al. [94] focused on

real topologies and defined reliability as the expected percentage of control path loss

which is proven to be NP-hard. They have shown a tradeoff between network latency

and network reliability.

21

2.5 Solving the CPP Based on Network Lifetime Enhancement

Hu et al. [87] focused on optimizing the network energy saving in solving the CPP.

By simulations, near-optimal solutions are achieved. The authors adopted the GA

[94] to optimize the average connectivity and the network balance to solve the CPP.

Qureshi et al. [95] proposed a load management scheme named as Gateway

Clustering Energy-Efficient Centroid (GCEEC) to address the load burden issues

caused by sensor nodes which relay their transmission data to those that are close to

the base station. In their scheme, the CHs are selected from the centroid position, and

the gateway nodes are selected from CHs, aiming at transmitting the data of the

overwhelmed CHs to the base station. The experimental results showed that the

proposed GCEEC scheme is an energy-efficient algorithm that showed better

performance than other state-of-the-art schemes.

Nitesh et al. [8] proposed a fault tolerance and energy utilization-based scheme for

large-scale networks. The proposed scheme named as Energy-Efficient Fault-

Tolerant Clustering Algorithm for Wireless Sensor Networks (EEFCA) is formulated

regarding the distance between the sensor nodes and the base station, residual

energy, and the number of sensor nodes in each cluster. In their scheme, each sensor

node calculates the cost of joining a relay node close to the base station whenever its

associated CH is faulty. Accordingly, it sends the calculated info to the relay node,

which transmits it to the base station. The experimental results showed that the

EEFCA scheme is an energy-efficient algorithm that outperforms other schemes in

the literature. However, the proposed scheme requires various calculations done by

22

the relay nodes for choosing the best CH for communication, which consumes a lot

of energy.

23

Chapter 3

THE PROPOSED FAULT TOLERANCE

METAHEURISTIC-BASED SCHEME (FTMBS)

This chapter presents a detailed description of the proposed system approach. In

section 3.1, a description of the problem is presented in detail. Section 3.2 describes

the methodology used to solve the CPP, which incorporates a k-way spectral

clustering technique described in section 3.2.1. Section 3.3 presents the network

structure with the related assumptions. Finally, section 3.4 presents the system

description and the various network performance metrics to be optimized in solving

the CPP.

3.1 Problem Description

Software-defined networking is a new technology that was initially implemented in

wired networks and data centers. Afterward, and due to the flexibility it can offer for

network management, this new technology motivated many researchers to implement

it in wireless networks. TinySDN [30], SDWSN [5], and much more in Literature

[1], [4] are examples of such implementation. Some network performance metrics

are affected by sharing the communication link and network bandwidth among the

data and control planes, such as network delay and network throughput. On a given

link, both control and data requests are sent, causing unnecessary network delays.

One promising solution for restricting the delay is providing an efficient load balance

algorithm in a multi-SDN controller-based network [96].

24

As stated before, a critical issue arises when multi-controllers are present in an SDN-

based network, the CPP, which is an NP-hard problem [2]. Solving such problems is

usually done by applying evolutionary algorithms [51], [52], [69], [73], especially for

large-scale networks. Evolutionary algorithms are optimization algorithms that

provide near-optimal solutions in a reasonable amount of time. Identifying the

problem along with the objectives and the network constraints are typically done

ahead of time. Since the number of controllers affects the network performance,

authors in [27], [2], [92], [94] claim that deploying few numbers of controllers or

excessive number of controllers will reduce the reliability of the system.

The most important metrics affecting the overall network performance are reliability

and latency. Latency includes transmission, propagation, and queuing delay [89].

Most researchers in literature did not consider the presence of faulty nodes. Hence, in

this thesis, we have investigated the network performance when using SDN in WSNs

in the presence of faulty nodes. We have solved the CPP by proposing a Fault

Tolerance Metaheuristic-Based Scheme (FTMBS) [97] for forecasting-based

monitoring environments [98]. The proposed scheme incorporates the use of both the

Genetic algorithm [49] (GA) and the Greedy Randomized Adaptive Search

Procedure (GRASP) algorithm [55], [99]. We have ensured to achieve the network

steady-state by proposing the Balance State System (BSS) in the presence of faulty

nodes. Our proposed scheme gives the network operator the freedom to decide on the

tradeoff among different competing multi-objectives. The multi-objective-based

algorithm optimizes the network connectivity, balances the load, minimizes the

network delay, and optimizes the network lifetime.

25

3.2 Methodology

The proposed FTMBS scheme optimally solves the CPP and maximizes network

fault resilience by considering the link efficiency and the node's remaining energy.

Thus, the FTMBS scheme can be seen as an energy-efficient and fault-avoidance

scheme. We investigated the tradeoff between the cost and the number of controllers

even though the network performance shows slight improvement when the number

of controllers increases. We followed what Cisco has declared about using odd

numbers [53] of SDN controllers. We initially considered three SDN controllers to

avoid the single point of failure, and then we considered five controllers. We carried

out various network performance comparisons when using three and five controllers

and decided on using three controllers in a network consisting of 500 sensor nodes in

a field of 200x200 m
2
.

3.2.1 K-way Spectral Clustering

One of the critical challenges in wireless sensor networks is the sensor nodes are

empowered with a very limited battery, and recharging the battery is almost

impossible. As known, energy saving has a direct positive impact on the overall

network lifetime. To address this issue, Jorio et al. [100] have proposed a new

clustering algorithm in WSN based on spectral clustering [101], [102], and residual

energy. Their algorithm determines the optimal number of clusters and determines

the cluster heads, which is somehow vice the conventional clustering methods such

as LEACH. The K-Way spectral clustering [103] determines the number of clusters

by considering the network field area and the energy consumption caused by the free

space model amplifier and the multiple attenuation model amplifier. Based on the

Laplacian matrix, eigenvalues and eigenvectors are determined. Then clustering is

done using K-mean on the matrix consisting of K-eigenvectors of the Laplacian

26

matrix's largest K-eigenvalues. The last step is selecting the cluster heads, which

differs from traditional random selection process. Instead, two critical parameters are

considered when selecting a cluster head: the sensor nodes' residual energy and node

id. Therefore, the cluster head is at a random position in the cluster in each round. As

a result, their approach caused a significant reduction in the total consumed energy of

each round and a noticeable elongation in the network lifetime. In this thesis, the

motivation to apply the k-way spectral clustering is two-fold. First, applying this type

of clustering proves to cause a noticeable reduction in the network consumed energy

which is the most desired objective in WSNs. Second, spectral clustering provides

several disjoint clusters, and alternative paths exist for each node in the network.

Therefore, in the presence of faulty nodes or paths, the transmission of messages to

the destination can still be performed via alternative paths. Since we have considered

various percentages of faulty nodes and paths, alternative paths will boost the

network reliability.

3.3 Network Structure

In this thesis, we focused on a multi-domain network, where 500 sensors are

deployed randomly in a field of 200m × 200m for forecasting-based monitoring

environment as in [98] where three controllers are present at the beginning; one

placed at the sink and two others to be selected from the network cluster heads. Each

domain is controlled by a specific controller, where the network state is shared

between them. The controllers are assumed to be connected via Ethernet cable, as

shown in Figure 4. The root controller at the sink, considered to be failure-free,

executes the necessary algorithms for achieving the network steady-state and

ensuring the load balance among the controllers.

27

Figure 4: Proposed Network Structure

At the beginning, clustering the nodes is done by applying the k-way spectral

clustering algorithm [100] which considers the nodes' spatial positions. Afterward,

we applied metaheuristic algorithms (GA, GRASP) to solve the CPP by optimizing

various system constraints defined by the fitness function. The fitness function of the

mentioned algorithms is a multi-objective function aiming at optimizing various

network performance metrics, specifically maximizing the network connectivity,

balancing the load, minimizing the network latency, and maximizing network

lifetime. In our proposed scheme, we assumed the followings:

• The root controller (Croot), placed at the sink, is failure-free.

• Sensor nodes are randomly distributed

• Communication link is shared between control and data planes

• The network topology is known by the root controller

• The forwarding tables consist of disjoint paths to ensure reliability in the presence

of link or node failure.

• SDN controllers have the same characteristics.

28

3.4 System Description

As shown in Figure 4, the model can be considered as an undirected graph G(V, E)

with sensor nodes representing the vertices V, and set of links E. The model

incorporates several controllers, i =1,2,…; one is the root controller, and the rest are

optimally selected using GA and GRASP algorithms from the network's cluster

heads {1,…,N}. Hence, each controller i is associated with several cluster heads ni,

where ni is a subset of N. A chromosome consists of a number of genes where each

gene represents a cluster head. A population is a collection of K chromosomes where

the detailed description of the population is explained in section 3.5.1.2. For each

chromosome in K, k random cluster heads are selected, where k ni, and the fitness

function is calculated based on the following four objectives.

• Maximizing the network connectivity: The number of flow messages implicitly

reflects the strength of network connectivity. The number of flow messages arriving

at controller i from one of its cluster heads jϵ ni, is denoted by . An important note

to be mentioned is even in the presence of faulty paths or nodes, the transmission of

messages is done via alternative paths to reach the destination. For this, we have

considered the use of spectral clustering which partitions the network into disjoint

clusters. Equation (1) shows the maximum average flow among all the K

chromosomes of the randomly selected k controllers, where nk is the number of

cluster heads associated with the related controller.

(1)

• Balancing the controller’s load: Balancing the load among controllers avoids the

presence of overwhelming controller(s) which negatively affects the network delay

f1=

 (1)

29

due to the increase in the controller's response time. When using the in-band scheme,

as in our case, balancing the load among controllers is an important aim to be

achieved to avoid unnecessary delays. The load of a controller i , denoted by Loadi,

is the sum of all the successfully flow messages issued by the controller's associated

cluster heads jϵ ni, (i.e.), and neighboring cluster heads j'ϵ nb of the neighboring

controller b, denoted by . Therefore, a message is successfully received if a node j

issuing the flow is nonfaulty, denoted by ftj,, as shown by equation (2), and the path

between cluster head j and controller i exists, denoted by pji, as shown by equation

(3). Hence, the load of controller i can be shown as given in equation (4).

 =

 (2)

 =

 (3)

 Loadi =

 +

 (4)

Equation (5) shows the minimum load among all the K chromosomes of the

randomly selected k controllers.

f2=

 (5)

• Minimizing the network delay: The network delay, denoted by DTotal, is the sum of

transmission delay, propagation delay, and the queuing delay of a controller in each

chromosome. The transmission delay is the time taken to push all the packet's bits

into the link, and is given by L/B, where L is the packet size, and B is the bandwidth.

We neglected the transmission delay in our case as it is very small compared to the

other delays. The propagation delay is the time needed for a packet to reach the

destination, and the queuing delay represents the waiting time of a packet in the

controller’s buffer where each controller’s buffer is modeled as an M/M/1 queuing

system [60]. The service rate is denoted as μ, and
 is the arrival rate of requests

30

from cluster head j to controller i. The distance between a cluster head j and a

controller i is denoted by dji, and the speed of light is denoted by c. Therefore, the

aim is to minimize the maximum worst-case latency, given by equation (6), which

must be bounded to a given threshold, denoted by Tthreshold to avoid unnecessary

delays.

f3=DTotal=

 s. t DTotal<=Tthreshold (6)

• Maximizing the network lifetime: The network lifetime represents the total number

of alive nodes existing at the end of the simulation. A node j belonging to controller i

dies when the current energy, denoted by Ej, falls below an energy threshold, denoted

by Ethreshold. The sensor current energy, Ej, is the difference between the initial

energy, denoted by E(ini)j and the total consumption energy, denoted by Ejconsumption.

Equations (7), (8), and (9) provide the calculation details for energy consumption for

transmitting L bits, receiving L bits, and total energy consumption. The energy

required for a node j to transmit L bits at a distance dj is denoted by ETj and given by

equation (7), where Eelec is the energy consumption of node transceiver circuit for

receiving or transmitting one-bit data, Efs and Eamp are power consumption

coefficients needed for power amplification in the free channel and multi-path fading

channel respectively, and d0 denotes the distance threshold to decide which radio

model is used. The energy required for a node j to receive L bits is denoted by ERj

and given by equation (8). The total node's energy consumption is the sum of the

transmission and reception energies as shown by equation (9).

ETj =

 (7)

ERj= (8)

31

Ejconsumption = ETj + ERj (9)

Therefore, the current energy of a node j is given by equation (10).

Ej = E(ini)j - Ejconsumption (10)

Equation (11) shows the link efficiency of the corresponding path, denoted by

 , which must be above a specific threshold, linkeffthreshold. The link efficiency

increases the network energy efficiency by considering the consumption energy of

the cluster head when sending L bits to controllers. It also considers the network

bandwidth denoted by B, and the signal-to-noise ratio denoted as SNR.

 (B× log2(1+SNR))/ Ejconsumption (11)

Equation (12) shows the maximum network lifetime among all the K chromosomes

of the randomly selected k controllers by avoiding the consideration of faulty cluster

heads in the system.

 (12)

 linkeffthreshold

The fitness function's weight values are given by the scalarization method [66] which

is capable of creating a single solution. In particular, we have used the Rank Order

Centroid (ROC) weights. Thus, the final fitness function denoted by Ӻ and given by

equation (13) shows the maximum fitness value among all the K chromosomes of the

randomly selected k controllers:

Ӻ = (13)

 s.t ω 1+ ω2+ ω3+ ω4=1

The fitness function consists of four objectives, and the ROC [66] weight values are

given by equation (14).

ωi=

 (14)

Where no is the number of objectives which is 4 in our case. Using equation (14), the

weight values are: ω1=25/48, ω2=13/48, ω3=7/48, and ω4=3/48. The high weight

32

value of a function reveals a high priority and vice versa. For example, giving f1 a

weight value of 25/48 means that the network connectivity has the highest priority

over the rest of the objective functions.

The proposed Fault Tolerance Metaheuristic-Based Scheme (FTMBS) incorporates

the use of two metaheuristic algorithms (GA and GRASP) for solving the CPP, and

the Balance State System algorithm for reaching the steady-state. A detailed

description of these algorithms is in the following section.

3.5 Metaheuristic Algorithms

We have applied metaheuristic algorithms to solve the CPP, specifically, the GA and

GRASP algorithms. When a network consists of several controllers, finding their

best locations is an NP-hard problem [41]. The only solution for such problems in a

reasonable amount of time is by using evolutionary algorithms such as, in our case,

the Genetic Algorithm (GA) and the GRASP algorithm.

3.5.1 Genetic Algorithm

Inspired by natural evolution, the core operators of the GA are inheritance, crossover,

and mutation. GA optimizes a problem by providing near-optimal solutions [49]. The

evolution starts with a population of randomly generated chromosomes and happens

in generations. In each generation, the fitness of every chromosome is evaluated

from the population where multiple chromosomes are selected from the current

population using the tournament selection which selects the chromosomes with the

highest fitness value. Then, the partially matched crossover and mutation operations

are applied to form a new population. This new population is added to the next

iteration of the algorithm. The algorithm ends when a maximum number of

generations is fulfilled, or an optimal fitness level is reached. The probability of

33

using the crossover and the mutation operators are 0.8 and 0.2, respectively. The

fitness function calculation for each chromosome is provided by Equation (13). The

algorithm returns the minimum cost value, the average cost value, and the maximum

cost value with the location of the controllers that are the indices of the cluster heads.

The pseudo-code of GA [73] is given in Table 2.

Table 2: Pseudo-code of GA

Input: Parameter popsize, crossover probability pc, mutation probability

pm, maximum iteration iter_max, k is number of controllers

Output: The controllers' locations

1: initialize popsize individuals;

2: check feasibility of each individual;

3: WHILE number of generations <= iter_max do

4: For i = 1 to popsize do

5: Ӻ (i) ← φ

6: Select k controllers from cluster heads, S={1,…,i} is set of cluster

head ids

7: For j = 1 to k do

8: Apply the k-mean method to assign every cluster head to controller

9: end for

10: calculate the fitness value Ӻ of each chromosome given in equation

13

11: Order the population based on evaluation value;

12: Perform the Tournament selection process;

13: Apply the partially matched crossover operator

14: Apply the mutation operator

15: Update the population for the next generation;

16: min_cost min(Ӻ)

17: avg_costaverage(Ӻ)

18: [max_cost, location] max(Ӻ)

19: end for

20: END WHILE

21: return min_cost, max_cost, avg_cost, S

3.5.1.1 Chromosome Definition

A chromosome is a collection of genes of length N; in our case, it is a collection of

cluster heads found in the given network. Therefore, a chromosome consists of

sequences of positive integers that represent the IDs of cluster heads. The variable

34

length of the chromosome is represented as the total number of cluster heads, N, in

the network.

3.5.1.2 Population Representation

A population is a collection of chromosomes of population size, popsize, where the

initial population consists of several chromosomes with the possibility of having

faulty cluster head(s). For each chromosome of the population, a random selection of

k controllers from N cluster heads is performed. Then, the k-mean method to assign

the rest of the cluster heads among these controllers is applied. Then the objective

function for each chromosome, Ӻ is calculated. Then, the selection of two

chromosomes, having the lowest fitness value to recover the faulty nodes, is based on

tournament selection for finding better chromosomes for fault tolerance in the

network. Then, crossover and mutation are applied. The algorithm returns the best

solution containing the IDs of the cluster heads for solving the CPP. Figure 5 shows

an example of chromosome representation for a given network of several cluster

heads, N, with a possible solution marked in blue. Each gene value provides the

cluster head identification number (ID). Therefore, this chromosome contains the

controllers' locations; i.e., the bold colored IDs are the cluster heads where the

controllers are placed.

35

Figure 5: Population Representation

3.5.2 Greedy Randomized Adaptive Search Procedure Algorithm

The GRASP algorithm initially proposed for the Operations Research practitioners

[55] consists of two related phases; the construction and local search phases. The

ending criterion and the elements' quality of the restricted candidate list, denoted by

RCL, are the two basic parameters of GRASP. A result consists of the best solution.

The construction phase consists of iteratively constructing a feasible solution, one

element at a time. Then, the elements in the candidate list are ordered according to a

greedy function. GRASP consists of a probabilistic component where the best

candidates are randomly chosen. These best candidates are placed in a list, namely

RCL. The pseudo-code of GRASP can be found in [55].

3.6 Balance State System (BSS)

Before describing the balance state system's details (BSS), it is necessary to

determine the controller's response time threshold since it is a triggering factor for

the BSS. At time interval Tn, a controller i response time for the request issued by its

associated cluster head member j (jϵni), denoted by , is calculated by

subtracting the time the request has arrived at the controller, denoted by tarrive from

36

the time the controller issues its response, denoted by treply, as given by equation(15).

The response time of a controller i for a request issued by a neighboring cluster head

j' ϵ nb belonging to controller b is denoted by . Hence, the average response

time of controller i, denoted by AvgRi, is the summation of all the response time

divided by the load defined in equation (4). The controller's average response time is

given by Equation (16):

 = treply-tarrive (15)

 AvgRi=

The BSS incorporates two interrelated algorithms which are executed by the root

controller consecutively. The first algorithm is the Balance State Awareness (BSA)

algorithm presented in Table 3, and the Balance State Warranty (BSW) algorithm

presented in Table 4. The BSA detects the imbalance state, whereas the BSW ensures

that the network steady-state is achieved. As stated before, the controller's response

time is used as a trigger parameter that the root controller checks to execute the BSA

algorithm. The root controller checks if a non-faulty controller's average response

time exceeds a certain threshold, denoted by RespT_threshold. The controller

ensures the network steady-state by executing the BSS algorithm. A significant note

for claiming a controller to be overloaded is by checking if it is not faulty. This

condition is essential as a controller could be faulty but not overloaded. This

condition is missed in [48] [74]. The extreme point of the changing curve in the first

and second-order derivatives, denoted by AvgRi'(Tn) and AvgRi''(Tn) respectively,

represents the threshold of the controller's average response time at time Tn. The first

and second-order derivatives are given in (17) and (18), respectively.

 (16)

AvgRi'Tn=

 (17)

37

After recording the average response time of the controller for different load values

and finding the first and second derivatives given by equations (17) and (18), we

found that the point referring to a value of 2ms is a global maxima point having a

second derivative negative and first derivative zero. We recorded the controller's

average response time versus load as shown in Figure 6. Accordingly, the controller's

load threshold, denoted by Loadthreshold, is set to 2600 packets. Table 3 illustrates the

BSA of the BSS. The algorithm's inputs are the average response time of all

controllers found in the system and the obtained threshold. Two sets denoted as

OL_C for overloaded controllers and LL_C for low-loaded controllers are empty at

the beginning. The root controller checks if all the controllers' average response time

satisfies the condition of overload; i.e., the controller's average response time is

above the obtained threshold, and the controller is not faulty, then the controller is

added to the OL_C set, else, it is added to LL_C set. However, if the controller is not

overloaded (i.e. faulty), the root controller executes the third algorithm, namely the

Load distribution of the Faulty Controller denoted by LFC. The LFC algorithm

distributes the faulty controller's load among the non-faulty and non-overloaded

controllers, ensuring the network functions smoothly with no delays. Then, the root

controller applies the metaheuristic algorithms to find another location among the

nonfaulty cluster heads for the faulty controller.

AvgRi'
'
Tn=

 (18)

38

Figure 6: Controller's Average Response Time vs. Load

When the BSA is triggered, the two produced sets (OL_C and LL_C) are used in the

BSW algorithm to guarantee that no overloaded controller(s) exists. The BSW

algorithm handles the load migration process efficiently between controllers. The

following steps describe the BSW algorithm shown in Table 4.

Step 1: find the maximum overloaded controller denoted by CO in line 3. Step 2: find

the heaviest overloaded cluster head denoted by j belonging to the maximum

overloaded controller and a nonfaulty node having its flag is false to avoid choosing

the same node in line 4. Step3: find the minimum loaded controller denoted by CL as

a recipient controller after migrating j to it in line 5. However, before the migration

process occurs, the root controller makes sure that the recipient controller's load is

below the given threshold, denoted by Loadthreshold. Then, the migration process is

done to P <j,CL> in line 9; otherwise, the root controller flags this j and continues

with the next heavy cluster head of an overloaded controller in line 7. Table 4

illustrates the BSW migration process, which ensures no overloaded controller exists.

The condition of no overloaded controller is satisfied if the overall load of the

recipient low-loaded controller CL is below the load threshold; then, the migration

39

process is done. Otherwise, the heavy cluster head is flagged, and the algorithm

continues with the next heavy cluster head of the overloaded controller.

The third algorithm is the Load Distribution of Faulty Controller (LFC), illustrated in

Table 5, which distributes the load of cluster heads of a faulty controller in a

balanced way among other controllers considering not to end up having an

overloaded controller. We specify the threshold load that is the border for not having

overloaded controllers. The algorithm starts with input information such as the load

of cluster heads of the faulty controller, load information of the other controllers, and

the load threshold. First, the set A of load info of CHs is sorted in decreasing order,

starting from the heaviest CH, and sort the controllers, starting from the lightest one.

An essential condition for the addition of CH to the controller is that, the controller's

load should not exceed a threshold denoted by Loadthreshold. If this condition is

satisfied, the CH is added to the current controller. Otherwise, it is added to the

second lightest controller only if the receipt controller's total load is within the load

threshold. Otherwise, the cluster head is flagged. The algorithm then continues with a

non-flagged heavy cluster head to determine which controller to choose for

migration. The algorithm stops when cluster heads of faulty controllers are

distributed among other controllers; i.e., no CHs whose flag=false exist.

40

Table 3: Balance State Awareness (BSA)

Input: A = { AvgRi, iϵ{1,..,k}, k=3 or 5,RespT_threshold

Output: OL_C, LL_C

1: initialize controller set OL_C = { } & LL_C = { }

2: let i be the serial number of the controller

3: For i = 1 to k do

4: select AvgRi from A , s. t. fault(i) =false

5: if AvgRi > RespT_threshold then

6: add i to OL_C

7: else

8: add i to LL_C

9: end if

10: if fault(i)==True then execute LFC

11: end if

12: end For

13: return OL_C, LL_C

Table 4: Balance State Warranty (BSW)

Input: OL_C, LL_C, load information j cluster heads of overloaded controller

Co , Loadthreshold, Croot

Output: P: CH migration actions set

1: initialize node shifting set P ={ }, flag(all CHs,j)=false, Fault(all CHs,j)=false

2: while (OL_C isNotEmpty & flag==false) do

3: CO = ; find maximum loaded controller Co

4: j = Max { }s.t fault(j)==false and flag(j)==false; find cluster head of

maximum load

5:CL = Loadthreshold}

6: If CL==NULL then Flag(j)=true

7: Go to step 2

8: else

9: add< j;CL> to P

10: Remove CO from OL_C

11: Remove CL from LL_C

12: end if

13: end while

14: return P

41

Table 5: Load distribution of Faulty Controller (LFC)

Input: Load information of all cluster heads j ϵ nx of faulty controller x, , load of

nonfaulty controllers at time Tn, Loadthreshold, number of nonfaulty controllers k,

number of cluster heads nx of faulty controller x.

Output: P: CH migration actions set

1: initialize A set of loads of CHs of faulty controller, B is set of loads of nonfaulty

controllers, Flag all cluster heads jϵ (1,…,nx)=false

2: Sort in decreasing order set A={ , ,…., }

3: Sort B in increasing order B={ Load1, Load2,.., Loadk}

4: while A IsNotEmpty do

5: for i=1 to k do

6: for j=1 to nx do

7:If (Loadi + flag(=false)<=Loadthreshold) then

8: Add <j,i> to P

9: Update Loadi and the set B

10: Remove load information of j from A

11: Goto 2

12: else

13: Flag(j)==True

14: Goto 4

15: end if

16: end for

17: end for

18:end while

19: return P

20: Execute the metaheuristic algorithms to solve CPP

First, three controllers were considered, and various network performance metrics

were recorded under the execution of the proposed FTMBS scheme. Afterward, we

considered five controllers, recorded the same network performance metrics,

compared them using three controllers, and suggested the appropriate number of

controllers.

The FTMBS flowchart is shown in Figure 7. We have 500 sensor nodes randomly

distributed in a specific field area. We have used the K-way Spectral Clustering

Technique [100] to partition the network into several disjoint clusters. The cluster

heads are selected based on their current energy; i.e., the current energy should be

42

above a given threshold, denoted by Ethreshold. The run time is set to 300 seconds with

an arrival rate of 100 packets per second (pps) and service rate of 4000 pps and

increasing every 10 seconds by 100 packets till the arrival rate is 3000 pps. The root

controller executes the BSS algorithm to keep the network in a steady state.

Whenever faulty controller(s) exists during a time interval of 10 seconds and less

than the simulation time, the root controller will execute the GA or GRASP to solve

the CPP. Applying the genetic algorithm to solve the CPP satisfying the mentioned

constraints, simulations for different fault percentages and network performance

metrics are recorded accordingly. Then, the root controller solves the CPP by

running the GRASP algorithm. Finally, network performance metrics comparisons

between GA and GRASP are carried out when three and five controllers are present

with and without the BSS algorithm.

43

Figure 7: FTMBS Flowchart

44

Chapter 4

PERFORMANCE EVALUATION

We have used MATLAB 2019 to run our proposed FTMBS scheme under various

faulty node percentages. Table 6 presents the simulation parameters [89]. We have

run our scheme 50 times for each fault percentage and took the average to achieve a

95% confidence interval. As described in Chapter 3, we have determined the

controller's average response time threshold, in our case 2 ms, which is the triggering

factor used for determining overloaded controllers. It is also used as an input

parameter for the balance state system. We have defined the required average

percentage of improvements (API) ahead of time, 40% and above for latency and

successful packets received, 20% and above for controller average load and

controller's average response time, and 15% and above for the number of alive

nodes. Finally, we have included the confidence interval estimation for the latency

values under the GA for three controllers. The confidence interval estimation is

provided in Appendix B. We have also compared the worst-case latency of FTMBS

with a clustering-based network partition algorithm (CNPA) [89], where the authors

place the SDN controllers randomly on the centroid of the clusters found in the

network.

45

Table 6: Simulation Parameters

Parameter Value

Field area 200x200 m
2

No.of sensor nodes, V 500

Crossover probability 0.8

Mutation probability 0.2

Population size, popsize 50

Number of runs, iter_max 50

Sensor Energy 2 Joules

Energy Threshold, Ethreshold 0.05 Joules

Sensing Energy 50nJ/Bit

Energy required in sending or receiving 1bit(Eelec) 50nJ/Bit

Packet arrival rate 200packets/s-3000packets/s

Packet length, L 30 bytes

Service rate, μ 4000packets/s

Bandwidth, B 2Mbps

Efs 10pJ/bit/m2

Eamp 0.0013pJ/bit/m4

d0 87m

Time interval 10 seconds

Time period 300 secs / 5mins

RespT_threshold 2ms

Loadthreshold 2600 packets

linkeffthreshold 0.2mbps

Node Fault probability [0,1,5,10,20,50]%

Signal to noise ratio, SNR 40 dB

Latency Threshold, Tthreshold 1.2 ms

Analysis of the results is carried based on the following network performance

metrics:

4.1 Worst-Case Latency

We have conducted different simulations for analyzing the worst-case latency given

by equation (6) to examine the performance of the proposed FTMBS. First, we

recorded the latency when no heuristic algorithms are executed. We randomly placed

the required number of controllers on cluster heads and recorded the latency. Then,

we applied the cluster-based network partition algorithm (CNPA) [89] that considers

no heuristic algorithm to solve the CPP. On the contrary, authors have partitioned the

46

network into k given clusters by finding the centroids and allocating the nodes

among these centroids, then placing the controllers at the centroids. We have

compared the worst-case latency with these algorithms.

4.1.1 Worst-Case Latency Analysis for FTMBS

As described in Chapter 3, we have recorded the latency results when running the

GA and GRASP algorithms with and without the BSS for three and five controllers.

The BSS has a positive impact on network latency under GA in the presence of

faulty nodes for three and five controllers as shown in Figure 8 and Figure 9,

respectively. The same impact under the GRASP algorithm can also be observed as

shown in Figure 10, and Figure 11, respectively. We can see that the latency has

been decreased when using five controllers instead of three controllers for both GA

and GRASP algorithms. Taking into account the required API mentioned at the

beginning of this chapter, we imply using three controllers instead of five controllers

despite the marginal improvement in latency achieved with the five controllers case.

Figure 8: Network Latency for 3 Controllers under GA

47

Figure 11: Network Latency for 5 controllers under GRASP

4.1.2 Worst-Case Latency Analysis for Different Algorithms

First, we have considered three controllers to be implemented on the cluster heads.

The first method randomly places the three controllers on the cluster heads found in

Figure 9: Network Latency for 5 Controllers under GA

Figure 10: Network Latency for 3 Controllers under GRASP

48

the network after applying the k-spectral clustering method. The second method

applies the CNPA proposed by Wang et al. [89], where the network is clustered into

k clusters, k value varies as [1-6]. In our case, we choose k=3. The algorithm

randomly chooses a node to be the center of the network. It tries to find the actual

centroid by calculating the sum of worst-case latency between pairs of nodes and

finds the node of minimum sum latency to be the first centroid. The node with the

maximum sum of worst-case latency is selected as the second centroid. Then, the

algorithm allocates the nodes to these two centroids based on minimum latency.

Once a node is allocated to one of the centroids, recalculation for the centroid is

done, and this continues till the network is divided into k clusters. We have

considered CNPA and random algorithms with and without the BSS algorithm to

analyze the impact of BSS on latency. Figure 12 shows the worst-case latency of the

algorithms mentioned above compared to the proposed FTMBS algorithm with and

without the BSS under the GA. In the random method, the network is clustered using

k-spectral clustering, which gives the optimal number of disjoint clusters. When a

network is well clustered, the latency is decreased. On the other hand, in CNPA, the

network is clustered into three clusters, and the controllers are placed at the centroids

of these clusters. This explains the cause behind having the latency of the random

method less than that of CNPA. Also, the proposed FTMBS under the GA has

achieved the least worst-case latency compared to the random method and CNPA

algorithm. In the proposed FTMBS, the placement of controllers is formulated as a

multi-objective function to optimize the worst-case latency, connectivity, load

balance among the controllers, and network lifetime. When the BSS algorithm is

executed on FTMBS, the nodes selected as cluster heads deplete energy during

simulation; therefore, the controller selects another node to be cluster head. In

49

addition, the location of each controller is not fixed. On the contrary, the root

controller executes the metaheuristic algorithms to optimally select the controllers

once faulty controllers are found. However, in CNPA, the selected nodes as centroid

for every cluster after finding the k clusters do not change during simulation, which

is a drawback as a sensor node depletes energy due to transmitting data. This

drawback is negatively reflected in the network connectivity, reliability, and overall

network performance. Hence, the FTMBS algorithm shows its superiority, even in

the presence of faulty nodes, over CNPA and random algorithms. In addition, the

BSS algorithm shows a positive impact on reducing the latency that is affected by

overloaded or faulty controller(s). As shown in Figure 8, the BSS algorithm has 8%

and 10% improvements in latency over random and CNPA algorithms, respectively.

Also, the FTMBS with the BSS algorithm has 11% and 14% improvements over

random and CNPA algorithms, respectively. Hence, the superiority of the proposed

FTMBS is obvious.

Figure 12: Latency Analysis for Different Algorithms

50

4.2 Network Lifetime

Recall that network lifetime is defined as the total number of alive nodes existing at

the end of the simulation given by equation (12). The more the network energy is

saved, the more alive nodes will exist. Table 7 and Table 8 show the total number of

alive nodes under GA and GRASP algorithms with and without the BSS algorithm

when three and five controllers are used, respectively. As shown in Table 7 and

Table 8, the number of alive nodes for both algorithms with BSS is higher than

without BSS. Also, the number of alive nodes under the GRASP algorithm is more

than that under the GA algorithm. However, the BSS has more effect on improving

the number of alive nodes under the GA algorithm than the GRASP algorithm. Using

five controllers, the number of alive nodes is slightly more than when using three

controllers under the GA algorithm. The API for GA and GRASP algorithms with

and without BSS algorithm are 13% and 11 % when using three controllers

compared to 24% and 20% when using five controllers, respectively.

Table 7: Network Lifetime for 3 Controllers

Fault %

Number of Alive Nodes for 3 Controllers under Different Fault

Percentages

GA GRASP GA GRASP % improvement

with BSS without BSS GA GRASP

0 304 419 303 411 0.3 1.9

1 235 252 205 250 15 1

5 196 237 173 234 13 1

10 170 203 145 189 17 7

20 149 190 137 146 9 30

50 46 57 37 46 24 23

51

Table 8: Network Lifetime for 5 Controllers

Fault %

Number of Alive nodes for 5 Controllers under Different

Fault Percentages

GA GRASP GA GRASP % improvement

with BSS without BSS GA GRASP

0 413 421 314 382 31 10

1 243 254 198 246 23 2

5 198 245 189 204 4 20

10 189 241 154 200 23 21

20 181 198 148 168 22 18

50 48 63 34 42 41 50

4.3 Execution Time of Balance State System

We used the MATLAB utilities to determine the execution time of the BSS. As seen

in Table 9, the execution time of BSS is more when using five controllers than when

using three controllers under both the GA and GRASP algorithms. Since

connectivity is improved when using five controllers, the execution time needed to

achieve this connectivity improvement increases. However, in GRASP, the

execution time is less than that in GA. The execution time improvement percentages,

denoted as % fastness, in GRASP is better or faster when using three controllers than

when using five controllers, as shown in Figure 13.

 Table 9: Execution Time of BSS (sec)

Fault %

Exec.Time_BSS (sec) for 3

Controllers.

Exec. Time_BSS (sec) for 5

Controllers.

GA GRASP %fastness GA GRASP %fastness

0 0.08 0.06 35.05 0.11 0.09 24.15

1 0.12 0.09 32.19 0.21 0.17 23.10

5 0.15 0.12 27.23 0.24 0.20 21.35

10 0.16 0.12 23.07 0.26 0.22 17.51

20 0.17 0.15 7.36 0.27 0.26 3.62

50 0.29 0.27 7.21 0.38 0.37 2.67

52

Figure 13: Percentage of Execution Time Difference Comparison

4.4 SDN Controller's Average Response Time

The controller's average response time given by equation (16) is a critical factor

which implicitly indicates the presence of overloaded controller(s). Therefore, it is

counted as an essential factor for improving the network QoS. Table 10 presents the

average response time, measured in nanoseconds (ns) when using three and five

controllers under GA and GRASP algorithms with BSS. Since the load of five

controllers is more well distributed than three controllers, it is clear that the average

response time of five controllers is less than three controllers under both algorithms.

Also, the average response time of the controllers under the GRASP algorithm is

better than that of the GA algorithm for three and five controllers. However, the

percentage of improvement in controllers' response time when using three controllers

is much more than that when using five controllers, as shown in Figure 14.

53

Table 10: Controller's Average Response Time (ns)

Fault %

Avg. Resp. Time (ns) :3

controllers
Avg. Resp.Time (ns):5 controllers

GA GRASP % improvement GA GRASP % improvement

0 541 438 19 341 338 1

1 548 440 19 348 340 2

5 551 445 19 351 345 2

10 553 450 18 353 350 1

20 554 451 18 354 351 1

50 555 452 18 355 352 1

Figure 14: API of Controller's Average Response Time Comparison

4.5 Average Controllers' Load under GA and GRASP Algorithms

We have recorded the average load of controllers given by equation (4) when using

three and five controllers. It can be seen that when three and five controllers are

present in the network, the controllers' load is well distributed for GA and GRASP

algorithms with the BSS algorithm. However, when three controllers are used and

less than or equal to 10% of nodes are faulty, the load is improved under GA better

than GRASP and vice versa when 20% of nodes are faulty. The obtained results are

illustrated in Table 11. When using five controllers and less than or equal to 20% of

54

faulty nodes are present, the load is improved under GA better than GRASP and vice

versa when 50% of nodes are faulty, as illustrated in Table 12. It is worth to notice

that, as the percentage of faulty nodes increases, the percentage of load improvement

decreases.

Table 11: Average Controllers' Load for 3 Controllers

Fault %

Average Controllers' Load for 3 Controllers

GA GRASP GA GRASP
% Load improvement

GA GRASP
with BSS without BSS

0 44 42 48 42 6 2

1 76 77 93 84 18 8

5 125 118 140 130 10 9

10 135 132 160 140 15 6

20 161 140 170 149 5 6

50 170 158 188 180 10 12

Table 12: Average Controllers' Load for 5 Controllers

Fault %

Average Controllers' Load(PKTS) for 5 Controllers

GA GRASP GA GRASP
% Load improvement

GA GRASP
with BSS without BSS

0 34 32 57 52 40 39

1 66 57 87 73 24 21

5 118 113 125 116 5 2

10 128 127 154 144 16 6

20 132 136 165 147 20 7

50 160 153 168 163 5 6

55

4.6 Percentage of Successfully Received Packets

One of the critical QoS factors is the percentage of successfully received packets.

The average number of successfully received packets by controller i is the ratio of

total flows issued by its associated nodes ni to its load. Having k controllers in the

system, the average percentage of successfully received packets in the system,

denoted by PR, is given by equation (19).

PR=

 (19)

Figure 15 and Figure 16 show the difference between the percentage of successfully

received packets when GA and GRASP algorithms are executed with and without the

BSS, respectively. The percentage of packets received when using BSS is more for

both algorithms than when no BSS is used. When no faulty nodes are present in the

system and five controllers are used, the percentage of successfully received packets

is almost 20% better than when three controllers are used. As the percentage of faulty

nodes increases, the percentage of successfully received packets decreases as

expected.

Figure 15: Percentage of Successfully Received Packets under GA and BSS

56

Figure 16: Percentage of Successfully Received Packets under GRASP and BSS

4.7 Complexity Analysis

The main source of the computational complexity in the FTMBS is the metaheuristic

algorithm which is in O(M·popsize
2
), where M is the number of sub-objectives, and

popsize is the population size. To express the overall computational complexity of

the proposed scheme, we also have to consider the number of iterations iter_max and

the number of cluster heads, K, that are included in the chromosome structure. The

complexity of the individual evaluation process is bounded by computing the load of

the cluster heads in O(|K|), computing the delay of the graph in O(|K|), computing the

network lifetime, which is in O(|E|
2
 · |V |). The computational complexity is bounded

roughly in O(iter_max · (M · popsize
2
 + popsize · |E|

2
 · |V|. |K |

2
)), which is

acceptable for the proposed network structure.

4.8 Discussions

We have recorded the best, average, and worst fitness values on an average of 50

runs when different percentages of faulty nodes exist in the network. It can be seen

from Figure 17 that the proposed FTMBS algorithm achieves fault recovery, where

for instance, the lowest or worst fitness value when 1% of faulty nodes exist is

-0.83x10
6
 and gradually increases to reach 3.25x10

6
 on an average of 50 runs. It can

also be seen that the fitness value is affected by the percentage of faulty nodes.

57

Figure 17: Fitness Value for Different Percentages of Faulty Nodes

The average percentages of network performance improvement of five controllers

over three controllers are shown in Table 13. The related performance metrics have

been recorded for three and five controllers under different faulty node percentages

for both GA and GRASP algorithms with BSS. As seen in Table 13, those

improvements vary for different percentages of faulty nodes. Recall that the

predefined criteria for selecting five controllers are: 40% and above for latency and

successful packets received, 20% and above for controller average load and

controller's average response time, and 15% and above for the number of alive

nodes. Since the obtained results are 38%, 36%, 17%, 13%, and 11%, we

recommend implementing three controllers instead of five controllers.

Table 13: Percentages of Network Performance Improvement of 5 Controllers over 3

Controllers

Fault

%

Latency Avg. Resp. Time Avg. Load
No.Alive

Nodes

Successful

Packets

Received

GA GR GA GR GA GR GA GR GA GR

0 39 39 37 23 22 24 36 0 32 6

1 39 39 36 23 13 26 3 1 2 12

5 38 38 36 22 5 4 1 3 11 7

10 38 37 36 22 5 4 11 19 18 8

20 37 37 36 22 18 3 21 4 21 8

50 38 36 36 22 6 3 4 11 18 28

API 38 38 17 17 13 6 11 10 36 22

58

4.9 Verification using NSGA-II

In our study, a heuristic approach called nondominated sorting genetic algorithm

NSGA-II [52], [104] has been adopted to verify the goodness of the proposed

FTMBS scheme for the controller placement problem. Goodness here is referred by

how accurate the GA solutions are approximated to Pareto optimal front obtained by

NSGA-II. NSGA-II is a population-based procedure used in recent studies for its

efficiency in finding the Pareto frontier by applying two main approaches: first,

nondominated sorting of the population via elitism and second, obtaining

diversification via the crowding distance approach. We have used MATLAB 2019

and manipulated the NSGA-II [70] code to fit our multi-objective optimization

problem.

The primary tool for viewing solutions in any multi-objective optimization problem

is using the scatter plot [104]. However, this approach analyses only two objectives

at a time by focusing on the quality of a set of solutions, relations, and distributions.

Unfortunately, the scatter plot is applicable in 2D or 3D Cartesian coordinate space,

which is difficult to apply to this study as our multi-objective optimization problem

consists of four dimensions. Therefore, an alternative to view data in four or more

dimensions is by recording the Euclidean distance between GA solutions and the

Pareto-optimal solutions obtained by NSGA-II. The minimum value refers to which

optimization criteria the set of solutions belongs to. Table 14 illustrates the Euclidean

distance obtained for GA solutions for different weight values according to the

optimization target. The first column is for optimizing the connectivity by giving

highest weight value for ω1; the second column is for optimizing the load balance by

giving highest weight value for ω2; the third column is for optimizing the worst-case

59

latency by giving highest weight value for ω3; and the fourth column is for

optimizing the network lifetime by giving highest weight value for ω4. Indeed, by

giving the highest weight value to connectivity as shown in column 1, the Euclidean

distance is the smallest for f1, referring to connectivity optimization compared to the

rest of the objectives. The same can be seen for optimizing the load balance by

giving ω2 the highest value, and so on. We can conclude that a good approximation

of our solutions to the Pareto frontier has been achieved.

Table 14: Euclidean Distance for GA Solutions

Pareto optimal

NSGA-II

Euclidean Distance Between GA Solutions and NSGA_II

Solutions

ω1=25/48, ω1=13/48, ω1=13/48, ω1=13/48,

ω2=13/48, ω2=25/48, ω2=7/48, ω2=3/48,

ω3=7/48, ω3=7/48, ω3=25/48, ω3=7/48,

ω4=3/48 ω4=3/48 ω4=3/48 ω4=25/48

f1 0.01 2.4 3 3.2

f2 2 0 4.5 7

f3 4 5.8 0.1 5

f4 7 6.9 7.2 0.15

60

Chapter 5

THE ALBATROSS SCHEME

This chapter presents the ALBATROSS scheme which focuses on improving the

wireless sensor network lifetime by adopting the flying technique of the albatross

bird in the cluster head selection process. In fact, this scheme is a modification of the

FTMBS scheme presented in Chapter 3. However, in FTMBS, nodes are eligible to

be cluster heads if the nodes' energies are above a given threshold. Opposing to the

cluster head selection process in FTMBS, here, we propose a new cluster head

selection process integrated with the dynamic energy soaring scheme which is

adopted from nature. Thus, we named the whole scheme as the ALBATROSS

scheme. The details of the main component of this scheme, and it’s performance

analysis are presented below.

5.1 Dynamic Energy Soaring Scheme (DESS)

The albatross bird is a clever creature that uses the windshields to avoid exhausting

itself energy when flapping its wings, and as a result, is able to travel long distances.

Since the wings' excessive flapping depletes the bird's energy, the albatross bird

soars between different pressure windshields to keep itself lifted. The albatross bird's

flying or soaring technique has inspired researchers at the Massachusetts Institute of

Technology to develop a new wind and energy harvesting model by adopting the

albatross dynamic soaring flying technique. The model focuses on designing energy-

efficient wind-propelled drones and gliders to monitor the remote regions for long-

duration, long-range under various wind conditions [105]. The dynamic soaring

61

technique saves the bird's energy and a lot of effort, allowing the albatross bird to

travel far distances in a single day with minimum flaps of its wings [105]. For

centuries, scientists have noted that these specific kinds of birds make use of

different windshields by soaring and diving to keep themselves flying for hours,

precisely just above the ocean surface as if riding a sidewinding rollercoaster [105],

[106]. Figure 18 shows the heart rate of the albatross bird during different postures

[106]. It shows that the albatross bird's heart rate during flying posture falls almost to

near basal levels. That is, it falls to the resting posture. However, researchers in [105]

have revealed that the birds adaptively fly by shifting among the high-pressure

windshields and low-pressure windshields by an average angle of 60 degrees,

contradicting the scientists' claim of flying in 180 degrees or half-circle.

Figure 18: Heart Rate Levels of Albatross Bird [106]

In WSNs, the quick energy depletion of sensor nodes is mainly caused by complex

routing processes and data transmission, resulting in early dead node occurrences and

loss of network connectivity. To enhance the network lifetime, provide high energy

saving, and achieve network stability in the presence of defective nodes in WSN, we

62

were motivated to adopt the albatross bird's flying technique in our proposed routing

algorithm.

In [106], Bradshaw stated that albatross birds, when heading north, fly in

approximately 60
o
 anticlockwise loops and change to clockwise loops when heading

south. We adopted the flying scheme in our proposed dynamic energy soaring

scheme (DESS) to select cluster heads optimally based on Bradshaw's claims. This

soaring technique between high energy level nodes and low energy level nodes from

the same energy level set is done by 60
o

shifting [105]. Hence, the proposed

ALBATROSS scheme consists mainly of two correlated algorithms. One is adopted

from our previous Fault Tolerance Metaheuristic-Based Scheme (FTMBS) that we

have already used to solve the CPP [107]. However, we applied the nondominated

sorting genetic algorithm (NSGA-II) to the solutions provided by the GA in FTMBS.

The DESS is used for the cluster head selection process. We claim that adopting this

dynamic soaring technique saves network energy and hence improves the network

lifetime as energy is an essential issue in wireless sensor networks. This technique is

fundamentally based on the node's energy and the node's position, unlike the k-way

spectral clustering technique which is based on the node's energy and random

selection of cluster heads [100]. Some missing metrics in [68] as the network

resiliency and load balancing between controllers are also considered in our scheme.

Up to our knowledge, the Dynamic Energy Soaring Scheme for cluster head

selection is presented for the first time in our work. Without loss of generality, we

assume the followings:

• A non-failure controller located at the sink called Croot, root controller.

• Random distribution of sensor nodes

63

• In-band control path and data plane path

• Root controller knows the location of every node

• All controllers include in their forwarding tables the alternative paths in the

presence of failure for their associated nodes

• Homogeneous SDN controllers.

• The shifting scheme is anticlockwise towards the high energy level set and

clockwise towards the low energy level set.

The flowchart of the dynamic energy soaring scheme (DESS) is shown in Figure 19.

Here, the energy of nodes is an essential factor for the DESS algorithm. The nodes

are sorted based on their energy levels. Nodes with energy levels higher than a given

threshold are added to a set called high set and denoted by setH{}. Based on this set,

nodes are again placed into two sets. The first set is the low energy level set denoted

by LES, consisting of nodes having energy level above the minimum energy level

(Ermin) to be a cluster head (which is 0.1 J in our case), and less than half the initial

energy level. The second set is the high energy level set denoted by HES, consisting

of the rest of nodes. Then the algorithm finds the means (Xmean,Ymean) for both HES

and LES sets. Then, for each node in both sets, the corresponding image node

denoted by (Ximage,Yimage) is found by shifting 60
o
 anticlockwise for HES and

clockwise for LES. Equations (20), (21), (22), and (23) illustrate the coordinates of

the image node after shifting for HES and LES, respectively [108].

 Ximage=cos(60)*(X-Xmean)-sin(60)*(Y-Ymean)+Xmean (20)

 Yimage=sin(60)*(X - Xmean)+cos(60)*(Y-Ymean) + Ymean (21)

 Ximage=cos(-60)*(X-Xmean)-sin(-60)*(Y-Ymean)+Xmean (22)

 Yimage=sin(-60)*(X - Xmean)+cos(-60)*(Y-Ymean) + Ymean (23)

64

After finding the mean for both sets, the distance value between each image node and

the mean node is calculated and the minimum one is chosen. Then, the closest node

to this image node is selected as the cluster head. If the node belongs to the HES set,

the algorithm will start again from LES for the next cluster head selection and vice

versa. By adopting this dynamic soaring among different nodes' energies eligible to

be cluster heads, the overall network lifetime is improved. The proposed

ALBATROSS scheme is presented in Figure 20. As shown, the ALBATROSS

algorithm incorporates the FTMBS for solving the controller placement problem

adopted from our previous work [107] and the DESS algorithm illustrated in Figure

19.

65

Figure 19: Flowchart of DESS Algorithm

66

Figure 20: Flowchart of the ALBATROSS Scheme

5.2 Performance Evaluation

We have used MATLAB 2019b to run the proposed ALBATROSS scheme. We run

the scheme 50 times for each fault percentage and took the average to achieve a 95%

confidence interval. Three SDN controllers are used for 500 randomly deployed

sensor nodes in a 200x200 m
2
 field area under various faulty nodes' percentages.

67

Evaluation comparisons in terms of various network performance metrics were

carried out against three energy-aware algorithms found in literature. The first

algorithm proposed by the authors of [8] is a distributed cluster-based algorithm

named as EEFCA, aiming to provide fault tolerance in the presence of CHs failures

and whose cost function is based on nodes' energy and locations. Each sensor node

does the cost function calculation to choose its cluster head among relay nodes

having the highest cost value. The second algorithm is the GCEEC [95], an energy-

based routing protocol. In GCEEC, the centroid position is considered for CHs

election, and gateway nodes are selected from CHs to release the load from the

overwhelming CHs and forward the data to the base station. The cluster head

calculates the average cluster's energy and the weight for the gateway nodes in each

cluster adjacent to the neighboring cluster head. The one with the highest weight is

selected as a gateway node for the respective cluster. The third algorithm is FTMBS

[107], a multi-objective algorithm aiming to achieve network steady-state, enhance

load balance among controllers, increase throughput, and minimize the network

delay in the presence of faulty nodes. Analysis of results carried is based on the

following network parameter metrics:

5.2.1 Worst-Case Latency

Figure 21 presents the latency comparison of the algorithms mentioned above with

the proposed ALBATROSS algorithm, where the worst-case latency is calculated

using equation (6) in Chapter 3. As it is seen, the ALBATROSS scheme outperforms

FTMBS, GCEEC, and EEFCA algorithms by 10%, 15%, and 20%, respectively. In

EEFCA and GCEEC algorithms, calculations are done by sensor nodes and cluster

heads, respectively, which add more delay to the network. In the FTMBS scheme,

the root controller does all the required calculations. Specifically, it runs the GA to

68

select CH instead of the faulty node and optimally selects a controller instead of the

faulty one. As a whole, this adds more delays, especially in the presence of more

than one faulty CH. However, in the proposed ALBATROSS scheme, each

controller runs the GA to select a CH instead of the faulty one. In this case, the

controller does not wait for the main controller response, and hence, the overall

network latency is decreased.

Figure 21: Latency Comparison

5.2.2 Network Lifetime

The network lifetime, given by equation (12) in Chapter 3, is a vital network

performance metric, especially for wireless sensor networks. We have recorded the

total number of alive nodes existing at the end of the simulation as a reflection of

network lifetime under various faulty nodes' percentages. Balancing the energy

consumption among the sensor nodes ensures elongated network functionality, and

hence, increases the number of alive nodes at the end of the simulation. Figure 22

shows the total number of alive nodes for the proposed ALBATROSS scheme

against FTMBS, GCEEC, and EEFCA algorithms. Energy depletion occurs faster in

EEFCA and GCEEC algorithms due to excessive calculations done on behalf of

69

sensor nodes which causes early death of nodes. In FTMBS, the main controller

selects the highest energy node to be a CH, and hence, the nodes' energy

consumptions are not balanced. The nodes' energy consumption negatively affects

the network stability. As it can be seen from Figure 22, the proposed ALBATROSS

algorithm outperforms FTMBS, GCEEC, and EEFCA algorithms by 15%, 20%, and

25%, respectively.

Figure 22: Network Lifetime Comparison

5.2.3 Percentage of Successfully Received Packets

One of the critical QoS factors is the percentage of successfully received packets

given by equation (19) in Chapter 3. Figure 23 shows the percentage of successfully

received packets under various faulty nodes' percentages. As expected, the

percentage of successfully received packets decreases with the increase in faulty

nodes. Since energy is balanced among the nodes, more alive nodes exist under the

ALBATROSS scheme. Balancing the network energy has a positive impact on the

percentage of successfully received packets. As seen from the figure, the

70

ALBATROSS scheme outperforms FTMBS, GCEEC, and EEFCA algorithms by

15%, 20%, and 25%, respectively.

Figure 23: Percentage of Successfully Received Packets Comparison

5.2.4 Energy Consumption

Energy is a critical factor in wireless sensor networks since sensors are equipped

with limited power in which data transmission consumes most of the sensors' energy.

Although clustering helps to save the overall network energy, the efficient selection

of cluster heads directly affects the network's energy consumption. ALBATROSS

scheme is a cluster-based approach where the network is clustered into several

disjoint clusters. In FTMBS [107], the cluster heads are selected from nodes having

the highest energy level in each round. However, balancing the energy consumption

among sensor nodes is not considered. In the ALBATROSS scheme, a cluster head is

selected by applying the shifting technique described in the DESS algorithm which

balances the sensor nodes' energy consumption. The soaring mechanism between the

high-level energy nodes is done to balance the energy level among nodes. The

energy consumption given by equation (9) in Chapter 3, is shown in Figure 24 under

71

various percentages of faulty nodes for the four algorithms. Note that when the

percentage of faulty nodes increases, the number of dead nodes increases, and as a

consequence, the total network energy consumption decreases.

On the other hand, due to sensor nodes' excessive calculation in both GCEEC and

EEFCA algorithms, the network energy consumption is higher than that of the

ALBATROSS algorithm. Results show that the ALBATROSS algorithm

outperforms FTMBS, GCEECA, and EEFCA algorithms by 10%, 20%, and 25%,

respectively. Hence, we can conclude that the ALBATROSS algorithm is an energy-

efficient-based algorithm.

Figure 24: Network Energy Consumption Comparison

5.3 Applying ALBATROSS Scheme on Real Internet Topologies

We have applied the proposed ALBATROSS scheme on real datasets taken from the

internet topology zoo [109]. We run the scheme to choose the best number of

controllers starting at one controller to seven controllers for the JANET network and

GEANT network. In an unweighted graph, the distance between two connected

72

nodes is the number of edges counted in the shortest path [26]. The network's

diameter is defined as the maximum distance between any two connected nodes. We

specified the latency constraint of a network as half of the diameter [26]. Hence, we

set the latency constraints for Janet and GEANT networks as 14ms and 10m,

respectively. Table 15 illustrates the latency and the execution time comparison

results when different numbers of controllers denoted by N_CO are used. The

proposed ALBATROSS scheme outperforms the two schemes [68] and [83] in terms

of latency by 26% and 15%, respectively. It is worth to mention that since the

ALBATROSS is a cluster-based network scheme, the overall latency decreases with

the decrease in distance between nodes. Another fact is the ALBATROSS scheme

dynamically chooses cluster heads by soaring among the nodes to prevent quick

energy depletion. Hence, it increases the network lifetime. Conversely, as shown in

the last main column of Table 15, the average execution time of the ALBATROSS

scheme exceeds that of [68] and [83] by almost 5% and 7%, respectively.

73

5.4 Computational Complexity

The computational complexity of the ALBATROSS is determined by the

metaheuristic algorithm execution which is in O(M·popsize
2
), where M is the

number of sub-objectives and popsize is the population size. To express the overall

computational complexity of the scheme, we also have considered the number of

iterations iter_max and the number of cluster heads, K, that are included in the

chromosome structure. The complexity of the individual evaluation process is

bounded by computing the load of the cluster heads in O(|K|), computing the delay of

the graph in O(|K|), computing the network lifetime, which is in O(|E|
2
 · |V |). The

complexity of the DESS algorithm is bounded by the number of cluster heads

O(|K
2
|). Therefore, the computational complexity is bounded roughly in O(iter_max ·

(M · popsize
2
 + popsize · |E|

2
 · |V|. |K |

2
)+ |K |

2
)),which is acceptable for the

proposed network structure.

Table 15: Latency and Execution Time Comparison

N_CO Topology

Latency (ms) Execution Time (s)

ALBATROSS
Ref.

[68]

Ref.

[83]
ALBATROSS

Ref.

[68]

Ref.

[83]

3
JANET 12 14 - 11 11 -

GEANT 15.8 - 16.8 10 - 10

4
JANET 10 14.1

12 12 -

GEANT 14 - 16.5 13 - 13

5
JANET 10.2 15 - 22 21 -

GEANT 14.3 - 16.6 19 - 18

6
JANET 11 17

35 34 -

GEANT 14.4 - 17 34 - 33

7
JANET 13 18 - 46 45 -

GEANT 14.5 - 17.5 45 - 43

8
JANET 13.8 18.5

57 55 -

GEANT 14.7 - 18 56 - 54

9
JANET 14 19 - 66 63 -

GEANT 15.1 - 18.5 67 - 64

74

5.5 Discussion

Heuristic algorithms are commonly used in research studies to solve NP-Hard

problems in a reasonable amount of time. When search space is too complex, such as

the GEANT network, which consists of 40 nodes, and requires 91390 combinations

for placing four controllers. Therefore, evolutionary algorithms are the most suitable

means to solve such problems. Most researchers have used metaheuristic algorithms

for solving the CPP to optimize the network performance metrics. However,

efficiently saving the network's energy with the presence of defective nodes was

rarely considered. This motivates us to adopt the albatross bird's natural dynamic

energy soaring scheme in the proposed DESS algorithm. The DESS effectively

balances the network energy consumption by soaring among the high and low energy

level nodes to select the network cluster heads. This soaring process for the cluster

head selection involves shifting by 60
o
 counterclockwise for the high energy level

nodes and clockwise for the low energy level nodes. The cluster head selection is

essential since the controllers are chosen among these cluster heads by applying the

GA algorithm. Actually, the presented ALBATROSS scheme is a modification to the

FTMBS presented in Chapter 3. In FTMBS, the main controller keeps choosing the

highest energy level node to be CH which may lead to an imbalance in energy

consumption on one hand, and selection of new CH in presence of faulty CH for

each cluster on the other hand. In the ALBATROSS scheme, the main controller only

chooses the controllers instead of the faulty ones, and the CH selection is done on

behalf of the associated controller. The proposed ALBATROSS scheme outperforms

the FTMBS, GCEEC, and EEFCA schemes in terms of the network lifetime,

percentage of successfully received packets, latency, and energy consumption. The

ALBATROSS scheme also showed latency improvement over [68] and [83] when

75

applied over Janet and GEANT networks, respectively. The obtained network

performance improvements added marginal increase in the execution time because of

involving more calculations in the DESS algorithm.

76

Chapter 6

CONCLUSION

The presence of faulty nodes in wireless sensor networks is an expected natural

event. Such event directly affects the network performance which has been rarely

addressed in most researches. Maintaining the network's steady-state positively

affects the network performance which can mainly be achieved by balancing the load

among controllers. The proposed FTMBS scheme is the first to address various

network performance metrics under different faulty nodes percentages. The FTMBS

has shown its feasibility by improving the network QoS and network performance

parameters. For instance, the network energy and reliability were improved with

better connectivity and throughput. The BSS algorithm, a fundamental component in

FTMBS, positively affects different network performance metrics under the GA and

GRASP algorithms. However, the network performance improvement under GA and

GRASP algorithms varies when three and five controllers are present. When three

controllers are used, the BSS noticeably improves the average load of controllers

under the GA by 10%, whereas this improvement is 6% under the GRASP algorithm.

However, when five controllers are used, these improvements are found as 16% and

13% respectively. Also, when three controllers are present, the BSS improves the

network lifetime under GA by 13%, whereas this improvement is 11% under the

GRASP algorithm. when three controllers are present. However, when five

controllers are used, these improvements are found as 24% and 20% respectively. On

the other hand, the BSS improvements of the latency and percentage of successfully

77

received packets are slightly better under GRASP algorithm for both three and five

controllers cases. Taking into consideration the obtaind average percentage of

improvments and the predefined criteria for the selection of five controllers, we

recommend the use of three controllers. The efficiency of the proposed FTMBS is

verified using NSGA-II which shows the approximation of GA solutions to the

Pareto frontier.

It is well known that network lifetime is a critical factor in WSNs which is directly

affected by the used clustering technique. Based on this fact, we have proposed the

ALBATROSS scheme, which mimics the dynamic soaring technique of the albatross

bird to choose the network cluster heads by soaring among the high energy level

nodes and low energy level nodes for solving the CPP. Actually, the ALBATROSS

scheme is a modification to the FTMBS scheme. However, in FTMBS, the main

controller keeps choosing the highest energy level node to be CH, which leads to an

imbalance in energy consumption, and new CHs instead of the faulty CHs. In the

proposed ALBATROSS scheme, the main controller only chooses the controllers

instead of the faulty ones, and the CH selection is done on behalf of the associated

controller. The results show that the ALBATROSS scheme is an energy-efficient

scheme that outperforms the FTMBS, GCEEC [95], and EEFCA [8] algorithms by

10%, 20%, and 25%, respectively.

Besides the FTMBS and ALBATROSS schemes, we have also presented the

ERQTM scheme (described in Appendix A) as a practical example of using the SDN

concept in wireless body area networks. The ERQTM scheme incorporates two

algorithms. The first is an energy-efficient routing algorithm which balances the

energy among the sensor nodes and optimally selects the network's cluster heads.

78

The second is a QoS-supported traffic management algorithm which prioritizes the

emergency data transmission to guarantee network reliability. Simulations results

showed that the proposed ERQTM algorithm achieved QoS by maintaining high

throughput, minimum delay, and maximum network lifetime compared to existing

energy-efficient algorithms found in literature.

As future work, we plan to include the energy harvesting concept in our proposed

schemes, where the sensor nodes are designed to harvest energy from the

environment during the daytime and only utilize their battery during the night.

79

REFERENCES

[1] Y. Duan, Y. Luo, W. Li, P. Pace and G. Fortino, "Software Defined Wireless

Sensor Networks: A Review," in Proceedings of the 2018 IEEE 22nd

International Conference on Computer Supported Cooperative Work in

Design, Nanjing, 2018.

[2] D. Kreutz, F. Ramos, P. Verissimo, C. Rothenberg, S. Azodolmolky and S.

Uhlig, "Software-Defined Networking:A Comprehensive Survey,"

Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, 2015.

[3] H. Kim and N. Feamster, "Improving Network Management with Software

Defined Networking," IEEE Commun. Mag., vol. 51, no. 2, p. 114–119, 2013.

[4] I. Haque and N. Abu-Ghazaleh, "Wireless Software Defined Networking: A

Survey and Taxonomy," vol. 18, no. 4, pp. 2713 - 2737, 19 May 2016.

[5] S. Costanzo, L. Galluccio, G. Morabito and S. Palazzo, "Software Defined

Wireless Networks: Unbridling SDNs.," in Proceedings of the 2012 European

Workshop on Software Defined Networking, Germany, 2012.

[6] H. Dhawan and S. Waraich, "A Comparative Study on LEACH Routing

Protocol and its Variants in Wireless Sensor Networks: A Survey,"

International Journal of Computer Applications, vol. 95, no. 8, June 2014.

80

[7] M. Abo-Zahhad, O. Amin, M. Farrag and A. Ali, "Survey on Energy

Consumption Models in Wireless Sensor Networks," Open Transactions on

Wireless Communications, vol. 1, no. 1, pp. 23-40, 2014.

[8] K. Nitesh, M. Azharuddin and P. Jana, "Energy Efficient Fault-Tolerant

Clustering Algorithm for Wireless Sensor Networks," in International

Conference on Green Computing and Internet of Things (ICGCIoT), Greater

Noida, India, 2015.

[9] T. Luo, H. P. Tan and T. Q. S. Quek, "Sensor OpenFlow: Enabling Software-

Defined Wireless Sensor Networks," IEEE Communications Letters, vol. 16,

no. 11, pp. 1896-1899, 2012.

[10] H. I. Kobo, A. M. Abu-Mahfouz and G. P. Hancke, "A survey on software-

defined wireless sensor networks: Challenges and design requirements," IEEE

Access, vol. 5, p. 1872–1899, 2017.

[11] A. El-Mougy, M. Ibnkahla and L. Hegazy, "Software-Defined Wireless

Network Architecture for the Internet-of-Things," in 2015 IEEE 40th Local

Computer Networks Conference Workshops (LCN Workshops), Clearwater

Beach, Florida, 2015.

[12] J. A. Puente Fernandez, L. J. Garcia Villalba and T.-H. Kim, "Software

Defined Networks in Wireless Sensor Architectures: A Review," in 2018 IEEE

22nd International Conference on Computer Supported Cooperative Work in

81

Design ((CSCWD)), Nanjing, 2018.

[13] W. Ejaz, M. Naeem, M. Basharat, A. Anpalagan and K. Sithamparanathan,

"Efficient Wireless Power Transfer in Software-Defined Wireless Sensor

Networks," IEEE Sensors Journal, vol. 16, no. 20, p. 7409–7420., 2016.

[14] A. Gante, M. Aslan and A. Matrawy, "Smart wireless sensor network

management based on software-defined networking.," in 2014 27th Biennial

Symposium on Communications (QBSC), Kingston, ON, 2014.

[15] R. Mohapatra, S. Mishra and T. Mohapatra, "Coverage problem in wireless

sensor networks," Comparative Cytogenetics, vol. 2, no. 1, p. 67–72, 2012.

[16] G. Arumugam and T. Ponnuchamy, "Ee-leach: development of energy efficient

leach protocol for data gathering in wsn," Eurasip Journal on Wireless

Communications & Networking, vol. 2015, no. 1, p. 1–9, 2015.

[17] C. M. S. Figueiredo, A. L. dos Santos, A. A. F. Loureiro and J. M. Nogueira,

"Policy-based adaptive routing in autonomous wsns," in IEEE Ambient

Networks International Conference on Distributed Systems: Operations and

Management, Barcelona, Spain , 2005.

[18] S. Shanmugapriya and M. Shivakumar, "Context based route model for policy

based routing in wsn using sdn approach," iSRASE, vol. 4, no. 1, pp. 1-8, 2015.

82

[19] C. Wang, K. Sohraby, B. Li, M. Daneshmand and Y. Hu, "A survey of

transport protocols for wireless sensor networks," IEEE Network, vol. 20, no.

3, p. 34–40, 2006.

[20] D. Tian and N. Georganas, "A node scheduling scheme for energy

conservation in large wireless sensor networks," Wireless Communications and

Mobile Computing, vol. 3, no. 2, p. 271–290, 2003.

[21] C. Hua and T. P. Yum, "Asynchronous random sleeping for sensor networks,"

ACM Transactions on Sensor Networks, vol. 3, no. 3, pp. 1-25, 2007.

[22] J. Levendovszky, K. Tornai, G. Treplan and A. Olah, "Novel load balancing

algorithms ensuring uniform packet loss probabilities for wsn," in Vehicular

Technology Conference (VTC), Budapest, Hungary, 2011.

[23] Y. Zhang, G. Sun and W. Li, "DEHCA: Load Balance Clustering Algorithm

for Energy Heterogeneous WSN based on Distance," Applied Mechanics &

Materials, Vols. 44-47, p. 3294–3298, 2010.

[24] C. Yoon, T. Park, S. Lee, H. Kang, S. Shin and Z. Zhang, "Enabling security

functions with sdn: A feasibility study," Computer Networks, vol. 85, p. 19–35,

2015.

[25] W.-S. Kim and S.-H. Chung, "Proxy SDN Controller for Wireless Networks,"

83

Mobile Information Systems, vol. 2016, no. 4, pp. 1-14, 2016.

[26] G. Schutz, "A k-Cover Model for Reliability-Aware Controller Placement in

Software-Defined Networks," in Computational Science-ICCS 2019, Springer

International Publishing, 2019, pp. 604-613.

[27] Y. Hu, W. Wendong, X. Gong, X. Que and C. Shiduan, "Reliability-aware

Controller Placement for Software-Defined Networks," in IFIP/IEEE

Symposium on Integrated Network Management, Ghent, 2013.

[28] S. Milardo, L. Galluccio, G. Morabito and S. Palazzo, "SDN-WISE: Design,

prototyping and experimentation of a stateful SDN solution for WIreless

SEnsor networks," in IEEE Conference on Computer Communications

(INFOCOM), Kowloon, 2015.

[29] ON.Lab, "Introducing ONOS - a SDN network operating system for Service

Providers [White Paper]," November 2014. [Online]. Available:

https://docplayer.net/6967056-Introducing-onos-a-sdn-network-operating-

system-for-service-providers.html.

[30] B. Oliveria, C. Margi and L. Gabriel, "TinySDN:Enabling Multiple Controllers

for Software-Defined Wireless Sensor Networks," IEEE Latin America

Transactions, vol. 13, no. 11, pp. 3690-3696, 2015.

[31] H. Mostafaei and M. Menth, "Software-defined wireless sensor networks: A

84

survey," Journal of Network and Computer Applications, vol. 119, pp. 42-56,

2018.

[32] R. D. Tubagus, "Performance Evaluation of a Software-Defined Wireless

Sensor Network (Master of Science Thesis)," 2017. [Online]. Available:

http://resolver.tudelft.nl/uuid:b04e6d40-05d1-47b6-b854-f19d3d5f520f.

[33] Y. Wang, H. Chen, X. Wu and L. Shu, "An energy-efficient SDN based sleep

scheduling algorithm for WSNs," Journal of Network and Computer

Applications, vol. 2016, no. 59, p. 39–45, 2015.

[34] D. Zeng, P. Li, S. Guo, T. Miyazaki, J. Hu and Y. Xiang, "Energy

Minimization in Multi-Task Software-Defined Sensor Networks," IEEE

Transactions on Computers, vol. 64, no. 11, pp. 3128-3139, 2015.

[35] W. Xiang, N. Wang and Y. Zhou, "An Energy-Efficient Routing Algorithm for

Software-Defined Wireless Sensor Networks," IEEE Sensors Journal, vol. 20,

no. 16, p. 7393–7400, 2016.

[36] H. Silva, A. Pereira, Y. Solano, B. Oliveira and C. Margi, "WARM: WSN

application development and resource management," in XXXIV Simposio

Brasileiro de Telecomunicacoes , Brazil, 2016.

[37] H. Fotouhi, M. Vahabi, A. Ray and M. Björkman, "An SDN-based traffic

aware protocol for wireless sensor networks," in IEEE 18th International

85

Conference on e-Health Networking, Applications and Services (Healthcom).,

Munich, Germany, 2016.

[38] Z. Qin, G. Denker, C. Giannelli, P. Bellavista and N. Venkatasubramanian,

"Software-defined Wireless Sensor Networks and Internet of Things

standardization synergism," in IEEE Conference on Standards for

Communications and Networking (CSCN)., Tokyo, 2015.

[39] A. A. Lysko, L. Mamushiane and J. Mwangama, "Given a SDN Topology,

How Many Controllers are Needed and Where Should They Go?," in IEEE

Conference on Network Function Virtualization & Software Defined Networks

(IEEE NFV-SDN), Italy, 2018.

[40] G. Wang, y. Zhao, J. Huang and W. Wang, "The Controller Placement

Problem in Software Defined Networking: A Survey," IEEE Network, vol. 31,

no. 5, pp. 21-27, 2017.

[41] B. Heller, R. Sherwood and N. McKeown, "The Controller Placement

Problem," in Proceedings of the first workshop on Hot topics in software

defined networks, Finland, 2012.

[42] A. Upadhyay, "https://www.igismap.com/haversine-formula-calculate-

geographic-distance-earth/," Info GIS MAP. [Online]. [Accessed 2020].

[43] J. A. Bondy and U. Murty, Graph Theory with Applications, Britain: The

86

Macmillan Press Ltd., 1976.

[44] J. Renfree, "Distance calculation using Haversine formula," [Online].

Available: https://www.mathworks.com/matlabcentral/fileexchange/27785-

distance-calculation-using-haversine-formula. [Accessed 2020].

[45] F. Hu, Q. Hao and K. Bao, "A Survey on Software-Defined Network and

OpenFlow: From Concept to Implementation," IEEE Communication Surveys

and Tutorials, vol. 16, no. 4, pp. 2181-2206, 2014.

[46] O. Flauzac, C. Gonzalez and F. Nolot, "Developing a Distributed Software

Defined Networking Testbed for IoT," Procedia Computer Science, vol. 83,

pp. 680-684, 2016.

[47] B. Othmane, M. Ben Mamoun and R. Benaini, "An Overview on SDN

Architecture with Multiple Controllers," Journal of Computer Networks and

Communications, vol. 2016, no. 2, pp. 1-8, 2016.

[48] J. Cui, Q. Lu, H. Zhong, M. Tian and L. Liu, "A Load-Balancing Mechanism

for Distributed SDN Control Plane using Response Time," IEEE Transactions

on Network and Service Management, vol. 15, no. 4, pp. 1197 - 1206, 2018.

[49] S. Champagne, T. Makanju and C. Yao, "A Genetic Algorithm for Dynamic

Controller Placement in Software Defined Networking," in GECCO'18

Companion: Proceeding of the Genetic and Evolutionary Computation

87

Conference Companion, Japan, 2018.

[50] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner and P. Tran-Gia,

"Pareto-Optimal Resilient Controller Placement in SDN-based Core

Networks," in 25th International Teletraffic Congress (ITC), Shanghai, 2013.

[51] S. Lange, S. Gebert, T. Zinner and P. Tran-Gia, "Heuristic Approaches to the

Controller Placement Problem in Large Scale SDN Networks," IEEE

Transactions on Network and Service Management, vol. 12, no. 1, pp. 4-17,

2015.

[52] A. Jalili, M. Keshtgari, V. Ahmadi and M. Kazemi, "Controller Placement in

Software Defined WAN Using Multi Objective Genetic Algorithm," in 2015

2nd International Conference on Knowledge-Based Engineering and

Innovation (KBEI), Tehran, 2015.

[53] Cisco, "The Cisco Application Policy Infrastructure Controller," 2014.

[Online]. Available: https://www.cisco.com/c/en/us/products/cloud-systems-

management/application-policy-infrastructure-controller-apic/index.html#~for-

partners. [Accessed 2020].

[54] A. Jalili, M. Keshtgari and R. Akbari, "A new Set Covering Controller

Placement Problem Model for Large Scale SDNs," Journal of Information

Systems and Telecommunication, vol. 6, pp. 25-32, 2018.

88

[55] T. FEO and M. RESENDE, "Greedy Randomized Adaptive Search

Procedures," Journal of Global Optimization, vol. 6, pp. 109-133, 1995.

[56] J. E. C. Arroyo, V. d. O. Matos, A. G. d. Santos and L. B. Goncalves, "A

GRASP Based Algorithm for Efficient Cluster Formation in Wireless Sensor

Networks," in IEEE 8th International Conference on Wireless and Mobile

Computing, Networking and Communications (WiMob), Barcelona, 2012.

[57] S.-K. Yoon, Z. Khalib, N. Yaakob and A. Amir, "Controller Placement

Algorithms in Software Defined Network- A Review of Trends and

Challenges," in MATEC Web of Conferences , ICEESI, Malaysia, 2017.

[58] T. Hu, Z. Guo, T. Baker and J. Lan, "Multi-controller Based Software-Defined

Networking: A Survey," IEEE ACCESS, vol. 6, pp. 15980 - 15996, 2018.

[59] D. Sembroiz, B. Ojaghi, D. Careglio and S. Ricciardi, "A GRASP Meta-

Heuristic for Evaluating the Latency and Lifetime Impact of Critical Nodes in

Large Wireless Sensor Networks," vol. 9, no. 21, p. 4564, 2019.

[60] B. Xiong, X. Peng and J. Zhao, "A Concise Queuing Model for Controller

Performance in Software-Defined Networks," Journal of Computers, vol. 11,

no. 3, pp. 232-237, 2016.

[61] Y. Zhang, N. Beheshti and M. Tatipamula, "On Resilience of Split-

Architecture Networks," in IEEE Global Telecommunications Conference -

89

GLOBECOM 2011, Houston, TX, 2011.

[62] A. Sallahi and M. Hilaire, "Optimal Model for the Controller Placement

Problem in Software Defined Networks," IEEE Communications Letters, vol.

19, no. 1, pp. 30-33, 2015.

[63] Y. Liu, A. Liu, Y. Hu, Z. Li, Y.-J. Choi, H. Sekiya and A. J. Li, "FFSC: An

Energy Efficiency Communications Approach for Delay Minimizing in

Internet of Things," Green Communications and Networking For 5G Wireless,

vol. 4, pp. 3775-3793, 2016.

[64] R. Huang, X. Chux, J. Zhang and Y. Hu, "Energy-efficient monitoring in

software defined wireless sensor networks using reinforcement learning: A

prototype," International Journal of Distributed Sensor Networks, vol. 5, 2015.

[65] H. Yao, C. Qiu, C. Zhao and L. Shi, "A Multicontroller Load Balancing

Approach in Software-Defined Wireless Networks," International Journal of

Distributed Sensor Networks, vol. 2, pp. 1-8, 2015.

[66] Wikipedia, "Multi-objective optimization," 19 February 2020. [Online].

Available: https://en.wikipedia.org/w/index.php?title=Multi-

objective_optimization&oldid=941634844.

[67] N. Gunantara, "A Review of Multi-Objective Optimization:Methods and its

90

Applications," Cogent Engineering, vol. 5, no. 1, 2018.

[68] S. Mohanty, P. Priyadarshini, S. Sahoo, B. Sahoo and S. Sethi, "Metaheuristic

Techniques for Controller Placement in Software-Defined Networks," in

TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), Kochi, India,

2019.

[69] M. Ouzzif, J.-M. Sanner, Y. Hadjadj-Aoul and G. Rubino, "An Evolutionary

Controllers’ Placement Algorithm for Reliable SDN Networks," in 13th

International Conference on Network and Service Management (CNSM),

Tokyo, Japan, 2017.

[70] S. Lin, "NGPM - A NSGA-II Program in Matlab v1.4," MATLAB Central File

Exchange, 16 July 2011. [Online]. Available:

https://www.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-

ii-program-in-matlab-v1-4.

[71] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist

multiobjective genetic algorithm: NSGA-II," IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.

[72] A. Herrera-Poyatos and F. Herrera, "Genetic and Memetic Algorithm with

Diversity Equilibrium based on Greedy Diversification," arXiv:1702.03594

[cs.AI], 2017.

91

[73] B. B. Lokesh and N. Nalini, "Genetic Algorithm Based Node Fault Detection

and Recovery in Distributed Sensor Networks," I.J.Computer Network and

Information Security, vol. 12, pp. 37-46, 2014.

[74] A. Ateya, A. Muthanna, A. Vybornova, A. Algarni, A. Abuarqoub, Y.

Koucheryavy and A. Koucheryavy, "Chaotic salp swarm algorithm for SDN

multi-controller networks," Engineering Science and Technology, an

International Journal, vol. 22, pp. 1001-1012, 2019.

[75] S.-B. Kang and G.-I. Kwon, "Load Balancing Strategy of SDN Controller

Based on Genetic Algorithm," Advanced Science and Technology Letters , vol.

129, pp. 219-222, 2016.

[76] J. Liao, H. Sun, J. Wang, Q. Qi, K. Li and T. Li, "Density Cluster Based

Approach for Controller Placement Problem in Large-Scale Software Defined

Networkings," Computer Networks, vol. 112, pp. 24-35, 2017.

[77] H. Selvi, G. Gur and F. Alagoz, "Cooperative Load Balancing for Hierarchical

SDN Controllers," in IEEE 17th International Conference on High

Performance Switching and Routing, Yokohama, 2016.

[78] G. Yao, J. Bi, Y. Li and L. Guo, "On the Capacitated Controller Placement

Problem in Software Defined Networks," vol. 18, no. 8, 2014.

[79] Y. Hu, W. Wang, X. Gong and X. Que, "BalanceFlow: Controller load

92

balancing for OpenFlow networks," in IEEE 2nd International Conference on

Cloud Computing and Intelligence Systems (CCIS), Hangzhou, 2012.

[80] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman and R. R. Kompella, "ElastiCon:

An Elastic Distributed SDN Controller," in IEEE Symposium on Architectures

for Networking and Communications Systems (ANCS), Marina del Rey, CA,

2014.

[81] A. Ruiz-Rivera, K.-W. Chin and S. Soh, "GreCo:An Energy Aware Controller

Association Algorithm for Software Defined Networks," IEEE

Communications Letters, vol. 19, no. 4, pp. 541-544, 2015.

[82] L. Wang and X. Yang, "SDN Load Balancing Method Based on K-Dijkstra,"

International Journal of Performability Engineering, vol. 14, no. 4, pp. 709-

716, 2018.

[83] B. Killi and S. Rao, "Capacitated Next Controller Placement in Software

Defined Networks," IEEE Transactions on Network and Service Management,

vol. 14, no. 3, pp. 514 - 527, 2017.

[84] J. Yu, Y. Wang, K. Pei, S. Zhang and J. Li, "A Load Balancing Mechanism for

Multiple SDN Controllers based on Load Informing Strategy," in 18th Asia-

Pacific Network Operations and Management Symposium (APNOMS), Japan,

2016.

93

[85] Y. Hu, T. Luo, W. Wang and C. Deng, "On the Load Balanced Controller

Placement Problem in Software Defined Networks," in International

Conference on Computer and Communications (ICCC), Chengdu, China,

2016.

[86] T. Hu, J. Lan, J. Zhang and W. Zhao, "EASM: Efficiency-Aware Switch

Migration for Balancing Controller Loads in Software-Defined Networking,"

Peer-to-Peer Networking and Applications, vol. 12, pp. 452-464, 2018.

[87] Y. Hu, T. Luo, N. C. Beaulieu and C. Deng, "The Energy-Aware Controller

Placement Problem in Software Defined Networks," IEEE Communications

Letters, vol. 21, no. 4, pp. 741 - 744, April 2017.

[88] A. Abdelaziz, A. Fong, A. Gani, U. Garba, S. Khan, A. Akhunzada, H.

Talebian and K.-K. Raymond Choo, "Distributed Controller Clustering in

Software Defined Networks," PLOS, vol. 12, no. 4, 6 April 2017.

[89] G. Wang, Y. Zhao, J. Huang and Y. Wu, "An Effective Approach to Controller

Placement in Software Defined Wide Area Networks," IEEE Transactions on

Network and Management, vol. 15, no. 1, 2018.

[90] G. Wang, Y. Zhao, J. Huang and R. M. Winter, "On the data aggregation point

placement in smart meter networks," in 26th International Conference

Computer Communication Network (ICCCN), Vancouver, BC, Canada, 2017.

94

[91] E. Dijkstra, "A note on two problems in connexion with graphs.," Numerische

Mathematik , vol. 1, p. 269–271, 1959.

[92] H. Yannan, W. Wendong, G. Xiangyang, Q. Xirong and C. Shiduan, "On the

Placement of Controllers in Software-Defined Networks," The Journal of

China Universities of Posts and Telecommunications, vol. 19, no. 2, pp. 92-97,

2012.

[93] WIKIPEDIA, "Brute-force search," 19 December 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Brute-force_search.

[94] Y. Hu, W. Wang, X. Gong, X. Que and S. Cheng, "On Reliability-Optimized

Controller Placement for Software-Defined Networks," China

Communications, vol. 11, no. 2, pp. 38-54, 2014.

[95] K. Qureshi, M. U. Bashir, J. Lloretq and A. Leon, "Optimized Cluster-Based

Dynamic Energy-Aware Routing Protocol for Wireless Sensor Networks in

Agriculture Precision," Journal of Sensors, p. 19 pages, 2020.

[96] A. K. Singh and S. Srivastava, "A Survey and Classification of Controller

Placement Problem in SDN," International Journal of Network Management,

vol. 28, no. 3, 2018.

[97] M. Resende and C. Ribeiro, "International Series in Operations Research &

Management Science," in Handbook of Metaheuristics, vol. 57, Springer,

95

2003, pp. 219-249.

[98] V. Gungor, "A Forecasting-Based Monitoring and Tomography Framework for

Wireless Sensor Networks," in IEEE International Conference on

Communications, Istanbul, Turkey, 2006.

[99] J. Brownlee, "GitHub," [Online]. Available:

http://www.cleveralgorithms.com/nature-inspired/stochastic/grasp.html.

[Accessed 2015].

[100] A. Jorio, S. El Fkihi, B. Elbhiri and D. Aboutajdine, "A New Clustering

Algorithm in WSN Based on Spectral Clustering and Residual Energy," in

Seventh International Conference on Sensor Technologies and Applications,

SENSORCOMM 2013, 2013.

[101] A. Aoullay, "Spectral Clustering for Beginners," 2018. [Online]. Available:

https://towardsdatascience.com/spectral-clustering-for-beginners-

d08b7d25b4d8.

[102] A. Y. Ng, M. I. Jordan and Y. Weiss, "On Spectral Clustering:Analysis and an

algorithm," in Advances in Neural Information Processing Systems, 2002.

[103] U. Luxburg, "A Tutorial on Spectral Clustering," Statistics and Computing,

vol. 17, no. 4, pp. 395-416, 2007.

96

[104] J. W. Emerson, W. A. Green, B. Schloerke, J. Crowley, D. Cook, H. Hofmann

and H. Wickham, "The generalized pairs plot," Journal of Computational and

Graphical Statistics, vol. 22, no. 1, pp. 79-91, 2013.

[105] J. Chu, "Engineers identify key to albatross’ marathon flight," Massachusetts

Institute of Technology MIT News Office, 10 October 2017. [Online].

Available: http://news.mit.edu/2017/engineers-identify-key-albatross-

marathon-flight-1011.

[106] D. Bradshaw, in Vertebrate Ecophysiology: An Introduction to its Principles

and Applications, Cambridge University Press, 2003.

[107] N. Samarji and M. Salamah, "A Fault Tolerance Metaheuristic-Based Scheme

for Controller Placement Problem in Wireless Sensor Networks," International

Journal of Communication Systems, vol. 34, no. 4, 2021.

[108] J. Vince, "Matrix Transforms," in Foundation Mathematics for Computer

Science, Springer, 2015, pp. 193-194.

[109] M. Roughan and W. Willinger, "Internet Topology Research Redux," 2013.

[Online]. Available:

http://sigcomm.org/education/ebook/SIGCOMMeBook2013v1_chapter1.pdf.

[110] S. Movassaghi, M. Abolhasan, M. Lipman, D. Smith and A. Jamalipour,

"Wireless Body Area Networks: A Survey," IEEE Communications Surveys &

97

Tutorials, vol. 16, no. 3, pp. 1658-1686, 2014.

[111] C. Otto, E. Jovanov and A. Milenkovic, "A WBAN-based system for health

monitoring at home," in 3rd IEEE/EMBS International Summer School and

Symposium on Medical Devices and Biosensors, 2006.

[112] K. Y. Jamil and Y. R. Mehmet, "Wireless body area network (WBAN) for

medical applications New Developments," in New Developments in

Biomedical Engineering, vol. 1, IntechOpen, 2010, pp. 591-628.

[113] B. Zhen, H.-b. Li and R. Kohno, "Networking issues in medical implant

communications," International Journal of Multimedia and Ubiquitous

Engineering, vol. 4, no. 1, 2009.

[114] D. J. Vergados, D. D. Vergados and I. Maglogiannis, "Applying Wireless

Diffserv for QoS Provisioning in Mobile Emergency Telemedicine," in IEEE

Globecom, San Francisco, CA, USA, 2006.

[115] A. Sandhu and A. Malik, "PAP: Priority Aware Protocol for Healthcare

Applications in Wireless Body Area Network," International Journal of Recent

Technology and Engineering (IJRTE), vol. 8, no. 5, pp. 2733-2739, 2020.

[116] R. Cavallari, F. Martelli, R. Rosini, C. Buratti and R. Verdone, "A survey on

wireless body area networks: Technologies and design challenges," IEEE

98

Communications Surveys and Tutorials, vol. 16, no. 3, p. 1635–1657, 2014.

[117] K. Hasan, A. Khandakar, K. Biswas and M. Saiful Islam, "Software-defined

application-specific traffic management for wireless body area networks,"

Future Generation Computer Systems, pp. 274-285, 2020.

[118] M. Quwaider and S. Biswas, "DTN routing in body sensor networks with

dynamic postural partitioning," Ad Hoc Networks, vol. 8, no. 8, p. 824–841,

2010.

[119] M. Quwaider and S. Biswas, "On-body packet routing algorithms for body

sensor networks," in First International Conference on Networks and

Communications. NETCOM 09, Chennai, India, 2009.

[120] C. Mohanty and S. Swayamsiddha, "Application of cognitive Internet of

Medical Things for COVID-19 pandemic," Diabetes & Metabolic Syndrome:

Clinical Research & Reviews, vol. 14, pp. 911-915, 2020.

[121] Y. Zhang, B. Zhang and S. Zhang, "A Lifetime Maximization Relay Selection

Scheme in Wireless Body Area Networks," Sensors, vol. 17, no. 1267, 2017.

[122] IEEE Standard for Local and Metropolitan Area Networks Part 15.6: Wireless

Body Area Networks, 2012.

[123] M. El Azhari, N. El Moussaid, A. Toumanari and R. Latif, "Equalized energy

99

consumption in wireless body area networks for a prolonged network lifetime,"

Wireless Commun. Mobile Comput., 2017.

[124] S. Yahiaoui, M. Omar, A. Bouabdallah and E. Natalizio, "An energy efficient

and QoS aware routing protocol for wireless sensor and actuator networks,"

AEU-International Journal of Electronics and Communications, vol. 83, 2018.

[125] E. E. Tsiropoulou, G. Mitsis and S. Papavassiliou, "Interest-aware energy

collection & resource management in machine to machine communications,"

Ad Hoc Networks, vol. 68, pp. 48-57, 2018.

[126] D. Fabio, T. Ilenia and G. Yu, "1 Hop or 2 Hops: Topology Analysis in Body

Area Network," in Proceedings of the 2014 European Conference on Networks

and Communications (EuCNC), Italy, 2014.

[127] S. R. Chavva and R. S. Sangam, "An energy-efficient multi-hop routing

protocol for health monitoring in wireless body area networks," Network

Modelling Analysis in Health Informatics and Bioinformatics, vol. 8:21, 2019.

[128] Y. Qu, G. Zheng, H. Wu, B. Ji and H. Ma, "An Energy-Efficient Routing

Protocol for Reliable Data Transmission in Wireless Body Area Networks,"

Sensors, vol. 19:4238, 2019.

[129] W. R. Heinzelman, A. Chandrakasan and H. Balakris, "Energy-efficient

communication protocol for wireless microsensor networks," in In Proceeding

100

of the 33rd Annual Hawaii International Conference on System Sciences,

Maui, HI, USA, 2000.

[130] R. Goyal, R. B. Patel, H. Bhaduria and D. Prasad, "An Energy Efficient QoS

Supported Optimization Transmission Rate Technique in WBANs," Wireless

Personal Communication, vol. 117, p. 235–260, 2021.

[131] N. Javaid, M. Farid, Z. Khan, N. Alrajeh and Z. Abbas, "M-ATTEMPT: A new

energy-efficient routing protocol for wireless body area sensor networks,"

Procedia Computer Science, vol. 19, pp. 224-231, 2013.

[132] A. Gulnaz, Z. Jianhua and M. M. S. Fareed, "PERA: Priority-based Energy-

efficient Routing Algorithm for WBANs," Wireless Personal Communication,

vol. 96, no. 3, 2017.

[133] Z. ULLAH, I. AHMED, F. A. KHAN, M. ASIF, M. NAWAZ, T. ALI, M.

KHALID and F. NIAZ, "Energy-Efficient Harvested-Aware Clustering and

Cooperative Routing Protocol for WBAN (E-HARP)," IEEE ACCESS, vol. 7,

pp. 100036-100050, 2019.

[134] M. El Haziti, A. Bahae and J. Abdelillah, "Wireless body area networks: a

comprehensive survey," Journal of Medical Engineering & Technology, vol.

44, no. 3, pp. 97-107, 2020.

[135] U. Von Luxburg, "A tutorial on spectral clustering," Statistics and Computing,

101

vol. 17, no. 4, pp. 395-416, 2007.

[136] H. Teng, A. Liu, X. Liu and H. Shen, "Adaptive Transmission Power Control

for Reliable Data Forwarding in Sensor Based Networks," Wireless

Communications and Mobile Computing, vol. 2018, no. 2, pp. 1-22, 2018.

[137] N. Samarji and M. Salamah, "ERQTM: Energy-efficient Routing and QoS-

supported Traffic Management for SDWBANs," IEEE Sensors Journal, vol.

21, no. 14, 2021.

[138] D. Montgomery, "Simple Comparative Experiments," in Design and Analysis

of Experiments, Arizona, John Wiley & Sons, 2001, pp. 45-51.

[139] S. Yousaf, S. Ahmed, M. Akbar, N. Javaid, Z. Khan and U. Qasim, "Co-

CEStat: Cooperative Critical Data Transmission in Emergency in Static

Wireless Body Area Network," in 2014 Ninth International Conference on

Broadband and Wireless Computing, Communication and Applications,

Guangdong, China, 2014.

[140] C. Guo, R. Prasad and M. Jacobsson, "Packet Forwarding with Minimum

Energy Consumption in Body Area Sensor Networks," in 7th IEEE Consumer

Communications and Networking Conference, Las Vegas, NV,USA, 2010.

[141] Y. Abdelmalek and T. Saadawi, "Destination-assisted routing enhancement

(DARE) protocol for ad-hoc mobile networks," in SARNOFF: Proceedings of

102

the 32nd International Conference on Sarnoff Symposium, USA, 2009.

[142] O. Smail, A. Kerrar, Y. Zetili and B. Cousin, "ESR: Energy aware and stable

routing protocol for WBAN networks," in International Wireless

Communications and Mobile Computing Conference (IWCMC), Paphos,

Cyprus, 2016.

[143] Q. Nadeem, N. Javaid, S. Mohammad, M. Khan, S. Sarfraz and M. Gull,

"SIMPLE: Stable Increased-Throughput Multi-hop Protocol for Link

Efficiency in Wireless Body Area Networks," in Eighth International

Conference on Broadband and Wireless Computing, Communication and

Applications, Compiegne, France, 2013.

103

APPENDICES

104

Appendix A: Energy-efficient Routing and QoS-Supported Traffic

Management Scheme for SDWBANs

1. Wireless Body Area Network (WBAN)

WBAN is integrated into various applications, including healthcare, military,

personal entertainment, advanced sports training, and so forth. For instance, wireless

body sensors measure the human body's physiological factors such as glucose,

temperature, blood pressure, etc., and forward it to the concerned authorities using an

intranet/internet facility [110]. This kind of continuous monitoring is essential,

especially for patients with serious medical conditions who need medical

intervention at any time. The wireless body sensors can be implanted either inside

the human body or externally on the body surface. WBAN consists of light-weighted

wireless body sensors and a coordinator, where the coordinator gathers the sensed

data and transmits it to an external user or a remote server [111], [112]. Usually,

these sensors are empowered with limited battery capacity difficult to be recharged

or replaced in case of depletion. Consequently, the depleted senor will stop working.

Additional burdens occur on human life and network lifetime. Hence, energy

efficiency is one of the crucial parameters needed for a prolonged network lifetime.

Another challenge in WBANs is achieving acceptable QoS levels. QoS includes high

throughput requirements (1kb/s to 10Mb/s) and reliability [113], [114], [115], [116].

Reliability of transmission is a fundamental issue in WBANs revealed by guaranteed

data delivery, especially for emergency data. Therefore, achieving reliability requires

optimized throughput and data delivery with minimum end-to-end delay [114].

Accordingly, in life-critical scenarios where fast and reliable routes are mandatory

for transmission [117], the reliability of emergency data transmission plays a crucial

105

role in saving a patient's life. Efficient routing is considered the backbone in

achieving reliability [118], [119]. Hence, the most critical challenge faced by

WBANs is achieving reliability and prolonged network lifetime. This challenge is

nowadays a hot topic in cognitive radio-based internet of medical things applications

(CIoMT) for coronavirus disease (COVID-19) patients. Due to this pandemic which

caused a universal lockdown and movement restrictions, most health activities have

gone online based on wireless communication and networking, which consume

bandwidth [120]. CIoMT is based on dynamic spectrum allocation to accommodate

the massive number of applications and devices. Hence, CIoMT is a panacea

technology for rapid diagnosis, dynamic monitoring, tracking, better treatment,

decision-making, and control without spreading the virus to others [120]. Thus, to

achieve a high QoS, a well-designed routing algorithm and efficient network

management are needed.

Clustering-based routing algorithms are appropriate for WBANs where network

partitioning is implemented. Each partition or cluster contains one cluster head (CH),

and the rest of the nodes are cluster members. Single-hop transmission occurs

between CH and cluster members. CH gathers sensed data from its members and

transmits it to the coordinator via single-hop or two-hop communication [121], [122].

The clustering approach ensures minimum energy utilization and offers maximum

data delivery with appropriate end-to-end delay [123]- [124]. Tsiropoulou et al. [125]

present an energy-efficient resource management approach by proposing a

probability-based cluster formation incorporating the interest-based and distance-

based factors in cluster formation. The proposed cluster-based scheme aims at

106

prolonging the network operation by allowing each device to harvest energy through

radio frequency (RF) signals.

Maximizing the energy saving of sensor nodes is a critical challenge in WBAN.

Several energy-aware routing schemes have been presented aiming at prolonging the

network lifetime of wireless networks. Most of the power-saving approaches reduce

the frequency of sending network control messages and redundant retransmissions.

Some of these energy-aware routing schemes are listed in Table 16, which

summarizes their pros and cons.

IEEE 802.15.6 [121] is designed explicitly for WBAN communication with two

topologies: star topology or two-hop tree topology. The two-hop tree topology is

based on a sensor node's cooperative transmission through a relay node to the sink or

controller. This type of communication is done using Time Division Multiple Access

Table 16: Energy-Aware Routing Schemes

Approach Pros Cons

Co-CEStat

[140]

High network throughput & network

lifetime.

Supports dynamic routing

Energy utilization is high

MEPF

[141]

Minimize node's energy with less

transmission power
Network latency is high

DARE

[142]

Minimize node's energy consumption Load is not uniformly

distributed

ESR

[143]

Supports patients mobility and

handles traffic load changes
Network lifetime is low

SIMPLE

[144]

Energy consumption is balanced.

High network throughput
Packet loss is high

Proposed

ERQTM

Energy consumption is balanced

among all nodes.

High network throughput, elongated

network lifetime & minimal network

latency.

Supports WBAN QoS.

A bit high energy

utilization due to high

transmission power for

emergency data

107

(TDMA) slots that help save the network energy and prolong the network lifetime

[126]. Therefore, an appropriate relay selection is important in cooperative

transmission strategy [121] to achieve high QoS.

In this part of the thesis, we have presented an ERQTM scheme for intra-WBANs to

enhance the network lifetime and achieve network reliability and stability. Thus, we

have addressed the problem as a joint scheme, developing an energy-efficient routing

scheme (ER) and the QoS traffic management scheme (QTM). The ER scheme is a

cluster-based energy-efficient routing algorithm aiming to elongate the network

lifetime. The traffic management scheme ensures network reliability and stability by

prioritizing the emergency data during transmission, thus ensuring high QoS. Most

researchers prioritize emergency data by restricting low energy level nodes to send

emergency data and avoid sending normal data. That causes degradation in the

network throughput and failure in achieving high network QoS. In our work, we have

overcome such shortcomings by proposing a meta-heuristic-based energy-efficient

routing approach for cluster head selection. This approach avoids quick depletion of

the network energy by dynamically selecting the network cluster heads. The dynamic

cluster head selection causes a positive impact on the network lifetime and network

QoS. Since clustering the nodes is an NP-hard problem, the proposed ER scheme is

based on a genetic algorithm [73] to select the network cluster heads optimally. The

cost model includes the following parameters: the nodes' residual energies, nodes'

consumption energy rate, distance to the controller, signal to noise ratio, and path-

loss effect. Since our scheme is based on intra-WBAN communication, body

movements may cause path loss (i.e., data loss during transmission). Path-loss highly

affects network throughput; therefore, it is included in the optimization process as

108

well. Besides the energy-efficient cluster-based routing algorithm, we have

presented a priority-based scheme to manage the traffic flow. High priority is given

to the emergency data (ED) for routing, and the associated nodes are assigned with a

high transmission rate and less sensing interval. Since energy depletes quickly with

high data rate transmission, our proposed scheme balances the energy among the

sensor nodes. That is done by considering the nodes' energy consumption rates in

consecutive intervals and their residual energies to optimally select the network

cluster heads once the energy level falls under a certain threshold. Experimental

results are conducted to evaluate the efficiency of the proposed ERQTM scheme.

The contributions of this work include the following:

• The proposed ERQTM scheme balances the energy among sensor nodes and

achieves a high packet delivery rate. That is done by considering the nodes' energy

consumption rates in consecutive intervals and their residual energies in the cluster

head selection process. Hence, it avoids the quick depletion of the node's energy and

early dead nodes' existence. That positively impacts the network lifetime on the one

hand and the network reliability by ensuring the emergency data transmission on the

other hand.

• Most routing algorithms in Literature focus on selecting the closest relay nodes to

the sink for data transmission, which causes quick depletion of energy. Our proposed

scheme optimally selects a CH using GA. The GA objective function focuses on

nodes' residual energies, energy consumption rates, distance to the controller, and

path-loss effect. Up to our knowledge, this is the first work in which the GA is used,

109

taking into consideration various QoS metrics to select an appropriate CH among the

wireless body sensor nodes.

• Most of the literature studies do not focus on prioritizing the routing of critical or

emergency data. We claim that instantaneous notification of any emergency data cuts

off the delay to immediate medical treatment, saving the patient's life. Cutting off the

routing delay is achieved by giving high priority to emergency data. In the traffic

management part of our scheme, we have given high priority to emergency data with

a high transmission rate so that it is immediately routed toward the controller.

• The obtained results demonstrate the efficiency of the proposed ERQTM scheme

in achieving the WBAN's QoS. That is illustrated by achieving network stability and

reliability through a high throughput rate, less delay, and elongated network lifetime.

2. System Overview

In this section, we present a cluster-based intra-SDWBAN communication system

model that includes the following system assumptions:

 All sensors upon deployment have equal energy

 SDN controller node has unlimited energy

 All sensors either send normal data or emergency data

 Sensors transmit with different data rate according to the data type

 Intra-cluster: single hop between sensors and CH

 Inter-cluster: either single or two-hops communication between CHs and

controller

 We assume events occurring during time interval follows a Poisson

distribution

110

3. Network Model

Our system model incorporates an SDN controller implemented at the sink of

WBAN consists of 15 sensor nodes deployed at the human body, as shown in Figure

25, which summarizes the topology of software-defined wireless body area network

(SDWBAN). Our proposed energy-efficient routing and QoS supported traffic

management (ERQTM) scheme consists of two correlated algorithms: energy-

efficient routing algorithm (ER) and QoS traffic management algorithm (QTM).

Before explaining these two algorithms, it is of great importance to determine the

number of clusters needed in our proposed scheme. That is explained in section 3.1.

There are two types of WBAN transceivers: nRF 2401A and CC2420. We will use

nRF 2401 in our simulation due to low power transmission and for comparison

purposes with other techniques. Both transceivers have the same bandwidth, 2.4GHz.

Table 17 shows details of these two kinds of WBAN sensors. Table 18 includes the

sensor nodes' locations on the human body.

Figure 25: SDWBAN Topology

Figure 48: SDWBAN topology

111

Table 17: Transceiver Energy Parameters [127]

Table 18: Nodes' Location

3.1 Determining the Number of Clusters

To determine the number of clusters needed for our proposed algorithm, we have

recorded the average end-to-end (E2E) delay (ms) for a different number of clusters

ranging from 1 to 6 clusters. Clustering the network minimizes the E2E delay for a

certain number of clusters; however, this is not always the case as maintaining

network topology and exchanging the global network state causes an increase in

Parameters nRF 2401A CC2420 Units

DC current (Tx) 10.5 17.4 mA

DC current (Rx) 18 19.7 mA

Supply voltage

(min)

1.9 2.1 V

ETx-elec 16.7 96.9 nJ/bit

ERx-elec 36.1 172.8 nJ/bit

Eamp 1.97e
-9

 2.71e
-7

 j/b

Node

Description

Location

x-axis y-axis

1 EEG 0.32 1.77

2 ECG 0.35 1.37

3 ECG 0.22 1.35

4 Glucose 0.35 0.01

5 Glucose 0.36 1.01

6 Motion 0.08 1.45

7 EMG 0.06 0.98

8 Blood Pressure 0.37 1.27

9 Pulse OXIMETER 0.4 1.01

10 Lactic acid 0.22 0.91

11 Accelerometer 0.45 0.45

12 Accelerometer 0.5 0.5

13 Respiratory 0.15 0.5

14 Pressure 0.15 0.45

15 Pressure 0.25 0.17

16 SDN-controller 0 0

112

delay. Therefore, the delay increases when an excessive number of clusters is used.

Figure 26 shows the delay for a different number of clusters. The E2E delay achieves

its minimum value of 4.3 ms when three clusters exist before rising to 4.4 ms when

four clusters exist; therefore, we will use three clusters for the rest of our work.

3.2 Estimation of the Energy Consumption Model and Priority-Based

Transmission Rate

In WBAN, the sensor nodes are equipped with low-power batteries; hence, energy is

scarce since recharging them is impossible. Most energy consumption is mainly due

to transmitting the data, receiving the data, sensing the data, and collecting the data

[128], [124]. However, data transmission is the most major cause behind energy

drainage, and so is the bottleneck of energy consumption. There are many energy

models in Literature, and the commonly used model is the first-order energy model

[129]; hence, we are adopting this model in our research study. For every sensor

node i in a cluster u, the SDN controller assigns Ti TDMA time slots. Equation 24

defines the needed energy for transmitting k bits at a distance d from the receiver.

 ETx(k,ni,d)=

) (24)

Figure 26: Delay for Different Number of Clusters

113

where is the number of clusters in the network, su is the number of sensors in

cluster u;
 is the transmission energy cost of node i in a cluster u during its

time interval for transmitting a single bit, k is packet size, ŋ is the path-loss

coefficient, Eamp is the energy required for amplifier circuit, and di is the distance

between node i and receiver. The energy needed for receiving k bits is given by

Equation (25)

ERX(k,)=

 (25)

where
 is the energy cost of sensor node i in cluster u for receiving a single bit

during its time interval;

Wireless communication in WBAN is greatly affected by human movement, so body

movement contributes attenuation in the radio model [127]; therefore, in our study,

we have considered the path loss effect caused by such attenuation. The transceiver

energy parameters are shown in Table 15. The total energy consumption is the sum

of the transmission energy and the receiving energy denoted as ECO in Equation (26).

The expression for the network energy consumption for sending and receiving k bits

during the time interval T [123] is given as:

ECO(k, ,d) =

)) (26)

We assume that the number of events (n) occurring during time interval T with

arrival rate λ follows a Poisson distribution which is given by:

 P(n,T)=

* (27)

where PTR is the priority-based transmission rate is given in Equation 28.

 PTR= * (28)

114

The estimated network energy consumption during a time interval is given by

Equation 29:

 E(ECO(k, ,d))=

) (29)

A high priority value (p=2) is given to ED to be routed to the controller, and a low

priority value (p=1) is given to ND. Achieving reliability is done by assigning a high

transmission rate to ED and a low transmission rate to ND. This ensures that ED to

be transmitted at full rate and ND is transmitted at half rate.

3.3 Path-Loss Model

The difference between energy consumption to transmit and receive data is referred

to as path loss; in other words, it is the difference between the transmitted and

received power represented in decibels (dBs) which is different from the loss or gain

of antenna’s radio signals. Besides, the path loss is affected by human movement;

therefore, in WBAN, path loss occurs due to movement of the body, clothes, hands,

and human postures. The posture of the human body affects electromagnetic signals.

As a result, the path loss shows different behaviors along with different body parts.

There are different path loss models in Literature. We included in our scheme the

path loss model described in [130], which is a function of distance and frequency

[131] shown in Equation 30.

PL = PL0 + 10.ƞ.log10 (d/d0)+σs (30)

where PL0 is the path loss at reference distance d0 and ŋ is the path-loss coefficient.

The distance between the transmitter and the receiver is d, and σs is the shadowing

factor that follows the Gaussian distribution of random variables [130]. The LOS

path loss coefficient's value varies from 3 to 4, while for NLOS, its value is between

5 and 7.4. In our simulation, we used a fixed frequency (ƒ) of 2.4 GHz, ŋ and σs as

115

3.38 and 4.1 [132], respectively. The path-loss is rewritten and shown in Equation

31.

PL= 10

 (31)

 where c speed of light and ƒ is frequency;

3.4 Energy-Efficient Routing (ER) Algorithm

Network partitioning is being adopted in many research studies to elongate the

network lifetime. Hence, a Clustering-based routing algorithm is considered an

optimum approach for network management [133]. The main advantages of the

clustering mechanism are enhancing network lifetime and balancing the load [134].

For this purpose, we have adopted the clustering mechanism for our routing scheme.

An energy-efficient cluster head selection algorithm mainly focuses on balancing the

energy consumption among nodes; specifically, a high transmission rate for ED

depletes the sensor node's energy. We believe that maintaining balanced energy

consumption among sensor nodes will enhance the network lifetime, throughput, and

network stability. The initial energy is the same for all nodes, i.e., Einitial = 0.5J. The

nodes sense the vital parameters of the human body and send data to their associated

CH. CHs send data to sink. Once the residual energy of CH is below a threshold (0.1

J), the controller assigns new CH by running GA to avoid packet loss, misconnection

between sensors and CH, and to balance the energy among nodes. The residual

energy of sensor node i is given by Equation 32.

=

-
 (32)

where
 is the initial energy of node i, and the difference of energy

consumption of node i between current time interval Ti and one previous time

116

interval Ti
'
 is considered so that the depleted energy node will not be considered for

CH selection. The estimated consumption energy of node i is denoted as
. Since

the energy consumption depends on the source-destination distance and source-

destination channel attenuation, the signal-to-noise ratio (SNR) is included in the

first objective function. We define the first and second objective functions of Ƒ as ƒ1,

ƒ2 as Equations 33 and 34.

ƒ1=

*

 (33)

 s.t. Eresidual ≥ Emin ; where Emin is the minimum

energy needed to be elected as CH;

ƒ2=

 (34)

where d is the distance between node and controller, and is the average distance of

nodes and controller, PL is the path-loss given in Equation (31). Therefore the fitness

function is given by Equation 35.

Ƒ= max (ω1 ƒ1+ ω 2 ƒ2) (35)

 s.t ω1 + ω 2=1; 0≤ ω1≤1, 0≤ ω 2≤1

In the beginning, the controller runs the GA to determine the number of clusters to be

three cluster heads. Then we have adopted the k-mean method [135] to cluster the

nodes among these three clusters. The sensor node with maximum residual energy,

minimum consumption energy difference in consecutive time intervals, and

minimum distance to the controller will be chosen as CH. The same pseudo-code of

GA is used in Table 2; however, the fitness function is Equation 35.

117

3.5 Scheduling

Based on the Time Division Multiple Access (TDMA) approach, our proposed

system model uses a single-hop communication between sensors and cluster heads to

maximize the network life and single or double-hop communication between cluster

heads and the SDN controller. Packet collisions, idle listening, and overhead

communication are reduced using a TDMA strategy that is better suited to the

WBAN system. The scheduled TDMA access mechanism is based on the beacon

mode IEEE 802.15.6 with superframe boundaries [130]. In the beginning, the

controller divides the overall interval time T into10 ms length slots and assigns a

one-time slot for every sensor for intra-cluster communication and inter-cluster

communication. CHs use the same frequency band and transmit their data in different

time slots to avoid collisions. As stated before, high priority is given to ED (p=2) to

be routed to the controller, and low priority is given to ND (p=1). Hence, high

priority data is assigned a sending interval less than that of ND. The priority-based

sending interval (PS) is given by Equation (36):

PS = (36)

Therefore, ED is transmitted with full rate and half the initial sensing interval to

ensure delay-free transmission, whereas the ND is transmitted with half rate and full

sensing interval.

Adjusting the transmission and receiving powers at sensor nodes is adopted from

[136], where transmitting power should also be adjusted to meet the transmission rate

assigned to the sensor node. The adjusted transmitting power is shown in Equation

(37).

P
TX

 = ψ* ETx(k,α,d) (37)

ψ = PTR/k (38)

118

where PTR is priority-based transmission rate given in Equation 28. The adjusted

received power is shown in Equation (39)

P
RX

= ψ* ERX(k,α) (39)

where ERX(k,) is given in Equation (25);

3.6 ERQTM Model

The energy-efficient routing and QoS traffic management scheme comprises two

algorithms: the energy-efficient routing (ER) algorithm illustrated by efficiently

balancing the energy among sensor nodes and optimally selecting CHs. The second

algorithm is the QoS traffic management (QTM) algorithm. Before going into these

two algorithms' details, let's have a deeper view of the controller's control plane.

Since the SDN controller manages the network, Figure 27 shows the controller's five

main functional blocks.

Block 1: Determine the number of clusters: As stated in section 3.1, the controller

determines the number of clusters needed for our algorithm.

Block 2: Run GA to optimally select the CH for each cluster: This is explained in

section 7.6

Block 3: The controller determines the network topology and sends the flow tables to

the sensor nodes.

Block 4: The controller, as stated in section 3.5, will assign the time slots for

transmission and will manage the traffic flow by prioritizing the ED for transmission

119

Block 5: The controller, based on traffic flow, will assign transmission rate and

sending interval and adjust power to the sensor nodes.

Table 19 describes the QoS traffic management algorithm that precisely focuses on

prioritizing the emergency data. Accordingly, the controller assigns the priority

value, data rate, sending interval, and transmission power to the sensor node issuing

the ED.

Table 19: QTM Algorithm

While data flow is available do

Data flow arrive

Check the type of data flow

If data.type=='emergency data' then
assign the PTR value as in Equation 28 with p=2
assign sending interval PS as in Equation 36 with p =2
assign transmitting power as in Equation 37

Else
Assign the PTR value as in Equation 28 with p=1
Assign sending interval PS as in Equation 36 with p =1
Assign transmitting power as in Equation 37

End if
End While

Determines the number

of clusters

Runs GA to optimally

select CH for each

cluster

Assigns TDMA time

slots and manages the

traffic flow

Adjusts the

transmission rate,

sending interval, and

adjusts power

Network

topology

Figure 27: Controller's Main Blocks

120

The detailed description of the flowchart of the ERQTM scheme is as follows:

At the controller

When a packet arrives from CH to the controller, the following happens:

1. The controller checks the packet. If the packet is normal data and no beacon

alarm is issued from any CH, then the controller adds normal data to its buffer (ND-

buffer) for sending it later to the access point (AP).

2. However, if a beacon alarm has arrived at the controller, it could be either:

a. Emergency data alarm (ED): The controller will notify the CH, sending the ND

to pause and store the rest of ND in CH's buffer (ND-buffer). The controller will

assign a timeslot to the CH issuing the alarm beacon. Then CH will start sending its

ED, and the controller will store it in its buffer (ED-buffer) to packetize it and send it

immediately to AP.

b. Energy depletion of CH: The controller will run GA to select a new CH instead of

the energy-depleted CH and will notify the CH that wants to send ND to send its

data.

Whenever the controller finishes either case a or b and no alarm has been issued, it

will check if any waiting ND in the buffer of any CH. If so, the controller notifies the

CH, which has paused sending its ND to resume sending its ND. The controller will

store the ND in its ND buffer for later transmission to AP and ends the algorithm.

3. If the packet is ED, the controller will immediately accept it. If during sending

the ED, the controller receives an alarm:

a. Emergency Data beacon alarm: it will notify the CH that is issuing the ED alarm

beacon to store it in its ED buffer. Once the controller finishes receiving the current

121

emergency data, it will assign a timeslot for CH, issuing the alarm to send its ED.

The controller then adds ED in its ED buffer.

b. Energy Depletion beacon alarm: the controller will run GA to select a new CH

instead of the depleted CH.

The controller will keep checking if no waiting ED exists to end the algorithm;

otherwise, it will either follow steps 3a or 3b.

Traffic flow at the cluster head:

1. Each CH keeps tracking its residual energy

2. If residual energy is less than Emin it will either send an alarm beacon to the

controller if it is a single-hop away or nearest CH if two hops away from the

controller. The nearest neighbor will send this alarm beacon to the controller

3. The controller will assign a new CH to replace the current CH after receiving the

alarm beacon.

4. The controller will use GA for step 3

If CH receives an ED from the controller, it will do the following:

5. Notifies all its sensors to stop sending any packet

6. Stores, if available, any ED or ND in respective buffers: ED-buffer or ND-buffer

and immediately acts accordingly to the controller's request

7. Once finished, it will resume sending any ED in buffer first, then ND-buffer

8. It will notify its sensors to send their data.

9. However, if it receives ED from its sensor during sending its ND to the

controller, it will store the current ND in its ND buffer and sends ED to the

controller, then resumes sending ND. And if it receives normal data, it will store

the ND-buffer data to be sent later.

122

The above steps are shown in Figure 28 under QoS Traffic Management (QTM)

flowchart.

Figure 28: QTM Flowchart

123

Based on ER and QTM, the proposed flowchart of the ERQTM scheme is shown in

Figure 29.

Figure 29: Flowchart of ERQTM Scheme

124

4. Performance Evaluation

Our proposed ERQTM algorithm has been implemented using MATLAB 2019. We

have run our scheme 50 times for each round and took the average to achieve a 95%

confidence interval. The performance verification and analysis have been carried out

for Intra-Software Defined Wireless Body area network (Intra-SDWBAN) in a room

with a patient having 15 sensor nodes and one SDN controller placed on his body as

described in Section 3. We have selected three protocols from the state-of-the-art,

namely, E-HARP [133], PERA [132], and PAP [115], for performance evaluation

since they are relative to our proposed algorithm and most recent studies in the

Literature of WBAN. The network performance metrics considered in comparison

and are mostly used in WBAN Literature are as follows: end-to-end E2E delay,

Throughput, Network lifetime and Stability, Residual energy, and computational

complexity. Simulation parameters are provided in Table 20.

Table 20: Simulation Parameters for ERQTM Algorithm

Parameter Value

Simulation area 2x2m
2

Number of sensor nodes 15

Position of sensors Table 18

Duration of time slot 10 ms

Super-frames duration 700 ms

Packet size 1200 bit

Noise power -94dBm

Transmission power range -30dBm to 0 dBm

Coefficient of LOS 3.38

Coefficient of NLOS 5.9

Initial energy Einitial 0.5 J

Ermin 0.1 J

 16.7 nJ/bit

ERX 36.1 nJ/bit

Eamp 1.97 nJ/bit

Frequency 2.4 GHz

Initial packet transmission rate 5 packets/sec

Packet size 3000 bits

Wavelength 0.138m

125

4.1 Network Lifetime and Network Stability

In our performance evaluation, the network lifetime is considered the time it takes

for the last node to die (LND), and the network stability is defined as the duration of

time for the first node to die (FND). We have run our simulation for different rounds

and recorded the number of rounds that the first node to die as network stability and

the last node to die as network lifetime for the different protocols, as shown in Table

21 and Figure 30. As it can be seen, almost the same performance evaluation was

recorded for our proposed scheme ERQTM and E-HARP with a very slight increase

for the latter. This slight increase is due to the harvested energy that the authors in

[133] have empowered the sensor nodes with energy to increase the network lifetime.

Although we didn't consider any external harvest technique in our scheme, close

results were recorded. The proposed energy-efficient routing algorithm positively

impacts the overall network lifetime. Authors of PERA [132] have suggested placing

the sensor nodes of emergency data like EEG, ECG close to the sink to save energy

and the rest of the nodes use multi-hop communication to communicate with the

sink. Therefore, the nodes close to the sink will frequently communicate other nodes'

data to the sink, causing quick energy depletion. That is shown in Table 21. Authors

of PAP [115] suggested dynamically allocating transmission rates to sensors that

send emergency data to ensure reliability and delay-free communication. However,

sending with high transmission rates by power-limited sensor nodes will lead to early

death, especially if no alternative scheme is present to handle this issue. The FND is

recorded at 5000, 4500, 3000, and 2200 rounds for ERQTM, E-HARP, PERA, and

PAP, respectively. Moreover, the LND is recorded at 10000, 9000, 7000, and 5000

rounds for ERQTM, E-HARP, PERA, and PAP, respectively. The overall percentage

126

of average improvement of ERQTM over E-HARP, PERA, and PAP is almost 4%,

34%, and 56%, respectively.

Table 21: Network Stability and Network Lifetime Comparison

4.2 Network Throughput

Network throughput refers to successfully transmitted data in a defined time. A high

throughput network is most desired in terms of performance. Figure 31 shows the

proposed ERQTM throughput at high priority (p=2) and low priority (p=1) levels.

Since data transmission rate is highly associated with emergency data or high priority

Figure 30: Network Stability and Network Lifetime Comparison

Protocol

name

 Number of alive nodes at different number of rounds

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ERQTM 15 15 15 15 12 9 5 3 2 0

E-HARP 15 15 15 15 11 9 4 3 0 0

PERA 15 15 14 9 5 2 0 0 0 0

PAP 15 15 8 2 0 0 0 0 0 0

127

data; therefore, the system achieves higher throughput for high-priority data than

low-priority data. That is illustrated in Figure 31.

Figure 32 compares throughput values of our proposed ERQTM scheme with E-

HARP, PERA, and PAP for a different number of rounds. As seen at the beginning

of the simulation, PAP seems to outperform the E-HARP, PERA, and PAP protocols

with a slight improvement compared to the ERQTM protocol. That is due to the high

transmission rates assigned to ED, ensuring delay-free and successfully received

packets. Also, no clustering methods are incorporated in our proposed algorithm and

E-HARP that causes rigorous processing for the selection of CHs. Due to the quick

depletion of residual energies, the throughput is negatively affected at 3000 rounds

and above. In our scheme, the SDN controller is responsible for running GA to select

CHs optimally; thus, we can see that this positively impacts saving the sensor nodes'

residual energies and enhancing network throughput. Hence, it maintains its

superiority compared with the others, and the overall average improvements of

ERQTM over E-HARP, PERA, and PAP are almost 3%, 6%, and 7%, respectively.

Figure 31: ERQTM Throughput for ED and ND

128

4.3 Residual Energy

The total residual energy refers to the sum of all the sensor nodes' remaining energy

levels in the network. The most energy consumption is due to transmission and

receiving the data. The proposed energy-efficient routing algorithm optimally

chooses CH considering the nodes' consumption rate, residual energy, distance to the

controller. This shows a positive impact in increasing the network lifetime and, as a

result, in saving energy. Figure 33 compares the residual energy of our proposed

ERQTM with E-HARP, PERA, and PAP. Both ERQTM and E-HARP algorithms

last more than 10000 rounds; however, in the proposed ERQTM scheme, an SDN

controller's presence positively affects saving sensor nodes' energy where the SDN

controller does all necessary calculations. That explains why the ERQTM scheme

has more energy-saving than E-HARP. All in all, looking at the residual energy of all

protocols, one can see that the average improvements of the ERQTM over E-HARP,

PERA, and PAP protocols are almost 13%, 16%, and 31%, respectively.

Figure 32: Throughput Comparison

129

4.4 End-to-End Delay

An important performance metric, especially for WBANs, is the end-to-end delay.

We aim to have minimum delay specifically for emergency data to achieve high

QoS. In the proposed ERQTM scheme, executions of routing algorithm and optimal

CHs selection are done on behalf of the SDN controller, not the E-HARP case. In E-

HARP, each sensor node does the necessary calculations and communicates with the

sink. This will cause more delay caused by calculating and transmitting the data

between sensors and the controller. In Figure 34, one can see that at the beginning,

the ERQTM and E-HARP algorithms experience higher delays than other schemes.

This delay is caused by the optimal selection of cluster heads, which is not the PAP

and PERA case. After 2000 rounds, the ERQTM algorithm achieves minimum end-

to-end delay among the rest of the schemes. The clustering mechanism proves to be a

well-desired routing algorithm to achieve minimum delay. The overall average

improvements of ERQTM over E-HARP, PERA, and PAP are almost 15%, 56%,

and 51%, respectively.

Figure 33: Residual Energy Comparison

130

4.5 Computational Complexity

A general important performance metric, especially for time-sensitive applications as

e-Health applications, is the computational complexity refers to the computational

time or CPU execution time. The simulations were performed on a PC with an Intel

Core i5 CPU and 8 GB of RAM. Table 22 represents the comparison of the

computational time (microseconds) of our proposed ERQTM algorithm with E-

HARP, PERA, and PAP algorithms for a different number of sensor nodes. As it is

seen, the computational time increases with the increase of sensor nodes. The

computational time of PERA and PAP is less than that of ERQTM and E-HARP due

to the clustering methods and the optimal cluster heads in ERQTM and E-HARP.

That verifies the computational time's direct dependency on the network topology

and the clustering method used.

Figure 34: End-to-End Delay Comparison

131

Table 22: Computational Complexity Comparison (μs)

5. Discussions

An energy-efficient routing and QoS-supported traffic management for software-

defined WBAN (ERQTM) is proposed in this research study. The proposed ERQTM

scheme incorporates an energy-efficient routing algorithm based on a genetic

algorithm to optimally select CH and considers various metrics such as nodes'

residual energy, energy consumption rate, location, link quality, and signal-to-noise

ratio path-loss effect. The second algorithm manages the traffic flow and prioritizes

the emergency data once issued by any node (CH, cluster member, or even SDN

controller). This algorithm ensures reliability by giving high priority for routing the

emergency data and assigning transmission power accordingly. The overall scheme

outperforms the compared protocols in terms of network stability, network lifetime,

residual energy, throughput, and end-to-end delay. Since our proposed scheme is

based on assigning a high transmission rate and transmitting power for ED

transmission, then harvested energy along with the energy-efficient routing algorithm

will be needed as future work to cease the drawback issue caused by such

assignments. The proposed scheme can be extended for future work for considering

cross-layer interactions for complex network scenarios, especially for COVID-19

patients. We have written a paper [137] based on the ERQTM algorithm.

No.of sensor

nodes ERQTM E-HARP PERA PAP

5 12 14 10 5

7 15 17 13 9

10 17 20 15 12

12 23 25 20 18

15 30 34 26 24

132

Appendix B: Confidence Interval Estimation

In this part of the thesis, we have explained the 95 % confidence interval estimation

for the latency values under the genetic algorithm when three controllers are present

in the system for different faulty node percentages. We have applied the t-

distribution [138] to verify the correctness of the obtained results. The table below

includes the average latency values that are obtained from the outputs of 50

simulation runs.

Fault % Latency

0
0.50664

1
0.5124

5
0.52322

10
0.52509

20
0.52489

50
0.52995

We calculated the 95% confidence interval for each percentage of faulty nodes, and

the value for the obtained latency falls within the 95% confidence interval.

Case 1: 0% faulty nodes

The below table shows the 50 runs values for latency under 0% faulty nodes.

No. of runs Latency

1 0.50419

2 0.50429

3 0.50439

4 0.50449

5 0.50459

6 0.50469

7 0.50479

8 0.50489

9 0.50499

10 0.50509

133

11 0.50519

12 0.50529

13 0.50539

14 0.50549

15 0.50559

16 0.50569

17 0.50579

18 0.50589

19 0.50599

20 0.50609

21 0.50619

22 0.50629

23 0.50639

24 0.50649

25 0.50659

26 0.50669

27 0.50679

28 0.50689

29 0.50699

30 0.50709

31 0.50719

32 0.50729

33 0.50739

34 0.50749

35 0.50759

36 0.50769

37 0.50779

38 0.50789

39 0.50799

40 0.50809

41 0.50819

42 0.50829

43 0.50839

44 0.50849

45 0.50859

46 0.50869

47 0.50879

48 0.50889

49 0.50899

50 0.50909

average 0.50664

The degrees of freedom is given by n-1 = 49, the 100(1-) percent confidence

interval is determined by:

134

 -

 < μ< +

 ; where is the average, s is the standard

deviation, n is the number of runs. Accordingly, the confidence interval is

determined by:

The t-distribution value is given by: t0.025,49 = 2.0115. The variance of the 50 runs

sample is s
2

 =

 = 2.125E-06; therefore the standard deviation s =

 = 0.0014577; and the half size of confidence interval is:

b=

 . Thus the 95% confidence interval is :

0.50664

 , the obtained latency value 0.50664 is between the

95% confidence interval.

Case 2: 1% faulty nodes

The below table shows the 50 runs values for latency under 1% faulty nodes.

No. of runs Latency

1 0.51

2 0.5101

3 0.5102

4 0.5103

5 0.5104

6 0.5105

7 0.5106

8 0.5107

9 0.5108

10 0.5109

11 0.511

12 0.5111

13 0.5112

14 0.5113

15 0.5114

16 0.5115

17 0.5116

18 0.5117

19 0.5118

20 0.5119

21 0.512

135

22 0.5121

23 0.5122

24 0.5123

25 0.5124

26 0.5125

27 0.5126

28 0.5127

29 0.5128

30 0.5129

31 0.513

32 0.5131

33 0.5132

34 0.5133

35 0.5134

36 0.5135

37 0.5136

38 0.5137

39 0.5138

40 0.5139

41 0.514

42 0.5141

43 0.5142

44 0.5143

45 0.5144

46 0.5145

47 0.5146

48 0.5147

49 0.5148

50 0.5149

average 0.5124

The variance of the 50 runs sample is s
2

 =

 = 2.125E-06; therefore the

standard deviation s = = 0.0014577 ; and the half size of confidence

interval is: b=

 . Thus the 95% confidence interval is :

0.5124

 , the obtained latency value 0.5124 is between the 95%

confidence interval.

Case 3: 5% faulty nodes:

The below table shows the 50 runs values for latency under 5% faulty nodes.

136

No. of runs Latency

1 0.52298

2 0.52299

3 0.523

4 0.52301

5 0.52302

6 0.52303

7 0.52304

8 0.52305

9 0.52306

10 0.52307

11 0.52308

12 0.52309

13 0.5231

14 0.52311

15 0.52312

16 0.52313

17 0.52314

18 0.52315

19 0.52316

20 0.52317

21 0.52318

22 0.52319

23 0.5232

24 0.52321

25 0.52322

26 0.52323

27 0.52324

28 0.52325

29 0.52326

30 0.52327

31 0.52328

32 0.52329

33 0.5233

34 0.52331

35 0.52332

36 0.52333

37 0.52334

38 0.52335

39 0.52336

40 0.52337

41 0.52338

42 0.52339

43 0.5234

44 0.52341

45 0.52342

46 0.52343

47 0.52344

137

48 0.52345

49 0.52346

50 0.52347

average 0.52322

The variance of the 50 runs sample is s
2
 =

 = 2.125E-08; therefore the

standard deviation s = = 0.0001458; ; and the half size of confidence

interval is: b=

 . Thus the 95% confidence interval is :

0.52322

 , the obtained latency value 0.52322 is between the 95%

confidence interval.

 Case 4: 10% faulty nodes

The below table shows the 50 runs values for latency under 10% faulty nodes.

No. of runs Latency

1 0.52264

2 0.52274

3 0.52284

4 0.52294

5 0.52304

6 0.52314

7 0.52324

8 0.52334

9 0.52344

10 0.52354

11 0.52364

12 0.52374

13 0.52384

14 0.52394

15 0.52404

16 0.52414

17 0.52424

18 0.52434

19 0.52444

20 0.52454

21 0.52464

22 0.52474

23 0.52484

24 0.52494

25 0.52504

26 0.52514

138

27 0.52524

28 0.52534

29 0.52544

30 0.52554

31 0.52564

32 0.52574

33 0.52584

34 0.52594

35 0.52604

36 0.52614

37 0.52624

38 0.52634

39 0.52644

40 0.52654

41 0.52664

42 0.52674

43 0.52684

44 0.52694

45 0.52704

46 0.52714

47 0.52724

48 0.52734

49 0.52744

50 0.52754

average 0.52509

The variance of the 50 runs sample is s
2

 =

 = 2.125E-06; therefore the

standard deviation s = = 0.001458 ; and the half size of confidence

interval is: b=

 . Thus the 95% confidence interval is :

0.52509

 , the obtained latency value 0.52509 is between the

95% confidence interval.

Case 5: 20% faulty nodes

The below table shows the 50 runs values for latency under 20% faulty nodes.

No. of runs Latency

1 0.52244

2 0.52254

3 0.52264

4 0.52274

5 0.52284

139

6 0.52294

7 0.52304

8 0.52314

9 0.52324

10 0.52334

11 0.52344

12 0.52354

13 0.52364

14 0.52374

15 0.52384

16 0.52394

17 0.52404

18 0.52414

19 0.52424

20 0.52434

21 0.52444

22 0.52454

23 0.52464

24 0.52474

25 0.52484

26 0.52494

27 0.52504

28 0.52514

29 0.52524

30 0.52534

31 0.52544

32 0.52554

33 0.52564

34 0.52574

35 0.52584

36 0.52594

37 0.52604

38 0.52614

39 0.52624

40 0.52634

41 0.52644

42 0.52654

43 0.52664

44 0.52674

45 0.52684

46 0.52694

47 0.52704

48 0.52714

49 0.52724

50 0.52734

average 0.52489

140

The variance of the 50 runs sample is s2 =

 = 2.125E-06; therefore the

standard deviation s = = 0.001458

; and the half size of confidence interval is: b=

 . Thus the 95%

confidence interval is : 0.52489

 , the obtained latency value

0.52489 is between the 95% confidence interval.

Case 6: 50% faulty nodes

The below table shows the 50 runs values for latency under 50% faulty nodes.

No. of runs Latency

1 0.5275

2 0.5276

3 0.5277

4 0.5278

5 0.5279

6 0.528

7 0.5281

8 0.5282

9 0.5283

10 0.5284

11 0.5285

12 0.5286

13 0.5287

14 0.5288

15 0.5289

16 0.529

17 0.5291

18 0.5292

19 0.5293

20 0.5294

21 0.5295

22 0.5296

23 0.5297

24 0.5298

25 0.5299

26 0.53

27 0.5301

28 0.5302

29 0.5303

30 0.5304

31 0.5305

32 0.5306

141

33 0.5307

34 0.5308

35 0.5309

36 0.531

37 0.5311

38 0.5312

39 0.5313

40 0.5314

41 0.5315

42 0.5316

43 0.5317

44 0.5318

45 0.5319

46 0.532

47 0.5321

48 0.5322

49 0.5323

50 0.5324

average 0.52995

The variance of the 50 runs sample is s2 =

 = 2.125E-06; therefore the

standard deviation s = = 0.001458 ; and the half size of confidence

interval is: b=

 . Thus the 95% confidence interval is :

0.52995

 , the obtained latency value 0.52995 is between the

95% confidence interval.

142

Appendix C: Simulation Code

% Nivine Samarji , nivine.samarji@emu.edu.tr
Appendix C1: The code of the FTMBS Scheme

clear all

close all

clc

%%%%%%%%%%%% Optimization parameters

n_cont_des=input('please enter number of desired controllers\n'); %

initializing number of desired controllers

EN=2; % initializing energy consumed for transmission

%%%%%%%%%%%

%////////////// user parameters ///////////////////

nodes=500; % initializing number of nodes

area=[200 200]; % initializing area of deployment

BS=area/2; % initializing base station location

Efs=10e-12; % initializing comunication constant values as per base

paper

Ems=0.0013e-12; % initializing comunication constant values as per base

paper

Eelct=50e-9; % initializing comunication constant values as per base

paper

L0=4000;

L=L0; % initializing comunication constant values as per base

paper (packets)

E0=0.5; % initializing comunication constant values as per base

paper (initial energy)

Eda=5e-9; % initializing comunication constant values as per base

paper (data aggregation)

d0=88; % initializing comunication constant values as per base

paper (distance threshold)

% fault_percentage=[0.01;0.05;0.1;0.2;0.3;0.4;0.5;0.6;0.7];

fault_percentage=[0.05e-2];

t_max=300;

T_treshold=2.63e-3;

miu=3000;

L_treshold=2600;

w=[25/48,13/48,7/48,3/48];

FND_GA=[];

LND_GA=[];

FND_GRASP=[];

LND_GRASP=[];

notations={'sb','sc','sr','sg','sm','sy','sk','ob','oc','or','og','om','oy','ok','db','

dc','dr','dg','dm','dy','dk','*b','*c','*r','*g','*m','*y','*k'};

% clusters color and marker style

%/////////// deplying nodes //////////////////////

for T=1:2:3 % T=1 without

sdn, T=2 with SDN

 nodes_alive=[];

 flag_2=0;

 node_locs=[]; % initializing node locations

 while(size(node_locs,1)<nodes) % deployment till we deploy all nodes

 for i=1:ceil(2*(area(1)*area(2)/nodes)^0.5):area(1)-1 %

deployment grid wise row with 20x20

 for j=1:ceil(2*(area(1)*area(2)/nodes)^0.5):area(2)-1 %

deployment grid wise colm with 20x20

mailto:nivine.samarji@emu.edu.tr
https://orcid.org/0000-0001-7218-6172

143

 y=randi([i i+ceil(2*(area(1)*area(2)/nodes)^0.5)-1],1,1); %

randomly taking node position X

 x=randi([j j+ceil(2*(area(1)*area(2)/nodes)^0.5)-1],1,1); %

randomly taking node position Y

 node_locs=[node_locs;x y]; % saving node in node locations array

 if(size(node_locs,1)==nodes) % break the deployment if we deploy all

nodes

 break

 end

 end

 if(size(node_locs,1)==nodes) % break the outerloop if we deploy all

nodes

 break

 end

 end

 end

 %///////// predicting alternative paths for sdn ///

 for ii=1:nodes

 curr_node=node_locs(i,:); % saving alternative paths

for every node in sdn

 dis=sqrt((node_locs(:,1)-curr_node(1)).^2 + (node_locs(:,2)-curr_node(2)).^2);

 com=[(1:nodes)' dis];

 com=sortrows(com,2);

 nodes_table{ii}=com(2:end,:);

 end

 %//

 figure(1) % fiugre handler

 plot(node_locs(:,1),node_locs(:,2),'ok','MarkerFaceColor',[1,0,0]) % plotting all

nodes

 hold on

 plot(BS(1),BS(2),'sk','MarkerFaceColor',[153,217,234]/255,'MarkerSize',20) %

plotting base station location

 axis([0 area(1) 0 area(2)+60]); % making axis limits to show all nodes

and base station

 hold off

 %/////////////////////// Similarity Graph prediction /////////////////

 X=node_locs; % copying node locations in X variable

 Y=node_locs; % copying node locations in Y variable

 E = pdist2(X,Y); % predicting elucidian distance of

every node to other node

 E = E / max(E(:)); % normalizing distances with in range

[0 1]

 sigma=0.3; % taking sigma as 0.3

 for i=1:size(E,1) % calculating similarity matrix

 for j=1:size(E,2)

 if ~(i==j) % as per the equation (5) from base

paper

 W(i,j)=exp(-1*(E(i,j)^2/(2*sigma^2)));

 else

 W(i,j)=0;

 end

 end

 end

 Adj_mat=W; % copying W variable to adjacency matrix

144

 Deg_mat(1:size(Adj_mat,1),1:size(Adj_mat,2))=0; % initilizing degree matrix

 for i=1:size(Adj_mat,1) % copying row wise to calculate degree matrix as

per the base paper

 Deg_mat(i,i)=sum(Adj_mat(:,i));

 end

 Lap_mat=Deg_mat - Adj_mat; % calculating laplacian matrix as per the base

paper L=D-A

 for i=1:length(Lap_mat)

 normalised_Lap_mat(:,i) = Lap_mat(:,i) / Lap_mat(i,i); % making laplacian

matrix to normalized laplacian

 end

 d_to_BS=sqrt((node_locs(:,1) - BS(1)).^2 + (node_locs(:,2) - BS(2)).^2); %

predicting distances of all nodes to Base station

 d_to_BS_avg=(mean(d_to_BS)^2); %

taking average of distances

 K=round((sqrt(nodes)/sqrt(2*pi)) * sqrt(Efs/Ems) *

(sqrt(area(1)*area(2))/(d_to_BS_avg))); % predicting K as per base paper

 %//////////// clustring using k means ////////////////////////////////

 for i=1:length(d_to_BS) %

calculating D as per the base paper

 D(i,i)=d_to_BS(i);

 end

 A=(D*-1/2) * Adj_mat * (D*-1/2); %

A'=D1/2 A D-1/2

 [VL,D1] = eig(A'); %

calculating eigen values VL

 figure(2)

 idx = kmeans(VL(:,1:K),K);

 colors=distinguishable_colors(K);

 for i=1:K

 [r,c]=find(idx==i);

% loop to check which node belongs to which cluster decided by k means

 plot(node_locs(r,1),node_locs(r,2),'s','color',colors(i,:))

% ploting the respective nodes with predefined color and marker style

 hold on

 end

 plot(BS(1),BS(2),'sk','MarkerFaceColor',[153,217,234]/255,'MarkerSize',20)

% plotting base station location

 axis([0 area(1) 0 area(2)+60]);

 hold off

 title('Clustering results of the KSCA-WSN algorithm')

 drawnow

 %////////// communication phase ////////////////////////////////////

 node_locs(:,3)=d_to_BS; % saving base

station distances at 3rd colm in node locations array

 node_locs(:,4)=idx; % saving cluster

number at 4th colm in node locations array

 node_locs(:,5)=E0; % saving initial

energies at 5th colm in node locations array

 node_locs(:,6)=1:nodes; % saving id number

at 6th colm in node locations array

 node_locs(:,8)=0;

145

 for i=1:size(node_locs,1) % loop to predict

transmit energies for all nodes to base station

 if(d_to_BS(i)<d0)

 Etx(i,1)=(L * Eelct) + (L * Efs * d_to_BS(i).^2); % predicing as per

equation 2 in base paper

 else

 Etx(i,1)=(L * Eelct) + (L * Efs * d_to_BS(i).^4);

 end

 end

 controller=[]; % id of controllers

 which_clus_no_contr=ones(K,1);

 cont_fault_flag=0;

 cont_fault_id=[];

 controllers_load=zeros(nodes+1,t_max);

 flag_cont=0;

 BSAWF_time=[];

 for i=1:t_max % loop to run for 300 secs

 t_rate=(ceil(i/10)*100)/nodes;

 L=L0*t_rate;

 Erx(1:nodes,1)=L * Eelct; % predicing reciving energy for all nodes

 Eagg(1:nodes,1)=L * Eda; % predicing data aggregation energy for all

nodes

 %//////// cluster head selection //////////////////

 for j=1:K % loop to predict

cluster heads for all clusters

 [r,~]=find(node_locs(:,4)==j); % predicing nodes

in jth cluster

 cluster_nodes=node_locs(r,:); % copying

respective nodes in cluster_nodes array

 Sk=size(cluster_nodes,1); % number of nodes

belongs to jth cluster Sk

 if which_clus_no_contr(j)==1

 for jj=1:size(cluster_nodes,1) % loop to

preict Ermin as per base paper equation (7)

 Ermin(jj,1) = abs(Sk) * ((Erx(r(jj)) + Eagg(r(jj))));

 if(cluster_nodes(jj,5) > Ermin(jj)) % in respective node is

above the Emin make the node as cluster head selection process

 cluster_nodes(jj,7)=1; % making 1 will make

the node to enter in cluster head selection process

 else

 cluster_nodes(jj,7)=0; % 0 will make the node

not to enter in CH selection process

 end

 end

 [r1,~]=find(cluster_nodes(:,7)==1); % checking the nodes

which qualifies CH selection process

 if ~(isempty(r1))

 ch_members=cluster_nodes(r1,6);

 cluster_heads(j,1)=ch_members(randi([1 size(ch_members,1)],1,1));

% as per the base paper choosing randomly CH from qualified CH nodes

 cluster_nodes_t=cluster_nodes;

cluster_nodes_t(find(cluster_nodes_t(:,6)==cluster_heads(j,1)),:)=[];

 simin=find(cluster_nodes_t(:,5)==0);

 cluster_nodes_t(simin,:)=[];

 ch_members_mat{j}=cluster_nodes_t(:,6);

 else

146

 ch_members_mat{j}=[]; % otherwise if no CH

node qualifies, make the CH for that cluster to NaN

 cluster_heads(j,1)=1.5; % a flag to show that

there is no CH in the cluster

 node_locs(cluster_nodes(:,6),5)=0;

 end

 end

 cluster_nodes_t_id=ch_members_mat{j};

 cluster_nodes_tt=node_locs(cluster_nodes_t_id,:);

 simin=find(cluster_nodes_tt(:,5)==0);

 cluster_nodes_tt(simin,:)=[];

 ch_members_mat{j}=cluster_nodes_tt(:,6);

 end

 remain_CH=cluster_heads;

 remain_CH(find(remain_CH==1.5))=[];

 %%%%%%%%%%%%%%%%%% FFFFFFFFFFFFFFAAAAAARRRRRRRRRRRRnaz

controller selection

 n_cont=n_cont_des-length(controller)+flag_cont;

 for javad=1:K

 CH_node(javad,1)=length(ch_members_mat{javad});

 end

 %////// evaluating number of alive nodes in each cluster ////////

 c_faulty_node=zeros(K,1);

 for ezat=1:K

 c_members=ch_members_mat{ezat};

 for rajab=1:size(c_members,1)

 if node_locs(c_members(rajab),8)==1

 c_faulty_node(ezat,1)=c_faulty_node(ezat,1)+1;

 end

 end

 CH_alive_node(ezat,1)=CH_node(ezat,1)-c_faulty_node(ezat,1);

 end

 %//

 CH_not_controller=remain_CH;

 for naghme=1:length(controller)

 CH_not_controller(find(CH_not_controller==controller(naghme)))=[];

 end

 is_CH_fualty=zeros(length(CH_not_controller),1);

 if n_cont>0

 if size(CH_not_controller,1)>n_cont

 if T==1

 tic

[cont_opt,CHrem,cost_opt,iteration,for_plot,meann]=GA_SDN(n_cont,CH_not_controller,node

_locs(CH_not_controller,1:2),is_CH_fualty,node_locs(CH_not_controller,5),CH_alive_node,

t_rate,EN,BS,w);

 time_opt(T)=toc;

 elseif T==3

 tic

[cont_opt,CHrem,cost_opt]=GRASP_SDN(n_cont,CH_not_controller,node_locs(CH_not_controlle

r,1:2),is_CH_fualty,node_locs(CH_not_controller,5),CH_alive_node,t_rate,EN,BS,cluster_h

eads,w);

 time_opt(T)=toc;

 end

 else

 cont_opt=CH_not_controller';

147

 end

 if i==1

 controller=cont_opt;

 else

 ema=1;

 for suzan=1:length(cont_opt)

 controller(cont_delete(suzan))=cont_opt(suzan);

 end

 end

 cont_opt=[];

 end

 if i==1

 time_opt_t=time_opt;

 if T==1

 optimalcost(T)=cost_opt;

 iteration_optimal=iteration;

 figure(10)

 plot(for_plot)

 set(gca,'FontSize',20)

 set(gca, 'FontName', 'Times new roman')

 title(strcat('minimum cost value vs iteration for GA'))

 xlabel('Iteration')

 ylabel('minimum cost')

 figure(11)

 set(gca,'FontSize',20)

 set(gca, 'FontName', 'Times new roman')

 plot(meann)

 title(strcat('average cost value vs iteration for GA'))

 xlabel('Iteration')

 ylabel('average cost')

 elseif T==3

 optimalcost(T)=cost_opt;

 end

 end

 %%%% clustring CH among controllers

 if ~isempty(controller)

 for asghar=1:n_cont_des

 CH_not_controller(find(CH_not_controller==controller(asghar)))=[];

 end

 end

 which_clus_no_contr=ones(K,1);

 which_clus_no_contr(node_locs(controller,4),1)=0;

 if ~isempty(CH_not_controller)

CH_cont_id=CH_cont_id_fun(node_locs(CH_not_controller,1:2),[node_locs(controller,1:2);B

S],[controller';0]);

 end

 %//////////////////////// load calculation /////////////////////

 CH_load=t_rate*CH_alive_node;

 Con_load=[];

 for ezat=1:length(controller)

 Con_load(ezat,1)=CH_load(find(cluster_heads==controller(ezat))); %

initializing controller load matrix

 end

 Con_load(length(controller)+1,1)=0;

 controller_t=[controller 0];

 if ~isempty(CH_cont_id)

 for zzz=1:length(controller_t)

 cont_data=[];

148

 if ~isempty(CH_not_controller)

 for sss=1:size(CH_not_controller,1)

 if CH_cont_id(sss)==controller_t(zzz)

 Con_load(zzz,1)=Con_load(zzz,1)+CH_load(sss,1); %

calculating controllers load

 cont_data(1,1)=sss;

 cont_data(1,2)=CH_not_controller(sss,1);

 cont_data(1,3)=CH_load(sss,1);

 cont_data(1,4)=controller_t(zzz);

 end

 end

 end

 cont_data_mat{zzz}=cont_data;

 end

 end

 %//////////////// latency calculation ///////////////////////////

 lambda=Con_load;

 Con_loc=[node_locs(controller,1:2);BS];

 CH_loc=node_locs(CH_not_controller,1:2);

 De2e=zeros(length(controller_t),1);

 if ~isempty(CH_cont_id)

 for zahra=1:length(controller_t)

 if ~isempty(CH_not_controller)

 if zahra~=length(controller_t)

 if node_locs(controller(zahra),8)~=1

 for farnaz=1:size(CH_not_controller,1)

 if CH_cont_id(farnaz)==controller_t(zahra)

dis(farnaz)=pdist2(CH_loc(farnaz,:),Con_loc(zahra,:));

 De2e(zahra,1)=De2e(zahra,1)+dis(farnaz)/(3*10^8);

 end

 end

 end

 elseif controller_t(zahra)==0

 for farnaz=1:size(CH_not_controller,1)

 if CH_cont_id(farnaz)==controller_t(zahra)

 dis(farnaz)=pdist2(CH_loc(farnaz,:),Con_loc(zahra,:));

 De2e(zahra,1)=De2e(zahra,1)+dis(farnaz)/(3*10^8);

 end

 end

 end

 end

 end

 end

 latency=De2e+1./(miu-lambda);

 for ttt=1:size(latency,1)

 if De2e(ttt,1)==0

 if lambda(ttt,1)==0

 latency(ttt)=0;

 end

 end

 end

 %//////////////// BSA //

 tic

 OL_C=[];

 LL_C=[];

 karim=1;

 asghar=1;

 for jafar=1:length(controller_t)

149

 if zahra~=length(controller_t)

 if node_locs(controller(jafar),8)~=1

 if latency(jafar,1)==0

 T_compare=0;

 else

 T_compare=latency(jafar,1)/Con_load(jafar,1);

 end

 if T_compare>T_treshold

 OL_C(karim,1)=controller_t(jafar);

 OL_C(karim,2)=latency(jafar,1);

 OL_C(karim,3)=Con_load(jafar,1);

 OL_C(karim,4)=jafar;

 karim=karim+1;

 else

 LL_C(asghar,1)=controller_t(jafar);

 LL_C(asghar,2)=latency(jafar,1);

 LL_C(asghar,3)=Con_load(jafar,1);

 LL_C(asghar,4)=jafar;

 asghar=asghar+1;

 end

 end

 elseif controller_t(zahra)==0

 if latency(jafar,1)==0

 T_compare=0;

 else

 T_compare=latency(jafar,1)/Con_load(jafar,1);

 end

 if T_compare>T_treshold

 OL_C(karim,1)=controller_t(jafar);

 OL_C(karim,2)=latency(jafar,1);

 OL_C(karim,3)=Con_load(jafar,1);

 OL_C(karim,4)=jafar;

 karim=karim+1;

 else

 LL_C(asghar,1)=controller_t(jafar);

 LL_C(asghar,2)=latency(jafar,1);

 LL_C(asghar,3)=Con_load(jafar,1);

 LL_C(asghar,4)=jafar;

 asghar=asghar+1;

 end

 end

 end

 %////////////// BSW //

 if ~isempty(OL_C)

 if ~isempty(LL_C)

 [OL_C_load_sort iiii]=sort(OL_C(:,3));

 for ee=1:size(OL_C,1)

 cont_data=[];

 Co=Con_load(OL_C(iiii(ee),4));

 cont_data=cont_data_mat{OL_C(iiii(ee),4)};

 [CH_load_sort uu]=sort(cont_data(:,3),'descend');

 for rr=1:size(cont_data,1)

 [LL_C_load_sort jjjj]=sort(LL_C(:,3));

 for vv=1:size(LL_C,1)

 CHo=cont_data(uu(rr),3);

 if CHo+LL_C_load_sort(vv)<L_treshold

 CH_cont_id(cont_data(uu(rr),1))=LL_C(jjjj(vv),1);

 Con_load(OL_C(iiii(ee),4))=Con_load(OL_C(iiii(ee),4))-

CHo;

Con_load(LL_C(jjjj(vv),4))=Con_load(LL_C(jjjj(vv),4))+CHo;

 break

150

 end

 end

 end

 end

 end

 end

 %/////////// controller data update /////////////////////////////

 cont_data_mat={};

 if ~isempty(CH_cont_id)

 for zzz=1:length(controller_t)

 cont_data=[];

 if ~isempty(CH_not_controller)

 for sss=1:size(CH_not_controller,1)

 if CH_cont_id(sss)==controller_t(zzz)

 cont_data(1,1)=sss;

 cont_data(1,2)=CH_not_controller(sss,1);

 cont_data(1,3)=CH_load(sss,1);

 cont_data(1,4)=controller_t(zzz);

 end

 end

 end

 cont_data_mat{zzz}=cont_data;

 end

 end

 %/////////// LFC //

 faulty_con=[];

 if ~isempty(cont_fault_id)

 if rem(i,10)~=1 || length(cont_fault_id)==length(controller)

 for uu=1:length(controller_t)

 for vv=1:size(cont_fault_id,1)

 if cont_fault_id(vv,1)==controller_t(uu)

 faulty_con(vv)=uu;

 end

 end

 for ww=1:size(cont_notfault_id,1)

 if cont_notfault_id(ww,1)==controller_t(uu)

 notfaulty_con(ww)=uu;

 end

 end

 end

 LL_C_nf=[];

 asghar=1;

 for jafar=1:length(notfaulty_con)

 if Con_load(notfaulty_con(jafar),1)<L_treshold

 LL_C_nf(asghar,1)=controller_t(notfaulty_con(jafar));

 LL_C_nf(asghar,2)=Con_load(notfaulty_con(jafar),1);

 LL_C_nf(asghar,3)=notfaulty_con(jafar);

 asghar=asghar+1;

 end

 end

 if ~isempty(faulty_con)

 for ee=1:size(cont_fault_id,1)

 cont_data=[];

 cont_data=cont_data_mat{faulty_con(ee)};

 if ~isempty(cont_data)

 [CH_load_sort uu]=sort(cont_data(:,3),'descend');

 for rr=1:size(cont_data,1)

 for vv=1:size(LL_C_nf,1)

 CHo=cont_data(uu(rr),3);

151

 if CHo+LL_C_nf(vv,2)<L_treshold

 CH_cont_id(cont_data(uu(rr),1))=LL_C_nf(vv,1);

Con_load(LL_C_nf(vv,3))=Con_load(LL_C_nf(vv,3))+CHo;

 break

 end

 end

 end

 end

 end

 end

 end

 end

 BSAWF_time(i)=toc;

 controller_load_sort(1:length(controller),i)=Con_load(1:end-1,1);

 controller_load_sort(length(controller)+1,i)=Con_load(end,1);

 controller_id_sort(1:length(controller),i)=controller;

 controllers_load(controller,i)=Con_load(1:end-1,1);

 controllers_load(501,i)=Con_load(end,1);

 %//////////////// latency calculation update ///////////////////////////

 lambda_2(:,i)=Con_load;

 Con_loc=[node_locs(controller,1:2);BS];

 CH_loc=node_locs(CH_not_controller,1:2);

 De2e_2=zeros(length(controller_t),1);

 if ~isempty(CH_cont_id)

 for zahra=1:length(controller_t)

 if ~isempty(CH_not_controller)

 if zahra~=length(controller_t)

 if node_locs(controller(zahra),8)~=1

 for farnaz=1:size(CH_not_controller,1)

 if CH_cont_id(farnaz)==controller_t(zahra)

dis(farnaz)=pdist2(CH_loc(farnaz,:),Con_loc(zahra,:));

De2e_2(zahra,1)=De2e_2(zahra,1)+dis(farnaz)/(3*10^8);

 end

 end

 end

 elseif controller_t(zahra)==0

 for farnaz=1:size(CH_not_controller,1)

 if CH_cont_id(farnaz)==controller_t(zahra)

 dis(farnaz)=pdist2(CH_loc(farnaz,:),Con_loc(zahra,:));

 De2e_2(zahra,1)=De2e_2(zahra,1)+dis(farnaz)/(3*10^8);

 end

 end

 end

 end

 end

 end

 latency_after_LFC(:,i)=De2e_2+1./(miu-lambda_2(:,i));

% is_CH_fualty=zeros(CH_loc,1);

% cost_1(i,T)=cost_SDN_mane(CH_loc,Con_loc(1:end-

1,:),is_CH_fualty,node_locs(CH_not_controller,5),CH_alive_node(),t_rate,EN,Con_node,con

_id,BS,w);

 %///////// communication phase /////////////

152

 for j=1:K

 curr_cluster=ch_members_mat{j}; % loop for communication

phase, copying cluster member to curr_cluster array

 curr_ch=cluster_heads(j); % copying cluster head for

current cluster

 if curr_ch~=1.5 % if cluster head is not

NaN, go for communication phase

 for jj=1:size(curr_cluster) % loop to send data for all

nodes

 d_to_ch=sqrt((node_locs(curr_cluster(jj),1) -

node_locs(curr_ch,1)).^2 + (node_locs(curr_cluster(jj),2) - node_locs(curr_ch,2)).^2);

% predicting distance of node to cluster head

 Etx1=(L * Eelct) + (L * Efs * d_to_ch.^2); % predicting transmit

energy for current node upto cluster head

 if node_locs(curr_cluster(jj),5)>Etx1

 node_locs(curr_cluster(jj),5) = node_locs(curr_cluster(jj),5) -

Etx1; % deducting transmit energy for respective node

 if which_clus_no_contr(j,1)==1

 if T==1 || T==3

 node_locs(curr_ch,5) = node_locs(curr_ch,5) - Erx(1);

% deduction receving energy for respective node

 end

 end

 else

 node_locs(curr_cluster(jj),5)=0;

 end

 end

 if which_clus_no_contr(j,1)==1

 if T==1 || T==3

 ezat=find(CH_not_controller==curr_ch);

 if ~isempty(CH_cont_id)

 if CH_cont_id(ezat,1)==0

 Etx2=(L * Eelct) + (L * Efs * d_to_BS(curr_ch).^2);

% deducting transmit energy upto BS from cluster head

 else

 id_cont=CH_cont_id(ezat,1);

d_to_cont=pdist2(node_locs(curr_ch,1:2),node_locs(id_cont,1:2));

 Etx2=(L * Eelct) + (L * Efs * d_to_cont.^2);

 end

 end

 if node_locs(curr_ch,5)>Etx2

 TT=nodes_table{curr_ch}; % using

alternative path using sdn concept

 alt_node=TT(1,1);

 dis=sqrt((node_locs(alt_node,1) - node_locs(curr_ch,1)).^2

+ ...

 (node_locs(alt_node,2) - node_locs(curr_ch,2)).^2);

% distance from nearest node (alternative path)

 Etx2=(L * Eelct) + (L * Efs * dis.^2);

 node_locs(curr_ch,5) = node_locs(curr_ch,5) - Etx2;

 else

 node_locs(curr_ch,5)=0;

 end

 else

 TT=nodes_table{curr_ch}; % using alternative

path using sdn concept

 alt_node=TT(1,1);

 dis=sqrt((node_locs(alt_node,1) - node_locs(curr_ch,1)).^2 +

...

153

 (node_locs(alt_node,2) - node_locs(curr_ch,2)).^2); %

distance from nearest node (alternative path)

 Etx2=(L * Eelct) + (L * Efs * dis.^2);

 node_locs(curr_ch,5) = node_locs(curr_ch,5) - Etx2;

 end

 end

 end

 end

 [r1,~]=find(node_locs(:,5) > 0); % checking the alive nodes

from its batteries

 if T==1 || T==3

 nodes_alive(i,1)=length(r1); % if without SDN save at

these locations

 residual_energy(i,1)=sum(node_locs(:,5)); % saving residual energy of

the ntw

 else

 nodes_alive_sdn(i,1)=length(r1); % if with SDN save at these

locations

 residual_energy_sdn(i,1)=sum(node_locs(:,5)); % saving residual energy of

the ntw with SDN

 end

 if flag_2==0 && nodes_alive(i,1)<nodes

 flag_2=1;

 if T==1

 FND_GA=i;

 else

 FND_GRASP=i;

 end

 end

 %/////////// ploting //////////////////////////////////////

 energy=node_locs(:,5);

 energy(controller)=[];

 if max(energy)==0 % if all cluster heads over, break the

rounds loop

 if T==1

 LND_GA=i;

 else

 LND_GRASP=i;

 end

 break

 end

 if T==1

 figure(3) % if without SDN make

the plot with figure 3

 else

 figure(4)

 end

 set(gca,'FontSize',20)

 set(gca, 'FontName', 'Times new roman')

 for ii=1:K % ploting cluster nodes

with respective colors and markers

 [r,~]=find(idx==ii);

 plot(node_locs(r,1),node_locs(r,2),'s','color',colors(ii,:))

 hold on

 end

 plot(BS(1),BS(2),'sk','MarkerFaceColor',[153,217,234]/255,'MarkerSize',20)

% ploting base station in same figure

 hold on

154

plot(node_locs(CH_not_controller,1),node_locs(CH_not_controller,2),'or','MarkerSize',10

,'MarkerFaceColor',[0 0 0]); %ploting cluster heads with black markers

plot(node_locs(controller,1),node_locs(controller,2),'ob','MarkerSize',15,'MarkerFaceCo

lor',[0 0 0]);

 axis([0 area(1)+20 0 area(2)+20]);

 if T==1

 title(strcat('(GA) Alive nodes:[',num2str(nodes_alive(i)),']

Round:[',num2str(i),']'))

 drawnow

 else

 title(strcat('(GRASP) Alive nodes:[',num2str(nodes_alive(i)),']

Round:[',num2str(i),']'))

 drawnow

 end

 hold off

 %%%%%%%%%% deploying faulty nodes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fault_probability(i)=ceil(fault_percentage(ceil(i/(t_max/length(fault_percentage))))*no

des);

 faulty_nodes=randi([1,nodes],fault_probability(i),1);

 node_locs(faulty_nodes,8)=1;

 node_locs(faulty_nodes,5)=0;

 cont_fault_id=controller(find(node_locs(controller,8)==1)); % id of

faulty controllers

 cont_notfault_id=controller(find(node_locs(controller,8)==0));

 cont_notfault_id=[cont_notfault_id 0];

 flag_cont=0;

 cont_delete=[];

 if rem(i,10)==0 || length(cont_fault_id)==length(controller)

 for esi=1:length(controller)

 for iii=1:length(cont_fault_id)

 if cont_fault_id(iii)==controller(esi)

 cont_delete=[cont_delete esi];

 end

 end

 end

% controller(cont_delete)=[];

 flag_cont=length(cont_delete);

 end

 end

 %////////////// plot //

 % controllers load vs time

 sum_con_load=sum(controllers_load,2);

 controller_load_real=controllers_load(~(sum_con_load==0),:);

 if T==1

 figure(5)

 else

 figure(6)

 end

 set(gca,'FontSize',20)

 set(gca, 'FontName', 'Times new roman')

 for dedede=1:size(controller_load_sort,1)

 if dedede==size(controller_load_sort,1)

 plot(controller_load_sort(dedede,:),'DisplayName',strcat('BS'));

 hold on

 else

155

 plot(controller_load_sort(dedede,:),'DisplayName',strcat('cont

[',num2str(dedede),'] '));

 hold on

 end

 end

 legend

 xlabel('time(sec)')

 ylabel('controllers load')

 for david=2:i

 for john=1:n_cont_des

 if controller_id_sort(john,david)-controller_id_sort(john,david-1)

p=plot(david,controller_load_sort(john,david),'or','MarkerSize',10,'MarkerFaceColor',[0

0 0]);

set(get(get(p,'Annotation'),'LegendInformation'),'IconDisplayStyle','off');

 end

 end

 end

% axis([0 250 0 300]);

 if T==1

 title(strcat('controllers load vs time for [',num2str(n_cont_des),'] alive

controllers and BS for GA'))

 else

 title(strcat('controllers load vs time for [',num2str(n_cont_des),'] alive

controllers and BS for GRASP'))

 end

 xlabel('time(sec)')

 ylabel('controllers load')

 % controllers load vs responce time

 if T==1

 figure(7)

 else

 figure(8)

 end

 set(gca,'FontSize',20)

 set(gca, 'FontName', 'Times new roman')

 for dedede=1:size(lambda_2,1)

 if dedede==size(lambda_2,1)

plot(lambda_2(dedede,:),latency_after_LFC(dedede,:)*1000,'DisplayName',strcat('BS'));

 hold on

 else

plot(lambda_2(dedede,:),latency_after_LFC(dedede,:)*1000,'DisplayName',strcat('cont

[',num2str(dedede),'] '));

 hold on

 end

 end

 if T==1

 title(strcat('latency vs controller load for all controllers in GA'))

 else

 title(strcat('latency vs controller load for all controllers in GRASP'))

 end

 legend

 xlabel('controller load')

 ylabel('latency(ms)')

 % mean response time of all controllers vs flow rate

 if T==1

156

 figure(14)

 else

 figure(15)

 end

 set(gca,'FontSize',20)

 set(gca, 'FontName', 'Times new roman')

 avg_latency=sum(latency_after_LFC)./(n_cont_des+1);

 plot(100:100:ceil(i/10)*100,avg_latency(1:10:i)*1000);

 if T==1

 title(strcat('mean response time of all controllers vs flow rate in GA'))

 else

 title(strcat('mean response time of all controllers vs flow rate in GRASP'))

 end

 xlabel('flow rate')

 ylabel('response time(ms)')

 % controllers avg response time vs flow rate

 if T==1

 figure(16)

 else

 figure(17)

 end

 set(gca,'FontSize',20)

 set(gca, 'FontName', 'Times new roman')

 for dedede=1:size(lambda_2,1)

 if dedede==size(lambda_2,1)

plot(100:100:ceil(i/10)*100,latency_after_LFC(dedede,1:10:i)*1000,'DisplayName',strcat(

'BS'));

 hold on

 else

plot(100:100:ceil(i/10)*100,latency_after_LFC(dedede,1:10:i)*1000,'DisplayName',strcat(

'cont [',num2str(dedede),'] '));

 hold on

 end

 end

 if T==1

 title(strcat('controllers avg response time vs flow rate in GA'))

 else

 title(strcat('controllers avg response time vs flow rate in GRASP'))

 end

 legend

 xlabel('flow rate')

 ylabel('response time(ms)')

 % percent of successful packets received vs time

 if T==1

 figure(12)

 else

 figure(13)

 end

 set(gca,'FontSize',20)

 set(gca, 'FontName', 'Times new roman')

 plot(1:i,nodes_alive(:,1)*100/nodes);

 if T==1

 title(strcat('percent of successful packets received vs time in GA'))

 else

157

 title(strcat('percent of successful packets received vs time in GRASP'))

 end

 xlabel('time(s)')

 ylabel('percent of successful packets')

 if T==1

 disp(strcat('the total latency for GA is

[',num2str(sum(sum(latency_after_LFC))),']'))

 else

 disp(strcat('the total latency for GRASP is

[',num2str(sum(sum(latency_after_LFC))),']'))

 end

 % total time it takes to execute BSA/BSW/LFC them vs time

 if T==1

 figure(18)

 else

 figure(19)

 end

 set(gca,'FontSize',20)

 set(gca, 'FontName', 'Times new roman')

 plot(BSAWF_time);

 if T==1

 title(strcat('total time it takes to execute BSA/BSW/LFC vs time in GA'))

 else

 title(strcat('total time it takes to execute BSA/BSW/LFC vs time in GRASP'))

 end

 xlabel('time(s)')

 ylabel('time it takes to execute')

end

disp(strcat('w1 is [',num2str(w(1)),'] w2 is [',num2str(w(2)),'] w3 is

[',num2str(w(3)),'] w4 is [',num2str(w(4)),']'))

disp(strcat('the optimal cost for GA is [',num2str(optimalcost(1)),'] at iteration

[',num2str(iteration_optimal),'] and for GRASP is [',num2str(optimalcost(3)),']'))

disp(strcat('time it takes to reach optimal solution is [',num2str(time_opt_t(1)),']

for GA and [',num2str(time_opt_t(3)),'] for GRASP'))

if isempty(LND_GA)

 disp('some nodes are still alive in GA')

else

 disp(strcat('LND for GA is [',num2str(LND_GA),']'))

end

if isempty(LND_GRASP)

 disp('some nodes are still alive in GRASP')

else

 disp(strcat('LND for GRASP is [',num2str(LND_GRASP),']'))

end

if isempty(FND_GA)

 disp('all nodes are alive in GA')

else

 disp(strcat('FND for GA is [',num2str(FND_GA),']'))

end

if isempty(FND_GRASP)

 disp('all nodes are alive in GRASP')

else

 disp(strcat('FND for GRASP is [',num2str(FND_GRASP),']'))

end

% controllers load vs time for one controller

158

time=1:300;

t_rate=(ceil(time/10)*100)/nodes;

lambda=nodes*t_rate;

dis=pdist2(node_locs(:,1:2),BS);

res_time=sum(dis)/(300*10^6)+1./(miu-lambda);

figure(9)

set(gca,'FontSize',20)

set(gca, 'FontName', 'Times new roman')

plot(lambda,res_time*1000)

Y = res_time(1:10:end)'*1000;

title(strcat('latency vs controller load for one controller'))

xlabel('controller load')

ylabel('latency(ms)')

beep

159

Appendix C2: The code of the ALBATROSS Scheme

clear all

close all

clc

%%%%%%%%%%%% Optimization parameters

n_cont_des=input('please enter number of desired controllers\n'); %

initializing number of desired controllers

EN=2; % initializing energy consumed for transmission

%%%%%%%%%%%

%////////////// user parameters ///////////////////

nodes=500; % initializing number of nodes

area=[200 200]; % initializing area of deployment

BS=area/2; % initializing base station location

Efs=10e-12; % initializing comunication constant values as per base paper

Ems=0.0013e-12; % initializing comunication constant values as per base paper

Eelct=50e-9; % initializing comunication constant values as per base paper

L0=4000;

L=L0; % initializing comunication constant values as per base paper

(packets)

E0=0.5; % initializing comunication constant values as per base paper

(initial energy)

Eda=5e-9; % initializing comunication constant values as per base paper

(data aggregation)

d0=88; % initializing comunication constant values as per base paper

(distance threshold)

Eo=0.1;

% fault_percentage=[0.01;0.05;0.1;0.2;0.3;0.4;0.5;0.6;0.7];

fault_percentage=[0.05e-2];

t_max=300;

T_treshold=2.63e-3;

miu=3000;

L_treshold=2600;

w=[25/48,13/48,7/48,3/48];

FND_GA=[];

LND_GA=[];

FND_GRASP=[];

LND_GRASP=[];

notations={'sb','sc','sr','sg','sm','sy','sk','ob','oc','or','og','om','oy','ok','db','dc','d

r','dg','dm','dy','dk','*b','*c','*r','*g','*m','*y','*k'}; %

clusters color and marker style

%/////////// deplying nodes //////////////////////

hl_flag=0;

for T=1:2:3 % T=1 without sdn, T=2 with SDN

nodes_alive=[];

flag_2=0;

node_locs=[]; % initializing node locations

while(size(node_locs,1)<nodes) % deployment till we deploy all nodes

for i=1:ceil(2*(area(1)*area(2)/nodes)^0.5):area(1)-1 % deployment grid wise row with 20x20

for j=1:ceil(2*(area(1)*area(2)/nodes)^0.5):area(2)-1 % deployment grid wise colm with 20x20

160

y=randi([i i+ceil(2*(area(1)*area(2)/nodes)^0.5)-1],1,1); % randomly taking node position X

x=randi([j j+ceil(2*(area(1)*area(2)/nodes)^0.5)-1],1,1); % randomly taking node position Y

node_locs=[node_locs;x y]; % saving node in node locations array

if(size(node_locs,1)==nodes) % break the deployment if we deploy all nodes

break

end

end

if(size(node_locs,1)==nodes) % break the outerloop if we deploy all nodes

break

end

end

end

%///////// predicting alternative paths for sdn ///

for ii=1:nodes

curr_node=node_locs(i,:); % saving alternative paths for every node in sdn

dis=sqrt((node_locs(:,1)-curr_node(1)).^2 + (node_locs(:,2)-curr_node(2)).^2);

com=[(1:nodes)' dis];

com=sortrows(com,2);

nodes_table{ii}=com(2:end,:);

end

%//

figure(1) % fiugre handler

plot(node_locs(:,1),node_locs(:,2),'ok','MarkerFaceColor',[1,0,0]) % plotting all nodes

hold on

plot(BS(1),BS(2),'sk','MarkerFaceColor',[153,217,234]/255,'MarkerSize',20) % plotting base

station location

axis([0 area(1) 0 area(2)+60]); % making axis limits to show all nodes and base station

hold off

%/////////////////////// Similarity Graph prediction /////////////////

X=node_locs; % copying node locations in X variable

Y=node_locs; % copying node locations in Y variable

E = pdist2(X,Y); % predicting elucidian distance of every node to other node

E = E / max(E(:)); % normalizing distances with in range [0 1]

sigma=0.3; % taking sigma as 0.3

for i=1:size(E,1) % calculating similarity matrix

for j=1:size(E,2)

if ~(i==j) % as per the equation (5) from base paper

W(i,j)=exp(-1*(E(i,j)^2/(2*sigma^2)));

else

W(i,j)=0;

end

end

end

Adj_mat=W; % copying W variable to adjacency matrix

Deg_mat(1:size(Adj_mat,1),1:size(Adj_mat,2))=0; % initilizing degree matrix

for i=1:size(Adj_mat,1) % copying row wise to calculate degree matrix as per the base paper

Deg_mat(i,i)=sum(Adj_mat(:,i));

end

Lap_mat=Deg_mat - Adj_mat; % calculating laplacian matrix as per the base paper L=D-A

for i=1:length(Lap_mat)

161

normalised_Lap_mat(:,i) = Lap_mat(:,i) / Lap_mat(i,i); % making laplacian matrix to

normalized laplacian

end

d_to_BS=sqrt((node_locs(:,1) - BS(1)).^2 + (node_locs(:,2) - BS(2)).^2); % predicting

distances of all nodes to Base station

d_to_BS_avg=(mean(d_to_BS)^2); % taking average of distances

K=round((sqrt(nodes)/sqrt(2*pi)) * sqrt(Efs/Ems) * (sqrt(area(1)*area(2))/(d_to_BS_avg))); %

predicting K as per base paper

%//////////// clustring using k means ////////////////////////////////

for i=1:length(d_to_BS) % calculating D as per the base paper

D(i,i)=d_to_BS(i);

end

A=(D*-1/2) * Adj_mat * (D*-1/2); % A'=D1/2 A D-1/2

[VL,D1] = eig(A'); % calculating eigen values VL

figure(2)

idx = kmeans(VL(:,1:K),K);

colors=distinguishable_colors(K);

for i=1:K

[r,c]=find(idx==i); % loop to check which node belongs to which cluster decided by k means

plot(node_locs(r,1),node_locs(r,2),'s','color',colors(i,:)) % ploting the respective nodes

with predefined color and marker style

hold on

end

plot(BS(1),BS(2),'sk','MarkerFaceColor',[153,217,234]/255,'MarkerSize',20) % plotting base

station location

axis([0 area(1) 0 area(2)+60]);

hold off

title('Clustering results of the KSCA-WSN algorithm')

drawnow

%////////// communication phase ////////////////////////////////////

node_locs(:,3)=d_to_BS; % saving base station distances at 3rd colm in node locations array

node_locs(:,4)=idx; % saving cluster number at 4th colm in node locations array

node_locs(:,5)=E0; % saving initial energies at 5th colm in node locations array

node_locs(:,6)=1:nodes; % saving id number at 6th colm in node locations array

node_locs(:,8)=0;

for i=1:size(node_locs,1) % loop to predict transmit energies for all nodes to base station

if(d_to_BS(i)<d0)

Etx(i,1)=(L * Eelct) + (L * Efs * d_to_BS(i).^2); % predicing as per equation 2 in base paper

else

Etx(i,1)=(L * Eelct) + (L * Efs * d_to_BS(i).^4);

end

end

controller=[]; % id of controllers

which_clus_no_contr=ones(K,1);

cont_fault_flag=0;

cont_fault_id=[];

controllers_load=zeros(nodes+1,t_max);

flag_cont=0;

BSAWF_time=[];

for i=1:t_max % loop to run for 300 secs

162

t_rate=(ceil(i/10)*100)/nodes;

L=L0*t_rate;

Erx(1:nodes,1)=L * Eelct; % predicing reciving energy for all nodes

Eagg(1:nodes,1)=L * Eda; % predicing data aggregation energy for all nodes

%//////// cluster head selection //////////////////

hl_flag=~hl_flag;

for j=1:K % loop to predict cluster heads for all clusters

[r,~]=find(node_locs(:,4)==j); % predicing nodes in jth cluster

cluster_nodes=node_locs(r,:); % copying respective nodes in cluster_nodes array

Sk=size(cluster_nodes,1); % number of nodes belongs to jth cluster Sk

if which_clus_no_contr(j)==1

for jj=1:size(cluster_nodes,1) % loop to preict Ermin as per base paper equation (7)

Ermin(jj,1) = abs(Sk) * ((Erx(r(jj)) + Eagg(r(jj)))) + Eo;

if(cluster_nodes(jj,5) > Ermin(jj)) % in respective node is above the Emin make the node as

cluster head selection process

cluster_nodes(jj,7)=1; % making 1 will make the node to enter in cluster head selection

process

else

cluster_nodes(jj,7)=0; % 0 will make the node not to enter in CH selection process

end

end

[r1,~]=find(cluster_nodes(:,7)==1); % checking the nodes which qualifies CH selection process

if ~(isempty(r1))

ch_members=cluster_nodes(r1,6);

DD=60; % defining the degree as 60

curr_energies=cluster_nodes(r1,:); % reading cluster member energies

curr_energies=sortrows(curr_energies,5);

[rl,~]=find(curr_energies(:,5)>Eo & curr_energies(:,5)<E0/2);

[rh,~]=find(curr_energies(:,5)>=E0/2 & curr_energies(:,5)<=E0);

if(~isempty(rl))

rl=1;

end

if(~isempty(rh))

rh=1;

end

HE_y=mean(curr_energies(rh,1)); % taking mean of y position of higher E nodes

HE_x=mean(curr_energies(rh,2)); % taking mean of x position of higher E nodes

LE_y=mean(curr_energies(rl,1)); % taking mean of y position of lesser E nodes

LE_x=mean(curr_energies(rl,2)); % taking mean of x position of lesser E nodes

X=cluster_nodes(r1,1); % checking x positions of all cluster nodes

Y=cluster_nodes(r1,2); % checking y positions of all cluster nodes

dis_cal_h=sqrt((X-HE_y).^2 + (Y-HE_x).^2); % calculating distances from High energy nodes

center

[rh,ch]=find(dis_cal_h==min(dis_cal_h)); % calculating distances from High energy nodes

center

xx=cosd(DD)*(X - X(1)) - sin(DD)*(Y-Y(1)) + X(1); % checking DD degree from center

yy=cosd(DD)*(X - X(1)) - sin(DD)*(Y-Y(1)) + X(1); % checking DD degree from center

dis_cal_h=sqrt((X-xx).^2 + (Y-yy).^2); % checking nearest node at current degree

[rh1,ch1]=find(dis_cal_h==min(dis_cal_h)); % checking node id

ch_Hid=rh1(1); % copying next cluster head id

163

dis_cal_l=sqrt((X-LE_y).^2 + (Y-LE_x).^2); % calculating distances from High energy nodes

center

[rl,cl]=find(dis_cal_l==min(dis_cal_l)); % calculating distances from High energy nodes

center

xx=cosd(DD)*(X - X(1)) - sin(DD)*(Y-Y(1)) + X(1); % checking DD degree from center

yy=cosd(DD)*(X - X(1)) - sin(DD)*(Y-Y(1)) + X(1); % checking DD degree from center

dis_cal_l=sqrt((X-xx).^2 + (Y-yy).^2); % checking nearest node at current degree

[rl1,cl1]=find(dis_cal_l==min(dis_cal_l)); % checking node id

ch_Lid=rl1(1);

if(hl_flag==0) % toggling cluster id one time from high area another time from low

cluster_heads(j,1)=ch_Hid;

else

cluster_heads(j,1)=ch_Lid;

end

cluster_heads(j,1)=ch_members(randi([1 size(ch_members,1)],1,1));

cluster_nodes_t=cluster_nodes;

cluster_nodes_t(find(cluster_nodes_t(:,6)==cluster_heads(j,1)),:)=[];

simin=find(cluster_nodes_t(:,5)==0);

cluster_nodes_t(simin,:)=[];

ch_members_mat{j}=cluster_nodes_t(:,6);

else

ch_members_mat{j}=[]; % otherwise if no CH node qualifies, make the CH for that cluster to

NaN

cluster_heads(j,1)=1.5; % a flag to show that there is no CH in the cluster

node_locs(cluster_nodes(:,6),5)=0;

end

end

cluster_nodes_t_id=ch_members_mat{j};

cluster_nodes_tt=node_locs(cluster_nodes_t_id,:);

simin=find(cluster_nodes_tt(:,5)==0);

cluster_nodes_tt(simin,:)=[];

ch_members_mat{j}=cluster_nodes_tt(:,6);

end

remain_CH=cluster_heads;

remain_CH(find(remain_CH==1.5))=[];

%%%%%%%%%%%%%%%%%% FFFFFFFFFFFFFFAAAAAARRRRRRRRRRRRnaz controller selection

n_cont=n_cont_des-length(controller)+flag_cont;

for javad=1:K

CH_node(javad,1)=length(ch_members_mat{javad});

end

%////// evaluating number of alive nodes in each cluster ////////

c_faulty_node=zeros(K,1);

for ezat=1:K

c_members=ch_members_mat{ezat};

for rajab=1:size(c_members,1)

if node_locs(c_members(rajab),8)==1

c_faulty_node(ezat,1)=c_faulty_node(ezat,1)+1;

end

end

CH_alive_node(ezat,1)=CH_node(ezat,1)-c_faulty_node(ezat,1);

164

end

%//

CH_not_controller=remain_CH;

for naghme=1:length(controller)

CH_not_controller(find(CH_not_controller==controller(naghme)))=[];

end

is_CH_fualty=zeros(length(CH_not_controller),1);

if n_cont>0

if size(CH_not_controller,1)>n_cont

if T==1

tic

[cont_opt,CHrem,cost_opt,iteration,for_plot,meann]=GA_SDN(n_cont,CH_not_controller,node_locs(

CH_not_controller,1:2),is_CH_fualty,node_locs(CH_not_controller,5),CH_alive_node,t_rate,EN,BS

,w);

time_opt(T)=toc;

elseif T==3

tic

[cont_opt,CHrem,cost_opt]=GRASP_SDN(n_cont,CH_not_controller,node_locs(CH_not_controller,1:2)

,is_CH_fualty,node_locs(CH_not_controller,5),CH_alive_node,t_rate,EN,BS,cluster_heads,w);

time_opt(T)=toc;

end

else

cont_opt=CH_not_controller';

end

if i==1

controller=cont_opt;

else

ema=1;

for suzan=1:length(cont_opt)

controller(cont_delete(suzan))=cont_opt(suzan);

end

end

cont_opt=[];

end

if i==1

time_opt_t=time_opt;

if T==1

optimalcost(T)=cost_opt;

iteration_optimal=iteration;

figure(10)

plot(for_plot)

set(gca,'FontSize',20)

set(gca, 'FontName', 'Times new roman')

title(strcat('minimum cost value vs iteration for GA'))

xlabel('Iteration')

ylabel('minimum cost')

figure(11)

set(gca,'FontSize',20)

set(gca, 'FontName', 'Times new roman')

plot(meann)

165

title(strcat('average cost value vs iteration for GA'))

xlabel('Iteration')

ylabel('average cost')

elseif T==3

optimalcost(T)=cost_opt;

end

end

%%%% clustring CH among controllers

if ~isempty(controller)

for asghar=1:n_cont_des

CH_not_controller(find(CH_not_controller==controller(asghar)))=[];

end

end

which_clus_no_contr=ones(K,1);

which_clus_no_contr(node_locs(controller,4),1)=0;

if ~isempty(CH_not_controller)

CH_cont_id=CH_cont_id_fun(node_locs(CH_not_controller,1:2),[node_locs(controller,1:2);BS],[co

ntroller';0]);

end

%//////////////////////// load calculation /////////////////////

CH_load=t_rate*CH_alive_node;

Con_load=[];

for ezat=1:length(controller)

Con_load(ezat,1)=CH_load(find(cluster_heads==controller(ezat))); % initializing controller

load matrix

end

Con_load(length(controller)+1,1)=0;

controller_t=[controller 0];

if ~isempty(CH_cont_id)

for zzz=1:length(controller_t)

cont_data=[];

if ~isempty(CH_not_controller)

for sss=1:size(CH_not_controller,1)

if CH_cont_id(sss)==controller_t(zzz)

Con_load(zzz,1)=Con_load(zzz,1)+CH_load(sss,1); % calculating controllers load

cont_data(1,1)=sss;

cont_data(1,2)=CH_not_controller(sss,1);

cont_data(1,3)=CH_load(sss,1);

cont_data(1,4)=controller_t(zzz);

end

end

end

cont_data_mat{zzz}=cont_data;

end

end

%//////////////// latency calculation ///////////////////////////

lambda=Con_load;

Con_loc=[node_locs(controller,1:2);BS];

CH_loc=node_locs(CH_not_controller,1:2);

De2e=zeros(length(controller_t),1);

166

if ~isempty(CH_cont_id)

for zahra=1:length(controller_t)

if ~isempty(CH_not_controller)

if zahra~=length(controller_t)

if node_locs(controller(zahra),8)~=1

for farnaz=1:size(CH_not_controller,1)

if CH_cont_id(farnaz)==controller_t(zahra)

dis(farnaz)=pdist2(CH_loc(farnaz,:),Con_loc(zahra,:));

De2e(zahra,1)=De2e(zahra,1)+dis(farnaz)/(3*10^8);

end

end

end

elseif controller_t(zahra)==0

for farnaz=1:size(CH_not_controller,1)

if CH_cont_id(farnaz)==controller_t(zahra)

dis(farnaz)=pdist2(CH_loc(farnaz,:),Con_loc(zahra,:));

De2e(zahra,1)=De2e(zahra,1)+dis(farnaz)/(3*10^8);

end

end

end

end

end

end

latency=De2e+1./(miu-lambda);

for ttt=1:size(latency,1)

if De2e(ttt,1)==0

if lambda(ttt,1)==0

latency(ttt)=0;

end

end

end

%//////////////// BSA //

tic

OL_C=[];

LL_C=[];

karim=1;

asghar=1;

for jafar=1:length(controller_t)

if zahra~=length(controller_t)

if node_locs(controller(jafar),8)~=1

if latency(jafar,1)==0

T_compare=0;

else

T_compare=latency(jafar,1)/Con_load(jafar,1);

end

if T_compare>T_treshold

OL_C(karim,1)=controller_t(jafar);

OL_C(karim,2)=latency(jafar,1);

OL_C(karim,3)=Con_load(jafar,1);

OL_C(karim,4)=jafar;

167

karim=karim+1;

else

LL_C(asghar,1)=controller_t(jafar);

LL_C(asghar,2)=latency(jafar,1);

LL_C(asghar,3)=Con_load(jafar,1);

LL_C(asghar,4)=jafar;

asghar=asghar+1;

end

end

elseif controller_t(zahra)==0

if latency(jafar,1)==0

T_compare=0;

else

T_compare=latency(jafar,1)/Con_load(jafar,1);

end

if T_compare>T_treshold

OL_C(karim,1)=controller_t(jafar);

OL_C(karim,2)=latency(jafar,1);

OL_C(karim,3)=Con_load(jafar,1);

OL_C(karim,4)=jafar;

karim=karim+1;

else

LL_C(asghar,1)=controller_t(jafar);

LL_C(asghar,2)=latency(jafar,1);

LL_C(asghar,3)=Con_load(jafar,1);

LL_C(asghar,4)=jafar;

asghar=asghar+1;

end

end

end

%////////////// BSW //

if ~isempty(OL_C)

if ~isempty(LL_C)

[OL_C_load_sort iiii]=sort(OL_C(:,3));

for ee=1:size(OL_C,1)

cont_data=[];

Co=Con_load(OL_C(iiii(ee),4));

cont_data=cont_data_mat{OL_C(iiii(ee),4)};

[CH_load_sort uu]=sort(cont_data(:,3),'descend');

for rr=1:size(cont_data,1)

[LL_C_load_sort jjjj]=sort(LL_C(:,3));

for vv=1:size(LL_C,1)

CHo=cont_data(uu(rr),3);

if CHo+LL_C_load_sort(vv)<L_treshold

CH_cont_id(cont_data(uu(rr),1))=LL_C(jjjj(vv),1);

Con_load(OL_C(iiii(ee),4))=Con_load(OL_C(iiii(ee),4))-CHo;

Con_load(LL_C(jjjj(vv),4))=Con_load(LL_C(jjjj(vv),4))+CHo;

break

end

end

168

end

end

end

end

%/////////// controller data update /////////////////////////////

cont_data_mat={};

if ~isempty(CH_cont_id)

for zzz=1:length(controller_t)

cont_data=[];

if ~isempty(CH_not_controller)

for sss=1:size(CH_not_controller,1)

if CH_cont_id(sss)==controller_t(zzz)

cont_data(1,1)=sss;

cont_data(1,2)=CH_not_controller(sss,1);

cont_data(1,3)=CH_load(sss,1);

cont_data(1,4)=controller_t(zzz);

end

end

end

cont_data_mat{zzz}=cont_data;

end

end

%/////////// LFC //

faulty_con=[];

if ~isempty(cont_fault_id)

if rem(i,10)~=1 || length(cont_fault_id)==length(controller)

for uu=1:length(controller_t)

for vv=1:size(cont_fault_id,1)

if cont_fault_id(vv,1)==controller_t(uu)

faulty_con(vv)=uu;

end

end

for ww=1:size(cont_notfault_id,1)

if cont_notfault_id(ww,1)==controller_t(uu)

notfaulty_con(ww)=uu;

end

end

end

LL_C_nf=[];

asghar=1;

for jafar=1:length(notfaulty_con)

if Con_load(notfaulty_con(jafar),1)<L_treshold

LL_C_nf(asghar,1)=controller_t(notfaulty_con(jafar));

LL_C_nf(asghar,2)=Con_load(notfaulty_con(jafar),1);

LL_C_nf(asghar,3)=notfaulty_con(jafar);

asghar=asghar+1;

end

end

if ~isempty(faulty_con)

for ee=1:size(cont_fault_id,1)

169

cont_data=[];

cont_data=cont_data_mat{faulty_con(ee)};

if ~isempty(cont_data)

[CH_load_sort uu]=sort(cont_data(:,3),'descend');

for rr=1:size(cont_data,1)

for vv=1:size(LL_C_nf,1)

CHo=cont_data(uu(rr),3);

if CHo+LL_C_nf(vv,2)<L_treshold

CH_cont_id(cont_data(uu(rr),1))=LL_C_nf(vv,1);

Con_load(LL_C_nf(vv,3))=Con_load(LL_C_nf(vv,3))+CHo;

break

end

end

end

end

end

end

end

end

BSAWF_time(i)=toc;

controller_load_sort(1:length(controller),i)=Con_load(1:end-1,1);

controller_load_sort(length(controller)+1,i)=Con_load(end,1);

controller_id_sort(1:length(controller),i)=controller;

controllers_load(controller,i)=Con_load(1:end-1,1);

controllers_load(501,i)=Con_load(end,1);

%//////////////// latency calculation update ///////////////////////////

lambda_2(:,i)=Con_load;

Con_loc=[node_locs(controller,1:2);BS];

CH_loc=node_locs(CH_not_controller,1:2);

De2e_2=zeros(length(controller_t),1);

if ~isempty(CH_cont_id)

for zahra=1:length(controller_t)

if ~isempty(CH_not_controller)

if zahra~=length(controller_t)

if node_locs(controller(zahra),8)~=1

for farnaz=1:size(CH_not_controller,1)

if CH_cont_id(farnaz)==controller_t(zahra)

dis(farnaz)=pdist2(CH_loc(farnaz,:),Con_loc(zahra,:));

De2e_2(zahra,1)=De2e_2(zahra,1)+dis(farnaz)/(3*10^8);

end

end

end

elseif controller_t(zahra)==0

for farnaz=1:size(CH_not_controller,1)

if CH_cont_id(farnaz)==controller_t(zahra)

dis(farnaz)=pdist2(CH_loc(farnaz,:),Con_loc(zahra,:));

De2e_2(zahra,1)=De2e_2(zahra,1)+dis(farnaz)/(3*10^8);

end

end

end

170

end

end

end

latency_after_LFC(:,i)=De2e_2+1./(miu-lambda_2(:,i));

% is_CH_fualty=zeros(CH_loc,1);

% cost_1(i,T)=cost_SDN_mane(CH_loc,Con_loc(1:end-

1,:),is_CH_fualty,node_locs(CH_not_controller,5),CH_alive_node(),t_rate,EN,Con_node,con_id,BS

,w);

%///////// communication phase /////////////

for j=1:K

curr_cluster=ch_members_mat{j}; % loop for communication phase, copying cluster member to

curr_cluster array

curr_ch=cluster_heads(j); % copying cluster head for current cluster

if curr_ch~=1.5 % if cluster head is not NaN, go for communication phase

for jj=1:size(curr_cluster) % loop to send data for all nodes

d_to_ch=sqrt((node_locs(curr_cluster(jj),1) - node_locs(curr_ch,1)).^2 +

(node_locs(curr_cluster(jj),2) - node_locs(curr_ch,2)).^2); % predicting distance of node to

cluster head

Etx1=(L * Eelct) + (L * Efs * d_to_ch.^2); % predicting transmit energy for current node upto

cluster head

if node_locs(curr_cluster(jj),5)>Etx1

node_locs(curr_cluster(jj),5) = node_locs(curr_cluster(jj),5) - Etx1; % deducting transmit

energy for respective node

if which_clus_no_contr(j,1)==1

if T==1 || T==3

node_locs(curr_ch,5) = node_locs(curr_ch,5) - Erx(1); % deduction receving energy for

respective node

end

end

else

node_locs(curr_cluster(jj),5)=0;

end

end

if which_clus_no_contr(j,1)==1

if T==1 || T==3

ezat=find(CH_not_controller==curr_ch);

if ~isempty(CH_cont_id)

if CH_cont_id(ezat,1)==0

Etx2=(L * Eelct) + (L * Efs * d_to_BS(curr_ch).^2); % deducting transmit energy upto BS from

cluster head

else

id_cont=CH_cont_id(ezat,1);

d_to_cont=pdist2(node_locs(curr_ch,1:2),node_locs(id_cont,1:2));

Etx2=(L * Eelct) + (L * Efs * d_to_cont.^2);

end

end

if node_locs(curr_ch,5)>Etx2

TT=nodes_table{curr_ch}; % using alternative path using sdn concept

alt_node=TT(1,1);

dis=sqrt((node_locs(alt_node,1) - node_locs(curr_ch,1)).^2 + ...

171

(node_locs(alt_node,2) - node_locs(curr_ch,2)).^2); % distance from nearest node (alternative

path)

Etx2=((L * Eelct) + (L * Efs * dis.^2))/8;

node_locs(curr_ch,5) = node_locs(curr_ch,5) - Etx2;

else

node_locs(curr_ch,5)=0;

end

else

TT=nodes_table{curr_ch}; % using alternative path using sdn concept

alt_node=TT(1,1);

dis=sqrt((node_locs(alt_node,1) - node_locs(curr_ch,1)).^2 + ...

(node_locs(alt_node,2) - node_locs(curr_ch,2)).^2); % distance from nearest node (alternative

path)

Etx2=(L * Eelct) + (L * Efs * dis.^2);

node_locs(curr_ch,5) = node_locs(curr_ch,5) - Etx2;

end

end

end

end

[r1,~]=find(node_locs(:,5) > 0); % checking the alive nodes from its batteries

if T==1 || T==3

nodes_alive(i,1)=length(r1); % if with SDN save at these locations

residual_energy(i,1)=sum(node_locs(:,5)); % saving residual energy of the ntw with SDN

else

nodes_alive_sdn(i,1)=length(r1); % if with SDN save at these locations

residual_energy_sdn(i,1)=sum(node_locs(:,5)); % saving residual energy of the ntw with SDN

end

if flag_2==0 && nodes_alive(i,1)<nodes

flag_2=1;

if T==1

FND_GA=i;

else

FND_GRASP=i;

end

end

%/////////// ploting //////////////////////////////////////

energy=node_locs(:,5);

energy(controller)=[];

if max(energy)==0 % if all cluster heads over, break the rounds loop

if T==1

LND_GA=i;

else

LND_GRASP=i;

end

break

end

if T==1

figure(3) % if without SDN make the plot with figure 3

else

figure(4)

172

end

set(gca,'FontSize',20)

set(gca, 'FontName', 'Times new roman')

for ii=1:K % ploting cluster nodes with respective colors and markers

[r,~]=find(idx==ii);

plot(node_locs(r,1),node_locs(r,2),'s','color',colors(ii,:))

hold on

end

plot(BS(1),BS(2),'sk','MarkerFaceColor',[153,217,234]/255,'MarkerSize',20) % ploting base

station in same figure

hold on

plot(node_locs(CH_not_controller,1),node_locs(CH_not_controller,2),'or','MarkerSize',10,'Mark

erFaceColor',[0 0 0]); %ploting cluster heads with black markers

plot(node_locs(controller,1),node_locs(controller,2),'ob','MarkerSize',15,'MarkerFaceColor',[

0 0 0]);

axis([0 area(1)+20 0 area(2)+20]);

if T==1

title(strcat('(GA) Alive nodes:[',num2str(nodes_alive(i)),'] Round:[',num2str(i),']'))

drawnow

else

title(strcat('(GRASP) Alive nodes:[',num2str(nodes_alive(i)),'] Round:[',num2str(i),']'))

drawnow

end

hold off

%%%%%%%%%% deploying faulty nodes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fault_probability(i)=ceil(fault_percentage(ceil(i/(t_max/length(fault_percentage))))*nodes);

faulty_nodes=randi([1,nodes],fault_probability(i),1);

node_locs(faulty_nodes,8)=1;

node_locs(faulty_nodes,5)=0;

cont_fault_id=controller(find(node_locs(controller,8)==1)); % id of faulty controllers

cont_notfault_id=controller(find(node_locs(controller,8)==0));

cont_notfault_id=[cont_notfault_id 0];

flag_cont=0;

cont_delete=[];

if rem(i,10)==0 || length(cont_fault_id)==length(controller)

for esi=1:length(controller)

for iii=1:length(cont_fault_id)

if cont_fault_id(iii)==controller(esi)

cont_delete=[cont_delete esi];

end

end

end

% controller(cont_delete)=[];

flag_cont=length(cont_delete);

end

end

%////////////// plot //

% controllers load vs time

sum_con_load=sum(controllers_load,2);

controller_load_real=controllers_load(~(sum_con_load==0),:);

173

if T==1

figure(5)

else

figure(6)

end

set(gca,'FontSize',20)

set(gca, 'FontName', 'Times new roman')

for dedede=1:size(controller_load_sort,1)

if dedede==size(controller_load_sort,1)

plot(controller_load_sort(dedede,:),'DisplayName',strcat('BS'));

hold on

else

plot(controller_load_sort(dedede,:),'DisplayName',strcat('cont [',num2str(dedede),'] '));

hold on

end

end

legend

xlabel('time(sec)')

ylabel('controllers load')

for david=2:i

for john=1:n_cont_des

if controller_id_sort(john,david)-controller_id_sort(john,david-1)

p=plot(david,controller_load_sort(john,david),'or','MarkerSize',10,'MarkerFaceColor',[0 0

0]);

set(get(get(p,'Annotation'),'LegendInformation'),'IconDisplayStyle','off');

end

end

end

% axis([0 250 0 300]);

if T==1

title(strcat('controllers load vs time for [',num2str(n_cont_des),'] alive controllers and BS

for GA'))

else

title(strcat('controllers load vs time for [',num2str(n_cont_des),'] alive controllers and BS

for GRASP'))

end

xlabel('time(sec)')

ylabel('controllers load')

% controllers load vs responce time

if T==1

figure(7)

else

figure(8)

end

set(gca,'FontSize',20)

set(gca, 'FontName', 'Times new roman')

for dedede=1:size(lambda_2,1)

if dedede==size(lambda_2,1)

plot(lambda_2(dedede,:),latency_after_LFC(dedede,:)*1000,'DisplayName',strcat('BS'));

hold on

174

else

plot(lambda_2(dedede,:),latency_after_LFC(dedede,:)*1000,'DisplayName',strcat('cont

[',num2str(dedede),'] '));

hold on

end

end

if T==1

title(strcat('latency vs controller load for all controllers in GA'))

else

title(strcat('latency vs controller load for all controllers in GRASP'))

end

legend

xlabel('controller load')

ylabel('latency(ms)')

% mean response time of all controllers vs flow rate

if T==1

figure(14)

else

figure(15)

end

set(gca,'FontSize',20)

set(gca, 'FontName', 'Times new roman')

avg_latency=sum(latency_after_LFC)./(n_cont_des+1);

plot(100:100:ceil(i/10)*100,avg_latency(1:10:i)*1000);

if T==1

title(strcat('mean response time of all controllers vs flow rate in GA'))

else

title(strcat('mean response time of all controllers vs flow rate in GRASP'))

end

xlabel('flow rate')

ylabel('response time(ms)')

% controllers avg response time vs flow rate

if T==1

figure(16)

else

figure(17)

end

set(gca,'FontSize',20)

set(gca, 'FontName', 'Times new roman')

for dedede=1:size(lambda_2,1)

if dedede==size(lambda_2,1)

plot(100:100:ceil(i/10)*100,latency_after_LFC(dedede,1:10:i)*1000,'DisplayName',strcat('BS'))

;

hold on

else

plot(100:100:ceil(i/10)*100,latency_after_LFC(dedede,1:10:i)*1000,'DisplayName',strcat('cont

[',num2str(dedede),'] '));

hold on

end

end

175

if T==1

title(strcat('controllers avg response time vs flow rate in GA'))

else

title(strcat('controllers avg response time vs flow rate in GRASP'))

end

legend

xlabel('flow rate')

ylabel('response time(ms)')

% percent of successful packets received vs time

if T==1

figure(12)

else

figure(13)

end

set(gca,'FontSize',20)

set(gca, 'FontName', 'Times new roman')

plot(1:i,nodes_alive(:,1)*100/nodes);

if T==1

title(strcat('percent of successful packets received vs time in GA'))

else

title(strcat('percent of successful packets received vs time in GRASP'))

end

xlabel('time(s)')

ylabel('percent of successful packets')

if T==1

disp(strcat('the total latency for GA is [',num2str(sum(sum(latency_after_LFC))),']'))

else

disp(strcat('the total latency for GRASP is [',num2str(sum(sum(latency_after_LFC))),']'))

end

% total time it takes to execute BSA/BSW/LFC them vs time

if T==1

figure(18)

else

figure(19)

end

set(gca,'FontSize',20)

set(gca, 'FontName', 'Times new roman')

plot(BSAWF_time);

if T==1

title(strcat('total time it takes to execute BSA/BSW/LFC vs time in GA'))

else

title(strcat('total time it takes to execute BSA/BSW/LFC vs time in GRASP'))

end

xlabel('time(s)')

ylabel('time it takes to execute')

end

disp(strcat('w1 is [',num2str(w(1)),'] w2 is [',num2str(w(2)),'] w3 is [',num2str(w(3)),'] w4

is [',num2str(w(4)),']'))

disp(strcat('the optimal cost for GA is [',num2str(optimalcost(1)),'] at iteration

[',num2str(iteration_optimal),'] and for GRASP is [',num2str(optimalcost(3)),']'))

176

disp(strcat('time it takes to reach optimal solution is [',num2str(time_opt_t(1)),'] for GA

and [',num2str(time_opt_t(3)),'] for GRASP'))

if isempty(LND_GA)

disp('some nodes are still alive in GA')

else

disp(strcat('LND for GA is [',num2str(LND_GA),']'))

end

if isempty(LND_GRASP)

disp('some nodes are still alive in GRASP')

else

disp(strcat('LND for GRASP is [',num2str(LND_GRASP),']'))

end

if isempty(FND_GA)

disp('all nodes are alive in GA')

else

disp(strcat('FND for GA is [',num2str(FND_GA),']'))

end

if isempty(FND_GRASP)

disp('all nodes are alive in GRASP')

else

disp(strcat('FND for GRASP is [',num2str(FND_GRASP),']'))

end

% controllers load vs time for one controller

time=1:300;

t_rate=(ceil(time/10)*100)/nodes;

lambda=nodes*t_rate;

dis=pdist2(node_locs(:,1:2),BS);

res_time=sum(dis)/(300*10^6)+1./(miu-lambda);

figure(9)

set(gca,'FontSize',20)

set(gca, 'FontName', 'Times new roman')

plot(lambda,res_time*1000)

Y = res_time(1:10:end)'*1000;

title(strcat('latency vs controller load for one controller'))

xlabel('controller load')

ylabel('latency(ms)')

beep

