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ABSTRACT 

Image-super resolution is a fast-growing research field that has been enhanced 

by the introduction of deep learning methods that achieved greater results and 

performance. 

Convolutional deep networks that utilize residual architecture have shown the 

best performance. One of the best models that use this architecture is the EDSR model 

[16], which showed a great result in extracting and reconstructing images but the 

features that it extracts are not always optimal due to the locality of the convolutional 

window which might result in missing some general key features about the image from 

the areas outside the convolution kernel of the image. 

In this project, we propose an improvement on the convolutional network 

architecture that uses residual blocks to detect the local features of the image by adding 

a phased version of the input that will add the missing nonlocal features and improve 

the quality of the feature space that will result in a better reconstruction. 

We achieved our objective by introducing a new phasor block to the model 

which will create different perspectives of the image which we trained using a smaller 

version of EDSR for each phase then concatenated the results of the original and the 

phases into one big feature space containing deep and shallow features which enhanced 

the reconstruction of the image. 

Keywords: Convolutional Networks, Residual Networks, EDSR, Phasor 
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ÖZ 

Görüntü ivuper çözünürlüğü, daha büyük sonuçlar ve performans elde eden 

derin öğrenme yöntemlerinin tanıtılmasıyla geliştirilmiş, hızla büyüyen bir araştırma 

alanıdır. 

Artık mimariyi kullanan evrişimli derin ağlar en iyi performansı göstermiştir. 

Bu mimariyi kullanan en iyi modellerden biri, görüntülerin çıkarılması ve yeniden 

yapılandırılmasında harika bir sonuç gösteren EDSR modelidir[16], ancak çıkardığı 

özellikler, kayıpla sonuçlanabilecek evrişim penceresinin yerelliği nedeniyle her 

zaman optimal değildir. Görüntünün evrişim çekirdeğinin dışındaki alanlardan 

görüntü hakkında bazı genel temel özellikler. 

Bu projede, eksik yerel olmayan özellikleri ekleyecek ve özellik uzayının 

kalitesini artıracak girdinin aşamalı bir sürümünü ekleyerek görüntünün yerel 

özelliklerini algılamak için artık blokları kullanan evrişimli ağ mimarisinde bir 

iyileştirme öneriyoruz. Daha iyi bir yeniden yapılanma ile sonuçlanacaktır. 

Her aşama için daha küçük bir EDSR sürümü kullanarak eğittiğimiz 

görüntünün farklı perspektiflerini yaratacak modele yeni bir fazör bloğu ekleyerek 

hedefimize ulaştık, ardından orijinalin ve fazların sonuçlarını derin içeren tek bir 

büyük özellik alanında birleştirdik. Ye görüntünün yeniden yapılandırılmasını 

geliştiren sığ özellikler. 

Anahtar Kelimeler: Evrişimli Ağlar, Artık Ağlar, EDSR, Fazör 
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Chapter 1 

INTRODUCTION 

In this chapter, we will give a brief introduction to the Super-resolution 

problem as well as some of the methods used to solve this problem. 

1.1 Definition 

Image super-resolution is the process of obtaining a high-quality image from a 

low quality and resolution counterpart of the same image, this process applies to all 

image restoration fields like image compression and denoising. The field of image 

reconstruction and especially single image reconstruction has gained a great deal of 

popularity recently due to the advancement of digital data technologies and the rising 

need for high-quality images in many fields. 

Therefore, many methods have been developed to understand the relation 

between high-resolution images and their lower-resolution counterparts, but finding a 

direct relation is not an easy task, mainly because each image is unique and other 

factors like blur, noise and decimation might lead to inaccuracy interpretation of 

relation. 

1.2 Development of methods  

The early work done to solve the Super-resolution and image reconstruction 

problem with classical methods that use interpolations [10] yielded some good results 

in reconstructing the general features of the image but failed at reconstructing the 

details of the image, especially the realistic textures.  
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Other learning-based methods focused on finding the relation between the 

lower resolution image and the higher resolution image by utilising methods like 

sparse coding [11] or embedding [12]. 

There have been many methods that managed to reconstruct images with a 

certain degree of success [1,2,3] but the introduction of deep learning methods showed 

significant improvements in terms of Peak Signal to Noise Ratio (PSNR) and 

Structural Similarity Index Measurement (SSIM) for those problems, and 

Convolutional Neural Networks (CNNs) [4,5,6] is one of the most popular frameworks 

especially the architectures that use the residual networks [7,8,16] are much better than 

the traditional methods. Below is a comparison between a normal CNN and a CNN 

used for image super-resolution. 

 
Figure 1: An example of a CNN used for image classification [23] 

 
Figure 2: An example of a CNN used for image super-resolution [4] 
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By observing the architectures of those models, we can see that they all work 

towards a common goal which is extracting the most meaningful features possible that 

help in creating a rich feature space for a reconstruction layer (usually a CNN layer) 

that can be used to reconstruct a better image and usually that is done by adapting a 

smart architecture capable of reaching this goal but even with smart algorithms and 

methods they still have their drawbacks that comes from the convolutional layers. 

These are mainly the local processing of the convolutional kernels that are good at 

extracting local deep features from a small region but not good at extracting far general 

features of the image which might lead to missing some key aspects of the image that 

might help with better reconstruction. 

Recently there have been many methods that are focused on going around this 

issue by adopting an architecture that is capable of extracting those general features 

like swinIR [9] but those methods use different methods like transformers. 

An alternative way we can go around the CNN issues while still using the same 

structure is to use different phases of the image where the convolutional layer can learn 

features from alternative interpretations of the image that have different locality in the 

original image which cannot be accessed by the original kernels thus allowing the 

network to benefit from both deep and shallow features in the image. 

1.3 Objective 

In this paper, we propose an image restoration model named PENsr which uses 

the input and a phased version of the input to enhance the feature space quality of a 

model structure which we will be implementing using the EDSR architecture. Our 

model consists of three modules: a phases extractor, deep features extractor and a 

reconstructor. 
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The phasor extractor module consists of one layer CNN that has fixed 

parameters to extract 4 different phases of the image and each one has a different far 

feature from a different locality. The deep feature extractor is a residual network that 

uses the EDSR baseline architecture to extract features from the original image and 4 

smaller modified versions of it to process each phase and extract features from them 

then the outputs of all those layers are concatenated together to form the feature space. 

The reconstructor module is one layer of CNN that uses all the features from the 

previous module to construct a high-quality image. 

We experimented with various parameter numbers, datasets, input methods and 

training functions to get the best results training results then tested the model on 

benchmark datasets and compared between our model and the baseline EDSR model 

and also other methods. 
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Chapter 2 

 RELATED WORKS 

In this chapter, we will be explaining some of the methods that had an impact 

on the field of Super-resolution and our research by observing their methodology and 

results. 

2.1 SRCNN 

The introduction of Deep learning methods with the SRCNN model [4] made 

a big jump in the performance and shifted the focus of research towards those methods 

where a simple 2 layer of convolution can outperform the state-of-the-art classical 

methods at that time.  

The model takes a lower resolution image and upscale it with bicubic 

interpolation before sending it the 2 layers of convolution that will extract features and 

enhance the details of the image. One of the most advantages of this method is that it 

does not require any prior information about the image, the only thing needed is a big 

dataset that will help the model learn the mapping between the high- and low-quality 

images. This model was the start and there was lots of room for improvements 

although 2 layers can construct a good quality image it is possible to add more layers 

and better structure to get even better images. 

2.2 Pixels shuffling  

One of the issues with SRCNN was the scaling method they used, where the 

image is scaled using a bicubic interpolation before entering the model which 

introduced extra complexity to the model and added more distorted features to the 
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image which decreased the performance.  A study [13] showed that using the original 

low-resolution input and then upscaling it after extracting the features helped in 

decreasing the computational power and preserved pure features that can construct 

better results, where they used made the first convolutional model that extracts features 

in the low-resolution space then use a sub-pixel convolutional layer that learns and 

upscale the images using feature maps, that resulted in a much better reconstruction 

and it is one of the most commonly used block to upscaling method used for image 

reconstruction. 

2.3 ResNet 

The problem with deep networks is that they are very time consuming to train, 

although it is generally good to have deep models because it allows for the extraction 

of better outputs and learning many patterns that shallower networks usually cannot 

while also keeping in mind the complexity of the task and datasets used for the task 

because in some cases, training deep networks might result in worse results than the 

shallow ones. 

The introduction of the ResNet [8] was a significant change to the deep 

learning field in general because this method allows for the usage of deeper networks 

with less training time and better performance by having short and long skip 

connections through the network that allowed the layers to train much faster where 

those skip connections add the input back to a deeper layer of the model which makes 

them learn faster by warming up their parameters instead of starting from scratch, this 

method helped with stabilising the training and solved the issue of vanishing gradient 

that usually comes with deeper networks. 

 The first model that used the residual structure for a super-resolution task was 

the SRResNet [7] where they used the same residual block structure to solve the image 
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reconstruction problem which yielded better results than the SRCNN model then later 

this architecture was improved on by the EDSR model [16] where they got rid of some 

unnecessary parts of the residual block and made the architecture more suited towards 

the image reconstruction problem. 
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Chapter 3 

PROPOSED METHOD 

In this section, we will describe in detail our method and the model used for 

this task and the model structure that we applied those methods on, as well as the 

optimization we did on the model and as well as show the performance compared with 

the model based on. 

As previously stated, our model has 3 modules and we will be explaining each 

one in detail below. 

3.1 Phasor block 

A classical CNN is very good at extracting local features compared with its 

low tuneable parameters and the variables that control it which are just the kernel size, 

padding and stride. 

There have been many debates and research to see the effect of each one of 

those parameters on the quality of the output mainly the kernel size [14] studies show 

that increasing the kernel size might help with generalisation at the cost of accuracy 

and there has been a range where increasing the kernel size might actually be harmful 

to the performance.  

With the introduction of the classification challenge ImgeNet [22] and the 

winning models for 2012 and 2014 AlexNet [23] and GoogleNet [24] respectively, 

where they reduced the kernel size to 5x5 and 3x3 respectively when it was the norm 

to be 12x12 before that. The impressive results that those models achieved with these 

kernel sizes made 3x3 and 5x5 the most popular and standard ones. Those kernel sizes 
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work fine with classification tasks and it also works fine for Image restoration tasks 

where many models use it [6,5,6,7,8,16].  

This brings us back to the same problem of CNN which is if we increase the 

kernel size to capture more general features for our task, we will make our ability to 

detect the key small features which is why most deep learning methods for super-

resolution tasks set it to 3x3 and some even showed worse performance by using 5x5. 

The other observation we need to make between the low-resolution image and the 

high-resolution one is that the lower resolution image is a down-sampled version of 

the higher one. 

There are many methods to down-sample an image while preserving its details 

[15] but in general, what they do is essentially take pixels out of the image but we do 

not know which pixels got removed. 

If we understand the process of down-sampling an image and account for all 

the possibilities of down-sampling, we can make a network that will learn the pattern 

of the down-sampling and reverse it because the pixels in the up-sampled image share 

similar relations. 

Now that we know that we cannot use normal CNN to get far nonlocal features 

by just increasing the kernel size, we know that there is a pattern to learn from the 

down-sampling process. 

We designed the phasor block that will account for them, this block is just one 

convolutional layer with fixed weights, kernel size, stride and padding that will take 

the input tensor (C, W, H) image and outputs a phased version of that tensor (P, C, 

W/n, H/n) each phase is calculated based on how far we want the features to be 

extracted (the nonlocality region) and also the down-sampling type. 
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The one we are using in our proposed model is a phasor block of depth 2 

meaning that the kernel size of the layer is 2x2 with a stride of 2, and the output will 

be 4 phasors each one has a kernel weight of 1 based on the down-sampling possibility 

you can see the output of each of those phases as shown below. 

 
Figure 3: Example of the Phasing Process 

The example shows one channel input of 8x8 size and how the phases are 

extracted, those phasors will then be combined in a phasor dimension where the 

model can access each one to send it towards their corresponding pipeline. 

3.2 Deep feature extractor block  

To extract deep features from images, the model has to have a deep structure 

capable of learning and recognizing most of the details in an image. Having a big 

model also comes at the cost of higher training time, overfitting and learning limits but 

with the introduction of ResNet [8] which countered these issues by having skip 

connections in the network that helps the network learn faster while having the benefits 

of deeper networks. 

For image super-resolution tasks there have been many methods that used 

residual blocks in their structures but we will be using a structure similar to the one 

that had the best optimization of the residual structure which is the EDSR model [16]. 

Our deep feature extractor block has two pipelines, 
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The main pipeline which passes the original input through the EDSR baseline 

structure without the last convolution  

The second pipeline consists of 4 smaller versions of the main pipe modified 

to account for each phase and scale it to match the size of the main. Each of those 

pipelines consists of the following blocks 

1) Shallow feature extractor implemented using one layer of convolution  

2) Residual block which is a series of convolutional layers with skip connections 

3) Up-sampler block which is a series of convolutional layers and pixel shuffling 

layer [13] that has a different structure based on the upscaling factor of the 

network. 

The output of the main and the secondary pipelines will be the upscaled 

features from the lower resolution image, those upscaled features that share the same 

dimensions are concatenated together to form the feature space needed for the 

reconstruction layer. 

3.3 Reconstructor  

This module consists of 1 convolutional layer that will use the upscaled 

features from the previous module and construct an RGB high resolution and detailed 

image using the information from various perspectives of the image that allows for 

more patterns to learn. 

The figures below show the model structure with the dimensionality of each 

part. 
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Figure 4: The full PENsr architecture with the dimensionality of each layer 

 
Figure 5: The main pipeline for feature extraction. 
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Figure 6: The secondary pipeline for feature extraction that will process the phases 

3.4 PENsr model details and variation 

We started our modelling process by taking the baseline of the EDSR model 

and modified it to fit the structure in the figure above. Since the full EDSR model has 

around 43 million trainable parameters and since we are using 4 more variations of the 

model to process the phasors that resulted in 57 million parameters to train, and since 

we are using a new structure we cannot import the trained parameters from the original 

EDSR model so we had to train the model from scratch and training such a big model 

will require a tremendous amount of time and computational resources, so we limited 

our testing to the baseline version that has only 1.5 million parameters which are easier 

to train and we can demonstrate the effect of adding phasors and with more parameters, 

we should be getting better results. The baseline model uses 16 residual blocks and 64 

feature maps in each layer and no activation functions are used anywhere outside the 

residual blocks where we used the ReLU function. 
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Table 1: Model configurations and parameters 

Options SRResNet  
 

Baseline 
EDSR 

 
EDSR+ PENsr 

 

# Residual 
blocks 16 16 32 16 

 

# Filters 64 64 256 
64 

 

#Parameters 1.5M 1.5M 43M 
1.7M 

 

Residual 

scaling 
       1 1 0.1 

1 

 

Use BN Yes No No 
No 

 
Loss 

function L2 LI LI LI 

 

 
Figure 7: Training loss 

The above figure shows the training loss for the x4 model on the DIV2K dataset 

for 100 epochs where the model converges around the 800-epoch range to an error of 

0.04, the little spikes are the results of training checkpoints where if we stopped 

training and restarted it will result in a small jump in the error. 
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Figure 8: PSNR Evaluation 

The above figure shows the PSNR evaluation of the x4 model on the set5 

dataset that was obtained during training where the model converges to an average 

PSNR of 29db. 

 
Figure 9: Stable Training 

The above figure shows the loss for the x2 model that was trained on the 

DIV2K training set for 1000 epochs without stopping the process in between. 
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Figure 10: Test Image from set 14 
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Figure 11: Test Image from set 5 
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Figure 12: Test Image from BSD100 
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Figure 13: Test Image 1 from DIV2K validation set 
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Figure 14: Test Image 2 from DIV2k validation set 
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Figure 15: Test Image 3 from DIV2k validation set 
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Chapter 4 

EXPERIMENTS 

In this chapter, we will explain our modelling, training and testing methods as 

well as the results of our experiments. 

4.1 Datasets 

For our initial experiments, we use a small subset of the popular DIV2K dataset 

[17] which has 800 training and 200 validations of high-quality 2k resolution images 

that are used in challenges to train and benchmark super-resolution models. 

We used patches of size 48x48 of random 192 images from the training set to 

test the convergence of the model, then we expanded it to the entire training set after 

the success of the initial results. 

Then we found out that increasing the patch size to 64x64 yielded much better 

results so now we augmented the DIV2K 800 training images using the same pre-

processing method as Wang et al [24] and we ended up with 4000 patches of size 

64x64 for our final model. It is worth mentioning that during the pre-processing step 

we use a transformation where we select the patches as 4 corner patches and a central 

patch. 

For the test datasets, we used the 100 images from the DIV2K validation set to 

see and compare the performance of our model. We also used some of the standard 

benchmarking datasets like set5 [18], set14 [19], Urban100 [20] and BSD100 [20]. 
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4.2 Training details 

For training, we are using the Low-resolution RGB patch of size 64x64 and 

their corresponding 128x128 or 256x256 high-resolution version based on the 

upscaling factor. We also introduce a transformation on the input patch which is a 

random horizontal flip as a pre-processing step to help with the training, we also 

subtract the RGB mean of the DIV2K from the images as the last pre-processing step. 

For optimization, we use ADAM [21] for the network with Batas range 0.9-

0.999 and eps of 1e-08. The learning rate is 1e-4 which is halved after every 2x10^5 

mini-batch update with a batch size of 16. The x2 model is trained from scratch and 

after converging it is used as a pre-trained model to the x4 version. 

The calculation of the loss is done with the use of the L1 Loss method which 

yields better results for this structure as Bee Lim [16] explains it helps with faster 

conversions if we use L1 instead of L2. 

The loss function is what forms the objective function for the process and no other 

constrains has been added and below are the equations that describes the two types of 

loss functions and difference between them. 

 

 
Figure 16: Loss Functions 



24 

 

4.3 Development environment 

We developed our proposed model using the PyTorch library and using the 

hugging face super image library [25] to load the datasets and evaluation metrics. 

The models have been trained using NVIDIA RTX3060 GPU. It took 2 days 

to train the x4 model and 18 hours for the x2 model. 

4.4 Model evaluation 

The model has been tested and evaluated on the DIV2K test set (801 to 900) 

images using a modified version of the super image evaluation function, a new 

adjustment has been added to accommodate the compatibility issue of odd dimensions 

due to the addition of the phasor block. 

This adjustment trims the edges of the image to a dimension that is acceptable 

by the network then the evaluation happens on the trimmed version of the input image. 

The same thing is done to the other benchmarking sets to produce the results in the 

following table. 
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Table 2: Performance comparisons between various models 

Dataset Scale Bicubic SRCNN  SRRes

Net  

EDSR 

baseline 

MDSR 

 

EDSR+ 

 

PENsr 

(ours) 

 

Set5 

x2 

 
 

x4 

33.66/ 

0.9299 
 

28.42/ 

0.8104 

36.66/ 

0.9542 
 

30.48/ 

0.8628 

-/ - 

 
 

32.05/ 

0.8910 

38.11/ 

0.9601 
 

32.46/ 

0.8968 

38.11/ 

0.9602 
 

32.50/ 

0.8973 

35.20/ 

0.9806 
 

32.62/ 

0.5954 

38.17/ 

0.9973 
 

31.26 

/0.8841 

 

Setl4 

x2 

 

 

x4 

30.24/ 

0.8688 

 

26.00/ 
0.7027 

32.42/ 

0.9063 

 

27.49/ 
0.7503 

-/ - 

 

 

28.53/ 
0.7804 

33.92/ 

0.9195 

 

28.80/ 
0.7876 

33.85/ 

0.9198 

 

28.72/ 
0.7857 

34.02/ 

0.9204 

 

25.94/ 
0.7901 

32.83/ 

0.9112 

 

28.19 
/0.7514 

 

BSD10

0 

x2 

 

 
x4 

29.56/ 

0.8431 

 
25.96/ 

0.6675 

31.36/ 

0.8879 

 
26.90/ 

0.7101 

-/ - 

 

 
27.57/ 

0.7354 

32.32/ 

0.9013 

 
27.71/ 

0.7420 

32.29/ 

0.9007 

 
27.72/ 

0.7418 

32.37/ 

0.9015 

 
27.79/ 

0.7437 

33.28/ 

0.9193 

 
28.16/ 

0.7530 

 
Urbanl

00 

x22 
 

 

x4 

26.88/ 
0.8403 

 

23.14/ 

0.6577 

29.50/ 
0.8946 

 

24.52/ 

0.7221 

-/ - 
 

 

26.07/ 

0.7839 

32.93/ 
0.9351 

 

26.64/ 

0.8033 

32.84/ 
0.9347 

 

26.67/ 

0.8041 

33.10/ 
0.93ó3 

 

26.86/ 

0.8080 

30.00/ 
0.9040 

 

25.13/ 

0.7514 

 

DIV2K 

validati
on 

x 2 

 

 
x 4 

31.01 / 

0.9393 

 
26.66 / 

0.8521 

33.05 / 

0.9581 

 
27.78 / 

0.8753 

 
 

 

 

35.03/ 

0.9695 

 
29.25/ 

0.9017 

34.96/ 

0.9692 

 
29.26/ 

0.9016 

35.12/ 

0.9699 

 
29.35 / 

0.9032 

35.06/ 

0.9371 

 
29.87/ 

0.8239 

The above table shows the performance comparisons between various models 

using publicly available results with our obtained values, measured in PSNR (in 

dB)/SSIM. 
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Chapter 5 

CONCLUSION AND FUTURE WORK 

In this paper, we introduced a super-resolution model that uses phasors and 

residual networks to reconstruct images based on a convolutional architecture which 

bypasses the locality issue of the convolutional kernel and extracts more meaningful 

features from the image as well as creating a structure capable of learning the down-

sampling process and using it to reconstruct better images. 

Our model has achieved improvements on the EDSR baseline model and the 

same thing can be done on the final EDSR to show better results, given the availability 

of time and hardware, some possible ways to improve the model is by adding more 

residual blocks and feature maps. 

Our model has been tested on standard benchmarking datasets and the 

PSNR/SSIM measurement showed an improvement in the performance compared with 

the original baseline model that has been used. 

To further expand this work, there are a few things that will help achieve 

better results, like expanding the model with more feature maps and/or more residual 

blocks which will help extract more features and patterns, one more thing that will 

enhance the richness of the feature space is to add more ways to incorporate non-

local features to the pipeline. Lastly, the usage of better hardware like a better GPU 

or a TPU will help increase the speed of the training process. 
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Project Code 

 

import torch.utils.data as data 

import torch 

#library to manipulating huge amount of data in numpy format 

import h5py 

%matplotlib inline 

import matplotlib.pyplot as plt 

import numpy as np 

class DatasetFromHdf5(data.Dataset): 

 def __init__(self, file_path): 

     super(DatasetFromHdf5, self).__init__() 

     hf = h5py.File(file_path) 

     self.data = hf.get('data') 

     self.target = hf.get('label') 

def __getitem__(self, index): 

     return torch.from_numpy(self.data[index,:,:,:]).float(), 

torch.from_numpy(self.target[index,:,:,:]).float() 

def __len__(self): 

     return self.data.shape[0] 

from torchsummary import summary 

import torch 

import torch.nn as nn 

import math 

class MeanShift(Conv2d): 
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 def __init__(self, rgb_mean, sign): 

     super(MeanShift, self).__init__(3, 3, kernel_size=1) 

     self.weight.data = torch.eye(3).view(3, 3, 1, 1) # W H C N 

     self.bias.data = float(sign) * torch.Tensor(rgb_mean) 

     # Freeze the MeanShift layer 

     for params in self.parameters(): 

         params.requires_grad = False          

class phase(nn.Module): 

 def phasing_filters (self,kernal_size): 

     phases = kernal_size * kernal_size 

     tensor = torch.zeros((phases,kernal_size,kernal_size), dtype=torch.float, 

device = 'cuda') 

     x = 0 

     while (x<phases): 

         for y in range(kernal_size): 

             for z in range(kernal_size): 

                 tensor[x][y][z] = 1.; 

                 x = x+1 

     tensor = tensor[None,:,:,:] 

     tensor = tensor.permute(1,0,2,3) 

     return tensor 

def __init__(self, size): 

     self.phases = size*size 

     weight = self.phasing_filters(size) 

     super(phase, self).__init__() 
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     self.conv = Conv2d(1, 1,self.phases, (2, 2),False , (2,2)) 

     self.conv.weight = torch.nn.Parameter(weight) 

     self.conv.weight.to(device='cuda', dtype=torch.float) 

     # Freeze the MeanShift layer 

     for params in self.parameters(): 

         params.requires_grad = False 

 def forward(self, x): 

     final = [] 

     for i in range(len(x[:])): 

         x1 = x[None,i,0,:,:] 

         x2 = x[None,i,1,:,:] 

         x3 = x[None,i,2,:,:] 

         x1 = torch.unsqueeze(x1, dim=0).to('cuda') 

         x2 = torch.unsqueeze(x2, dim=0).to('cuda') 

         x3 = torch.unsqueeze(x3, dim=0).to('cuda') 

         conv_x1 = self.conv(x1) 

         conv_x2 = self.conv(x2) 

         conv_x3 = self.conv(x3) 

         outputs = [] 

         for c in range(self.phases): 

             F = 

torch.cat((conv_x1[None,:,c,:,:],conv_x2[None,:,c,:,:],conv_x3[None,:,c,:,:]),0) 

             outputs.append(F) 

             results = torch.cat(outputs, dim=1) 

             results = results.permute(1,0,2,3) 
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             results = results[None,:,:,:,:] 

         final.append(results) 

     final = torch.cat(final, dim=0) 

     final = final.permute(1,0,2,3,4) 

     return final 

 

class _Residual_Block(nn.Module): 

 def __init__(self): 

     super(_Residual_Block, self).__init__() 

 

     self.conv1 = Conv2d(256, 256, 3, stride=1, 1,False) 

     self.relu = nn.ReLU(inplace=True) 

     self.conv2 = Conv2d(256, 256, 3, 1, 1, False) 

 

 def forward(self, x): 

     identity_data = x 

     output = self.relu(self.conv1(x)) 

     output = self.conv2(output) 

     output *= 0.1 

     output = torch.add(output,identity_data) 

     return output 

     

class _Residual_Block_phase(nn.Module): 

 def __init__(self): 

     super(_Residual_Block_phase, self).__init__() 
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     self.conv1 = Conv2d(64, 64, 3,1, 1, False) 

     self.relu = nn.ReLU(inplace=True) 

     self.conv2 = Conv2d(64, 64, 3, 1, 1, False) 

 

 def forward(self, x): 

     identity_data = x 

     output = self.relu(self.conv1(x)) 

     output = self.conv2(output) 

     output *= 0.1 

     output = torch.add(output,identity_data) 

     return output 

 

class Net(nn.Module): 

 def __init__(self): 

     super(Net, self).__init__() 

 

     rgb_mean = (0.4488, 0.4371, 0.4040) 

     self.sub_mean = MeanShift(rgb_mean, -1) 

     self.phases = phase(2) 

     #input conv 

     self.conv_input = Conv2d(3,256, 3, 1, 1,False) 

     self.input_phases = Conv2d(3,64, 3, 1, 1,False)  

     #residual block 

     self.residual = self.make_layer(_Residual_Block, 32) 



37 

 

     self.phase_residual = self.make_layer(_Residual_Block_phase, 8) 

      

     #mid convolution 

     self.conv_mid = Conv2d( 256,  256, 3, 1, 1, False) 

     self.conv_mid_phases = Conv2d( 64, 64,  3, 1, 1, False) 

 

     self.upscale4x = nn.Sequential( 

         Conv2d(256, 256*4, 3, 1, 1, False), 

         nn.PixelShuffle(2), 

         nn.Conv2d(256, 256*4, 3, 1, 1, False), 

         nn.PixelShuffle(2),) 

    self.upscale4x_phases = nn.Sequential( 

         Conv2d(64, 64*4,3, 1, 1, bias=False), 

         nn.PixelShuffle(2), 

         Conv2d(64, 64*4, 3, 1, 1, False), 

         nn.PixelShuffle(2), 

         Conv2d( 64,  64*4, 3,1, 1, False), 

         nn.PixelShuffle(2),) 

 

     self.conv_output = Conv2d(256*2, 3, 3, 1, 1,False) 

 

     self.add_mean = MeanShift(rgb_mean, 1) 

 

     for m in self.modules(): 

         if isinstance(m, nn.Conv2d): 



38 

 

             n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels 

             m.weight.data.normal_(0, math.sqrt(2. / n)) 

             if m.bias is not None: 

                 m.bias.data.zero_() 

         elif isinstance(m, nn.BatchNorm2d): 

             m.weight.data.fill_(1) 

             if m.bias is not None: 

                 m.bias.data.zero_() 

 

 def make_layer(self, block, num_of_layer): 

     layers = [] 

     for _ in range(num_of_layer): 

         layers.append(block()) 

     return nn.Sequential(*layers) 

 

 def forward(self, x): 

     out = self.sub_mean(x) 

     phases_list = [] 

     for p in range (self.phases(out).shape[0]): 

       phases_list.append(self.phases(out)[p]) 

     #p1  = self.phases(out)[0] 

     #p2  = self.phases(out)[1] 

     #p3  = self.phases(out)[2] 

     #p4  = self.phases(out)[3] 
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     out = self.conv_input(out) 

     for p in enumerate(phases_list): 

       phases_list[p] = self.input_phases(p) 

     #p1  = self.input_phases(p1) 

     #p2  = self.input_phases(p2) 

     #p3  = self.input_phases(p3) 

     #p4  = self.input_phases(p4) 

     residual = out 

     rp_list = [] 

     for rp in phases_list: 

       rp_list.append(rp) 

     #rp1 = p1 

     #rp2 = p2 

     #rp3 = p3 

     #rp4 = p4 

      

     out = self.conv_mid(self.residual(out)) 

     for p in phases_list: 

       phases_list[p] = self.conv_mid_phases(self.phase_residual(p)) 

 

     #p1  = self.conv_mid_phases(self.phase_residual(p1)) 

     #p2  = self.conv_mid_phases(self.phase_residual(p2)) 

     #p3  = self.conv_mid_phases(self.phase_residual(p3)) 

     #p4  = self.conv_mid_phases(self.phase_residual(p4)) 
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     out = torch.add(out,residual) 

 

     for p in phases_list: 

       phases_list[p] = torch.add(p,rp_list[p]) 

 

     #p1  = torch.add(p1,rp1) 

     #p2  = torch.add(p2,rp2) 

     #p3  = torch.add(p3,rp3) 

     #p4  = torch.add(p4,rp4) 

      

     out = self.upscale4x(out) 

     for p in phases_list: 

       phases_list[p] = self.upscale4x_phases(p) 

     #p1  = self.upscale4x_phases(p1) 

     #p2  = self.upscale4x_phases(p2) 

     #p3  = self.upscale4x_phases(p3) 

     #p4  = self.upscale4x_phases(p4) 

     for p in phases_list: 

       final = torch.cat((out,p),dim = 1) 

     final = self.conv_output(final) 

     out = self.add_mean(final) 

      

      

     return out 

model = Net() 
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model.cuda() 

summary(model, input_size=(3, 48, 48)) 

import argparse, os 

import torch 

import math, random 

import torch.backends.cudnn as cudnn 

import torch.nn as nn 

import torch.optim as optim 

from torch.autograd import Variable 

from torch.utils.data import DataLoader 

torch.cuda.empty_cache() 

 

 

# Training settings 

batchSize = 16          #training batch size 

nEpochs   = 960        #number of epochs to train for 

tlr       = 1e-4       #Learning Rate. Default=1e-4 

step      = 200        #Sets the learning rate to the initial LR decayed by momentum 

every n epochs, Default: n=10 

cuda      = True       #use cuda         

start_epoch  = 1          #manual epoch number (useful on restarts) 

threads   = 4          #number of threads for data loader to use 

momentum  = 0.9        #momentum 

tweight_decay = float(1e-4)  #weight decay, Default: 0 
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global model 

 

#check if you can use the gpu 

if cuda and not torch.cuda.is_available(): 

 raise Exception("No GPU found") 

 

#preaparing a seed to randomly inisilize wieghts 

seed = random.randint(1, 10000) 

print("Random Seed: ", seed) 

torch.manual_seed(seed) 

if cuda: 

 cudnn.benchmark = True     

 

print("===> Loading datasets") 

train_set = DatasetFromHdf5("data/edsr_x4.h5") 

training_data_loader = DataLoader(dataset=train_set, num_workers=threads, 

batch_size= batchSize, shuffle=True) 

#print(training_data_loader.shape 

print("===> Building model") 

model = Net() 

criterion = nn.L1Loss(size_average=False) 

print("===> Setting GPU") 

if cuda: 

 torch.cuda.empty_cache() 

 model = model.cuda() 
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 criterion = criterion.cuda() 

     

     

checkpoint = 

torch.load('/content/drive/MyDrive/EDSR/checkpoint/model_epoch_135.pth') 

start_epoch = checkpoint["epoch"] + 1 

model.load_state_dict(checkpoint["model"].state_dict()) 

 

# optionally resume from a checkpoint 

#if opt.resume: 

# if os.path.isfile(opt.resume): 

#     print("=> loading checkpoint '{}'".format(opt.resume)) 

#     checkpoint = torch.load(opt.resume) 

#     opt.start_epoch = checkpoint["epoch"] + 1 

#     model.load_state_dict(checkpoint["model"].state_dict()) 

# else: 

#     print("=> no checkpoint found at '{}'".format(opt.resume)) 

 

def adjust_learning_rate(optimizer, epoch): 

 """Sets the learning rate to the initial LR decayed by 10""" 

 lr = tlr * (0.1 ** (epoch // step)) 

 return lr 

 

def train(training_data_loader, optimizer, model, criterion, epoch): 

 lr = adjust_learning_rate(optimizer, epoch-1) 
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 for param_group in optimizer.param_groups: 

     param_group["lr"] = lr 

 

 print("Epoch={}, lr={}".format(epoch, optimizer.param_groups[0]["lr"])) 

 model.train() 

 running_loss = 0 

 for iteration, batch in enumerate(training_data_loader, 1): 

     input, target = Variable(batch[0]), Variable(batch[1], requires_grad=False) 

     if cuda: 

         input = input.cuda() 

         target = target.cuda() 

     torch.cuda.empty_cache() 

     loss = criterion(model(input), target) 

     running_loss =+ loss.item() *input.size(0) 

     optimizer.zero_grad() 

     loss.backward() 

     optimizer.step() 

     torch.cuda.empty_cache() 

     if iteration%116 == 0: 

         print("===> Epoch[{}]({}/{}): Loss: {:.5f}".format(epoch, iteration, 

len(training_data_loader), loss.item())) 

 loss_value = (running_loss /len(training_data_loader)) 

 return (loss_value) 

 

def save_checkpoint(model, epoch): 



45 

 

 model_folder = "checkpoint/" 

 model_out_path = model_folder + "model_epoch_{}.pth".format(epoch) 

 state = {"epoch": epoch ,"model": model} 

 if not os.path.exists(model_folder): 

     os.makedirs(model_folder) 

 torch.save(state, model_out_path) 

 print("Checkpoint saved to {}".format(model_out_path)) 

loss_log =  open("log.txt","w+") 

print("===> Setting Optimizer") 

optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr= 

tlr, weight_decay = tweight_decay , betas = (0.9, 0.999), eps=1e-08) 

print("===> Training") 

losses = [] 

for epoch in range(start_epoch,nEpochs + 1): 

 torch.cuda.empty_cache() 

 eloss = train(training_data_loader, optimizer, model, criterion, epoch) 

 losses.append(eloss) 

 print(eloss) 

 loss_log.write("{}\r\n".format(eloss)) 

 save_checkpoint(model, epoch) 

loss_log.close() 

import matlab.engine 

import argparse 

import torch 

from torch.autograd import Variable 
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import numpy as np 

import time, math, glob 

import scipy.io as sio 

import cv2 

 

# evalution parameters 

cuda = True 

tmodel  = "checkpoint/model_edsr.pth" 

dataset = "Set5" 

scalet  = 4 

 

def PSNR(pred, gt, shave_border=0): 

 height, width = pred.shape[:2] 

 pred = pred[shave_border:height - shave_border, shave_border:width - 

shave_border] 

 gt = gt[shave_border:height - shave_border, shave_border:width - 

shave_border] 

 imdff = pred - gt 

 rmse = math.sqrt(np.mean(imdff ** 2)) 

 if rmse == 0: 

     return 100 

 return 20 * math.log10(255.0 / rmse) 

eng = matlab.engine.start_matlab() 

 

if cuda and not torch.cuda.is_available(): 
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 raise Exception("No GPU found, please run without --cuda") 

 

model = torch.load(tmodel)["model"] 

 

image_list = glob.glob(dataset+"/*.*") 

 

avg_psnr_predicted = 0.0 

avg_psnr_bicubic = 0.0 

avg_elapsed_time = 0.0 

 

for image_name in image_list: 

 print("Processing ", image_name) 

 im_gt_y = sio.loadmat(image_name)['im_gt_y'] 

 im_b_y = sio.loadmat(image_name)['im_b_y'] 

 im_l = sio.loadmat(image_name)['im_l'] 

 

 im_gt_y = im_gt_y.astype(float) 

 im_b_y = im_b_y.astype(float) 

 im_l = im_l.astype(float) 

 

 psnr_bicubic = PSNR(im_gt_y, im_b_y,shave_border=opt.scale) 

 avg_psnr_bicubic += psnr_bicubic 

 

 im_input = im_l.astype(np.float32).transpose(2,0,1) 
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 im_input = 

im_input.reshape(1,im_input.shape[0],im_input.shape[1],im_input.shape[2]) 

 im_input = Variable(torch.from_numpy(im_input/255.).float()) 

 

 if cuda: 

     model = model.cuda() 

     im_input = im_input.cuda() 

 else: 

     model = model.cpu() 

 

 start_time = time.time() 

 HR_4x = model(im_input) 

 elapsed_time = time.time() - start_time 

 avg_elapsed_time += elapsed_time 

 

 HR_4x = HR_4x.cpu() 

 

 im_h = HR_4x.data[0].numpy().astype(np.float32) 

 

 im_h = im_h*255. 

 im_h = np.clip(im_h, 0., 255.) 

 im_h = im_h.transpose(1,2,0).astype(np.float32) 

 

 im_h_matlab = matlab.double((im_h / 255.).tolist()) 

 im_h_ycbcr = eng.rgb2ycbcr(im_h_matlab) 
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 im_h_ycbcr = np.array(im_h_ycbcr._data).reshape(im_h_ycbcr.size, 

order='F').astype(np.float32) * 255. 

 im_h_y = im_h_ycbcr[:,:,0] 

 

 psnr_predicted = PSNR(im_gt_y, im_h_y,shave_border=opt.scale) 

 avg_psnr_predicted += psnr_predicted 

 

print("Scale=", scale) 

print("Dataset=", dataset) 

print("PSNR_predicted=", avg_psnr_predicted/len(image_list)) 

print("PSNR_bicubic=", avg_psnr_bicubic/len(image_list)) 

print("It takes average {}s for 

processing".format(avg_elapsed_time/len(image_list))) 
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