
Using Rough Set Theory to Find Minimal Log with

Rule Generation

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Applied Mathematics and Computer Science

Eastern Mediterranean University

January 2022

Gazimağusa, North Cyprus

Tahani Nawaf E`layan Alawneh

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor

of Philosophy in Applied Mathematics and Computer Science.

Prof. Dr. Nazim Mahmudov

Chair, Department of Mathematics

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Doctor of Philosophy in Applied

Mathematics and Computer Science.

Asst. Prof. Dr. Mehmet Ali Tut

Supervisor

Examining Committee

1. Prof. Dr. Rashad Aliyev

2. Prof. Dr. Hamza Erol

3. Prof. Dr. Efendi Nasiboğlu

4. Asst. Prof. Dr. Müge Saadetoğlu

5. Asst. Prof. Dr. Mehmet Ali Tut

 iii

ABSTRACT

The current research aims to enhance real-time analysis and speed of security

algorithms by focusing on creating a minimal security log with the same efficiency as

the original one through keeping core knowledge. Hence, manipulating this created

minimal log with any security algorithm will surely enhance execution time and

accordingly push towards real-time analysis. Rough set concepts are being used to

reduce log size by using algorithms of the RoughSets package in R language, these

algorithms guarantee to find a minimum log at least, and to find a minimal log at most

depending on hardware resources available. Embedded knowledge is being extracted

from minimum and minimal logs in the form of IF...THEN statements, and finally

conclusions were discussed.

Keywords: hate speech, text classification, classifier, classifier ensembles, stacking

ensemble, text mining, genetic programming, pattern classification.

 iv

ÖZ

Mevcut araştırma, temel bilgileri koruyarak orijinali ile aynı verimliliğe sahip

minimum bir güvenlik günlüğü oluşturmaya odaklanarak güvenlik algoritmalarının

gerçek zamanlı analizini ve hızını artırmayı amaçlamaktadır. Bu nedenle, oluşturulan

bu minimum günlüğü herhangi bir güvenlik algoritmasıyla manipüle etmek, yürütme

süresini kesinlikle artıracak ve buna bağlı olarak gerçek zamanlı analize doğru

itecektir. RoughSets paketinin algoritmalarını R dilinde kullanarak log boyutunu

küçültmek için kaba küme konseptleri kullanılmaktadır, bu algoritmalar mevcut

donanım kaynaklarına bağlı olarak en az minimum log, en fazla minimum log bulmayı

garanti etmektedir. Gömülü bilgi, IF...THEN ifadeleri biçiminde minimum ve

minimum günlüklerden çıkarılıyor ve son olarak sonuçlar tartışıldı.

Anahtar Kelimeler: kaba küme teorisi; denklik sınıfları; daha düşük yaklaşım; üst

yaklaşım; R dili.

 v

DEDICATION

This is in memory of my beloved father Nawaf, who had always loved me uncondi-

tionally. Although he was unable to see my graduation, this is for him. A special feel-

ing of gratitude to my loving mother Sameera whose words of encouragement and

push for tenacity ring in my ears:” Nothing like the happiness of graduation”.

To my very special sisters Amani and Sally who have never left my side and stand by

me when things look black. To the greatest brother ever Rami for having the heart of

my father. To my beloved brothers Sami, Hani and Gazi who have supported me al-

ways.

To my husband Osama, and my precious kids Abdulrahman, Maria and Juman who

have been a constant source of support and encouragement during the challenges of

graduate school and life.

To the light of hope Amal and her family Anas, Fatema and Aysha, for being my fam-

ily in Cyprus. To the kindest friends ever Mona and Chima, I was lucky for being your

friend. To my friends who supported and encouraged me through this journey Bashar

and Laith.

To all of you, I am truly thankful for having you in my life, I love you all beyond

words.

 vi

ACKNOWLEDGMENT

To my supervisor Assist. Prof. Dr. Mehmet Ali TUT and Prof. Dr. Rashad Aliyev who

helped and guided me to successfully complete this thesis.

To all Academic Staff in mathematics department for their dedication in teaching us.

 vii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

DEDICATION ... v

ACKNOWLEDGMENT .. vi

LIST OF TABLES ... vii

LIST OF FIGURES .. ix

1 INTRODUCTION .. 1

1.1 Log Data .. 1

1.2 Log Data Collection and Transmission ... 3

1.3 Log Message ... 6

1.4 Log Ecosystem .. 7

2 PRELIMINARIES ... 11

2.1 Rough Set Theory .. 12

2.2 R Language ... 14

3 LITTRETURE REVIEW ... 17

4 REPRESENTATION OF SOLUTION .. 20

4.1 Problem Statement and Motivation ... 20

4.2 Datasets ... 21

4.3 Building a Minimal Log Size (Reduct) ... 23

4.4 Generating Minimal Decision Rules ... 26

4.5 Execution Time Comparison with Existing Methods 28

5 CONCLUSION AND FUTURE WORKS .. 31

REFERENCES .. 33

 viii

LIST OF TABLES

Table 2.1: Rough set packages functionalities comparison. 16

Table 4.1: Decision table .. 22

Table 4.2: IRS algorithm ... 24

Table 4.3: Minimal reduc output fro N=3, M=3 ... 25

Table 4.4: Rule generation algorithm ... 27

Table 4.5: Decision rules induction .. 28

Table 4.6: Original database description.. 29

Table 4.7: Computations of execution time in finding minimal reduct 30

 ix

LIST OF FIGURES

Figure 2.1: Set Approximation ... 14

1

Chapter 1

1 INTRODUCTION

Information system security has been achieved using several security solutions such

as IDS, IPS, anti-viruses and firewalls, etc. Each device will work independently to

guarantee appropriate access to network resources [1–4], and will generate its own

alert logs, bearing in mind that these logs are growing too rapidly to be covered under

the terminology big data. High repetitions and false alerts are common in such logs.

As a result, this may mislead the process of identifying real threats. This poses a diffi-

culty in analyzing large logs and detecting serious security issues and intrusions, as

well as reacting at the right time.

In this Chapter the basic concepts of log data generation, collection, and analysis will

be explained.

1.1 Log Data

At the beginning log data has to be defined, it is the output of any computer system,

hardware, program, or other device in reaction to external stimuli [1, p. 14-16]. What

the stimuli are relies a lot on where the log message came from. Unix systems, for

example, have user login/ logout messages, firewalls have Access Control Lists (ACL)

accept/deny messages, while disk storage systems create log messages whenever they

fail or, in some circumstances, when systems fail.

2

A log message's fundamental meaning is referred to as log data. Alternatively, log data

refers to information extracted from a log message that explains the reason a log mes-

sage was created. When someone accesses any resource (picture, file, etc.) on a Web

page, for example, a Web server will frequently log it. The user's name would appear

in the log message if he had to authenticate himself to access the page.

The phrase "logs" refers to a group of log messages which will be utilized to create the

picture of the event occurrence. The following are the broad categories that log mes-

sages fall into:

▪ Informational messages: are intended to inform users and system administra-

tors that something good has happened. When the operating system (OS) is

rebooted, for example, Cisco IOS will directly send out notifications. However,

caution is needed. If a reboot occurs outside of typical maintenance or normal

working hours, for example, you may be concerned.

▪ Debug messages: are usually created by software systems to assist software

developers in debugging and identifying issues with executing application

code.

▪ Warning messages: are often used in instances where something is missing or

required for a system, but its absence has no influence on the system's opera-

tion. For instance, if a certain program isn't provided the correct number of

parameters related to a programmed command line but can still execute without

them, the program may generate a warning message to the operator or user.

▪ Error messages: are used to communicate errors which occur at different

computer system levels. When an operating system can't synchronize buffers

to disk, for example, an error message is generated. Most error messages,

3

unfortunately, simply provide a reference point for determining why they

happened. In attempt to get to the source of the problem, more investigations

are frequently necessary.

▪ Alert messages: is a notification that something interesting has occurred. Se-

curity devices as well as security systems are the core of such alerts in general,

although this is not a hard rule. On a network, an Intrusion Prevention System

(IPS) may be installed in the middle, examining all traffic coming. depending

on the details of the data packets, it will determine whether a specific network

connection is permitted or not. If IPS detects a potentially harmful connection,

it can execute any of a group of predefined actions. The detection, as well as

the action done, will be recorded as a log.

1.2 Log Data Collection and Transmission

The transmission and collection of log data are theoretically straightforward. A log-

ging subsystem is implemented in a device or computer so that it can create a message

whenever it sees fit [2, p.49-51] . The method used to create such messages varies

depending on the device. You may, for example, be able to customize the device itself

or it may be programmed to send a pre-determined message list. This location is gen-

erally called a log-host. A log-host is a system that collects log messages in a central

place, usually a Unix or Windows server. The following are some of the benefits of

utilizing a central log message collector:

▪ Having a centralized repository for storing log messages collected from several

sites and locations.

▪ Having a place for storing logs backup copies.

▪ Having a location where analysis on log data is being performed.

4

The question here, how to transmit log messages? Syslog protocol is the most often

used method, it forms a standard method for exchanging log messages. It is most often

seen on Unix computers, although it is also available for Windows as well as other

non-Unix environments. However, there is essentially a client - server component that

is implemented via the User Datagram Protocol (UDP), but it worth to mention that

many commercial Syslog and open-source applications support the Transmission Con-

trol Protocol (TCP) for assured delivery. The physical computer system or device that

creates and sends log messages is referred to as the client part. Typically, the server

part is found on log collecting server, its primary function is to accept Syslog-based

log messages and save them on its disk storage so they can be backed up, examined,

and kept for long-term usage.

Moreover, Syslog is not really the only mean used for transmitting and collecting log

data. Microsoft, for example, has their very own Windows logging system. It is known

as the Windows Event Log. Things like application messages, user logins and logoffs,

and other data are saved in a private storage format. There are commercial and open-

source applications that operates depending on Event Log that converts event log rec-

ords to Syslog, and hence transmits them to the syslog server.

Now, there exist a protocol called Simple Network Management Protocol (SNMP) it

is used to manage devices all over the network. This protocol is standard, and it is built

depending on traps/polling concepts. Traps are simply sort of log messages a computer

system or device produces when something unusual occurs. Traps are transmitted to a

host system, which functions similarly to a loghost. Polling occurs when ever a man-

agement station can use SNMP for asking a device for variables which are pre-defined

5

such as bytes transferred through an interface, interface statistics, etc. One important

distinction between Syslog and SNMP will be that SNMP is intended to be organized

in terms of data format. However, this has not been the case in practice, meanwhile it

is strict in Syslog.

Recently, a convenient way to save applications log messages was through using da-

tabases. Simply, applications will write the generated log messages to a database server

rather than creating Syslog messages. This has several advantages, particularly in

terms of providing a systematic method for saving, analyzing, and creating reports on

the stored log messages.

Lastly, there are another loggings format to consider. These formats come from third-

party programs and devices that use their own private methods to create and collect

log messages. In this case, the provider either offers an Application Programming In-

terface (API) in the format of Java/C libraries, or you must build the protocol your

own self. Event Logs for Windows is a proprietary format, it is frequently considered

as informal logging standard as Syslog, because it is widely adopted. Protocols dis-

cussed so fare:

▪ Syslog: client/server protocol runs on top of UDP. This has been the most pop-

ular and widely used logging method.

▪ SNMP: was initially designed to manage networked devices. However, various

non-networked devices have used SNMP as a means of emitting log messages

and status data over time.

▪ Windows Event Log: Microsoft’s own message log format.

▪ Database: structured method of storing and retrieving log messages.

6

▪ Common Private Protocols:

• LEA: Log Extraction API (LEA) collects logs from security solutions

and appliances such as firewalls.

• SDEE: Security Device Event Exchange (SDEE) protocol is based on

eXtensible Markup Language (XML) and is used by Cisco to collect

log messages from its IPS devices.

• E-Streamer: E-Streamer is a protocol owned by Sourcefire and used by

their Intrusion Prevention System (IPS).

1.3 Log Message

As previously stated, a log message is anything created by a system or device to indi-

cate something has occurred. But what exactly the structure of a log message? To

begin, the following are the typical fundamental contents of any log message [3,p.97-

101]:

▪ Data.

▪ Source.

▪ Timestamp.

It makes no difference whether the message is transmitted through Syslog, collected

by Microsoft Event Log, or saved in any database. These fundamental elements are

always included in the message. A log message's heart is its data. Unfortunately, there

is no common template for representing data in such a logging message. Some of the

most typical data elements seen in a log message are source/destination ports,

source/destination IPs, program names, bytes transferred both in or out, resource ob-

ject (such as directories, files, and so on), user names, etc. A system which created a

7

log message is a source. This is usually provided in the form of an IP address or a host

name. Finally, the timestamp indicates when the log message was issued.

The precise format of any log message is determined by the way the log source has

configured its log system. As previously said, Syslog is the widely used format by

computer systems and devices. As an example, consider the following Syslog message

[4, p.53]:

Jul 13 19:17:23 10.240.46.16 15: *Mar 1 00: 16:17 %LINEPROTO-5-UPDOWN:

line protocol on Interface FastEathernet 0\0, changed state to up

This message was created by Cisco router then stored on Syslog server. “Jul 13

19:17:23” indicates the timestamp indicating when the server received the message.

While, “10.240.46.16 “indicates the Cisco router IP. Now, what comes after the colon

is the data. “%LINEPROTO-5-UPDOWN” is the interpretation of the or event which

depends on the vendor, and so a vendor should provide users with a suitable infor-

mation manual to understand this part. This part of the log message has also a time

stamp, but this for the router itself, and most probably indicating Time/date issue, ei-

ther the server or the router clock has a problem. Absence of time synchronization

between different network devices and computer systems will generate data incon-

sistency problem regarding the log, that will cause a problem in analyzing the data log.

1.4 Log Ecosystem

Log ecosystem, also known as the log infrastructure, is comprised of all the pieces and

components that work together to enable creating, normalizing, filtering, analyzing,

and storing log data for long-term. Eventually, the objective of Log ecosystem is to

assist you to solve issues using logs. As mentioned so far, logs are generated by a

variety of sources, including:

8

▪ Unix/Windows operating systems.

▪ Switches.

▪ Firewalls.

▪ Routers.

▪ Virtual Private Network (VPN) Server.

▪ Anti-virus solutions.

▪ Wireless access points.

▪ Printers.

The list could go infinity. The lesson is that almost every application, computer sys-

tem, and devices on the network is able to record logs. You only need to figure out

where to search. Aside from that, you have to configure your network devices to gen-

erate logs. Now it is the time to treat log messages by filtering and normalizing. Fil-

tering is the process of including or omitting log messages depending on their content.

Some sources enable this natively, while others may need the deployment of an agent,

which intercepts log data and filters them depending on predefined criteria. Normali-

zation is the process of transforming disparately structured log messages to a consistent

format [3,p.91]. A log message after normalization is generally referred to as an event.

However, the final destination of an event is often relational databases, where analyz-

ing and generating reports may be conducted. Here, the importance of having log data

with common format shows up, this will facilitate data manipulation and deriving

meanings from it. It should be emphasized that normalization occurs independently of

the protocol or source adopted (i.e. Syslog, database, SNMP, etc.).

Now we should mention her that the data part of the log message contains a priority

entry, this notion is important for normalization process. A fundamental technique is

9

to transfer the direct and indirect priority of a log message to a certain common

scheme. As an example, consider the low, middle, and high scales, as described below:

▪ Low: informative messages in nature and do not require immediate attention.

▪ Medium: those messages that have to be addressed in such a timely basis, but

not absolutely immediately. Whenever the engine recognizes malicious intent,

IPSs, for example, have the ability to prohibit network traffic. This is called an

action. If the IPS sends a logging message to this action, you'll know the traffic

was banned and may investigate into it when you can.

▪ High: High priority situations necessitate quick response. For example, router

restarts outside of authorized maintenance intervals, alerts of IPS engine for

possible data theft, network devices dropping off the infrastructure for a longer

duration, and so forth.

But how does normalization take place? let's show a basic example. The below is a

Sourcefire IPS message in a Syslog format [4,p.58]:

Jul 17 11:54:38 Source-Fire SFIMS: [1:479:2] ICMP -PING -NMAP [Classification:

Attempted Information Leak] [Priority: 3] {ICMP} 210.22.216.78 -> 68.126.152.137

This message contains a lot of information. We employ a method known as parsing to

normalize its information. Parsing includes reading the logging message from begin-

ning to end to extract information of interest and inserting it into normalized attributes

within the event. The following are some of the most frequent fields used in the nor-

malization:

Timestamp: July 17 2017, 11:54:38

category: Attempted Information Leak

Protocol: ICMP

10

 Priority: High

Source Port: NULL

Destination Port: NULL

Source IP : 210.22.216.78

Destination IP : 68.126.152.137

11

Chapter 2

1 PRELIMINARIES

Generally, the process of extracting knowledge from event record files in computer

systems is called log analysis. However, computer systems generate a large number of

log events with a high rate of repetition. As a consequence, the goal of the log analysis

process is detecting serious security issues and intrusions out of repetitive false ones

to protect such systems [1].

Information system security is a critical and a wide concept, as it governs and controls

all processes, tools, and appliances used to protect critical information from unauthor-

ized actions or access, precisely as the new definition ‘Appropriate Access’ aims [2].

Hence, and depending on the concepts of cloud technology, web systems, Internet of

Things (IoT), and the new demands and challenges forced by the Corona Pandemic;

where the adoption of online concepts spread in almost all our daily activities, tremen-

dously huge amount of security logs are being generated and need to be analyzed and

understood. In addition, proper remediation actions must be performed on time to guar-

antee efficient risk elimination, especially that we are moving recently to real-time

Intrusion Detection Systems (IDS).

Such a task forces great pressure on information security officers and system admin-

istrators, bearing in mind that detecting real alerts out of repetitive false ones is a com-

plex and even an expensive task [3-4]. But if a minimal log set can be created, the

12

problems of repetition and real-time detection, even storage optimization can be

solved.

 Rough set is able to discover structural relationships in data sets because it has a math-

ematical approach to treat and process imperfect knowledge. Rough set has an algo-

rithm that can identify the smallest set of data while keeping the original data set’s

knowledge [5-6], herein information security officers can do a better job by concen-

trating on real alerts and eliminating redundant ones and so taking right security ac-

tions in better timing base.

2.1 Rough Set Theory

Rough set theory is a novel mathematical technique for analyzing data; it deals with

imperfect knowledge such as imprecision, vagueness, and uncertainty. This is very

important since a frequent feature across the various domains of decision analysis,

machine learning, pattern recognition, and data mining is processing incomplete and

imprecise knowledge [23].

Rough set was proposed by Z. Pawlak back in 1980, it offers efficient algorithms,

methods, and tools for recognizing hidden patterns in data [25]. Generally, rough set

approach can solve the following issues:

• A group of objects is described depending on an attribute or feature values.

• Full or partial dependencies between features or attributes.

• Attributes or features reduction.

• Attributes or features significance.

• Generation of decision rules.

• plus others [26] [27].

13

Decision support systems, pattern recognition, knowledge discovery, expert systems,

machine learning, decision analysis, and other real-life systems have all used rough

set techniques. [28] [29].

Philosophy of rough set assumes that objects are associated with some data or de-

tails. Hence, according to the similarity in data, objects can be classified into similar

or in-discernible groups or classes. This indiscernibility relation provides the mathe-

matical foundation for rough set theory. Previously mentioned indiscernible classes

form what is called knowledge granule, all knowledge granule union is called crisp

set, or else the set is rough [27].

As a result, a rough set has boundary elements or elements that cannot be identified

as members of the set or even as the complement of the set with certainty. Apart from

that, crisp set is the opposite, where no boundary elements exist. Hence, a rough set

can be used to mathematically model ambiguous concepts. A pair of notions known

as the lower and upper approximations are required to express such ambiguous con-

ceptions. The lower approximation includes all items that are certain to belong to the

indiscernible class, while the upper approximation includes all objects that may or

may not belong to the in-discernible class. [30] [31].

Figure 1 explains the previous concepts, an approximation for the given set of objects

X can be computed depending on a coefficient named accuracy of approximation

α(X) [32], which is calculated by dividing lower approximation by upper approxima-

tion. As mentioned before, lower approximation includes elements that surely belong

to the considered set X denoted by L(X), on the other hand, upper approximation

14

includes elements that maybe belong to X denoted by U(X) [33], clearly, 0 ≤ α(X) ≤

1, considering the value α(X) = 1 then the set X is called crisp, which means it is the

normal set theory, but considering α(X) < 1, then the set X is rough [34]. Thus, the

concept of indiscernibility appears; once again objects are being indiscernible from

each other if they were categorized within the same class referring to their related

information [35].

Figure 2.1: Set approximation.

2.2 R Language

R is a computer language that is designed for data analysis and data visualization. R

was created by Robert Gentleman and Ross Ihaka at the University of Auckland, the

purpose was to teach student statistics, but later in 1997, the source code has been

freely dis-tributed. R has the benefit of having continuous enhancements and new

source code being downloaded in the form of packages [18].

15

R also works across different operating systems like MS-Windows, Linux, and Unix

[19]. In general, R language contains more than 5,000 algorithms in its library to ana-

lyze data [20], but in particular, R has 96 add-on packages related to the field of ma-

chine learning, their ideas and methods were implemented and developed mixing com-

puter science and statistics. One of these packages is RoughSets package that contains

algorithms developed according to rough set and fuzzy rough set theories [21]. More-

over, in addition to R tools, built-in data sets exist to simplify the process of machine

learning and data analysis [22].

Z. Abbas and A. Burney [23] provided a survey of frequently used data processing

tools that automate the application of rough set theory, these tools were R, Rose2,

Rosetta, RSES, and WEKA. In the comparison, the following items were used:

• Package techniques.

• The language in which the package was created.

• Supported operating systems.

• Existence of user interface.

• Existence of rough set basic concepts: lower, upper approximation, boundary

sets, etc.

• Existence of feature/instance selection.

• Ability to separate data to a training set and testing set.

• Ability to generate decision rules induced from reducts.

• Existence of nearest-neighbor-based algorithms to classify data.

16

Hence, according to the functionalities mentioned in Table 1, R was chosen as a tool

for analyzing data in this research, bearing in mind that according to Craner r.project

[24], the missing value completion functionality mentioned in Table 1 above is now

part of RoughSet package in R.

Table 2.1 : Rough set packages functionalities comparison.
Components Rough

Sets

Rose2 Rosetta RSES WEKA

Technique RST

FRST

RST RST RST RST

Programming Lan-

guage

R C++ C++ Java/ C++ Java

Operating System Win./

Linux/

Mac

Win. Win Win./

Linux

Win./

Linux/ Mac

User Interface Script GUI GUI GUI GUI

Basic Concepts Yes Yes No No No

Discretization Yes Yes Yes Yes Yes

Feature Selection Yes Yes No Yes Yes

Instance Selection Yes No Yes No Yes

Missing Value

Completion

No Yes Yes Yes Yes

Decomposition No No No No No

Rule Based Classi-

fiers

Yes Yes Yes Yes Yes

Nearest Neighbour

Based Classifiers

Yes No Yes No Yes

Cross Validation No Yes Yes Yes Yes

17

Chapter 3

1 LITTRETURE REVIEW

The motivation for carrying out the work in this thesis was triggered after reading

works in paper [7], this paper depending on 34 relevant publications selected from

1374 papers published within the past decade relevant to machine learning, cloud com-

puting, clustering, web systems, and Internet of Things (IoT) discuses currently avail-

able trends in log analysis, their advancements and future tendencies. As mentioned in

the work, very few of these studies relate both the process of analysis with security

aspects, moreover, up-to-date studies are needed.

Algorithms of machine learning are being used in log analysis, these algorithms are

slow and resource-intensive [7], which in turn poses a limitation in using such strategy.

Reducing the size of targeted security log files by applying the proposed rough set

approach will reduce the effect of limitations previously mentioned.

In general, paper [7] identifies current problems and limitations related to log analysis,

these problems have been discussed but are in need of further research. Such issues

were real-time analysis, speed and security of the algorithms, and multi-source analy-

sis [8–10], in all cases mentioned log size will influence the treatment process through

log analysis in terms of speed, accuracy, and resource consumption, so the work in this

paper presents a solution for such problems by reducing log size but preserving core

knowledge as explained below:

18

Papers [11–13] concentrated on moving intrusion detection to real-time approach so

that system administrators can pinpoint the attacks and restore the normal system con-

ditions on spot. But managing huge data logs is a bottleneck here in terms of acceler-

ating the whole process. Using the proposed rough set concepts to process such logs

will cause re-duction in size without losing the core knowledge, and as a consequence

will speed up real-time intrusion detection, hence the work in this research can be used

as a previous step to prepare log data.

The work in [9] proposed a future enhancement to their HERCULE intrusion detection

system by using log files distributed across multiple hosts, but the huge growth of the

number and size of log files was an obstacle, which can be solved if log files were

processed using rough set as explained in this research.

The study performed by Y. Yao, et al [3] was similar in general terms of using the

concepts of rough set theory, but it had a different purpose as well as different meth-

odology. To identify security semantics, the researchers employed rough set theory to

analyze alert data collected from multi-sources. This was performed through collecting

security data from several resources, then by applying rough set theory concepts, a

weight was being calculated for classifications of alerts, then alert aggregation was

performed to eliminate repetitive and false alerts, and finally, a reliability metric was

introduced according to background information to measure the credibility. Therefore,

our research would be a complement to this work as an extra stage to enhance both the

classification of alerts and credibility measuring.

19

M.R. Gauthama Raman et al. [14] presented a selection method to determine the opti-

mal attribute subset of Intrusion Detection System (IDS). This technique used rough

set theory and some properties of the hypergraph to enhance the accuracy of classifi-

cation and time complexity of IDS. Dutta, S., Ghatak, S., Dey, R. et al. [15] proposed

an attribute selection methodology that improves spam classification for Online Social

Network (OSN). Rough set theory concepts were applied to develop an attribute se-

lection algorithm to identify a smaller group of features that leads to improve classifi-

cation performance.

Anitha, A., and D. P. Acharjya [16] proposed a feature selection technique based on a

novel filter stands on Rough Set Theory approach and Hyper-Clique based Binary

Whale Optimization Algorithm (RST-HCBWoB), the technique identifies informative

features. This is necessary for an effective feature selection algorithm used in supervi-

sory control and data acquisition intrusion detection system to protect critical infra-

structure from cyber attacks.

The work in Nanda, N.B., Parikh, A. [17] proposed a hybrid technique that works on

identified risks of the network-attached intrusion detection system in attempt to deter-

mine the minimum rules set that could represent the knowledge offered by the data set

under consideration. Two models are used in this procedure: random forest classifier

to select attributes, and rough set theory to generate rules.

Hence, regarding the work in papers [14–17] mentioned above, our study proposes

more relevant research, it provides an algorithm by using rough set package in R lan-

guage to find the optimal minimal subset of attributes rather than a smaller one, and

the technique is general where it could be used for any type of system logs.

20

Chapter 4

2 REPRESENTATION OF SOLUTION

This chapter presents an overview of the datasets used throughout this dissertation.

The proposed models were developed and tested using four publicly available English

Twitter datasets retrieved from different repositories as shown in Table 4.1. The

datasets were selected with different sizes.

In this section, we will present our proposed iterated rough set based algorithm, which

we name IRS. IRS is proposed to be scalable for big data pre-processing for feature

selection. The algorithm generates a minimal security log from any given big data set.

The proposed steps are employed to accelerate the run time. Then, as a result of gen-

erating a minimal log, a minimal decision rules database is generated; this decision set

maintains the data consistency embedded in the original dataset. In this section, we

will also clarify our IRS algorithm as an efficient solution able to perform big data

feature selection with less execution time. It will be compared with an existing novel

algorithm using three benchmark datasets to prove its effectiveness. However, we will

first explain the motivation for proposing IRS by discussing the computational com-

plexity of the traditional rough set theory when working with high dimensional da-

tasets.

4.1 Problem Statement and Motivation

Performing feature selection when using RST will force the theory to compute each

possible attribute combination. The number of attribute subsets that maybe created

21

using m attributes from a set of N attributes is (𝑁
𝑚
) =

𝑁!

𝑚!(𝑁−𝑚)!
 [41]. Hence, the number

of generated feature subsets as a total, is ∑ (𝑁
𝑖
)𝑁

𝑖=1 = 2𝑁 − 1. For instance, if N = 30,

there will be around one billion possible combinations. This prevents the use of RST

with high dimensional datasets. Moreover, hardware limitations exist, and in particu-

lar, memory capacity will not be able to store and calculate a huge number of entities.

The RAM will need to allocate the entire dataset, its computations, and results. For big

data this can exceed the physical memory. Our proposed algorithm was motivated by

all of these reasons.

4.2 Datasets

In our research, we used four datasets, three of which were benchmark datasets taken

from UCI [42]. The purpose was to examine the proposed algorithm’s effectiveness.

This will be discussed in more detail in Section 4.5 The fourth dataset was used to

execute the proposed algorithm on real-life huge datasets.

Our real-life huge datasets were collected from a government enterprise that uses IBM

security Qradar. Qradar is a Security Information and Event Management (SIEM) so-

lution that collects and analyzes log data from security systems [43]. Three datasets

were taken from Qradar, each containing 63,000 objects (Instances) with 10 attributes

of unprocessed security events. This enterprise considers the cloud technology in its

structure and virtual machine concepts for more than 40 servers that have both Mi-

crosoft and Linux operating systems. Part of the servers provide about 100 online ser-

vices for citizens.

Table 4.1 shows the general structure of each SIEM dataset. Every dataset has 10 at-

trib-utes, A = {Event Name, Log Source, Event Count, Low-Level Category, Source

22

IP, Source Port, Destination IP, Destination Port, User Name, Magnitude}. The first 9

attributes are the condition attributes (C), while the last one, Magnitude, is the decision

attribute {D}. Magnitude indicates the importance of the offense and has an integer

value ranging from one to eight, being from least severe to most severe. Hence, each

dataset forms a decision table, T = (U, A ∪ D). The data populated in table T contain

no real-valued attributes, meaning that concepts of RST can be applied directly, with-

out the need to perform extra pre-processing steps such as discretization [44]

 Table 4.1: Decision table

Event

Name

Log

Sourc

e

Event

Count

Low Level

Category

Sourc

e IP

Source

Port

Destina-

tion IP

Destina-

tion Port

User

Name

Mag-

ni-

tude

Tear down

UDP con-

nection

ASA

@

172.

17.0 .1

1

Fire wall

Session

Closed

8.8.

8.8
53

172. 18.

12. 10
53,657 N/A 7

Deny pro-

tocol src
R 1

Fire wall

Deny

172.

20. 12.

142

56,511
172. 217.

23. 174
443 N/A 8

Deny pro-

tocol src

ASA

@

172.

17.0 .1

1
Fire wall

Deny

172.

20. 18.

54

52,976
213. 139.

38. 18
80 N/A 8

Deny pro-

tocol src

ASA

@

172.

17.0 .1

1
Fire wall

Deny

172.

20. 15.

71

53,722
52. 114.

75. 79
443 N/A 8

Deny pro-

tocol src

ASA

@

172.

17.0 .1

1
Fire wall

Deny

192.

168.

180.

131

55,091
40. 90. 22.

184
443 N/A 8

Built TCP

connection

ASA

@

172.

17.0 .1

1
Fire wall

Deny

172.

18. 12.

19

59,201
163. 172.

21. 225
443 N/A 8

23

4.3 Building a Minimal Log Size (Reduct)

Considering [46,45], both papers discussed the concept of using maximal or minimal

pairs in discernibility matrix to overcome the complexity of feature selection. We will

use this concept in our methodology inside iterations calculation for the same reason.

Later, the results of [45] will be used to prove the efficiency of our algorithm.

To compute any minimal subset, two mathematical foundations are needed: discerni-

bility matrix, and reduct. It was noted in Section 4.1 that this process is computation-

ally expensive. The proposed IRS algorithm aims to overcome this limitation and re-

duce the execution time of minimal log generation by redesigning the calculations us-

ing two concepts: iteration calculations and minimal elements in the discernibility ma-

trix calculations.

The iteration step divides the big dataset into N subsets and calculates the iterated

minimal reduct for each, where finally the intersection of all previously calculated it-

erated minimal reducts will generate the core minimal feature subset. The second step

focuses on reducing the calculation complexity in each iteration by passing only the

minimal element in a discernibility matrix to reduce calculations. Working in such

design will contribute to solving the problem in the following way:

• Splitting the dataset into N subsets and performing the proposed algorithm on

each subset will overcome hardware limitations, since fewer entries means less

memory space to upload the data, perform computations, and store the results.

Keeping the whole high dimensional dataset in memory and performing all the

previous steps, is mostly impossible.

24

Reducing the number of calculations, since passing only the minimal elements in the

discernability matrix to reducts calculation will not cause the computation of each pos-

sible attribute combination, and hence the equation ∑ (𝑁
𝑖
)𝑁

𝑖=1 = 2𝑁 − 1 is no longer

valid. This will certainly reduce the execution time. The proposed code is given in

Table 4.2.

Reducing the number of calculations, since passing only the minimal elements in the

discernability matrix to reducts calculation will not cause the computation of each pos-

sible attribute combination, and hence the equation ∑ (𝑁
𝑖
)𝑁

𝑖=1 = 2𝑁 − 1 is no longer

valid. This will certainly reduce the execution time. The proposed code is given in

Table 4.2.

Table 4.3 shows the output after performing the algorithm using our datasets. The three

datasets are labelled as S1, S2, and S3, respectively. It was found that the server cannot

Table 4.2: IRS Algorithm
• Input: T = (U,A∪D): information table, N: number of iterations,

• M: number of datasets

• Output: Core–Reduct,

• 1: For each dataset M do

• 2: For each iteration N do

• 3: Calculate INDN(D)

• 4: Compute DISC.MatrixN(T)

• 5: Do while (DISC.MatrixN(T) ≠ Ø) and i ≤ j

• (RST discernibility matrix is symetric)

• 6: Si0,j0 = Sort (xi,xj) ∈ DISC.MatrixN(T)

• according to number of conditional attributes A

• 7: End while

• 8: Compute ReductN(Si0,j0)

• (calculating reducts for minimal condition atrridutes)

• 9: ReductN = ReductN ∩ ReductN(Si0,j0)

• 10: End For N

• 11: Core–Reduct = Core–Reduct ∩ ReductN

• minimal optimal reduct

• 12: End For M

25

run the whole data set with 6300 objects and 10 attributes at once, so each dataset was

split into three parts and processed on three iterations (M = 3, N = 3). The table also

shows the calculated degree of dependency for each iterated reduct, being how much

the generated iterated reduct (attributes set) depends on the decision attribute(s), with

a maximum value of 1. The methodology was performed under hardware specifica-

tions of Intel(R) Xeon(R) Gold 6148 CPU @2.40 GHz 2.39 GHz, RAM 48.3 GB.

The intersection of the three iterations of the first data set S1 produced a minimal iter-

ated reduct of 5 attributes |ReductN = 1| = 5, while the original set S1 had 10 attributes.

In this reduct, the degree of the dependency = 1, which means the decision attribute

{Magnitude} was completely identified by the values of the 5 attributes of the reduct

Table 4.3: Minimal reduct output for N = 3, M = 3

Training Data Set Minimal Attribute
Degree of Depend-

ency 1

First Training Set S1 (∩ three it-

erations) ReductN = 1

A1 = {Event Name, Source IP,

Source Port, Destination IP, Magni-

tude } |A1| = 5

1

Second Training Set S2 (∩ three

iterations) ReductN = 2

A2 = { Event Name, Source IP, Des-

tination IP, Magnitude }|A2| = 4
0.9992941

Third Training Set S3 (∩ three it-

erations) ReductN = 3

A3 = {Event Name, Source IP,

Source Port, Destination IP, Magni-

tude } |A3| = 5

1

Core-Reduct (A1∩ A2∩ A3)
A2 = { Event Name, Source IP, Des-

tination IP, Magnitude }|A2| = 4
0.9992941

1: a decision attribute, d, totally depends on a set of attributes A, written as A ⇒ d if

all attribute values from d are distinctly identified by attribute values from A

26

set A1. This reduct omitted 50% of the attributes of the original set and retained infor-

mation content 100%. For the second iteration S2, the reduct was even better, produc-

ing 4 attributes, |ReductN = 2| = 4, with a dependency degree of 0.9992941, while the

last iteration for S3 had the same output as S1.

Following step 11 in the algorithm, Core-Reduct was generated by taking the inter-

section of all previous iterations’ outputs. This means that Core-Reduct = {Event

Name, Source IP, Destination IP, Magnitude} was the minimal reduct for all datasets

S1, S2, and S3. It had 4 attributes, rather than the 10 attributes of the original sets.

Despite this reduct, the information content of the original datasets was retained with

99.9% accuracy.

This proves that the proposed solution was able to create a minimal reduct for the

security log, this optimal reduct used only 40% of the attributes of the original dataset

(4 instead of 10), and still offered the same information covered by the original dataset

with 99.9% accuracy degree. The next section will use this minimal dataset to create a

minimal decision rules database. The effectiveness of step 8, which passes only the

minimal ele-ments of discernibility matrix for reduct calculations inside each iteration,

will be proved in Section 4.5, by comparing our algorithm with a similar approach

using the same benchmark datasets in terms of runtime.

4.4 Generating Minimal Decision Rules It

It is significant to understand that the derivation of rule structure, using learning pro-

cedures from training cases, is being employed in rule-based expert systems. Fortu-

nately, these rules are more accurate than information included in the original input

27

data set, because new examples that do not match examples taken from the original

data, are being properly classified by such rules [23].

Te RoughSets package in the R language has different algorithms to extract knowledge

hidden in any given data set in the form of an IF...THEN structure. This paper uses the

CN2Rules algorithm, which is designed to work even with the existence of imperfect

data. The CN2Rules algorithm was deployed on each of the reduct sets A1, A2, and

A3, produced in the previous section. The algorithm in Table 4.4 generates the deci-

sion rules in the form of an IF...THEN structure, with each set divided into a training

set with 60%, and a test set with 40%, as shown in step 3, because this will be used

later in steps 5 and 6 to validate the accuracy of the prediction using the 40% test part.

Table 4.5 shows the total number of rules generated for each dataset before minimizing

(S1, S2, S3), and after minimizing (A1, A2, A3). It also calculates the prediction ac-

curacy of each minimal iterated reduct set (A1, A2, A3).

Table 4.4: Rule generation algorithm
Input: ReductN (T): minimal reduct information table, M: number of datasets

Output: Set-RuleMin

1: For each dataset M do

2: read.table(ReductN (T))

3: Splitting ReductN (T)

 training set 60% and a test set 40%.

4: RI.LEM2Rules.RST() function

 Create rules depending on training set of ReductN (T)

5: predict() function

 Testing the quality of prediction depending on the test set of ReductN (T)

6: mean() function.

 Checking the accuracy of predictions

7: End For M

28

Examining the first row in the table and comparing the number of rules generated from

the first original dataset S1 and its minimal reduct A1, the number of rules decreased

to about 66% with a prediction accuracy of around 96%. A similar result occurred for

datasets S1 and S2.

A minimal decision rules dataset was successfully created for each original dataset

(S1, S2, S3). Each minimal decision rules dataset (A1, A2, A3) reduced the number of

the rules (by 50% to 65%) with high accuracy prediction (from 95% to 97%). In addi-

tion, we know from the previous section that each minimal iterated set (A1, A2, A3)

strongly represents the knowledge in its original dataset (S1, S2, S3) with a high degree

of dependency (ranging from 1 to 0.99). We conclude that the same knowledge is being

presented in the form of decision rules, with a smaller number of attributes and high

accuracy prediction.

4.5 Execution Time Comparison with Existing Methods

The current section evaluates the efficiency of our IRS algorithm. Our technique for

generating a minimal subset will be compared with two other techniques: one using

classical discernibility matrix [47], while the other uses its own proposed novel algo-

rithm, named Sample pair selection SPS [45]. The experiments used the same hard-

ware environment specifications mentioned in [45], being Intet (R) i5 CPU 2.40 GHz

M450.

Table 4.5: Minimal reduct output for N = 3, M = 3.

Training Data Set
Number of Decision

Rules before Reduct

Number of Deccision

Rules after Reduct

Prediction Ac-

curacy

First Training Set S1 = 905 A1 = 596 0.9552733

Second Training Set S2 = 878 A2 = 509 0.9535073

Third Training Set S3 = 813 A3 = 481 0.9741291

29

The comparison will measure the runtime needed to calculate the minimal reduct, us-

ing the three algorithms on the same datasets. It is worth noting that the comparison

uses three benchmark datasets taken from the UCI machine learning repository [44].

Table 4.6 shows the description of the original dataset. These three datasets were pre-

viously used in [45,47] to compare the effectiveness of the SPS algorithm against the

classical discernibility matrix.

Table 4.6: Original Datasets description.
Dataset Number of Attributes Number of Instances

Glass 9 100

Wiscon 9 699

Zoo 16 100

We executed our algorithm IRS using the three benchmark datasets and compared the

runtime values with the previous statistical calculations from [45,47]. As shown in

Table 4.7, our algorithm IRS generated the same number of all possible reducts for

glass and Wiscon datasets 2 and 4 respectively. However, in the case of the zoo dataset,

our algorithm created 35 reducts, while both compared algorithms created 33, yet our

algorithm had the best runtime over the other two algorithms, at 0.9967 s. A general

comparison of the runtime of all algorithms shows that our IRS algorithm had the best

execution time over SPS and classical discernibility matrix, for all datasets. This

proves that the IRS algorithm, which uses iteration calculations depending on minimal

elements of discernibility matrix, decreased the complexity of calculations success-

fully.

H

h

30

 Table 4.7: Computations of execution time in finding minimal reduct
Data Num. of

Attributes

of The Da-

taset

All reducts Execution Time in seconds

IRS SPS &

CDM

Classical Dis-

cernibilityMa-

trix (CDM)

SPS IRS

Wiscon 9 4 4 1362.1 24.095

6
9.05

Glass 9 2 2 23.3268 0.7931 0.7

Zoo 16 35 35 106.6581 1.2574 0.9967

31

Chapter 5

3 CONCLUSION AND FUTUR WORKS

Following the proposed procedure, this research designed a new algorithm named IRS

to create a minimal security log. The approach used RST basic concepts by adopting

an iterated model. Inside each iteration, minimal discernability matrix elements were

passed for reduct calculations. This design helped to overcome hardware limitations

and prevent reduct calculation growing exponentially high, by decreasing the calcula-

tion needed to compute all possible attribute combinations to the minimal elements in

a discernibility matrix.

We also computed a minimal decision rule database with a prediction accuracy of

about 96%. This minimal subset used only 40% of the attributes of the original feature

set, with a 99.9% degree of dependency (knowledge consistency).

We compared our methodology with another recent novel algorithm, using the same

three benchmark datasets. Our comparison showed that the proposed methodology ef-

fectively calculated a minimal set without losing performance. The results showed that

our methodology was even better in terms of execution time, which proved that calcu-

lation complexity, as well as search space, were reduced. This makes the proposed

model relevant to huge datasets and will enhance real-time analyses.

In the future, we will apply the new concept of Sensitivity Analysis (SA) to this work,

because SA can manage uncertainty in a real-world decision system, especially in

32

high-dimensional problems. This will surely offer a better solution for work in this

field of research.

33

REFERENCES

[1] J.Kreps, IHeartLogs: EventData, StreamProcessing, and

DataIntegration.O’ReillyMedia, 2014. [Online] Available:

https://books.google.jo/books?id=gdiYBAAAQBAJ.

[2] M.Collins, Network Security Through Data Analysis: Building Situational

Awarness. O’Reilly Media, 2014.[Online]. available:

https://books.google.jo/books?id=pZvQAgAAQBAJ

[3] A. Buecker, S. Arunkumar, B. Blackshaw, M. Borrett, P.Brittenham, J.Flegr,

J.Jacobs,V.Jeremic, M.Johnston, C.Marketal., UsingtheIBM Security Frame-

work and IBM Security Blue print to Realize Business-Driven Security, ser.

IBMredbooks. IBM Redbooks, 2014. [Online]. Availa-

ble:https://books.google.jo/books?id=K3bJAgAAQBAJ

[4] Chuvakin, K. Schmidt, and C. Phillips, Logging and Log Management: The

Authoritative Guide to Under-standing the Concepts Surrounding Logging

and LogManagement. Elsevier Science, 2012. [Online]. Availa-

ble:https://books.google.jo/books?id=Rf8MXYTUoC

[5] S. Yen and M. Moh, “Intelligent log analysis using machine and deep learn-

ing,” in Research Anthology on Artificial Intelligence Applications in Security.

IGI Global, 2021, pp. 1154–1182

https://books.google.jo/books?id=gdiYBAAAQBAJ
https://books.google.jo/books?id=pZvQAgAAQBAJ

34

[6] B. Lundgren and N. Moller, “Defining information security.” Science and En-

gineering Ethics, vol. 25, no. 2, pp. 419–441, 2019.

[7] Y. Yao, Z. Wang, C. Gan, Q. Kang, X. Liu, Y. Xia, and L. Zhang, “Multi-

source alert data understanding for security semantic discovery based on rough

set theory,” Neurocomputing, vol. 208, pp. 39–45, 2016.

[8] L. Bao, Q. Li, P. Lu, J. Lu, T. Ruan, and K. Zhang, “Execution anomaly detection

in large-scale systems through console log analysis,” Journal of Systems and

Software, vol. 143, pp. 172–186, 2018.

[9] S. Zbigniew, “An introduction to rough set theory and its applications-a tutorial,”

Proceedings of ICENCO’2004, 2004.

[10] K. S. Ray, Soft Computing and Its Applications, Volume One: A Unified Engi-

neering Concept. CRC Press, 2014, vol. 1.

[11] J. Svacina, J. Raffety, C. Woodahl, B. Stone, T. Cerny, M. Bures, D. Shin, K.

Frajtak, and P. Tisnovsky, “On vulnerability and security log analysis: A system-

atic literature review on recent trends,” in Proceedings of the International Con-

ference on Research in Adaptive and Convergent Systems, 2020, pp. 175–180.

[12] A. Ambre and N. Shekokar, “Insider threat detection using log analysis and event

correlation,” Procedia Computer Science, vol. 45, pp. 436–445, 2015.

35

[13] K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang, Z. Zhang, L. Si, X. Zhang,

and D. Xu, “Hercule: Attack story reconstruction via community discovery on

correlated log graph,” in Proceedings of the 32Nd Annual Conference on Com-

puter Security Applications, 2016, pp. 583–595.

[14] D. Zou, H. Qin, H. Jin, W. Qiang, Z. Han, and X. Chen, “Improving log-based

fault diagnosis by log classification,” in IFIP International Conference on Net-

work and Parallel Computing. Springer, 2014, pp. 446–458.

[15] M. Almgren and E. Jonsson, “Using active learning in intrusion detection,” in

Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004. IEEE,

2004, pp. 88–98.

[16] A. Goel, W.-c. Feng, W.-c. Feng, and D. Maier, “Automatic high-performance

reconstruction and recovery,” Computer Networks, vol. 51, no. 5, pp. 1361–

1377, 2007.

[17] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, “Dta++: dynamic taint

analysis with targeted control-flow propagation.” in NDSS, 2011.

[18] M. G. Raman, K. Kirthivasan, and V. S. Sriram, “Development of rough set–

hypergraph technique for key feature identification in intrusion detection sys-

tems,” Computers & Electrical Engineering, vol. 59, pp. 189–200, 2017.

[19] S. Dutta, S. Ghatak, R. Dey, A. K. Das, and S. Ghosh, “Attribute selection for

improving spam classification in online social networks: a rough set theory-

36

based approach,” Social Network Analysis and Mining, vol. 8, no. 1, pp. 1–16,

2018.

[20] A. Anitha and D. Acharjya, “Crop suitability prediction in vellore district using

rough set on fuzzy approximation space and neural network,” Neural Computing

and Applications, vol. 30, no. 12, pp. 3633–3650, 2018.

[21] N. B. Nanda and A. Parikh, “Hybrid approach for network intrusion detection

system using random forest classifier and rough set theory for rules generation,”

in International Conference on Advanced Informatics for Computing Research.

Springer, 2019, pp. 274–287.

[22] S. Tuffery, ´ Data mining and statistics for decision making. John Wiley & Sons,

2011.

[23] P. J. Aphalo, Learn R: As a Language. CRC Press, 2020.

[24] B. Makhabel, Learning data mining with R. Packt Publishing Ltd, 2015.

[25] T. Hothorn, “Cran task view: Machine learning & statistical learning,” 2021.

[26] H. I. Rhys, Machine Learning with R, the tidyverse, and mlr. Manning Publica-

tions, 2020.

37

[27] Z. Abbas and A. Burney, “A survey of software packages used for rough set

analysis,” Journal of Computer and Communications, vol. 4, no. 9, pp. 10–18,

2016.

[28] S. S. Pal and S. Kar, “Time series forecasting for stock market prediction through

data discretization by fuzzistics and rule generation by rough set theory,” Math-

ematics and Computers in Simulation, vol. 162, pp. 18–30, 2019.

[29] Z. Pawlak, J. Grzymala-Busse, R. Slowinski, and W. Ziarko, “Rough sets,”

Communications of the ACM, vol. 38, no. 11, pp. 88–95, 1995.

[30] T. Y. Lin and N. Cercone, Rough Sets and Data Mining. Springer US, 1997.

[31] Z. Suraj, “An introduction to rough set theory and its applications,” ICENCO,

Cairo, Egypt, vol. 3, p. 80, 2004.

[32] W. P. Ziarko, Rough Sets, Fuzzy Sets and Knowledge Discovery: Proceedings

of the International Workshop on Rough Sets and Knowledge Discovery

(RSKD’93), Banff, Alberta, Canada, 12–15 October 1993. Springer Science &

Business Media, 2012.

[33] T. Lin and A. Wildberger, “The third international workshop on rough sets and

soft computing proceedings (rssc’94),” San Jose State University, San Jose, Cal-

ifornia, USA, 1994.

38

[34] A. Skowron and Z. Suraj, Rough Sets and Intelligent Systems-Professor

Zdzisław Pawlak in Memoriam: Volume 2. Springer Science & Business Media,

2012, vol. 43.

[35] Q. Yang, P.-a. Du, Y. Wang, and B. Liang, “A rough set approach for determin-

ing weights of decision makers in group decision making,” PloS One, vol. 12,

no. 2, p. e0172679, 2017.

[36] S. Narli, N. Yorek, M. Sahin, and M. Usak, “Can we make definite categorization

of student attitudes? a rough set approach to investigate students’ implicit attitu-

dinal typologies toward living things,” Journal of Science Education and Tech-

nology, vol. 19, no. 5, pp. 456–469, 2010.

[37] H.-C. Ho, W. Jann-Der Fann, H.-J. Chiang, P.-T. Nguyen, D.-H. Pham, P.-H.

Nguyen, and M. Nagai, “Application of rough set, gsm and msm to analyze learn-

ing outcome—an example of introduction to education,” Journal of Intelligent

Learning Systems and Applications, vol. 8, no. 1, pp. 23–38, 2015.

[38] Z. Pawlak and A. Skowron, “Rough sets and conflict analysis,” in E-Service In-

telligence. Springer, 2007, pp. 35–74.

[39] V. Del Giudice, P. De Paola, and G. B. Cantisani, “Rough set theory for real

estate appraisals: An application to directional district of naples,” Buildings, vol.

7, no. 1, p. 12, 2017.

39

[40] A. Majeed, R. ur Rasool, F. Ahmad, M. Alam, and N. Javaid, “Near-miss situa-

tion based visual analysis of siem rules for real time network security monitor-

ing,” Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 4,

pp. 1509–1526, 2019.

[41] Razavi, S.; Jakeman, A.; Saltelli, A.; Prieur, C.; Iooss, B.; Borgonovo, E.;

Plischke, E.; Piano, S.L.; Iwanaga, T.; Becker, W.; et al. The future of sensitivity

analysis: An essential discipline for systems modeling and policy support. Envi-

ron. Model. Softw. 2021, 137, 104954.

[42] Beaubouef, T.; Petry, F.; Arora, G. Information-theoretic measures of uncer-

tainty for rough sets and rough relational databases. Inf. Sci. 1998, 109, 185–

195.

[43] Tang, J.; Wang, J.; Wu, C.; Ou, G. On uncertainty measure issues in rough set

theory. IEEE Access 2020, 8, 91089–91102.

[44] Parthaláin, N.M.; Shen, Q.; Jensen, R. A distance measure approach to exploring

the rough set boundary region for attribute reduction. IEEE Trans. Knowl. Data

Eng. 2010, 22, 305–317.

[45] Dubois, D.; Prade, H. Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst.

1990, 17, 191–209.

[46] Tuffery, S. Data Mining and Statistics for Decision Making; John Wiley & Sons:

Hoboken, NJ, USA, 2011.

40

[47] Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross val-

idation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell.

2009, 32, 569–575.

