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ABSTRACT 

The concept of the grid is broadly used in digital geometry and other fields of 

computer science; it consists of discrete points with integer coordinates. Coordinate 

systems are essential for making grids easy to use. Up to now, for the triangular grid, 

only discrete coordinate systems have been investigated. These have limited 

capabilities for some image-processing applications, including transformations like 

rotations or interpolation. In this thesis, we introduce the continuous triangular 

coordinate system as an extension of the discrete triangular and hexagonal coordinate 

systems. The new system addresses each point of the plane with a coordinate triplet. 

Conversion between the Cartesian coordinate system and the new system is 

described. The sum of three coordinate values lies in the closed interval [-1, 1], 

which gives many other vital properties of this coordinate system. Moreover, 

addition of two vectors in the new triangular coordinate system is presented and 

illustrated. 

Accordingly, in discrete and digital geometry, rotations with the composition of 

translations have been measured and examined carefully on the square and the 

hexagonal grids. The translation has never been considered individually because it 

obviously leads to the isometric translation on these grids. However, the triangular 

grid is not a point lattice, thus, it is worth to consider the translation itself. Therefore 

in this thesis, translations on the triangular grid are investigated and the vectors of 

bijective and non-bijective translations are specified. 
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ÖZ 

Grid kavramı koordinatları tamsayı olan ayrık noktalardan oluşur ve genellikle dijital 

geometri ve bilgisayar bilimlerinin diğer alanlarında kullanılır. Koordinat sistemleri 

gridlerin kolayca kullanımı için gereklidir. Şu ana kadar üçgensel grid için sadece 

ayrık koordinat sistemleri incelenmiştir. Bu sistemler rotasyon, interpolasyon gibi 

dönüşümleri içeren bazı görüntü işleme uygulamaları için sınırlı kapasiteye sahiptir. 

Bu tezde sürekli üçgensel koordinat sistemlerini ayrık üçgensel ve hegzagonal 

koordinat sistemlerinin bir genişlemesi olarak tanıtıldı. Yeni sistem düzlemdeki 

koordinat üçlüsü ile birlikte her noktayı adres eder. Kartezyen koordinat sistemi ve 

yeni sistem arasındaki dönüşüm tanımlandı. Üç koordinat değeri toplamının [-1, 1] 

aralığında olması bu koordinat sistemine birçok önemli özellik katar. Ayrıca iki 

vektörün toplanması işlemi yeni üçgensel koordinat sistemde gösterilmiş ve 

örneklendirilmiştir.   

Buna göre, ayrık ve dijital geometride bileşke dönüşümleri ile birlikte rotasyonlar 

ölçülmüş ve kare ve hegzagonal gridlerde dikkatli bir şekilde incelenmiştir. Öteleme 

tek başına hiçbir zaman düşünülmemiştir çünkü bu gridlerde aşikar bir şekilde 

izometriği verir. Buna rağmen, üçgensel grid bir kafes noktası değildir, dolayısıyla 

öteleme kendi başına değerlendirilmeye değerdir. Bu sebepten, bu tezde öteleme 

üçgensel gridlerde incelenmiş ve bijektif ve bijektif olmayan dönüşümlerin vektörleri 

belirlenmiştir.  



vi 

 

Anahtar kelimerler: Barisentrik koordinat sistemi, koordinat sistemi, hegzagonal 

grid, üçgensel grid, trihegzagonal grid, geleneksel olmayan gridler, dönüşümler, 

görüntü işleme, bilgisayar grafikleri, ayrıklandırılmış döçnüşüm, dijital geometri 

 

  



vii 

 

DEDICATION 

This thesis is dedicated: to the sake of Allah (Almighty) my creator; to my master, 

great teacher and messenger, Mohammed (Peace be upon him), who taught us the 

purpose of life; to my great and beloved parents, who never stop giving of 

themselves in countless ways; to my darling wife, who leads me through the valley 

of darkness with the light of hope and support; to my treasured brothers and sisters 

who stand by me whenever things look bleak; to all my family, the symbol of love 

and giving; to my friends who always encourage and support me; and finally to all 

the people in my life who have touched my heart, I dedicate this thesis. 

 

 

 

 

 

 

 

 

 



viii 

 

ACKNOWLEDGMENT 

Foremost, I would like to express my sincere gratitude to my supervisor Prof. Dr. 

Benedek Nagy for the continuous support during my Ph.D. study and research, for 

his patience, motivation, enthusiasm, and immense knowledge. His guidance helped 

me all through the time of research and writing of this thesis. I could not have 

imagined having a better supervisor and mentor for my Ph.D. study. My thanks also 

go to the monitoring jury members, Prof. Rza and Prof. Rashad for their valuable 

suggestions during the past two years. 

Lastly, I would like to acknowledge all the staff members at the Department of 

Mathematics at Eastern Mediterranean University for their friendly and lovely 

feeling. 

 

 

 

 

 

 

  



ix 

 

TABLE OF CONTENTS 

ABSTRACT ………………………………………………………………………...iii 

ÖZ ……………………………………………………………………………………v 

DEDICATION ……………………………………………………………………..vii 

ACKNOWLEDGEMENT …………………………………………………………viii  

LIST OF TABLES …………………………………………………………………..xi 

LIST OF FIGURES ………………………………………………………………...xii 

LIST OF SYMBOLS AND ABBREVIATIONS ………………………………….xvi   

1 INTRODUCTION ………………………………………………………………....1 

1.1 A Brief History of Digital Geometry ..................................................................2 

1.2 Coordinate Systems of Traditional Grids ...........................................................4 

1.3 Transformations on Traditional Grids ................................................................6 

2 A COORDINATE SYSTEM FOR THE TRIANGULAR GRID ………………..11 

2.1 Introduction .………………………………………………………………….11 

2.2 Preliminaries ……………………………………………………………….....12 

2.2.1 Discrete Triangular Coordinate System ………………………………..13 

2.2.2 The Barycentric Coordinate System (BCS) ………………………........15 

2.3 Continuous Coordinate System For the Triangular Plane ……………............17 

2.3.1 Converting Triplets to Cartesian Coordinates ………………………….22 

2.3.2 Converting Cartesian Coordinates to Equivalent Triplets ……………..23 

2.3.3 Properties of the Continuous Triangular Coordinate System ………….31 

2.3.3.1 On the Triplets of a General Point ……………………………..31 

2.3.3.2 Relation to Discrete Coordinate Systems ………………………34 

2.3.4 A Procedure for Adding Two Vectors in Ω …..………………………..36 



x 

 

2.3.4.1 Step 1: Finding the Direct-sum, Rsum, and the Region ………..40 

2.3.4.2 Step 2: Finding the Type of Result-Vector …………………….41 

2.3.4.3 Step 3: Finding Coordinate Triplet of the Result-Vector ............46 

3 PROPERITIS OF TRANSLATIONS ON THE TRIANGULAR GRID ….……..50 

3.1 Preliminaries ……………………………………………………………….....51 

3.1.1 Discrete Translations …………………………………………………...51 

3.1.2 Digitized Translations on the Triangular Grid …………………………53 

3.1.2.1 “Integer” and “Fractional” Vectors …………………………….56 

3.1.2.2 Rounding the Border Points ……………………………………57 

3.2 Characterizing Bijective and Non-Bijective Translation Vectors ……………60 

3.2.1  Vectors of Bijective Translations ……………………………………….60 

3.2.1.1 Characterizing Strongly Bijective Translations ………………..62 

3.2.1.2 Characterizing Semi-Bijective Translations …………………...65 

3.2.2 Characterizing the Non-Bijective Translation Vectors ………………...70 

4 CONCLUSION ………………………………………………………………......74 

REFERENCES ……………………………………………………………………..77 

 

 

  



xi 

 

LIST OF TABLES 

Table 2.1: Computing the coordinate triplet of point p using equation (2.1) …17 

Table 2.2: The coordinate triplets formulae, based on area type, where 〈… 〉 is a 

rounding operation ...…………………………………………………..……………28 

Table 2.3: Different samples to demonstrate the first step of the procedure ……….41 

Table 2.4: All conditions and rules for specifying the type of result-vector ……….44 

Table 2.5: The full procedure to compute the result-vector with different samples ..47 

 

  



xii 

 

LIST OF FIGURES 

Figure 1.1: The Square, the hexagonal and the triangular grids and their grid points..1 

Figure 1.2: (a) The coordinate system for the hexagonal grid and its dual (b). (c) The 

coordinate system for the triangular grid and its dual (d)…………………………….6 

Figure 1.3: Any grid-vector of specific length and direction will lead to a certain 

gridpoint in the square and the hexagonal grids but not in the triangular grid. ……...9 

Figure 2.1: Representation of the trihexagonal coordinate system (a) and its dual (b). 

The same coordinate system is used to address the pixels (a) and the nodes of the 

dual grid (b)………………………………………………………………………….13 

Figure 2.2: The coordinate system for the trihexagonal grid is used for the triangular 

grid (and also for its dual, at the same time)………………………………………...14 

Figure 2.3: A composition of the barycentric technique and discrete coordinate 

system to address points p and q in the triangular plane by coordinate triplets……..16 

Figure 2.4: Dividing each triangle to three areas A, B and C. the letters assigned to 

the isosceles triangles are based on the orientation of sides ………………………..17 

Figure 2.5: (a) By using either a(+) or a(–), the whole green area A could be addressed. 

(b) The hexagon surrounded by the thick dark blue line shows the entire area that can 

be addressed by using a positive midpoint m………………………………………..18 

Figure 2.6: Proving how point p can be calculated by either the positive or negative 

midpoint (a(+) or a(–)). (a) Shows the position of point p with respect to both a positive 

and a negative triangle, while (b) and (c) represent the calculation of the coordinates 

of point p based on the positive and negative triangles, respectively……………….19 

Figure 2.7: The dashed red lines indicate the Cartesian coordinates of the point ….23 



xiii 

 

Figure 2.8: (a) Re-structuring the triangular plane to fit the Cartesian plane. (b) The 

two distinguished rectangles of the plane…………………………………………...24 

Figure 2.9: The red point is used to compute the value of r1, which is the Y-axis 

intercept with Line 1 ………………………………………………………………..27 

Figure 2.10: The corresponding constant coordinate value for each area ………….34 

Figure 2.11: (a) Consider vectors v1 = (0.387, –1, 0.213) and v2 = (0.677, 0, –0.477); 

both are type B. In this case, the direct-sum of vectors will be s = (1.064, –1, –0.264), 

which is type B as well and hence is a result-vector for . (b) Consider vectors v1 = 

(0.173, –0.813, 0) and v2 = (0.677, 0, –0.477) of types C and B, respectively. In this 

case, the direct-sum of vectors will be v = (0.851, –0.813, –0.477), which is not 

compatible with  …………….………………………………………….................36 

Figure 2.12: (a) The six regions of the triangular plane. (b) The signs of the 

coordinate triplet for each region of the triangular plane …………………………..38 

Figure 2.13: (a) Measurements of the sides of area A and how the conversions from 

negative to positive fractions and vice versa would happen. (b) A coordinate triplet 

of a point in area A and how its fractional parts indicate its position within area A  ..43 

Figure 3.1: A translation by the vector represented by the broken arrow in the square 

(a) and in the hexagonal (c) grid. The centers (blue points) represent the original 

gridpoints, while the red ones are the translated ones. In (b) and (d), is also to show 

how to deal with points on the edges and on the corners of square and hexagonal 

grids, respectively …………………………………………………………………..52 

Figure 3.2: Side-length and height of triangle pixels at the triangular grid. The 

midpoints of the pixels are also marked ……………………………………………53 

Figure 3.3: A bijective and a non-bijective translation (a) and (b), respectively. The 

translation vector is shown. In the case of non-bijective translation, two distinct 



xiv 

 

points have the same image and there are pixels that do not correspond to any 

original pixel ………………………………………………………………………..55 

Figure 3.4: A translation vector t is considered as the sum of two vectors, t0 is the 

“integer” vector, and t1 is the “fractional” vector …………………………………..56 

Figure 3.5: Rounding points of the plane to pixel midpoints (a) and to even midpoints 

(b) …………………………………………………………………………………...57 

Figure 3.6: An even pixel with its three closest neighbors. The hexagon region Be (in 

yellow color) with its orange borders, are referred to the strongly-bijective translation 

region, whereas the six obtuse-angle triangles 𝐵𝑜𝑖
, where i = 1..6 (in blue color with 

its dark blue borders) are referred to the semi-bijective translation regions. The six 

equilateral triangles 𝑁𝑖, where i = 1..6 (in green color with its dark green borders) are 

referred to the non-bijective translation regions (the starting point of the fractional 

part of the translation vector is at the even midpoint (m)) ………………………….63 

Figure 3.7: Any translation vector that starts at the even midpoint (m) and ends 

within the hexagonal region (Be) will produce a strongly-bijective translation. The 

orange and blue colored borders belong to Be and 𝐵𝑒
′  regions respectively, while the 

gray colored borders belong to other regions ………………………………………64 

Figure 3.8: Translations with fractional vectors that start at the even midpoint (m) 

and end at regions 𝐵𝑜𝑖
 (where i = 1..6, the blue colored regions with their dark blue 

colored borders) will produce semi-bijective translations ………………………….68 

Figure 3.9: (a) An even pixel and its neighbors, the three odd pixels, before 

translation. (b) A translation by a vector that belongs to the semi-bijective region 𝐵𝑜1
. 

(c) The result of the translation: 𝑚′,  𝑛1
′ , 𝑛2

′ , and 𝑛3
′  are the images of 

𝑚, 𝑛1, 𝑛2, and 𝑛3, respectively. The pixels 𝑚′ and 𝑛2
′  are not neighbors …………..69 



xv 

 

Figure 3.10: A translation to a non-bijective regions Ni. Image of an even and an odd 

pixel (with the corresponding regions 𝑁𝑖
′, where i = 1..6) are shown……………….73 

Figure 4.1: An example for addressing a point in the triangular plane by the 

continuous coordinate system ………………………………………………………74 

Figure 4.2: The three types of translations on the triangular grid depending on the 

translation vector .…………………………………………………………………...75  



xvi 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

  Continuous coordinate system 

2D  Two-dimensional space 

3D  Three-dimensional space 

ℤ2  Two-dimensional squere grid at discrete space  

ℤ3  Three-dimensional cubic grid at discrete space 

BCS  Barycentric coordinate system 

CCS  Cartesian coordinate system 

RGB  Red, Green, and Blue color value 

 



 

1 
 

Chapter 1 

INTRODUCTION 

Digital geometry or the geometry of the computer screen is the study of geometric 

properties of digital images (the images displayed on the TV screen or on a computer 

screen). Digital geometry can be seen as a subcategory of discrete geometry (which 

has a long history). The motivation for the creation of digital geometry is due to the 

significant consideration given to the discrete geometry in order to satisfy image 

processing and computer vision necessities. Therefore, this subject has tremendous 

new research areas nowadays.  

Basically, digital geometry deals with integer points in Euclidean space (the elements 

are points with integer coordinates) where it considered to be its digitized model. The 

possible operations and presentations of the digital images are connected directly with 

the underlying grid, which comprise of discrete points addressed with integer 

coordinates. There are three regular tessellations of the plane which define the square, 

hexagonal and triangular grids (named after the form of the pixels used as tiles) [1] 

(see Figure 1.1). 

 
Figure 1.1: The square, the hexagonal and the triangular grids and their grid points 
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In this thesis, the concentration will be given to the triangular grid. Where a new 

coordinate system with real numbers will be granted to this grid together with a 

procedure to add two vectors using this new coordinate system. Furthermore, since the 

translation operation is strictly connected to the addition operation of two vectors on a 

coordinate system, a comprehensive study to characterize translation operation on this 

grid will be introduced as well. 

Consequently, this thesis is comprised of four chapters. The introduction is given in 

this chapter. The new coordinate system is presented in the second chapter, while in 

the third chapter, characterizing the translation operation on the triangular grid is 

presented. Finally, this thesis ends with conclusion in chapter four. 

 

Accordingly, this chapter has been divided into three sections. While the first section 

is a brief historical review of digital geometry, the second is about the coordinate 

systems of traditional grids. Finally, the transformations on traditional grids are 

introduced in the third section.  

1.1 A Brief History of Digital Geometry 

Rosenfeld and Pfaltz started the classical digital geometry in reference [2], where they 

provide an algorithm that computes various functions on a digital picture based on the 

distance of a given subset of it. Also, they provide and describe an application that 

distinguishes the clusters and regularities of the picture and divides its regions into 

pieces.  

In addition to that, on the square grid, ℤ2, they defined the two possible neighborhood. 

And later, in references [3] and [4] the square grid ℤ2 and its 3D extension, ℤ3 become 

popular and well known. In reference [5], Voss provided a well-developed theory for 
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ℤn. However, after 13 years to Voss work, numerous widespread works in discrete and 

digital geometry are available. A very good book to detail the concepts, algorithms, 

and practices of this discipline is in reference [6]. 

Since it is of rapid increase of capabilities power for graphical devices and computers, 

and based on reference [7] the theoretical study of non-square based structures became 

worth to consider. The hexagonal, and its dual, the triangular grid have some nice 

properties, such that they have more symmetries that decrease the computation time 

and storage spaces, also they have more neighbors to each pixel in comparison to the 

square grid. 

Many authors have studied the using of the hexagonal grid to represent graphics and 

digital images starting of Golay, in reference [8]. Where in many aspects it shows to 

be superior to the square grid system as in references [8, 9, 10, 11]. Furthermore, it 

showed and proved to be optimal in some applications as in references [12, 13, 14].  

Accordingly, digital geometry of the triangular grid has been given considerable 

attention as well. It is proven to have various advantages in applications e.g., by the 

flexibility of the used neighborhood (it has the largest number and types of neighbors). 

Basically, digital geometry of the triangular grid is based on various digital distance 

functions, including neighborhood sequences as in references [15, 16, 17,18] and 

weighted distances as in references [19, 20, 21, 22]. The triangular grid is recently 

applied in various image processing algorithms, including discrete tomography as in 

references [23, 24], mathematical morphology in reference [25], cellular topology in 

reference [26], and in thinning in references [26, 27]. 
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1.2 Coordinate Systems of Traditional Grids 

Digital images are consist of a limited set of pixels. Thus, both the representations of 

the images and the possible operations on them are strictly connected to the underlying 

grid. The concept of the grid is essential and heavily used in digital geometry and in 

digital image processing.  

As mentioned earlier, there are three regular grids of the plane the square, hexagonal 

and triangular grids (see Figure 1.1). An adequate and elegant coordinate system for 

these kinds of grids are required for their use in both theory and applications, e.g., in 

image processing or engineering applications. Most of the applications use the square 

grid because it’s orthogonal coordinate system, the well-known Cartesian coordinate 

system (CCS), which fits very well to it, addressing each square pixel of the grid by a 

pair of independent integers. The dual of the square grid (that is, the grid formed by 

the nodes, which are the crossing points of the gridlines) is again a square grid; 

therefore, essentially, the same CCS is used as well. However, working with real 

images, we may need to perform operations that do not map the grid to itself, e.g., 

zooming or rotations. The Cartesian coordinate system (CCS) allows real numbers to 

be used in such cases, moreover, digitization operation can easily be defined by 

rounding operation. In fact, the digitization process is when the corresponding pixels 

are computed after some operations which may result some points (of the plane) that 

are not gridpoints. 

Accordingly, the hexagonal grid, tiling the plane by same size regular hexagons 

(hexagonal pixels), has been used for decades in image processing applications, as in 

reference [12], in cartography, as in references [28, 29], in biological simulations, in 
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reference [30] and in other fields, since the digital geometry of the hexagonal grid 

provides better results than the square grid in various cases. Also, it is used in various 

table and computer games based on its compactness. It is the simplest 2D grid, since 

the only usual neighborhood using the nearest neighbors is simpler and less confusing 

than the two types of neighbors in the square grid, reference [31], the neighborhood of 

a pixel contains six other hexagons (See Figure 1.2a). 

A three-coordinate-valued system of zero-sum triplets is used to describe the 

hexagonal grid capturing nicely the triangular symmetry of the grid in reference [9]. 

In Figure 1.2a, the first coordinate value is ascending to right-upwardly, the second 

values are ascending into right-downward direction, and the third one is ascending into 

left-upward direction, references [9, 32]. We should mention that this system could be 

seen as the extension of the oblique coordinate system using two independent integer 

values, reference [10] by concerning the third value to obtain 0-sum for every triplet. 

The digital distance based on the neighborhood relation is computed in reference [10]. 

Since the vectors describing the grid are not orthogonal, some geometric descriptions 

based on Cartesian coordinates are not so obvious, however, to simplify the 

expressions the constrained three-dimensional coordinate system is recommended. We 

should also mention that 0-sum triplets allowing real numbers were used in reference 

[32] to describe rotations (that may not map the hexagonal grid to itself). In this way 

also a useful digitization operator is found. Her’s system was mentioned and used e.g., 

in references [33] and [34] for various imaging related disciplines. 

In contrast to the square grid, the dual of the hexagonal grid is not the hexagonal, but 

the triangular grid (See Figures 1.2a,b). However, the triangular grid has a similar 

symmetry to the hexagonal grid; therefore, in reference [15] a coordinate system with 
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0-sum and 1-sum triplets are used to describe this grid (the three values are not 

independent, since this is also a 2D grid; see Figures 1.2c,d). We note here that Her’s 

0-sum triplets could match only up to the half of the grid points in the triangular grid 

(Figures 1.2c,d), and therefore his coordinate system addressing the whole plain cannot 

be used for the triangular grid. More about the coordinate system for the triangular 

grid is given in chapter 2. 

 
(a) 

 

(b) 

 
(c) 

 
(d) 

Figure 1.2: (a) The coordinate system for the hexagonal grid and its dual (b). (c) The 

coordinate system for the triangular grid and its dual (d). 

1.3 Transformations on Traditional Grids  

Digital geometry is a relatively new field of mathematics that produces and works with 

several functions over discrete (digital) grids such as discrete rotation and translation. 

The digitized transformations are informally “close” to their original, Euclidian 

version, but usually do not satisfy the same properties, such as bijectivity, transitivity. 

These properties are, in general, hard to keep in the discrete spaces, reference [35], 
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when a discretized form of an arbitrary Euclidean transformation is considered. Of 

course, in special cases, e.g., rotating the square grid by a right angle, the discrete 

transformation is essentially the same as the Euclidean one, but this is not true for the 

general case. Isometric transformations are essential in the Euclidean space. Equally, 

we assume to have a similar role for them in discrete geometry theory, too. Also, for 

example, the definition of a line or of the circle, have to be close to the discrete 

isometrics since they should reproduce the properties of usual isometric 

transformations. But up to now, discrete and continuous transformation yield very 

different theories, reference [36], and thus, it is still a hot topic to consider the former 

ones. 

There are numerous widespread works that are available in discrete and digital 

geometry, as in reference [6]. A survey on the properties of the major rotation 

algorithms, and also improvements on Pythagorean rotations can be found in 

references [37, 38]. 

The need for isometric rotation is mentioned in many articles. For instance, about the 

square grid, Kaufman in a lecture for SigGraph’99 [39] said, “Manipulation and 

transformation of the discrete volume are difficult to achieve without degrading the 

image quality or losing some information. Rotation of rasters by angles other than 90 

degrees is especially problematic since a sequence of consecutive rotations will distort 

the image”. 

Among the three regular two-dimensional grids. The square grid is usually considered 

in digital geometry, since it is the most known and most frequently used one. Even 

though, it has some unpleasant properties, e.g., it has a topological (connectivity) 
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paradox, i.e., the two diagonals of the chessboard cross each other without a shared 

pixel (without a common gridpoint). In the hexagonal grid, there is only one usual 

neighborhood, and there is no connectivity paradox, thus it gives a nice and simple 

option in various applications. Therefore, we can say that, the non-traditional grid:  

hexagonal and the triangular grids are valid alternatives of the traditional grid both in 

computer graphics and in digital image processing, moreover, in some cases, they 

could lead to better results than similar approach on the square grid, reference [21].  

Various transformations including the isometric ones are known from geometry. They 

are also widely used in computers. However, in the discrete (or digital) world most of 

these transformations are not trivial. 

Rotations with the composition of translations based on the square and hexagonal grids 

have been considered and examined intensively in reference [40]. Translations defined 

on ℤ2, the square grid, are simple and essential for various transformations in several 

applications related to 2D in image processing such as image matching. The most basic 

technique to design translation on ℤ2 is to combine Euclidian translation defined on 

ℝ2 with a digitization operator that maps the outcomes back into ℤ2. Normally, the 

original image is stored as discretized (digital) version of the image. Translations may 

apply to process the image; which may end in real numbers. As an example, a 2D 

digital image is represented as a set of ℤ2 discrete points. When the Euclidian 

translation is applied to this digital image, then a set of points that belong to ℝ2 instead 

of ℤ2 would be obtained (especially when the translation vector is not an integer 

vector). Consequently, the outcome of the translation must be digitized to obtain an 

output similar to the input. 
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Considering the isomorphic transformations on these digital grids, translation has 

never been considered individually because it obviously leads to an isometric 

translation on point lattice. Translations of images are such a basic and frequently used 

operation, which usually do not have any attention alone. One can simply move her or 

his finger on the screen of her or his mobile/tablet/laptop and various images (icons, 

signs, or even the whole screen) are translated.  

The square and hexagonal grids are point lattices, because when a grid-vector is taken 

from any gridpoint it will always end up at a certain gridpoint (Figure 1.3). Therefore, 

any translation by a grid-vector is always a bijection from the grid into itself (for an 

example, see Figure 3.1 in chapter 3). Also, translations by real vectors can be digitized 

easily to grid translations. The digitization process plays important roles also on the 

traditional grid when other operation, e.g., discrete rotation is considered which may 

not be bijective [35, 40,41].  

 
Figure 1.3: Any grid-vector of specific length and direction will lead to a certain 

gridpoint in the square and the hexagonal grids but not in the triangular grid. 

Changing the grid to the triangular grid, the isometric transformations mapping the 

grid into itself are described in references [42, 43], but transformations that could map 

some gridpoints out of the grid were not considered. Throughout the translation, some 

problems arise such as points with no preimage or points with two preimages, which 
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leads to non-bijectivity translation cases. This is because the triangular grid is not a 

point lattice, there are grid-vectors that do not translate the grid into itself (see Figure 

1.3, on the right, comparing this to the other two grids which are point lattices.)  

Consequently, as we show here, it is interesting to consider translations and analyze 

how the resulted image may change. Therefore, as a part of this thesis, the translation 

on the triangular grid will be investigated (see chapter 3), where the results of the 

translations itself are really interesting. 
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Chapter 2 

A COORDINATE SYSTEM FOR THE TRIANGULAR 

GRID 

2.1 Introduction 

In general, coordinate systems are essential because they constitute the main tool in 

making a simple, easily usable and effectively programmable system with integer 

numbers (coordinates). For the triangular grid, only discrete coordinate systems have 

been investigated and there was no such extension of this coordinate system that is 

able to address the entire triangular plane. The isometric transformations on the 

triangular grid are described in [43]. Therefore, for various applications, including, 

e.g., arbitrary angled rotations, an extension of the coordinate system is needed. 

In this chapter, we introduce a continuous coordinate system for the triangular grid 

(), where every point of the 2D plane has its unique coordinate triplet. Basically, we 

use three coordinate values to describe triangular grid as in reference [15], but also to 

address the points of the plane “between” and “around” the nodes of the dual grid. Our 

new coordinate system is shown to be an extension of the hexagonal and also of the 

triangular coordinate systems; moreover, our system builds upon the coordinate 

system for the so-called, tri-hexagonal grid [44], also called three-plane triangular grid 

in reference [45]. For further applications, we also provide a mapping between our 

continuous coordinate system for the triangular grid () and the Cartesian coordinate 
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system (CCS) of the 2D plane. Adding two vectors of the new coordinate system is 

provided as well. 

2.2 Preliminaries 

In this thesis, as usual, ℤ3 denotes the cubic grid, whose points are addressed by integer 

triplets according to the three coordinates x, y, z. 

In order to create a continuous coordinate system for the triangular grid () that 

enables us to uniquely address any point of triangular grid, we combine discrete 

triangular coordinate systems from reference [46] (see also Figure 1.2 for some 

examples) with the barycentric coordinate system (BCS), discovered by Möbius (see, 

e.g., references [1, 47]). 

In Figure 2.1, a coordinate system for the tri-hexagonal grid (the three-plane triangular 

grid of regions [45]) and its dual is given. This grid resembles a mix of the triangular 

and hexagonal grids since it is a combination of the one- and two-plane grids [9, 46]. 

The new coordinate system will be an extension of the discrete triangular and 

hexagonal coordinate systems.  

The triangular grid has similar symmetry to the hexagonal grid; therefore, in reference 

[15] a coordinate system with sum 0 and 1 triplets are used to describe this grid. 

Observe that exactly the same coordinate triplets are used on the left and on the right-

hand side in Figure 1.2c and Figure 1.2d, respectively, which showing the duality of 

the triangular and hexagonal grids.  

Next, a brief description is given for the discrete triangular coordinate system and 

barycentric coordinate system. 
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(a) 

 

(b) 

Figure 2.1: Representation of the trihexagonal coordinate system (a) and its dual (b). 

The same coordinate system is used to address the pixels (a) and the nodes of the dual 

grid (b). 

2.2.1 Discrete Triangular Coordinate System 

The discrete Hexagonal Coordinate System uses 0-sum triplets (Figure 1.2a,b). The 

discrete Triangular Coordinate System [46] is a symmetric coordinate system that 

addresses each pixel by an integer triplet. The three coordinate axes have angles of 

120° as in the hexagonal grid. The sum of the triplets is equal to 0 or 1 referring to the 

two types of orientations of triangles (,). The triangles with 0-sum are the “even” 

triangles (), and the triangles with 1-sum triplets are the “odd” triangles () (see 

Figure 1.2).  
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For finding an appropriate extension to this system that is able to address all points of 

the 2D plane, we start by addressing the midpoints of triangles with integer triplets of 

+1 and –1 sum; therefore, we call them “Positive ” and “Negative ” triangles, 

respectively. See Figure 2.2, where the coordinate system of Figure 2.1b is used to 

address midpoints of triangles of the triangular grid. Observe that each triplet assigned 

to a midpoint (see the blue triplets in Figure 2.2) builds up from the coordinate values 

shared by two of the corners of the given pixel (see the three red triplets around each 

blue triplet). There is already an important difference between our proposed and Her’s 

0-sum coordinate system: he used 0-sum triplets to address these midpoints as well 

(actually, 3 fractional values for each midpoint) which was a very good and efficient 

choice to extend the coordinate system of the hexagonal grid. However, it does not 

meet our requirements, therefore we have fixed these coordinate values in another way. 

We should also mention here, that Her’s system inside the regular triangles can be seen 

as an application of the barycentric coordinate system (see next subsection) based on 

the values assigned to the corners of the triangle. 

 

Figure 2.2: The coordinate system for the trihexagonal grid is used for the triangular 

grid (and also for its dual, at the same time). 
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2.2.2 The Barycentric Coordinate System (BCS) 

One of the main motivations of the barycentric technique is to use a coordinate system 

only for a finite (bordered) segment of the plane which is also more “balanced” inside 

this region than the values of the Cartesian frame. In this way, they do not depend on 

the choice of a fixed point called “origin” in the Cartesian system. BCS is also used in 

computer graphics, e.g., to interpolate RGB colors inside a triangle.  

The barycentric technique uses coordinate triplets to address any points inside (and on 

the border) of a given triangle. One may think about it as follows: we put three 1-sum 

weights, (w, v, u), to the corners let us say, a, b, c of the triangle and the mass center p 

inside the triangle is assigned to that triplet of weights. It is also known that if the area 

of the triangle abc is one unit, then the areas of bcp, acp, and abp are exactly w, v and 

u, respectively. The coordinates of p can be computed from the coordinates of the 

corners of the triangle by weighted average, i.e., p = wa + vb + uc (where p, a, b and 

c are the vectors representing the positions of these points). This formula can easily be 

transformed to the following formula using the fact that w = 1– v – u: 

p = a + v (b – a) + u (c – a). (2.1) 

Actually, since the three barycentric coordinate values (w, v and u) of point p are not 

independent (sum of 1), we may use only two of them, v and u here, to address the 

point p similarly as in an oblique coordinate system. One may understand equation 

(2.1) as stating that the starting point is a, and we can go to the direction of b and the 

direction of c by some distance, indicated by v and u, respectively. However, in our 

approach, the starting point a is the midpoint of the regular triangle and, according to 

the values of v and u, the coordinate triplet for point p is calculated (see Figure 2.3 and 

Example 2.1). 
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In classical barycentric technique, the point is considered to be inside a triangle, as 

long as the sum of (u and v) is between 0 and 1: 0 < (u + v) < 1. If the sum is equal to 

1 then the point will be on the edge (cb), while it will be out of the triangle if the sum 

is less than 0 or greater than 1 (see, e.g., Figure 2.3a). Now, we relax the condition of 

barycentric technique and allow the sum of u and v to be any real number between 0 

and 2, besides the conditions 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 hold (see, e.g., Figure 2.3b). In 

this way we may also address some points outside of the triangle. In Figure 2.3 and 

Example 2.1, a composition of the barycentric technique and the discrete coordinate 

system (assigned to the corners of an isosceles triangle in the regular triangle) is given 

to address other points of the plane. 

 
   (a)                                                        (b) 

Figure 2.3: A composition of the barycentric technique and discrete coordinate 

system to address points p and q in the triangular plane by coordinate triplets. 

Example 2.1 Consider the triangle defined by corners (1, 0, 0), (1, 0, –1) and (1, –1,0), 

which represent the three vertices a, b and c, respectively. Let u = 0.2 and v = 0.4, 

where 0 < (u + v) < 1. Then, based on equation (2.1), the coordinate triplet of point p 

is (1,–0.2,–0.4) (see Figure 2.3a and Table 2.1). If u = 0.8 and v = 0.4 (0 < (u + v) < 2), 

then the coordinate triplet of point q is (1, – 0.8, – 0.4) (See Figure 2.3b).  
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Table 2.1: Computing the coordinate triplet of point p using equation (2.1). 

Coordinate Values of the Triplet p = a  +  v (b – a)  +   u (c – a) p 

1st Coordinate Value p = 1 + 0.4 (1 – 1)  +  0.2 (1 – 1) 1.00 

2nd Coordinate Value p = 0 + 0.4 (0 – 0) +  0.2 (–1 – 0) – 0.2 

3rd Coordinate Value p = 0  + 0.4 (–1 – 0) +  0.2 (0 – 0) – 0.4 

The point q can be calculated in the same manner of point p in Table 2.1. 

2.3 Continuous Coordinate System for the Triangular Plane 

In order to create a continuous coordinate system for triangular plane that works 

efficiently, we combine the discrete coordinate system for the triangle grid with BCS. 

In the discrete triangular coordinate system, integer coordinate triplets with various 

sums were used. In BCS coordinate triplets with fractional values address the points 

inside a triangle. We develop a new system which uses triplets on the entire plane. We 

start by dividing each equilateral triangle of the triangular grid into three isosceles 

obtuse-angled triangles, which will possess areas A, B, and C, as shown in Figure 2.4.  

 
Figure 2.4: Dividing each triangle to three areas A, B and C. The letters assigned to 

the isosceles triangles are based on the orientation of sides. 

In this case, the midpoint m between areas will be the start point (the red point), which 

is represented by symbol a in equation (2.1). This point will be used to calculate the 

coordinates of the points in the three areas A, B, and C.  
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As we have already mentioned above, we use coordinate triplets with sum +1 and –1 

for these midpoints, depending on the orientation of the original triangle: the sum of 1 

represents the midpoint of the positive triangles  and the sum of –1 represents the 

midpoint of negative triangles . Therefore, using the barycentric, equation (2.1), 

based on these midpoints, we obtain a unique triplet for each point in each area of the 

plane as we will describe below.  

Based on the barycentric, equation (2.1), we know that the values u and v are limited 

by 0 ≤ (u + v) ≤ 1 (inside or on the border of the given triangle), which gives the ability 

to address the points inside areas A, B and C of each type of triangle (,) separately. 

However, let us consider the case in which the sum of u and v satisfies 0 ≤ (u + v) ≤ 2, 

such that the conditions 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 hold. Then, consequently, each midpoint 

can be used to address not only the points in the area located in this original triangle 

but also the points in the neighboring area denoted with the same letters. To illustrate 

this, the green area in Figure 2.5a can be completely addressed by using either 

midpoint a(+) or a(–) as the starting point in equation (2.1). 

 
(a) 

 
(b) 

Figure 2.5: (a) By using either a(+) or a(–), the whole green area A could be addressed. 

(b) The hexagon surrounded by the thick dark blue line shows the entire area that 

can be addressed by using a positive midpoint m. 
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Proposition 2.1 To address the points inside a rhombus A, B or C the coordinate 

triplet of a point does not depend on the choice of whether the midpoint of the positive 

or the negative triangle is used for the addressing. 

Proof. Assume point (p) in area A of negative triangle. Let a(+) = (a1, a2, a3), a
(–) = (a1, 

(a2 –1), (a3 –1)) , p = (p1, p2, p3) , b = (b1, b2, b3) and c = (c1, c2, c3) where a(+) is the 

midpoint of positive triangle and a(–) is the midpoint of negative one. (See Figure 2.6).  

 
(a) 

 
(b) 

 
(c) 

Figure 2.6: Proving how point p can be calculated by either the positive or negative 

midpoint (a(+) or a(–)). (a) Shows the position of point p with respect to both a positive 

and a negative triangle, while (b) and (c) represent the calculation of the coordinates 

of point p based on the positive and negative triangles, respectively. 

As we mentioned earlier that each triplet assigned to a midpoint builds up from the 

coordinate values shared by two of the corners of the given pixel. (See Sub-section 

2.2.1).  
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Thus, we have some equalities:  

In the positive triangle, we have: a1 = b1 = c1, b2 = a2, c3 = a3 and c2 = a2 – 1,  

In the negative triangle, we have: a1 = b1 = c1, b2 = a2, c3 = a3 and b3 = a3 – 1.  

Now, to compute the 1st coordinate value, p1, from the positive triangle we have:  

p1(+) = a1 + v (b1 – a1) + u (c1 – a1), since a1 = b1 = c1 then  p1(+) = a1. 

From the negative side we have:  

p1(-) = a1 + (1 – v) (b1 – a1) + (1 – u) (c1 – a1), then also p1(-) = a1. 

For the 2nd coordinate value, p2, from positive triangle we have: 

p2(+) = a2 + v (b2 – a2) + u (c2 – a2), since b2 = a2, then p2(+) = a2 + u (c2 – a2), 

using c2 = a2 –1 we get p2(+) = a2 – u.  

From the negative side we have:  

p2(-) = (a2 – 1)+ (1 – v) (b2 – (a2 – 1)) + (1 – u) (c2 – (a2 –1)),  

and since b2 = (a2 –1), then it is p2(-) = (a2 –1)+ (1– u) (c2 – (a2 –1)),  

since c2 = a2 then we have  p2(-) = a2 – u.  

Finally for the 3rd coordinate value, p3, from positive triangle we have:  

p3(+) = a3 + v (b3 – a3) + u (c3 – a3). Since c3 = a3, p3(+) = a3 + v (b3 – a3),  

further, b3 = a3 –1 which yields to p3(+) = a3 – v.  

From the negative side we have: 

p3(-) = (a3 – 1)+ (1 – v) (b3 – (a3 – 1)) + (1 – u) (c3 – (a3 – 1)),  

since c3 = a3 – 1 and b3 = a3, it can be written as: 

 p3(-) = (a3 –1)+ (1– v) (b3 – (a3 –1)) = a3 – v. 

Having the point inside other regions the proof goes in a similar manner.    
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As we have already mentioned, a popular way to understand BCS for a point (inside a 

triangle) goes by the ratio of the areas defined by the triangles determined by the point 

and two of the triangle corners. In fact, our system uses a similar technique to address 

the points inside a triangle as it is stated in the next corollary based on the previous 

proposition. 

Corollary 2.1 Let p be any point inside or on the border of an obtuse-angled triangle 

determined by a midpoint a = (a1, a2, a3), and corners b = (b1, b2, b3), c = (c1, c2, c3). 

Let the barycentric coordinates of p be (w, v, u), with w + v + u = 1, i.e., by assigning 

these weights to a, b and c, respectively, the weighted midpoint is at p. Then the 

coordinates of p = (p1, p2, p3) are exactly pi = w ai + v bi + u ci for i = 1, 2, 3. 

Notice that the three points a, b and c above must have a fixed coordinate value 

(depending on the type of the triangle). The weighted average of this coordinate value 

will be the same for any point inside or on the border of this obtuse-angled triangle. 

As we have seen a given triplet of corners, including a midpoint can be used to address 

points not only at the inside and on the border of the triangle determined by them. The 

type of these regions plays importance in this issue. In Figure 2.5b, the thick, dark blue 

line shows the entire area that the positive midpoint can address. The key issue is to 

use triplets of the discrete coordinate system and to use only 2 barycentric fractional 

values inside, by using the directions of the sides of the appropriate rhombus in which 

the point is located. The sides of a rhombus are actually parallel to two of the 

coordinate axes. Hereafter, for simplicity, we will use only the positive midpoints for 

further calculations, while ignoring the negative ones. The triangular plane can be seen 

as in Figure 2.8a. 
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Actually, in Figure 2.2, the cubes with light-blue edges are clearly noticeable (also 

Figure 2.8a can be seen as a 3D image of cubes). Therefore, it is very easy to look at 

these figures not only as 2D figures but as 3D figures: a surface that built up by same 

size square tiles, each oriented to be parallel to two of the Cartesian coordinate axes. 

Our squares marked by A, B and C are parallel to axes y and z; to x and z; and to x and 

y, respectively.  Thus, to obtain the 2D view, the “triangular plane,” where the discrete 

part of the system is exposed by an embedding in ℤ3, the light-blue cubes give the 

lower boundary, say B, (e.g., the rhombus region of the points (0,0,1), (0,0,0), (–1,0,0), 

and (–1,0,1)), of a naive digital plane. Therefore our proposed coordinate system can 

also be seen as the orthogonal projection of regions, like B, on the plane defined by 

the black lines (the plane of the triangular grid lines in Figure 2.2), where points have 

0-sum. 

In the next two subsections, we will illustrate the conversion between the  to/from 

the CCS. Namely, we can convert the coordinate triplet of a certain point in our new 

coordinate system to its corresponding Cartesian coordinates and vice versa. 

2.3.1 Converting Triplets to Cartesian Coordinates 

Assume that we use (i, j, k) as a coordinate triplet of a point, where I, J, and K are the 

axes of triangular plane (see, e.g., Figure 1.2c), and also, suppose (x, y) is used to 

indicate the same point in the Cartesian plane where X and Y are the axes.  

For the conversion, we fix the side-length of the triangle of the triangular grid to √3. 

Consequently, its height is 1.5 (see the dashed blue lines in Figure 2.7). Then, the 

following matrix equation (2.2) computes the corresponding coordinate values x and y 

for the given triplet (i, j, k):  
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(

 

√3

2
0 −

√3

2
1

2
−1

1

2 )

 ∙ (
𝑖
𝑗
𝑘
) =

1

2
· (√

3(𝑖 − 𝑘)
𝑖 − 2𝑗 + 𝑘

) = (
𝑥
𝑦) (2.2) 

 
Figure 2.7: The dashed red lines indicate the Cartesian coordinates of the point. 

Example 2.2 Let (1, –0.2, –0.5) be a point in the triangular plane. Then, based on 

equation (2.2): 

(

 

√3

2
0 −

√3

2
1

2
−1

1

2 )

 ∙ (
1

−0.2
−0.5

) = (
≈ 1.3
0.45

) 

Thus, (x, y) ≈ (1.3, 0.45) as shown in Figure 2.7.  

2.3.2 Converting Cartesian Coordinates to Equivalent Triplets 

One of the simplest ways to do such conversion is to determine the midpoint and the 

two corner points which defines the triangle in which the given point locates (inside 

or on the border). Then, by computing the barycentric coordinates (weights) of the 

point with respect to these triangle corners, by Corollary 2.1, the continuous coordinate 

triplet is computed.  In this subsection, we present a slightly different method with 

little more details to convert Cartesian coordinates to continuous triangular 

coordinates.  
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(a) 

 
(b) 

Figure 2.8: (a) Re-structuring the triangular plane to fit the Cartesian plane. (b) The 

two distinguished rectangles of the plane. 

As we already mentioned earlier, the midpoints of positive triangles are used to address 

all points in the triangular plane. Therefore, every positive midpoint will address areas 

A, B and C in neighbor (negative) triangles, as already seen in Figure 2.5b. 

Consequently, the triangular plane will be re-structured as can be seen in Figure 2.8a. 

However, two kinds of rectangles can be clearly distinguished in this plane, called CB 

and AB (see Figure 2.8b). 

We may start by specifying the area (i.e., rhombus) A, B or C that a Cartesian point 

(x, y) belongs to. Then we can use appropriate formulae that are assigned to each type 

of area, a process we will describe later in this section (see Table 2.2). Hence, the 

following three steps are used to specify the area: 
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Step 1: Which quarter of the Cartesian plane is involved? Note that the 1st and 3rd 

quarters have the same structure, while the 2nd and 4th quarters have another 

one.  

Step 2: Which rectangle is involved (AB or CB)?  

Step 3: Which area is involved (A, B or C)? 

We show how these steps can be computed by pseudo codes. The first step is the easiest 

one since we can inquire whether the values of (x, y) are greater or equal to zero or 

not; then, this task is completed and the involved quarter is specified. (See Code 1) 

Code 1:   

IF  (((x ≥ 0) AND (y ≥ 0)) OR ((x < 0) AND (y < 0)))  

THEN “1st or 3rd quarter” 

ELSE “2nd or 4th quarter” 

To complete the second step, note that the basic measurements of every rectangle are 

known, with a height and width equal to 1.5 and (√3/2), respectively. Then, the CB 

rectangle is involved whenever the integer part of 2x/√3 and y/1.5, are both even or 

both odd, otherwise the AB rectangle is involved. See Code 2 to clarify this step. 

Code 2:   

IF ((int (2𝑥/√3) mod 2 = 0) AND (int (y/1.5) mod 2) = 0)   OR   

         (int (2𝑥/√3) mod 2 = 1) AND (int (y/1.5) mod 2) = 1)) 

THEN  “CB Rectangle is involved” 

ELSE  “AB Rectangle is involved”     
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where int takes the integer part of the decimal number and mod is the modulus (or 

remainder, after division by two). 

Now, the involved rectangle is specified and the third step follows. The two types of 

rectangles AB and CB are symmetric, thus, we briefly discuss only one of them, 

namely, type AB rectangles 

In rectangle AB, a point (x, y) will belong to either part A or part B. Consider Line 1 

(L1) and Line 2 (L2) in Figure 2.8b: they divide the rectangle into parts A and B. If 

the point is between L1 and L2 or on one of them, then part A is involved, otherwise 

it is in part B. Equations (2.3) and (2.4) of a straight line are used for Line 1 and Line 2, 

respectively: 

m · x +  r1 – y = 0, (2.3) 

m · x + r2 – y = 0, (2.4) 

where, m is the slope of L1 and L2, which is (−√3/3); r1 and r2 are y-axis intercept 

with L1 and L2 respectively, thus r2 = r1 + 1. 

This step is started by substituting the point (x, y) in equations (2.3) and (2.4). Then, it 

is determined that part A is involved if the left side of equation (2.3) is not greater than 

0 and the left side of equation (2.4) is not less than 0; otherwise, part B is involved. 

Code 3 is used to clarify this step. 

Code 3:  

IF ( r1 − 𝑥√3/3 – y) ≤ 0 AND  ( r2  − 𝑥√3/3 – y) ≥ 0  

THEN  “Area A is involved” 

ELSE  “Area B is involved” 
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The y-axis intercept with Line 1, r1, in area AB, is computed by computing the bottom-

right corner of rectangle AB (see the red point in Figure 2.9). Hence, equation (2.5) is 

used to find the value of r1. In equation (2.5), we used the modulus (mod) as a function 

naturally extended also to real numbers, i.e., it gives the remainder after division by a 

real number (and that is between 0 and the divisor). Moreover, by adding 1 to r1 we 

get the value of y-axis intercept with Line 2, r2 (see Figure 2.9). 

𝑟1 = 𝑦 − (𝑦 𝑚𝑜𝑑 
3

2
) +

√3

3
∙ (𝑥 +

√3

2
− (𝑥 𝑚𝑜𝑑 

√3

2
)) (2.5) 

 
Figure 2.9: The red point is used to compute the value of r1, which is the y-axis 

intercept with line 1. 

Similar strategies are used when the CB rectangle is involved, taking care that the 

slopes of Line 1 and Line 2 is (√3/3).  

Finally, when the involved area A, B or C is specified, particular formulae are used 

that are specified in Table 2.2. See Example 2.3 for further explanation. 
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Table 2.2: The coordinate triplets formulae, based on area type, where 〈… 〉 is a 

rounding operation*. 

 Area A Area B Area C 

i 〈
𝑥

√3
〉 + 〈

𝑦

3
〉 𝑥√3

3
+ 𝑦 + 𝑗 

2𝑥

√3
+ 𝑘 

j 
𝑖 + 𝑘

2
− 𝑦 〈 

−2𝑦

3
〉 

𝑖 + 𝑘

2
− 𝑦 

k 𝑖 −
2𝑥

√3
 𝑖 −

2𝑥

√3
 〈

𝑦

3
〉 − 〈

𝑥

√3
〉 

*rounding operation returns the nearest integer to the real number, such that numbers 

exactly the same distance from two integers are rounded to the larger absolute valued 

one, e.g. 〈1.5〉 = 2, 〈−1.5〉 = −2 and 〈−0.4〉 = 0. 

Example 2.3 Consider a point of CCS: (x, y) = (1.299, 0.45). In order to convert this 

Cartesian coordinate pair to its corresponding triangular triplet, the three steps above 

will be followed:  

Step 1: Based on Code 1: if x and y are positive, then the    1st or 3rd quarter is 

involved. 

Step 2: Based on Code 2: if (int (
2𝑥

√3
) = 1) is odd, and (int (y / 1.5) = 0) is even, 

then rectangle AB is involved. 

Step3: Substitute (x, y) in equations (2.3) and (2.4), and based on Code 3, area 

A is matched.  

Thus, formulae of area A (see Table 2.2) should be applied in this order, so:  

 1) i = 〈0.75〉 + 〈0.15〉 = 1 + 0 = 1  

2) k =  1 – 
2𝑥

√3
≈ – 0.500. 

 3) j ≈  – y + 0.5 · 0.5 = – 0.2 

The corresponding triplet is (1,–0.2,–0.5) which is approximately the same as in 

Example 2.2, as it should be. 
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To show the conversion of points on other areas (e.g. Area B or Area C), the following 

examples are given. 

Example 2.4 (Point in Area B) 

a) Converting from Continuous Coordinate System to CCS. 

Let (i, j, k) = (0.683, 0, –0.183) be a point in the triangular plane. To convert 

to CCS, equation (2.2) is used: 

(

√3

2
0 −

√3

2
1

2
−1

1

2

) ∙ (
0.683
0

−0.183
) ≈ (

0.75
0.25

)  

b) Converting from CCS to Continuous Coordinate System. 

Let (x, y) = (0.75, 0.25). The corresponding Continuous Coordinate System 

triplet can be calculated based on the three steps above as the following:  

Step 1: It belongs to the 1st quarter. 

Step 2: It belongs to rectangle CB. 

Step 3: Area B is matched.  

Thus, formulae of area B from Table 2.2 are applied in the following order: 

 1) j = 〈 
−2𝑦

3
〉 = 0 

2) i = 
𝑥√3

3
+ 𝑦 + 𝑗 ≈ 0.433 + 0.25 + 0 = 0.683 

 3) k =  𝑖 −
2𝑥

√3
 ≈ 0.683 – 0.866 = – 0.183  

The corresponding triplet is (i, j, k) = (0.683, 0, –0.183) which is exactly the 

original value. 
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Example 2.5 (Point in Area C) 

a) Converting from Continuous Coordinate System to CCS. 

Let (i, j, k) = (0.346, – 0.626, 0) be a point in the triangular plane. To convert 

to CCS, we use equation (2.2): 

(

 

√3

2
0 −

√3

2
1

2
−1

1

2 )

 ∙ (
0.346
−0.626
0

) ≈ (
0.299
0.799

) 

b) Converting from CCS to Continuous Coordinate System. 

Let (x, y) = (0.299, 0.799). The corresponding Continuous Coordinate System 

triplet can be calculated based on the three steps as the following:  

Step 1: It belongs to the 1st quarter. 

Step 2: It belongs to rectangle CB. 

Step 3: Area C is matched.  

Thus, formulae of area C from Table 2.2 are applied in the following order: 

1) k = 〈
𝑦

3
〉 − 〈

𝑥

√3
〉 = 0 – 0 = 0 

2) i =  
2𝑥

√3
+ 𝑘 ≈ 0.346 + 0 = 0.346 

3) j =  
𝑖+𝑘

2
− 𝑦 ≈  0.173 – 0.799 = –0.626 

The corresponding triplet is (i, j, k) = (0.346, –0.626, 0) which is exactly the 

original triplet. 

Example 2.6 (A mid-point) 

a) Converting from Continuous Coordinate System to CCS. 

Let (i, j, k) = (1, 0, 0) be a point in the triangular plane. To convert to CCS, 

equation (2.2) is used: 
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(

 

√3

2
0 −

√3

2
1

2
−1

1

2 )

 ∙ (
1
0
0
) =

(

 

√3

2
1

2 )

  

b) Converting from CCS to Continuous Coordinate System. 

Let (x, y) = (√3/2, 0.5). The corresponding Continuous Coordinate System 

triplet can be calculated based on the three steps as the following:  

Step 1: It belongs to the 1st quarter. 

Step 2: based on Code 2, it belongs to rectangle CB (but, since it is 

a mid-point, then either rectangle AB or CB may use). 

Step 3: Area B is matched. 

Thus, formulae of area B from Table 2.2 are applied in the following order: 

1) j = 〈 
−2𝑦

3
〉 = 0 

2) i =  
𝑥√3

3
+ 𝑦 + 𝑗 = 0.5 + 0.5 + 0 = 1 

 3) k =  𝑖 −
2𝑥

√3
 = 1 – 1 = 0 

The corresponding triplet is (i, j, k) = (1, 0, 0) which is exactly the original 

value. 

2.3.3 Properties of the Continuous Triangular Coordinate System 

In this section, we will focus on the most important properties of . 

2.3.3.1 On the Triplets of a General Point 

In Figure 2.5a, consider the red straight line between a(+) and a(–), in the green area. 

Then, the sum of the coordinate values of the points on this line would change 

continuously from 1 until –1. Depending on the sum, we can classify the points as 

follows. 
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If a point with triplet’s sum is: 

 equal to 1, then it is a positive midpoint (i.e. a(+)); 

 equal to –1, then it is a negative midpoint (i.e. a(–)); 

 equal to 0, then the point is on the triangle’s edge; 

 positive,  then the point belongs to positive triangle; 

 negative, then the point belongs to negative triangle. 

Theorem 2.1 The sum of the coordinate triplet of any point in the plane is in the range 

of the closed interval [–1, 1].  

Proof. Consider an area A of a positive triangle with the corners a = (a1, a2, a3), 

b = (b1, b2, b3) and c = (c1, c2, c3), where b and c are vertices (corners of an equilateral 

triangle) of the grid, while a is the midpoint of a positive triangle and p = (p1, p2, p3) 

is a randomly chosen point belonging to this area (inside or on the border of A). Now 

based on the barycentric equation (2.1) we have: 

 ∑ 𝑝𝑖
3
𝑖=1 = ∑ 𝑎𝑖

3
𝑖=1  +  𝑣 ·  (∑ (𝑐𝑖 – 𝑎𝑖)

3
𝑖=1 )  +  𝑢 ·  (∑ (𝑏𝑖 – 𝑎𝑖)

3
𝑖=1 ) 

It is clear that, ∑ 𝑎𝑖 = 1
3
𝑖=1 , whereas: 

∑ (𝑐𝑖 – 𝑎𝑖)
3
𝑖=1   = (c1 – a1) + (c2 – a2) + (c3 – a3)  

 = (c1 + c2 + c3) – (a1 + a2 + a3)  

= 0 – 1 = –1 

Similarly, ∑ (𝑏𝑖 – 𝑎𝑖)
3
𝑖=1  = –1.  

Then, by substitution, we have: 

∑ 𝑝𝑖
3
𝑖=1  = 1 – u – v = 1– (u + v). (2.6) 
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Since 0 ≤ u + v ≤ 2, the maximal and minimal value of the sum of any coordinate triplet 

is equal to 1 (when u + v = 0) and to –1 (when u + v = 2), respectively.     

Theorem 2.2 The sum of the coordinates of a triplet is non-negative in the positive 

triangle and non-positive in the negative triangle.  

Proof. Consider a point p that belongs to a positive triangle. Clearly, the coordinates 

of p are based on u and v such that 0 ≤ u + v ≤ 1. Now, by substituting u + v in equation 

(2.6) (at the proof of Theorem 2.1), the summation will always be nonnegative 

(moreover, it is positive inside the triangle). 

Similarly, let p belong to a negative triangle, then 1 < u + v ≤ 2, thus, by substitution 

into equation (2.6), the sum will be always a non-positive value.      

Every point in the triangular plane has at least one integer value in its triplet, moreover, 

the place of the integer value indicates to its area (A, B or C). 

Theorem 2.3 The 1st coordinate value of every point in area A is the same as the 1st 

coordinate value of the midpoint. The 2nd coordinate value of every point in area B 

equals the 2nd coordinate value of the midpoint. Similarly, the 3rd coordinate value of 

any point in area C equals the 3rd coordinate value of midpoint. (Figure 2.10). 

Proof. Consider an area A of a positive triangle with the corners a = (a1, a2, a3), 

b = (b1, b2, b3) and c = (c1, c2, c3), where b and c are vertices (corners of an equilateral 

triangle) of the grid, while a is the midpoint and p = (p1, p2, p3) is a randomly chosen 

point belonging to this area (i.e. inside or on the border of the triangle abc). Since it 
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is area A, we have a1 = b1 = c1, now substituting this into equation (2.1), p1 = a1 follows 

for any point p in this area. A similar proof can be considered for areas B and C.    

If a triplet contains two integer values, then the point is located on the line bordering 

the areas. For example, a triplet of the form (1, 0, k) addresses a point on the line (side 

of the obtuse-angled triangle) between area A and B (0  k  1). However, if three 

integers are a triplet, then this triplet addresses either a midpoint or a vertex (corner) 

of a triangle. 

 
Figure 2.10: The corresponding constant coordinate value for each area. 

2.3.3.2 Relation to Discrete Coordinate Systems 

In [45], the hexagonal grid is called a one-plane triangular grid since it is a sub-plane 

of ℤ3 and because of its symmetry. The triangular grid (nodes of the hexagonal grid) 

is called a two-plane triangular grid. Combining one- and two-plane grids produces 

the so-called three-plane triangular grid, the trihexagonal grid (Figure 2.1). In this 

subsection, their coordinate systems are compared to the new coordinate system. 

Theorem 2.4 The triplets containing only integers such that their sum equals to 0 

represent exactly the hexagonal grid (one-plane triangular grid). 
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Proof. See Figure 1.2b for the points of this grid. One may check that exactly those 

points are addressed with 0-sum integer triplets for which the Cartesian coordinate 

pair is described: 

H = {(x, y) | x =  
√3

2
𝑚,  y = 1.5n, where m, n are integers such that m + n is even}.  

Theorem 2.5 The triplets containing only integers such that their sum is either 0 or 1 

represent exactly the triangular grid (two-plane triangular grid). 

Proof. See Figure 1.2d for the points of this grid. The locations of the points with 

0-sum coordinate triplets are already known by Theorem 2.4. Now, we give the 

locations of the points addressed with 1-sum (integer) triplets: 

T = {(x, y) | x =  
√3

2
𝑚,  y = 1.5n – 1, where m, n are integers such that m + n is even}. 

One can easily see that the union of these two sets (H and T) of points gives back 

exactly the vertices of the hexagons of the figure, i.e., the coordinate system of the dual 

triangular grid.            

Theorem 2.6 The triplets containing only integers such that their sum is either 0 or 

1 represent exactly the trihexagonal grid (that is the three-plane triangular grid). 

Proof. See Figure 2.2 for the points of this grid. According to Theorem 2.5, the 

locations of the zero-sum and one-sum integer coordinate triplets are already shown. 

We need to show the locations of the points addressed with (integer) triplets that have 

–1-sum. They are:  

M = {(x, y) | x =  
√3

2
𝑚,  y = 1.5n + 1, where m, n are integers such that m + n is even}. 
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Actually, the points of this grid, T  H  M, are exactly those which were the base of 

the method of creating the coordinate system.        

2.3.4 A Procedure for Adding Two Vectors in Ω 

In contrast to the simplicity of adding two vectors in the CCS, such addition in  is 

somewhat harder, i.e., adding two vectors directly may give an improper vector to  

(see Figures 2.11a,b). Therefore some modifications on the direct-sum (s) of the 

vectors are needed to get the result-vector (r), which is compatible with .  

 

(a) 

 

(b) 

Figure 2.11: (a) Consider vectors v1 = (0.387, –1, 0.213) and v2 = (0.677, 0, –0.477); 

both are type B. In this case, the direct-sum of vectors will be s = (1.064, –1, –0.264), 

which is type B as well and hence is a result-vector for . (b) Consider vectors v1= 

(0.173, –0.813, 0) and v2 = (0.677, 0, –0.477) of types C and B, respectively. In this 

case, the direct-sum of vectors will be s = (0.851, –0.813, –0.477), which is not 

compatible with . 



 

37 
 

Consider vectors v1 = (i1, j1, k1) and v2 = (i2, j2, k2) of  with their coordinate triplets. 

Let the direct-sum of the vectors be s = (i, j, k) = (i1 + i2, j1 + j2, k1 + k2). This vector 

may not represent any point of . To describe our method and formula 

mathematically, we shall introduce some more notions and notations. 

The coordinate values of each vector are real numbers, having some integer and 

fractional parts. We use the following description for them. 

Each coordinate value x consists of: 

1) 〈𝑥〉: The integer part of x with sign, i.e.,  

〈𝑥〉 = 𝑠𝑔𝑛(𝑥) ∙ ⌊ |𝑥| ⌋, where  

𝑠𝑔𝑛(𝑥) =  {
+1,    𝑥 > 0
0,       𝑥 = 0
−1,    𝑥 < 0

  

and ⌊ 𝑥 ⌋ is the floor function, that is applied on the absolute value of x above. 

2) {x}: The fractional part of x with sign, i.e.,  

 {𝑥} = 𝑥 − 〈𝑥〉 

3) ⌊𝑥⌉: The absolute-rounding-up operation that rounds a number up in absolute 

value, such that: 

 ⌊𝑥⌉ = 〈𝑥〉 + 𝑠𝑔𝑛({𝑥}). 

Example 2.7 

 〈1.3〉 = 1 and 〈−1.3〉 = –1 

 {1.3} = 0.3 and {–1.3} = – 0.3 

 ⌊1.3⌉ = 2 and ⌊−0.4⌉ =  –1 
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In order to produce a valid addition of two vectors in , some calculations must be 

done. However, as a basic part of these calculations, the following two notions, the 

Rsum and the region, must be defined first: 

1) 𝑅𝑠𝑢𝑚 =  ⌊𝑖⌉ + ⌊𝑗⌉ + ⌊𝑘⌉, where i, j, and k are the coordinate values of the direct-

sum (s). 

2) The region: basically, the triangular grid is partitioned into six regions based on 

the signs of its triplet, as it is shown in Figures 2.12a,b. Accordingly, to determine 

the region of result-vector we need to check the sign of each coordinate value of 

the direct-sum vector, such that the coordinate value is presented by a positive (+) 

sign if it is greater than zero and by a negative (–) sign if it is less than zero. Also, 

for the cases when the coordinate value is exactly zero, we examine the sum of 

the direct-sum vector triplet, such that, the sign is negative (–) when the sum is 

positive, otherwise it is positive (+). 

In short, for each coordinate value, x, of the direct-sum vector, the sign is 

described as the following: 

𝑥 =  {
+, if 𝑥 > 0, or 𝑥 = 0 and 𝑠𝑢𝑚 ≤ 0
−, if 𝑥 < 0, or 𝑥 = 0 and 𝑠𝑢𝑚 > 0

 

where sum is the sum of the three coordinate values of direct-sum vector. 

 
(a) 

 
(b) 

Figure 2.12: (a) The six regions of the triangular plane. (b) The signs of the 

coordinate triplet for each region of the triangular plane. 
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For the sake of a simple illustration of all calculations, the below procedure is given. 

Calculations in this procedure are made upon the type of the two added vectors (the 

area they belong to, A, B, or C) and some features of the direct-sum s = (i, j, k). 

A Procedure to find the result-vector r 

Input: v1 = (i1, j1, k1) and v2 = (i2, j2, k2), two vectors of . 

Output: r = (i, j, k) = v1 + v2, the result-vector in . 

Step1) Let:  

a) direct-sum s = (i, j, k) = (i1+ i2,  j1+ j2, k1+ k2)  

b) 𝑅𝑠𝑢𝑚 =  ⌊𝑖⌉ + ⌊𝑗⌉ + ⌊𝑘⌉ 
c) Region: is the signs of the triplet of direct-sum. 

 

Step 2) Find the type of the result-vector (r): 

 If (v1 type = v2 type)  

Then, the type of r is determined based on the Rsum value and the 

comparison of {𝑖}̅, {𝑗}̅, and {�̅�} values. (Explained later) 

 If (v1 type ≠ v2 type)  

Then, the r type is determined based on the Rsum value and the 

minimum (maximum) of ({𝑖}̅, {𝑗}̅, and {�̅�} values. (Explained later) 

Step 3) Calculate the result-vector (r) by applying the following two steps: 

a) Switch (r type): 

    case A:   r = (i – ({i1}+{i2}) ,  j – ({i1}+{i2}) , k – ({i1}+{i2})) 

    case B:   r = (i – ({j1}+{j2}) ,  j – ({j1}+{j2}) , k – ({j1}+{j2})) 

    case C:   r = (i – ({k1}+{k2}), j – ({k1}+{k2}) , k – ({k1}+{k2})) 

b) If ((i + j + k) > 2) Then, r = (i – 1, j – 1, k – 1) 

    Else If ((i + j + k) < –2) Then, r = (i + 1, j + 1, k + 1).  

This procedure contains three steps. The first two steps are used to gain only the type 

of the result-vector r (A, B or C), whereas the last step, the third one, is for calculating 

the value of the result-vector (r). The result-vector (r) will be the final correct vector, 

while the direct-sum (s) will be the vector that is generated by direct addition, which 

is in many cases, incompatible with . In the next subsections, we will explain the 

above procedure in detail. 
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2.3.4.1 Step 1: Finding the Direct-sum, Rsum, and the Region 

The first step of this procedure is to find the direct-sum (s), the Rsum value, and the 

region, as mentioned above.  

For simplicity, only the region of (+, –, –) is considered in the next description, while 

for all other regions similar calculation methods are applied.  

Now, regarding the Rsum value, note here that whenever adding two vectors of same 

type, at the region (+, –, –), the value of Rsum is in the set {–1, –2, 0}. More precisely, 

within the three coordinate values of each vector, one is an integer value; thus, actually, 

the fractional parts of the other two coordinate values are responsible for producing 

one of the three values of the set above. 

For a better explanation, consider Table 2.3, where samples (a), (b), and (c) have 

additions of vectors type A. In sample (a), the addition of the 2nd coordinate value is 

the only one that carries 1, therefore, Rsum = –1 is produced, while for sample (b), the 

addition of the 2nd and 3rd coordinate values carries 1, thus Rsum = –2, whereas the 

addition of sample (c) does not lead to carrying 1, hence Rsum = 0. Moreover, samples 

(a), (b), and (c) generate the three possible values (–1, –2, and 0) of Rsum for the 

addition of two vectors of type A at this region, (+, –, –). Carry in the direct addition 

may occur on the coordinates which have a nonzero fractional part in both vector 1 

and vector 2. 

In contrast, the addition of two vectors of different types at this region, (+, –, –), will 

produce only two possible values of Rsum as in the set {–1, 0}, where at most one 

carry could be occurred in these cases. (See Table 2.3, samples (d) and (e)) 
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Table 2.3: Different samples to demonstrate the first step of the procedure. 

 Sample (a) Sample (b) Sample (c) Sample (d) Sample (e) 

Vector1 (1.0,–0.6,–0.1) (1.0,–0.68,–0.36) (1.0,–0.6, –0.1) (1.0,–0.9,–0.4) (1.0,–0.9,–0.4) 

Vector2 (1.0,–0.9,–0.7) (1.0,–0.97,–0.73) (1.0,–0.2,–0.7) (1.9,–1.0,–0.9) (1.9,–1.0,–0.5) 

direct-sum (2.0,–1.5,–0.8) (2.0,–1.65,–1.09) (2.0,–0.8,–0.8) (2.9,–1.9,–1.3) (2.9,–1.9,–0.9) 

⌊𝑖⌉, ⌊𝑗⌉, ⌊𝑘⌉ 2, –2, –1 2, –2, –2 2, –1, –1 3, –2, –2 3, –2, –1 

Rsum –1 –2 0 –1 0 

Region (+, –, –) (+, –, –) (+, –, –) (+, –, –) (+, –, –) 

2.3.4.2 Step 2: Finding the Type of the Result-Vector 

As mentioned above, adding two vectors of the same type would produce any of the 

three possible values of Rsum. Only one of these values would lead directly to the type 

of the result-vector, while for the other two values one needs more steps to find it. 

However, the values of Rsum that lead directly to the type of the result-vector, in the 

region (+,–,–), are as the following: 

 If (adding vectors of types (A + A)) and (Rsum = –1)  

Then the result-vector type is A. 

 If (adding vectors of types (B + B)) and (Rsum = 0)  

Then the result-vector type is B. 

 If (adding vectors of types (C + C)) and (Rsum = 0)  

Then the result-vector type is C. 

In order to demonstrate the three cases above, let us consider the first one, while the 

other two points would have a similar demonstration.  
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Assume that a = (i, j, k) is the midpoint of a positive triangle. Let P be any point 

(vector) in Area A, then based on the barycentric equation (2.1):   

P = a + v · (b – a) + u · (c – a) 

The values of (b – a) and (c – a) are fixed for all points in the given area A, hence we 

have: 

𝑃 =  (
𝑖
𝑗
𝑘
) + 𝑣 (

0
−1
0
) + 𝑢 (

0
0
−1
)  =  (

𝑖
𝑗 −  𝑣
𝑘 − 𝑢

) 

Now, 𝑅𝑠𝑢𝑚 =  ⌊𝑖⌉ + ⌊𝑗 − 𝑣⌉ + ⌊𝑘 − 𝑢⌉ 

Since the region of (+, –, –) is considered here, then: 

i: is a positive integer.  So, ⌊𝑖⌉ equals to i itself. 

(j – v): j is a negative integer. So, ⌊𝑗 − 𝑣⌉ equals to (j – 1) 

(k – u): k is a negative integer. So, ⌊𝑘 − 𝑢⌉ equals to (k – 1)  

Then Rsum = i + (j – 1) + (k – 1), but since (i, j, k) is a positive midpoint then 

i + j + k = 1, hence, Rsum = –1. Therefore, two vectors of type A would produce a new 

vector of type A if and only if the Rsum value is equal to –1.  

Basically, the result-vector type would be one of the three possible types (A, B or C), 

since one of them has been obtained for a particular Rsum value, the remaining two 

possibilities will be determined next. 

Before determining the other possibilities, it is worth mentioning here that, since every 

direct-sum has one value among its three coordinates with a different sign, based on 
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the region signs, it is inconvenient to use logical comparison operations 

(<,  >, min or max) among the values {i}, {j}, and {k}. Thus, one of the tricks used in 

this procedure is to unify these signs, just for the comparison purpose, such that all of 

them must be converted to one of the two signs, either all positive or all negative. Here, 

since we are describing the region (+, –, –), we will convert those with zero or positive 

factional value signs into negative ones, such that, for only zero or positive fractional 

value we subtract 1. (See Example 2.8). It is also possible to convert the negative signs 

to positive signs as well.  

Example 2.8 If a positive fractional part is equal to 0.35, it will be converted to – 0.65, 

such that 0.35 – 1 = – 0.65. Also, zero as a fractional part will be converted to –1, such 

that 0 – 1 = –1. 

This technique comes from the idea displayed in Figure 2.5, where each point inside a 

rhombus A, B, or C can be addressed based on the positive or on the negative midpoint. 

See Figure 2.13, for more clarification as well. 

 

(a) 

 

(b) 

Figure 2.13: (a) Measurements of the sides of area A and how the conversions from 

negative to positive fractions and vice versa would happen. (b) A coordinate triplet 

of a point in area A and how its fractional parts indicate its position within area A. 
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Therefore, whenever a comparison operation is applied, we give these notations {𝑖}̅, 

{𝑗}̅, and {�̅�} to the fractional part of each coordinate value {i}, {j} and {k}, 

respectively, to make sure that the conversion must be utilized to unify the signs if 

needed. 

Now, Rsum values are in the set {–2, –1, 0} and Rsum = –1 leads directly to result-

vector type A. If Rsum = 0 and {𝑗}̅ < {�̅�}, then the result-vector is type B, otherwise it 

is type C. If Rsum = –2 and {𝑗}̅ > {�̅�}, then the result-vector is type B, otherwise it is 

type C. Note here that only {j} and {k} are considered but not {i} because the two 

added vectors are type A.  

If vectors of different types were added, apart from the Rsum value, the maximum (or 

minimum) value among some values related to {i}, {j}, and {k} will also be evaluated 

and thus the result-vector type would be specified. In order to specify the result-vector 

type in all other cases see Table 2.4. 

Note here, that when applying comparison operation on equal values then selecting 

any type would be correct because the point is on a border or on a vertex. 

Table 2.4: All conditions and rules for specifying the type of result-vector 

Regions Vectors of type (A + A) 

(–, –, +) 

(–, +, –) 

(+, –, +) 

(+, +, –) 

IF (Rsum = 0) THEN  result-vector type is A 

IF (Rsum =  1) & ({𝑗}̅≤{�̅�})  THEN result-vector type is B ELSE C 

IF (Rsum = –1) & ({𝑗}̅≥{�̅�}) THEN result-vector type is B ELSE C 

(–, +, +) 

IF (Rsum = 1) THEN  result-vector type is A 

IF (Rsum = 0) & ({𝑗}̅≥{�̅�}) THEN result-vector type is B ELSE C 

IF (Rsum = 2) & ({𝑗}̅≤{�̅�}) THEN result-vector type is B ELSE C 

(+, –, –) 

IF (Rsum = –1) THEN result-vector type is A 

IF (Rsum = 0) & ({𝑗}̅≤{�̅�})   THEN result-vector type is B ELSE C 

IF (Rsum = –2) & ({𝑗}̅≥{�̅�}) THEN result-vector type is B ELSE C 
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Regions Vectors of type (B + B) 

(–, +, +) 

(–, –, +) 

(+, –, –) 

(+, +, –) 

IF (Rsum = 0) THEN  result-vector type is B 

IF (Rsum = 1) & ({𝑖}̅≤{�̅�})   THEN result-vector type is A ELSE C 

IF (Rsum = –1) & ({𝑖}̅≥{�̅�}) THEN result-vector type is A ELSE C 

(+, –, +) 

IF (Rsum = 1) THEN result-vector type is B 

IF (Rsum = 0) & ({𝑖}̅≥{�̅�})  THEN result-vector type is A ELSE C 

IF (Rsum = 2) & ({𝑖}̅≤{�̅�})  THEN result-vector type is A ELSE C 

(–, +, –) 

IF (Rsum = –1) THEN result-vector type is B 

IF (Rsum = 0) & ({𝑖}̅≤{�̅�}) THEN result-vector type is A ELSE C 

IF (Rsum = 2) & ({𝑖}̅≥{�̅�}) THEN result-vector type is A ELSE C 

Regions Vectors of type (C + C) 

(–, +, +) 

(+, –, +) 

(+, –, –) 

(–, +, –) 

IF (Rsum = 0) THEN result-vector is of type C 

IF (Rsum = 1) & ({𝑖}̅≤{𝑗}̅)   THEN result-vector is of type A ELSE B 

IF (Rsum = –1) & ({𝑖}̅≥{𝑗}̅) THEN result-vector is of type A ELSE B 

(–, –, +) 

IF (Rsum = –1) THEN result-vector is of type C   

IF (Rsum = 0) & ({𝑖}̅≤{𝑗}̅)   THEN result-vector is of type A ELSE B 

IF (Rsum = –2) & ({𝑖}̅≥{𝑗}̅) THEN result-vector is of type A ELSE B 

(+, +, –) 

IF (Rsum = 1) THEN result-vector is of type C 

IF (Rsum = 0) & ({𝑖}̅≥{𝑗}̅) THEN result-vector is of type A ELSE B 

IF (Rsum = 2) & ({𝑖}̅≤{𝑗}̅) THEN result-vector is of type A ELSE B 

Regions Vectors of type (A + B) or (A + C) or ( B + C) 

(–, –, +) 

(–, +, –) 

(+, –, –) 

IF (Rsum = 0)  THEN  Min({𝑖}̅,{𝑗}̅,{�̅�}) is the result-vector type*  

IF (Rsum = –1)  THEN Max({𝑖}̅,{𝑗}̅,{�̅�}) is the result-vector type* 

(+, –, +) 

(+, +, –) 

(–, +, +) 

IF (Rsum = 0)  THEN  Max({𝑖}̅,{𝑗}̅,{�̅�}) is the result-vector  type* 

IF (Rsum = 1)  THEN  Min({𝑖}̅,{𝑗}̅,{�̅�})is the result-vector type* 

* if {𝑖}̅, {𝑗}̅ or {�̅�} is the minimum (maximum, resp.) then the result-vector type is A, 

B or C respectively. If any two or three values of {𝑖}̅, {𝑗}̅ and {�̅�}, are equal then the 

result-vector would be on a border or on a vertex which means selecting any type of 

them would be correct. 
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2.3.4.3 Step 3: Finding Coordinate Triplet of the Result-Vector  

Once the type of the result-vector has been determined, we proceed to step 3. Where 

part (a) has three possibilities based on the type of the result-vector, as the following. 

   

 If the result-vector type is A then its coordinate triplet is: 

r = (i – ({i1}+{i2}) ,  j – ({i1}+{i2}) , k – ({i1}+{i2})) 

where {i1} and {i2} are the fractional parts of the first coordinate value of 

the first and second vectors respectively. 

 If the result-vector type is B then its coordinate triplet is:  

r = (i – ({j1}+{j2}) ,  j – ({j1}+{j2}) , k – ({j1}+{j2})) 

where {j1} and {j2} are the fractional parts of the second coordinate value 

of the first and second vectors respectively. 

 If the result-vector type is C then its coordinate triplet is: 

r = (i – ({k1}+{k2}),  j – ({k1}+{k2}) , k – ({k1}+{k2})) 

where {k1} and {k2} are the fractional parts of the third coordinate value of 

the first and second vectors respectively. 

Eventually, part (b) of this step, is about subtracting or adding 1 from/to each 

coordinate value if their sum is greater than 2 or less than –2 respectively. 

For detailed example, see Table 2.5, which includes three samples to show different 

cases.  
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Table 2.5: The full procedure to compute the result-vector with different samples. 

 Sample (a) Sample (b) Sample (c) 

v1 = (i1, j1, k1) (1.577, –2.0, 0.423) (1.155, –1.423, 0.0) (1.0, –0.735, –0.270) 

v2 = (i2, j2, k2) (1.005, 0.0, –1.305) (0.808, 0.0, –0.808) (1.0, –0.966, –0.732) 

Step 1 

direct-sum (2.582, –2.0, –0.882) (1.963, –1.423, –0.808) (2.0, –1.701, –1.002) 

Rsum 3 + (–2) + (–1) = 0 2 +(–2) +(–1) = –1 2 +(–2) +(–2) = –2 

Region (+, –, –) (+, –, –) (+, –, –) 

Step 2 

Rule 1 and 2 
If (Rsum = 0)  

Then B 

If (Rsum = –1) Then 

Max({𝑖}̅,{𝑗}̅,{�̅�}) 

If (Rsum = –2) & 

({𝑗}̅ ≥ {�̅�}) 

Then B else  C 

Apply 

Rule 1 and 2 
– 

Max ((0.963–1), –0.423, 

–0.808) = –0.037 = {𝑖}̅ 
(–0.701) ≯ (–0.002) 

Result-vector 

Type 
B A C 

Step 3 

a) s = 
( i – ({j1} + {j2} , 

   j – ({j1} + {j2}) , 

  k – ({j1} + {j2}) ) 

( i – ({i1} + {i2}) , 

 j – ({i1} + {i2}) ,  

 k – ({i1} + {i2}) ) 

( i – ({k1} + {k2}) , 

  j – ({k1 } + {k2}) ,  

 k – ({k1} + {k2}) ) 

Apply a) s =  (2.582,–2.0,–0.882) (1.0, –2.386, –1.771) (3.002, –0.699, 0.0) 

b) Sum = 
Sum = –0.3, then no 

need for addition or 

subtraction of 1 

Sum = –3.157 < -2, then 

add 1 to each coordinate 

value 

Sum = 2.303 > 2, then 

Subtract 1 from each 

coordinate value 

Result-vector (2.582, –2.0, –0.882) (2.0, –1.386, –0.771) (2.002, –1.699, –1.0) 

In order to demonstrate the correctness of the procedure above, we may convert the 

result-vector to/from the CCS by using the way introduced in sections 2.3.1 and 2.3.2 

of this chapter. Such that, two vectors of  would be converted to the CCS, then 

applying the Cartesian addition to the produced vectors of Cartesian system. Finally 

we convert back the CCS vector into  vector. 
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Therefore, consider sample (a) of Table 2.5 where we have: 

v1 = (1.577, –2.0, 0.423) 

v2 = (1.005, 0.0, –1.305) 

By converting them into the CCS, using equation (2.2), we have: 

For v1 = (

√3

2
0 −

√3

2
1

2
−1

1

2

) ∙ (
1.577
−2.0
0.423

) = (
0.999
3.000

)  

Then v1 = c1 = (x1, y1) = (0.999, 3.000) with Cartesian coordinates, and 

for v2 =  (

√3

2
0 −

√3

2
1

2
−1

1

2

) ∙ (
1.005
0.0

−1.305
) = (

2.001
−0.150

) 

Then v2 = c2 = (x2, y2) = (2.001, –0.150) with Cartesian coordinates. 

Now, applying the Cartesian addition to c1 and c2, we have: 

c = (x, y) = c1 + c2 = (3.000, 2.850) of Cartesian coordinates 

Finally, convert c = (x, y) into  triplet, then we have: 

Step 1: c belongs to the 1st quarter. 

Step 2: based on Code 2, it belongs to rectangle CB. 

Step 3: Area B is matched. 

Thus, formulae of area B from Table 2.2 are applied in the following order: 

1) j = 〈 
−2𝑦

3
〉 = –2.0 

2) i =  
𝑥√3

3
+ 𝑦 + 𝑗 = √3 + 2.85 – 2.0 = 2.582 

 3) k =  𝑖 −
2𝑥

√3
 = 2.582 – 3.464 = –0.882 
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Then the corresponding triplet of (3.000, 2.850) is r = (2.582, –2.000, –0.882). Which 

is exactly the same answer in Table 2.5 as it should be. 
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Chapter 3 

PROPERTIES OF TRANSLATIONS ON THE 

TRIANGULAR GRID 

The discretized translation in the triangular grid is an extension of the classical 

Euclidean translation with a rounding operation to the nearest grid midpoint. The 

translation has never been discussed individually in the cases of the square and the 

hexagonal grids because they are always bijective (see Figures 1.3 and 3.1). In contrast 

to this, it is not the case when the triangular grid is considered, it is not always bijective 

(see Figures 1.3 and 3.3). Even though only specific translations have been introduced, 

as somewhat integer translations, with the property that the gridpoints are mapped to 

gridpoints as in reference [43]. Therefore, it is interesting to consider translations on 

the triangular grid in detail and analyze how the resulted image may change. 

Accordingly, this chapter is about the translations on the triangular grid. It begins by 

recalling some basic facts about discrete translations on the square and hexagonal grid, 

defining the discrete translations on the triangular grid and specifying some notations, 

next, a technical detail for the description of translations on the triangular grid is given. 

Finally, this chapter will be concluded by characterizing the translation vectors by 

necessary and sufficient conditions for strongly bijective, semi-bijective and non-

bijective translations.  
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3.1 Preliminaries 

3.1.1 Discrete Translations 

Discrete translations are the discretized forms of the Euclidean translations. They are 

usually defined as a composition of the Euclidean translation 𝜏 by a given vector, 

applied on the points of the discrete grid G and a rounding operator to make it sure that 

the result/the image of the discrete translation belongs to the grid. Digitized 

translations are, then, formally, usually defined as functions 𝐷𝜏 = 𝐷 ∘ 𝜏(𝐺) where both 

the domain and the target are the given (digital or discrete) grid G. 

In order to analyze discretized translations, two basic concepts must be 

defined/recalled first, the surjective and injective translations. We generally use the set 

E which could be the Euclidean plane/space or a discrete space (e.g., the square grid). 

Definition 3.1 A translation 𝑓: 𝐸 → 𝐸 is surjective if ∀𝑖 ∈ 𝐸 in the target, there is at 

least one element 𝑖′ ∈ 𝐸 in the domain, such that 𝑓(𝑖′) = 𝑖. 

Definition 3.2 A translation 𝑓: 𝐸 → 𝐸 is injective, if ∀𝑎, 𝑏 ∈ 𝐸 in the domain, 

whenever 𝑓(𝑎) = 𝑓(𝑏) then a = b. Formally: 

∀𝑎, 𝑏 ∈ 𝐸, 𝑓(𝑎) = 𝑓(𝑏) ⟹ 𝑎 = 𝑏. 

Based on them, the bijective translations are defined as follows. 

Definition 3.3 A translation is bijective if it is both injective and surjective translation. 

It is well known and one can easily check that every translation is bijective on the 

square and the hexagonal grid (see Figure 3.1, for examples).  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.1: A translation by the vector represented by the broken arrow in the square 

(a) and in the hexagonal (c) grid. The centers (blue points) represent the original 

gridpoints, while the red ones are the translated ones. In (b) and (d), is also to show 

how to deal with points on the edges and on the corners of square and hexagonal grids, 

respectively. 

The translation by a vector t(tx, ty)ℝ2, in the two-dimensional Euclidean space, i.e., 

in the plane is the function f : ℝ2  ℝ2 such that f(x, y) = (x + tx, y + ty). On the square 

grid, discrete translations are defined analogously, but changing the domain and the 

target of the function f to ℤ2. Moreover, usually not only integer translation vectors 

are allowed, but any vector t(tx, ty)  ℝ2, and, then a rounding operator is used for both 

coordinates to assign the closest gridpoint to the resulted point. Analogously, (tx, ty) = 

(x0, y0) + (x1, y1) where (x0, y0) is the integer vector to the closest gridpoint to t, and 

(x1, y1) is the fractional vector within the grid-square where −0.5 ≤  𝑥1, 𝑦1 < 0.5. 

Then the rounding operator will be defined by the help of the floor function: 

(⌊𝑥1 +
1

2
⌋ , ⌊𝑦1 +

1

2
⌋). 
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This can also be seen as, based on the square tessellation of the grid, to assign the 

midpoint of that pixel to the translated point for which pixel the point belongs. For 

those translated points that are on the borders of a square or a hexagonal tile in the 

grid, the rounding operation is systematic and obvious (see Figure 3.1b,d). 

3.1.2 Digitized Translations on the Triangular Grid 

In order to explain the scientific part of the triangular grid, some basic measures of 

triangles of the grid will be reserved as in chapter 2, while some other notations would 

be changed for simplicity. For example, in this chapter we will call “even ” and “odd 

” triangles referring to the orientations of the triangles, instead of “positive ” and 

“negative ” triangles as in chapter 2. The side-length and the height of each triangle 

are set to √3 and 1.5, respectively, as in chapter 2. While the origin of the triangular 

grid will be set to the midpoint of the “even ” triangle. (See Figure 3.2) 

 
Figure 3.2: Side-length and height of triangle pixels at the triangular grid. The 

midpoints of the pixels are also marked. 

The two marked points in Figure 3.2 are representing the midpoints of the triangles: 

the red point is the midpoint of the even triangle and the blue point is the midpoint of 

the odd one. Note that the closest neighbors of an even triangle are odd ones, and vice 

versa. Further, we simply use the term “neighbors” for closest neighbors. As a 
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consequence, based on the triangular measurements, the distance of the closest 

midpoint to the even midpoint would be equal to 1. 

The sets of the odd (O) and the even (E) triangles (their midpoints) of the triangular 

grid can be described, in the Cartesian coordinate system by the two sets defined in 

equations (3.1) and (3.2), respectively. 

𝑂 = {(𝑎, 𝑏) | 𝑎 =
𝑚√3
2 , 𝑏 =

3𝑛 − 1
2 ,𝑚, 𝑛 ∈ ℤ,𝑚 + 𝑛 is odd} (3.1) 

𝐸 = {(𝑎, 𝑏) | 𝑎 =
𝑚√3
2 , 𝑏 =

3𝑛 − 2
2 ,𝑚, 𝑛 ∈ ℤ,𝑚 + 𝑛 is even} (3.2) 

 

The translations on the triangular grid could be bijective or non-bijective, therefore, 

these concepts will be investigated and characterized in details in the next sections. 

Now we present digitized translations on the triangular grid in a formal way. 

Let G denote the set of coordinate pairs of the digital plane corresponding to the 

midpoints of the triangle pixels. Let 𝜏 be a translation on G by an arbitrary 2D vector. 

Generally, 𝜏(𝐺) ⊈ 𝐺, Therefore to define digitized translation that maps 𝜏(𝐺) to G, 

the result of 𝜏(𝐺) is combined with the digitization operation D. 𝐷: 𝜏(𝐺) → 𝐺. Thus, 

digitized translation is defined as 𝐷𝜏 = 𝐷 ∘ 𝜏(𝐺), as usual. 

Definition 3.4 Let 𝐷𝜏 be a digitized translation and let 𝑖 ∈ 𝐺 be the midpoint of a 

triangular pixel. Then the set of preimages of i with respect to 𝐷𝜏 is defined as 𝑃(𝑖) =

{𝑥 ∈ 𝐺|𝐷𝜏(𝑥) = 𝑖}. 
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In the triangular grid G, |𝑃(𝑖)| ∈ {0,1,2}. Points q and p can be preimages of the same 

point i only if the distance between q and p is 1. The non-injective (not one-to-one) 

and non-surjective (not onto) digitized translations occur when P(i) = 2 or 0 for some 

point i, respectively.  

Accordingly, a non-bijective translation in the triangular grid would happen when two 

distinct points have the same image or no images at all correspond to a pixel (see 

Figure 3.3b). As one can observe on the figure, we have both bijective and non-

bijective translations on the triangular grid depending on the value of the translation 

vector. 

 
(a) 

 
(b) 

Figure 3.3: A bijective and a non-bijective translation (a) and (b), respectively. The 

translation vector is shown. In the case of non-bijective translation, two distinct points 

have the same image and there are pixels that do not correspond to any original pixel. 

It is worth to say that a translation, in the triangular grid, that leads to an injective case 

will concurrently lead to surjective one and vice versa. Therefore, having or missing 

one of those properties will automatically lead to having or missing the other. Thus, 

non-bijective translations are not injective and not surjective on the triangular grid. 
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In order to make our study easier and to give more comprehensive descriptions of the 

translations on the triangular grid, we need to examine some properties of the 

translation vectors. 

3.1.2.1 “Integer” and “Fractional” Vectors 

For any translation vector t(tx, ty)ℝ2 we draw it and consider it in a way that we fix 

its starting point to the grid origin, which is an even midpoint. Then, moreover, we 

write t as a sum of two vectors, the so-called integer, and fractional vectors making 

some analogy to the traditional grid case. The integer vector will start at the grid origin 

and ends at the closest even midpoint (technical details about this are discussed in the 

next subsection) to the endpoint of the original translation vector t. On the other hand, 

the fractional vector will start from the endpoint of the integer vector and ends at the 

endpoint of the original translation vector t. 

 

Figure 3.4: A translation vector t is considered as the sum of two vectors, t0 is the 

“integer” vector, and t1 is the “fractional” vector. 

For illustration, consider Figure 3.4, where t is the original translation vector, and 

𝑡0 = (𝑡𝑥0 , 𝑡𝑦0), shown with the longer broken arrow, is the integer translation vector 

which has its endpoint at the nearest even midpoint to the endpoint of t. While t1, the 

other broken arrow in the figure, represents the fractional vector that starts at the 

endpoint of t0 and ends at the endpoint of t. We can write the translation vector t 
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as: (𝑡𝑥, 𝑡𝑦) = (𝑡𝑥0 , 𝑡𝑦0) + (𝑡𝑥1 , 𝑡𝑦1), where (𝑡𝑥0 , 𝑡𝑦0) is the integer part of the 

translation vector and (𝑡𝑥1 , 𝑡𝑦1) is the fractional part of the translation vector. The 

integer vector maps the grid into itself. Consequently, the fractional part of the 

translation vector, t1 would give the same type (i.e., bijective or not) of translation as 

the original translation vector t would give. 

Therefore, from now on, instead of any translation vectors, we will analyze mainly its 

fractional part t1 (see Figure 3.4). 

 

(a) 

 

(b) 

Figure 3.5: Rounding points of the plane to pixel midpoints (a) and to even 

midpoints (b). 

3.1.2.2 Rounding the Border Points 

In the previous section, it was written that we use the closest midpoint of an even pixel, 

however, geometrically, it may not be a uniquely defined point. Therefore, in this 

subsection, we will describe and discuss the mapping (rounding) the points of the plane 

to their closest midpoints. Especially, those points are in our interests that are on the 

borders of the triangle pixels. Obviously, the points which are not on the border could 

be rounded simply to its nearest midpoint based on measuring the shortest distance. 

Opposite to this, for the points on the border, we have to make some decision to force 
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a unique solution. We round them based on the technique shown also in Figure 3.5, 

and detailed below.  

Let the borders of triangles take three different colors as in Figure 3.5a, purple 

(direction ‘\’ with slope −√3), brown (direction ‘/’ with slope √3) and the green 

(horizontal) border lines. The next points are listing the cases where a point on the 

border could be.  

1) The corners (C) of the triangles, the crossing points of these colored lines have 

coordinates given in equation (3.3): 

(𝐶) = {(𝑥, 𝑦) | 𝑥 =
𝑚√3
2 , 𝑦 =

3𝑛
2 , 𝑚, 𝑛 ∈ ℤ, 𝑚 + 𝑛 is even } 

(3.3) 

Further, a point having a coordinate pair (x, y) is lying on one of these borders in the 

following cases.  

2) Let (a, b) be the closest even midpoint (the midpoint of the even triangle) for (x, y). 

The point (x, y) lies on a ‘/’ direction, brown line (in Figure 3.5a) if: 

𝑦 = √3 ∙ (𝑥 − 𝑎) + (𝑏 + 1) (3.4) 

3) The point (x, y) lies on a ‘\’ direction, purple line if: 

𝑦 = √3 ∙ (𝑎 − 𝑥) + (𝑏 + 1) (3.5) 

4) The point (x, y) lies on a ‘—‘ direction, i.e., horizontal, green border line if: 

𝑏 − 
1

2
 =  y. (3.6) 
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Now, let us show the decision which pixel (midpoint) is assigned to the points.  

1) Every corner point is mapped to the nearest even midpoint which has the maximal 

x coordinate value among the pixels sharing this corner point.  

For points which are not corner points, we have the following strategy: 

2) Every not corner point on the ‘/’ direction (brown) border lines is mapped to the 

nearest even midpoint. 

3) Every not corner point on the ‘\’ direction (purple) border lines is mapped to the 

nearest odd midpoint. 

4) Every point on the horizontal (green) border lines that is not a corner is mapped to 

the nearest even midpoint. 

For the sake of completeness, we also give the assignment for all other points: 

5) Finally, every point (x, y) which is not on borders should be mapped to its nearest 

midpoint based on their distances.  

Figure 3.5a summarizes the assigned triangles for the points on the border shared by 

more than one triangle pixel.  

Finally, in a similar manner, we also assign the closest even midpoint to any point of 

the plane in a unique way. For points equidistant from more even midpoints, Figure 

3.5b shows the assigned even midpoint. 
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3.2 Characterizing Bijective and Non-Bijective Translation Vectors 

As we have fixed the beginning of the translation vectors to the midpoint of an even 

triangle (let us say, to the origin), we can characterize the vectors by the position of 

their endpoints. Remember, that using an integer translation vector, the grid is mapped 

exactly to itself [42, 43], thus we are interested to analyze only the possible fractional 

parts of the translation vectors. In our description, we use various regions meaning that 

if the endpoint of the fractional vector lies in the given region, then the translation with 

the given vector has some specific property. In the next subsections, we give our main 

results by characterizing bijective and non-bijective translations. Moreover, we show 

two different types of bijective translations. 

In the following subsections, we detail the properties of the translations based on the 

fractional part of their vector. We are willing to show that in Figure 3.6 the shaded 

regions represent the translations with the following property: the translation is a non-

bijective translation if and only if the fractional part of the translation vector ends in 

the regions Ni (green) where i =1..6; whereas the translation is bijective if and only if 

the fractional part of the translation vector ends in any of Be (the yellow) or 𝐵𝑜𝑖 (the 

blue) regions. There is no other case. Therefore, translation by a specific vector (see, 

e.g., the red arrows in Figure 3.3) would lead to bijective transformation (e.g., Figure 

3.3a) or non-bijective transformation (e.g., Figure 3.3b) based on the position of its 

endpoint.  

3.2.1 Vectors of Bijective Translations 

First, the bijective translations are considered. Let us analyze translation vectors with 

the fractional part ending in the regions B. There are two groups of the B regions: Be 

and Bo based on their locations in the even triangle , or in an odd triangle , 
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respectively. These bijective translation regions are described as follows. In an even 

triangle, consider a regular hexagon Be with a side length of √3/3 and its center point 

is the even midpoint. While in the odd triangles, consider the six obtuse-angled 

triangles 𝐵𝑜𝑖 (i = 1..6) as shown in Figure 3.6. Instead of proving the bijectivity of 

these cases with common proof here, we show that the two types of regions, although 

in both cases the translations are bijective, have very different behavior. We define 

and differentiate strongly and semi-bijective translations: 

Definition 3.5 Let a be the midpoint of a triangle and ai be the midpoints of its 

neighbors where i = 1..3. Let a and ai be mapped to 𝐷𝜏(a) and 𝐷𝜏(ai), respectively 

(where 𝐷𝜏(a) and 𝐷𝜏(ai) are the digitized translated midpoints of a and its neighbors 

ai). If the neighbor relations between a and ai are kept preserved after the translation, 

i.e., if 𝐷𝜏(a) and 𝐷𝜏(ai) are also neighbors for each i = 1..3, then the translation is 

strongly bijective.  

Definition 3.6 Let a be the midpoint of a triangle and ai be the midpoints of its 

neighbors where i = 1..3. Let a and ai be mapped to 𝐷𝜏(a) and 𝐷𝜏(ai), respectively. If 

the translation is bijective, but the neighborhood is not preserved, (i.e., there is a 

neighbor ai of a such that 𝐷𝜏(a) and 𝐷𝜏(ai) are not neighbors), then the translation is 

called semi-bijective.  

More precise descriptions and characterizations of both categories will be given in the 

next two sub-sections.  
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3.2.1.1 Characterizing Strongly Bijective Translations 

Proposition 3.1 A translation is strongly bijective if and only if it preserves the parity 

of the points, i.e., the image of an even point is even and the image of an odd point is 

odd. 

It is clear that if an even point is mapped to even point then all even points are mapped 

to even points, and a similar statement is fulfilled for the odd points. Now let us prove 

Proposition 3.1. 

Proof. If a translation maps even points to even points and odd points to odd points, it 

is clear that two neighbor points (from which one must be odd and the other must be 

even) cannot be mapped to the same triangle. Thus the translation is bijective. 

Moreover, the neighbor relation is obviously also preserved. (See, e.g. Figure 3.7; 

more explanation is given in the next proposition.) 

In the other direction, if an even pixel is translated to an odd pixel or an odd pixel is 

translated to an even pixel, then there are two cases. (See e.g. Figures 3.3 and 3.9) In 

the first case, only one type of pixels is mapped to the opposite type of pixels. More 

precisely: Either even pixels are mapped to odd pixels and also the odd pixels are 

mapped to odd pixels, or both the even and odd pixels are mapped to even pixels. 

Clearly, in this case, the translation is not bijective. The second case is when each 

pixel is mapped to an opposite type pixel. However, in this case, because of the 

different (i.e. opposite) directions of the neighbors of the different type points, it is easy 

to find neighbor points such that their images are not neighbors. (More details are 

shown in the next subsections.)                              
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We continue this subsection by defining formally the region Be. By equation (3.7) we 

do it as a union of three smaller pairwise disjoint regions. Notice that in some 

conditions sharp inequality is used while in some other equality is also allowed. (See 

Figure 3.6) 

 

 

Figure 3.6: An even pixel with its three closest neighbors. The hexagon region Be 

(in yellow color) with its orange borders, are referred to the strongly-bijective 

translation region, whereas the six obtuse-angle triangles 𝐵𝑜𝑖, where i = 1..6 (in blue 

color with its dark blue borders) are referred to the semi-bijective translation regions. 

The six equilateral triangles 𝑁𝑖, where i = 1..6 (in green color with its dark green 

borders) are referred to the non-bijective translation regions (the starting point of the 

fractional part of the translation vector is at the even midpoint (m)). 
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𝑩𝒆 = 𝑙1 ∪ 𝑚1 ∪ 𝑟1, where: (3.7) 

𝑙1 = {(𝑥, 𝑦)|𝑎 −
√3
3
≤ 𝑥 < 𝑎 −

√3
6
, √3(𝑎 − 𝑥) − (1 − 𝑏) ≤ 𝑦 ≤ √3(𝑥 − 𝑎) + (1 + 𝑏)} 

𝑚1 = {(𝑥, 𝑦)|𝑎 −
√3
6
≤ 𝑥 < 𝑎 + 

√3
6
, 𝑏 −

1
2
≤ 𝑦 < 𝑏 +

1
2
} 

𝑟1 = {(𝑥, 𝑦)|𝑎 + 
√3
6
≤ 𝑥 ≤ 𝑎 + 

√3
3
, √3(𝑥 − 𝑎) − (1 − 𝑏) < 𝑦 < √3(𝑎 − 𝑥) + (1 + 𝑏)} 

Theorem 3.1 A translation with vector t = (tx, ty) is a strongly bijective if and only if 

(𝑡𝑥1 , 𝑡𝑦1) ends at the region Be, where (𝑡𝑥, 𝑡𝑦)  =  (𝑡𝑥0 , 𝑡𝑦0)  +  (𝑡𝑥1 , 𝑡𝑦1) with integer 

vector (𝑡𝑥0 , 𝑡𝑦0) and fractional vector t1 = (𝑡𝑥1 , 𝑡𝑦1).  

Proof. Based on Proposition 3.1, we need to prove that translation with fractional 

vector belonging to region Be preserve the parity of the pixels. Without loss of 

generality, consider Be (the yellow) and 𝐵𝑒
′  (the blue) isometric regular hexagons 

within the area of the even and the odd triangles, respectively, in Figure 3.7. Here, m 

(the red) and n (the yellow) points are the midpoints of the even and odd triangles, 

respectively. 

 
Figure 3.7: Any translation vector that starts at the even midpoint (m) and ends 

within the hexagonal region (Be) will produce a strongly-bijective translation. The 

orange and blue colored borders belong to Be and 𝐵𝑒
′  regions respectively, while the 

gray colored borders belong to other regions. 
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If t is a translation vector with fractional part t1 in Be, then the midpoint of an even 

pixel m (e.g., the red point) is translated into the region Be around a midpoint of an 

even pixel as it is shown in Figure 3.7. By our rounding operator, one can see that the 

parity of each even pixel is preserved, the points in Be belong to an even triangle. 

On the other hand, the translation of an odd pixel by a vector with fractional part t1 in 

Be implies that the midpoint of the odd pixel n (e.g., the yellow point) is translated to 

a point belonging to region 𝐵𝑒
′  (Figure 3.7). However, by the rounding operator, it is 

clear that these points are mapped to n (the yellow point), i.e., to the midpoint of an 

odd pixel. Therefore, the parity of the original pixel is exactly the same as the parity 

of its image after the translation. The proof is finished.                                       

3.2.1.2 Characterizing Semi-Bijective Translations 

We start this subsection by describing the regions where the fractional part of the 

translation vector is ending in this case, then we formally state our results. 

The regions named 𝐵𝑜𝑖 (where i = 1..6) in Figure 3.6 are described by sets defined in 

equations (3.8-3.13). As we will show these regions represent the semi-bijective 

translations. Notice that in some conditions sharp equality and inequality are used to 

deal correctly with the border points. 

𝑩𝒐𝟏 = {(𝑥, 𝑦)|𝑎 +
√3
3 ≤ 𝑥 < 𝑎 +

√3
2 , √3

(𝑎 − 𝑥) + (1 + 𝑏) ≤ 𝑦 ≤ √3(𝑥 − 𝑎) − (1 − 𝑏)} 

(3.8) 
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𝑩𝒐𝟐 = 𝑙2 ∪ 𝑟2, where: (3.9) 

𝑙2 = {(𝑥, 𝑦)| 𝑎 < 𝑥 < 𝑎 +
√3
3 , √3

(𝑎 − 𝑥) + (1 + 𝑏) ≤ 𝑦 <
√3
3
(𝑎 − 𝑥) + (1 + 𝑏)} 

𝑟2 = {(𝑥, 𝑦)|𝑎 +
√3
6 ≤ 𝑥 ≤ 𝑎 +

√3
2 , 𝑏 +

1
2 ≤ 𝑦 <

√3
3
(𝑎 − 𝑥) + (1 + 𝑏)} 

𝑩𝒐𝟑 = 𝑙3 ∪ 𝑟3, where: (3.10) 

𝑙3 = {(𝑥, 𝑦)|𝑎 −
√3
2
≤ 𝑥 < 𝑎 −

√3
6
, 𝑏 +

1
2
≤ 𝑦 ≤

√3
3
(𝑥 −  𝑎) + (1 + 𝑏)} 

𝑟3 = {(𝑥, 𝑦)|𝑎 −
√3
6 < 𝑥 < 𝑎,√3(𝑥 − 𝑎) + (1 + 𝑏) < 𝑦 ≤

√3
3
(𝑥 −  𝑎) + (1 + 𝑏)} 

𝑩𝒐𝟒 = {(𝑥, 𝑦)|𝑎 −
√3
2 ≤ 𝑥 ≤ 𝑎 −

√3
3 , √3

(𝑥 − 𝑎) + (1 + 𝑏) < 𝑦 < √3(𝑥 − 𝑎) − (1 − 𝑏)} 

(3.11) 

𝑩𝒐𝟓 = 𝑙5 ∪ 𝑟5, where: (3.12) 

𝑙5 = {(𝑥, 𝑦)| 𝑎 −
√3
2 < 𝑥 ≤ 𝑎 −

√3
6 ,
√3
3  
(𝑎 − 𝑥) + (𝑏 − 1) ≤ 𝑦 < 𝑏 −

1
2} 

𝑟5 = {(𝑥, 𝑦)|𝑎 −
√3
6 ≤ 𝑥 ≤ 𝑎,

√3
3  
(𝑎 − 𝑥) + (𝑏 − 1) ≤ 𝑦 < √3(𝑎 − 𝑥) − (1 − 𝑏)} 

𝑩𝒐𝟔 = 𝑙6 ∪ 𝑟6, where: (3.13) 

𝑙6 = {(𝑥, 𝑦)| 𝑎 ≤ 𝑥 < 𝑎 +
√3
6 ,
√3
3  
(𝑥 − 𝑎) + (𝑏 − 1) ≤ 𝑦 < √3(𝑥 − 𝑎) − (1 − 𝑏)} 

𝑟6 = {(𝑥, 𝑦)|𝑎 +
√3
6 < 𝑥 < 𝑎 +

√3
2 ,
√3
3  
(𝑥 − 𝑎) + (𝑏 − 1) + 𝑏 ≤ 𝑦 < 𝑏 −

1
2} 

Now we state and prove that any translation with fractional vector belonging to a 

region 𝐵𝑜𝑖 switches the parity of the pixels. 
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Proposition 3.2 A translation with vector t = (tx, ty) = t0 + t1 is mapping every pixel to 

an opposite type pixel if and only if the fractional vector t1 = (𝑡𝑥1 , 𝑡𝑦1) ends in a region 

𝐵𝑜𝑖 where i = 1..6.  

Proof. Let us consider the isometric obtuse angled isosceles triangles 𝐵𝑜1 and 𝐵𝑜1
′  

within the area of the odd and the even triangles, respectively, in Figure 3.8. Let m 

(the red point in Figure 3.8) denote the midpoint of the corresponding even triangle 

and n (the yellow point) denote the midpoint of the odd triangle, respectively. If t is a 

translation vector with fractional part t1 belonging to region 𝐵𝑜1, then the midpoint of 

an even pixel m (e.g., the red point) is translated into the region 𝐵𝑜1inside an odd pixel 

as it is shown in Figure 3.8. By our rounding operator, one can see that the parity of 

each even pixel is changed to odd, the points in 𝐵𝑜1belong to an odd triangle.  

On the other hand, the translation of an odd pixel by a vector with fractional part t1 

belonging to 𝐵𝑜1implies that the midpoint of the odd pixel n (e.g., the yellow point) is 

translated to a point belonging to region 𝐵𝑜1
′  (Figure 3.8). However, (by applying the 

rounding operator on the edges), it is clear that these points are mapped to the 

midpoint of an even pixel (𝑚′). Therefore, the parity of the original pixel is opposite 

to the parity of its image after the translation.  

Having the even midpoint (m) translated to 𝐵𝑜2 , 𝐵𝑜3 , 𝐵𝑜4 , 𝐵𝑜5 , 𝑎𝑛𝑑 𝐵𝑜6 (Figure 3.8) the 

proof goes in a similar manner.             
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Figure 3.8: Translations with fractional vectors that start at the even midpoint (m) and 

end at regions 𝐵𝑜𝑖 (where i = 1..6, the blue colored regions with their dark blue colored 

borders) will produce semi-bijective translations. 

Theorem 3.2 A translation with vector t = (tx, ty) = t0 + t1 is a semi-bijective mapping 

if and only if the fractional vector t1 = (𝑡𝑥1 , 𝑡𝑦1) ends in a region 𝐵𝑜𝑖 where i = 1..6.  

Proof. We have already shown that translations that preserve the parity of the pixels 

are strongly bijective. It is clear, that if an even point is mapped to an even point, then 

all even points are mapped to even points, and if an even point is mapped to an odd 

point then all even points are mapped to odd points. If both even and odd points are 

mapped to the same type of points, then the translation is not bijective, since no point 

will be mapped to the other type of points. What is remained to show, that if odd points 

are translated to even points and even points are translated to odd points, then the 

neighborhood structure is lost by the translation. Let us consider, first, the regions 𝐵𝑜1 

and 𝐵𝑜1
′ . As one can observe in Figure 3.9, the neighbors of a pixel are not mapped to 

the neighbors of the pixel obtained by the translation. 

The proof goes analogously for the other five regions.                                   
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Summarizing the cases of bijective translations, the Be (the yellow) region refers to the 

strongly bijective transitions, while 𝐵𝑜𝑖, where i = 1..6, (the blue) regions specify the 

semi-bijective translations (in Figure 3.6). Based on Proposition 3.2 and Theorem 3.2, 

we can say that a translation is semi-bijective if and only if it is a bijective translation 

and it maps the elements of O (i.e., the odd points) to E (i.e., even points) and vice 

versa. 

 

 

(b) 

 

(a) 

 

(c) 

Figure 3.9: (a) An even pixel and its neighbors, the three odd pixels, before 

translation. (b) A translation by a vector that belongs to the semi-bijective region 

𝐵𝑜1. (c) The result of the translation: 𝑚′, 𝑛1
′ , 𝑛2

′ , and 𝑛3
′  are the images of 

𝑚, 𝑛1, 𝑛2, and 𝑛3, respectively. The pixels 𝑚′ and 𝑛2
′  are not neighbors. 
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3.2.2 Characterizing the Non-Bijective Translation Vectors 

Proposition 3.3 A translation is non-bijective if and only if it maps all the pixels (both 

E and O) to exactly one of the sets O or E. 

Proof. Obviously, translations are not bijective if only one of the sets O and E is used 

as the image of the translation. On the other hand, all translations must satisfy the 

condition of exactly one of Propositions 3.1, 3.2 or 3.3, thus the statement of this 

proposition is proven.                            

At translations having vectors with fractional parts ending in the regions Ni where 

i = 1..6 (the green regions in Figure 3.6), points without pre-image (holes) and also 

points with two pre-images occur. Hence, these are non-bijective translations (see 

Figure 3.3b, for an example). 

Now, in order to describe these non-bijective translations mathematically, the six 

equilateral triangles Ni where i = 1..6 (the green regions in Figure 3.6),  will be 

categorized into two groups. The odd and the even groups are based on the base odd 

 and even  triangles in which these green triangles are located. Remember that the 

translation vectors in our description start at the midpoint of an even triangle (e.g., the 

origin), and we deal with its fractional part.  

There are three green regions Ni in each odd and even triangle, they are denoted by N1, 

N3, and N5 for the odd triangle, and N2, N4, and N6 for the even triangle (as Figure 3.6 

shows both cases). To simplify their mathematical description, each of them is split 

into two symmetrical parts Li and Ri, where i = 1..6, as their left and right parts (Figure 

3.6). Equations (3.14 - 3.19) describe them as follows. Let (a, b) denote the coordinate 
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pair of the midpoint of the even pixel from where the fractional vector starts (denoted 

by the red circle in Figure7). 

𝑁1 = 𝐿1 ∪ 𝑅1 , where: (3.14)  

𝐿1 = {(𝑥, 𝑦) |𝑎 +
√3
6 ≤ 𝑥 ≤ 𝑎 +

√3
3 , √3

(𝑎 − 𝑥) + (1 + 𝑏) < 𝑦 ≤ 𝑏 +
1
2 } 

𝑅1 = {(𝑥, 𝑦) |𝑎 +
√3
3
< 𝑥 ≤ 𝑎 +

√3
2
, √3(𝑥 − 𝑎) − (1 − 𝑏) ≤ 𝑦 ≤ 𝑏 +

1
2
} 

𝑁2 = 𝐿2 ∪ 𝑅2 , where: (3.15) 

𝐿2 = {(𝑥, 𝑦)|𝑎 −
√3
6 < 𝑥 < 𝑎, 𝑏 +

1
2 < 𝑦 < √3

(𝑥 − 𝑎) + (1 + 𝑏)} 

𝑅2 = {(𝑥, 𝑦)|𝑎 ≤ 𝑥 ≤ 𝑎 +
√3
6 , 𝑏 +

1
2 < 𝑦 < √3

(𝑎 − 𝑥) + (1 + 𝑏)} 

𝑁3 = 𝐿3 ∪ 𝑅3 ,  where: (3.16) 

𝐿3 = {(𝑥, 𝑦) |𝑎 −
√3
2 ≤ 𝑥 ≤ 𝑎 −

√3
3 , √3

(𝑥 − 𝑎) − (1 − 𝑏) < 𝑦 ≤ 𝑏 +
1
2} 

𝑅3 = {(𝑥, 𝑦)|𝑎 −
√3
3 < 𝑥 < 𝑎 −

√3
6 , √3

(𝑥 − 𝑎) + (1 + 𝑏) < 𝑦 ≤ 𝑏 +
1
2} 

𝑁4 = 𝐿4 ∪ 𝑅4 , where: (3.17) 

𝐿4 = {(𝑥, 𝑦)|𝑎 −
√3
2 < 𝑥 ≤ 𝑎 −

√3
3 , 𝑏 −

1
2 < 𝑦 < √3

(𝑥 − 𝑎) + (1 + 𝑏)} 

𝑅4 = {(𝑥, 𝑦)|𝑎 −
√3
3 < 𝑥 ≤ 𝑎 −

√3
6 , 𝑏 −

1
2 < 𝑦 ≤ √3

(𝑥 − 𝑎) − (1 − 𝑏)} 
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𝑁5 = 𝐿5 ∪ 𝑅5 , where: (3.18) 

 𝐿5 = {(𝑥, 𝑦) |𝑎 −
√3
6 ≤ 𝑥 ≤ 𝑎, √3(𝑎 − 𝑥) − (1 − 𝑏) < 𝑦 ≤ 𝑏 −

1
2} 

𝑅5 = {(𝑥, 𝑦) |𝑎 < 𝑥 < 𝑎 +
√3
6 , √3

(𝑥 − 𝑎) − (1 − 𝑏) ≤ 𝑦 ≤ 𝑏 −
1
2} 

𝑁6 = 𝐿6 ∪ 𝑅6 , where: (3.19) 

𝐿6 = {(𝑥, 𝑦)|𝑎 +
√3
6 < 𝑥 ≤ 𝑎 +

√3
3 , 𝑏 −

1
2 < 𝑦 < √3

(𝑥 − 𝑎) − (1 − 𝑏)} 

𝑅6 = {(𝑥, 𝑦)|𝑎 +
√3
3 < 𝑥 < 𝑎 +

√3
2 , 𝑏 −

1
2 < 𝑦 ≤ √3

(𝑎 − 𝑥) + (1 + 𝑏)} 

Theorem 3.3 A translation with vector t(x, y) is a non-bijective mapping if and only if 

t(x, y) = t0(x0, y0) + t1(x1, y1) where t0 is the integer vector and t1 is the fractional vector 

of the translation such that this latter one starts at the endpoint of t0 and ends at a 

region Ni where i = 1..6.  

Proof. Based on Proposition 3.3, we need to prove that translation with fractional 

vector t1 belonging to region Ni where i = 1..6, will map every pixel to the same type 

of pixels. Without loss of generality, consider the regions N1 (green) and 𝑁1
′ (gray) in 

Figure 3.10. They are, in fact, isometric regular triangles within the area of an odd 

triangle. Points m (red) and n (yellow) denote the midpoints of the corresponding even 

and odd triangles, respectively. 

If t is a translation vector with fractional part t1 in N1, then the midpoint of an even 

pixel (e.g., the red point m) is translated into the region N1 around n, the midpoint of 

an odd pixel as it is shown in Figure 3.10. By our rounding operator, one can see that 
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the parity of each even pixel is not preserved since the points in N1 belong to an odd 

triangle. On the other hand, the translation of an odd pixel by a vector t with fractional 

part t1 in N1 implies that the midpoint of the odd pixel n (e.g., the yellow point in Figure 

3.10) is translated to a point belonging to region 𝑁1
′. However, by the rounding 

operator, it is clear that these points are mapped again to the midpoint of the odd 

pixel, i.e. the point n. Therefore, both even and odd points are mapped to odd points 

in this case. The proof is similar for other regions, in fact, for regions N1, N3, and N5 

the translation maps every pixel to odd and for regions N2, N4, and N6 it maps every 

point to even pixels.              

 
Figure 3.10: A translation to a non-bijective regions Ni. Image of an even and an odd 

pixel (with the corresponding regions 𝑁𝑖
′, where i = 1..6) are shown. 

  



 

74 
 

Chapter 4 

CONCLUSION 

In section 2.2, we presented the continuous coordinate system, which is an extension 

of some previously known discrete coordinate systems, e.g., of the symmetric 

coordinate frame for the triangular grid. This extension is needed and helpful for 

various applications, where the grid points are not necessarily mapped to grid points, 

e.g., arbitrary angled rotations, zooming or interpolation of images. We should also 

mention translations of images [48] since the triangular grid is not a point lattice. 

Mathematical morphology operators are also based on local translations [25, 49], thus 

our coordinate system provides a new tool for that research direction as well. The 

proposed coordinate system addresses each point of the 2D (triangular) plane (see 

Figure 4.1). In the subsections of section 2.2, a conversion to/from the Cartesian 

coordinate system and addition two vectors in the proposed coordinate system is 

provided, these mappings are inverses of each other. Thus the new coordinate system 

is ready to use in various applications including those operations that do not 

necessarily map the grid to itself.  

 
Figure 4.1: An example for addressing a point in the triangular plane by the 

continuous coordinate system 
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Accordingly, transformations of digital images are very frequent applications. The 

simplest transformations are the isometric ones, including translations, rotations, and 

mirroring. In chapter 3, translations on the triangular grid are investigated and 

analyzed. Although these geometrical transformations are the simplest ones, their 

discretized versions are not trivial on the triangular grid. As we have seen, since this 

grid is not a point lattice, some of the discretized translations are not bijective. Thus, 

one needs to be careful when applying arbitrary translations to images on the triangular 

grid. We note here that the technique to determine whether a translation is bijective or 

not is based on the redigitization of the translated image, and thus, it is somewhat 

similar to [50] and also to the approach counting the number of digitizations of a disk 

in [51].  

 
Original 

 
Strongly Bijective 

 
      Non Bijective 

 
       Semi Bijective 

Figure 4.2: The three types of translations on the triangular grid depending on the 

translation vector. 
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It is well known that digital rotations are usually not bijective on any grids, however, 

the translations are bijective on point lattices. In chapter 3, we have discovered various 

cases of translations on the triangular plane and a full characterization of them is given 

to three categories (see Figure 4.2).  
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