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ABSTRACT 

Software-Defined Networking (SDN) is well-known as a master solver for many 

traditional networks restrictions. Network management flexibility is the SDN core 

characteristic that recently becomes a hot topic for many researchers to improve 

network performance. A critical issue arises specifically for the multi-controller 

SDN-based network, namely the controller placement problem (CPP), known as an 

NP-hard problem. Solving such problems in a reasonable amount of time is usually 

carried out using metaheuristic algorithms. This thesis presents different approaches 

for solving the CPP which are based on metaheuristic algorithms such as the genetic 

algorithm (GA) and the greedy randomized adaptive search procedure (GRASP). The 

first approach is a fault tolerance metaheuristic-based scheme (FTMBS) that we 

proposed for solving the CPP in wireless software-defined networks. The FTMBS is 

a multi-objective-based scheme aiming to maximize network connectivity and the 

load balance among controllers, minimize the network worst-case latency, and 

maximize the network lifetime in the presence of faulty nodes. In the presence of 

conflicting multi-objective metrics, the decision-maker or the network administrator 

decides on the compromise between these conflicting metrics. We defined the 

selection criteria for the number of SDN controllers ahead of time that achieves the 

targeted average percentage of network improvement. Simulations carried out for 

three and five controllers showed that three controllers were enough for such 

networks. We have shown the efficiency of the proposed FTMBS scheme under 

various percentages of faulty nodes as it has lower latency compared to the random 

distribution of controllers among cluster heads and the cluster-based network 

partition algorithm (CNPA). Also, we have verified the goodness of the solutions by 
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showing that the GA solutions have a good approximation to the Pareto optimal 

solutions provided by the Non-dominating Sorting Genetic Algorithm (NSGA-II).  In 

addition, the proposed FTMBS scheme showed its superiority over various state-of-

the-art schemes for different network performance metrics on the cost of having a bit 

higher complexity.    

The second approach, namely the ALBATROSS scheme, is an energy-efficient 

strategy for WSNs, which is a modification of the FTMBS scheme. The albatross 

bird's dynamic soaring scheme is adopted in the cluster heads selection algorithm, 

and the selected cluster heads are taken as inputs for the heuristic algorithm to solve 

the CPP. Simulation results showed that the ALBATROSS scheme saves the 

network energy and outperforms other existing energy-aware schemes found in 

literature. However, it has a bit higher complexity than other schemes. 

Besides, in Appendix A, we have provided an example of using the SDN technology 

in a practical environment other than WSNs, such as wireless body area networks 

(WBANs). 

Keywords: Software-defined networking, controller placement problem, meta-

heuristic algorithm, network performance enhancement. 
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ÖZ 

Yazılım Tanımlı Ağ Oluşturma (SDN), geleneksel ağın karşılaştığı birçok geleneksel 

kısıtlamalara karşı ana bir çözücü olarak iyi bilinir. Ağ yönetimi esnekliği, birçok 

araştırmacı için ağ performansını geliştirme konusunda ilgi alanı haline gelmiş olan 

SDN temel özelliğidir. Çok denetleyicili SDN tabanlı ağ için kritik bir sorun olan ve 

NP-zor problem olarak da bilinen denetleyici yerleştirme sorunu (CPP) ortaya 

çıkmaktadır. Bu tür problemlerin makul bir sürede çözülmesi genellikle meta-

sezgisel algoritmalar kullanılarak gerçekleştirilir. Bu tezde, genetik algoritma (GA) 

ve açgözlü randomize uyarlamalı arama prosedürü (GRASP) gibi meta-sezgisel 

algoritmalara dayanan CPP'nin çözümü için farklı yaklaşımlar sunmaktadır. İlk 

yaklaşım, FTMBS olarak adlandırılan kablosuz yazılım tanımlı ağlarda CPP'yi 

çözmek için önerdiğimiz hata toleransı meta-sezgisel tabanlı bir şemadır. FTMBS, ağ 

bağlantısını ve denetleyiciler arasındaki yük dengesini en üst düzeye çıkarmayı, 

denetleyicilerin kendileri arasındaki en kötü durum gecikmesini en aza indirmeyi ve 

hatalı düğümlerin varlığında ağ ömrünü en üst düzeye çıkarmayı amaçlayan çok 

amaçlı bir şemadır. Birbiri ile çatışan çok amaçlı ölçümlerin varlığında, karar verici 

veya ağ yöneticisi bu sözkonusu ölçümler arasındaki uzlaşmaya karar verir. 

Hedeflenen ortalama ağ iyileştirme yüzdesine ulaşan SDN denetleyicilerinin sayısı 

için seçim kriterleri önceden belirlenmiştir. Üç ve beş denetleyici için simülasyonlar 

yapılmış olup, bu tür ağlar için üç denetleyicinin yeterli olduğu belirlenmiştir. 

Önerilen FTMBS şemasının verimliliğini, çeşitli hatalı düğüm yüzdeleri altında, 

kontrolörlerin küme kafaları ve küme tabanlı ağ bölümleme algoritması (CNPA), ve 

rastgele dağılımına kıyasla daha düşük gecikme süresine sahip olduğunu gösterdik. 

Ayrıca, GA çözümlerinin, Baskın Olmayan Sıralama Genetik Algoritması (NSGA-
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II) tarafından sağlanan Pareto optimal çözümlerine iyi bir yaklaşıma sahip olduğunu 

göstererek çözümlerin iyiliğini doğruladık. Ek olarak, önerilen FTMBS şeması, biraz 

daha yüksek karmaşıklığa sahip olma maliyetiyle farklı ağ performans ölçütleri için 

çeşitli son teknoloji şemalara göre üstünlüğünü göstermiştir. 

İkinci yaklaşım, yani ALBATROSS şeması, FTMBS şemasının bir modifikasyonu 

olan WSN'ler için enerji verimli bir stratejidir. Ağ enerjisinden tasarruf etmeyi 

amaçlayan albatross kuşunun dinamik yükselme şeması, SDN denetleyicilerinin 

seçimleri için dikkate alınacak ağ küme kafalarını etkin bir şekilde seçmek için 

benimsenmiştir. Simülasyon sonuçları, ALBATROSS şemasının ağ enerjisini 

koruduğunu ve literatürde bulunan farklı mevcut enerjiye duyarlı şemalardan daha 

iyi performans gösterdiğini ortaya çıkarmıştır. 

Ayrıca, Ek A'da, kablosuz vücut alanı ağları (WBANs) gibi WSN'ler dışında pratik 

bir ortamda SDN teknolojisinin kullanımına bir örnek sunduk.  

Anahtar Kelimeler: Yazılım tanımlı ağ oluşturma, denetleyici yerleştirme problemi, 

meta-sezgisel algoritma, ağ performansı geliştirme.   
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Chapter 1 

INTRODUCTION 

1.1 Software-Defined Networking  

Nowadays, the world represents a vast linked digitalized society with the help of the 

internet, making almost everything accessible and connected. The traditional internet 

fundamental infrastructure embodies the vertical integration between the control and 

data planes residing on the same device. Hence, controlling and managing the 

network becomes a challenging task with the bulk network growth. Moreover, this 

vertical integration sets further restrictions on network configuration for predefined 

policies and responding to various network changes. Initially, Software-defined 

networking (SDN) idea is proposed to handle several challenges in wired IP 

networks, such as the network complexity and the difficulty of configuring the 

network behavior [1]. Due to the challenges mentioned above, thumbs are pointed 

toward the SDN technology.  SDN is a new emerging paradigm that promises to 

change this state of affairs [2] by simply releasing the vertical integration, separating 

the network’s control logic ( control plane) from the network devices (data plane), 

and allowing flexibility in managing policies [3] and reconfiguration of the network. 

As a result of this decoupling, the network devices become simple forwarding 

devices, and the extracted control logic is inserted at a centralized controller or 

network operating system (NOS) [4]. The routing decisions and policies are handled 

by the controller and deployed in the switch's flow table. Figure 1 shows the 

traditional network structure versus SDN network structure. 
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Figure 1: Traditional Network Structure vs. SDN-Based Network Structure [2] 

1.2 The Use of SDN in WSN 

WSN is made up of several cheap and low-powered stationary or mobile sensor 

nodes. Currently, WSN is integrated with industrial areas and with many innovative 

technologies such as smart building (Heating, Ventilation, and Air conditioning 

(HVAC)) systems to comply with the user requirements. These technologies aim at 

achieving energy-efficient resource utilization. The core purpose of WSN is to sense 

and collect event-driven data in a particular field. However, the main WSN 

limitations [5], [6] are the changes in the network topology and the limited energy 

supply of the sensor nodes [7], [8], which in case of quick depletion can cause 

network disconnection. Hence, well-managed strategies and protocols can save 

energy as a scarce resource. In addition to energy, the integration of control and data 

plane makes the network extension and management complicated and costly [4], [1].  

The first implementation of SDN in WSN is presented in [9], where the authors 

proposed the Sensor OpenFlow (SOF) as the communication protocol between the 

data plane and control plane. The data plane corresponds to the sensor nodes that are 

flow-based packet forwarding elements, receiving the forwarding rules from the 

control plane that corresponds to the controller, known as the network brain which 

handles all the decisions. SDN is characterized by releasing management challenges 

in wireless sensor networks.The integration of the SDN paradigm in the WSNs (SD-

WSN) [10], [5], [11], [12], [13] has recently established widespread concentration 
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where researchers focused on applying SDN in WSNs [1] in regards to architecture 

and network topology [9], [14], routing protocols [15], [16], [17], [18], [19], node 

scheduling and energy-saving [20], [21], data transmission and load balancing  [22], 

[23] as well as network security [24]. The network topology in SDWSN refers to the 

physical layout of various sensor devices interconnected by transmission media [1]. 

The SDWSN network topology can be both fixed and mobile [25]. Fixed topology is 

either centralized topology deployed in a small-scale network or distributed topology 

deployed in a large-scale network. This thesis focused on distributed SDWSN, where 

the sensor nodes are arranged into clusters according to a distributed SDWSN model. 

The SDN main controller is deployed at the gateway, i.e., the sink that manages and 

coordinates the sub-controllers. The cluster heads manage sensor nodes in each 

cluster where each cluster is considered as the zone or domain of the SDN sub-

controllers, as shown in Figure 2.  

 
Figure 2: Distributed SDWSN 

Although SDN can release all the challenges faced with traditional networks; a 

severe factor that an SDN-based network needs to provide is the reliability [26], [27]. 

In other words, an SDN-based network should not be affected by a single point of 
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failure. Consequently, this will lead to total network breakage since the control plane 

provides all the network information to the data plane; hence,  any disconnection 

between them ends the network performance. There are different studies of using the 

concept of SDN in WSNs as shown in Figure 3. In this thesis we have followed a 

multiobjective approach in which we considered energy efficiency (lifetime, and 

clustering), and reliability issues to solve the CPP. 

 
Figure 3: SDN-Based Approaches for WSNs [27] 

Based on our knowledge, few frameworks are used for implementing SDN-based 

WSN such as SDN-WISE [28], SDWN-ONOS [29], and TinySDN [30], [31]. 

However, these frameworks have several drawbacks, i.e., their codes do not comply 

with the WSN firmware, making it inapplicable to the existing WSNs.  

SDWN-ONOS is the first to provide the Open Network Operating System (ONOS) 

[5], which uses the existing SDN controller in the wired network. To make ONOS 

relevant in SDN-based WSNs, WSN devices such as SDN-WISE Emulated mote and 

SDN-WISE Emulated sink [28]  were adopted from SDN-WISE. However, these 

devices were designed based on a different standard than IEEE 802.15.4 standard, 
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making their integration in WSNs inappropriate. Hence, further investigations and 

studies should be carried out to make SDN-WISE, SDWN-ONOS, and TinySDN 

appropriate to be implemented in WSNs. In fact, integrating the concept of SDN 

with WSNs has been investigated by many reasearchers in literature. Table 1 

illustrates some of these state-of-the-art frameworks. 

 Table 1: SDN Frameworks in WSNs [32] 

 

Year 

 

SD-WSN 

 

Features 

 

Simulation Performance 

Evaluation 

WSN 
Compa-

rison 

2012 
Sensor 

OpenFlow 

[9] 

Propose a 

concept of 
SD-WSN 

No No No 

2012 
SDWN [5] Propose a 

concept of 

SD-WSN 

No No No 

2014 
Smart 

WSN-

SDN [14] 

Propose a 

concept of 
SD-WSN 

No No No 

2014 
TinySDN 

[30] 

Provide an 

SD-WSN 

framework 

Cooja Response 

time, 

memory 

No 

 

2015 

SDN 

ECCKN 

[33] 

A 

centralized 

sleep 

scheduling 
algorithm 

 

MATLAB 

Network 

Lifetime 

 

Yes 

2015 
SDWN 

ONOS 

[29] 

Provide an 

SDN-IoT 
framework 

Cooja, 

Mininet 

No No 

 

2015 

 

Multi-

Task 

SDSN [34] 

A 

centralized 

algorithm 

to optimize 

energy 

efficiency 

 

Gurobi 

Optimizer 

Sensing 

rate, 

reschedulin

g time, 

power 

efficiency 

 

No 

2015 
SDN-

WISE [28] 

Provide an 

SD-WSN 

framework 

Cooja RTT, 

efficiency, 

response 

time 

No 
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2016 

 

Routing 

SDWSN 

[35] 

Energy- 

efficient 

algorithm 

for 

SD-WSN 

 

MATLAB 

 

Network 

Lifetime 

 

Yes 

2016 
WARM 

[36] 

Provide an 

SD-WSN 

framework 

Cooja Comm. 

overhead, 

memory 

No 

2016 
SDN-TAP 

[37] 

Provide an 

SD-WSN 

framework 

Cooja Delay, 

packet loss 

No 

2016 
SDWSN-

IoT [38] 

Propose a 

concept of 

SDN-IoT 

No No No 

 

1.3 Controller Placement Problem 

The controller placement problem (CPP) incorporates the number of controllers [39] 

and includes the controllers' proper positions in an SDN-based network. Researchers 

have widely focused on solving the CPP to enhance the overall network performance 

and meet acceptable QoS levels. Efficiently allocating switches to controllers without 

causing overwhelming the controllers was presented in [40], aiming to minimize 

network latency, maximize the network fault tolerance and reliability, and minimize 

the number of controllers and node consumption energies.  Therefore, the number 

and location of SDN controllers known as CPP can dramatically affect the overall 

network performance. Heller et al. in [41] investigate a significant issue dealing with 

the number of SDN controllers to be implemented at particular topology positions to 

meet the network requirements. For instance, a good placement aims to reduce the 

propagation latency among the nodes and SDN controllers in wide area networks 

(WAN). It is good to note that in WAN, the edges' weights represent the propagation 

latencies which can be obtained using the Haversine formula [42], [43], [44]. Hence, 
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in the case of having two disjoint islands, the best controller placement which 

reduces the average latency is at the midpoint of the distance between the two 

islands. However, in the case of two controllers, the placement of one controller at 

each island will remarkably reduce the total network latency. 

As stated previously, the main three layers of SDN are the data plane, control plane, 

and application plane. The control plane is the brain of the network [45]. All 

decisions, policies, and forwarding rules are defined by the controller, so that the 

data plane comprises only policy recipients forwarding devices. The application logic 

[2] is set by the application plane located on top of the control plane. Upon existence, 

the SDN-based network was made up of only one controller. Researchers then found 

out that one SDN controller can't cope with the fast network growth, and as a result, 

can't handle all the control requests coming from the data plane. This issue is known 

as scalability. Besides scalability issues, reliability problems caused by a single point 

of failure were behind focusing on the use of multi-controllers [46] in SDN-based 

networks. Remarkable network performance improvement was recorded with the 

implementation of a multi-controller. Nevertheless, a critical factor accompanied by 

the multi-controller implementation which directly affects the overall network 

performance is the controller placement problem (CPP) [41]. 

Solving the CPP is not a straightforward approach, since it defines the necessary 

number of SDN controllers and their best positions in the network. The number of 

SDN controllers is essential since excessive use of SDN controllers affects the cost 

of implemention and leads to unnecessary delays [47] caused by many control 

requests. Since CPP is an NP-hard problem [46], solving such problems is usually 

carried out using evolutionary algorithms.  Therefore, solving the CPP in a multi-
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controller-based network is actually finding both the controllers' optimum number 

and location.  

The issue of CPP was investigated firstly by [41]. The authors focused on latency 

issue as a critical factor affecting real-world network performance. However, the 

load balancing factor between the controllers was missed in their work. In wireless 

networks, the communication link and available bandwidth are shared by the data 

and control planes, leading to unnecessary delays in the presence of load imbalance. 

Hence, the presence of a load balancing algorithm highly limits the occurrence of 

unnecessary delays. Accordingly, the network performance is directly affected by 

network reliability and network delay exposed by the propagation and queuing 

latencies [48].  

Authors of [41] have motivated researchers to provide network solutions for 

improving network performance. Nowadays, SDN is integrated with Google, 

Facebook, cloud computing, and many applications [45], [11]. 

Evolutionary algorithms are efficient optimization methods that give near-optimal 

solutions satisfying the specified network constraints. Hence, evolutionary 

algorithms are widely used to solve the CPP in an SDN-based network where CPP is 

considered an NP-hard problem [49], [50], [51], [52]. When applying evolutionary 

algorithms, researchers usually define the network constraints and the objective 

function satisfying the defined constraints.  

Cisco APIC [53] uses a minimum of three SDN controllers. The analysis showed that 

using k controllers instead of one controller will not reduce the latency by 1/k factor 
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[41]. In networks where topology changes frequently, it is found that the controller 

placement is very significant to minimize the packet propagation latency [54]. 

Ideally, the number of controllers should be minimized for cost issues, while 

minimizing communication latency at the same time. Network latency includes the 

time it takes to transmit the packets, time spent in the switch buffer before processing 

(queueing time), and the time it takes for the controller to process the packets. 

Latencies do not weigh equally for different networks. For example, in WAN, only 

the time it takes for the packets to be transmitted and the time it takes for the 

controller to process the packets are considered [5]. Packet transmission latency is 

directly affected by the distance between controllers and switches. Therefore, in 

assigning switches to controllers, the shortest path is usually considered. The 

controller's processing latency is affected by loads of the controllers [48]; hence, this 

justifies why researchers are being attracted by a controller placement solution that 

leads to flow balance among controllers.  

1.4 The Aim of the Study 

In Literature, necessary conditions are absent and should be considered while solving 

the CPP in an SDN-based network. The presence of node and path failures and the 

steady-state network attainment after executing the load balancing algorithm should 

be considered. These two conditions are taken into consideration in this study. We 

used metaheuristic algorithms to solve the CPP, aiming to maximize the network 

connectivity, balance the load, minimize the network delay, and increase the network 

lifetime. Specifically, we applied the genetic algorithm and GRASP algorithm [55], 

[56] to solve the CPP. Keeping the network in a steady-state is achieved by 

proposing the Balance State System (BSS) algorithm which balances the loads 

among the controllers and ensures no overwhelming controller(s) exists after 
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distributing the load of the faulty controller(s).  Besides the above-mentioned aspires, 

an important aim to be achieved in SDN-based WSN is saving network energy and 

enhancing network lifetime. This aim is achieved by using the ALBATROSS 

algorithm described in Chapter 6. Shifting towards the software-defined wireless 

body area network, an important metric to be achieved is network reliability, 

ensuring a delay-free transmission of the emergency data. Hence, as a practical 

example, we proposed the ERQTM algorithm, presented in Appendix A. 

1.5 Thesis Contributions 

The contributions of our work-study are:  

a) Achieving network reliability by applying the spatial clustering algorithm that 

produces alternative paths in the presence of path failure or node failure.  

b) Applying the Genetic algorithm and GRASP algorithm to provide near-optimal 

solutions in a reasonable amount of time, satisfying various network constraints in 

the presence of faulty nodes, and optimizing the network Quality of Service (QoS).  

c) Considering a variable flow rate in the proposed BSS algorithm that achieves a 

dynamic load balance among controllers by adopting the network traffic changes. 

Thus, improving the network efficiency. Besides network efficiency, BSS achieves 

the network steady-state with minimum latency. 

d) Carrying a comprehensive study for solving the CPP that incorporates the 

presence of faulty nodes and a tradeoff between different conflecting network 

objectives.  

e) Introducing the ALBATROSS algorithm which had a positive impact on the 

WSN's lifetime enhancement. 

f) Proposing the ERQTM algorithm which achieves the SDWBAN reliability.  
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Chapter 2 

LITERATURE REVIEW 

The related literature is reviewed in five sections. In section 2.1, the studies on 

solving the CPP using evolutionary algorithms have been mentioned. Solving the 

CPP while focusing on load balancing among different controllers is showed in 

section 2.2.  Solving the CPP while focusing on decreasing the network latency is 

given in section 2.3. Solving the CPP while focusing on increasing network 

reliability and energy efficiency is presented in section 2.4. Finally, section 2.5 

mentions the studies that focus on enhancing the network lifetime while solving the 

CPP. 

2.1 Integrating Evolutionary Algorithms in Solving the CPP  

Different literature metrics are alleged to have a direct influence on the placement of 

the SDN controllers. These metrics are included in multi-objective approaches to 

solve the CPP [1], [4], [57], [58]. The main metrics include network latency [59], 

[60],  network management [27], reliability and resilience [61],  deployment cost 

[62], and  energy consumption [63], [64]. In the network management, the control 

messages between controllers and switches are transmitted in a dedicated channel 

(out-band mode) and are generally small-sized flows in comparison to the dense 

flows in the data plane. The placement of controllers significantly affects the metrics 

[58], [65] mentioned above. The CPP is viewed as a multi-objective combinatorial 

optimization problem (MOCO) [66]. Solving this multi-objective problem is usually 

achieved by finding the Pareto-frontier [67], where a decision-maker selects the most 
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appropriate solution which is based on the type of studied environment. This multi-

objective combinatorial optimization problem can efficiently find the Pareto-optimal 

in a reasonable amount of time in small to medium-size networks. However, the 

drawback lies when the network size to be analyzed is large, since the time is directly 

proportional to the network size, i.e., placing k controllers in n nodes is a 

combinatorial problem   
 
  placement [45].  For this reason, heuristic approaches are 

used to solve multi-objective problems [45]. Mohanty et al. [68] considered the 

propagation latency and the cost metrics using a modified version of the genetic 

algorithm to solve the CPP. However, they have used a fixed cost of placing a 

controller at a specific location, which lacks further explanation. Sanner et al. [69] 

have also solved the CPP based on evolutionary algorithms to maximize the average 

cluster connectivity and balance the load among clusters. They have conducted their 

algorithm based on NSGA-II [70] framework that deals with CPP. Their proposed 

GA lacks a fundamental operator, the crossover operator, where they have claimed to 

consider for future work. Jalili et al. [52] solved the CPP based on NSGA-II [71], 

focusing on optimizing the inter-controller and intra-controller latencies. Champagne 

et al. [49] have proposed a multi-objective genetic algorithm for the CPP that aims to 

minimize inter-controller latency, load distribution, and the number of controllers 

with fitness sharing. The proposed GA approach provides diversity in fitness value 

for different solution spaces, and the diversity provides more solution spaces with 

various fitness values. One reason is that the local search improves the population 

quality by producing different solution in every iteration [72]. Therefore diversity in 

their algorithm is critical since it can provide various choices, especially for dynamic 

network reconfiguration. Their algorithm also provides adaptive solutions to real 

network architectures such as the United States backbone and Japanese backbone 
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networks. Lokesh et al. in [73] have proposed node fault detection and a recovery 

scheme for the CPP based on a genetic algorithm. Their scheme aims to eliminate 

faulty nodes by forcing the sleep mode when assigning the controllers based on 

energy and link efficiency. Another heuristic approach based on Simulated 

Annealing (SA) was proposed by Lange et al. [51] to solve the CPP. Their approach 

uses Pareto Simulated Annealing (PSA) and aims to minimize the average latency 

between controllers. The PSA algorithm explores 2.5% of the search space. Authors 

in [74] presented latency and cost-aware controller placement dynamic optimization 

algorithms, namely Salp Swarm Optimization Algorithm (SSOA). Their algorithm 

dynamically checks the optimum number of controllers by evaluating the network 

load changes, which puts controllers to sleep mode to decrease the communication 

overhead in case of a low-load network or adds controllers to handle the network's 

load in the presence of an overloaded controller. They conducted their search study 

on large-scale SDN networks. Hock et al. [50] have proposed a resilient-based 

Pareto-optimal controller placement method considering different factors such as 

latency and failure resilience. Their results showed no optimal value for both latency 

and failure resilience when considered simultaneously; instead, a tradeoff should be 

considered. Kwon and Kang [75] have proposed a genetic algorithm-based 

metaheuristic scheme to balance the controllers' load. Their load balancing scheme 

has a triggering factor which is a specific load threshold. Whenever the system 

detects load imbalance revealed by the load threshold, the load balance scheme is 

executed. 

2.2 Solving the CPP Based on Load Balancing 

Liao et al.  [76] solved the CPP by presenting a density-based cluster placement 

(DBCP) algorithm which takes each controller's density into account. DBCP 
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separates the network into several connected sub-networks and assigns a controller 

for each cluster to achieve high network connectivity. In other words, DBCP 

converts the multi-controller placement problem into a single controller placement 

problem. DBCP can be easily implemented as it is mainly based on one parameter, 

the distance threshold. An increase in the number of clusters is related to either too 

small or too large threshold. Therefore, the distance threshold should be set as [0.3-

0.5] times network diameter, and in their case, the distance threshold is set to 0.3 

times network diameter.  

Selvi et al. [77] presented a Cooperative Load Balancing Scheme for Hierarchical 

SDN Controllers (COLBAS). In their scheme, one controller is assigned as a super 

controller to manage other controllers' flow requests. When the super controller 

detects flow imbalance, i.e., the flow requests exceed an upper bound threshold, it 

uses a greedy algorithm to reassign different flow setups to proper controllers and 

redistribute the flows to reach a lower bound threshold. Installation of allocation 

rules on switches for load balancing is achieved by keeping a low-cost reassignment, 

i.e., assigning the flow to the lowest cost controller till the lower bound is met.  

Cui et al. [48] have investigated multiple overloaded controllers and developed a 

load balancing strategy based on the controller's response time, where real-time of 

the controller's response variation is considered. By selecting the appropriate 

response time threshold, overloaded controllers could be identified if their response 

time is above the threshold, and non-overloaded controllers could be identified if 

their response time is below or equal to the selected threshold. By identifying the 

overloaded and non-overloaded controllers, the authors applied the migration 

algorithm. The heaviest switch belonging to the most prominent response time 
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controller is migrated to the lowest loaded controller iteratively. Their migration 

algorithm deals with multiple overloaded controllers simultaneously to palance the 

load. However, their strategy can't be considered as a bottom line for checking 

overloaded controllers, for instance, a controller could be faulty and not overloaded. 

In this case, the scheme can't work well. Also, their scheme lacks further 

investigation for the migration cost, which they left for future work.  

In the case of a controller failure, achieving high availability is a challenging task. 

Rao et al. [78] presented a multi-controller cluster-based scheme where multiple 

controllers are organized in clusters form. In each cluster, one primary controller 

handles the work, and others synchronize the controller state information, including 

network topology, network services, applications and data synchronization. If a 

primary controller fails, the election strategy will be executed on the other 

controllers, and the one with the highest priority will be elected as the primary 

controller. Besides the election, the load balancing strategy is executed on the 

OpenVswitch which distributes the load on different servers in a round-robin fashion 

to prevent overwhelmed servers.  

Yao et al. [78] considered both the SDN controllers' capacity and the maximum 

latency, so their algorithm is an alternative to the capacitated k-center problem 

(Capacitated Controller Placement Problem-CCPP). Their algorithm is based on the 

Integer Programming model to find the minimum number of needed controllers. 

However, their approach has a bit high time complexity. Their results show that a 

reduction in the number of controllers and the most capacitated controller load can be 

achieved for each placement.   
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Yao et al. [65] have introduced a new HybridFlow approach to use multi-controller 

for large wide-area wireless networks. They have proposed a balancing scheme 

based on double thresholds where controllers are arranged in many clusters.   A super 

controller controls all these clusters. Each controller checks the load balance in its 

cluster and communicates with its neighboring controller to balance the load. 

Whenever the cluster load exceeds a specific limit, controllers in this overloaded 

cluster will transfer all requests to the super controller, which transfers the excessive 

load to other non-overloaded clusters. HybridFlow reduces the super controller 

overhead requests by letting the controllers manage the load within the cluster. Only 

the super controller will manage load balance in case one of these clusters is 

overloaded. Their simulation showed that the HybridFlow outperforms BalanceFlow 

[79] by reducing the super controller overhead requests and workload. Generally, the 

load among controllers is not static; it may vary according to spatial and temporal 

variation in traffic conditions. For that reason, Dixit et al. [80] presented a load 

balancing mechanism which adapts to traffic variations. Their algorithm keeps 

monitoring the load conditions among controllers. If load imbalance is detected, 

switches automatically migrate from the overloaded controller to the less loaded 

controller. The algorithm extends or shrinks the controller pool whenever necessary. 

That is, if the aggregate traffic load is higher/smaller than controller capacity, the 

controller pool scales down/up by adding a new node to the pool or removing a node 

from the pool. Their simulation results are pretty efficient regarding the response 

time, which lasts for 2ms even when the load rate increases or decreases.   

In the sense of a multi-objective scheme, Ruiz-Rivera et al. [81] have proposed an 

efficient approach to balance the load among SDN controllers. Their approach limits 
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the delay to an upper bound and saves the energy by turning off as many links as 

possible, keeping the connection available among switches and controllers.  

Yang and Wang in [82] proposed a path selection k-Dijkstra based algorithm for the 

load balancing module which can adapt to traffic changes on one side and reduce 

network delay and packet loss rate on the other side.  

Killi and Rao in [83] solved the CPP by considering the load of controllers, latency, 

and network reliability revealed by the controller failure avoidance ahead of time. 

However, their strategy's drawback is the communication overhead done by switches 

that repeatedly send packet-in messages to the nearest controller without knowing its 

status. Another load balancing mechanism was introduced by Yu et al. [84], where 

each switch is connected to one master controller and several slave controllers. 

Whenever the master controller becomes overloaded, the switch with the highest 

flow rate is chosen to migrate to one of the slave controllers based on the recipient 

controller's highest cost, keeping the targeted controller's load below a specific 

threshold. Their results showed an increase in the throughput within a reasonable 

amount of time to complete the load balancing mechanism.  

Hu et al. [85] solved the CPP by considering both the delay and load balancing 

concurrently. They claimed that an insignificant increase in the load is caused while 

optimizing the delay. They have suggested the use of a heuristic algorithm to 

optimize the delay along with the load balance for future work. Another efficient 

load balancing algorithm presented by Hu et al. [86] focused on the migration cost 

that the switch encounters when migrating from its associated overwhelmed 

controller to a less loaded one. They claim that the switch migration may increase the 
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recipient controller's response delay and decrease the throughput. By taking into 

consideration, the migration cost that represents the added load on the recipient 

controller, their proposed efficiency-aware switch migration (EASM) strategy results 

in load-balanced controllers, in addition to high controller throughput and low 

migration cost. 

2.3 Solving the CPP Based on Decreasing Latency  

Hu et al. in [87] have addressed the controller placement problem based on the 

network energy consumption performance metric. The control paths and capacity of 

controllers are modeled as binary integer program (BIP). In their model, the network 

energy consumption is minimized under the control paths' delay and controllers' 

loads' constraints.  Due to the high complexity of BIP, the authors have suggested the 

use of a heuristic algorithm, specifically the genetic algorithm, to find the near-

optimal solution. Results conducted on different topologies with various controllers' 

numbers reflect the indirect proportion between the number of controllers and the 

number of control path links. Also, results have shown that delays on all control 

paths satisfy the delay threshold, in addition to energy savings. However, their model 

aimed at energy saving in the control plane, and discarded the forwarding plane, 

which they claim to include as a future work for an energy-aware SDN model.  

Abdelaziz et al. in [88] presented cluster-based distributed SDN controllers where 

three controllers are placed in a cluster; one of them is selected as the primary 

controller, and the others are backup controllers to assure the reliability and 

availability of the network. Their experiments show that when the number of 

switches exceeds 75, their algorithm reduces the latency from 8.1% (when no 
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clustering is done on the distributed controllers) to 1.6% when clustering exists.  

Also, the packet drop is reduced from 3.99% to 3.53%.  

Another latency-based improving algorithm is presented by Wang et al. [89], where 

different aspects of latency have been considered that can affect the network 

performance. For instance, they have suggested using the Clustering-based Network 

Partition Algorithm (CNPA). The CNPA  partitions the network to reduce the overall 

end-to-end latency, unlike traditional clustering algorithms. In such algorithms as k-

mean and k- center, the end-to-end latency can't be reduced with the increase in the 

number of subnetworks. In addition to the end-to-end latency, they have investigated 

the queuing latency for switches modeled as M/M/m queueing system. Accordingly, 

they placed controllers at switches and iteratively increased the number of controllers 

so that the maximum latency is upper bounded by a given threshold. They found out 

that when eight controllers are deployed, the average total latency achieved by their 

algorithm is almost three times smaller than those achieved by k-means and k-center 

algorithms. The authors used the Haversine formula to find the shortest path between 

nodes instead of the Euclidean distance where the physical links may not exist in the 

path of the Euclidean distance between two nodes [90], and the shortest path distance 

between nodes is based on Dijkstra's theorem [91]. 

2.4 Solving the CPP Based on Reliability and Energy-Efficiency 

Many researchers have  handled the controller placement problem focusing on 

increasing reliability and allowing the overall system to be resilient to connectivity 

failure. Heuristic approaches such as l-w greedy [92] and simulated annealing have 

been adopted in [27], [92]. Authors in [27] have represented the reliability metric as 

the percentage of control paths' failure and as an expected percentage of valid control 
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paths where switches' failures vary within [0.015-0.025], and  links failures vary 

within [0.035-0.045]. The authors in [92] have represented the reliability metric same 

as in [27] with different intervals as [0-0.02] and [0-0.04] respectively. Although, the 

reliability increases with the number of controllers, however, deploying an excessive 

number of controllers will have a negative impact on the reliability [92]. Therfore, 

authors in [92] illustrated that the number of controllers varies in the interval 

[0.035n-0.117n] where n is the number of nodes in the network. They have used the 

simulated annealing method to solve the controller placement problem. They have 

compared their results with the Brute Force search [93] technique which is regarded 

as the most straightforward meta-heuristic technique that works well and gives 

optimal results in limited size problems. Their findings show a decrease in reliability 

metric when optimizing the latency and an increase in latency when optimizing the 

reliability metric. These were their findings when three controllers are used. 

However, in the case of one controller, optimizing the latency leads to optimized 

reliability.   

Since the network failure leads to a disconnection between control and data planes, 

achieving reliability for the controller placement problem was the aim of  Zhang et 

al. [61]. The authors presented an algorithm to reduce the connectivity failure 

between controllers and switches based on a minimum cut (min-cut) algorithm to 

maximize network resilience to failure. Their proposed method showed better 

reliability improvements than greedy and random schemes. Hu et al. [94]  focused on 

real topologies and defined reliability as the expected percentage of control path loss 

which is proven to be NP-hard. They have shown a tradeoff between network latency 

and network reliability.  
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2.5 Solving the CPP Based on Network Lifetime Enhancement 

Hu et al. [87] focused on optimizing the network energy saving in solving the CPP. 

By simulations, near-optimal solutions are achieved. The authors adopted the GA 

[94] to optimize the average connectivity and the network balance to solve the CPP. 

Qureshi et al. [95] proposed a load management scheme named as Gateway 

Clustering Energy-Efficient Centroid (GCEEC) to address the load burden issues 

caused by sensor nodes which relay their transmission data to those that are close to 

the base station. In their scheme, the CHs are selected from the centroid position, and 

the gateway nodes are selected from CHs, aiming at transmitting the data of the 

overwhelmed CHs to the base station. The experimental results showed that the 

proposed GCEEC scheme is an energy-efficient algorithm that showed better 

performance than other state-of-the-art schemes.  

Nitesh et al. [8] proposed a fault tolerance and energy utilization-based scheme for 

large-scale networks. The proposed scheme named as Energy-Efficient Fault-

Tolerant Clustering Algorithm for Wireless Sensor Networks (EEFCA) is formulated 

regarding the distance between the sensor nodes and the base station, residual 

energy, and the number of sensor nodes in each cluster. In their scheme, each sensor 

node calculates the cost of joining a relay node close to the base station whenever its 

associated CH is faulty. Accordingly, it sends the calculated info to the relay node, 

which transmits it to the base station. The experimental results showed that the 

EEFCA scheme is an energy-efficient algorithm that outperforms other schemes in 

the literature. However, the proposed scheme requires various calculations done by 
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the relay nodes for choosing the best CH for communication, which consumes a lot 

of energy. 
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Chapter 3 

THE PROPOSED FAULT TOLERANCE 

METAHEURISTIC-BASED SCHEME (FTMBS) 

This chapter presents a detailed description of the proposed system approach. In 

section 3.1, a description of the problem is presented in detail. Section 3.2 describes 

the methodology used to solve the CPP, which incorporates a k-way spectral 

clustering technique described in section 3.2.1. Section 3.3 presents the network 

structure with the related assumptions.   Finally, section 3.4 presents the system 

description and the various network performance metrics to be optimized in solving 

the CPP.  

3.1 Problem Description 

Software-defined networking is a new technology that was initially implemented in 

wired networks and data centers. Afterward, and  due to the flexibility it can offer for 

network management, this new technology motivated many researchers to implement 

it in wireless networks.  TinySDN [30], SDWSN [5], and much more in Literature 

[1], [4] are examples of such implementation. Some network performance metrics 

are affected by sharing the communication link and network bandwidth among the 

data and control planes, such as network delay and network throughput. On a given 

link, both control and data requests are sent, causing unnecessary network delays. 

One promising solution for restricting the delay is providing an efficient load balance 

algorithm in a multi-SDN controller-based network [96]. 
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As stated before, a critical issue arises when multi-controllers are present in an SDN-

based network, the CPP, which is an NP-hard problem [2]. Solving such problems is 

usually done by applying evolutionary algorithms [51], [52], [69], [73], especially for 

large-scale networks. Evolutionary algorithms are optimization algorithms that 

provide near-optimal solutions in a reasonable amount of time. Identifying the 

problem along with the objectives and the network constraints are typically done 

ahead of time. Since the number of controllers affects the network performance, 

authors in [27], [2], [92], [94] claim that deploying few numbers of controllers or 

excessive number of controllers will reduce the reliability of the system. 

The most important metrics affecting the overall network performance are reliability 

and latency. Latency includes transmission, propagation, and queuing delay [89]. 

Most researchers in literature did not consider the presence of faulty nodes. Hence, in 

this thesis, we have investigated the network performance when using SDN in WSNs 

in the presence of faulty nodes. We have solved the CPP by proposing a Fault 

Tolerance Metaheuristic-Based Scheme (FTMBS) [97] for forecasting-based 

monitoring environments [98]. The proposed scheme incorporates the use of both the 

Genetic algorithm [49] (GA) and the Greedy Randomized Adaptive Search 

Procedure (GRASP) algorithm [55], [99]. We have ensured to achieve the network 

steady-state by proposing the Balance State System (BSS) in the presence of faulty 

nodes. Our proposed scheme gives the network operator the freedom to decide on the 

tradeoff among different competing multi-objectives. The multi-objective-based 

algorithm optimizes the network connectivity, balances the load, minimizes the 

network delay, and optimizes the network lifetime.  
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3.2 Methodology 

The proposed FTMBS scheme optimally solves the CPP and maximizes network 

fault resilience by considering the link efficiency and the node's remaining energy. 

Thus, the FTMBS scheme can be seen as an energy-efficient and fault-avoidance 

scheme. We investigated the tradeoff between the cost and the number of controllers 

even though the network performance shows slight improvement when the number 

of controllers increases. We followed what Cisco has declared about using odd 

numbers [53] of SDN controllers. We initially considered three SDN controllers to 

avoid the single point of failure, and then we considered five controllers. We carried 

out various network performance comparisons when using three and five controllers 

and decided on using three controllers in a network consisting of 500 sensor nodes in 

a field of 200x200 m
2
.  

3.2.1 K-way Spectral Clustering  

One of the critical challenges in wireless sensor networks is the sensor nodes are 

empowered with a very limited battery, and recharging the battery is almost 

impossible. As known, energy saving has a direct positive impact on the overall 

network lifetime. To address this issue, Jorio et al. [100] have proposed a new 

clustering algorithm in WSN based on spectral clustering [101], [102], and residual 

energy. Their algorithm determines the optimal number of clusters and determines 

the cluster heads, which is somehow vice the conventional clustering methods such 

as LEACH. The K-Way spectral clustering [103]  determines the number of clusters 

by considering the network field area and the energy consumption caused by the free 

space model amplifier and the multiple attenuation model amplifier. Based on the 

Laplacian matrix, eigenvalues and eigenvectors are determined. Then clustering is 

done using K-mean on the matrix consisting of K-eigenvectors of the Laplacian 
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matrix's largest K-eigenvalues. The last step is selecting the cluster heads, which 

differs from traditional random selection process. Instead, two critical parameters are 

considered when selecting a cluster head: the sensor nodes' residual energy and node 

id. Therefore, the cluster head is at a random position in the cluster in each round. As 

a result, their approach caused a significant reduction in the total consumed energy of 

each round and a noticeable elongation in the network lifetime. In this thesis, the 

motivation to apply the k-way spectral clustering is two-fold. First, applying this type 

of clustering proves to cause a noticeable reduction in the network consumed energy 

which is the most desired objective in WSNs. Second, spectral clustering provides 

several disjoint clusters, and alternative paths exist for each node in the network. 

Therefore, in the presence of faulty nodes or paths, the transmission of messages to 

the destination can still be performed via alternative paths. Since we have considered 

various percentages of faulty nodes and paths, alternative paths will boost the 

network reliability. 

3.3 Network Structure 

In this thesis, we focused on a multi-domain network, where 500 sensors are 

deployed randomly in a field of 200m × 200m for forecasting-based monitoring 

environment as in [98] where three controllers are present at the beginning; one 

placed at the sink and two others to be selected from the network cluster heads. Each 

domain is controlled by a specific controller, where the network state is shared 

between them. The controllers are assumed to be connected via Ethernet cable, as 

shown in Figure 4. The root controller at the sink, considered to be failure-free, 

executes the necessary algorithms for achieving the network steady-state and 

ensuring the load balance among the controllers.  
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Figure 4: Proposed Network Structure 

At the beginning, clustering the nodes is done by applying the k-way spectral 

clustering algorithm [100] which considers the nodes' spatial positions. Afterward, 

we applied metaheuristic algorithms (GA, GRASP) to solve the CPP by optimizing 

various system constraints defined by the fitness function. The fitness function of the 

mentioned algorithms is a multi-objective function aiming at optimizing various 

network performance metrics, specifically maximizing the network connectivity, 

balancing the load, minimizing the network latency, and maximizing network 

lifetime.  In our proposed scheme, we assumed the followings:  

•  The root controller (Croot), placed at the sink, is failure-free. 

•  Sensor nodes are randomly distributed 

•  Communication link is shared between control and data planes  

•  The network topology is known by the root controller  

•  The forwarding tables consist of disjoint paths to ensure reliability in the presence 

of link or node failure.  

•  SDN controllers have the same characteristics. 
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3.4 System Description 

As shown in Figure 4, the model can be considered as an undirected graph G(V, E) 

with sensor nodes representing the vertices V, and set of links E. The model 

incorporates several controllers, i =1,2,…; one is the root controller, and the rest are 

optimally selected using GA and GRASP algorithms from the network's cluster 

heads {1,…,N}. Hence, each controller i is associated with several cluster heads ni, 

where ni is a subset of N. A chromosome consists of a number of genes where each 

gene represents a cluster head. A population is a collection of K chromosomes where 

the detailed description of the population is explained in section 3.5.1.2. For each 

chromosome in K, k random cluster heads are selected, where k  ni, and the fitness 

function is calculated based on the following four objectives.  

• Maximizing the network connectivity: The number of flow messages implicitly 

reflects the strength of network connectivity. The number of flow messages arriving 

at controller i from one of its cluster heads jϵ ni, is denoted by    . An important note 

to be mentioned is even in the presence of faulty paths or nodes, the transmission of 

messages is done via alternative paths to reach the destination. For this, we have 

considered the use of spectral clustering which partitions the network into disjoint 

clusters. Equation (1) shows the maximum average flow among all the K 

chromosomes of the randomly selected k controllers, where nk is the number of 

cluster heads associated with the related controller. 

(1) 

 

• Balancing the controller’s load: Balancing the load among controllers avoids the 

presence of overwhelming controller(s) which negatively affects the network delay 

f1=      
   

  

  
   

 
                     (1) 
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due to the increase in the controller's response time. When using the in-band scheme, 

as in our case, balancing the load among controllers is an important aim to be 

achieved to avoid unnecessary delays. The load of a controller i , denoted by Loadi, 

is the sum of all the successfully flow messages issued by the controller's associated 

cluster heads jϵ ni, (i.e.    ), and neighboring cluster heads j'ϵ nb of the neighboring 

controller b, denoted by     . Therefore, a message is successfully received if a node j 

issuing the flow is nonfaulty, denoted by ftj,, as shown by equation (2), and the path 

between cluster head j and controller i exists, denoted by pji, as shown by equation 

(3). Hence, the load of controller i can be shown as given in equation (4). 

            = 
    

 
 
                                                         

         
       (2) 

   = 
  
 

 
                            

         
                                     (3) 

 Loadi =             
  
    +               

  
                  (4) 

Equation (5) shows the minimum load among all the K chromosomes of the 

randomly selected k controllers. 

f2=            
 
          (5) 

• Minimizing the network delay: The network delay, denoted by DTotal, is the sum of 

transmission delay, propagation delay, and the queuing delay of a controller in each 

chromosome. The transmission delay is the time taken to push all the packet's bits 

into the link, and is given by L/B, where L is the packet size, and B is the bandwidth. 

We neglected the transmission delay in our case as it is very small compared to the 

other delays. The propagation delay is the time needed for a packet to reach the 

destination, and the queuing delay represents the waiting time of a packet in the 

controller’s buffer where each controller’s buffer is modeled as an M/M/1 queuing 

system [60]. The service rate is denoted as μ, and     
 is the arrival rate of requests 
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from cluster head j to controller i. The distance between a cluster head j and a 

controller i is denoted by dji, and the speed of light is denoted by c. Therefore, the 

aim is to minimize the maximum worst-case latency, given by equation (6), which 

must be bounded to a given threshold, denoted by Tthreshold to avoid unnecessary 

delays. 

f3=DTotal=        
   

 

  
     

 

    

   

   
 
      

     s. t DTotal<=Tthreshold      (6) 

• Maximizing the network lifetime: The network lifetime represents the total number 

of alive nodes existing at the end of the simulation. A node j belonging to controller i 

dies when the current energy, denoted by Ej, falls below an energy threshold, denoted 

by Ethreshold. The sensor current energy, Ej, is the difference between the initial 

energy, denoted by E(ini)j and the total consumption energy, denoted by Ejconsumption. 

Equations (7), (8), and (9) provide the calculation details for energy consumption for 

transmitting L bits, receiving L bits, and total energy consumption. The energy 

required for a node j to transmit L bits at a distance dj is denoted by ETj and given by 

equation (7), where Eelec is the energy consumption of node transceiver circuit for 

receiving or transmitting one-bit data, Efs and Eamp are power consumption 

coefficients needed for power amplification in the free channel and multi-path fading 

channel respectively, and d0 denotes the distance threshold to decide which radio 

model is used. The energy required for a node j to receive L bits is denoted by ERj 

and given by equation (8). The total node's energy consumption is the sum of the 

transmission and reception energies as shown by equation (9). 

ETj =  
            

          

            
           

       (7) 

ERj=                            (8) 
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Ejconsumption = ETj + ERj                  (9) 

Therefore, the current energy of a node j is given by equation (10). 

Ej = E(ini)j - Ejconsumption                         (10) 

Equation (11) shows the link efficiency of the corresponding path, denoted by 

         , which must be above a specific threshold, linkeffthreshold. The link efficiency 

increases the network energy efficiency by considering the consumption energy of 

the cluster head when sending L bits to controllers. It also considers the network 

bandwidth denoted by B, and the signal-to-noise ratio denoted as SNR. 

                            (B× log2(1+SNR))/ Ejconsumption                                       (11) 

Equation (12) shows the maximum network lifetime among all the K chromosomes 

of the randomly selected k controllers by avoiding the consideration of faulty cluster 

heads in the system. 

                
 
   

  
                       

 
             (12) 

                             linkeffthreshold  

The fitness function's weight values are given by the scalarization method [66] which 

is capable of creating a single solution. In particular, we have used the Rank Order 

Centroid (ROC) weights. Thus, the final fitness function denoted by Ӻ and given by 

equation (13) shows the maximum fitness value among all the K chromosomes of the 

randomly selected k controllers:  

Ӻ =                                           (13) 

 s.t ω 1+ ω2+ ω3+ ω4=1                             

The fitness function consists of four objectives, and the ROC [66] weight values are 

given by equation (14). 

ωi= 
  

     
  
                                (14) 

Where no is the number of objectives which is 4 in our case. Using equation (14), the 

weight values are: ω1=25/48, ω2=13/48, ω3=7/48, and ω4=3/48. The high weight 
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value of a function reveals a high priority and vice versa. For example, giving f1 a 

weight value of 25/48 means that the network connectivity has the highest priority 

over the rest of the objective functions. 

The proposed Fault Tolerance Metaheuristic-Based Scheme (FTMBS) incorporates 

the use of two metaheuristic algorithms (GA and GRASP) for solving the CPP, and  

the Balance State System algorithm for reaching the steady-state. A detailed 

description of these algorithms is in the following section. 

3.5 Metaheuristic Algorithms 

We have applied metaheuristic algorithms to solve the CPP, specifically, the GA and 

GRASP algorithms. When a network consists of several controllers, finding their 

best locations is an NP-hard problem [41]. The only solution for such problems in a 

reasonable amount of time is by using evolutionary algorithms such as, in our case, 

the Genetic Algorithm (GA) and the GRASP algorithm. 

3.5.1 Genetic Algorithm  

Inspired by natural evolution, the core operators of the GA are inheritance, crossover, 

and mutation. GA optimizes a problem by providing near-optimal solutions [49]. The 

evolution starts with a population of randomly generated chromosomes and happens 

in generations. In each generation, the fitness of every chromosome is evaluated 

from the population where multiple chromosomes are selected from the current 

population using the tournament selection which selects the chromosomes with the 

highest fitness value. Then, the partially matched crossover and mutation operations 

are applied to form a new population. This new population is added to the next 

iteration of the algorithm. The algorithm ends when a maximum number of 

generations is fulfilled, or an optimal fitness level is reached. The probability of 
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using the crossover and the mutation operators are 0.8 and 0.2, respectively. The 

fitness function calculation for each chromosome is provided by Equation (13). The 

algorithm returns the minimum cost value, the average cost value, and the maximum 

cost value with the location of the controllers that are the indices of the cluster heads. 

The pseudo-code of GA [73] is given in Table 2. 

Table 2: Pseudo-code of GA 

Input: Parameter popsize, crossover probability pc, mutation probability 

pm, maximum iteration iter_max, k is number of controllers 

Output: The controllers' locations  

1: initialize popsize individuals; 

2: check feasibility of each individual; 

3: WHILE number of generations <= iter_max do 

4: For i = 1 to popsize do 

5: Ӻ (i) ← φ 

6: Select k controllers from cluster heads, S={1,…,i} is set of cluster 

head ids 

7: For j = 1 to k do 

8: Apply the k-mean method to assign every cluster head to controller 

9: end for 

10: calculate the fitness value Ӻ of each chromosome given in equation 

13 

11: Order the population based on evaluation value;  

12: Perform the Tournament selection process; 

13: Apply the partially matched crossover operator  

14: Apply the mutation operator 

15: Update the population for the next generation; 

16: min_cost  min(Ӻ) 

17: avg_costaverage(Ӻ) 

18: [max_cost, location] max(Ӻ) 

19: end for  

20: END WHILE 

21: return  min_cost, max_cost, avg_cost, S 

3.5.1.1 Chromosome Definition 

A chromosome is a collection of genes of length N; in our case, it is a collection of 

cluster heads found in the given network. Therefore, a chromosome consists of 

sequences of positive integers that represent the IDs of cluster heads. The variable 
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length of the chromosome is represented as the total number of cluster heads, N, in 

the network. 

3.5.1.2 Population Representation 

A population is a collection of chromosomes of population size, popsize, where the 

initial population consists of several chromosomes with the possibility of having 

faulty cluster head(s). For each chromosome of the population, a random selection of  

k controllers from N cluster heads is performed. Then, the k-mean method to assign 

the rest of the cluster heads among these controllers is applied. Then the objective 

function for each chromosome, Ӻ is calculated. Then, the selection of two 

chromosomes, having the lowest fitness value to recover the faulty nodes, is based on 

tournament selection for finding better chromosomes for fault tolerance in the 

network. Then, crossover and mutation are applied. The algorithm returns the best 

solution containing the IDs of the cluster heads for solving the CPP. Figure 5 shows 

an example of chromosome representation for a  given network of several cluster 

heads, N, with a possible solution marked in blue. Each gene value provides the 

cluster head identification number (ID). Therefore, this chromosome contains the 

controllers' locations; i.e., the bold colored IDs are the cluster heads where the 

controllers are placed.  
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Figure 5: Population Representation  

3.5.2 Greedy Randomized Adaptive Search Procedure Algorithm 

The GRASP algorithm initially proposed for the Operations Research practitioners 

[55] consists of two related phases; the construction and local search phases. The 

ending criterion and the elements' quality of the restricted candidate list, denoted by 

RCL, are the two basic parameters of GRASP. A result consists of the best solution. 

The construction phase consists of iteratively constructing a feasible solution, one 

element at a time. Then, the elements in the candidate list are ordered according to a 

greedy function. GRASP consists of a probabilistic component where the best 

candidates are randomly chosen. These best candidates are placed in a list, namely 

RCL. The pseudo-code of GRASP can be found in [55]. 

3.6 Balance State System (BSS) 

Before describing the balance state system's details (BSS), it is necessary to 

determine the controller's response time threshold since it is a triggering factor for 

the BSS. At time interval Tn, a controller i response time for the request issued by its 

associated cluster head member j (jϵni), denoted by         , is calculated by 

subtracting the time the request has arrived at the controller, denoted by tarrive from 
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the time the controller issues its response, denoted by treply, as given by equation(15). 

The response time of a controller i for a request issued by a neighboring cluster head 

j' ϵ nb  belonging to controller b is denoted by         . Hence, the average response 

time of controller i, denoted by AvgRi, is the summation of all the response time 

divided by the load defined in equation (4). The controller's average response time is 

given by Equation (16): 

           = treply-tarrive                             (15) 

                

 

           AvgRi= 

 

The BSS incorporates two interrelated algorithms which are executed by the root 

controller consecutively. The first algorithm is the Balance State Awareness (BSA) 

algorithm presented in Table 3, and the Balance State Warranty (BSW) algorithm 

presented in Table 4. The BSA detects the imbalance state, whereas the BSW ensures 

that the network steady-state is achieved. As stated before, the controller's response 

time is used as a trigger parameter that the root controller checks to execute the BSA 

algorithm. The root controller checks if a non-faulty controller's average response 

time exceeds a certain threshold, denoted by RespT_threshold. The controller 

ensures the network steady-state by executing the BSS algorithm. A significant note 

for claiming a controller to be overloaded is by checking if it is not faulty. This 

condition is essential as a controller could be faulty but not overloaded.  This 

condition is missed in [48] [74]. The extreme point of the changing curve in the first 

and second-order derivatives, denoted by AvgRi'(Tn) and AvgRi''(Tn) respectively, 

represents the threshold of the controller's average response time at time Tn. The first 

and second-order derivatives are given in (17) and (18), respectively. 

 

                  
  
  

  
   

     
                                            (16) 

AvgRi'Tn= 
                     

       
                   (17) 
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After recording the average response time of the controller for different load values 

and finding the first and second derivatives given by equations (17) and (18), we 

found that the point referring to a value of 2ms is a global maxima point having a 

second derivative negative and first derivative zero. We recorded the controller's 

average response time versus load as shown in Figure 6. Accordingly, the controller's 

load threshold, denoted by Loadthreshold, is set to 2600 packets. Table 3 illustrates the 

BSA of the BSS. The algorithm's inputs are the average response time of all 

controllers found in the system and the obtained threshold. Two sets denoted as 

OL_C for overloaded controllers and LL_C for low-loaded controllers are empty at 

the beginning. The root controller checks if all the controllers' average response time 

satisfies the condition of overload; i.e., the controller's average response time is 

above the obtained threshold, and the controller is not faulty, then the controller is 

added to the OL_C set, else, it is added to LL_C set. However, if the controller is not 

overloaded (i.e. faulty), the root controller executes the third algorithm, namely the 

Load distribution of the Faulty Controller denoted by LFC. The LFC algorithm 

distributes the faulty controller's load among the non-faulty and non-overloaded 

controllers, ensuring the network functions smoothly with no delays. Then, the root 

controller applies the metaheuristic algorithms to find another location among the 

nonfaulty cluster heads for the faulty controller. 

AvgRi'
'
Tn= 

                   

       
                     (18) 
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Figure 6: Controller's Average Response Time vs. Load 

When the BSA is triggered, the two produced sets (OL_C and LL_C) are used in the 

BSW algorithm to guarantee that no overloaded controller(s) exists. The BSW 

algorithm handles the load migration process efficiently between controllers. The 

following steps describe the BSW algorithm shown in Table 4. 

Step 1: find the maximum overloaded controller denoted by CO in line 3. Step 2: find 

the heaviest overloaded cluster head denoted by j belonging to the maximum 

overloaded controller and a nonfaulty node having its flag is false to avoid choosing 

the same node in line 4. Step3: find the minimum loaded controller denoted by CL as 

a recipient controller after migrating j to it in line 5. However, before the migration 

process occurs, the root controller makes sure that the recipient controller's load is 

below the given threshold, denoted by Loadthreshold. Then, the migration process is 

done to P <j,CL> in line 9; otherwise, the root controller flags this j and continues 

with the next heavy cluster head of an overloaded controller in line 7. Table 4 

illustrates the BSW migration process, which ensures no overloaded controller exists. 

The condition of no overloaded controller is satisfied if the overall load of the 

recipient low-loaded controller CL is below the load threshold; then, the migration 
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process is done. Otherwise, the heavy cluster head is flagged, and the algorithm 

continues with the next heavy cluster head of the overloaded controller. 

The third algorithm is the Load Distribution of Faulty Controller (LFC), illustrated in 

Table 5, which distributes the load of cluster heads of a faulty controller in a 

balanced way among other controllers considering not to end up having an 

overloaded controller. We specify the threshold load that is the border for not having 

overloaded controllers. The algorithm starts with input information such as the load 

of cluster heads of the faulty controller, load information of the other controllers, and 

the load threshold. First, the set A of load info of CHs is sorted in decreasing order, 

starting from the heaviest CH, and sort the controllers, starting from the lightest one. 

An essential condition for the addition of CH to the controller is that, the controller's 

load should not exceed a threshold denoted by Loadthreshold. If this condition is 

satisfied, the CH is added to the current controller. Otherwise, it is added to the 

second lightest controller only if the receipt controller's total load is within the load 

threshold. Otherwise, the cluster head is flagged. The algorithm then continues with a 

non-flagged heavy cluster head to determine which controller to choose for 

migration. The algorithm stops when cluster heads of faulty controllers are 

distributed among other controllers; i.e., no CHs whose flag=false exist. 
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Table 3: Balance State Awareness (BSA) 

Input: A = { AvgRi, iϵ{1,..,k}, k=3 or 5,RespT_threshold 

Output: OL_C, LL_C  

1: initialize controller set OL_C = { } & LL_C = { } 

2: let i be the serial number of the controller  

3: For i = 1 to  k do 

4: select AvgRi from A , s. t. fault(i) =false  

5: if AvgRi > RespT_threshold then 

6: add i to OL_C 

7: else 

8: add i to LL_C 

9: end if 

10: if fault(i)==True then execute LFC  

11: end if 

12: end For 

13: return OL_C, LL_C 

 

Table 4: Balance State Warranty (BSW) 

Input: OL_C, LL_C,  load information j cluster heads of overloaded controller 

Co     , Loadthreshold,  Croot  

Output: P: CH migration  actions set 

1: initialize node shifting set P ={ }, flag(all CHs,j)=false, Fault(all CHs,j)=false 

2: while ( OL_C isNotEmpty & flag==false ) do 

3: CO =                   ; find maximum loaded controller Co 

4: j = Max {    }s.t fault(j)==false and flag(j)==false; find cluster head of 

maximum load  

5:CL =                          Loadthreshold} 

6: If CL==NULL then Flag(j)=true 

7: Go to step 2 

8: else 

9: add< j;CL> to P 

10: Remove CO from OL_C 

11: Remove CL from LL_C 

12: end if 

13: end while 

14: return P  
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Table 5: Load distribution of Faulty Controller (LFC)  

Input: Load information of all cluster heads j ϵ nx of faulty controller x,     , load of 

nonfaulty controllers at time Tn, Loadthreshold, number of nonfaulty controllers k, 

number of cluster heads nx of faulty controller x.  

Output: P: CH migration  actions set 

1: initialize A set of loads of CHs of faulty controller, B is set of loads of nonfaulty 

controllers, Flag all cluster heads jϵ (1,…,nx)=false 

2: Sort in decreasing order set A={   ,    ,….,    } 

3: Sort B in increasing order B={ Load1, Load2,.., Loadk}  

4: while A IsNotEmpty do 

5: for  i=1 to k do  

6: for  j=1 to nx do 

7:If (Loadi + flag(   =false)<=Loadthreshold ) then  

8: Add <j,i> to P 

9: Update Loadi and the set B 

10: Remove load information of j from A 

11: Goto 2 

12: else 

13: Flag(j)==True 

14: Goto 4 

15: end if 

16: end for 

17: end for 

18:end while  

19: return P 

20: Execute the metaheuristic algorithms to solve CPP 

 

First, three controllers were considered, and various network performance metrics 

were recorded under the execution of the proposed FTMBS scheme. Afterward, we 

considered five controllers, recorded the same network performance metrics, 

compared them using three controllers, and suggested the appropriate number of 

controllers. 

The FTMBS flowchart is shown in Figure 7. We have 500 sensor nodes randomly 

distributed in a specific field area. We have used the K-way Spectral Clustering 

Technique [100] to partition the network into several disjoint clusters. The cluster 

heads are selected based on their current energy; i.e., the current energy should be 
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above a given threshold, denoted by Ethreshold. The run time is set to 300 seconds with 

an arrival rate of 100 packets per second (pps) and service rate of 4000 pps and 

increasing every 10 seconds by 100 packets till the arrival rate is 3000 pps. The root 

controller executes the BSS algorithm to keep the network in a steady state. 

Whenever faulty controller(s) exists during a time interval of 10 seconds and less 

than the simulation time, the root controller will execute the GA or GRASP to solve 

the CPP. Applying the genetic algorithm to solve the CPP satisfying the mentioned 

constraints, simulations for different fault percentages and network performance 

metrics are recorded accordingly. Then, the root controller solves the CPP by 

running the GRASP algorithm. Finally, network performance metrics comparisons 

between GA and GRASP are carried out when three and five controllers are present 

with and without the BSS algorithm. 
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Figure 7: FTMBS Flowchart  
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Chapter 4 

PERFORMANCE EVALUATION 

We have used MATLAB 2019 to run our proposed FTMBS scheme under various 

faulty node percentages. Table 6 presents the simulation parameters [89]. We have 

run our scheme 50 times for each fault percentage and took the average to achieve a 

95% confidence interval. As described in Chapter 3, we have determined the 

controller's average response time threshold, in our case 2 ms, which is the triggering 

factor used for determining overloaded controllers. It is also used as an input 

parameter for the balance state system. We have defined the required average 

percentage of improvements (API) ahead of time, 40% and above for latency and 

successful packets received, 20% and above for controller average load and 

controller's average response time, and 15% and above for the number of alive 

nodes. Finally, we have included the confidence interval estimation for the latency 

values under the GA for three controllers. The confidence interval estimation is 

provided in Appendix B. We have also compared the worst-case latency of FTMBS 

with a clustering-based network partition algorithm (CNPA) [89], where the authors 

place the SDN controllers randomly on the centroid of the clusters found in the 

network. 
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Table 6: Simulation Parameters 

Parameter Value 

Field area 200x200 m
2
 

No.of sensor nodes, V 500 

Crossover probability 0.8 

Mutation probability 0.2 

Population size, popsize 50 

Number of runs, iter_max 50 

Sensor Energy  2 Joules 

Energy Threshold, Ethreshold 0.05 Joules 

Sensing Energy  50nJ/Bit 

Energy required in sending or receiving 1bit(Eelec) 50nJ/Bit 

Packet arrival rate       200packets/s-3000packets/s 

Packet length, L 30 bytes 

Service rate, μ 4000packets/s 

Bandwidth, B 2Mbps 

Efs 10pJ/bit/m2 

Eamp  0.0013pJ/bit/m4 

d0 87m 

Time interval  10 seconds 

Time period 300 secs / 5mins 

RespT_threshold 2ms 

Loadthreshold 2600 packets  

linkeffthreshold 0.2mbps 

Node Fault probability  [0,1,5,10,20,50]% 

Signal to noise ratio, SNR 40 dB 

Latency Threshold, Tthreshold 1.2 ms 

 

Analysis of the results is carried based on the following network performance 

metrics: 

4.1 Worst-Case Latency  

We have conducted different simulations for analyzing the worst-case latency given 

by equation (6) to examine the performance of the proposed FTMBS. First, we 

recorded the latency when no heuristic algorithms are executed. We randomly placed 

the required number of controllers on cluster heads and recorded the latency. Then, 

we applied the cluster-based network partition algorithm (CNPA) [89] that considers 

no heuristic algorithm to solve the CPP. On the contrary, authors have partitioned the 
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network into k given clusters by finding the centroids and allocating the nodes 

among these centroids, then placing the controllers at the centroids. We have 

compared the worst-case latency with these algorithms.  

4.1.1 Worst-Case Latency Analysis for FTMBS 

As described in Chapter 3, we have recorded the latency results when running the 

GA and GRASP algorithms with and without the BSS for three and five controllers. 

The BSS has a positive impact on network latency under GA in the presence of 

faulty nodes for three and five controllers as shown in Figure 8 and Figure 9, 

respectively. The same impact under the GRASP algorithm can also be observed as 

shown in Figure 10,  and Figure 11, respectively. We can see that the latency has 

been decreased when using five controllers instead of three controllers for both GA 

and GRASP algorithms. Taking into account the required API mentioned at the 

beginning of this chapter, we imply using three controllers instead of five controllers 

despite the marginal improvement in latency achieved with the five controllers case.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8:  Network Latency for 3 Controllers under GA 
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Figure 11: Network Latency for 5 controllers under GRASP 

4.1.2 Worst-Case Latency Analysis for Different Algorithms 

First, we have considered three controllers to be implemented on the cluster heads. 

The first method randomly places the three controllers on the cluster heads found in 

 
Figure 9: Network Latency for 5 Controllers under GA 

 

 
Figure 10: Network Latency for 3 Controllers under GRASP 
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the network after applying the k-spectral clustering method. The second method 

applies the CNPA proposed by Wang et al. [89], where the network is clustered into 

k clusters, k value varies as [1-6]. In our case, we choose k=3. The algorithm 

randomly chooses a node to be the center of the network. It tries to find the actual 

centroid by calculating the sum of worst-case latency between pairs of nodes and 

finds the node of minimum sum latency to be the first centroid. The node with the 

maximum sum of worst-case latency is selected as the second centroid. Then, the 

algorithm allocates the nodes to these two centroids based on minimum latency. 

Once a node is allocated to one of the centroids, recalculation for the centroid is 

done, and this continues till the network is divided into k clusters. We have 

considered CNPA and random algorithms with and without the BSS algorithm to 

analyze the impact of BSS on latency. Figure 12 shows the worst-case latency of the 

algorithms mentioned above compared to the proposed FTMBS algorithm with and 

without the BSS under the GA. In the random method, the network is clustered using 

k-spectral clustering, which gives the optimal number of disjoint clusters. When a 

network is well clustered, the latency is decreased. On the other hand, in CNPA, the 

network is clustered into three clusters, and the controllers are placed at the centroids 

of these clusters. This explains the cause behind having the latency of the random 

method less than that of CNPA. Also, the proposed FTMBS under the GA has 

achieved the least worst-case latency compared to the random method and CNPA 

algorithm. In the proposed FTMBS, the placement of controllers is formulated as a 

multi-objective function to optimize the worst-case latency, connectivity, load 

balance among the controllers, and network lifetime. When the BSS algorithm is 

executed on FTMBS,  the nodes selected as cluster heads deplete energy during 

simulation; therefore, the controller selects another node to be cluster head. In 
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addition, the location of each controller is not fixed. On the contrary, the root 

controller executes the metaheuristic algorithms to optimally select the controllers 

once faulty controllers are found. However, in CNPA, the selected nodes as centroid 

for every cluster after finding the k clusters do not change during simulation, which 

is a drawback as a sensor node depletes energy due to transmitting data. This 

drawback is negatively reflected in the network connectivity, reliability, and overall 

network performance. Hence, the FTMBS algorithm shows its superiority, even in 

the presence of faulty nodes,  over CNPA and random algorithms. In addition, the 

BSS algorithm shows a positive impact on reducing the latency that is affected by 

overloaded or faulty controller(s). As shown in Figure 8, the BSS algorithm has 8% 

and 10%  improvements in latency over random and CNPA algorithms, respectively. 

Also, the FTMBS with the BSS algorithm has 11% and 14% improvements over 

random and CNPA algorithms, respectively. Hence, the superiority of the proposed 

FTMBS is obvious.  

 
Figure 12: Latency Analysis for Different Algorithms 
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4.2 Network Lifetime 

Recall that network lifetime is defined as the total number of alive nodes existing at 

the end of the simulation given by equation (12). The more the network energy is 

saved, the more alive nodes will exist. Table 7 and Table 8 show the total number of 

alive nodes under GA and GRASP algorithms with and without the BSS algorithm 

when three and five controllers are used, respectively. As shown in Table 7 and 

Table 8, the number of alive nodes for both algorithms with BSS is higher than 

without BSS. Also, the number of alive nodes under the GRASP algorithm is more 

than that under the GA algorithm. However, the BSS has more effect on improving 

the number of alive nodes under the GA algorithm than the GRASP algorithm. Using 

five controllers, the number of alive nodes is slightly more than when using three 

controllers under the GA algorithm. The API for GA and GRASP algorithms with 

and without BSS algorithm are 13% and 11 % when using three controllers 

compared to 24% and 20% when using five controllers, respectively. 

Table 7: Network Lifetime for 3 Controllers 

Fault % 

  

Number of Alive Nodes for 3 Controllers under Different Fault 

Percentages 

GA GRASP GA GRASP % improvement 

with BSS without BSS GA GRASP 

0 304 419 303 411 0.3 1.9 

1 235 252 205 250 15 1 

5 196 237 173 234 13 1 

10 170 203 145 189 17 7 

20 149 190 137 146 9 30 

50 46 57 37 46 24 23 
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Table 8: Network Lifetime for 5 Controllers 

Fault % 

  

Number of Alive nodes  for 5 Controllers under Different 

Fault Percentages 

GA GRASP GA GRASP % improvement 

with BSS without  BSS GA GRASP 

0 413 421 314 382 31 10 

1 243 254 198 246 23 2 

5 198 245 189 204 4 20 

10 189 241 154 200 23 21 

20 181 198 148 168 22 18 

50 48 63 34 42 41 50 

 

4.3 Execution Time of Balance State System  

We used the MATLAB utilities to determine the execution time of the BSS. As seen 

in Table 9, the execution time of BSS is more when using five controllers than when 

using three controllers under both the GA and GRASP algorithms. Since 

connectivity is improved when using five controllers, the execution time needed to 

achieve this connectivity improvement increases. However, in GRASP, the 

execution time is less than that in GA. The execution time improvement percentages, 

denoted as % fastness, in GRASP is better or faster when using three controllers than 

when using five controllers, as shown in Figure 13. 

 Table 9: Execution Time of BSS (sec)  

Fault % 

  

Exec.Time_BSS (sec) for 3 

Controllers. 

Exec. Time_BSS (sec) for 5 

Controllers. 

GA GRASP %fastness GA GRASP %fastness 

0 0.08 0.06 35.05 0.11 0.09 24.15 

1 0.12 0.09 32.19 0.21 0.17 23.10 

5 0.15 0.12 27.23 0.24 0.20 21.35 

10 0.16 0.12 23.07 0.26 0.22 17.51 

20 0.17 0.15 7.36 0.27 0.26 3.62 

50 0.29 0.27 7.21 0.38 0.37 2.67 
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Figure 13: Percentage of Execution Time Difference Comparison 

4.4 SDN Controller's Average Response Time  

The controller's average response time given by equation (16) is a critical factor 

which implicitly indicates the presence of overloaded controller(s). Therefore, it is 

counted as an essential factor for improving the network QoS. Table 10 presents the 

average response time, measured in nanoseconds (ns) when using three and five 

controllers under GA and GRASP algorithms with BSS. Since the load of five 

controllers is more well distributed than three controllers, it is clear that the average 

response time of five controllers is less than three controllers under both algorithms. 

Also, the average response time of the controllers under the GRASP algorithm is 

better than that of the GA algorithm for three and five controllers. However, the 

percentage of improvement in controllers' response time when using three controllers 

is much more than that when using five controllers, as shown in Figure 14. 
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Table 10: Controller's Average Response Time (ns) 

Fault % 

  

Avg. Resp. Time (ns) :3  

controllers 
Avg. Resp.Time (ns):5 controllers 

GA GRASP % improvement GA GRASP % improvement 

0 541 438 19 341 338 1 

1 548 440 19 348 340 2 

5 551 445 19 351 345 2 

10 553 450 18 353 350 1 

20 554 451 18 354 351 1 

50 555 452 18 355 352 1 

 

 
Figure 14: API of Controller's Average Response Time Comparison 

4.5 Average Controllers' Load under GA and GRASP Algorithms 

We have recorded the average load of controllers given by equation (4) when using 

three and five controllers. It can be seen that when three and five controllers are 

present in the network, the controllers' load is well distributed for GA and GRASP 

algorithms with the BSS algorithm. However, when three controllers are used and 

less than or equal to 10% of nodes are faulty, the load is improved under GA better 

than GRASP and vice versa when 20% of nodes are faulty. The obtained results are 

illustrated in Table 11. When using five controllers and less than or equal to 20% of 
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faulty nodes are present, the load is improved under GA better than GRASP and vice 

versa when 50% of nodes are faulty, as illustrated in Table 12. It is worth to notice 

that, as the percentage of faulty nodes increases, the percentage of load improvement 

decreases. 

Table 11: Average Controllers' Load for 3 Controllers 

Fault % 

  

Average Controllers' Load for 3 Controllers 

GA GRASP GA GRASP 
% Load improvement 

GA GRASP 
with BSS without BSS 

0 44 42 48 42 6 2 

1 76 77 93 84 18 8 

5 125 118 140 130 10 9 

10 135 132 160 140 15 6 

20 161 140 170 149 5 6 

50 170 158 188 180 10 12 

 

Table 12: Average Controllers' Load for 5 Controllers 

Fault % 

  

Average Controllers' Load(PKTS) for 5 Controllers 

GA GRASP GA GRASP 
% Load improvement 

GA GRASP 
with BSS without BSS 

0 34 32 57 52 40 39 

1 66 57 87 73 24 21 

5 118 113 125 116 5 2 

10 128 127 154 144 16 6 

20 132 136 165 147 20 7 

50 160 153 168 163 5 6 
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4.6 Percentage of Successfully Received Packets  

One of the critical QoS factors is the percentage of successfully received packets.  

The average number of successfully received packets by controller i is the ratio of 

total flows issued by its associated nodes ni to its load. Having k controllers in the 

system, the average percentage of successfully received packets in the system, 

denoted by PR, is given by equation (19).  

PR=
 

 
   

   

     
       

   
 
                          (19)  

Figure 15 and Figure 16 show the difference between the percentage of successfully 

received packets when GA and GRASP algorithms are executed with and without the 

BSS, respectively. The percentage of packets received when using BSS is more for 

both algorithms than when no BSS is used. When no faulty nodes are present in the 

system and five controllers are used, the percentage of successfully received packets 

is almost 20% better than when three controllers are used. As the percentage of faulty 

nodes increases, the percentage of successfully received packets decreases as 

expected.  

 
Figure 15: Percentage of Successfully Received Packets under GA and BSS 
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Figure 16: Percentage of Successfully Received Packets under GRASP and BSS 

4.7 Complexity Analysis 

The main source of the computational complexity in the FTMBS is the metaheuristic 

algorithm which is in O(M·popsize
2
), where M is the number of sub-objectives, and 

popsize is the population size. To express the overall computational complexity of 

the proposed scheme, we also have to consider the number of iterations iter_max and 

the number of cluster heads, K, that are included in the chromosome structure. The 

complexity of the individual evaluation process is bounded by computing the load of 

the cluster heads in O(|K|), computing the delay of the graph in O(|K|), computing the 

network lifetime, which is in O(|E|
2
 · |V |). The computational complexity is bounded 

roughly in O(iter_max · (M · popsize
2
 + popsize · |E|

2
 · |V|. |K |

2
)), which is 

acceptable for the proposed network structure. 

4.8 Discussions 

We have recorded the best, average, and worst fitness values on an average of 50 

runs when different percentages of faulty nodes exist in the network. It can be seen 

from Figure 17 that the proposed FTMBS algorithm achieves fault recovery, where 

for instance, the lowest or worst fitness value when 1% of faulty nodes exist is           

-0.83x10
6
 and gradually increases to reach 3.25x10

6
 on an average of 50 runs. It can 

also be seen that the fitness value is affected by the percentage of faulty nodes.  
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Figure 17: Fitness Value for Different Percentages of Faulty Nodes 

The average percentages of network performance improvement of five controllers 

over three controllers are shown in Table 13. The related performance metrics have 

been recorded for three and five controllers under different faulty node percentages 

for both GA and GRASP algorithms with BSS. As seen in Table 13, those  

improvements vary for different percentages of faulty nodes. Recall that the 

predefined criteria for selecting five controllers are: 40% and above for latency and 

successful packets received, 20% and above for controller average load and 

controller's average response time, and 15% and above for the number of alive 

nodes. Since the obtained results are 38%, 36%, 17%, 13%, and 11%, we 

recommend implementing three controllers instead of five controllers. 

Table 13: Percentages of Network Performance Improvement of 5 Controllers over 3 

Controllers 

 

Fault 

% 

 

Latency Avg. Resp. Time Avg. Load 
No.Alive 

Nodes 

Successful 

Packets 

Received 

GA GR GA GR GA GR GA GR GA GR 

0 39 39 37 23 22 24 36 0 32 6 

1 39 39 36 23 13 26 3 1 2 12 

5 38 38 36 22 5 4 1 3 11 7 

10 38 37 36 22 5 4 11 19 18 8 

20 37 37 36 22 18 3 21 4 21 8 

50 38 36 36 22 6 3 4 11 18 28 

API 38 38 17 17 13 6 11 10 36 22 
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4.9 Verification using NSGA-II 

In our study, a heuristic approach called nondominated sorting genetic algorithm 

NSGA-II [52], [104] has been adopted to verify the goodness of the proposed 

FTMBS scheme for the controller placement problem. Goodness here is referred by 

how accurate the GA solutions are approximated to Pareto optimal front obtained by 

NSGA-II. NSGA-II is a population-based procedure used in recent studies for its 

efficiency in finding the Pareto frontier by applying two main approaches: first, 

nondominated sorting of the population via elitism and second, obtaining 

diversification via the crowding distance approach. We have used MATLAB 2019 

and manipulated the NSGA-II [70] code to fit our multi-objective optimization 

problem.  

The primary tool for viewing solutions in any multi-objective optimization problem 

is using the scatter plot [104]. However, this approach analyses only two objectives 

at a time by focusing on the quality of a set of solutions,  relations, and distributions. 

Unfortunately, the scatter plot is applicable in 2D or 3D Cartesian coordinate space,
 

which is difficult to apply to this study as our multi-objective optimization problem 

consists of four dimensions. Therefore, an alternative to view data in four or more 

dimensions is by recording the Euclidean distance between GA solutions and the 

Pareto-optimal solutions obtained by NSGA-II. The minimum value refers to which 

optimization criteria the set of solutions belongs to. Table 14 illustrates the Euclidean 

distance obtained for GA solutions for different weight values according to the 

optimization target. The first column is for optimizing the connectivity by giving 

highest weight value for ω1; the second column is for optimizing the load balance by 

giving highest weight value for ω2; the third column is for optimizing the worst-case 
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latency by giving highest weight value for ω3; and the fourth column is for 

optimizing the network lifetime by giving highest weight value for ω4. Indeed, by 

giving the highest weight value to connectivity as shown in column 1, the Euclidean 

distance is the smallest for f1, referring to connectivity optimization compared to the 

rest of the objectives. The same can be seen for optimizing the load balance by 

giving ω2 the highest value, and so on. We can conclude that a good approximation 

of our solutions to the Pareto frontier has been achieved. 

Table 14: Euclidean Distance for GA Solutions 

Pareto optimal  

NSGA-II 

Euclidean Distance Between GA Solutions and NSGA_II 

Solutions 

ω1=25/48, ω1=13/48, ω1=13/48, ω1=13/48, 

ω2=13/48, ω2=25/48, ω2=7/48, ω2=3/48, 

ω3=7/48, ω3=7/48, ω3=25/48, ω3=7/48, 

ω4=3/48 ω4=3/48 ω4=3/48 ω4=25/48 

f1 0.01 2.4 3 3.2 

f2 2 0 4.5 7 

f3 4 5.8 0.1 5 

f4 7 6.9 7.2 0.15 
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Chapter 5 

THE ALBATROSS SCHEME 

This chapter presents the ALBATROSS scheme which focuses on improving the 

wireless sensor network lifetime by adopting the flying technique of the albatross 

bird in the cluster head selection process. In fact, this scheme is a modification of the 

FTMBS scheme presented in Chapter 3. However, in FTMBS, nodes are eligible to 

be cluster heads if the nodes' energies are above a given threshold.  Opposing to the 

cluster head selection process in FTMBS, here, we propose a new cluster head 

selection process integrated with the dynamic energy soaring scheme which is 

adopted from nature. Thus, we named the whole scheme as the ALBATROSS 

scheme. The details of the main component of this scheme, and it’s performance 

analysis are presented below. 

5.1 Dynamic Energy Soaring Scheme (DESS) 

The albatross bird is a clever creature that uses the windshields to avoid exhausting 

itself energy when flapping its wings, and as a result, is able to travel long distances. 

Since the wings' excessive flapping depletes the bird's energy, the albatross bird 

soars between different pressure windshields to keep itself lifted. The albatross bird's 

flying or soaring technique has inspired researchers at the Massachusetts Institute of 

Technology to develop a new wind and energy harvesting model by adopting the 

albatross dynamic soaring flying technique. The model focuses on designing energy-

efficient wind-propelled drones and gliders to monitor the remote regions for long-

duration, long-range under various wind conditions [105]. The dynamic soaring 
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technique saves the bird's energy and a lot of effort, allowing the albatross bird to 

travel far distances in a single day with minimum flaps of its wings [105]. For 

centuries, scientists have noted that these specific kinds of birds make use of 

different windshields by soaring and diving to keep themselves flying for hours, 

precisely just above the ocean surface as if riding a sidewinding rollercoaster [105], 

[106]. Figure 18 shows the heart rate of the albatross bird during different postures 

[106]. It shows that the albatross bird's heart rate during flying posture falls almost to 

near basal levels. That is, it falls to the resting posture. However, researchers in [105] 

have revealed that the birds adaptively fly by shifting among the high-pressure 

windshields and low-pressure windshields by an average angle of 60 degrees, 

contradicting the scientists' claim of flying in 180 degrees or half-circle. 

 
Figure 18:  Heart Rate Levels of Albatross Bird [106] 

In WSNs, the quick energy depletion of sensor nodes is mainly caused by complex 

routing processes and data transmission, resulting in early dead node occurrences and 

loss of network connectivity. To enhance the network lifetime, provide high energy 

saving, and achieve network stability in the presence of defective nodes in WSN, we 
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were motivated to adopt the albatross bird's flying technique in our proposed routing 

algorithm.  

In [106], Bradshaw stated that albatross birds, when heading north, fly in 

approximately 60
o
 anticlockwise loops and change to clockwise loops when heading 

south. We adopted the flying scheme in our proposed dynamic energy soaring 

scheme (DESS) to select cluster heads optimally based on Bradshaw's claims. This 

soaring technique between high energy level nodes and low energy level nodes from 

the same energy level set is done by 60
o 

shifting [105]. Hence, the proposed 

ALBATROSS scheme consists mainly of two correlated algorithms. One is adopted 

from our previous Fault Tolerance Metaheuristic-Based Scheme (FTMBS) that we 

have already used to solve the CPP [107]. However, we applied the nondominated 

sorting genetic algorithm (NSGA-II) to the solutions provided by the GA in FTMBS. 

The DESS is used for the cluster head selection process. We claim that adopting this 

dynamic soaring technique saves network energy and hence improves the network 

lifetime as energy is an essential issue in wireless sensor networks. This technique is 

fundamentally based on the node's energy and the node's position, unlike the k-way 

spectral clustering technique which is based on the node's energy and random 

selection of cluster heads [100]. Some missing metrics in [68] as the network 

resiliency and load balancing between controllers are also considered in our scheme. 

Up to our knowledge, the Dynamic Energy Soaring Scheme for cluster head 

selection is presented for the first time in our work. Without loss of generality, we 

assume the followings:   

•  A non-failure controller located at the sink called Croot, root controller. 

•  Random distribution of sensor nodes 
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•  In-band control path and data plane path 

•  Root controller knows the location of every node 

•  All controllers include in their forwarding tables the alternative paths in the 

presence of failure for their associated nodes  

•  Homogeneous SDN controllers.  

•  The shifting scheme is anticlockwise towards the high energy level set and 

clockwise towards the low energy level set.  

The flowchart of the dynamic energy soaring scheme (DESS) is shown in Figure 19. 

Here, the energy of nodes is an essential factor for the DESS algorithm. The nodes 

are sorted based on their energy levels. Nodes with energy levels higher than a given 

threshold are added to a set called high set and denoted by setH{}. Based on this set, 

nodes are again placed into two sets. The first set is the low energy level set denoted 

by LES, consisting of nodes having energy level above the minimum energy level 

(Ermin) to be a cluster head (which is 0.1 J in our case), and less than half the initial 

energy level. The second set is the high energy level set denoted by HES, consisting 

of the rest of nodes. Then the algorithm finds the means (Xmean,Ymean) for both HES 

and LES sets. Then, for each node in both sets, the corresponding image node 

denoted by (Ximage,Yimage) is found by shifting 60
o
 anticlockwise for HES and 

clockwise for LES. Equations (20), (21), (22), and (23) illustrate the coordinates of 

the image node after shifting for HES and LES, respectively [108]. 

            Ximage=cos(60)*(X-Xmean)-sin(60)*(Y-Ymean)+Xmean               (20)                                

           Yimage=sin(60)*(X - Xmean)+cos(60)*(Y-Ymean) + Ymean         (21) 

           Ximage=cos(-60)*(X-Xmean)-sin(-60)*(Y-Ymean)+Xmean    (22)                              

           Yimage=sin(-60)*(X - Xmean)+cos(-60)*(Y-Ymean) + Ymean   (23) 
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After finding the mean for both sets, the distance value between each image node and 

the mean node is calculated and the minimum one is chosen. Then, the closest node 

to this image node is selected as the cluster head. If the node belongs to the HES set, 

the algorithm will start again from LES for the next cluster head selection and vice 

versa. By adopting this dynamic soaring among different nodes' energies eligible to 

be cluster heads, the overall network lifetime is improved. The proposed 

ALBATROSS scheme is presented in Figure 20. As shown, the ALBATROSS 

algorithm incorporates the FTMBS for solving the controller placement problem 

adopted from our previous work [107] and the DESS algorithm illustrated in Figure 

19. 
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Figure 19: Flowchart of DESS Algorithm 
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Figure 20:  Flowchart of the ALBATROSS Scheme 

5.2 Performance Evaluation 

We have used MATLAB 2019b to run the proposed ALBATROSS scheme. We run 

the scheme 50 times for each fault percentage and took the average to achieve a 95% 

confidence interval. Three SDN controllers are used for 500 randomly deployed 

sensor nodes in a 200x200 m
2
 field area under various faulty nodes' percentages. 
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Evaluation comparisons in terms of various network performance metrics were 

carried out against three energy-aware algorithms found in literature. The first 

algorithm proposed by the authors of [8] is a distributed cluster-based algorithm 

named as EEFCA, aiming to provide fault tolerance in the presence of CHs failures 

and whose cost function is based on nodes' energy and locations.  Each sensor node 

does the cost function calculation to choose its cluster head among relay nodes 

having the highest cost value. The second algorithm is the GCEEC [95], an energy-

based routing protocol. In GCEEC, the centroid position is considered for CHs 

election, and gateway nodes are selected from CHs to release the load from the 

overwhelming CHs and forward the data to the base station. The cluster head 

calculates the average cluster's energy and the weight for the gateway nodes in each 

cluster adjacent to the neighboring cluster head. The one with the highest weight is 

selected as a gateway node for the respective cluster. The third algorithm is FTMBS 

[107], a multi-objective algorithm aiming to achieve network steady-state, enhance 

load balance among controllers, increase throughput, and minimize the network 

delay in the presence of faulty nodes. Analysis of results carried is based on the 

following network parameter metrics: 

5.2.1 Worst-Case Latency  

Figure 21 presents the latency comparison of the algorithms mentioned above with 

the proposed ALBATROSS algorithm, where the worst-case latency is calculated 

using equation (6) in Chapter 3. As it is seen, the ALBATROSS scheme outperforms 

FTMBS, GCEEC, and EEFCA algorithms by 10%, 15%, and 20%, respectively. In 

EEFCA and GCEEC algorithms, calculations are done by sensor nodes and cluster 

heads, respectively, which add more delay to the network. In the FTMBS scheme, 

the root controller does all the required calculations. Specifically, it runs the GA to 



68 

 

select CH instead of the faulty node and optimally selects a controller instead of the 

faulty one. As a whole, this adds more delays, especially in the presence of more 

than one faulty CH. However, in the proposed ALBATROSS scheme, each 

controller runs the GA to select a CH instead of the faulty one. In this case, the 

controller does not wait for the main controller response, and hence, the overall 

network latency is decreased. 

 
Figure 21: Latency Comparison 

5.2.2 Network Lifetime 

The network lifetime, given by equation (12) in Chapter 3, is a vital network 

performance metric, especially for wireless sensor networks. We have recorded the 

total number of alive nodes existing at the end of the simulation as a reflection of 

network lifetime under various faulty nodes' percentages. Balancing the energy 

consumption among the sensor nodes ensures elongated network functionality, and 

hence, increases the number of alive nodes at the end of the simulation. Figure 22 

shows the total number of alive nodes for the proposed ALBATROSS scheme 

against FTMBS, GCEEC, and EEFCA algorithms. Energy depletion occurs faster in 

EEFCA and GCEEC algorithms due to excessive calculations done on behalf of 
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sensor nodes which causes early death of nodes. In FTMBS, the main controller 

selects the highest energy node to be a CH, and hence, the nodes' energy 

consumptions are not balanced. The nodes' energy consumption negatively affects 

the network stability. As it can be seen from Figure 22, the proposed ALBATROSS 

algorithm outperforms FTMBS, GCEEC, and EEFCA algorithms by 15%, 20%, and 

25%, respectively. 

 
Figure 22: Network Lifetime Comparison 

5.2.3 Percentage of Successfully Received Packets  

One of the critical QoS factors is the percentage of successfully received packets 

given by equation (19) in Chapter 3. Figure 23 shows the percentage of successfully 

received packets under various faulty nodes' percentages. As expected, the 

percentage of successfully received packets decreases with the increase in faulty 

nodes. Since energy is balanced among the nodes, more alive nodes exist under the 

ALBATROSS scheme. Balancing the network energy has a positive impact on the 

percentage of successfully received packets. As seen from the figure, the 
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ALBATROSS scheme outperforms FTMBS, GCEEC, and EEFCA algorithms by 

15%, 20%, and 25%, respectively. 

 
Figure 23: Percentage of Successfully Received Packets Comparison 

5.2.4 Energy Consumption 

Energy is a critical factor in wireless sensor networks since sensors are equipped 

with limited power in which data transmission consumes most of the sensors' energy. 

Although clustering helps to save the overall network energy, the efficient selection 

of cluster heads directly affects the network's energy consumption. ALBATROSS 

scheme is a cluster-based approach where the network is clustered into several 

disjoint clusters. In FTMBS [107], the cluster heads are selected from nodes having 

the highest energy level in each round. However, balancing the energy consumption 

among sensor nodes is not considered. In the ALBATROSS scheme, a cluster head is 

selected by applying the shifting technique described in the DESS algorithm which 

balances the sensor nodes' energy consumption. The soaring mechanism between the 

high-level energy nodes is done to balance the energy level among nodes. The 

energy consumption given by equation (9) in Chapter 3, is shown in Figure 24 under 
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various percentages of faulty nodes for the four algorithms. Note that when the 

percentage of faulty nodes increases, the number of dead nodes increases, and as a 

consequence, the total network energy consumption decreases.  

On the other hand, due to sensor nodes' excessive calculation in both GCEEC and 

EEFCA algorithms, the network energy consumption is higher than that of the 

ALBATROSS algorithm. Results show that the ALBATROSS algorithm 

outperforms FTMBS, GCEECA, and EEFCA algorithms by 10%, 20%, and 25%, 

respectively. Hence, we can conclude that the ALBATROSS algorithm is an energy-

efficient-based algorithm. 

 

Figure 24: Network Energy Consumption Comparison 

5.3 Applying ALBATROSS Scheme on Real Internet Topologies 

We have applied the proposed ALBATROSS scheme on real datasets taken from the 

internet topology zoo [109]. We run the scheme to choose the best number of 

controllers starting at one controller to seven controllers for the JANET network and 

GEANT network. In an unweighted graph, the distance between two connected 



72 

 

nodes is the number of edges counted in the shortest path [26]. The network's 

diameter is defined as the maximum distance between any two connected nodes. We 

specified the latency constraint of a network as half of the diameter [26]. Hence, we 

set the latency constraints for Janet and GEANT networks as 14ms and 10m, 

respectively. Table 15 illustrates the latency and the execution time comparison 

results when different numbers of controllers denoted by N_CO are used. The 

proposed ALBATROSS scheme outperforms the two schemes [68] and [83] in terms 

of latency by 26% and 15%, respectively. It is worth to mention that since the 

ALBATROSS is a cluster-based network scheme, the overall latency decreases with 

the decrease in distance between nodes. Another fact is the ALBATROSS scheme 

dynamically chooses cluster heads by soaring among the nodes to prevent quick 

energy depletion. Hence, it increases the network lifetime. Conversely, as shown in 

the last main column of Table 15, the average execution time of the ALBATROSS 

scheme exceeds that of [68] and [83] by almost 5% and 7%, respectively. 
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5.4 Computational Complexity 

The computational complexity of the ALBATROSS is determined by the 

metaheuristic algorithm execution which is in O(M·popsize
2
), where M is the 

number of sub-objectives and popsize is the population size. To express the overall 

computational complexity of the scheme, we also have considered the number of 

iterations iter_max and the number of cluster heads, K, that are included in the 

chromosome structure. The complexity of the individual evaluation process is 

bounded by computing the load of the cluster heads in O(|K|), computing the delay of 

the graph in O(|K|), computing the network lifetime, which is in O(|E|
2
 · |V |). The 

complexity of the DESS algorithm is bounded by the number of cluster heads 

O(|K
2
|). Therefore, the computational complexity is bounded roughly in O(iter_max · 

(M · popsize
2
 + popsize · |E|

2
 · |V|. |K |

2
)+ |K |

2
 )),which is acceptable for the 

proposed network structure. 

Table 15: Latency and Execution Time Comparison 

N_CO Topology 

Latency (ms) Execution Time (s) 

ALBATROSS 
Ref.  

[68] 

Ref. 

[83] 
ALBATROSS 

Ref.  

[68] 

Ref. 

[83] 

3 
JANET 12 14 - 11 11 - 

GEANT 15.8 - 16.8 10 - 10 

4 
JANET 10 14.1 

 
12 12 - 

GEANT 14 - 16.5 13 - 13 

5 
JANET 10.2 15 - 22 21 - 

GEANT 14.3 - 16.6 19 - 18 

6 
JANET 11 17 

 
35 34 - 

GEANT 14.4 - 17 34 - 33 

7 
JANET 13 18 - 46 45 - 

GEANT 14.5 - 17.5 45 - 43 

8 
JANET 13.8 18.5 

 
57 55 - 

GEANT 14.7 - 18 56 - 54 

9 
JANET 14 19 - 66 63 - 

GEANT 15.1 - 18.5 67 - 64 
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5.5 Discussion 

Heuristic algorithms are commonly used in research studies to solve NP-Hard 

problems in a reasonable amount of time. When search space is too complex, such as 

the GEANT network, which consists of 40 nodes, and requires 91390 combinations 

for placing four controllers. Therefore, evolutionary algorithms are the most suitable 

means to solve such problems. Most researchers have used metaheuristic algorithms 

for solving the CPP to optimize the network performance metrics. However, 

efficiently saving the network's energy with the presence of defective nodes was 

rarely considered. This motivates us to adopt the albatross bird's natural dynamic 

energy soaring scheme in the proposed DESS algorithm. The DESS effectively 

balances the network energy consumption by soaring among the high and low energy 

level nodes to select the network cluster heads. This soaring process for the cluster 

head selection involves shifting by 60
o
 counterclockwise for the high energy level 

nodes and clockwise for the low energy level nodes. The cluster head selection is 

essential since the controllers are chosen among these cluster heads by applying the 

GA algorithm. Actually, the presented ALBATROSS scheme is a modification to the 

FTMBS presented in Chapter 3. In FTMBS, the main controller keeps choosing the 

highest energy level node to be CH which may lead to an imbalance in energy 

consumption on one hand, and selection of new CH in presence of faulty CH for 

each cluster on the other hand. In the ALBATROSS scheme, the main controller only 

chooses the controllers instead of the faulty ones, and the CH selection is done on 

behalf of the associated controller. The proposed ALBATROSS scheme outperforms 

the FTMBS, GCEEC, and EEFCA schemes in terms of the network lifetime, 

percentage of successfully received packets, latency, and energy consumption. The 

ALBATROSS scheme also showed latency improvement over [68] and [83] when 
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applied over Janet and GEANT networks, respectively. The obtained network 

performance improvements added marginal increase in the execution time because of 

involving more calculations in the DESS algorithm.  
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Chapter 6 

CONCLUSION 

The presence of faulty nodes in wireless sensor networks is an expected natural 

event. Such event directly affects the network performance which has been rarely 

addressed in most researches. Maintaining the network's steady-state positively 

affects the network performance which can mainly be achieved by balancing the load 

among controllers. The proposed FTMBS scheme is the first to address various 

network performance metrics under different faulty nodes percentages. The FTMBS 

has shown its feasibility by improving the network QoS and network performance 

parameters. For instance, the network energy and reliability were improved with 

better connectivity and throughput. The BSS algorithm, a fundamental component in 

FTMBS, positively affects different network performance metrics under the GA and 

GRASP algorithms. However, the network performance improvement under GA and 

GRASP algorithms varies when three and five controllers are present. When three 

controllers are used, the BSS noticeably improves the average load of controllers 

under the GA by 10%, whereas this improvement is 6% under the GRASP algorithm. 

However, when five controllers are used, these improvements are found as 16% and 

13% respectively. Also, when three controllers are present, the BSS improves  the 

network lifetime under GA by 13%, whereas this improvement is 11% under the 

GRASP algorithm. when three controllers are present. However, when five 

controllers are used, these improvements are found as 24% and 20% respectively. On 

the other hand, the BSS improvements of the latency and percentage of successfully 
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received packets are slightly better under GRASP algorithm for both three and five 

controllers cases. Taking into consideration the obtaind average percentage of 

improvments and the predefined criteria for the selection of five controllers, we 

recommend the use of three controllers. The efficiency of the proposed FTMBS is 

verified using NSGA-II which shows the approximation of GA solutions to the 

Pareto frontier.  

It is well known that network lifetime is a critical factor in WSNs which is directly 

affected by the used clustering technique. Based on this fact, we have proposed the 

ALBATROSS scheme, which mimics the dynamic soaring technique of the albatross 

bird to choose the network cluster heads by soaring among the high energy level 

nodes and low energy level nodes for solving the CPP. Actually, the ALBATROSS 

scheme is a modification to the FTMBS scheme. However, in FTMBS, the main 

controller keeps choosing the highest energy level node to be CH, which leads to an 

imbalance in energy consumption, and new CHs instead of the faulty CHs. In the 

proposed ALBATROSS scheme, the main controller only chooses the controllers 

instead of the faulty ones, and the CH selection is done on behalf of the associated 

controller. The results show that the ALBATROSS scheme is an energy-efficient 

scheme that outperforms the FTMBS, GCEEC [95], and EEFCA [8] algorithms by 

10%, 20%, and 25%, respectively.  

Besides the FTMBS and ALBATROSS schemes, we have also presented the 

ERQTM scheme (described in Appendix A) as a practical example of using the SDN 

concept in wireless body area networks. The ERQTM scheme incorporates two 

algorithms. The first is an energy-efficient routing algorithm which balances the 

energy among the sensor nodes and optimally selects the network's cluster heads. 
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The second is a QoS-supported traffic management algorithm which prioritizes the 

emergency data transmission to guarantee network reliability. Simulations results 

showed that the proposed ERQTM algorithm achieved QoS by maintaining high 

throughput, minimum delay, and maximum network lifetime compared to existing 

energy-efficient algorithms found in literature.  

As future work, we plan to include the energy harvesting concept in our proposed 

schemes, where the sensor nodes are designed to harvest energy from the 

environment during the daytime and only utilize their battery during the night.  

  



79 

 

REFERENCES 

 

[1]  Y. Duan, Y. Luo, W. Li, P. Pace and G. Fortino, "Software Defined Wireless 

Sensor Networks: A Review," in Proceedings of the 2018 IEEE 22nd 

International Conference on Computer Supported Cooperative Work in 

Design, Nanjing, 2018.  

[2]  D. Kreutz, F. Ramos, P. Verissimo, C. Rothenberg, S. Azodolmolky and S. 

Uhlig, "Software-Defined Networking:A Comprehensive Survey," 

Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, 2015.  

[3]  H. Kim and N. Feamster, "Improving Network Management with Software 

Defined Networking," IEEE Commun. Mag., vol. 51, no. 2, p. 114–119, 2013.  

[4]  I. Haque and N. Abu-Ghazaleh, "Wireless Software Defined Networking: A 

Survey and Taxonomy," vol. 18, no. 4, pp. 2713 - 2737, 19 May 2016.  

[5]  S. Costanzo, L. Galluccio, G. Morabito and S. Palazzo, "Software Defined 

Wireless Networks: Unbridling SDNs.," in Proceedings of the 2012 European 

Workshop on Software Defined Networking, Germany, 2012.  

[6]  H. Dhawan and S. Waraich, "A Comparative Study on LEACH Routing 

Protocol and its Variants in Wireless Sensor Networks: A Survey," 

International Journal of Computer Applications, vol. 95, no. 8, June 2014.  



80 

 

[7]  M. Abo-Zahhad, O. Amin, M. Farrag and A. Ali, "Survey on Energy 

Consumption Models in Wireless Sensor Networks," Open Transactions on 

Wireless Communications, vol. 1, no. 1, pp. 23-40, 2014.  

[8]  K. Nitesh, M. Azharuddin and P. Jana, "Energy Efficient Fault-Tolerant 

Clustering Algorithm for Wireless Sensor Networks," in International 

Conference on Green Computing and Internet of Things (ICGCIoT), Greater 

Noida, India, 2015.  

[9]  T. Luo, H. P. Tan and T. Q. S. Quek, "Sensor OpenFlow: Enabling Software-

Defined Wireless Sensor Networks," IEEE Communications Letters, vol. 16, 

no. 11, pp. 1896-1899, 2012.  

[10]  H. I. Kobo, A. M. Abu-Mahfouz and G. P. Hancke, "A survey on software-

defined wireless sensor networks: Challenges and design requirements," IEEE 

Access, vol. 5, p. 1872–1899, 2017.  

[11]  A. El-Mougy, M. Ibnkahla and L. Hegazy, "Software-Defined Wireless 

Network Architecture for the Internet-of-Things," in 2015 IEEE 40th Local 

Computer Networks Conference Workshops (LCN Workshops), Clearwater 

Beach, Florida, 2015.  

[12]  J. A. Puente Fernandez, L. J. Garcia Villalba and T.-H. Kim, "Software 

Defined Networks in Wireless Sensor Architectures: A Review," in 2018 IEEE 

22nd International Conference on Computer Supported Cooperative Work in 



81 

 

Design ((CSCWD)), Nanjing, 2018.  

[13]  W. Ejaz, M. Naeem, M. Basharat, A. Anpalagan and K. Sithamparanathan, 

"Efficient Wireless Power Transfer in Software-Defined Wireless Sensor 

Networks," IEEE Sensors Journal, vol. 16, no. 20, p. 7409–7420., 2016.  

[14]  A. Gante, M. Aslan and A. Matrawy, "Smart wireless sensor network 

management based on software-defined networking.," in 2014 27th Biennial 

Symposium on Communications (QBSC), Kingston, ON, 2014.  

[15]  R. Mohapatra, S. Mishra and T. Mohapatra, "Coverage problem in wireless 

sensor networks," Comparative Cytogenetics, vol. 2, no. 1, p. 67–72, 2012.  

[16]  G. Arumugam and T. Ponnuchamy, "Ee-leach: development of energy efficient 

leach protocol for data gathering in wsn," Eurasip Journal on Wireless 

Communications & Networking, vol. 2015, no. 1, p. 1–9, 2015.  

[17]  C. M. S. Figueiredo, A. L. dos Santos, A. A. F. Loureiro and J. M. Nogueira, 

"Policy-based adaptive routing in autonomous wsns," in IEEE Ambient 

Networks International Conference on Distributed Systems: Operations and 

Management, Barcelona, Spain , 2005.  

[18]  S. Shanmugapriya and M. Shivakumar, "Context based route model for policy 

based routing in wsn using sdn approach," iSRASE, vol. 4, no. 1, pp. 1-8, 2015.  



82 

 

[19]  C. Wang, K. Sohraby, B. Li, M. Daneshmand and Y. Hu, "A survey of 

transport protocols for wireless sensor networks," IEEE Network, vol. 20, no. 

3, p. 34–40, 2006.  

[20]  D. Tian and N. Georganas, "A node scheduling scheme for energy 

conservation in large wireless sensor networks," Wireless Communications and 

Mobile Computing, vol. 3, no. 2, p. 271–290, 2003.  

[21]  C. Hua and T. P. Yum, "Asynchronous random sleeping for sensor networks," 

ACM Transactions on Sensor Networks, vol. 3, no. 3, pp. 1-25, 2007.  

[22]  J. Levendovszky, K. Tornai, G. Treplan and A. Olah, "Novel load balancing 

algorithms ensuring uniform packet loss probabilities for wsn," in Vehicular 

Technology Conference (VTC), Budapest, Hungary, 2011.  

[23]  Y. Zhang, G. Sun and W. Li, "DEHCA: Load Balance Clustering Algorithm 

for Energy Heterogeneous WSN based on Distance," Applied Mechanics & 

Materials, Vols. 44-47, p. 3294–3298, 2010.  

[24]  C. Yoon, T. Park, S. Lee, H. Kang, S. Shin and Z. Zhang, "Enabling security 

functions with sdn: A feasibility study," Computer Networks, vol. 85, p. 19–35, 

2015.  

[25]  W.-S. Kim and S.-H. Chung, "Proxy SDN Controller for Wireless Networks," 



83 

 

Mobile Information Systems, vol. 2016, no. 4, pp. 1-14, 2016.  

[26]  G. Schutz, "A k-Cover Model for Reliability-Aware Controller Placement in 

Software-Defined Networks," in Computational Science-ICCS 2019, Springer 

International Publishing, 2019, pp. 604-613. 

[27]  Y. Hu, W. Wendong, X. Gong, X. Que and C. Shiduan, "Reliability-aware 

Controller Placement for Software-Defined Networks," in IFIP/IEEE 

Symposium on Integrated Network Management, Ghent, 2013.  

[28]  S. Milardo, L. Galluccio, G. Morabito and S. Palazzo, "SDN-WISE: Design, 

prototyping and experimentation of a stateful SDN solution for WIreless 

SEnsor networks," in IEEE Conference on Computer Communications 

(INFOCOM), Kowloon, 2015.  

[29]  ON.Lab, "Introducing ONOS - a SDN network operating system for Service 

Providers [White Paper]," November 2014. [Online]. Available: 

https://docplayer.net/6967056-Introducing-onos-a-sdn-network-operating-

system-for-service-providers.html. 

[30]  B. Oliveria, C. Margi and L. Gabriel, "TinySDN:Enabling Multiple Controllers 

for Software-Defined Wireless Sensor Networks," IEEE Latin America 

Transactions, vol. 13, no. 11, pp. 3690-3696, 2015.  

[31]  H. Mostafaei and M. Menth, "Software-defined wireless sensor networks: A 



84 

 

survey," Journal of Network and Computer Applications, vol. 119, pp. 42-56, 

2018.  

[32]  R. D. Tubagus, "Performance Evaluation of a Software-Defined Wireless 

Sensor Network (Master of Science Thesis)," 2017. [Online]. Available: 

http://resolver.tudelft.nl/uuid:b04e6d40-05d1-47b6-b854-f19d3d5f520f. 

[33]  Y. Wang, H. Chen, X. Wu and L. Shu, "An energy-efficient SDN based sleep 

scheduling algorithm for WSNs," Journal of Network and Computer 

Applications, vol. 2016, no. 59, p. 39–45, 2015.  

[34]  D. Zeng, P. Li, S. Guo, T. Miyazaki, J. Hu and Y. Xiang, "Energy 

Minimization in Multi-Task Software-Defined Sensor Networks," IEEE 

Transactions on Computers, vol. 64, no. 11, pp. 3128-3139, 2015.  

[35]  W. Xiang, N. Wang and Y. Zhou, "An Energy-Efficient Routing Algorithm for 

Software-Defined Wireless Sensor Networks," IEEE Sensors Journal, vol. 20, 

no. 16, p. 7393–7400, 2016.  

[36]  H. Silva, A. Pereira, Y. Solano, B. Oliveira and C. Margi, "WARM: WSN 

application development and resource management," in XXXIV Simposio 

Brasileiro de Telecomunicacoes , Brazil, 2016.  

[37]  H. Fotouhi, M. Vahabi, A. Ray and M. Björkman, "An SDN-based traffic 

aware protocol for wireless sensor networks," in IEEE 18th International 



85 

 

Conference on e-Health Networking, Applications and Services (Healthcom)., 

Munich, Germany, 2016.  

[38]  Z. Qin, G. Denker, C. Giannelli, P. Bellavista and N. Venkatasubramanian, 

"Software-defined Wireless Sensor Networks and Internet of Things 

standardization synergism," in IEEE Conference on Standards for 

Communications and Networking (CSCN)., Tokyo, 2015.  

[39]  A. A. Lysko, L. Mamushiane and J. Mwangama, "Given a SDN Topology, 

How Many Controllers are Needed and Where Should They Go?," in IEEE 

Conference on Network Function Virtualization & Software Defined Networks 

(IEEE NFV-SDN), Italy, 2018.  

[40]  G. Wang, y. Zhao, J. Huang and W. Wang, "The Controller Placement 

Problem in Software Defined Networking: A Survey," IEEE Network, vol. 31, 

no. 5, pp. 21-27, 2017.  

[41]  B. Heller, R. Sherwood and N. McKeown, "The Controller Placement 

Problem," in Proceedings of the first workshop on Hot topics in software 

defined networks, Finland, 2012.  

[42]  A. Upadhyay, "https://www.igismap.com/haversine-formula-calculate-

geographic-distance-earth/," Info GIS MAP. [Online]. [Accessed 2020]. 

[43]  J. A. Bondy and U. Murty, Graph Theory with Applications, Britain: The 



86 

 

Macmillan Press Ltd., 1976.  

[44]  J. Renfree, "Distance calculation using Haversine formula," [Online]. 

Available: https://www.mathworks.com/matlabcentral/fileexchange/27785-

distance-calculation-using-haversine-formula. [Accessed 2020]. 

[45]  F. Hu, Q. Hao and K. Bao, "A Survey on Software-Defined Network and 

OpenFlow: From Concept to Implementation," IEEE Communication Surveys 

and Tutorials, vol. 16, no. 4, pp. 2181-2206, 2014.  

[46]  O. Flauzac, C. Gonzalez and F. Nolot, "Developing a Distributed Software 

Defined Networking Testbed for IoT," Procedia Computer Science, vol. 83, 

pp. 680-684, 2016.  

[47]  B. Othmane, M. Ben Mamoun and R. Benaini, "An Overview on SDN 

Architecture with Multiple Controllers," Journal of Computer Networks and 

Communications, vol. 2016, no. 2, pp. 1-8, 2016.  

[48]  J. Cui, Q. Lu, H. Zhong, M. Tian and L. Liu, "A Load-Balancing Mechanism 

for Distributed SDN Control Plane using Response Time," IEEE Transactions 

on Network and Service Management, vol. 15, no. 4, pp. 1197 - 1206, 2018.  

[49]  S. Champagne, T. Makanju and C. Yao, "A Genetic Algorithm for Dynamic 

Controller Placement in Software Defined Networking," in GECCO'18 

Companion: Proceeding of the Genetic and Evolutionary Computation 



87 

 

Conference Companion, Japan, 2018.  

[50]  D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner and P. Tran-Gia, 

"Pareto-Optimal Resilient Controller Placement in SDN-based Core 

Networks," in 25th International Teletraffic Congress (ITC), Shanghai, 2013.  

[51]  S. Lange, S. Gebert, T. Zinner and P. Tran-Gia, "Heuristic Approaches to the 

Controller Placement Problem in Large Scale SDN Networks," IEEE 

Transactions on Network and Service Management, vol. 12, no. 1, pp. 4-17, 

2015.  

[52]  A. Jalili, M. Keshtgari, V. Ahmadi and M. Kazemi, "Controller Placement in 

Software Defined WAN Using Multi Objective Genetic Algorithm," in 2015 

2nd International Conference on Knowledge-Based Engineering and 

Innovation (KBEI), Tehran, 2015.  

[53]  Cisco, "The Cisco Application Policy Infrastructure Controller," 2014. 

[Online]. Available: https://www.cisco.com/c/en/us/products/cloud-systems-

management/application-policy-infrastructure-controller-apic/index.html#~for-

partners. [Accessed 2020]. 

[54]  A. Jalili, M. Keshtgari and R. Akbari, "A new Set Covering Controller 

Placement Problem Model for Large Scale SDNs," Journal of Information 

Systems and Telecommunication, vol. 6, pp. 25-32, 2018.  



88 

 

[55]  T. FEO and M. RESENDE, "Greedy Randomized Adaptive Search 

Procedures," Journal of Global Optimization, vol. 6, pp. 109-133, 1995.  

[56]  J. E. C. Arroyo, V. d. O. Matos, A. G. d. Santos and L. B. Goncalves, "A 

GRASP Based Algorithm for Efficient Cluster Formation in Wireless Sensor 

Networks," in IEEE 8th International Conference on Wireless and Mobile 

Computing, Networking and Communications (WiMob), Barcelona, 2012.  

[57]  S.-K. Yoon, Z. Khalib, N. Yaakob and A. Amir, "Controller Placement 

Algorithms in Software Defined Network- A Review of Trends and 

Challenges," in MATEC Web of Conferences , ICEESI, Malaysia, 2017.  

[58]  T. Hu, Z. Guo, T. Baker and J. Lan, "Multi-controller Based Software-Defined 

Networking: A Survey," IEEE ACCESS, vol. 6, pp. 15980 - 15996, 2018.  

[59]  D. Sembroiz, B. Ojaghi, D. Careglio and S. Ricciardi, "A GRASP Meta-

Heuristic for Evaluating the Latency and Lifetime Impact of Critical Nodes in 

Large Wireless Sensor Networks," vol. 9, no. 21, p. 4564, 2019.  

[60]  B. Xiong, X. Peng and J. Zhao, "A Concise Queuing Model for Controller 

Performance in Software-Defined Networks," Journal of Computers, vol. 11, 

no. 3, pp. 232-237, 2016.  

[61]  Y. Zhang, N. Beheshti and M. Tatipamula, "On Resilience of Split-

Architecture Networks," in IEEE Global Telecommunications Conference - 



89 

 

GLOBECOM 2011, Houston, TX, 2011.  

[62]  A. Sallahi and M. Hilaire, "Optimal Model for the Controller Placement 

Problem in Software Defined Networks," IEEE Communications Letters, vol. 

19, no. 1, pp. 30-33, 2015.  

[63]  Y. Liu, A. Liu, Y. Hu, Z. Li, Y.-J. Choi, H. Sekiya and A. J. Li, "FFSC: An 

Energy Efficiency Communications Approach for Delay Minimizing in 

Internet of Things," Green Communications and Networking For 5G Wireless, 

vol. 4, pp. 3775-3793, 2016.  

[64]  R. Huang, X. Chux, J. Zhang and Y. Hu, "Energy-efficient monitoring in 

software defined wireless sensor networks using reinforcement learning: A 

prototype," International Journal of Distributed Sensor Networks, vol. 5, 2015.  

[65]  H. Yao, C. Qiu, C. Zhao and L. Shi, "A Multicontroller Load Balancing 

Approach in Software-Defined Wireless Networks," International Journal of 

Distributed Sensor Networks, vol. 2, pp. 1-8, 2015.  

[66]  Wikipedia, "Multi-objective optimization," 19 February 2020. [Online]. 

Available: https://en.wikipedia.org/w/index.php?title=Multi-

objective_optimization&oldid=941634844. 

[67]  N. Gunantara, "A Review of Multi-Objective Optimization:Methods and its 



90 

 

Applications," Cogent Engineering, vol. 5, no. 1, 2018.  

[68]  S. Mohanty, P. Priyadarshini, S. Sahoo, B. Sahoo and S. Sethi, "Metaheuristic 

Techniques for Controller Placement in Software-Defined Networks," in 

TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), Kochi, India, 

2019.  

[69]  M. Ouzzif, J.-M. Sanner, Y. Hadjadj-Aoul and G. Rubino, "An Evolutionary 

Controllers’ Placement Algorithm for Reliable SDN Networks," in 13th 

International Conference on Network and Service Management (CNSM), 

Tokyo, Japan, 2017.  

[70]  S. Lin, "NGPM - A NSGA-II Program in Matlab v1.4," MATLAB Central File 

Exchange, 16 July 2011. [Online]. Available: 

https://www.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-

ii-program-in-matlab-v1-4. 

[71]  K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist 

multiobjective genetic algorithm: NSGA-II," IEEE Transactions on 

Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.  

[72]  A. Herrera-Poyatos and F. Herrera, "Genetic and Memetic Algorithm with 

Diversity Equilibrium based on Greedy Diversification," arXiv:1702.03594 

[cs.AI], 2017. 



91 

 

[73]  B. B. Lokesh and N. Nalini, "Genetic Algorithm Based Node Fault Detection 

and Recovery in Distributed Sensor Networks," I.J.Computer Network and 

Information Security, vol. 12, pp. 37-46, 2014.  

[74]  A. Ateya, A. Muthanna, A. Vybornova, A. Algarni, A. Abuarqoub, Y. 

Koucheryavy and A. Koucheryavy, "Chaotic salp swarm algorithm for SDN 

multi-controller networks," Engineering Science and Technology, an 

International Journal, vol. 22, pp. 1001-1012, 2019.  

[75]  S.-B. Kang and G.-I. Kwon, "Load Balancing Strategy of SDN Controller 

Based on Genetic Algorithm," Advanced Science and Technology Letters , vol. 

129, pp. 219-222, 2016.  

[76]  J. Liao, H. Sun, J. Wang, Q. Qi, K. Li and T. Li, "Density Cluster Based 

Approach for Controller Placement Problem in Large-Scale Software Defined 

Networkings," Computer Networks, vol. 112, pp. 24-35, 2017.  

[77]  H. Selvi, G. Gur and F. Alagoz, "Cooperative Load Balancing for Hierarchical 

SDN Controllers," in IEEE 17th International Conference on High 

Performance Switching and Routing, Yokohama, 2016.  

[78]  G. Yao, J. Bi, Y. Li and L. Guo, "On the Capacitated Controller Placement 

Problem in Software Defined Networks," vol. 18, no. 8, 2014.  

[79]  Y. Hu, W. Wang, X. Gong and X. Que, "BalanceFlow: Controller load 



92 

 

balancing for OpenFlow networks," in IEEE 2nd International Conference on 

Cloud Computing and Intelligence Systems (CCIS), Hangzhou, 2012.  

[80]  A. Dixit, F. Hao, S. Mukherjee, T. Lakshman and R. R. Kompella, "ElastiCon: 

An Elastic Distributed SDN Controller," in IEEE Symposium on Architectures 

for Networking and Communications Systems (ANCS), Marina del Rey, CA, 

2014.  

[81]  A. Ruiz-Rivera, K.-W. Chin and S. Soh, "GreCo:An Energy Aware Controller 

Association Algorithm for Software Defined Networks," IEEE 

Communications Letters, vol. 19, no. 4, pp. 541-544, 2015.  

[82]  L. Wang and X. Yang, "SDN Load Balancing Method Based on K-Dijkstra," 

International Journal of Performability Engineering, vol. 14, no. 4, pp. 709-

716, 2018.  

[83]  B. Killi and S. Rao, "Capacitated Next Controller Placement in Software 

Defined Networks," IEEE Transactions on Network and Service Management, 

vol. 14, no. 3, pp. 514 - 527, 2017.  

[84]  J. Yu, Y. Wang, K. Pei, S. Zhang and J. Li, "A Load Balancing Mechanism for 

Multiple SDN Controllers based on Load Informing Strategy," in 18th Asia-

Pacific Network Operations and Management Symposium (APNOMS), Japan, 

2016.  



93 

 

[85]  Y. Hu, T. Luo, W. Wang and C. Deng, "On the Load Balanced Controller 

Placement Problem in Software Defined Networks," in International 

Conference on Computer and Communications (ICCC), Chengdu, China, 

2016.  

[86]  T. Hu, J. Lan, J. Zhang and W. Zhao, "EASM: Efficiency-Aware Switch 

Migration for Balancing Controller Loads in Software-Defined Networking," 

Peer-to-Peer Networking and Applications, vol. 12, pp. 452-464, 2018.  

[87]  Y. Hu, T. Luo, N. C. Beaulieu and C. Deng, "The Energy-Aware Controller 

Placement Problem in Software Defined Networks," IEEE Communications 

Letters, vol. 21, no. 4, pp. 741 - 744, April 2017.  

[88]  A. Abdelaziz, A. Fong, A. Gani, U. Garba, S. Khan, A. Akhunzada, H. 

Talebian and K.-K. Raymond Choo, "Distributed Controller Clustering in 

Software Defined Networks," PLOS, vol. 12, no. 4, 6 April 2017.  

[89]  G. Wang, Y. Zhao, J. Huang and Y. Wu, "An Effective Approach to Controller 

Placement in Software Defined Wide Area Networks," IEEE Transactions on 

Network and Management, vol. 15, no. 1, 2018.  

[90]  G. Wang, Y. Zhao, J. Huang and R. M. Winter, "On the data aggregation point 

placement in smart meter networks," in 26th International Conference 

Computer Communication Network (ICCCN), Vancouver, BC, Canada, 2017.  



94 

 

[91]  E. Dijkstra, "A note on two problems in connexion with graphs.," Numerische 

Mathematik , vol. 1, p. 269–271, 1959.  

[92]  H. Yannan, W. Wendong, G. Xiangyang, Q. Xirong and C. Shiduan, "On the 

Placement of Controllers in Software-Defined Networks," The Journal of 

China Universities of Posts and Telecommunications, vol. 19, no. 2, pp. 92-97, 

2012.  

[93]  WIKIPEDIA, "Brute-force search," 19 December 2020. [Online]. Available: 

https://en.wikipedia.org/wiki/Brute-force_search. 

[94]  Y. Hu, W. Wang, X. Gong, X. Que and S. Cheng, "On Reliability-Optimized 

Controller Placement for Software-Defined Networks," China 

Communications, vol. 11, no. 2, pp. 38-54, 2014.  

[95]  K. Qureshi, M. U. Bashir, J. Lloretq and A. Leon, "Optimized Cluster-Based 

Dynamic Energy-Aware Routing Protocol for Wireless Sensor Networks in 

Agriculture Precision," Journal of Sensors, p. 19 pages, 2020.  

[96]  A. K. Singh and S. Srivastava, "A Survey and Classification of Controller 

Placement Problem in SDN," International Journal of Network Management, 

vol. 28, no. 3, 2018.  

[97]  M. Resende and C. Ribeiro, "International Series in Operations Research & 

Management Science," in Handbook of Metaheuristics, vol. 57, Springer, 



95 

 

2003, pp. 219-249. 

[98]  V. Gungor, "A Forecasting-Based Monitoring and Tomography Framework for 

Wireless Sensor Networks," in IEEE International Conference on 

Communications, Istanbul, Turkey, 2006.  

[99]  J. Brownlee, "GitHub," [Online]. Available: 

http://www.cleveralgorithms.com/nature-inspired/stochastic/grasp.html. 

[Accessed 2015]. 

[100]  A. Jorio, S. El Fkihi, B. Elbhiri and D. Aboutajdine, "A New Clustering 

Algorithm in WSN Based on Spectral Clustering and Residual Energy," in 

Seventh International Conference on Sensor Technologies and Applications, 

SENSORCOMM 2013, 2013.  

[101]  A. Aoullay, "Spectral Clustering for Beginners," 2018. [Online]. Available: 

https://towardsdatascience.com/spectral-clustering-for-beginners-

d08b7d25b4d8. 

[102]  A. Y. Ng, M. I. Jordan and Y. Weiss, "On Spectral Clustering:Analysis and an 

algorithm," in Advances in Neural Information Processing Systems, 2002.  

[103]  U. Luxburg, "A Tutorial on Spectral Clustering," Statistics and Computing, 

vol. 17, no. 4, pp. 395-416, 2007.  



96 

 

[104]  J. W. Emerson, W. A. Green, B. Schloerke, J. Crowley, D. Cook, H. Hofmann 

and H. Wickham, "The generalized pairs plot," Journal of Computational and 

Graphical Statistics, vol. 22, no. 1, pp. 79-91, 2013.  

[105]  J. Chu, "Engineers identify key to albatross’ marathon flight," Massachusetts 

Institute of Technology MIT News Office, 10 October 2017. [Online]. 

Available: http://news.mit.edu/2017/engineers-identify-key-albatross-

marathon-flight-1011. 

[106]  D. Bradshaw, in Vertebrate Ecophysiology: An Introduction to its Principles 

and Applications, Cambridge University Press, 2003.  

[107]  N. Samarji and M. Salamah, "A Fault Tolerance Metaheuristic-Based Scheme 

for Controller Placement Problem in Wireless Sensor Networks," International 

Journal of Communication Systems, vol. 34, no. 4, 2021.  

[108]  J. Vince, "Matrix Transforms," in Foundation Mathematics for Computer 

Science, Springer, 2015, pp. 193-194. 

[109]  M. Roughan and W. Willinger, "Internet Topology Research Redux," 2013. 

[Online]. Available: 

http://sigcomm.org/education/ebook/SIGCOMMeBook2013v1_chapter1.pdf. 

[110]  S. Movassaghi, M. Abolhasan, M. Lipman, D. Smith and A. Jamalipour, 

"Wireless Body Area Networks: A Survey," IEEE Communications Surveys & 



97 

 

Tutorials, vol. 16, no. 3, pp. 1658-1686, 2014.  

[111]  C. Otto, E. Jovanov and A. Milenkovic, "A WBAN-based system for health 

monitoring at home," in 3rd IEEE/EMBS International Summer School and 

Symposium on Medical Devices and Biosensors, 2006.  

[112]  K. Y. Jamil and Y. R. Mehmet, "Wireless body area network (WBAN) for 

medical applications New Developments," in New Developments in 

Biomedical Engineering, vol. 1, IntechOpen, 2010, pp. 591-628. 

[113]  B. Zhen, H.-b. Li and R. Kohno, "Networking issues in medical implant 

communications," International Journal of Multimedia and Ubiquitous 

Engineering, vol. 4, no. 1, 2009.  

[114]  D. J. Vergados, D. D. Vergados and I. Maglogiannis, "Applying Wireless 

Diffserv for QoS Provisioning in Mobile Emergency Telemedicine," in IEEE 

Globecom, San Francisco, CA, USA, 2006.  

[115]  A. Sandhu and A. Malik, "PAP: Priority Aware Protocol for Healthcare 

Applications in Wireless Body Area Network," International Journal of Recent 

Technology and Engineering (IJRTE), vol. 8, no. 5, pp. 2733-2739, 2020.  

[116]  R. Cavallari, F. Martelli, R. Rosini, C. Buratti and R. Verdone, "A survey on 

wireless body area networks: Technologies and design challenges," IEEE 



98 

 

Communications Surveys and Tutorials, vol. 16, no. 3, p. 1635–1657, 2014.  

[117]  K. Hasan, A. Khandakar, K. Biswas and M. Saiful Islam, "Software-defined 

application-specific traffic management for wireless body area networks," 

Future Generation Computer Systems, pp. 274-285, 2020.  

[118]  M. Quwaider and S. Biswas, "DTN routing in body sensor networks with 

dynamic postural partitioning," Ad Hoc Networks, vol. 8, no. 8, p. 824–841, 

2010.  

[119]  M. Quwaider and S. Biswas, "On-body packet routing algorithms for body 

sensor networks," in First International Conference on Networks and 

Communications. NETCOM 09, Chennai, India, 2009.  

[120]  C. Mohanty and S. Swayamsiddha, "Application of cognitive Internet of 

Medical Things for COVID-19 pandemic," Diabetes & Metabolic Syndrome: 

Clinical Research & Reviews, vol. 14, pp. 911-915, 2020.  

[121]  Y. Zhang, B. Zhang and S. Zhang, "A Lifetime Maximization Relay Selection 

Scheme in Wireless Body Area Networks," Sensors, vol. 17, no. 1267, 2017.  

[122]  IEEE Standard for Local and Metropolitan Area Networks Part 15.6: Wireless 

Body Area Networks, 2012. 

[123]  M. El Azhari, N. El Moussaid, A. Toumanari and R. Latif, "Equalized energy 



99 

 

consumption in wireless body area networks for a prolonged network lifetime," 

Wireless Commun. Mobile Comput., 2017.  

[124]  S. Yahiaoui, M. Omar, A. Bouabdallah and E. Natalizio, "An energy efficient 

and QoS aware routing protocol for wireless sensor and actuator networks," 

AEU-International Journal of Electronics and Communications, vol. 83, 2018.  

[125]  E. E. Tsiropoulou, G. Mitsis and S. Papavassiliou, "Interest-aware energy 

collection & resource management in machine to machine communications," 

Ad Hoc Networks, vol. 68, pp. 48-57, 2018.  

[126]  D. Fabio, T. Ilenia and G. Yu, "1 Hop or 2 Hops: Topology Analysis in Body 

Area Network," in Proceedings of the 2014 European Conference on Networks 

and Communications (EuCNC), Italy, 2014.  

[127]  S. R. Chavva and R. S. Sangam, "An energy-efficient multi-hop routing 

protocol for health monitoring in wireless body area networks," Network 

Modelling Analysis in Health Informatics and Bioinformatics, vol. 8:21, 2019.  

[128]  Y. Qu, G. Zheng, H. Wu, B. Ji and H. Ma, "An Energy-Efficient Routing 

Protocol for Reliable Data Transmission in Wireless Body Area Networks," 

Sensors, vol. 19:4238, 2019.  

[129]  W. R. Heinzelman, A. Chandrakasan and H. Balakris, "Energy-efficient 

communication protocol for wireless microsensor networks," in In Proceeding 



100 

 

of the 33rd Annual Hawaii International Conference on System Sciences, 

Maui, HI, USA, 2000.  

[130]  R. Goyal, R. B. Patel, H. Bhaduria and D. Prasad, "An Energy Efficient QoS 

Supported Optimization Transmission Rate Technique in WBANs," Wireless 

Personal Communication, vol. 117, p. 235–260, 2021.  

[131]  N. Javaid, M. Farid, Z. Khan, N. Alrajeh and Z. Abbas, "M-ATTEMPT: A new 

energy-efficient routing protocol for wireless body area sensor networks," 

Procedia Computer Science, vol. 19, pp. 224-231, 2013.  

[132]  A. Gulnaz, Z. Jianhua and M. M. S. Fareed, "PERA: Priority-based Energy-

efficient Routing Algorithm for WBANs," Wireless Personal Communication, 

vol. 96, no. 3, 2017.  

[133]  Z. ULLAH, I. AHMED, F. A. KHAN, M. ASIF, M. NAWAZ, T. ALI, M. 

KHALID and F. NIAZ, "Energy-Efficient Harvested-Aware Clustering and 

Cooperative Routing Protocol for WBAN (E-HARP)," IEEE ACCESS, vol. 7, 

pp. 100036-100050, 2019.  

[134]  M. El Haziti, A. Bahae and J. Abdelillah, "Wireless body area networks: a 

comprehensive survey," Journal of Medical Engineering & Technology, vol. 

44, no. 3, pp. 97-107, 2020.  

[135]  U. Von Luxburg, "A tutorial on spectral clustering," Statistics and Computing, 



101 

 

vol. 17, no. 4, pp. 395-416, 2007.  

[136]  H. Teng, A. Liu, X. Liu and H. Shen, "Adaptive Transmission Power Control 

for Reliable Data Forwarding in Sensor Based Networks," Wireless 

Communications and Mobile Computing, vol. 2018, no. 2, pp. 1-22, 2018.  

[137]  N. Samarji and M. Salamah, "ERQTM: Energy-efficient Routing and QoS-

supported Traffic Management for SDWBANs," IEEE Sensors Journal, vol. 

21, no. 14, 2021.  

[138]  D. Montgomery, "Simple Comparative Experiments," in Design and Analysis 

of Experiments, Arizona, John Wiley & Sons, 2001, pp. 45-51. 

[139]  S. Yousaf, S. Ahmed, M. Akbar, N. Javaid, Z. Khan and U. Qasim, "Co-

CEStat: Cooperative Critical Data Transmission in Emergency in Static 

Wireless Body Area Network," in 2014 Ninth International Conference on 

Broadband and Wireless Computing, Communication and Applications, 

Guangdong, China, 2014.  

[140]  C. Guo, R. Prasad and M. Jacobsson, "Packet Forwarding with Minimum 

Energy Consumption in Body Area Sensor Networks," in 7th IEEE Consumer 

Communications and Networking Conference, Las Vegas, NV,USA, 2010.  

[141]  Y. Abdelmalek and T. Saadawi, "Destination-assisted routing enhancement 

(DARE) protocol for ad-hoc mobile networks," in SARNOFF: Proceedings of 



102 

 

  

 

 

 
 

  
 

 

 

 

the 32nd International Conference on Sarnoff Symposium, USA, 2009.  

[142]  O. Smail, A. Kerrar, Y. Zetili and B. Cousin, "ESR: Energy aware and stable 

routing protocol for WBAN networks," in International Wireless 

Communications and Mobile Computing Conference (IWCMC), Paphos, 

Cyprus, 2016.  

[143]  Q. Nadeem, N. Javaid, S. Mohammad, M. Khan, S. Sarfraz and M. Gull, 

"SIMPLE: Stable Increased-Throughput Multi-hop Protocol for Link 

Efficiency in Wireless Body Area Networks," in Eighth International 

Conference on Broadband and Wireless Computing, Communication and 

Applications, Compiegne, France, 2013.  



103 

 

 

 

  

 

 

 

 

 

 

APPENDICES 

  



104 

 

Appendix A: Energy-efficient Routing and QoS-Supported Traffic 

Management Scheme for SDWBANs  

1. Wireless Body Area Network (WBAN) 

WBAN is integrated into various applications, including healthcare, military, 

personal entertainment, advanced sports training, and so forth. For instance, wireless 

body sensors measure the human body's physiological factors such as glucose, 

temperature, blood pressure, etc., and forward it to the concerned authorities using an 

intranet/internet facility [110]. This kind of continuous monitoring is essential, 

especially for patients with serious medical conditions who need medical 

intervention at any time. The wireless body sensors can be implanted either inside 

the human body or externally on the body surface. WBAN consists of light-weighted 

wireless body sensors and a coordinator, where the coordinator gathers the sensed 

data and transmits it to an external user or a remote server [111], [112]. Usually, 

these sensors are empowered with limited battery capacity difficult to be recharged 

or replaced in case of depletion. Consequently, the depleted senor will stop working. 

Additional burdens occur on human life and network lifetime. Hence, energy 

efficiency is one of the crucial parameters needed for a prolonged network lifetime. 

Another challenge in WBANs is achieving acceptable QoS levels. QoS includes high 

throughput requirements (1kb/s to 10Mb/s) and reliability [113], [114], [115], [116].  

Reliability of transmission is a fundamental issue in WBANs revealed by guaranteed 

data delivery, especially for emergency data. Therefore, achieving reliability requires 

optimized throughput and data delivery with minimum end-to-end delay [114]. 

Accordingly, in life-critical scenarios where fast and reliable routes are mandatory 

for transmission [117], the reliability of emergency data transmission plays a crucial 
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role in saving a patient's life. Efficient routing is considered the backbone in 

achieving reliability [118], [119]. Hence, the most critical challenge faced by 

WBANs is achieving reliability and prolonged network lifetime. This challenge is 

nowadays a hot topic in cognitive radio-based internet of medical things applications 

(CIoMT) for coronavirus disease (COVID-19) patients. Due to this pandemic which 

caused a universal lockdown and movement restrictions, most health activities have 

gone online based on wireless communication and networking, which consume 

bandwidth [120]. CIoMT is based on dynamic spectrum allocation to accommodate 

the massive number of applications and devices. Hence, CIoMT is a panacea 

technology for rapid diagnosis, dynamic monitoring, tracking, better treatment, 

decision-making, and control without spreading the virus to others [120]. Thus, to 

achieve a high QoS, a well-designed routing algorithm and efficient network 

management are needed.  

Clustering-based routing algorithms are appropriate for WBANs where network 

partitioning is implemented. Each partition or cluster contains one cluster head (CH), 

and the rest of the nodes are cluster members. Single-hop transmission occurs 

between CH and cluster members. CH gathers sensed data from its members and 

transmits it to the coordinator via single-hop or two-hop communication [121], [122]. 

The clustering approach ensures minimum energy utilization and offers maximum 

data delivery with appropriate end-to-end delay [123]- [124]. Tsiropoulou et al. [125] 

present an energy-efficient resource management approach by proposing a 

probability-based cluster formation incorporating the interest-based and distance-

based factors in cluster formation. The proposed cluster-based scheme aims at 
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prolonging the network operation by allowing each device to harvest energy through 

radio frequency (RF) signals.  

Maximizing the energy saving of sensor nodes is a critical challenge in WBAN. 

Several energy-aware routing schemes have been presented aiming at prolonging the 

network lifetime of wireless networks. Most of the power-saving approaches reduce 

the frequency of sending network control messages and redundant retransmissions. 

Some of these energy-aware routing schemes are listed in Table 16, which 

summarizes their pros and cons. 

 

 

 

 

 

            

IEEE 802.15.6 [121] is designed explicitly for WBAN communication with two 

topologies: star topology or two-hop tree topology. The two-hop tree topology is 

based on a sensor node's cooperative transmission through a relay node to the sink or 

controller. This type of communication is done using Time Division Multiple Access 

Table 16: Energy-Aware Routing Schemes 

Approach Pros Cons 

Co-CEStat 

[140] 

High network throughput & network 

lifetime. 

Supports dynamic routing 

Energy utilization is high 

MEPF 

[141] 

Minimize node's energy with less 

transmission power 
Network latency is high 

DARE 

[142] 

Minimize node's energy consumption Load is not uniformly 

distributed 

ESR 

[143] 

Supports patients mobility and 

handles traffic load changes 
Network lifetime is low 

SIMPLE 

[144] 

Energy consumption is balanced. 

High network throughput 
Packet loss is high 

Proposed 

ERQTM 

Energy consumption is balanced 

among all nodes. 

High network throughput, elongated 

network lifetime & minimal network 

latency. 

Supports WBAN QoS. 

A bit high energy 

utilization due to high 

transmission power for 

emergency data 
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(TDMA) slots that help save the network energy and prolong the network lifetime 

[126]. Therefore, an appropriate relay selection is important in cooperative 

transmission strategy [121] to achieve high QoS.  

In this part of the thesis, we have presented an ERQTM scheme for intra-WBANs to 

enhance the network lifetime and achieve network reliability and stability. Thus, we 

have addressed the problem as a joint scheme, developing an energy-efficient routing 

scheme (ER) and the QoS traffic management scheme (QTM). The ER scheme is a 

cluster-based energy-efficient routing algorithm aiming to elongate the network 

lifetime. The traffic management scheme ensures network reliability and stability by 

prioritizing the emergency data during transmission, thus ensuring high QoS. Most 

researchers prioritize emergency data by restricting low energy level nodes to send 

emergency data and avoid sending normal data. That causes degradation in the 

network throughput and failure in achieving high network QoS. In our work, we have 

overcome such shortcomings by proposing a meta-heuristic-based energy-efficient 

routing approach for cluster head selection. This approach avoids quick depletion of 

the network energy by dynamically selecting the network cluster heads. The dynamic 

cluster head selection causes a positive impact on the network lifetime and network 

QoS. Since clustering the nodes is an NP-hard problem, the proposed ER scheme is 

based on a genetic algorithm [73] to select the network cluster heads optimally. The 

cost model includes the following parameters: the nodes' residual energies, nodes' 

consumption energy rate, distance to the controller, signal to noise ratio, and path-

loss effect. Since our scheme is based on intra-WBAN communication, body 

movements may cause path loss (i.e., data loss during transmission). Path-loss highly 

affects network throughput; therefore, it is included in the optimization process as 
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well.  Besides the energy-efficient cluster-based routing algorithm, we have 

presented a priority-based scheme to manage the traffic flow. High priority is given 

to the emergency data (ED) for routing, and the associated nodes are assigned with a 

high transmission rate and less sensing interval. Since energy depletes quickly with 

high data rate transmission, our proposed scheme balances the energy among the 

sensor nodes. That is done by considering the nodes' energy consumption rates in 

consecutive intervals and their residual energies to optimally select the network 

cluster heads once the energy level falls under a certain threshold. Experimental 

results are conducted to evaluate the efficiency of the proposed ERQTM scheme. 

The contributions of this work include the following: 

• The proposed ERQTM scheme balances the energy among sensor nodes and 

achieves a high packet delivery rate. That is done by considering the nodes' energy 

consumption rates in consecutive intervals and their residual energies in the cluster 

head selection process. Hence, it avoids the quick depletion of the node's energy and 

early dead nodes' existence. That positively impacts the network lifetime on the one 

hand and the network reliability by ensuring the emergency data transmission on the 

other hand.  

• Most routing algorithms in Literature focus on selecting the closest relay nodes to 

the sink for data transmission, which causes quick depletion of energy. Our proposed 

scheme optimally selects a CH using GA. The GA objective function focuses on 

nodes' residual energies, energy consumption rates, distance to the controller, and 

path-loss effect.  Up to our knowledge, this is the first work in which the GA is used, 
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taking into consideration various QoS metrics to select an appropriate CH among the 

wireless body sensor nodes.   

• Most of the literature studies do not focus on prioritizing the routing of critical or 

emergency data. We claim that instantaneous notification of any emergency data cuts 

off the delay to immediate medical treatment, saving the patient's life. Cutting off the 

routing delay is achieved by giving high priority to emergency data. In the traffic 

management part of our scheme, we have given high priority to emergency data with 

a high transmission rate so that it is immediately routed toward the controller. 

• The obtained results demonstrate the efficiency of the proposed ERQTM scheme 

in achieving the WBAN's QoS. That is illustrated by achieving network stability and 

reliability through a high throughput rate, less delay, and elongated network lifetime. 

2. System Overview 

In this section, we present a cluster-based intra-SDWBAN communication system 

model that includes the following system assumptions: 

 All sensors upon deployment have equal energy 

 SDN controller node has unlimited energy 

 All sensors either send normal data or emergency data 

 Sensors transmit with different data rate according to the data type  

 Intra-cluster: single hop between sensors and CH 

 Inter-cluster: either single or two-hops communication between CHs and 

controller 

 We assume events occurring during  time interval follows a Poisson 

distribution 
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3. Network Model 

Our system model incorporates an SDN controller implemented at the sink of 

WBAN consists of 15 sensor nodes deployed at the human body, as shown in Figure 

25, which summarizes the topology of software-defined wireless body area network 

(SDWBAN). Our proposed energy-efficient routing and QoS supported traffic 

management (ERQTM) scheme consists of two correlated algorithms: energy-

efficient routing algorithm (ER) and QoS traffic management algorithm (QTM). 

Before explaining these two algorithms, it is of great importance to determine the 

number of clusters needed in our proposed scheme. That is explained in section 3.1. 

 

  

 

 

 

 

There are two types of WBAN transceivers: nRF 2401A and CC2420. We will use 

nRF 2401 in our simulation due to low power transmission and for comparison 

purposes with other techniques. Both transceivers have the same bandwidth, 2.4GHz. 

Table 17 shows details of these two kinds of WBAN sensors. Table 18 includes the 

sensor nodes' locations on the human body. 

  

 
Figure 25: SDWBAN Topology  

 

Figure 48:  SDWBAN topology 
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Table 17:  Transceiver Energy Parameters [127] 

 

 

 

Table 18: Nodes' Location 

 

 

 

 

 

 

3.1 Determining the Number of Clusters 

To determine the number of clusters needed for our proposed algorithm, we have 

recorded the average end-to-end (E2E) delay (ms) for a different number of clusters 

ranging from 1 to 6 clusters.  Clustering the network minimizes the E2E delay for a 

certain number of clusters; however, this is not always the case as maintaining 

network topology and exchanging the global network state causes an increase in 

Parameters nRF 2401A CC2420 Units 

DC current (Tx) 10.5 17.4 mA 

DC current (Rx) 18 19.7 mA 

Supply voltage 

(min) 

1.9 2.1 V 

ETx-elec 16.7 96.9 nJ/bit 

ERx-elec 36.1 172.8 nJ/bit 

Eamp 1.97e
-9

 2.71e
-7

 j/b 
 

 

Node 

# 
Description 

Location 

x-axis y-axis 

1 EEG 0.32 1.77 

2 ECG 0.35 1.37 

3 ECG 0.22 1.35 

4 Glucose 0.35 0.01 

5 Glucose 0.36 1.01 

6 Motion 0.08 1.45 

7 EMG 0.06 0.98 

8 Blood Pressure 0.37 1.27 

9 Pulse OXIMETER 0.4 1.01 

10 Lactic acid 0.22 0.91 

11 Accelerometer 0.45 0.45 

12 Accelerometer 0.5 0.5 

13 Respiratory 0.15 0.5 

14 Pressure 0.15 0.45 

15 Pressure 0.25 0.17 

16 SDN-controller 0 0 
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delay. Therefore, the delay increases when an excessive number of clusters is used.  

Figure 26 shows the delay for a different number of clusters. The E2E delay achieves 

its minimum value of 4.3 ms when three clusters exist before rising to 4.4 ms when 

four clusters exist; therefore, we will use three clusters for the rest of our work.  

 

 

 

 

3.2  Estimation of the Energy Consumption Model and Priority-Based 

Transmission Rate  

In WBAN, the sensor nodes are equipped with low-power batteries; hence, energy is 

scarce since recharging them is impossible. Most energy consumption is mainly due 

to transmitting the data, receiving the data, sensing the data, and collecting the data 

[128], [124]. However, data transmission is the most major cause behind energy 

drainage, and so is the bottleneck of energy consumption. There are many energy 

models in Literature, and the commonly used model is the first-order energy model 

[129]; hence, we are adopting this model in our research study. For every sensor 

node i in a cluster u, the SDN controller assigns Ti TDMA time slots. Equation 24 

defines the needed energy for transmitting k bits at a distance d from the receiver.  

                       ETx(k,ni,d)=         
         

      
  
   

 
   )             (24) 

 
Figure 26: Delay for Different Number of Clusters 
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where   is the number of clusters in the network, su is the number of sensors in 

cluster u;        
 is the transmission energy cost of node i in a cluster u during its 

time interval for transmitting a single bit, k is packet size, ŋ is the path-loss 

coefficient, Eamp is the energy required for amplifier circuit, and di is the distance 

between node i and receiver. The energy needed for receiving k bits is given by 

Equation (25) 

ERX(k, )=            
  

  
   

 
    (25) 

where       
 is the energy cost of sensor node i in cluster u for receiving a single bit 

during its time interval; 

Wireless communication in WBAN is greatly affected by human movement, so body 

movement contributes attenuation in the radio model [127]; therefore, in our study, 

we have considered the path loss effect caused by such attenuation. The transceiver 

energy parameters are shown in Table 15. The total energy consumption is the sum 

of the transmission energy and the receiving energy denoted as ECO in Equation (26). 

The expression for the network energy consumption for sending and receiving k bits 

during the time interval T [123] is given as: 

ECO(k, ,d) =             
          

) )  (26) 

We assume that the number of events (n) occurring during time interval T with 

arrival rate λ follows a Poisson distribution which is given by: 

 P(n,T)= 
        

  
*                                                  (27) 

 

where PTR is the priority-based transmission rate is given in Equation 28. 

 PTR=     *              (28)                                        
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The estimated network energy consumption during a time interval is given by 

Equation 29: 

                              E(ECO(k, ,d))=  
        

  
                     

          

 
   )  (29) 

A high priority value (p=2) is given to ED to be routed to the controller, and a low 

priority value (p=1) is given to ND. Achieving reliability is done by assigning a high 

transmission rate to ED and a low transmission rate to ND. This ensures that ED to 

be transmitted at full rate and ND is transmitted at half rate.    

3.3 Path-Loss Model 

The difference between energy consumption to transmit and receive data is referred 

to as path loss; in other words, it is the difference between the transmitted and 

received power represented in decibels (dBs) which is different from the loss or gain 

of antenna’s radio signals. Besides, the path loss is affected by human movement; 

therefore, in WBAN, path loss occurs due to movement of the body, clothes, hands, 

and human postures. The posture of the human body affects electromagnetic signals. 

As a result, the path loss shows different behaviors along with different body parts. 

There are different path loss models in Literature. We included in our scheme the 

path loss model described in [130], which is a function of distance and frequency 

[131] shown in Equation 30. 

PL = PL0 + 10.ƞ.log10 (d/d0)+σs (30) 

where PL0 is the path loss at reference distance d0 and ŋ is the path-loss coefficient. 

The distance between the transmitter and the receiver is d, and σs is the shadowing 

factor that follows the Gaussian distribution of random variables [130]. The LOS 

path loss coefficient's value varies from 3 to 4, while for NLOS, its value is between 

5 and 7.4. In our simulation, we used a fixed frequency (ƒ) of 2.4 GHz, ŋ and σs as 
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3.38 and 4.1 [132], respectively. The path-loss is rewritten and shown in Equation 

31.  

PL= 10      
       

 
   (31) 

 where c speed of light and ƒ is frequency; 

3.4 Energy-Efficient Routing (ER) Algorithm 

Network partitioning is being adopted in many research studies to elongate the 

network lifetime. Hence, a Clustering-based routing algorithm is considered an 

optimum approach for network management [133]. The main advantages of the 

clustering mechanism are enhancing network lifetime and balancing the load [134].  

For this purpose, we have adopted the clustering mechanism for our routing scheme.  

An energy-efficient cluster head selection algorithm mainly focuses on balancing the 

energy consumption among nodes; specifically, a high transmission rate for ED 

depletes the sensor node's energy. We believe that maintaining balanced energy 

consumption among sensor nodes will enhance the network lifetime, throughput, and 

network stability. The initial energy is the same for all nodes, i.e., Einitial = 0.5J. The 

nodes sense the vital parameters of the human body and send data to their associated 

CH. CHs send data to sink. Once the residual energy of CH is below a threshold (0.1 

J), the controller assigns new CH by running GA to avoid packet loss, misconnection 

between sensors and CH, and to balance the energy among nodes. The residual 

energy of sensor node i is given by Equation 32. 

          
=         

-     
  (32) 

where          
 is the initial energy of node i, and the difference of energy 

consumption of node i between current time interval Ti and one previous time 
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interval Ti
'
 is considered so that the depleted energy node will not be considered for 

CH selection.   The estimated consumption energy of node i is denoted as     
. Since 

the energy consumption depends on the source-destination distance and source-

destination channel attenuation, the signal-to-noise ratio (SNR) is included in the 

first objective function. We define the first and second objective functions of Ƒ as ƒ1, 

ƒ2 as Equations 33 and 34. 

ƒ1= 
          

  

    
 

      
 

  
 

 

* 
   

 
 

  

   (33) 

      s.t. Eresidual ≥ Emin ; where Emin is the minimum 

energy needed to be elected as CH; 

ƒ2= 
                     

                      
    

  

 (34) 

where d is the distance between node and controller, and   is the average distance of 

nodes and controller, PL is the path-loss given in Equation (31). Therefore the fitness 

function is given by Equation 35. 

Ƒ= max (ω1 ƒ1+ ω 2 ƒ2)  (35) 

  s.t ω1 + ω 2=1; 0≤ ω1≤1, 0≤ ω 2≤1 

In the beginning, the controller runs the GA to determine the number of clusters to be 

three cluster heads. Then we have adopted the k-mean method [135] to cluster the 

nodes among these three clusters. The sensor node with maximum residual energy, 

minimum consumption energy difference in consecutive time intervals, and 

minimum distance to the controller will be chosen as CH. The same pseudo-code of 

GA is used in Table 2; however, the fitness function is Equation 35. 
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3.5 Scheduling  

Based on the Time Division Multiple Access (TDMA) approach, our proposed 

system model uses a single-hop communication between sensors and cluster heads to 

maximize the network life and single or double-hop communication between cluster 

heads and the SDN controller. Packet collisions, idle listening, and overhead 

communication are reduced using a TDMA strategy that is better suited to the 

WBAN system. The scheduled TDMA access mechanism is based on the beacon 

mode IEEE 802.15.6 with superframe boundaries [130]. In the beginning, the 

controller divides the overall interval time T into10 ms length slots and assigns a 

one-time slot for every sensor for intra-cluster communication and inter-cluster 

communication. CHs use the same frequency band and transmit their data in different 

time slots to avoid collisions. As stated before, high priority is given to ED (p=2) to 

be routed to the controller, and low priority is given to ND (p=1). Hence, high 

priority data is assigned a sending interval less than that of ND. The priority-based 

sending interval (PS) is given by Equation (36):  

PS =         (36) 

Therefore, ED is transmitted with full rate and half the initial sensing interval to 

ensure delay-free transmission, whereas the ND is transmitted with half rate and full 

sensing interval.  

Adjusting the transmission and receiving powers at sensor nodes is adopted from 

[136], where transmitting power should also be adjusted to meet the transmission rate 

assigned to the sensor node. The adjusted transmitting power is shown in Equation 

(37). 

P
TX

 = ψ* ETx(k,α,d)  (37) 

ψ = PTR/k  (38) 
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where PTR is priority-based transmission rate given in Equation 28. The adjusted 

received power is shown in Equation (39) 

P
RX

= ψ* ERX(k,α)  (39)  

where ERX(k, ) is given in Equation (25); 

3.6 ERQTM Model 

The energy-efficient routing and QoS traffic management scheme comprises two 

algorithms: the energy-efficient routing (ER) algorithm illustrated by efficiently 

balancing the energy among sensor nodes and optimally selecting CHs. The second 

algorithm is the QoS traffic management (QTM) algorithm. Before going into these 

two algorithms' details, let's have a deeper view of the controller's control plane. 

Since the SDN controller manages the network, Figure 27 shows the controller's five 

main functional blocks. 

Block 1: Determine the number of clusters: As stated in section 3.1, the controller 

determines the number of clusters needed for our algorithm.  

Block 2: Run GA to optimally select the CH for each cluster: This is explained in 

section 7.6 

Block 3: The controller determines the network topology and sends the flow tables to 

the sensor nodes. 

Block 4: The controller, as stated in section 3.5, will assign the time slots for 

transmission and will manage the traffic flow by prioritizing the ED for transmission 
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Block 5: The controller, based on traffic flow, will assign transmission rate and 

sending interval and adjust power to the sensor nodes. 

 

 

 

 

 

 

 

 

 

           

           

    

Table 19 describes the QoS traffic management algorithm that precisely focuses on 

prioritizing the emergency data. Accordingly, the controller assigns the priority 

value, data rate, sending interval, and transmission power to the sensor node issuing 

the ED.  

 

Table 19: QTM Algorithm 

While data flow is available do  

Data flow arrive  

Check the type of data flow  

If data.type=='emergency data' then  
assign the PTR value as in Equation 28 with p=2  
assign sending interval PS as in Equation 36 with p =2  
assign transmitting power as in Equation 37 

Else  
Assign the PTR value as in Equation 28 with p=1  
Assign sending interval PS as in Equation 36 with p =1  
Assign transmitting power as in Equation 37  

End if  
End While  

 

Determines the number 

of clusters 

Runs GA to optimally 

select CH for each 

cluster 

Assigns TDMA time 

slots and manages the 

traffic flow 

Adjusts the 

transmission rate, 

sending interval, and 

adjusts power 

Network 

topology  

Figure 27: Controller's Main Blocks 
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The detailed description of the flowchart of the ERQTM scheme is as follows: 

At the controller 

When a packet arrives from CH to the controller, the following happens: 

1. The controller checks the packet. If the packet is normal data and no beacon 

alarm is issued from any CH, then the controller adds normal data to its buffer (ND-

buffer) for sending it later to the access point (AP). 

2.  However, if a beacon alarm has arrived at the controller, it could be either: 

a. Emergency data alarm (ED): The controller will notify the CH, sending the ND 

to pause and store the rest of ND in CH's buffer (ND-buffer). The controller will 

assign a timeslot to the CH issuing the alarm beacon. Then CH will start sending its 

ED, and the controller will store it in its buffer (ED-buffer) to packetize it and send it 

immediately to AP.  

b. Energy depletion of CH: The controller will run GA to select a new CH instead of 

the energy-depleted CH and will notify the CH that wants to send ND to send its 

data.  

Whenever the controller finishes either case a or b and no alarm has been issued, it 

will check if any waiting ND in the buffer of any CH. If so, the controller notifies the 

CH, which has paused sending its ND to resume sending its ND. The controller will 

store the ND in its ND buffer for later transmission to AP and ends the algorithm. 

3. If the packet is ED, the controller will immediately accept it. If during sending 

the ED, the controller receives an alarm:  

a. Emergency Data beacon alarm: it will notify the CH that is issuing the ED alarm 

beacon to store it in its ED buffer. Once the controller finishes receiving the current 
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emergency data, it will assign a timeslot for CH, issuing the alarm to send its ED. 

The controller then adds ED in its ED buffer. 

b. Energy Depletion beacon alarm: the controller will run GA to select a new CH 

instead of the depleted CH. 

The controller will keep checking if no waiting ED exists to end the algorithm; 

otherwise, it will either follow steps 3a or 3b. 

Traffic flow at  the cluster head:  

1. Each CH keeps tracking its residual energy 

2. If residual energy is less than Emin it will either send an alarm beacon to the 

controller if it is a single-hop away or nearest CH if two hops away from the 

controller. The nearest neighbor will send this alarm beacon to the controller 

3. The controller will assign a new CH to replace the current CH after receiving the 

alarm beacon. 

4. The controller will use GA for step 3 

If CH receives an ED from the controller, it will do the following:  

5. Notifies all its sensors to stop sending any packet 

6. Stores, if available, any ED or ND in respective buffers: ED-buffer or ND-buffer 

and immediately acts accordingly to the controller's request  

7. Once finished, it will resume sending any ED in buffer first, then ND-buffer   

8. It will notify its sensors to send their data. 

9. However, if it receives ED from its sensor during sending its ND to the 

controller, it will store the current ND in its ND buffer and sends ED to the 

controller, then resumes sending ND. And if it receives normal data, it will store 

the ND-buffer data to be sent later. 
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The above steps are shown in Figure 28 under QoS Traffic Management (QTM) 

flowchart. 

 

 

 

 

 

 

           

           

           

  

 

 

 

 

 

 

 

 
Figure 28: QTM Flowchart 
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Based on ER and QTM, the proposed flowchart of the ERQTM scheme is shown in 

Figure 29. 

 

 

 

 

 

 

 

 

  

 
Figure 29:  Flowchart of ERQTM Scheme 
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4. Performance Evaluation 

Our proposed ERQTM algorithm has been implemented using MATLAB 2019. We 

have run our scheme 50 times for each round and took the average to achieve a 95% 

confidence interval. The performance verification and analysis have been carried out 

for Intra-Software Defined Wireless Body area network (Intra-SDWBAN) in a room 

with a patient having 15 sensor nodes and one SDN controller placed on his body as 

described in Section 3.  We have selected three protocols from the state-of-the-art, 

namely, E-HARP [133], PERA [132], and PAP [115], for performance evaluation 

since they are relative to our proposed algorithm and most recent studies in the 

Literature of WBAN. The network performance metrics considered in comparison 

and are mostly used in WBAN Literature are as follows: end-to-end E2E delay, 

Throughput, Network lifetime and Stability, Residual energy, and computational 

complexity. Simulation parameters are provided in Table 20.    

Table 20: Simulation Parameters for ERQTM Algorithm 

 

 

 

 

 

Parameter Value 

Simulation area 2x2m
2
 

Number of sensor nodes  15 

Position of sensors Table 18 

Duration of time slot 10 ms 

Super-frames duration 700 ms 

Packet size 1200 bit 

Noise power -94dBm 

Transmission power range -30dBm to 0 dBm 

Coefficient of LOS 3.38 

Coefficient of NLOS 5.9 

Initial energy Einitial 0.5 J 

Ermin 0.1 J  

    16.7 nJ/bit 

ERX 36.1 nJ/bit 

Eamp 1.97 nJ/bit 

Frequency  2.4 GHz 

Initial packet transmission rate 5 packets/sec 

Packet size 3000 bits 

Wavelength 0.138m 
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4.1 Network Lifetime and Network Stability 

In our performance evaluation, the network lifetime is considered the time it takes 

for the last node to die (LND), and the network stability is defined as the duration of 

time for the first node to die (FND). We have run our simulation for different rounds 

and recorded the number of rounds that the first node to die as network stability and 

the last node to die as network lifetime for the different protocols, as shown in Table 

21 and Figure 30. As it can be seen, almost the same performance evaluation was 

recorded for our proposed scheme ERQTM and E-HARP with a very slight increase 

for the latter. This slight increase is due to the harvested energy that the authors in 

[133] have empowered the sensor nodes with energy to increase the network lifetime. 

Although we didn't consider any external harvest technique in our scheme, close 

results were recorded. The proposed energy-efficient routing algorithm positively 

impacts the overall network lifetime. Authors of PERA [132] have suggested placing 

the sensor nodes of emergency data like EEG, ECG close to the sink to save energy 

and the rest of the nodes use multi-hop communication to communicate with the 

sink. Therefore, the nodes close to the sink will frequently communicate other nodes' 

data to the sink, causing quick energy depletion. That is shown in Table 21. Authors 

of PAP [115] suggested dynamically allocating transmission rates to sensors that 

send emergency data to ensure reliability and delay-free communication. However, 

sending with high transmission rates by power-limited sensor nodes will lead to early 

death, especially if no alternative scheme is present to handle this issue. The FND is 

recorded at 5000, 4500, 3000, and 2200 rounds for ERQTM, E-HARP, PERA, and 

PAP, respectively. Moreover, the LND is recorded at 10000, 9000, 7000, and 5000 

rounds for ERQTM, E-HARP, PERA, and PAP, respectively. The overall percentage 
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of average improvement of ERQTM over E-HARP, PERA, and PAP is almost 4%, 

34%, and 56%, respectively.  

 

 

Table 21: Network Stability and Network Lifetime Comparison 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Network Throughput  

Network throughput refers to successfully transmitted data in a defined time. A high 

throughput network is most desired in terms of performance. Figure 31 shows the 

proposed ERQTM throughput at high priority (p=2) and low priority (p=1) levels. 

Since data transmission rate is highly associated with emergency data or high priority 

 
Figure 30: Network Stability and Network Lifetime Comparison 

 

Protocol 

name 

 Number of alive nodes at different number of rounds 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

ERQTM 15 15 15 15 12 9 5 3 2 0 

E-HARP 15 15 15 15 11 9 4 3 0 0 

PERA 15 15 14 9 5 2 0 0 0 0 

PAP 15 15 8 2 0 0 0 0 0 0 
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data; therefore, the system achieves higher throughput for high-priority data than 

low-priority data. That is illustrated in Figure 31.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32 compares throughput values of our proposed ERQTM scheme with E-

HARP, PERA, and PAP for a different number of rounds. As seen at the beginning 

of the simulation, PAP seems to outperform the E-HARP, PERA, and PAP protocols 

with a slight improvement compared to the ERQTM protocol. That is due to the high 

transmission rates assigned to ED, ensuring delay-free and successfully received 

packets. Also, no clustering methods are incorporated in our proposed algorithm and 

E-HARP that causes rigorous processing for the selection of CHs. Due to the quick 

depletion of residual energies, the throughput is negatively affected at 3000 rounds 

and above. In our scheme, the SDN controller is responsible for running GA to select 

CHs optimally; thus, we can see that this positively impacts saving the sensor nodes' 

residual energies and enhancing network throughput. Hence, it maintains its 

superiority compared with the others, and the overall average improvements of 

ERQTM over E-HARP, PERA, and PAP are almost 3%, 6%, and 7%, respectively. 

 
Figure 31: ERQTM Throughput for ED and ND  
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4.3 Residual Energy 

The total residual energy refers to the sum of all the sensor nodes' remaining energy 

levels in the network. The most energy consumption is due to transmission and 

receiving the data. The proposed energy-efficient routing algorithm optimally 

chooses CH considering the nodes' consumption rate, residual energy, distance to the 

controller. This shows a positive impact in increasing the network lifetime and, as a 

result, in saving energy. Figure 33 compares the residual energy of our proposed 

ERQTM with E-HARP, PERA, and PAP.  Both ERQTM and E-HARP algorithms 

last more than 10000 rounds; however, in the proposed ERQTM scheme, an SDN 

controller's presence positively affects saving sensor nodes' energy where the SDN 

controller does all necessary calculations. That explains why the ERQTM scheme 

has more energy-saving than E-HARP. All in all, looking at the residual energy of all 

protocols, one can see that the average improvements of the ERQTM over E-HARP, 

PERA, and PAP protocols are almost 13%, 16%, and 31%, respectively. 

 
Figure 32: Throughput Comparison  
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4.4 End-to-End Delay  

An important performance metric, especially for WBANs, is the end-to-end delay. 

We aim to have minimum delay specifically for emergency data to achieve high 

QoS. In the proposed ERQTM scheme, executions of routing algorithm and optimal 

CHs selection are done on behalf of the SDN controller, not the E-HARP case. In E-

HARP, each sensor node does the necessary calculations and communicates with the 

sink. This will cause more delay caused by calculating and transmitting the data 

between sensors and the controller. In Figure 34, one can see that at the beginning, 

the ERQTM and E-HARP algorithms experience higher delays than other schemes. 

This delay is caused by the optimal selection of cluster heads, which is not the PAP 

and PERA case. After 2000 rounds, the ERQTM algorithm achieves minimum end-

to-end delay among the rest of the schemes. The clustering mechanism proves to be a 

well-desired routing algorithm to achieve minimum delay. The overall average 

improvements of ERQTM over E-HARP, PERA, and PAP are almost 15%, 56%, 

and 51%, respectively. 

 
Figure 33: Residual Energy Comparison 
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4.5 Computational Complexity 

A general important performance metric, especially for time-sensitive applications as 

e-Health applications, is the computational complexity refers to the computational 

time or CPU execution time. The simulations were performed on a PC with an Intel 

Core i5 CPU and 8 GB of RAM. Table 22 represents the comparison of the 

computational time (microseconds) of our proposed ERQTM algorithm with E-

HARP, PERA, and PAP algorithms for a different number of sensor nodes. As it is 

seen, the computational time increases with the increase of sensor nodes. The 

computational time of PERA and PAP is less than that of ERQTM and E-HARP due 

to the clustering methods and the optimal cluster heads in ERQTM and E-HARP. 

That verifies the computational time's direct dependency on the network topology 

and the clustering method used. 

  

 
Figure 34: End-to-End Delay Comparison 
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Table 22: Computational Complexity Comparison (μs) 

 
 

 

 

 

5. Discussions 

An energy-efficient routing and QoS-supported traffic management for software-

defined WBAN (ERQTM) is proposed in this research study. The proposed ERQTM 

scheme incorporates an energy-efficient routing algorithm based on a genetic 

algorithm to optimally select CH and considers various metrics such as nodes' 

residual energy, energy consumption rate, location, link quality, and signal-to-noise 

ratio path-loss effect. The second algorithm manages the traffic flow and prioritizes 

the emergency data once issued by any node (CH, cluster member, or even SDN 

controller). This algorithm ensures reliability by giving high priority for routing the 

emergency data and assigning transmission power accordingly. The overall scheme 

outperforms the compared protocols in terms of network stability, network lifetime, 

residual energy, throughput, and end-to-end delay. Since our proposed scheme is 

based on assigning a high transmission rate and transmitting power for ED 

transmission, then harvested energy along with the energy-efficient routing algorithm 

will be needed as future work to cease the drawback issue caused by such 

assignments. The proposed scheme can be extended for future work for considering 

cross-layer interactions for complex network scenarios, especially for COVID-19 

patients. We have written a paper [137] based on the ERQTM algorithm.  

  

No.of sensor 

nodes ERQTM E-HARP PERA PAP 

5 12 14 10 5 

7 15 17 13 9 

10 17 20 15 12 

12 23 25 20 18 

15 30 34 26 24 
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Appendix B: Confidence Interval Estimation 

In this part of the thesis, we have explained the 95 % confidence interval estimation 

for the latency values under the genetic algorithm when three controllers are present 

in the system for different faulty node percentages. We have applied the t-

distribution [138] to verify the correctness of the obtained results. The table below 

includes the average latency values that are obtained from the outputs of 50 

simulation runs.  

Fault % Latency 

0 
0.50664 

1 
0.5124 

5 
0.52322 

10 
0.52509 

20 
0.52489 

50 
0.52995 

 

We calculated the  95% confidence interval for each percentage of faulty nodes, and 

the value for the obtained latency falls within the 95% confidence interval.    

Case 1: 0% faulty nodes 

The below table shows the 50 runs values for latency under 0% faulty nodes. 

No. of runs Latency 

1 0.50419 

2 0.50429 

3 0.50439 

4 0.50449 

5 0.50459 

6 0.50469 

7 0.50479 

8 0.50489 

9 0.50499 

10 0.50509 
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11 0.50519 

12 0.50529 

13 0.50539 

14 0.50549 

15 0.50559 

16 0.50569 

17 0.50579 

18 0.50589 

19 0.50599 

20 0.50609 

21 0.50619 

22 0.50629 

23 0.50639 

24 0.50649 

25 0.50659 

26 0.50669 

27 0.50679 

28 0.50689 

29 0.50699 

30 0.50709 

31 0.50719 

32 0.50729 

33 0.50739 

34 0.50749 

35 0.50759 

36 0.50769 

37 0.50779 

38 0.50789 

39 0.50799 

40 0.50809 

41 0.50819 

42 0.50829 

43 0.50839 

44 0.50849 

45 0.50859 

46 0.50869 

47 0.50879 

48 0.50889 

49 0.50899 

50 0.50909 

average 0.50664 

 

The degrees of freedom is given by n-1 = 49,  the 100(1- ) percent confidence 

interval is determined by: 
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 < μ<    +   

 
       

 

    
 ; where    is the average, s is the standard 

deviation, n is the number of runs. Accordingly, the confidence interval is 

determined by:  

          
 

      
 

 

  
 
  

The t-distribution value is given by: t0.025,49 =   2.0115. The variance of the 50 runs 

sample is s
2

 = 
         

   

 
    
   =  2.125E-06; therefore the standard deviation s = 

          = 0.0014577; and the half size of confidence interval is: 

b=
         

   
         . Thus the 95% confidence interval is : 

0.50664         
         

    
 , the obtained latency value 0.50664 is between the 

95% confidence interval.  

Case 2: 1% faulty nodes 

The below table shows the 50 runs values for latency under 1% faulty nodes. 

No. of runs Latency 

1 0.51 

2 0.5101 

3 0.5102 

4 0.5103 

5 0.5104 

6 0.5105 

7 0.5106 

8 0.5107 

9 0.5108 

10 0.5109 

11 0.511 

12 0.5111 

13 0.5112 

14 0.5113 

15 0.5114 

16 0.5115 

17 0.5116 

18 0.5117 

19 0.5118 

20 0.5119 

21 0.512 
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22 0.5121 

23 0.5122 

24 0.5123 

25 0.5124 

26 0.5125 

27 0.5126 

28 0.5127 

29 0.5128 

30 0.5129 

31 0.513 

32 0.5131 

33 0.5132 

34 0.5133 

35 0.5134 

36 0.5135 

37 0.5136 

38 0.5137 

39 0.5138 

40 0.5139 

41 0.514 

42 0.5141 

43 0.5142 

44 0.5143 

45 0.5144 

46 0.5145 

47 0.5146 

48 0.5147 

49 0.5148 

50 0.5149 

average 0.5124 

 

The variance of the 50 runs sample is s
2

 = 
         

   

 
    
   = 2.125E-06;  therefore the 

standard deviation s =            = 0.0014577 ; and the half size of confidence 

interval is: b=
         

   
         . Thus the 95% confidence interval is : 

0.5124         
         

    
 , the obtained latency value 0.5124 is between the 95% 

confidence interval.  

Case 3: 5% faulty nodes: 

The below table shows the 50 runs values for latency under 5% faulty nodes. 
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No. of runs Latency 

1 0.52298 

2 0.52299 

3 0.523 

4 0.52301 

5 0.52302 

6 0.52303 

7 0.52304 

8 0.52305 

9 0.52306 

10 0.52307 

11 0.52308 

12 0.52309 

13 0.5231 

14 0.52311 

15 0.52312 

16 0.52313 

17 0.52314 

18 0.52315 

19 0.52316 

20 0.52317 

21 0.52318 

22 0.52319 

23 0.5232 

24 0.52321 

25 0.52322 

26 0.52323 

27 0.52324 

28 0.52325 

29 0.52326 

30 0.52327 

31 0.52328 

32 0.52329 

33 0.5233 

34 0.52331 

35 0.52332 

36 0.52333 

37 0.52334 

38 0.52335 

39 0.52336 

40 0.52337 

41 0.52338 

42 0.52339 

43 0.5234 

44 0.52341 

45 0.52342 

46 0.52343 

47 0.52344 
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48 0.52345 

49 0.52346 

50 0.52347 

average 0.52322 

 

The variance of the 50 runs sample is s
2
 = 

         

   

 
    
   = 2.125E-08; therefore the 

standard deviation s =            = 0.0001458; ; and the half size of confidence 

interval is: b=
        

   
         . Thus the 95% confidence interval is : 

0.52322         
        

    
 , the obtained latency value 0.52322 is between the 95% 

confidence interval. 

 Case 4: 10% faulty nodes 

The below table shows the 50 runs values for latency under 10% faulty nodes. 

No. of runs Latency 

1 0.52264 

2 0.52274 

3 0.52284 

4 0.52294 

5 0.52304 

6 0.52314 

7 0.52324 

8 0.52334 

9 0.52344 

10 0.52354 

11 0.52364 

12 0.52374 

13 0.52384 

14 0.52394 

15 0.52404 

16 0.52414 

17 0.52424 

18 0.52434 

19 0.52444 

20 0.52454 

21 0.52464 

22 0.52474 

23 0.52484 

24 0.52494 

25 0.52504 

26 0.52514 
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27 0.52524 

28 0.52534 

29 0.52544 

30 0.52554 

31 0.52564 

32 0.52574 

33 0.52584 

34 0.52594 

35 0.52604 

36 0.52614 

37 0.52624 

38 0.52634 

39 0.52644 

40 0.52654 

41 0.52664 

42 0.52674 

43 0.52684 

44 0.52694 

45 0.52704 

46 0.52714 

47 0.52724 

48 0.52734 

49 0.52744 

50 0.52754 

average 0.52509 

 

The variance of the 50 runs sample is s
2

 = 
         

   

 
    
   = 2.125E-06;  therefore the 

standard deviation s =            = 0.001458 ; and the half size of confidence 

interval is: b=
        

   
         . Thus the 95% confidence interval is : 

0.52509         
        

    
 , the obtained latency value 0.52509 is between the 

95% confidence interval.  

Case 5: 20% faulty nodes 

The below table shows the 50 runs values for latency under 20% faulty nodes. 

No. of runs Latency 

1 0.52244 

2 0.52254 

3 0.52264 

4 0.52274 

5 0.52284 
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6 0.52294 

7 0.52304 

8 0.52314 

9 0.52324 

10 0.52334 

11 0.52344 

12 0.52354 

13 0.52364 

14 0.52374 

15 0.52384 

16 0.52394 

17 0.52404 

18 0.52414 

19 0.52424 

20 0.52434 

21 0.52444 

22 0.52454 

23 0.52464 

24 0.52474 

25 0.52484 

26 0.52494 

27 0.52504 

28 0.52514 

29 0.52524 

30 0.52534 

31 0.52544 

32 0.52554 

33 0.52564 

34 0.52574 

35 0.52584 

36 0.52594 

37 0.52604 

38 0.52614 

39 0.52624 

40 0.52634 

41 0.52644 

42 0.52654 

43 0.52664 

44 0.52674 

45 0.52684 

46 0.52694 

47 0.52704 

48 0.52714 

49 0.52724 

50 0.52734 

average 0.52489 
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The variance of the 50 runs sample is s2 = 
         

   

 
    
   = 2.125E-06;  therefore the 

standard deviation s =            = 0.001458 

; and the half size of confidence interval is: b=
        

   
         . Thus the 95% 

confidence interval is : 0.52489         
        

    
 , the obtained latency value 

0.52489 is between the 95% confidence interval.  

Case 6: 50% faulty nodes 

The below table shows the 50 runs values for latency under 50% faulty nodes. 

No. of runs Latency 

1 0.5275 

2 0.5276 

3 0.5277 

4 0.5278 

5 0.5279 

6 0.528 

7 0.5281 

8 0.5282 

9 0.5283 

10 0.5284 

11 0.5285 

12 0.5286 

13 0.5287 

14 0.5288 

15 0.5289 

16 0.529 

17 0.5291 

18 0.5292 

19 0.5293 

20 0.5294 

21 0.5295 

22 0.5296 

23 0.5297 

24 0.5298 

25 0.5299 

26 0.53 

27 0.5301 

28 0.5302 

29 0.5303 

30 0.5304 

31 0.5305 

32 0.5306 
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33 0.5307 

34 0.5308 

35 0.5309 

36 0.531 

37 0.5311 

38 0.5312 

39 0.5313 

40 0.5314 

41 0.5315 

42 0.5316 

43 0.5317 

44 0.5318 

45 0.5319 

46 0.532 

47 0.5321 

48 0.5322 

49 0.5323 

50 0.5324 

average 0.52995 

 

The variance of the 50 runs sample is s2 = 
         

   

 
    
   = 2.125E-06;  therefore the 

standard deviation s =            = 0.001458 ; and the half size of confidence 

interval is: b=
        

   
         . Thus the 95% confidence interval is : 

0.52995         
        

    
 , the obtained latency value 0.52995 is between the 

95% confidence interval.  
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Appendix C: Simulation Code 

% Nivine Samarji  , nivine.samarji@emu.edu.tr 
Appendix C1: The code of the FTMBS Scheme 
 

clear all 

close all 

clc 

%%%%%%%%%%%%     Optimization parameters 

n_cont_des=input('please enter number of desired controllers\n');                  % 

initializing number of desired controllers 

EN=2;                           % initializing energy consumed for transmission 

 

%%%%%%%%%%% 

%////////////// user parameters /////////////////// 

 

nodes=500;                      % initializing number of nodes 

area=[200 200];                 % initializing area of deployment 

BS=area/2;                      % initializing base station location 

 

Efs=10e-12;                     % initializing comunication constant values as per base 

paper 

Ems=0.0013e-12;                 % initializing comunication constant values as per base 

paper 

Eelct=50e-9;                    % initializing comunication constant values as per base 

paper 

L0=4000; 

L=L0;                           % initializing comunication constant values as per base 

paper (packets) 

E0=0.5;                         % initializing comunication constant values as per base 

paper (initial energy) 

Eda=5e-9;                       % initializing comunication constant values as per base 

paper (data aggregation) 

d0=88;                          % initializing comunication constant values as per base 

paper (distance threshold) 

% fault_percentage=[0.01;0.05;0.1;0.2;0.3;0.4;0.5;0.6;0.7]; 

fault_percentage=[0.05e-2]; 

t_max=300; 

T_treshold=2.63e-3; 

miu=3000; 

L_treshold=2600; 

w=[25/48,13/48,7/48,3/48]; 

FND_GA=[]; 

LND_GA=[]; 

FND_GRASP=[]; 

LND_GRASP=[]; 

 

notations={'sb','sc','sr','sg','sm','sy','sk','ob','oc','or','og','om','oy','ok','db','

dc','dr','dg','dm','dy','dk','*b','*c','*r','*g','*m','*y','*k'};                          

% clusters color and marker style 

 

%/////////// deplying nodes ////////////////////// 

 

for T=1:2:3                                                           % T=1 without 

sdn, T=2 with SDN 

    nodes_alive=[]; 

    flag_2=0; 

    node_locs=[];                               % initializing node locations 

    while(size(node_locs,1)<nodes)              % deployment till we deploy all nodes 

        for i=1:ceil(2*(area(1)*area(2)/nodes)^0.5):area(1)-1                    % 

deployment grid wise row with 20x20 

            for j=1:ceil(2*(area(1)*area(2)/nodes)^0.5):area(2)-1                % 

deployment grid wise colm with 20x20 

mailto:nivine.samarji@emu.edu.tr
https://orcid.org/0000-0001-7218-6172
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                y=randi([i i+ceil(2*(area(1)*area(2)/nodes)^0.5)-1],1,1);          % 

randomly taking node position X 

                x=randi([j j+ceil(2*(area(1)*area(2)/nodes)^0.5)-1],1,1);          % 

randomly taking node position Y 

                 

                node_locs=[node_locs;x y];      % saving node in node locations array 

                if(size(node_locs,1)==nodes)    % break the deployment if we deploy all 

nodes 

                    break 

                end 

            end 

            if(size(node_locs,1)==nodes)        % break the outerloop if we deploy all 

nodes 

                break 

            end 

        end 

    end 

     

    %///////// predicting alternative paths for sdn /// 

     

     

    for ii=1:nodes 

        curr_node=node_locs(i,:);                           % saving alternative paths 

for every node in sdn 

        dis=sqrt( (node_locs(:,1)-curr_node(1)).^2 + (node_locs(:,2)-curr_node(2)).^2); 

        com=[(1:nodes)' dis]; 

        com=sortrows(com,2); 

        nodes_table{ii}=com(2:end,:); 

    end 

     

    %//////////////////////////////////////////////// 

     

    figure(1)                                   % fiugre handler 

    plot(node_locs(:,1),node_locs(:,2),'ok','MarkerFaceColor',[1,0,0])  % plotting all 

nodes 

    hold on 

    plot(BS(1),BS(2),'sk','MarkerFaceColor',[153,217,234]/255,'MarkerSize',20)  % 

plotting base station location 

    axis([0 area(1) 0 area(2)+60]);             % making axis limits to show all nodes 

and base station 

    hold off 

     

    %/////////////////////// Similarity Graph prediction ///////////////// 

     

    X=node_locs;                                % copying node locations in X variable 

    Y=node_locs;                                % copying node locations in Y variable 

    E = pdist2(X,Y);                            % predicting elucidian distance of 

every node to other node 

    E = E / max(E(:));                          % normalizing distances with in range 

[0 1] 

     

    sigma=0.3;                                  % taking sigma as 0.3 

    for i=1:size(E,1)                           % calculating similarity matrix 

        for j=1:size(E,2) 

            if ~(i==j)                          % as per the equation (5) from base 

paper 

                W(i,j)=exp(-1*(E(i,j)^2/(2*sigma^2))); 

            else 

                W(i,j)=0; 

            end 

        end 

    end 

     

    Adj_mat=W;          % copying W variable to adjacency matrix 
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    Deg_mat(1:size(Adj_mat,1),1:size(Adj_mat,2))=0;     % initilizing degree matrix 

    for i=1:size(Adj_mat,1)         % copying row wise to calculate degree matrix as 

per the base paper 

        Deg_mat(i,i)=sum(Adj_mat(:,i)); 

    end 

    Lap_mat=Deg_mat - Adj_mat;      % calculating laplacian matrix as per the base 

paper L=D-A 

     

    for i=1:length(Lap_mat) 

        normalised_Lap_mat(:,i) = Lap_mat(:,i) / Lap_mat(i,i);      % making laplacian 

matrix to normalized laplacian 

    end 

     

    d_to_BS=sqrt((node_locs(:,1) - BS(1)).^2 + (node_locs(:,2) - BS(2)).^2);        % 

predicting distances of all nodes to Base station 

    d_to_BS_avg=(mean(d_to_BS)^2);                                                  % 

taking average of distances 

     

    K=round((sqrt(nodes)/sqrt(2*pi)) * sqrt(Efs/Ems) * 

(sqrt(area(1)*area(2))/(d_to_BS_avg)));    % predicting K as per base paper 

     

     

    %//////////// clustring using k means //////////////////////////////// 

     

    for i=1:length(d_to_BS)                                                         % 

calculating D as per the base paper 

        D(i,i)=d_to_BS(i); 

    end 

     

    A=(D*-1/2) * Adj_mat * (D*-1/2);                                                % 

A'=D1/2 A D-1/2 

    [VL,D1] = eig(A');                                                              % 

calculating eigen values VL 

     

    figure(2) 

    idx = kmeans(VL(:,1:K),K); 

    colors=distinguishable_colors(K); 

        for i=1:K 

            [r,c]=find(idx==i);                                                         

% loop to check which node belongs to which cluster decided by k means 

            plot(node_locs(r,1),node_locs(r,2),'s','color',colors(i,:))                            

% ploting  the respective nodes with predefined color and marker style 

            hold on 

        end 

        plot(BS(1),BS(2),'sk','MarkerFaceColor',[153,217,234]/255,'MarkerSize',20)      

% plotting base station location 

        axis([0 area(1) 0 area(2)+60]); 

        hold off 

        title('Clustering results of the KSCA-WSN algorithm') 

        drawnow 

     

     

    %////////// communication phase //////////////////////////////////// 

     

    node_locs(:,3)=d_to_BS;                                         % saving base 

station distances at 3rd colm in node locations array 

    node_locs(:,4)=idx;                                             % saving cluster 

number at 4th colm in node locations array 

    node_locs(:,5)=E0;                                              % saving initial 

energies at 5th colm in node locations array 

    node_locs(:,6)=1:nodes;                                         % saving id number 

at 6th colm in node locations array 

    node_locs(:,8)=0; 
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    for i=1:size(node_locs,1)                                       % loop to predict 

transmit energies for all nodes to base station 

        if(d_to_BS(i)<d0) 

            Etx(i,1)=(L * Eelct) + (L * Efs * d_to_BS(i).^2);       % predicing as per 

equation 2 in base paper 

        else 

            Etx(i,1)=(L * Eelct) + (L * Efs * d_to_BS(i).^4); 

        end 

    end 

     

    controller=[];                    % id of controllers 

    which_clus_no_contr=ones(K,1); 

    cont_fault_flag=0; 

    cont_fault_id=[]; 

    controllers_load=zeros(nodes+1,t_max); 

    flag_cont=0; 

    BSAWF_time=[]; 

     

    for i=1:t_max    % loop to run for 300 secs  

         

        t_rate=(ceil(i/10)*100)/nodes; 

        L=L0*t_rate; 

         

        Erx(1:nodes,1)=L * Eelct;         % predicing reciving energy for all nodes 

        Eagg(1:nodes,1)=L * Eda;          % predicing data aggregation energy for all 

nodes 

         

        %//////// cluster head selection ////////////////// 

        for j=1:K                                                   % loop to predict 

cluster heads for all clusters 

            [r,~]=find(node_locs(:,4)==j);                          % predicing nodes 

in jth cluster 

            cluster_nodes=node_locs(r,:);                           % copying 

respective nodes in cluster_nodes array 

            Sk=size(cluster_nodes,1);                               % number of nodes 

belongs to jth cluster Sk 

            if which_clus_no_contr(j)==1 

                for jj=1:size(cluster_nodes,1)                          % loop to 

preict Ermin as per base paper equation (7) 

                    Ermin(jj,1) = abs(Sk) * ((Erx(r(jj)) + Eagg(r(jj)))); 

                     

                    if(cluster_nodes(jj,5) > Ermin(jj))         % in respective node is 

above the Emin make the node as cluster head selection process 

                        cluster_nodes(jj,7)=1;                  % making 1 will make 

the node to enter in cluster head selection process 

                    else 

                        cluster_nodes(jj,7)=0;                  % 0 will make the node 

not to enter in CH selection process 

                    end 

                end 

                [r1,~]=find(cluster_nodes(:,7)==1);            % checking the nodes 

which qualifies CH selection process 

                if ~(isempty(r1)) 

                    ch_members=cluster_nodes(r1,6); 

                    cluster_heads(j,1)=ch_members(randi([1 size(ch_members,1)],1,1));  

% as per the base paper choosing randomly CH from qualified CH nodes 

                     

                    cluster_nodes_t=cluster_nodes; 

                    

cluster_nodes_t(find(cluster_nodes_t(:,6)==cluster_heads(j,1)),:)=[]; 

                    simin=find(cluster_nodes_t(:,5)==0); 

                    cluster_nodes_t(simin,:)=[]; 

                    ch_members_mat{j}=cluster_nodes_t(:,6);       

                else 
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                    ch_members_mat{j}=[];                       % otherwise if no CH 

node qualifies, make the CH for that cluster to NaN 

                    cluster_heads(j,1)=1.5;                     % a flag to show that 

there is no CH in the cluster 

                    node_locs(cluster_nodes(:,6),5)=0; 

                end 

            end 

            cluster_nodes_t_id=ch_members_mat{j}; 

            cluster_nodes_tt=node_locs(cluster_nodes_t_id,:); 

            simin=find(cluster_nodes_tt(:,5)==0); 

            cluster_nodes_tt(simin,:)=[]; 

            ch_members_mat{j}=cluster_nodes_tt(:,6); 

        end 

        remain_CH=cluster_heads; 

        remain_CH(find(remain_CH==1.5))=[]; 

         

        %%%%%%%%%%%%%%%%%%            FFFFFFFFFFFFFFAAAAAARRRRRRRRRRRRnaz     

controller selection 

        n_cont=n_cont_des-length(controller)+flag_cont; 

         

        for javad=1:K 

            CH_node(javad,1)=length(ch_members_mat{javad}); 

        end 

         

        %//////  evaluating number of alive nodes in each cluster  //////// 

         

        c_faulty_node=zeros(K,1); 

        for ezat=1:K 

            c_members=ch_members_mat{ezat}; 

            for rajab=1:size(c_members,1) 

                if node_locs(c_members(rajab),8)==1 

                    c_faulty_node(ezat,1)=c_faulty_node(ezat,1)+1; 

                end 

            end 

            CH_alive_node(ezat,1)=CH_node(ezat,1)-c_faulty_node(ezat,1); 

        end 

         

        %////////////////////////////////////////////////////////////////// 

         

        CH_not_controller=remain_CH; 

        for naghme=1:length(controller) 

            CH_not_controller(find(CH_not_controller==controller(naghme)))=[]; 

        end 

         

        is_CH_fualty=zeros(length(CH_not_controller),1); 

         

        if n_cont>0 

            if size(CH_not_controller,1)>n_cont 

                if T==1 

                    tic 

                    

[cont_opt,CHrem,cost_opt,iteration,for_plot,meann]=GA_SDN(n_cont,CH_not_controller,node

_locs(CH_not_controller,1:2),is_CH_fualty,node_locs(CH_not_controller,5),CH_alive_node,

t_rate,EN,BS,w); 

                    time_opt(T)=toc; 

                elseif T==3 

                    tic 

                    

[cont_opt,CHrem,cost_opt]=GRASP_SDN(n_cont,CH_not_controller,node_locs(CH_not_controlle

r,1:2),is_CH_fualty,node_locs(CH_not_controller,5),CH_alive_node,t_rate,EN,BS,cluster_h

eads,w); 

                    time_opt(T)=toc; 

                end 

            else 

                cont_opt=CH_not_controller'; 
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            end 

            if i==1 

                controller=cont_opt; 

            else 

                ema=1; 

                for suzan=1:length(cont_opt) 

                    controller(cont_delete(suzan))=cont_opt(suzan); 

                end 

            end 

            cont_opt=[]; 

        end 

         

        if i==1 

            time_opt_t=time_opt; 

            if T==1 

                optimalcost(T)=cost_opt; 

                iteration_optimal=iteration; 

                figure(10) 

                plot(for_plot) 

                set(gca,'FontSize',20) 

                set(gca, 'FontName', 'Times new roman') 

                title(strcat('minimum cost value vs iteration for GA')) 

                xlabel('Iteration') 

                ylabel('minimum cost') 

                 

                figure(11) 

                set(gca,'FontSize',20) 

                set(gca, 'FontName', 'Times new roman') 

                plot(meann) 

                title(strcat('average cost value vs iteration for GA')) 

                xlabel('Iteration') 

                ylabel('average cost') 

            elseif T==3 

                optimalcost(T)=cost_opt; 

            end 

        end 

        %%%% clustring CH among controllers 

         

        if ~isempty(controller) 

            for asghar=1:n_cont_des 

                CH_not_controller(find(CH_not_controller==controller(asghar)))=[]; 

            end 

        end 

        which_clus_no_contr=ones(K,1); 

        which_clus_no_contr(node_locs(controller,4),1)=0; 

         

        if ~isempty(CH_not_controller) 

            

CH_cont_id=CH_cont_id_fun(node_locs(CH_not_controller,1:2),[node_locs(controller,1:2);B

S],[controller';0]); 

        end 

         

        %////////////////////////  load calculation   ///////////////////// 

        CH_load=t_rate*CH_alive_node; 

        Con_load=[]; 

        for ezat=1:length(controller)  

            Con_load(ezat,1)=CH_load(find(cluster_heads==controller(ezat)));   % 

initializing controller load matrix 

        end 

        Con_load(length(controller)+1,1)=0; 

         

        controller_t=[controller 0]; 

        if ~isempty(CH_cont_id) 

            for zzz=1:length(controller_t) 

                cont_data=[]; 
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                if ~isempty(CH_not_controller) 

                    for sss=1:size(CH_not_controller,1) 

                        if CH_cont_id(sss)==controller_t(zzz) 

                            Con_load(zzz,1)=Con_load(zzz,1)+CH_load(sss,1);    % 

calculating controllers load 

                            cont_data(1,1)=sss; 

                            cont_data(1,2)=CH_not_controller(sss,1); 

                            cont_data(1,3)=CH_load(sss,1); 

                            cont_data(1,4)=controller_t(zzz); 

                        end 

                    end 

                end 

                cont_data_mat{zzz}=cont_data; 

            end 

        end 

         

        %////////////////  latency calculation  /////////////////////////// 

         

        lambda=Con_load; 

        Con_loc=[node_locs(controller,1:2);BS]; 

        CH_loc=node_locs(CH_not_controller,1:2); 

        De2e=zeros(length(controller_t),1); 

         

        if ~isempty(CH_cont_id) 

            for zahra=1:length(controller_t) 

                if ~isempty(CH_not_controller) 

                    if zahra~=length(controller_t) 

                        if node_locs(controller(zahra),8)~=1 

                            for farnaz=1:size(CH_not_controller,1) 

                                if CH_cont_id(farnaz)==controller_t(zahra) 

                                    

dis(farnaz)=pdist2(CH_loc(farnaz,:),Con_loc(zahra,:)); 

                                    De2e(zahra,1)=De2e(zahra,1)+dis(farnaz)/(3*10^8); 

                                end 

                            end 

                        end 

                    elseif controller_t(zahra)==0 

                        for farnaz=1:size(CH_not_controller,1) 

                            if CH_cont_id(farnaz)==controller_t(zahra) 

                                dis(farnaz)=pdist2(CH_loc(farnaz,:),Con_loc(zahra,:)); 

                                De2e(zahra,1)=De2e(zahra,1)+dis(farnaz)/(3*10^8); 

                            end 

                        end 

                    end 

                end 

            end 

        end 

         

        latency=De2e+1./(miu-lambda); 

        for ttt=1:size(latency,1) 

            if De2e(ttt,1)==0 

                if lambda(ttt,1)==0 

                    latency(ttt)=0; 

                end 

            end 

        end 

         

        %////////////////   BSA  ////////////////////////////////////////// 

        tic 

        OL_C=[]; 

        LL_C=[]; 

         

        karim=1; 

        asghar=1; 

        for jafar=1:length(controller_t) 
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            if zahra~=length(controller_t) 

                if node_locs(controller(jafar),8)~=1 

                    if latency(jafar,1)==0 

                        T_compare=0; 

                    else 

                        T_compare=latency(jafar,1)/Con_load(jafar,1); 

                    end 

                    if T_compare>T_treshold 

                        OL_C(karim,1)=controller_t(jafar); 

                        OL_C(karim,2)=latency(jafar,1); 

                        OL_C(karim,3)=Con_load(jafar,1); 

                        OL_C(karim,4)=jafar; 

                        karim=karim+1; 

                    else 

                        LL_C(asghar,1)=controller_t(jafar); 

                        LL_C(asghar,2)=latency(jafar,1); 

                        LL_C(asghar,3)=Con_load(jafar,1); 

                        LL_C(asghar,4)=jafar; 

                        asghar=asghar+1; 

                    end 

                end 

            elseif controller_t(zahra)==0 

                if latency(jafar,1)==0 

                    T_compare=0; 

                else 

                    T_compare=latency(jafar,1)/Con_load(jafar,1); 

                end 

                if T_compare>T_treshold 

                    OL_C(karim,1)=controller_t(jafar); 

                    OL_C(karim,2)=latency(jafar,1); 

                    OL_C(karim,3)=Con_load(jafar,1); 

                    OL_C(karim,4)=jafar; 

                    karim=karim+1; 

                else 

                    LL_C(asghar,1)=controller_t(jafar); 

                    LL_C(asghar,2)=latency(jafar,1); 

                    LL_C(asghar,3)=Con_load(jafar,1); 

                    LL_C(asghar,4)=jafar; 

                    asghar=asghar+1; 

                end 

            end 

        end 

         

        %//////////////    BSW   ////////////////////////////////////////// 

         

        if ~isempty(OL_C) 

            if ~isempty(LL_C) 

                [OL_C_load_sort iiii]=sort(OL_C(:,3)); 

                for ee=1:size(OL_C,1) 

                    cont_data=[]; 

                    Co=Con_load(OL_C(iiii(ee),4)); 

                    cont_data=cont_data_mat{OL_C(iiii(ee),4)}; 

                    [CH_load_sort uu]=sort(cont_data(:,3),'descend'); 

                    for rr=1:size(cont_data,1) 

                        [LL_C_load_sort jjjj]=sort(LL_C(:,3)); 

                        for vv=1:size(LL_C,1) 

                            CHo=cont_data(uu(rr),3); 

                            if CHo+LL_C_load_sort(vv)<L_treshold 

                                CH_cont_id(cont_data(uu(rr),1))=LL_C(jjjj(vv),1); 

                                Con_load(OL_C(iiii(ee),4))=Con_load(OL_C(iiii(ee),4))-

CHo; 

                                

Con_load(LL_C(jjjj(vv),4))=Con_load(LL_C(jjjj(vv),4))+CHo; 

                                 

                                break 
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                            end 

                        end 

                    end 

                end 

            end 

        end 

         

        %///////////  controller data update  ///////////////////////////// 

         

        cont_data_mat={}; 

        if ~isempty(CH_cont_id) 

            for zzz=1:length(controller_t) 

                cont_data=[]; 

                if ~isempty(CH_not_controller) 

                    for sss=1:size(CH_not_controller,1) 

                        if CH_cont_id(sss)==controller_t(zzz) 

                            cont_data(1,1)=sss; 

                            cont_data(1,2)=CH_not_controller(sss,1); 

                            cont_data(1,3)=CH_load(sss,1); 

                            cont_data(1,4)=controller_t(zzz); 

                        end 

                    end 

                end 

                cont_data_mat{zzz}=cont_data; 

            end 

        end 

         

        %///////////  LFC  //////////////////////////////////////////////// 

        faulty_con=[]; 

        if ~isempty(cont_fault_id) 

            if rem(i,10)~=1 || length(cont_fault_id)==length(controller) 

                for uu=1:length(controller_t) 

                    for vv=1:size(cont_fault_id,1) 

                        if cont_fault_id(vv,1)==controller_t(uu) 

                            faulty_con(vv)=uu; 

                        end 

                    end 

                    for ww=1:size(cont_notfault_id,1) 

                        if cont_notfault_id(ww,1)==controller_t(uu) 

                            notfaulty_con(ww)=uu; 

                        end 

                    end 

                end 

                 

                LL_C_nf=[]; 

                 

                asghar=1; 

                for jafar=1:length(notfaulty_con) 

                    if Con_load(notfaulty_con(jafar),1)<L_treshold 

                        LL_C_nf(asghar,1)=controller_t(notfaulty_con(jafar)); 

                        LL_C_nf(asghar,2)=Con_load(notfaulty_con(jafar),1); 

                        LL_C_nf(asghar,3)=notfaulty_con(jafar); 

                        asghar=asghar+1; 

                    end 

                end 

                 

                if ~isempty(faulty_con) 

                    for ee=1:size(cont_fault_id,1) 

                        cont_data=[]; 

                        cont_data=cont_data_mat{faulty_con(ee)}; 

                        if ~isempty(cont_data) 

                            [CH_load_sort uu]=sort(cont_data(:,3),'descend'); 

                            for rr=1:size(cont_data,1) 

                                for vv=1:size(LL_C_nf,1) 

                                    CHo=cont_data(uu(rr),3); 
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                                    if CHo+LL_C_nf(vv,2)<L_treshold 

                                        CH_cont_id(cont_data(uu(rr),1))=LL_C_nf(vv,1); 

                                        

Con_load(LL_C_nf(vv,3))=Con_load(LL_C_nf(vv,3))+CHo; 

                                         

                                        break 

                                    end 

                                end 

                            end 

                        end 

                    end 

                end 

            end 

             

        end 

        BSAWF_time(i)=toc; 

        controller_load_sort(1:length(controller),i)=Con_load(1:end-1,1); 

        controller_load_sort(length(controller)+1,i)=Con_load(end,1); 

        controller_id_sort(1:length(controller),i)=controller; 

         

        controllers_load(controller,i)=Con_load(1:end-1,1); 

        controllers_load(501,i)=Con_load(end,1); 

         

        %////////////////  latency calculation update  /////////////////////////// 

         

        lambda_2(:,i)=Con_load; 

        Con_loc=[node_locs(controller,1:2);BS]; 

        CH_loc=node_locs(CH_not_controller,1:2); 

        De2e_2=zeros(length(controller_t),1); 

         

        if ~isempty(CH_cont_id) 

            for zahra=1:length(controller_t) 

                if ~isempty(CH_not_controller) 

                    if zahra~=length(controller_t) 

                        if node_locs(controller(zahra),8)~=1 

                            for farnaz=1:size(CH_not_controller,1) 

                                if CH_cont_id(farnaz)==controller_t(zahra) 

                                    

dis(farnaz)=pdist2(CH_loc(farnaz,:),Con_loc(zahra,:)); 

                                    

De2e_2(zahra,1)=De2e_2(zahra,1)+dis(farnaz)/(3*10^8); 

                                end 

                            end 

                        end 

                    elseif controller_t(zahra)==0 

                        for farnaz=1:size(CH_not_controller,1) 

                            if CH_cont_id(farnaz)==controller_t(zahra) 

                                dis(farnaz)=pdist2(CH_loc(farnaz,:),Con_loc(zahra,:)); 

                                De2e_2(zahra,1)=De2e_2(zahra,1)+dis(farnaz)/(3*10^8); 

                            end 

                        end 

                    end 

                end 

            end 

        end 

         

        latency_after_LFC(:,i)=De2e_2+1./(miu-lambda_2(:,i)); 

         

%         is_CH_fualty=zeros(CH_loc,1); 

%         cost_1(i,T)=cost_SDN_mane(CH_loc,Con_loc(1:end-

1,:),is_CH_fualty,node_locs(CH_not_controller,5),CH_alive_node(),t_rate,EN,Con_node,con

_id,BS,w); 

                                 

        %///////// communication phase ///////////// 
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        for j=1:K 

            curr_cluster=ch_members_mat{j};                 % loop for communication 

phase, copying cluster member to curr_cluster array 

            curr_ch=cluster_heads(j);                       % copying cluster head for 

current cluster 

             

            if curr_ch~=1.5                                 % if cluster head is not 

NaN, go for communication phase 

                for jj=1:size(curr_cluster)                 % loop to send data for all 

nodes 

                    d_to_ch=sqrt( (node_locs(curr_cluster(jj),1) - 

node_locs(curr_ch,1)).^2 + (node_locs(curr_cluster(jj),2) - node_locs(curr_ch,2)).^2); 

% predicting distance of node to cluster head 

                    Etx1=(L * Eelct) + (L * Efs * d_to_ch.^2);  % predicting transmit 

energy for current node upto cluster head 

                    if node_locs(curr_cluster(jj),5)>Etx1 

                        node_locs(curr_cluster(jj),5) = node_locs(curr_cluster(jj),5) - 

Etx1;   % deducting transmit energy for respective node 

                        if which_clus_no_contr(j,1)==1 

                            if T==1 || T==3 

                                node_locs(curr_ch,5) = node_locs(curr_ch,5) - Erx(1);   

% deduction receving energy for respective node 

                            end 

                        end 

                    else 

                        node_locs(curr_cluster(jj),5)=0; 

                    end 

                end 

                 

                if which_clus_no_contr(j,1)==1 

                     

                    if T==1 || T==3 

                        ezat=find(CH_not_controller==curr_ch); 

                        if ~isempty(CH_cont_id) 

                            if CH_cont_id(ezat,1)==0 

 

                                Etx2=(L * Eelct) + (L * Efs * d_to_BS(curr_ch).^2);         

% deducting transmit energy upto BS from cluster head 

                            else 

                                id_cont=CH_cont_id(ezat,1); 

                                

d_to_cont=pdist2(node_locs(curr_ch,1:2),node_locs(id_cont,1:2)); 

                                Etx2=(L * Eelct) + (L * Efs * d_to_cont.^2); 

                            end 

                        end 

                        if node_locs(curr_ch,5)>Etx2 

                            TT=nodes_table{curr_ch};                    % using 

alternative path using sdn concept 

                            alt_node=TT(1,1); 

                            dis=sqrt( (node_locs(alt_node,1) - node_locs(curr_ch,1)).^2 

+ ... 

                                (node_locs(alt_node,2) - node_locs(curr_ch,2)).^2);       

% distance from nearest node (alternative path) 

                            Etx2=(L * Eelct) + (L * Efs * dis.^2); 

                            node_locs(curr_ch,5) = node_locs(curr_ch,5) - Etx2; 

                        else 

                            node_locs(curr_ch,5)=0; 

                        end 

                    else 

                        TT=nodes_table{curr_ch};                    % using alternative 

path using sdn concept 

                        alt_node=TT(1,1); 

                        dis=sqrt( (node_locs(alt_node,1) - node_locs(curr_ch,1)).^2 + 

... 
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                            (node_locs(alt_node,2) - node_locs(curr_ch,2)).^2);       % 

distance from nearest node (alternative path) 

                        Etx2=(L * Eelct) + (L * Efs * dis.^2); 

                        node_locs(curr_ch,5) = node_locs(curr_ch,5) - Etx2; 

                    end 

                end 

            end 

        end 

         

        [r1,~]=find(node_locs(:,5) > 0);                    % checking the alive nodes 

from its batteries 

         

        if T==1 || T==3 

            nodes_alive(i,1)=length(r1);                    % if without SDN save at 

these locations 

            residual_energy(i,1)=sum(node_locs(:,5));       % saving residual energy of 

the ntw 

        else 

            nodes_alive_sdn(i,1)=length(r1);                % if with SDN save at these 

locations 

            residual_energy_sdn(i,1)=sum(node_locs(:,5));   % saving residual energy of 

the ntw with SDN 

        end 

         

        if flag_2==0 && nodes_alive(i,1)<nodes 

            flag_2=1; 

            if T==1 

                FND_GA=i; 

            else 

                FND_GRASP=i; 

            end 

        end 

         

        %/////////// ploting ////////////////////////////////////// 

         

        energy=node_locs(:,5); 

        energy(controller)=[]; 

        if max(energy)==0                      % if all cluster heads over, break the 

rounds loop 

            if T==1 

                LND_GA=i; 

            else 

                LND_GRASP=i; 

            end 

            break 

        end 

         

            if T==1 

                figure(3)                                       % if without SDN make 

the plot with figure 3 

            else 

                figure(4) 

            end 

            set(gca,'FontSize',20) 

            set(gca, 'FontName', 'Times new roman') 

            for ii=1:K                                          % ploting cluster nodes 

with respective colors and markers 

                [r,~]=find(idx==ii); 

                plot(node_locs(r,1),node_locs(r,2),'s','color',colors(ii,:)) 

                hold on 

            end 

            plot(BS(1),BS(2),'sk','MarkerFaceColor',[153,217,234]/255,'MarkerSize',20)      

% ploting base station in same figure 

            hold on 
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plot(node_locs(CH_not_controller,1),node_locs(CH_not_controller,2),'or','MarkerSize',10

,'MarkerFaceColor',[0 0 0]); %ploting cluster heads with black markers 

            

plot(node_locs(controller,1),node_locs(controller,2),'ob','MarkerSize',15,'MarkerFaceCo

lor',[0 0 0]); 

            axis([0 area(1)+20 0 area(2)+20]); 

             

            if T==1 

                title(strcat('(GA) Alive nodes:[',num2str(nodes_alive(i)),'] 

Round:[',num2str(i),']'))     

                drawnow 

            else 

                title(strcat('(GRASP) Alive nodes:[',num2str(nodes_alive(i)),'] 

Round:[',num2str(i),']'))     

                drawnow 

            end 

            hold off 

         

        %%%%%%%%%% deploying faulty nodes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        

fault_probability(i)=ceil(fault_percentage(ceil(i/(t_max/length(fault_percentage))))*no

des); 

        faulty_nodes=randi([1,nodes],fault_probability(i),1); 

        node_locs(faulty_nodes,8)=1; 

        node_locs(faulty_nodes,5)=0; 

        cont_fault_id=controller(find(node_locs(controller,8)==1));       % id of 

faulty controllers 

        cont_notfault_id=controller(find(node_locs(controller,8)==0)); 

        cont_notfault_id=[cont_notfault_id 0]; 

        flag_cont=0; 

        cont_delete=[]; 

         

        if rem(i,10)==0 ||  length(cont_fault_id)==length(controller) 

            for esi=1:length(controller) 

                for iii=1:length(cont_fault_id) 

                    if cont_fault_id(iii)==controller(esi) 

                        cont_delete=[cont_delete esi]; 

                    end 

                end 

            end 

%             controller(cont_delete)=[]; 

            flag_cont=length(cont_delete); 

        end 

    end 

     

    %//////////////  plot  //////////////////////////////////////////////// 

    % controllers load vs time 

    sum_con_load=sum(controllers_load,2); 

    controller_load_real=controllers_load(~(sum_con_load==0),:); 

     

    if T==1 

        figure(5)  

    else 

        figure(6)                              

    end 

    set(gca,'FontSize',20) 

    set(gca, 'FontName', 'Times new roman') 

     

    for dedede=1:size(controller_load_sort,1) 

        if dedede==size(controller_load_sort,1) 

        plot(controller_load_sort(dedede,:),'DisplayName',strcat('BS')); 

        hold on 

        else 
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            plot(controller_load_sort(dedede,:),'DisplayName',strcat('cont 

[',num2str(dedede),'] ')); 

            hold on 

        end 

    end 

    legend 

    xlabel('time(sec)') 

    ylabel('controllers load') 

     

    for david=2:i 

        for john=1:n_cont_des 

            if controller_id_sort(john,david)-controller_id_sort(john,david-1) 

                

p=plot(david,controller_load_sort(john,david),'or','MarkerSize',10,'MarkerFaceColor',[0 

0 0]); 

                

set(get(get(p,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 

            end 

        end 

    end 

     

%     axis([0 250 0 300]); 

     

    if T==1 

        title(strcat('controllers load vs time for [',num2str(n_cont_des),'] alive 

controllers and BS for GA')) 

    else 

        title(strcat('controllers load vs time for [',num2str(n_cont_des),'] alive 

controllers and BS for GRASP')) 

    end 

    xlabel('time(sec)') 

    ylabel('controllers load') 

     

    % controllers load vs responce time 

    if T==1 

        figure(7) 

    else 

        figure(8) 

    end 

    set(gca,'FontSize',20) 

    set(gca, 'FontName', 'Times new roman') 

    for dedede=1:size(lambda_2,1) 

        if dedede==size(lambda_2,1) 

            

plot(lambda_2(dedede,:),latency_after_LFC(dedede,:)*1000,'DisplayName',strcat('BS')); 

            hold on 

        else  

            

plot(lambda_2(dedede,:),latency_after_LFC(dedede,:)*1000,'DisplayName',strcat('cont 

[',num2str(dedede),'] ')); 

            hold on 

        end 

    end 

    if T==1 

        title(strcat('latency vs controller load for all controllers in GA')) 

    else 

        title(strcat('latency vs controller load for all controllers in GRASP')) 

    end 

     

    legend 

    xlabel('controller load') 

    ylabel('latency(ms)') 

     

    % mean response time of all controllers vs flow rate 

    if T==1 
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        figure(14) 

    else 

        figure(15) 

    end 

    set(gca,'FontSize',20) 

    set(gca, 'FontName', 'Times new roman') 

    avg_latency=sum(latency_after_LFC)./(n_cont_des+1); 

    plot(100:100:ceil(i/10)*100,avg_latency(1:10:i)*1000); 

 

     

    if T==1 

        title(strcat('mean response time of all controllers vs flow rate in GA')) 

    else 

        title(strcat('mean response time of all controllers vs flow rate in GRASP')) 

    end 

     

    xlabel('flow rate') 

    ylabel('response time(ms)') 

     

    % controllers avg response time vs flow rate 

    if T==1 

        figure(16) 

    else 

        figure(17) 

    end 

    set(gca,'FontSize',20) 

    set(gca, 'FontName', 'Times new roman') 

     

    for dedede=1:size(lambda_2,1) 

        if dedede==size(lambda_2,1) 

            

plot(100:100:ceil(i/10)*100,latency_after_LFC(dedede,1:10:i)*1000,'DisplayName',strcat(

'BS')); 

            hold on 

        else 

            

plot(100:100:ceil(i/10)*100,latency_after_LFC(dedede,1:10:i)*1000,'DisplayName',strcat(

'cont [',num2str(dedede),'] ')); 

            hold on 

        end 

    end 

     

    if T==1 

        title(strcat('controllers avg response time vs flow rate in GA')) 

    else 

        title(strcat('controllers avg response time vs flow rate in GRASP')) 

    end 

     

    legend 

    xlabel('flow rate') 

    ylabel('response time(ms)') 

     

    % percent of successful packets received vs time 

    if T==1 

        figure(12) 

    else 

        figure(13) 

    end 

    set(gca,'FontSize',20) 

    set(gca, 'FontName', 'Times new roman') 

     

    plot(1:i,nodes_alive(:,1)*100/nodes); 

    if T==1 

        title(strcat('percent of successful packets received vs time in GA')) 

    else 
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        title(strcat('percent of successful packets received vs time in GRASP')) 

    end 

    xlabel('time(s)') 

    ylabel('percent of successful packets') 

     

     

    if T==1 

        disp(strcat('the total latency for GA is 

[',num2str(sum(sum(latency_after_LFC))),']')) 

    else 

        disp(strcat('the total latency for GRASP is 

[',num2str(sum(sum(latency_after_LFC))),']')) 

    end 

     

         

    % total time it takes to execute BSA/BSW/LFC them vs time 

    if T==1 

        figure(18) 

    else 

        figure(19) 

    end 

    set(gca,'FontSize',20) 

    set(gca, 'FontName', 'Times new roman') 

     

    plot(BSAWF_time); 

    if T==1 

        title(strcat('total time it takes to execute BSA/BSW/LFC vs time in GA')) 

    else 

        title(strcat('total time it takes to execute BSA/BSW/LFC vs time in GRASP')) 

    end 

    xlabel('time(s)') 

    ylabel('time it takes to execute') 

end 

disp(strcat('w1 is [',num2str(w(1)),'] w2 is [',num2str(w(2)),'] w3 is 

[',num2str(w(3)),'] w4 is [',num2str(w(4)),']')) 

disp(strcat('the optimal cost for GA is [',num2str(optimalcost(1)),'] at iteration 

[',num2str(iteration_optimal),'] and for GRASP is [',num2str(optimalcost(3)),']')) 

disp(strcat('time it takes to reach optimal solution is [',num2str(time_opt_t(1)),'] 

for GA and [',num2str(time_opt_t(3)),'] for GRASP')) 

if isempty(LND_GA) 

    disp('some nodes are still alive in GA') 

else 

    disp(strcat('LND for GA is [',num2str(LND_GA),']')) 

end 

 

if isempty(LND_GRASP) 

    disp('some nodes are still alive in GRASP') 

else 

    disp(strcat('LND for GRASP is [',num2str(LND_GRASP),']')) 

end 

 

if isempty(FND_GA) 

    disp('all nodes are alive in GA') 

else 

    disp(strcat('FND for GA is [',num2str(FND_GA),']')) 

end 

 

if isempty(FND_GRASP) 

    disp('all nodes are alive in GRASP') 

else 

    disp(strcat('FND for GRASP is [',num2str(FND_GRASP),']')) 

end 

 

 

% controllers load vs time for one controller 
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time=1:300; 

t_rate=(ceil(time/10)*100)/nodes; 

lambda=nodes*t_rate; 

 

dis=pdist2(node_locs(:,1:2),BS); 

 

res_time=sum(dis)/(300*10^6)+1./(miu-lambda); 

 

figure(9) 

set(gca,'FontSize',20) 

set(gca, 'FontName', 'Times new roman') 

plot(lambda,res_time*1000) 

Y = res_time(1:10:end)'*1000; 

title(strcat('latency vs controller load for one controller')) 

xlabel('controller load') 

ylabel('latency(ms)') 

beep 
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Appendix C2: The code of the ALBATROSS Scheme 

 
clear all 

close all 

clc 

%%%%%%%%%%%%     Optimization parameters 

n_cont_des=input('please enter number of desired controllers\n');                  % 

initializing number of desired controllers 

EN=2;                           % initializing energy consumed for transmission 

%%%%%%%%%%% 

%////////////// user parameters /////////////////// 

nodes=500;                      % initializing number of nodes 

area=[200 200];                 % initializing area of deployment 

BS=area/2;                      % initializing base station location 

Efs=10e-12;                     % initializing comunication constant values as per base paper 

Ems=0.0013e-12;                 % initializing comunication constant values as per base paper 

Eelct=50e-9;                    % initializing comunication constant values as per base paper 

L0=4000; 

L=L0;                           % initializing comunication constant values as per base paper 

(packets) 

E0=0.5;                         % initializing comunication constant values as per base paper 

(initial energy) 

Eda=5e-9;                       % initializing comunication constant values as per base paper 

(data aggregation) 

d0=88;                          % initializing comunication constant values as per base paper 

(distance threshold) 

Eo=0.1; 

% fault_percentage=[0.01;0.05;0.1;0.2;0.3;0.4;0.5;0.6;0.7]; 

fault_percentage=[0.05e-2]; 

t_max=300; 

T_treshold=2.63e-3; 

miu=3000; 

L_treshold=2600; 

w=[25/48,13/48,7/48,3/48]; 

FND_GA=[]; 

LND_GA=[]; 

FND_GRASP=[]; 

LND_GRASP=[]; 

notations={'sb','sc','sr','sg','sm','sy','sk','ob','oc','or','og','om','oy','ok','db','dc','d

r','dg','dm','dy','dk','*b','*c','*r','*g','*m','*y','*k'};                          % 

clusters color and marker style 

%/////////// deplying nodes ////////////////////// 

hl_flag=0; 

for T=1:2:3 % T=1 without sdn, T=2 with SDN 

nodes_alive=[]; 

flag_2=0; 

node_locs=[]; % initializing node locations 

while(size(node_locs,1)<nodes) % deployment till we deploy all nodes 

for i=1:ceil(2*(area(1)*area(2)/nodes)^0.5):area(1)-1 % deployment grid wise row with 20x20 

for j=1:ceil(2*(area(1)*area(2)/nodes)^0.5):area(2)-1 % deployment grid wise colm with 20x20 
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y=randi([i i+ceil(2*(area(1)*area(2)/nodes)^0.5)-1],1,1); % randomly taking node position X 

x=randi([j j+ceil(2*(area(1)*area(2)/nodes)^0.5)-1],1,1); % randomly taking node position Y 

node_locs=[node_locs;x y]; % saving node in node locations array 

if(size(node_locs,1)==nodes) % break the deployment if we deploy all nodes 

break 

end 

end 

if(size(node_locs,1)==nodes) % break the outerloop if we deploy all nodes 

break 

end 

end 

end 

%///////// predicting alternative paths for sdn /// 

for ii=1:nodes 

curr_node=node_locs(i,:); % saving alternative paths for every node in sdn 

dis=sqrt( (node_locs(:,1)-curr_node(1)).^2 + (node_locs(:,2)-curr_node(2)).^2); 

com=[(1:nodes)' dis]; 

com=sortrows(com,2); 

nodes_table{ii}=com(2:end,:); 

end 

%//////////////////////////////////////////////// 

figure(1) % fiugre handler 

plot(node_locs(:,1),node_locs(:,2),'ok','MarkerFaceColor',[1,0,0]) % plotting all nodes 

hold on 

plot(BS(1),BS(2),'sk','MarkerFaceColor',[153,217,234]/255,'MarkerSize',20) % plotting base 

station location 

axis([0 area(1) 0 area(2)+60]); % making axis limits to show all nodes and base station 

hold off 

%/////////////////////// Similarity Graph prediction ///////////////// 

X=node_locs; % copying node locations in X variable 

Y=node_locs; % copying node locations in Y variable 

E = pdist2(X,Y); % predicting elucidian distance of every node to other node 

E = E / max(E(:)); % normalizing distances with in range [0 1] 

sigma=0.3; % taking sigma as 0.3 

for i=1:size(E,1) % calculating similarity matrix 

for j=1:size(E,2) 

if ~(i==j) % as per the equation (5) from base paper 

W(i,j)=exp(-1*(E(i,j)^2/(2*sigma^2))); 

else 

W(i,j)=0; 

end 

end 

end 

Adj_mat=W; % copying W variable to adjacency matrix 

Deg_mat(1:size(Adj_mat,1),1:size(Adj_mat,2))=0; % initilizing degree matrix 

for i=1:size(Adj_mat,1) % copying row wise to calculate degree matrix as per the base paper 

Deg_mat(i,i)=sum(Adj_mat(:,i)); 

end 

Lap_mat=Deg_mat - Adj_mat; % calculating laplacian matrix as per the base paper L=D-A 

for i=1:length(Lap_mat) 
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normalised_Lap_mat(:,i) = Lap_mat(:,i) / Lap_mat(i,i); % making laplacian matrix to 

normalized laplacian 

end 

d_to_BS=sqrt((node_locs(:,1) - BS(1)).^2 + (node_locs(:,2) - BS(2)).^2); % predicting 

distances of all nodes to Base station 

d_to_BS_avg=(mean(d_to_BS)^2); % taking average of distances 

K=round((sqrt(nodes)/sqrt(2*pi)) * sqrt(Efs/Ems) * (sqrt(area(1)*area(2))/(d_to_BS_avg))); % 

predicting K as per base paper 

%//////////// clustring using k means //////////////////////////////// 

for i=1:length(d_to_BS) % calculating D as per the base paper 

D(i,i)=d_to_BS(i); 

end 

A=(D*-1/2) * Adj_mat * (D*-1/2); % A'=D1/2 A D-1/2 

[VL,D1] = eig(A'); % calculating eigen values VL 

figure(2) 

idx = kmeans(VL(:,1:K),K); 

colors=distinguishable_colors(K); 

for i=1:K 

[r,c]=find(idx==i); % loop to check which node belongs to which cluster decided by k means 

plot(node_locs(r,1),node_locs(r,2),'s','color',colors(i,:)) % ploting the respective nodes 

with predefined color and marker style 

hold on 

end 

plot(BS(1),BS(2),'sk','MarkerFaceColor',[153,217,234]/255,'MarkerSize',20) % plotting base 

station location 

axis([0 area(1) 0 area(2)+60]); 

hold off 

title('Clustering results of the KSCA-WSN algorithm') 

drawnow 

%////////// communication phase //////////////////////////////////// 

node_locs(:,3)=d_to_BS; % saving base station distances at 3rd colm in node locations array 

node_locs(:,4)=idx; % saving cluster number at 4th colm in node locations array 

node_locs(:,5)=E0; % saving initial energies at 5th colm in node locations array 

node_locs(:,6)=1:nodes; % saving id number at 6th colm in node locations array 

node_locs(:,8)=0; 

for i=1:size(node_locs,1) % loop to predict transmit energies for all nodes to base station 

if(d_to_BS(i)<d0) 

Etx(i,1)=(L * Eelct) + (L * Efs * d_to_BS(i).^2); % predicing as per equation 2 in base paper 

else 

Etx(i,1)=(L * Eelct) + (L * Efs * d_to_BS(i).^4); 

end 

end 

controller=[]; % id of controllers 

which_clus_no_contr=ones(K,1); 

cont_fault_flag=0; 

cont_fault_id=[]; 

controllers_load=zeros(nodes+1,t_max); 

flag_cont=0; 

BSAWF_time=[]; 

for i=1:t_max % loop to run for 300 secs  
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t_rate=(ceil(i/10)*100)/nodes; 

L=L0*t_rate; 

Erx(1:nodes,1)=L * Eelct; % predicing reciving energy for all nodes 

Eagg(1:nodes,1)=L * Eda; % predicing data aggregation energy for all nodes 

%//////// cluster head selection ////////////////// 

hl_flag=~hl_flag; 

for j=1:K % loop to predict cluster heads for all clusters 

[r,~]=find(node_locs(:,4)==j); % predicing nodes in jth cluster 

cluster_nodes=node_locs(r,:); % copying respective nodes in cluster_nodes array 

Sk=size(cluster_nodes,1); % number of nodes belongs to jth cluster Sk 

if which_clus_no_contr(j)==1 

for jj=1:size(cluster_nodes,1) % loop to preict Ermin as per base paper equation (7) 

Ermin(jj,1) = abs(Sk) * ((Erx(r(jj)) + Eagg(r(jj)))) + Eo; 

if(cluster_nodes(jj,5) > Ermin(jj)) % in respective node is above the Emin make the node as 

cluster head selection process 

cluster_nodes(jj,7)=1; % making 1 will make the node to enter in cluster head selection 

process 

else 

cluster_nodes(jj,7)=0; % 0 will make the node not to enter in CH selection process 

end 

end 

[r1,~]=find(cluster_nodes(:,7)==1); % checking the nodes which qualifies CH selection process 

if ~(isempty(r1)) 

ch_members=cluster_nodes(r1,6); 

DD=60; % defining the degree as 60 

curr_energies=cluster_nodes(r1,:); % reading cluster member energies 

curr_energies=sortrows(curr_energies,5); 

[rl,~]=find(curr_energies(:,5)>Eo & curr_energies(:,5)<E0/2); 

[rh,~]=find(curr_energies(:,5)>=E0/2 & curr_energies(:,5)<=E0); 

if(~isempty(rl)) 

rl=1; 

end 

if(~isempty(rh)) 

rh=1; 

end 

HE_y=mean(curr_energies(rh,1)); % taking mean of y position of higher E nodes 

HE_x=mean(curr_energies(rh,2)); % taking mean of x position of higher E nodes 

LE_y=mean(curr_energies(rl,1)); % taking mean of y position of lesser E nodes 

LE_x=mean(curr_energies(rl,2)); % taking mean of x position of lesser E nodes 

X=cluster_nodes(r1,1); % checking x positions of all cluster nodes 

Y=cluster_nodes(r1,2); % checking y positions of all cluster nodes 

dis_cal_h=sqrt( (X-HE_y).^2 + (Y-HE_x).^2); % calculating distances from High energy nodes 

center 

[rh,ch]=find(dis_cal_h==min(dis_cal_h)); % calculating distances from High energy nodes 

center 

xx=cosd(DD)*(X - X(1)) - sin(DD)*(Y-Y(1)) + X(1); % checking DD degree from center 

yy=cosd(DD)*(X - X(1)) - sin(DD)*(Y-Y(1)) + X(1); % checking DD degree from center 

dis_cal_h=sqrt( (X-xx).^2 + (Y-yy).^2); % checking nearest node at current degree 

[rh1,ch1]=find(dis_cal_h==min(dis_cal_h)); % checking node id 

ch_Hid=rh1(1); % copying next cluster head id 
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dis_cal_l=sqrt( (X-LE_y).^2 + (Y-LE_x).^2); % calculating distances from High energy nodes 

center 

[rl,cl]=find(dis_cal_l==min(dis_cal_l)); % calculating distances from High energy nodes 

center 

xx=cosd(DD)*(X - X(1)) - sin(DD)*(Y-Y(1)) + X(1); % checking DD degree from center 

yy=cosd(DD)*(X - X(1)) - sin(DD)*(Y-Y(1)) + X(1); % checking DD degree from center 

dis_cal_l=sqrt( (X-xx).^2 + (Y-yy).^2); % checking nearest node at current degree 

[rl1,cl1]=find(dis_cal_l==min(dis_cal_l)); % checking node id 

ch_Lid=rl1(1); 

if(hl_flag==0) % toggling cluster id one time from high area another time from low 

cluster_heads(j,1)=ch_Hid; 

else 

cluster_heads(j,1)=ch_Lid; 

end 

cluster_heads(j,1)=ch_members(randi([1 size(ch_members,1)],1,1)); 

cluster_nodes_t=cluster_nodes; 

cluster_nodes_t(find(cluster_nodes_t(:,6)==cluster_heads(j,1)),:)=[]; 

simin=find(cluster_nodes_t(:,5)==0); 

cluster_nodes_t(simin,:)=[]; 

ch_members_mat{j}=cluster_nodes_t(:,6);  

else 

ch_members_mat{j}=[]; % otherwise if no CH node qualifies, make the CH for that cluster to 

NaN 

cluster_heads(j,1)=1.5; % a flag to show that there is no CH in the cluster 

node_locs(cluster_nodes(:,6),5)=0; 

end 

end 

cluster_nodes_t_id=ch_members_mat{j}; 

cluster_nodes_tt=node_locs(cluster_nodes_t_id,:); 

simin=find(cluster_nodes_tt(:,5)==0); 

cluster_nodes_tt(simin,:)=[]; 

ch_members_mat{j}=cluster_nodes_tt(:,6); 

end 

remain_CH=cluster_heads; 

remain_CH(find(remain_CH==1.5))=[]; 

%%%%%%%%%%%%%%%%%% FFFFFFFFFFFFFFAAAAAARRRRRRRRRRRRnaz controller selection 

n_cont=n_cont_des-length(controller)+flag_cont; 

for javad=1:K 

CH_node(javad,1)=length(ch_members_mat{javad}); 

end 

%////// evaluating number of alive nodes in each cluster //////// 

c_faulty_node=zeros(K,1); 

for ezat=1:K 

c_members=ch_members_mat{ezat}; 

for rajab=1:size(c_members,1) 

if node_locs(c_members(rajab),8)==1 

c_faulty_node(ezat,1)=c_faulty_node(ezat,1)+1; 

end 

end 

CH_alive_node(ezat,1)=CH_node(ezat,1)-c_faulty_node(ezat,1); 
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end 

%////////////////////////////////////////////////////////////////// 

CH_not_controller=remain_CH; 

for naghme=1:length(controller) 

CH_not_controller(find(CH_not_controller==controller(naghme)))=[]; 

end 

is_CH_fualty=zeros(length(CH_not_controller),1); 

if n_cont>0 

if size(CH_not_controller,1)>n_cont 

if T==1 

tic 

[cont_opt,CHrem,cost_opt,iteration,for_plot,meann]=GA_SDN(n_cont,CH_not_controller,node_locs(

CH_not_controller,1:2),is_CH_fualty,node_locs(CH_not_controller,5),CH_alive_node,t_rate,EN,BS

,w); 

time_opt(T)=toc; 

elseif T==3 

tic 

[cont_opt,CHrem,cost_opt]=GRASP_SDN(n_cont,CH_not_controller,node_locs(CH_not_controller,1:2)

,is_CH_fualty,node_locs(CH_not_controller,5),CH_alive_node,t_rate,EN,BS,cluster_heads,w); 

time_opt(T)=toc; 

end 

else 

cont_opt=CH_not_controller'; 

end 

if i==1 

controller=cont_opt; 

else 

ema=1; 

for suzan=1:length(cont_opt) 

controller(cont_delete(suzan))=cont_opt(suzan); 

end 

end 

cont_opt=[]; 

end 

if i==1 

time_opt_t=time_opt; 

if T==1 

optimalcost(T)=cost_opt; 

iteration_optimal=iteration; 

figure(10) 

plot(for_plot) 

set(gca,'FontSize',20) 

set(gca, 'FontName', 'Times new roman') 

title(strcat('minimum cost value vs iteration for GA')) 

xlabel('Iteration') 

ylabel('minimum cost') 

figure(11) 

set(gca,'FontSize',20) 

set(gca, 'FontName', 'Times new roman') 

plot(meann) 
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title(strcat('average cost value vs iteration for GA')) 

xlabel('Iteration') 

ylabel('average cost') 

elseif T==3 

optimalcost(T)=cost_opt; 

end 

end 

%%%% clustring CH among controllers 

if ~isempty(controller) 

for asghar=1:n_cont_des 

CH_not_controller(find(CH_not_controller==controller(asghar)))=[]; 

end 

end 

which_clus_no_contr=ones(K,1); 

which_clus_no_contr(node_locs(controller,4),1)=0; 

if ~isempty(CH_not_controller) 

CH_cont_id=CH_cont_id_fun(node_locs(CH_not_controller,1:2),[node_locs(controller,1:2);BS],[co

ntroller';0]); 

end 

%//////////////////////// load calculation ///////////////////// 

CH_load=t_rate*CH_alive_node; 

Con_load=[]; 

for ezat=1:length(controller)  

Con_load(ezat,1)=CH_load(find(cluster_heads==controller(ezat))); % initializing controller 

load matrix 

end 

Con_load(length(controller)+1,1)=0; 

controller_t=[controller 0]; 

if ~isempty(CH_cont_id) 

for zzz=1:length(controller_t) 

cont_data=[]; 

if ~isempty(CH_not_controller) 

for sss=1:size(CH_not_controller,1) 

if CH_cont_id(sss)==controller_t(zzz) 

Con_load(zzz,1)=Con_load(zzz,1)+CH_load(sss,1); % calculating controllers load 

cont_data(1,1)=sss; 

cont_data(1,2)=CH_not_controller(sss,1); 

cont_data(1,3)=CH_load(sss,1); 

cont_data(1,4)=controller_t(zzz); 

end 

end 

end 

cont_data_mat{zzz}=cont_data; 

end 

end 

%//////////////// latency calculation /////////////////////////// 

lambda=Con_load; 

Con_loc=[node_locs(controller,1:2);BS]; 

CH_loc=node_locs(CH_not_controller,1:2); 

De2e=zeros(length(controller_t),1); 
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if ~isempty(CH_cont_id) 

for zahra=1:length(controller_t) 

if ~isempty(CH_not_controller) 

if zahra~=length(controller_t) 

if node_locs(controller(zahra),8)~=1 

for farnaz=1:size(CH_not_controller,1) 

if CH_cont_id(farnaz)==controller_t(zahra) 

dis(farnaz)=pdist2(CH_loc(farnaz,:),Con_loc(zahra,:)); 

De2e(zahra,1)=De2e(zahra,1)+dis(farnaz)/(3*10^8); 

end 

end 

end 

elseif controller_t(zahra)==0 

for farnaz=1:size(CH_not_controller,1) 

if CH_cont_id(farnaz)==controller_t(zahra) 

dis(farnaz)=pdist2(CH_loc(farnaz,:),Con_loc(zahra,:)); 

De2e(zahra,1)=De2e(zahra,1)+dis(farnaz)/(3*10^8); 

end 

end 

end 

end 

end 

end 

latency=De2e+1./(miu-lambda); 

for ttt=1:size(latency,1) 

if De2e(ttt,1)==0 

if lambda(ttt,1)==0 

latency(ttt)=0; 

end 

end 

end 

%//////////////// BSA ////////////////////////////////////////// 

tic 

OL_C=[]; 

LL_C=[]; 

karim=1; 

asghar=1; 

for jafar=1:length(controller_t) 

if zahra~=length(controller_t) 

if node_locs(controller(jafar),8)~=1 

if latency(jafar,1)==0 

T_compare=0; 

else 

T_compare=latency(jafar,1)/Con_load(jafar,1); 

end 

if T_compare>T_treshold 

OL_C(karim,1)=controller_t(jafar); 

OL_C(karim,2)=latency(jafar,1); 

OL_C(karim,3)=Con_load(jafar,1); 

OL_C(karim,4)=jafar; 
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karim=karim+1; 

else 

LL_C(asghar,1)=controller_t(jafar); 

LL_C(asghar,2)=latency(jafar,1); 

LL_C(asghar,3)=Con_load(jafar,1); 

LL_C(asghar,4)=jafar; 

asghar=asghar+1; 

end 

end 

elseif controller_t(zahra)==0 

if latency(jafar,1)==0 

T_compare=0; 

else 

T_compare=latency(jafar,1)/Con_load(jafar,1); 

end 

if T_compare>T_treshold 

OL_C(karim,1)=controller_t(jafar); 

OL_C(karim,2)=latency(jafar,1); 

OL_C(karim,3)=Con_load(jafar,1); 

OL_C(karim,4)=jafar; 

karim=karim+1; 

else 

LL_C(asghar,1)=controller_t(jafar); 

LL_C(asghar,2)=latency(jafar,1); 

LL_C(asghar,3)=Con_load(jafar,1); 

LL_C(asghar,4)=jafar; 

asghar=asghar+1; 

end 

end 

end 

%////////////// BSW ////////////////////////////////////////// 

if ~isempty(OL_C) 

if ~isempty(LL_C) 

[OL_C_load_sort iiii]=sort(OL_C(:,3)); 

for ee=1:size(OL_C,1) 

cont_data=[]; 

Co=Con_load(OL_C(iiii(ee),4)); 

cont_data=cont_data_mat{OL_C(iiii(ee),4)}; 

[CH_load_sort uu]=sort(cont_data(:,3),'descend'); 

for rr=1:size(cont_data,1) 

[LL_C_load_sort jjjj]=sort(LL_C(:,3)); 

for vv=1:size(LL_C,1) 

CHo=cont_data(uu(rr),3); 

if CHo+LL_C_load_sort(vv)<L_treshold 

CH_cont_id(cont_data(uu(rr),1))=LL_C(jjjj(vv),1); 

Con_load(OL_C(iiii(ee),4))=Con_load(OL_C(iiii(ee),4))-CHo; 

Con_load(LL_C(jjjj(vv),4))=Con_load(LL_C(jjjj(vv),4))+CHo; 

break 

end 

end 
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end 

end 

end 

end 

%/////////// controller data update ///////////////////////////// 

cont_data_mat={}; 

if ~isempty(CH_cont_id) 

for zzz=1:length(controller_t) 

cont_data=[]; 

if ~isempty(CH_not_controller) 

for sss=1:size(CH_not_controller,1) 

if CH_cont_id(sss)==controller_t(zzz) 

cont_data(1,1)=sss; 

cont_data(1,2)=CH_not_controller(sss,1); 

cont_data(1,3)=CH_load(sss,1); 

cont_data(1,4)=controller_t(zzz); 

end 

end 

end 

cont_data_mat{zzz}=cont_data; 

end 

end 

%/////////// LFC //////////////////////////////////////////////// 

faulty_con=[]; 

if ~isempty(cont_fault_id) 

if rem(i,10)~=1 || length(cont_fault_id)==length(controller) 

for uu=1:length(controller_t) 

for vv=1:size(cont_fault_id,1) 

if cont_fault_id(vv,1)==controller_t(uu) 

faulty_con(vv)=uu; 

end 

end 

for ww=1:size(cont_notfault_id,1) 

if cont_notfault_id(ww,1)==controller_t(uu) 

notfaulty_con(ww)=uu; 

end 

end 

end 

LL_C_nf=[]; 

asghar=1; 

for jafar=1:length(notfaulty_con) 

if Con_load(notfaulty_con(jafar),1)<L_treshold 

LL_C_nf(asghar,1)=controller_t(notfaulty_con(jafar)); 

LL_C_nf(asghar,2)=Con_load(notfaulty_con(jafar),1); 

LL_C_nf(asghar,3)=notfaulty_con(jafar); 

asghar=asghar+1; 

end 

end 

if ~isempty(faulty_con) 

for ee=1:size(cont_fault_id,1) 
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cont_data=[]; 

cont_data=cont_data_mat{faulty_con(ee)}; 

if ~isempty(cont_data) 

[CH_load_sort uu]=sort(cont_data(:,3),'descend'); 

for rr=1:size(cont_data,1) 

for vv=1:size(LL_C_nf,1) 

CHo=cont_data(uu(rr),3); 

if CHo+LL_C_nf(vv,2)<L_treshold 

CH_cont_id(cont_data(uu(rr),1))=LL_C_nf(vv,1); 

Con_load(LL_C_nf(vv,3))=Con_load(LL_C_nf(vv,3))+CHo; 

break 

end 

end 

end 

end 

end 

end 

end 

end 

BSAWF_time(i)=toc; 

controller_load_sort(1:length(controller),i)=Con_load(1:end-1,1); 

controller_load_sort(length(controller)+1,i)=Con_load(end,1); 

controller_id_sort(1:length(controller),i)=controller; 

controllers_load(controller,i)=Con_load(1:end-1,1); 

controllers_load(501,i)=Con_load(end,1); 

%//////////////// latency calculation update /////////////////////////// 

lambda_2(:,i)=Con_load; 

Con_loc=[node_locs(controller,1:2);BS]; 

CH_loc=node_locs(CH_not_controller,1:2); 

De2e_2=zeros(length(controller_t),1); 

if ~isempty(CH_cont_id) 

for zahra=1:length(controller_t) 

if ~isempty(CH_not_controller) 

if zahra~=length(controller_t) 

if node_locs(controller(zahra),8)~=1 

for farnaz=1:size(CH_not_controller,1) 

if CH_cont_id(farnaz)==controller_t(zahra) 

dis(farnaz)=pdist2(CH_loc(farnaz,:),Con_loc(zahra,:)); 

De2e_2(zahra,1)=De2e_2(zahra,1)+dis(farnaz)/(3*10^8); 

end 

end 

end 

elseif controller_t(zahra)==0 

for farnaz=1:size(CH_not_controller,1) 

if CH_cont_id(farnaz)==controller_t(zahra) 

dis(farnaz)=pdist2(CH_loc(farnaz,:),Con_loc(zahra,:)); 

De2e_2(zahra,1)=De2e_2(zahra,1)+dis(farnaz)/(3*10^8); 

end 

end 

end 
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end 

end 

end 

latency_after_LFC(:,i)=De2e_2+1./(miu-lambda_2(:,i)); 

% is_CH_fualty=zeros(CH_loc,1); 

% cost_1(i,T)=cost_SDN_mane(CH_loc,Con_loc(1:end-

1,:),is_CH_fualty,node_locs(CH_not_controller,5),CH_alive_node(),t_rate,EN,Con_node,con_id,BS

,w); 

%///////// communication phase ///////////// 

for j=1:K 

curr_cluster=ch_members_mat{j}; % loop for communication phase, copying cluster member to 

curr_cluster array 

curr_ch=cluster_heads(j); % copying cluster head for current cluster 

if curr_ch~=1.5 % if cluster head is not NaN, go for communication phase 

for jj=1:size(curr_cluster) % loop to send data for all nodes 

d_to_ch=sqrt( (node_locs(curr_cluster(jj),1) - node_locs(curr_ch,1)).^2 + 

(node_locs(curr_cluster(jj),2) - node_locs(curr_ch,2)).^2); % predicting distance of node to 

cluster head 

Etx1=(L * Eelct) + (L * Efs * d_to_ch.^2); % predicting transmit energy for current node upto 

cluster head 

if node_locs(curr_cluster(jj),5)>Etx1 

node_locs(curr_cluster(jj),5) = node_locs(curr_cluster(jj),5) - Etx1; % deducting transmit 

energy for respective node 

if which_clus_no_contr(j,1)==1 

if T==1 || T==3 

node_locs(curr_ch,5) = node_locs(curr_ch,5) - Erx(1); % deduction receving energy for 

respective node 

end 

end 

else 

node_locs(curr_cluster(jj),5)=0; 

end 

end 

if which_clus_no_contr(j,1)==1 

if T==1 || T==3 

ezat=find(CH_not_controller==curr_ch); 

if ~isempty(CH_cont_id) 

if CH_cont_id(ezat,1)==0 

Etx2=(L * Eelct) + (L * Efs * d_to_BS(curr_ch).^2); % deducting transmit energy upto BS from 

cluster head 

else 

id_cont=CH_cont_id(ezat,1); 

d_to_cont=pdist2(node_locs(curr_ch,1:2),node_locs(id_cont,1:2)); 

Etx2=(L * Eelct) + (L * Efs * d_to_cont.^2); 

end 

end 

if node_locs(curr_ch,5)>Etx2 

TT=nodes_table{curr_ch}; % using alternative path using sdn concept 

alt_node=TT(1,1); 

dis=sqrt( (node_locs(alt_node,1) - node_locs(curr_ch,1)).^2 + ... 
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(node_locs(alt_node,2) - node_locs(curr_ch,2)).^2); % distance from nearest node (alternative 

path) 

Etx2=((L * Eelct) + (L * Efs * dis.^2))/8; 

node_locs(curr_ch,5) = node_locs(curr_ch,5) - Etx2; 

else 

node_locs(curr_ch,5)=0; 

end 

else 

TT=nodes_table{curr_ch}; % using alternative path using sdn concept 

alt_node=TT(1,1); 

dis=sqrt( (node_locs(alt_node,1) - node_locs(curr_ch,1)).^2 + ... 

(node_locs(alt_node,2) - node_locs(curr_ch,2)).^2); % distance from nearest node (alternative 

path) 

Etx2=(L * Eelct) + (L * Efs * dis.^2); 

node_locs(curr_ch,5) = node_locs(curr_ch,5) - Etx2; 

end 

end 

end 

end 

[r1,~]=find(node_locs(:,5) > 0); % checking the alive nodes from its batteries 

if T==1 || T==3 

nodes_alive(i,1)=length(r1); % if with SDN save at these locations 

residual_energy(i,1)=sum(node_locs(:,5)); % saving residual energy of the ntw with SDN 

else 

nodes_alive_sdn(i,1)=length(r1); % if with SDN save at these locations 

residual_energy_sdn(i,1)=sum(node_locs(:,5)); % saving residual energy of the ntw with SDN 

end 

if flag_2==0 && nodes_alive(i,1)<nodes 

flag_2=1; 

if T==1 

FND_GA=i; 

else 

FND_GRASP=i; 

end 

end 

%/////////// ploting ////////////////////////////////////// 

energy=node_locs(:,5); 

energy(controller)=[]; 

if max(energy)==0 % if all cluster heads over, break the rounds loop 

if T==1 

LND_GA=i; 

else 

LND_GRASP=i; 

end 

break 

end 

if T==1 

figure(3) % if without SDN make the plot with figure 3 

else 

figure(4) 
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end 

set(gca,'FontSize',20) 

set(gca, 'FontName', 'Times new roman') 

for ii=1:K % ploting cluster nodes with respective colors and markers 

[r,~]=find(idx==ii); 

plot(node_locs(r,1),node_locs(r,2),'s','color',colors(ii,:)) 

hold on 

end 

plot(BS(1),BS(2),'sk','MarkerFaceColor',[153,217,234]/255,'MarkerSize',20) % ploting base 

station in same figure 

hold on 

plot(node_locs(CH_not_controller,1),node_locs(CH_not_controller,2),'or','MarkerSize',10,'Mark

erFaceColor',[0 0 0]); %ploting cluster heads with black markers 

plot(node_locs(controller,1),node_locs(controller,2),'ob','MarkerSize',15,'MarkerFaceColor',[

0 0 0]); 

axis([0 area(1)+20 0 area(2)+20]); 

if T==1 

title(strcat('(GA) Alive nodes:[',num2str(nodes_alive(i)),'] Round:[',num2str(i),']'))  

drawnow 

else 

title(strcat('(GRASP) Alive nodes:[',num2str(nodes_alive(i)),'] Round:[',num2str(i),']'))  

drawnow 

end 

hold off 

%%%%%%%%%% deploying faulty nodes %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

fault_probability(i)=ceil(fault_percentage(ceil(i/(t_max/length(fault_percentage))))*nodes); 

faulty_nodes=randi([1,nodes],fault_probability(i),1); 

node_locs(faulty_nodes,8)=1; 

node_locs(faulty_nodes,5)=0; 

cont_fault_id=controller(find(node_locs(controller,8)==1)); % id of faulty controllers 

cont_notfault_id=controller(find(node_locs(controller,8)==0)); 

cont_notfault_id=[cont_notfault_id 0]; 

flag_cont=0; 

cont_delete=[]; 

if rem(i,10)==0 || length(cont_fault_id)==length(controller) 

for esi=1:length(controller) 

for iii=1:length(cont_fault_id) 

if cont_fault_id(iii)==controller(esi) 

cont_delete=[cont_delete esi]; 

end 

end 

end 

% controller(cont_delete)=[]; 

flag_cont=length(cont_delete); 

end 

end 

%////////////// plot //////////////////////////////////////////////// 

% controllers load vs time 

sum_con_load=sum(controllers_load,2); 

controller_load_real=controllers_load(~(sum_con_load==0),:); 
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if T==1 

figure(5)  

else 

figure(6)  

end 

set(gca,'FontSize',20) 

set(gca, 'FontName', 'Times new roman') 

for dedede=1:size(controller_load_sort,1) 

if dedede==size(controller_load_sort,1) 

plot(controller_load_sort(dedede,:),'DisplayName',strcat('BS')); 

hold on 

else 

plot(controller_load_sort(dedede,:),'DisplayName',strcat('cont [',num2str(dedede),'] ')); 

hold on 

end 

end 

legend 

xlabel('time(sec)') 

ylabel('controllers load') 

for david=2:i 

for john=1:n_cont_des 

if controller_id_sort(john,david)-controller_id_sort(john,david-1) 

p=plot(david,controller_load_sort(john,david),'or','MarkerSize',10,'MarkerFaceColor',[0 0 

0]); 

set(get(get(p,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); 

end 

end 

end 

% axis([0 250 0 300]); 

if T==1 

title(strcat('controllers load vs time for [',num2str(n_cont_des),'] alive controllers and BS 

for GA')) 

else 

title(strcat('controllers load vs time for [',num2str(n_cont_des),'] alive controllers and BS 

for GRASP')) 

end 

xlabel('time(sec)') 

ylabel('controllers load') 

% controllers load vs responce time 

if T==1 

figure(7) 

else 

figure(8) 

end 

set(gca,'FontSize',20) 

set(gca, 'FontName', 'Times new roman') 

for dedede=1:size(lambda_2,1) 

if dedede==size(lambda_2,1) 

plot(lambda_2(dedede,:),latency_after_LFC(dedede,:)*1000,'DisplayName',strcat('BS')); 

hold on 
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else  

plot(lambda_2(dedede,:),latency_after_LFC(dedede,:)*1000,'DisplayName',strcat('cont 

[',num2str(dedede),'] ')); 

hold on 

end 

end 

if T==1 

title(strcat('latency vs controller load for all controllers in GA')) 

else 

title(strcat('latency vs controller load for all controllers in GRASP')) 

end 

legend 

xlabel('controller load') 

ylabel('latency(ms)') 

% mean response time of all controllers vs flow rate 

if T==1 

figure(14) 

else 

figure(15) 

end 

set(gca,'FontSize',20) 

set(gca, 'FontName', 'Times new roman') 

avg_latency=sum(latency_after_LFC)./(n_cont_des+1); 

plot(100:100:ceil(i/10)*100,avg_latency(1:10:i)*1000); 

if T==1 

title(strcat('mean response time of all controllers vs flow rate in GA')) 

else 

title(strcat('mean response time of all controllers vs flow rate in GRASP')) 

end 

xlabel('flow rate') 

ylabel('response time(ms)') 

% controllers avg response time vs flow rate 

if T==1 

figure(16) 

else 

figure(17) 

end 

set(gca,'FontSize',20) 

set(gca, 'FontName', 'Times new roman') 

for dedede=1:size(lambda_2,1) 

if dedede==size(lambda_2,1) 

plot(100:100:ceil(i/10)*100,latency_after_LFC(dedede,1:10:i)*1000,'DisplayName',strcat('BS'))

; 

hold on 

else 

plot(100:100:ceil(i/10)*100,latency_after_LFC(dedede,1:10:i)*1000,'DisplayName',strcat('cont 

[',num2str(dedede),'] ')); 

hold on 

end 

end 
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if T==1 

title(strcat('controllers avg response time vs flow rate in GA')) 

else 

title(strcat('controllers avg response time vs flow rate in GRASP')) 

end 

legend 

xlabel('flow rate') 

ylabel('response time(ms)') 

% percent of successful packets received vs time 

if T==1 

figure(12) 

else 

figure(13) 

end 

set(gca,'FontSize',20) 

set(gca, 'FontName', 'Times new roman') 

plot(1:i,nodes_alive(:,1)*100/nodes); 

if T==1 

title(strcat('percent of successful packets received vs time in GA')) 

else 

title(strcat('percent of successful packets received vs time in GRASP')) 

end 

xlabel('time(s)') 

ylabel('percent of successful packets') 

if T==1 

disp(strcat('the total latency for GA is [',num2str(sum(sum(latency_after_LFC))),']')) 

else 

disp(strcat('the total latency for GRASP is [',num2str(sum(sum(latency_after_LFC))),']')) 

end 

% total time it takes to execute BSA/BSW/LFC them vs time 

if T==1 

figure(18) 

else 

figure(19) 

end 

set(gca,'FontSize',20) 

set(gca, 'FontName', 'Times new roman') 

plot(BSAWF_time); 

if T==1 

title(strcat('total time it takes to execute BSA/BSW/LFC vs time in GA')) 

else 

title(strcat('total time it takes to execute BSA/BSW/LFC vs time in GRASP')) 

end 

xlabel('time(s)') 

ylabel('time it takes to execute') 

end 

disp(strcat('w1 is [',num2str(w(1)),'] w2 is [',num2str(w(2)),'] w3 is [',num2str(w(3)),'] w4 

is [',num2str(w(4)),']')) 

disp(strcat('the optimal cost for GA is [',num2str(optimalcost(1)),'] at iteration 

[',num2str(iteration_optimal),'] and for GRASP is [',num2str(optimalcost(3)),']')) 
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disp(strcat('time it takes to reach optimal solution is [',num2str(time_opt_t(1)),'] for GA 

and [',num2str(time_opt_t(3)),'] for GRASP')) 

if isempty(LND_GA) 

disp('some nodes are still alive in GA') 

else 

disp(strcat('LND for GA is [',num2str(LND_GA),']')) 

end 

if isempty(LND_GRASP) 

disp('some nodes are still alive in GRASP') 

else 

disp(strcat('LND for GRASP is [',num2str(LND_GRASP),']')) 

end 

if isempty(FND_GA) 

disp('all nodes are alive in GA') 

else 

disp(strcat('FND for GA is [',num2str(FND_GA),']')) 

end 

if isempty(FND_GRASP) 

disp('all nodes are alive in GRASP') 

else 

disp(strcat('FND for GRASP is [',num2str(FND_GRASP),']')) 

end 

% controllers load vs time for one controller 

time=1:300; 

t_rate=(ceil(time/10)*100)/nodes; 

lambda=nodes*t_rate; 

dis=pdist2(node_locs(:,1:2),BS); 

res_time=sum(dis)/(300*10^6)+1./(miu-lambda); 

figure(9) 

set(gca,'FontSize',20) 

set(gca, 'FontName', 'Times new roman') 

plot(lambda,res_time*1000) 

Y = res_time(1:10:end)'*1000; 

title(strcat('latency vs controller load for one controller')) 

xlabel('controller load') 

ylabel('latency(ms)') 

beep 

 

 

 

 

 

 

 


