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ABSTRACT 

The current research aims to enhance real-time analysis and speed of security 

algorithms by focusing on creating a minimal security log with the same efficiency as 

the original one through keeping core knowledge. Hence, manipulating this created 

minimal log with any security algorithm will surely enhance execution time and 

accordingly push towards real-time analysis. Rough set concepts are being used to 

reduce log size by using algorithms of the RoughSets package in R language, these 

algorithms guarantee to find a minimum log at least, and to find a minimal log at most 

depending on hardware resources available. Embedded knowledge is being extracted 

from minimum and minimal logs in the form of IF...THEN statements, and finally 

conclusions were discussed.  

Keywords: hate speech, text classification, classifier, classifier ensembles, stacking 

ensemble, text mining, genetic programming, pattern classification. 
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ÖZ 

Mevcut araştırma, temel bilgileri koruyarak orijinali ile aynı verimliliğe sahip 

minimum bir güvenlik günlüğü oluşturmaya odaklanarak güvenlik algoritmalarının 

gerçek zamanlı analizini ve hızını artırmayı amaçlamaktadır. Bu nedenle, oluşturulan 

bu minimum günlüğü herhangi bir güvenlik algoritmasıyla manipüle etmek, yürütme 

süresini kesinlikle artıracak ve buna bağlı olarak gerçek zamanlı analize doğru 

itecektir. RoughSets paketinin algoritmalarını R dilinde kullanarak log boyutunu 

küçültmek için kaba küme konseptleri kullanılmaktadır, bu algoritmalar mevcut 

donanım kaynaklarına bağlı olarak en az minimum log, en fazla minimum log bulmayı 

garanti etmektedir. Gömülü bilgi, IF...THEN ifadeleri biçiminde minimum ve 

minimum günlüklerden çıkarılıyor ve son olarak sonuçlar tartışıldı. 

 

Anahtar Kelimeler: kaba küme teorisi; denklik sınıfları; daha düşük yaklaşım; üst 

yaklaşım; R dili. 
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Chapter 1 

1 INTRODUCTION 

Information system security has been achieved using several security solutions such 

as IDS, IPS, anti-viruses and firewalls, etc. Each device will work independently to 

guarantee appropriate access to network resources [1–4], and will generate its own 

alert logs, bearing in mind that these logs are growing too rapidly to be covered under 

the terminology big data. High repetitions and false alerts are common in such logs. 

As a result, this may mislead the process of identifying real threats. This poses a diffi-

culty in analyzing large logs and detecting serious security issues and intrusions, as 

well as reacting at the right time. 

In this Chapter the basic concepts of log data generation, collection, and analysis will 

be explained. 

1.1 Log Data 

At the beginning log data has to be defined, it is the output of any computer system, 

hardware, program, or other device in reaction to external stimuli [1, p. 14-16]. What 

the stimuli are relies a lot on where the log message came from. Unix systems, for 

example, have user login/ logout messages, firewalls have Access Control Lists (ACL) 

accept/deny messages, while disk storage systems create log messages whenever they 

fail or, in some circumstances, when systems fail. 
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A log message's fundamental meaning is referred to as log data. Alternatively, log data 

refers to information extracted from a log message that explains the reason a log mes-

sage was created. When someone accesses any resource (picture, file, etc.) on a Web 

page, for example, a Web server will frequently log it. The user's name would appear 

in the log message if he had to authenticate himself to access the page. 

 

The phrase "logs" refers to a group of log messages which will be utilized to create the 

picture of the event occurrence. The following are the broad categories that log mes-

sages fall into: 

▪ Informational messages: are intended to inform users and system administra-

tors that something good has happened. When the operating system (OS) is 

rebooted, for example, Cisco IOS will directly send out notifications. However, 

caution is needed. If a reboot occurs outside of typical maintenance or normal 

working hours, for example, you may be concerned. 

▪ Debug messages: are usually created by software systems to assist software 

developers in debugging and identifying issues with executing application 

code. 

▪ Warning messages: are often used in instances where something is missing or 

required for a system, but its absence has no influence on the system's opera-

tion. For instance, if a certain program isn't provided the correct number of 

parameters related to a programmed command line but can still execute without 

them, the program may generate a warning message to the operator or user. 

▪ Error messages: are used to communicate errors which occur at different 

computer system levels. When an operating system can't synchronize buffers 

to disk, for example, an error message is generated. Most error messages, 
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unfortunately, simply provide a reference point for determining why they 

happened. In attempt to get to the source of the problem, more investigations 

are frequently necessary. 

▪ Alert messages: is a notification that something interesting has occurred. Se-

curity devices as well as security systems are the core of such alerts in general, 

although this is not a hard rule. On a network, an Intrusion Prevention System 

(IPS) may be installed in the middle, examining all traffic coming. depending 

on the details of the data packets, it will determine whether a specific network 

connection is permitted or not. If IPS detects a potentially harmful connection, 

it can execute any of a group of predefined actions. The detection, as well as 

the action done, will be recorded as a log. 

1.2 Log Data Collection and Transmission 

The transmission and collection of log data are theoretically straightforward. A log-

ging subsystem is implemented in a device or computer so that it can create a message 

whenever it sees fit [2, p.49-51] . The method used to create such messages varies 

depending on the device. You may, for example, be able to customize the device itself 

or it may be programmed to send a pre-determined message list. This location is gen-

erally called a log-host. A log-host is a system that collects log messages in a central 

place, usually a Unix or Windows server. The following are some of the benefits of 

utilizing a central log message collector: 

▪ Having a centralized repository for storing log messages collected from several 

sites and locations. 

▪ Having a place for storing logs backup copies. 

▪ Having a location where analysis on log data is being performed. 
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The question here, how to transmit log messages? Syslog protocol is the most often 

used method, it forms a standard method for exchanging log messages. It is most often 

seen on Unix computers, although it is also available for Windows as well as other 

non-Unix environments. However, there is essentially a client - server component that 

is implemented via the User Datagram Protocol (UDP), but it worth to mention that 

many commercial Syslog and open-source applications support the Transmission Con-

trol Protocol (TCP) for assured delivery. The physical computer system or device that 

creates and sends log messages is referred to as the client part. Typically, the server 

part is found on log collecting server, its primary function is to accept Syslog-based 

log messages and save them on its disk storage so they can be backed up, examined, 

and kept for long-term usage. 

 

Moreover, Syslog is not really the only mean used for transmitting and collecting log 

data. Microsoft, for example, has their very own Windows logging system. It is known 

as the Windows Event Log. Things like application messages, user logins and logoffs, 

and other data are saved in a private storage format. There are commercial and open-

source applications that operates depending on Event Log that converts event log rec-

ords to Syslog, and hence transmits them to the syslog server. 

 

Now, there exist a protocol called Simple Network Management Protocol (SNMP) it 

is used to manage devices all over the network. This protocol is standard, and it is built 

depending on traps/polling concepts. Traps are simply sort of log messages a computer 

system or device produces when something unusual occurs. Traps are transmitted to a 

host system, which functions similarly to a loghost. Polling occurs when ever a man-

agement station can use SNMP for asking a device for variables which are pre-defined 
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such as bytes transferred through an interface, interface statistics, etc. One important 

distinction between Syslog and SNMP will be that SNMP is intended to be organized 

in terms of data format. However, this has not been the case in practice, meanwhile it 

is strict in Syslog. 

 

Recently, a convenient way to save applications log messages was through using da-

tabases. Simply, applications will write the generated log messages to a database server 

rather than creating Syslog messages. This has several advantages, particularly in 

terms of providing a systematic method for saving, analyzing, and creating reports on 

the stored log messages.  

 

Lastly, there are another loggings format to consider. These formats come from third-

party programs and devices that use their own private methods to create and collect 

log messages. In this case, the provider either offers an Application Programming In-

terface (API) in the format of Java/C libraries, or you must build the protocol your 

own self. Event Logs for Windows is a proprietary format, it is frequently considered 

as informal logging standard as Syslog, because it is widely adopted. Protocols dis-

cussed so fare: 

▪ Syslog: client/server protocol runs on top of UDP. This has been the most pop-

ular and widely used logging method. 

▪ SNMP: was initially designed to manage networked devices. However, various 

non-networked devices have used SNMP as a means of emitting log messages 

and status data over time. 

▪ Windows Event Log: Microsoft’s own message log format. 

▪ Database: structured method of storing and retrieving log messages. 
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▪ Common Private Protocols:   

• LEA: Log Extraction API (LEA) collects logs from security solutions 

and appliances such as firewalls. 

• SDEE: Security Device Event Exchange (SDEE) protocol is based on 

eXtensible Markup Language (XML) and is used by Cisco to collect 

log messages from its IPS devices. 

• E-Streamer: E-Streamer is a protocol owned by Sourcefire and used by 

their Intrusion Prevention System (IPS). 

1.3 Log Message 

As previously stated, a log message is anything created by a system or device to indi-

cate something has occurred. But what exactly the structure of a log message? To 

begin, the following are the typical fundamental contents of any log message [3,p.97-

101]: 

▪ Data. 

▪ Source. 

▪ Timestamp. 

It makes no difference whether the message is transmitted through Syslog, collected 

by Microsoft Event Log, or saved in any database. These fundamental elements are 

always included in the message. A log message's heart is its data. Unfortunately, there 

is no common template for representing data in such a logging message. Some of the 

most typical data elements seen in a log message are source/destination ports, 

source/destination IPs, program names, bytes transferred both in or out, resource ob-

ject (such as directories, files, and so on), user names, etc. A system which created a 
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log message is a source. This is usually provided in the form of an IP address or a host 

name. Finally, the timestamp indicates when the log message was issued.  

The precise format of any log message is determined by the way the log source has 

configured its log system. As previously said, Syslog is the widely used format by 

computer systems and devices. As an example, consider the following Syslog message 

[4, p.53]: 

Jul 13  19:17:23  10.240.46.16  15: *Mar 1  00: 16:17 %LINEPROTO-5-UPDOWN: 

line protocol on Interface FastEathernet 0\0, changed state to up 

This message was created by Cisco router then stored on Syslog server. “Jul 13  

19:17:23” indicates the timestamp indicating when the server received the message. 

While, “10.240.46.16 “indicates the Cisco router IP. Now, what comes after the colon 

is the data. “%LINEPROTO-5-UPDOWN” is the interpretation of the or event which 

depends on the vendor, and so a vendor should provide users with a suitable infor-

mation manual to understand this part. This part of the log message has also a time 

stamp, but this for the router itself, and most probably indicating Time/date issue, ei-

ther the server or the router clock has a problem. Absence of time synchronization 

between different network devices and computer systems will generate data incon-

sistency problem regarding the log, that will cause a problem in analyzing the data log. 

1.4 Log Ecosystem 

Log ecosystem, also known as the log infrastructure, is comprised of all the pieces and 

components that work together to enable creating, normalizing, filtering, analyzing, 

and storing log data for long-term. Eventually, the objective of Log ecosystem is to 

assist you to solve issues using logs. As mentioned so far, logs are generated by a 

variety of sources, including: 
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▪ Unix/Windows operating systems. 

▪ Switches. 

▪ Firewalls. 

▪ Routers. 

▪ Virtual Private Network (VPN) Server. 

▪ Anti-virus solutions. 

▪ Wireless access points. 

▪ Printers. 

The list could go infinity. The lesson is that almost every application, computer sys-

tem, and devices on the network is able to record logs. You only need to figure out 

where to search. Aside from that, you have to configure your network devices to gen-

erate logs. Now it is the time to treat log messages by filtering and normalizing. Fil-

tering is the process of including or omitting log messages depending on their content. 

Some sources enable this natively, while others may need the deployment of an agent, 

which intercepts log data and filters them depending on predefined criteria. Normali-

zation is the process of transforming disparately structured log messages to a consistent 

format [3,p.91]. A log message after normalization is generally referred to as an event. 

However, the final destination of an event is often relational databases, where analyz-

ing and generating reports may be conducted. Here, the importance of having log data 

with common format shows up, this will facilitate data manipulation and deriving 

meanings from it. It should be emphasized that normalization occurs independently of 

the protocol or source adopted (i.e. Syslog, database, SNMP, etc.). 

 

Now we should mention her that the data part of the log message contains a priority 

entry, this notion is important for normalization process. A fundamental technique is 
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to transfer the direct and indirect priority of a log message to a certain common 

scheme. As an example, consider the low, middle, and high scales, as described below: 

▪ Low: informative messages in nature and do not require immediate attention. 

▪ Medium: those messages that have to be addressed in such a timely basis, but 

not absolutely immediately. Whenever the engine recognizes malicious intent, 

IPSs, for example, have the ability to prohibit network traffic. This is called an 

action. If the IPS sends a logging message to this action, you'll know the traffic 

was banned and may investigate into it when you can. 

▪ High: High priority situations necessitate quick response. For example, router 

restarts outside of authorized maintenance intervals, alerts of IPS engine for 

possible data theft, network devices dropping off the infrastructure for a longer 

duration, and so forth. 

But how does normalization take place?  let's show a basic example. The below is a 

Sourcefire IPS message in a Syslog format [4,p.58]: 

Jul 17 11:54:38 Source-Fire SFIMS: [1:479:2] ICMP -PING -NMAP [Classification: 

Attempted Information Leak] [Priority: 3] {ICMP} 210.22.216.78 -> 68.126.152.137 

 

This message contains a lot of information. We employ a method known as parsing to 

normalize its information. Parsing includes reading the logging message from begin-

ning to end to extract information of interest and inserting it into normalized attributes 

within the event. The following are some of the most frequent fields used in the nor-

malization: 

Timestamp: July 17 2017, 11:54:38 

category: Attempted Information Leak  

Protocol: ICMP  
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 Priority: High  

Source Port: NULL  

Destination Port: NULL 

Source IP : 210.22.216.78  

Destination IP : 68.126.152.137  
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Chapter 2 

1 PRELIMINARIES 

Generally, the process of extracting knowledge from event record files in computer 

systems is called log analysis. However, computer systems generate a large number of 

log events with a high rate of repetition. As a consequence, the goal of the log analysis 

process is detecting serious security issues and intrusions out of repetitive false ones 

to protect such systems [1].  

Information system security is a critical and a wide concept, as it governs and controls 

all processes, tools, and appliances used to protect critical information from unauthor-

ized actions or access, precisely as the new definition ‘Appropriate Access’ aims [2]. 

Hence, and depending on the concepts of cloud technology, web systems, Internet of 

Things (IoT), and the new demands and challenges forced by the Corona Pandemic; 

where the adoption of online concepts spread in almost all our daily activities, tremen-

dously huge amount of security logs are being generated and need to be analyzed and 

understood. In addition, proper remediation actions must be performed on time to guar-

antee efficient risk elimination, especially that we are moving recently to real-time 

Intrusion Detection Systems (IDS). 

Such a task forces great pressure on information security officers and system admin-

istrators, bearing in mind that detecting real alerts out of repetitive false ones is a com-

plex and even an expensive task [3-4]. But if a minimal log set can be created, the 
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problems of repetition and real-time detection, even storage optimization can be 

solved. 

 Rough set is able to discover structural relationships in data sets because it has a math-

ematical approach to treat and process imperfect knowledge. Rough set has an algo-

rithm that can identify the smallest set of data while keeping the original data set’s 

knowledge [5-6], herein information security officers can do a better job by concen-

trating on real alerts and eliminating redundant ones and so taking right security ac-

tions in better timing base. 

2.1 Rough Set Theory 

Rough set theory is a novel mathematical technique for analyzing data; it deals with 

imperfect knowledge such as imprecision, vagueness, and uncertainty. This is very 

important since a frequent feature across the various domains of decision analysis, 

machine learning, pattern recognition, and data mining is processing incomplete and 

imprecise knowledge [23]. 

Rough set was proposed by Z. Pawlak back in 1980, it offers efficient algorithms, 

methods, and tools for recognizing hidden patterns in data [25]. Generally, rough set 

approach can solve the following issues: 

• A group of objects is described depending on an attribute or feature values. 

• Full or partial dependencies between features or attributes. 

• Attributes or features reduction.  

• Attributes or features significance. 

•   Generation of decision rules.  

• plus others [26] [27]. 
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Decision support systems, pattern recognition, knowledge discovery, expert systems, 

machine learning, decision analysis, and other real-life systems have all used rough 

set techniques. [28] [29]. 

 

Philosophy of rough set assumes that objects are associated with some data or de-

tails. Hence, according to the similarity in data, objects can be classified into similar 

or in-discernible groups or classes. This indiscernibility relation provides the mathe-

matical foundation for rough set theory. Previously mentioned indiscernible classes 

form what is called knowledge granule, all knowledge granule union is called crisp 

set, or else the set is rough [27]. 

 

As a result, a rough set has boundary elements or elements that cannot be identified 

as members of the set or even as the complement of the set with certainty. Apart from 

that, crisp set is the opposite, where no boundary elements exist. Hence, a rough set 

can be used to mathematically model ambiguous concepts. A pair of notions known 

as the lower and upper approximations are required to express such ambiguous con-

ceptions. The lower approximation includes all items that are certain to belong to the 

indiscernible class, while the upper approximation includes all objects that may or 

may not belong to the in-discernible class. [30] [31]. 

 

Figure 1 explains the previous concepts, an approximation for the given set of objects 

X can be computed depending on a coefficient named accuracy of approximation 

α(X) [32], which is calculated by dividing lower approximation by upper approxima-

tion. As mentioned before, lower approximation includes elements that surely belong 

to the considered set X denoted by L(X), on the other hand, upper approximation 
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includes elements that maybe belong to X denoted by U(X) [33], clearly, 0 ≤ α(X) ≤ 

1, considering the value α(X) = 1 then the set X is called crisp, which means it is the 

normal set theory, but considering α(X) < 1, then the set X is rough [34]. Thus, the 

concept of indiscernibility appears; once again objects are being indiscernible from 

each other if they were categorized within the same class referring to their related 

information [35]. 

 

 

Figure 2.1: Set approximation. 

2.2 R Language 

R is a computer language that is designed for data analysis and data visualization. R 

was created by Robert Gentleman and Ross Ihaka at the University of Auckland, the 

purpose was to teach student statistics, but later in 1997, the source code has been 

freely dis-tributed. R has the benefit of having continuous enhancements and new 

source code being downloaded in the form of packages [18]. 
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R also works across different operating systems like MS-Windows, Linux, and Unix 

[19]. In general, R language contains more than 5,000 algorithms in its library to ana-

lyze data [20], but in particular, R has 96 add-on packages related to the field of ma-

chine learning, their ideas and methods were implemented and developed mixing com-

puter science and statistics. One of these packages is RoughSets package that contains 

algorithms developed according to rough set and fuzzy rough set theories [21]. More-

over, in addition to R tools, built-in data sets exist to simplify the process of machine 

learning and data analysis [22]. 

 

Z. Abbas and A. Burney [23] provided a survey of frequently used data processing 

tools that automate the application of rough set theory, these tools were R, Rose2, 

Rosetta, RSES, and WEKA. In the comparison, the following items were used: 

• Package techniques.  

• The language in which the package was created. 

• Supported operating systems. 

• Existence of user interface.  

• Existence of rough set basic concepts: lower, upper approximation, boundary             

sets, etc. 

• Existence of feature/instance selection. 

• Ability to separate data to a training set and testing set. 

• Ability to generate decision rules induced from reducts.  

• Existence of nearest-neighbor-based algorithms to classify data.   
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Hence, according to the functionalities mentioned in Table 1, R was chosen as a tool 

for analyzing data in this research, bearing in mind that according to Craner r.project 

[24], the missing value completion functionality mentioned in Table 1 above is now 

part of RoughSet package in R. 

 

 

 

Table 2.1 : Rough set packages functionalities comparison. 
Components Rough 

Sets  

Rose2  Rosetta  RSES  WEKA 

Technique RST 

FRST 

RST RST RST RST 

Programming Lan-

guage 

R C++ C++ Java/ C++ Java 

Operating System Win./ 

Linux/ 

Mac 

Win. Win Win./ 

Linux 

Win./ 

Linux/ Mac 

User Interface Script GUI GUI GUI GUI 

Basic Concepts Yes Yes No No No 

Discretization Yes Yes Yes Yes Yes 

Feature Selection Yes Yes No Yes Yes 

Instance Selection Yes No Yes No Yes 

Missing Value 

Completion  

No Yes Yes Yes Yes 

Decomposition No No No No No 

Rule Based Classi-

fiers 

Yes Yes Yes Yes Yes 

Nearest Neighbour 

Based Classifiers 

Yes No Yes No Yes 

Cross Validation No Yes Yes Yes Yes 
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Chapter 3 

1 LITTRETURE REVIEW 

The motivation for carrying out the work in this thesis was triggered after reading 

works in paper [7], this paper depending on 34  relevant publications selected from 

1374 papers published within the past decade relevant to machine learning, cloud com-

puting, clustering, web systems, and Internet of Things (IoT) discuses currently avail-

able trends in log analysis, their advancements and future tendencies. As mentioned in 

the work, very few of these studies relate both the process of analysis with security 

aspects, moreover, up-to-date studies are needed. 

 

Algorithms of machine learning are being used in log analysis, these algorithms are 

slow and resource-intensive [7], which in turn poses a limitation in using such strategy. 

Reducing the size of targeted security log files by applying the proposed rough set 

approach will reduce the effect of limitations previously mentioned. 

 

In general, paper [7] identifies current problems and limitations related to log analysis, 

these problems have been discussed but are in need of further research. Such issues 

were real-time analysis, speed and security of the algorithms, and multi-source analy-

sis [8–10], in all cases mentioned log size will influence the treatment process through 

log analysis in terms of speed, accuracy, and resource consumption, so the work in this 

paper presents a solution for such problems by reducing log size but preserving core 

knowledge as explained below: 
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Papers [11–13] concentrated on moving intrusion detection to real-time approach so 

that system administrators can pinpoint the attacks and restore the normal system con-

ditions on spot. But managing huge data logs is a bottleneck here in terms of acceler-

ating the whole process. Using the proposed rough set concepts to process such logs 

will cause re-duction in size without losing the core knowledge, and as a consequence 

will speed up real-time intrusion detection, hence the work in this research can be used 

as a previous step to prepare log data. 

 

The work in [9] proposed a future enhancement to their HERCULE intrusion detection 

system by using log files distributed across multiple hosts, but the huge growth of the 

number and size of log files was an obstacle, which can be solved if log files were 

processed using rough set as explained in this research. 

 

The study performed by Y. Yao, et al [3] was similar in general terms of using the 

concepts of rough set theory, but it had a different purpose as well as different meth-

odology. To identify security semantics, the researchers employed rough set theory to 

analyze alert data collected from multi-sources. This was performed through collecting 

security data from several resources, then by applying rough set theory concepts, a 

weight was being calculated for classifications of alerts, then alert aggregation was 

performed to eliminate repetitive and false alerts, and finally, a reliability metric was 

introduced according to background information to measure the credibility. Therefore, 

our research would be a complement to this work as an extra stage to enhance both the 

classification of alerts and credibility measuring. 
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M.R. Gauthama Raman et al. [14] presented a selection method to determine the opti-

mal attribute subset of Intrusion Detection System (IDS). This technique used rough 

set theory and some properties of the hypergraph to enhance the accuracy of classifi-

cation and time complexity of IDS. Dutta, S., Ghatak, S., Dey, R. et al. [15] proposed 

an attribute selection methodology that improves spam classification for Online Social 

Network (OSN). Rough set theory concepts were applied to develop an attribute se-

lection algorithm to identify a smaller group of features that leads to improve classifi-

cation performance. 

 

Anitha, A., and D. P. Acharjya [16] proposed a feature selection technique based on a 

novel filter stands on Rough Set Theory approach and Hyper-Clique based Binary 

Whale Optimization Algorithm (RST-HCBWoB), the technique identifies informative 

features. This is necessary for an effective feature selection algorithm used in supervi-

sory control and data acquisition intrusion detection system to protect critical infra-

structure from cyber attacks. 

 

The work in Nanda, N.B., Parikh, A. [17] proposed a hybrid technique that works on 

identified risks of the network-attached intrusion detection system in attempt to deter-

mine the minimum rules set that could represent the knowledge offered by the data set 

under consideration. Two models are used in this procedure: random forest classifier 

to select attributes, and rough set theory to generate rules. 

Hence, regarding the work in papers [14–17] mentioned above, our study proposes 

more relevant research, it provides an algorithm by using rough set package in R lan-

guage to find the optimal minimal subset of attributes rather than a smaller one, and 

the technique is general where it could be used for any type of system logs. 
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Chapter 4 

2 REPRESENTATION OF SOLUTION 

This chapter presents an overview of the datasets used throughout this dissertation. 

The proposed models were developed and tested using four publicly available English 

Twitter datasets retrieved from different repositories as shown in Table 4.1. The 

datasets were selected with different sizes. 

In this section, we will present our proposed iterated rough set based algorithm, which 

we name IRS. IRS is proposed to be scalable for big data pre-processing for feature 

selection. The algorithm generates a minimal security log from any given big data set. 

The proposed steps are employed to accelerate the run time. Then, as a result of gen-

erating a minimal log, a minimal decision rules database is generated; this decision set 

maintains the data consistency embedded in the original dataset. In this section, we 

will also clarify our IRS algorithm as an efficient solution able to perform big data 

feature selection with less execution time. It will be compared with an existing novel 

algorithm using three benchmark datasets to prove its effectiveness. However, we will 

first explain the motivation for proposing IRS by discussing the computational com-

plexity of the traditional rough set theory when working with high dimensional da-

tasets. 

4.1 Problem Statement and Motivation  

Performing feature selection when using RST will force the theory to compute each 

possible attribute combination. The number of attribute subsets that maybe created 
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using m attributes from a set of N attributes is (𝑁
𝑚
) = 

𝑁!

𝑚!(𝑁−𝑚)!
 [41]. Hence, the number 

of generated feature subsets as a total, is ∑ (𝑁
𝑖
)𝑁

𝑖=1  = 2𝑁 − 1. For instance, if N = 30, 

there will be around one billion possible combinations. This prevents the use of RST 

with high dimensional datasets. Moreover, hardware limitations exist, and in particu-

lar, memory capacity will not be able to store and calculate a huge number of entities. 

The RAM will need to allocate the entire dataset, its computations, and results. For big 

data this can exceed the physical memory. Our proposed algorithm was motivated by 

all of these reasons. 

4.2 Datasets 

In our research, we used four datasets, three of which were benchmark datasets taken 

from UCI [42]. The purpose was to examine the proposed algorithm’s effectiveness. 

This will be discussed in more detail in Section 4.5 The fourth dataset was used to 

execute the proposed algorithm on real-life huge datasets. 

Our real-life huge datasets were collected from a government enterprise that uses IBM 

security Qradar. Qradar is a Security Information and Event Management (SIEM) so-

lution that collects and analyzes log data from security systems [43]. Three datasets 

were taken from Qradar, each containing 63,000 objects (Instances) with 10 attributes 

of unprocessed security events. This enterprise considers the cloud technology in its 

structure and virtual machine concepts for more than 40 servers that have both Mi-

crosoft and Linux operating systems. Part of the servers provide about 100 online ser-

vices for citizens. 

Table 4.1 shows the general structure of each SIEM dataset. Every dataset has 10 at-

trib-utes, A = {Event Name, Log Source, Event Count, Low-Level Category, Source 
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IP, Source Port, Destination IP, Destination Port, User Name, Magnitude}. The first 9 

attributes are the condition attributes (C), while the last one, Magnitude, is the decision 

attribute {D}. Magnitude indicates the importance of the offense and has an integer 

value ranging from one to eight, being from least severe to most severe. Hence, each 

dataset forms a decision table, T = (U, A ∪ D). The data populated in table T contain 

no real-valued attributes, meaning that concepts of RST can be applied directly, with-

out the need to perform extra pre-processing steps such as discretization [44] 

 Table 4.1: Decision table 

Event 

Name 

Log 

Sourc

e 

Event 

Count 

Low Level 

Category 

Sourc

e IP 

Source 

Port 

Destina-

tion IP 

Destina-

tion Port 

User 

Name 

Mag-

ni-

tude 

Tear down 

UDP con-

nection 

ASA 

@ 

172. 

17.0 .1 

1 

Fire wall 

Session 

Closed 

8.8. 

8.8 
53 

172. 18. 

12. 10 
53,657 N/A 7 

Deny pro-

tocol src 
R 1 

Fire wall 

Deny 

172. 

20. 12. 

142 

56,511 
172. 217. 

23. 174 
443 N/A 8 

Deny pro-

tocol src 

ASA 

@ 

172. 

17.0 .1 

1 
Fire wall 

Deny 

172. 

20. 18. 

54 

52,976 
213. 139. 

38. 18 
80 N/A 8 

Deny pro-

tocol src 

ASA 

@ 

172. 

17.0 .1 

1 
Fire wall 

Deny 

172. 

20. 15. 

71 

53,722 
52. 114. 

75. 79 
443 N/A 8 

Deny pro-

tocol src 

ASA 

@ 

172. 

17.0 .1 

1 
Fire wall 

Deny 

192. 

168. 

180. 

131 

55,091 
40. 90. 22. 

184 
443 N/A 8 

Built TCP 

connection 

ASA 

@ 

172. 

17.0 .1 

1 
Fire wall 

Deny 

172. 

18. 12. 

19 

59,201 
163. 172. 

21. 225 
443 N/A 8 
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4.3 Building a Minimal Log Size (Reduct) 

Considering [46,45], both papers discussed the concept of using maximal or minimal 

pairs in discernibility matrix to overcome the complexity of feature selection. We will 

use this concept in our methodology inside iterations calculation for the same reason. 

Later, the results of [45] will be used to prove the efficiency of our algorithm. 

To compute any minimal subset, two mathematical foundations are needed: discerni-

bility matrix, and reduct. It was noted in Section 4.1 that this process is computation-

ally expensive. The proposed IRS algorithm aims to overcome this limitation and re-

duce the execution time of minimal log generation by redesigning the calculations us-

ing two concepts: iteration calculations and minimal elements in the discernibility ma-

trix calculations. 

The iteration step divides the big dataset into N subsets and calculates the iterated 

minimal reduct for each, where finally the intersection of all previously calculated it-

erated minimal reducts will generate the core minimal feature subset. The second step 

focuses on reducing the calculation complexity in each iteration by passing only the 

minimal element in a discernibility matrix to reduce calculations. Working in such 

design will contribute to solving the problem in the following way: 

• Splitting the dataset into N subsets and performing the proposed algorithm on 

each subset will overcome hardware limitations, since fewer entries means less 

memory space to upload the data, perform computations, and store the results. 

Keeping the whole high dimensional dataset in memory and performing all the 

previous steps, is mostly impossible. 
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Reducing the number of calculations, since passing only the minimal elements in the 

discernability matrix to reducts calculation will not cause the computation of each pos-

sible attribute combination, and hence the equation ∑ (𝑁
𝑖
)𝑁

𝑖=1  = 2𝑁 − 1 is no longer 

valid. This will certainly reduce the execution time. The proposed code is given in 

Table 4.2. 

Reducing the number of calculations, since passing only the minimal elements in the 

discernability matrix to reducts calculation will not cause the computation of each pos-

sible attribute combination, and hence the equation ∑ (𝑁
𝑖
)𝑁

𝑖=1  = 2𝑁 − 1 is no longer 

valid. This will certainly reduce the execution time. The proposed code is given in 

Table 4.2. 

 

Table 4.3 shows the output after performing the algorithm using our datasets. The three 

datasets are labelled as S1, S2, and S3, respectively. It was found that the server cannot 

Table 4.2: IRS Algorithm 
• Input:    T = (U,A∪D): information table, N: number of iterations, 

•            M: number of datasets 

• Output:  Core–Reduct, 

• 1:  For each dataset M do 

• 2:   For each iteration N do 

• 3:    Calculate INDN(D) 

• 4:     Compute DISC.MatrixN(T) 

• 5:       Do while (DISC.MatrixN(T) ≠ Ø) and i ≤ j 

•          (RST discernibility matrix is symetric) 

• 6:         Si0,j0 = Sort (xi,xj) ∈ DISC.MatrixN(T) 

•            according to number of conditional attributes A 

• 7:            End while 

• 8:              Compute ReductN(Si0,j0) 

•                 (calculating reducts for minimal condition atrridutes) 

• 9:                   ReductN = ReductN ∩ ReductN(Si0,j0) 

• 10:                   End For N 

• 11:                      Core–Reduct = Core–Reduct ∩ ReductN 

•                             minimal optimal reduct 

• 12:                           End For M 
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run the whole data set with 6300 objects and 10 attributes at once, so each dataset was 

split into three parts and processed on three iterations (M = 3, N = 3). The table also 

shows the calculated degree of dependency for each iterated reduct, being how much 

the generated iterated reduct (attributes set) depends on the decision attribute(s), with 

a maximum value of 1. The methodology was performed under hardware specifica-

tions of Intel(R) Xeon(R) Gold 6148 CPU @2.40 GHz 2.39 GHz, RAM 48.3 GB. 

The intersection of the three iterations of the first data set S1 produced a minimal iter-

ated reduct of 5 attributes |ReductN = 1| = 5, while the original set S1 had 10 attributes.  

In this reduct, the degree of the dependency = 1, which means the decision attribute 

{Magnitude} was completely identified by the values of the 5 attributes of the reduct 

Table 4.3: Minimal reduct output for N = 3, M = 3 

Training Data Set Minimal Attribute 
Degree of Depend-

ency 1 

First Training Set S1 (∩ three it-

erations) ReductN = 1 

A1 = {Event Name, Source IP, 

Source Port, Destination IP, Magni-

tude } |A1| = 5 

1 

Second Training Set S2 (∩ three 

iterations) ReductN = 2 

A2 = { Event Name, Source IP, Des-

tination IP, Magnitude }|A2| = 4 
0.9992941 

Third Training Set S3 (∩ three it-

erations) ReductN = 3 

A3 = {Event Name, Source IP, 

Source Port, Destination IP, Magni-

tude } |A3| = 5 

1 

Core-Reduct (A1∩ A2∩ A3) 
A2 = { Event Name, Source IP, Des-

tination IP, Magnitude }|A2| = 4 
0.9992941 

1: a decision attribute, d, totally depends on a set of attributes A, written as A ⇒ d if 

all attribute values from d are distinctly identified by attribute values from A 
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set A1. This reduct omitted 50% of the attributes of the original set and retained infor-

mation content 100%. For the second iteration S2, the reduct was even better, produc-

ing 4 attributes, |ReductN = 2| = 4, with a dependency degree of 0.9992941, while the 

last iteration for S3 had the same output as S1. 

Following step 11 in the algorithm, Core-Reduct was generated by taking the inter-

section of all previous iterations’ outputs. This means that Core-Reduct = {Event 

Name, Source IP, Destination IP, Magnitude} was the minimal reduct for all datasets 

S1, S2, and S3. It had 4 attributes, rather than the 10 attributes of the original sets. 

Despite this reduct, the information content of the original datasets was retained with 

99.9% accuracy. 

This proves that the proposed solution was able to create a minimal reduct for the 

security log, this optimal reduct used only 40% of the attributes of the original dataset 

(4 instead of 10), and still offered the same information covered by the original dataset 

with 99.9% accuracy degree. The next section will use this minimal dataset to create a 

minimal decision rules database. The effectiveness of step 8, which passes only the 

minimal ele-ments of discernibility matrix for reduct calculations inside each iteration, 

will be proved in Section 4.5, by comparing our algorithm with a similar approach 

using the same benchmark datasets in terms of runtime.  

4.4 Generating Minimal Decision Rules                                                        It 

It is significant to understand that the derivation of rule structure, using learning pro-

cedures from training cases, is being employed in rule-based expert systems. Fortu-

nately, these rules are more accurate than information included in the original input 
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data set, because new examples that do not match examples taken from the original 

data, are being properly classified by such rules [23]. 

Te RoughSets package in the R language has different algorithms to extract knowledge 

hidden in any given data set in the form of an IF...THEN structure. This paper uses the 

CN2Rules algorithm, which is designed to work even with the existence of imperfect 

data. The CN2Rules algorithm was deployed on each of the reduct sets A1, A2, and 

A3, produced in the previous section. The algorithm in Table 4.4 generates the deci-

sion rules in the form of an IF...THEN structure, with each set divided into a training 

set with 60%, and a test set with 40%, as shown in step 3, because this will be used 

later in steps 5 and 6 to validate the accuracy of the prediction using the 40% test part. 

Table 4.5 shows the total number of rules generated for each dataset before minimizing 

(S1, S2, S3), and after minimizing (A1, A2, A3). It also calculates the prediction ac-

curacy of each minimal iterated reduct set (A1, A2, A3). 

 

Table 4.4:  Rule generation algorithm 
Input:    ReductN (T): minimal reduct information table, M: number of datasets 

Output:  Set-RuleMin 

1:  For each dataset M do 

2:    read.table(ReductN (T)) 

3:     Splitting ReductN (T) 

        training set 60% and a test set 40%. 

4:         RI.LEM2Rules.RST() function 

           Create rules depending on training set of ReductN (T) 

5:            predict() function 

              Testing the quality of prediction depending on the test set of ReductN (T) 

6:               mean() function. 

                 Checking the accuracy of predictions 

7:                End For M 
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Examining the first row in the table and comparing the number of rules generated from 

the first original dataset S1 and its minimal reduct A1, the number of rules decreased 

to about 66% with a prediction accuracy of around 96%. A similar result occurred for 

datasets S1 and S2. 

A minimal decision rules dataset was successfully created for each original dataset 

(S1, S2, S3). Each minimal decision rules dataset (A1, A2, A3) reduced the number of 

the rules (by 50% to 65%) with high accuracy prediction (from 95% to 97%). In addi-

tion, we know from the previous section that each minimal iterated set (A1, A2, A3) 

strongly represents the knowledge in its original dataset (S1, S2, S3) with a high degree 

of dependency (ranging from 1 to 0.99). We conclude that the same knowledge is being 

presented in the form of decision rules, with a smaller number of attributes and high 

accuracy prediction. 

4.5 Execution Time Comparison with Existing Methods                                                         

The current section evaluates the efficiency of our IRS algorithm. Our technique for 

generating a minimal subset will be compared with two other techniques: one using 

classical discernibility matrix [47], while the other uses its own proposed novel algo-

rithm, named Sample pair selection SPS [45]. The experiments used the same hard-

ware environment specifications mentioned in [45], being Intet (R) i5 CPU 2.40 GHz 

M450. 

Table 4.5: Minimal reduct output for N = 3, M = 3. 

Training Data Set 
Number of Decision 

Rules before Reduct  

Number of Deccision 

Rules after Reduct 

Prediction Ac-

curacy  

First Training Set  S1 = 905 A1 = 596 0.9552733 

Second Training Set  S2 = 878 A2 = 509 0.9535073 

Third Training Set  S3 = 813 A3 = 481 0.9741291 
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The comparison will measure the runtime needed to calculate the minimal reduct, us-

ing the three algorithms on the same datasets. It is worth noting that the comparison 

uses three benchmark datasets taken from the UCI machine learning repository [44]. 

Table 4.6 shows the description of the original dataset. These three datasets were pre-

viously used in [45,47] to compare the effectiveness of the SPS algorithm against the 

classical discernibility matrix. 

Table 4.6: Original Datasets description. 
Dataset Number of Attributes Number of Instances 

Glass 9 100 

Wiscon 9 699 

Zoo 16 100 

 

We executed our algorithm IRS using the three benchmark datasets and compared the 

runtime values with the previous statistical calculations from [45,47]. As shown in 

Table 4.7, our algorithm IRS generated the same number of all possible reducts for 

glass and Wiscon datasets 2 and 4 respectively. However, in the case of the zoo dataset, 

our algorithm created 35 reducts, while both compared algorithms created 33, yet our 

algorithm had the best runtime over the other two algorithms, at 0.9967 s. A general 

comparison of the runtime of all algorithms shows that our IRS algorithm had the best 

execution time over SPS and classical discernibility matrix, for all datasets. This 

proves that the IRS algorithm, which uses iteration calculations depending on minimal 

elements of discernibility matrix, decreased the complexity of calculations success-

fully. 

H 

h 
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 Table 4.7: Computations of execution time in finding minimal reduct 
Data Num. of 

Attributes 

of The Da-

taset 

All reducts  Execution Time in seconds 

IRS SPS & 

CDM  

Classical Dis-

cernibilityMa-

trix  (CDM) 

SPS IRS 

       

Wiscon 9 4 4 1362.1 24.095

6 
9.05 

Glass 9 2 2 23.3268 0.7931 0.7 

Zoo 16 35 35 106.6581 1.2574 0.9967 
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Chapter 5 

3 CONCLUSION AND FUTUR WORKS  

Following the proposed procedure, this research designed a new algorithm named IRS 

to create a minimal security log. The approach used RST basic concepts by adopting 

an iterated model. Inside each iteration, minimal discernability matrix elements were 

passed for reduct calculations. This design helped to overcome hardware limitations 

and prevent reduct calculation growing exponentially high, by decreasing the calcula-

tion needed to compute all possible attribute combinations to the minimal elements in 

a discernibility matrix. 

We also computed a minimal decision rule database with a prediction accuracy of 

about 96%. This minimal subset used only 40% of the attributes of the original feature 

set, with a 99.9% degree of dependency (knowledge consistency). 

We compared our methodology with another recent novel algorithm, using the same 

three benchmark datasets. Our comparison showed that the proposed methodology ef-

fectively calculated a minimal set without losing performance. The results showed that 

our methodology was even better in terms of execution time, which proved that calcu-

lation complexity, as well as search space, were reduced. This makes the proposed 

model relevant to huge datasets and will enhance real-time analyses. 

In the future, we will apply the new concept of Sensitivity Analysis (SA) to this work, 

because SA can manage uncertainty in a real-world decision system, especially in 
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high-dimensional problems. This will surely offer a better solution for work in this 

field of research. 
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