

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical and Electronic Engineering

A CNN Based Single Image Super-Resolution Using

Residual Networks With Non-Local Multiple Image

Phases

 Al- Khattab Ali Y. Al-Qaseem

Eastern Mediterranean University

February 2022

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy

Director

Assoc. Prof. Dr. Rasime Uyguroğlu

 Chair, Department of Electrical and

Electronic Engineering

Prof. Dr. Hüseyin Özkaramanlı

Supervisor

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science in Electrical and Electronic Engineering.

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Electrical and

Electronic Engineering.

Examining Committee

1. Prof. Dr. Hasan Amca

2. Prof. Dr. Bülent Bilgehan

3. Prof. Dr. Hüseyı̇n Özkaramanlı

iii

ABSTRACT

Image-super resolution is a fast-growing research field that has been enhanced

by the introduction of deep learning methods that achieved greater results and

performance.

Convolutional deep networks that utilize residual architecture have shown the

best performance. One of the best models that use this architecture is the EDSR model

[16], which showed a great result in extracting and reconstructing images but the

features that it extracts are not always optimal due to the locality of the convolutional

window which might result in missing some general key features about the image from

the areas outside the convolution kernel of the image.

In this project, we propose an improvement on the convolutional network

architecture that uses residual blocks to detect the local features of the image by adding

a phased version of the input that will add the missing nonlocal features and improve

the quality of the feature space that will result in a better reconstruction.

We achieved our objective by introducing a new phasor block to the model

which will create different perspectives of the image which we trained using a smaller

version of EDSR for each phase then concatenated the results of the original and the

phases into one big feature space containing deep and shallow features which enhanced

the reconstruction of the image.

Keywords: Convolutional Networks, Residual Networks, EDSR, Phasor

iv

ÖZ

Görüntü ivuper çözünürlüğü, daha büyük sonuçlar ve performans elde eden

derin öğrenme yöntemlerinin tanıtılmasıyla geliştirilmiş, hızla büyüyen bir araştırma

alanıdır.

Artık mimariyi kullanan evrişimli derin ağlar en iyi performansı göstermiştir.

Bu mimariyi kullanan en iyi modellerden biri, görüntülerin çıkarılması ve yeniden

yapılandırılmasında harika bir sonuç gösteren EDSR modelidir[16], ancak çıkardığı

özellikler, kayıpla sonuçlanabilecek evrişim penceresinin yerelliği nedeniyle her

zaman optimal değildir. Görüntünün evrişim çekirdeğinin dışındaki alanlardan

görüntü hakkında bazı genel temel özellikler.

Bu projede, eksik yerel olmayan özellikleri ekleyecek ve özellik uzayının

kalitesini artıracak girdinin aşamalı bir sürümünü ekleyerek görüntünün yerel

özelliklerini algılamak için artık blokları kullanan evrişimli ağ mimarisinde bir

iyileştirme öneriyoruz. Daha iyi bir yeniden yapılanma ile sonuçlanacaktır.

Her aşama için daha küçük bir EDSR sürümü kullanarak eğittiğimiz

görüntünün farklı perspektiflerini yaratacak modele yeni bir fazör bloğu ekleyerek

hedefimize ulaştık, ardından orijinalin ve fazların sonuçlarını derin içeren tek bir

büyük özellik alanında birleştirdik. Ye görüntünün yeniden yapılandırılmasını

geliştiren sığ özellikler.

Anahtar Kelimeler: Evrişimli Ağlar, Artık Ağlar, EDSR, Fazör

v

ACKNOWLEDGEMENTS

I would like to thank Prof. Dr Hüseyin özkaramanli for his supervision,

assistance, and guidance from the very beginning of this thesis, as well as for providing

me with incredible experiences throughout the process. Above all, and most

importantly, he constantly encouraged and supported me in many ways. His thoughts,

experiences, advice, and ambitions have enriched and motivated my development as a

student and as a person. He is a true mentor and it is my greatest honour to be his

student. I owe him far more than he realizes.

I would also like to express my gratitude to my dear parents who are the pillars

that supported me in all aspects to whom I owe too much. I would also like to thank

all my friends who were always there for me and helped me through the toughest time,

they are like my second family and I wish the best for them.

Lastly, I would like to thank all the electrical department staff for their work

and effort in creating such a great learning, developing and working environment filled

with helpful, friendly and wonderful people and I am proud of being a student of this

department.

To all who are not mentioned but in one way or another helped in the

completion of this study, thank you very much.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ÖZ .. iv

ACKNOWLEDGEMENTS ... v

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

LIST OF ABBREVIATIONS .. x

1 INTRODUCTION .. 1

1.1 Definition ... 1

1.2 Development of methods .. 1

1.3 Objective .. 3

2 RELATED WORKS ... 5

2.1 SRCNN .. 5

2.2 Pixels shuffling .. 5

2.3 ResNet ... 6

3 PROPOSED METHOD .. 8

3.1 Phasor block... 8

3.2 Deep feature extractor block ..10

3.3 Reconstructor ..11

3.4 PENsr model details and variation ...13

4 EXPERIMENTS ..22

4.1 Datasets...22

4.2 Training details ...23

4.3 Development environment ..24

vii

4.4 Model evaluation...24

5 CONCLUSION AND FUTURE WORK ..26

REFERENCES ...27

APPENDIX ..31

viii

LIST OF TABLES

Table 1: Model configurations and parameters ..14

Table 2: Performance comparisons between various models25

ix

LIST OF FIGURES

Figure 1: An example of a CNN used for image classification [23] 2

Figure 2: An example of a CNN used for image super-resolution [4] 2

Figure 3: Example of the Phasing Process ...10

Figure 4: The full PENsr architecture with the dimensionality of each layer12

Figure 5: The main pipeline for feature extraction. ..12

Figure 6: The secondary pipeline for feature extraction that will process the phases 13

Figure 7: Training loss ..14

Figure 8: PSNR Evaluation ...15

Figure 9: Stable Training ..15

Figure 10: Test Image from set 14 ...16

Figure 11: Test Image from set 5 ...17

Figure 12: Test Image from BSD100...18

Figure 13: Test Image 1 from DIV2K validation set ..19

Figure 14: Test Image 2 from DIV2k validation set ...20

Figure 15: Test Image 3 from DIV2k validation set ...21

Figure 16: Loss Functions ...23

x

LIST OF ABBREVIATIONS

CNN Convolutional Neural Networks

SR Super Resolution

PSNR Peak Signal to Noise Ratio

SSIM Structural Similarity Index Measurement

PENsr Name of Our model

EDSR Enhanced Deep Residual Networks model

SRCNN Super Resolution Convolutional Neural Network model

ResNet Residual Network model

SRResNet Super Resolution Residual Network model

ReLU Rectified Linear Unit

1

Chapter 1

INTRODUCTION

In this chapter, we will give a brief introduction to the Super-resolution

problem as well as some of the methods used to solve this problem.

1.1 Definition

Image super-resolution is the process of obtaining a high-quality image from a

low quality and resolution counterpart of the same image, this process applies to all

image restoration fields like image compression and denoising. The field of image

reconstruction and especially single image reconstruction has gained a great deal of

popularity recently due to the advancement of digital data technologies and the rising

need for high-quality images in many fields.

Therefore, many methods have been developed to understand the relation

between high-resolution images and their lower-resolution counterparts, but finding a

direct relation is not an easy task, mainly because each image is unique and other

factors like blur, noise and decimation might lead to inaccuracy interpretation of

relation.

1.2 Development of methods

The early work done to solve the Super-resolution and image reconstruction

problem with classical methods that use interpolations [10] yielded some good results

in reconstructing the general features of the image but failed at reconstructing the

details of the image, especially the realistic textures.

2

Other learning-based methods focused on finding the relation between the

lower resolution image and the higher resolution image by utilising methods like

sparse coding [11] or embedding [12].

There have been many methods that managed to reconstruct images with a

certain degree of success [1,2,3] but the introduction of deep learning methods showed

significant improvements in terms of Peak Signal to Noise Ratio (PSNR) and

Structural Similarity Index Measurement (SSIM) for those problems, and

Convolutional Neural Networks (CNNs) [4,5,6] is one of the most popular frameworks

especially the architectures that use the residual networks [7,8,16] are much better than

the traditional methods. Below is a comparison between a normal CNN and a CNN

used for image super-resolution.

Figure 1: An example of a CNN used for image classification [23]

Figure 2: An example of a CNN used for image super-resolution [4]

3

By observing the architectures of those models, we can see that they all work

towards a common goal which is extracting the most meaningful features possible that

help in creating a rich feature space for a reconstruction layer (usually a CNN layer)

that can be used to reconstruct a better image and usually that is done by adapting a

smart architecture capable of reaching this goal but even with smart algorithms and

methods they still have their drawbacks that comes from the convolutional layers.

These are mainly the local processing of the convolutional kernels that are good at

extracting local deep features from a small region but not good at extracting far general

features of the image which might lead to missing some key aspects of the image that

might help with better reconstruction.

Recently there have been many methods that are focused on going around this

issue by adopting an architecture that is capable of extracting those general features

like swinIR [9] but those methods use different methods like transformers.

An alternative way we can go around the CNN issues while still using the same

structure is to use different phases of the image where the convolutional layer can learn

features from alternative interpretations of the image that have different locality in the

original image which cannot be accessed by the original kernels thus allowing the

network to benefit from both deep and shallow features in the image.

1.3 Objective

In this paper, we propose an image restoration model named PENsr which uses

the input and a phased version of the input to enhance the feature space quality of a

model structure which we will be implementing using the EDSR architecture. Our

model consists of three modules: a phases extractor, deep features extractor and a

reconstructor.

4

The phasor extractor module consists of one layer CNN that has fixed

parameters to extract 4 different phases of the image and each one has a different far

feature from a different locality. The deep feature extractor is a residual network that

uses the EDSR baseline architecture to extract features from the original image and 4

smaller modified versions of it to process each phase and extract features from them

then the outputs of all those layers are concatenated together to form the feature space.

The reconstructor module is one layer of CNN that uses all the features from the

previous module to construct a high-quality image.

We experimented with various parameter numbers, datasets, input methods and

training functions to get the best results training results then tested the model on

benchmark datasets and compared between our model and the baseline EDSR model

and also other methods.

5

Chapter 2

 RELATED WORKS

In this chapter, we will be explaining some of the methods that had an impact

on the field of Super-resolution and our research by observing their methodology and

results.

2.1 SRCNN

The introduction of Deep learning methods with the SRCNN model [4] made

a big jump in the performance and shifted the focus of research towards those methods

where a simple 2 layer of convolution can outperform the state-of-the-art classical

methods at that time.

The model takes a lower resolution image and upscale it with bicubic

interpolation before sending it the 2 layers of convolution that will extract features and

enhance the details of the image. One of the most advantages of this method is that it

does not require any prior information about the image, the only thing needed is a big

dataset that will help the model learn the mapping between the high- and low-quality

images. This model was the start and there was lots of room for improvements

although 2 layers can construct a good quality image it is possible to add more layers

and better structure to get even better images.

2.2 Pixels shuffling

One of the issues with SRCNN was the scaling method they used, where the

image is scaled using a bicubic interpolation before entering the model which

introduced extra complexity to the model and added more distorted features to the

6

image which decreased the performance. A study [13] showed that using the original

low-resolution input and then upscaling it after extracting the features helped in

decreasing the computational power and preserved pure features that can construct

better results, where they used made the first convolutional model that extracts features

in the low-resolution space then use a sub-pixel convolutional layer that learns and

upscale the images using feature maps, that resulted in a much better reconstruction

and it is one of the most commonly used block to upscaling method used for image

reconstruction.

2.3 ResNet

The problem with deep networks is that they are very time consuming to train,

although it is generally good to have deep models because it allows for the extraction

of better outputs and learning many patterns that shallower networks usually cannot

while also keeping in mind the complexity of the task and datasets used for the task

because in some cases, training deep networks might result in worse results than the

shallow ones.

The introduction of the ResNet [8] was a significant change to the deep

learning field in general because this method allows for the usage of deeper networks

with less training time and better performance by having short and long skip

connections through the network that allowed the layers to train much faster where

those skip connections add the input back to a deeper layer of the model which makes

them learn faster by warming up their parameters instead of starting from scratch, this

method helped with stabilising the training and solved the issue of vanishing gradient

that usually comes with deeper networks.

 The first model that used the residual structure for a super-resolution task was

the SRResNet [7] where they used the same residual block structure to solve the image

7

reconstruction problem which yielded better results than the SRCNN model then later

this architecture was improved on by the EDSR model [16] where they got rid of some

unnecessary parts of the residual block and made the architecture more suited towards

the image reconstruction problem.

8

Chapter 3

PROPOSED METHOD

In this section, we will describe in detail our method and the model used for

this task and the model structure that we applied those methods on, as well as the

optimization we did on the model and as well as show the performance compared with

the model based on.

As previously stated, our model has 3 modules and we will be explaining each

one in detail below.

3.1 Phasor block

A classical CNN is very good at extracting local features compared with its

low tuneable parameters and the variables that control it which are just the kernel size,

padding and stride.

There have been many debates and research to see the effect of each one of

those parameters on the quality of the output mainly the kernel size [14] studies show

that increasing the kernel size might help with generalisation at the cost of accuracy

and there has been a range where increasing the kernel size might actually be harmful

to the performance.

With the introduction of the classification challenge ImgeNet [22] and the

winning models for 2012 and 2014 AlexNet [23] and GoogleNet [24] respectively,

where they reduced the kernel size to 5x5 and 3x3 respectively when it was the norm

to be 12x12 before that. The impressive results that those models achieved with these

kernel sizes made 3x3 and 5x5 the most popular and standard ones. Those kernel sizes

9

work fine with classification tasks and it also works fine for Image restoration tasks

where many models use it [6,5,6,7,8,16].

This brings us back to the same problem of CNN which is if we increase the

kernel size to capture more general features for our task, we will make our ability to

detect the key small features which is why most deep learning methods for super-

resolution tasks set it to 3x3 and some even showed worse performance by using 5x5.

The other observation we need to make between the low-resolution image and the

high-resolution one is that the lower resolution image is a down-sampled version of

the higher one.

There are many methods to down-sample an image while preserving its details

[15] but in general, what they do is essentially take pixels out of the image but we do

not know which pixels got removed.

If we understand the process of down-sampling an image and account for all

the possibilities of down-sampling, we can make a network that will learn the pattern

of the down-sampling and reverse it because the pixels in the up-sampled image share

similar relations.

Now that we know that we cannot use normal CNN to get far nonlocal features

by just increasing the kernel size, we know that there is a pattern to learn from the

down-sampling process.

We designed the phasor block that will account for them, this block is just one

convolutional layer with fixed weights, kernel size, stride and padding that will take

the input tensor (C, W, H) image and outputs a phased version of that tensor (P, C,

W/n, H/n) each phase is calculated based on how far we want the features to be

extracted (the nonlocality region) and also the down-sampling type.

10

The one we are using in our proposed model is a phasor block of depth 2

meaning that the kernel size of the layer is 2x2 with a stride of 2, and the output will

be 4 phasors each one has a kernel weight of 1 based on the down-sampling possibility

you can see the output of each of those phases as shown below.

Figure 3: Example of the Phasing Process

The example shows one channel input of 8x8 size and how the phases are

extracted, those phasors will then be combined in a phasor dimension where the

model can access each one to send it towards their corresponding pipeline.

3.2 Deep feature extractor block

To extract deep features from images, the model has to have a deep structure

capable of learning and recognizing most of the details in an image. Having a big

model also comes at the cost of higher training time, overfitting and learning limits but

with the introduction of ResNet [8] which countered these issues by having skip

connections in the network that helps the network learn faster while having the benefits

of deeper networks.

For image super-resolution tasks there have been many methods that used

residual blocks in their structures but we will be using a structure similar to the one

that had the best optimization of the residual structure which is the EDSR model [16].

Our deep feature extractor block has two pipelines,

11

The main pipeline which passes the original input through the EDSR baseline

structure without the last convolution

The second pipeline consists of 4 smaller versions of the main pipe modified

to account for each phase and scale it to match the size of the main. Each of those

pipelines consists of the following blocks

1) Shallow feature extractor implemented using one layer of convolution

2) Residual block which is a series of convolutional layers with skip connections

3) Up-sampler block which is a series of convolutional layers and pixel shuffling

layer [13] that has a different structure based on the upscaling factor of the

network.

The output of the main and the secondary pipelines will be the upscaled

features from the lower resolution image, those upscaled features that share the same

dimensions are concatenated together to form the feature space needed for the

reconstruction layer.

3.3 Reconstructor

This module consists of 1 convolutional layer that will use the upscaled

features from the previous module and construct an RGB high resolution and detailed

image using the information from various perspectives of the image that allows for

more patterns to learn.

The figures below show the model structure with the dimensionality of each

part.

12

Figure 4: The full PENsr architecture with the dimensionality of each layer

Figure 5: The main pipeline for feature extraction.

13

Figure 6: The secondary pipeline for feature extraction that will process the phases

3.4 PENsr model details and variation

We started our modelling process by taking the baseline of the EDSR model

and modified it to fit the structure in the figure above. Since the full EDSR model has

around 43 million trainable parameters and since we are using 4 more variations of the

model to process the phasors that resulted in 57 million parameters to train, and since

we are using a new structure we cannot import the trained parameters from the original

EDSR model so we had to train the model from scratch and training such a big model

will require a tremendous amount of time and computational resources, so we limited

our testing to the baseline version that has only 1.5 million parameters which are easier

to train and we can demonstrate the effect of adding phasors and with more parameters,

we should be getting better results. The baseline model uses 16 residual blocks and 64

feature maps in each layer and no activation functions are used anywhere outside the

residual blocks where we used the ReLU function.

14

Table 1: Model configurations and parameters

Options SRResNet

Baseline
EDSR

EDSR+ PENsr

Residual
blocks 16 16 32 16

Filters 64 64 256
64

#Parameters 1.5M 1.5M 43M
1.7M

Residual

scaling
 1 1 0.1

1

Use BN Yes No No
No

Loss

function L2 LI LI LI

Figure 7: Training loss

The above figure shows the training loss for the x4 model on the DIV2K dataset

for 100 epochs where the model converges around the 800-epoch range to an error of

0.04, the little spikes are the results of training checkpoints where if we stopped

training and restarted it will result in a small jump in the error.

15

Figure 8: PSNR Evaluation

The above figure shows the PSNR evaluation of the x4 model on the set5

dataset that was obtained during training where the model converges to an average

PSNR of 29db.

Figure 9: Stable Training

The above figure shows the loss for the x2 model that was trained on the

DIV2K training set for 1000 epochs without stopping the process in between.

16

Figure 10: Test Image from set 14

17

Figure 11: Test Image from set 5

18

Figure 12: Test Image from BSD100

19

Figure 13: Test Image 1 from DIV2K validation set

20

Figure 14: Test Image 2 from DIV2k validation set

21

Figure 15: Test Image 3 from DIV2k validation set

22

Chapter 4

EXPERIMENTS

In this chapter, we will explain our modelling, training and testing methods as

well as the results of our experiments.

4.1 Datasets

For our initial experiments, we use a small subset of the popular DIV2K dataset

[17] which has 800 training and 200 validations of high-quality 2k resolution images

that are used in challenges to train and benchmark super-resolution models.

We used patches of size 48x48 of random 192 images from the training set to

test the convergence of the model, then we expanded it to the entire training set after

the success of the initial results.

Then we found out that increasing the patch size to 64x64 yielded much better

results so now we augmented the DIV2K 800 training images using the same pre-

processing method as Wang et al [24] and we ended up with 4000 patches of size

64x64 for our final model. It is worth mentioning that during the pre-processing step

we use a transformation where we select the patches as 4 corner patches and a central

patch.

For the test datasets, we used the 100 images from the DIV2K validation set to

see and compare the performance of our model. We also used some of the standard

benchmarking datasets like set5 [18], set14 [19], Urban100 [20] and BSD100 [20].

23

4.2 Training details

For training, we are using the Low-resolution RGB patch of size 64x64 and

their corresponding 128x128 or 256x256 high-resolution version based on the

upscaling factor. We also introduce a transformation on the input patch which is a

random horizontal flip as a pre-processing step to help with the training, we also

subtract the RGB mean of the DIV2K from the images as the last pre-processing step.

For optimization, we use ADAM [21] for the network with Batas range 0.9-

0.999 and eps of 1e-08. The learning rate is 1e-4 which is halved after every 2x10^5

mini-batch update with a batch size of 16. The x2 model is trained from scratch and

after converging it is used as a pre-trained model to the x4 version.

The calculation of the loss is done with the use of the L1 Loss method which

yields better results for this structure as Bee Lim [16] explains it helps with faster

conversions if we use L1 instead of L2.

The loss function is what forms the objective function for the process and no other

constrains has been added and below are the equations that describes the two types of

loss functions and difference between them.

Figure 16: Loss Functions

24

4.3 Development environment

We developed our proposed model using the PyTorch library and using the

hugging face super image library [25] to load the datasets and evaluation metrics.

The models have been trained using NVIDIA RTX3060 GPU. It took 2 days

to train the x4 model and 18 hours for the x2 model.

4.4 Model evaluation

The model has been tested and evaluated on the DIV2K test set (801 to 900)

images using a modified version of the super image evaluation function, a new

adjustment has been added to accommodate the compatibility issue of odd dimensions

due to the addition of the phasor block.

This adjustment trims the edges of the image to a dimension that is acceptable

by the network then the evaluation happens on the trimmed version of the input image.

The same thing is done to the other benchmarking sets to produce the results in the

following table.

25

Table 2: Performance comparisons between various models

Dataset Scale Bicubic SRCNN SRRes

Net

EDSR

baseline

MDSR

EDSR+

PENsr

(ours)

Set5

x2

x4

33.66/

0.9299

28.42/

0.8104

36.66/

0.9542

30.48/

0.8628

-/ -

32.05/

0.8910

38.11/

0.9601

32.46/

0.8968

38.11/

0.9602

32.50/

0.8973

35.20/

0.9806

32.62/

0.5954

38.17/

0.9973

31.26

/0.8841

Setl4

x2

x4

30.24/

0.8688

26.00/
0.7027

32.42/

0.9063

27.49/
0.7503

-/ -

28.53/
0.7804

33.92/

0.9195

28.80/
0.7876

33.85/

0.9198

28.72/
0.7857

34.02/

0.9204

25.94/
0.7901

32.83/

0.9112

28.19
/0.7514

BSD10

0

x2

x4

29.56/

0.8431

25.96/

0.6675

31.36/

0.8879

26.90/

0.7101

-/ -

27.57/

0.7354

32.32/

0.9013

27.71/

0.7420

32.29/

0.9007

27.72/

0.7418

32.37/

0.9015

27.79/

0.7437

33.28/

0.9193

28.16/

0.7530

Urbanl

00

x22

x4

26.88/
0.8403

23.14/

0.6577

29.50/
0.8946

24.52/

0.7221

-/ -

26.07/

0.7839

32.93/
0.9351

26.64/

0.8033

32.84/
0.9347

26.67/

0.8041

33.10/
0.93ó3

26.86/

0.8080

30.00/
0.9040

25.13/

0.7514

DIV2K

validati
on

x 2

x 4

31.01 /

0.9393

26.66 /

0.8521

33.05 /

0.9581

27.78 /

0.8753

35.03/

0.9695

29.25/

0.9017

34.96/

0.9692

29.26/

0.9016

35.12/

0.9699

29.35 /

0.9032

35.06/

0.9371

29.87/

0.8239

The above table shows the performance comparisons between various models

using publicly available results with our obtained values, measured in PSNR (in

dB)/SSIM.

26

Chapter 5

CONCLUSION AND FUTURE WORK

In this paper, we introduced a super-resolution model that uses phasors and

residual networks to reconstruct images based on a convolutional architecture which

bypasses the locality issue of the convolutional kernel and extracts more meaningful

features from the image as well as creating a structure capable of learning the down-

sampling process and using it to reconstruct better images.

Our model has achieved improvements on the EDSR baseline model and the

same thing can be done on the final EDSR to show better results, given the availability

of time and hardware, some possible ways to improve the model is by adding more

residual blocks and feature maps.

Our model has been tested on standard benchmarking datasets and the

PSNR/SSIM measurement showed an improvement in the performance compared with

the original baseline model that has been used.

To further expand this work, there are a few things that will help achieve

better results, like expanding the model with more feature maps and/or more residual

blocks which will help extract more features and patterns, one more thing that will

enhance the richness of the feature space is to add more ways to incorporate non-

local features to the pipeline. Lastly, the usage of better hardware like a better GPU

or a TPU will help increase the speed of the training process.

27

REFERENCES

[1] S. Yu, R. Li, R. Zhang, M. An, S. Wu, and Y. Xie, “Performance evaluation of

edge-directed interpolation methods for noise-free images,” Proceedings of the

Fifth International Conference on Internet Multimedia Computing and Service -

ICIMCS '13, 2013.

[2] Lei Zhang and Xiaolin Wu, "An edge-guided image interpolation algorithm via

directional filtering and data fusion," in IEEE Transactions on Image Processing,

vol. 15, no. 8, pp. 2226-2238, Aug. 2006, DOI: 10.1109/TIP.2006.877407.

[3] D. Khaledyan, A. Amirany, K. Jafari, M. H. Moaiyeri, A. Z. Khuzani, and N.

Mashhadi, “Low-cost implementation of bilinear and bicubic image interpolation

for real-time image Super-Resolution,” 2020 IEEE Global Humanitarian

Technology Conference (GHTC), 2020.

[4] C. Dong, C. C. Loy, K. He, and X. Tang, “Image Super-Resolution Using Deep

Convolutional Networks,” 2015.

[5] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer

and Super-Resolution,” Computer Vision – ECCV 2016, pp. 694–711, 2016.

[6] Jiwon Kim, J. K. Lee, and K. M. Lee, “Accurate Image Super-Resolution Using

Very Deep Convolutional Networks,” Nov. 2016.

28

[7] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,

A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-Realistic Single Image Super-

Resolution Using a Generative Adversarial Network,” May 2017.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition,” Dec. 2015.

[9] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, en R. Timofte, “SwinIR: Image

Restoration Using Swin Transformer '', arXiv [eess.IV]. 2021.

[10] S. Gu, W. Zuo, Q. Xie, D. Meng, X. Feng and L. Zhang, "Convolutional Sparse

Coding for Image Super-Resolution," 2015 IEEE International Conference on

Computer Vision (ICCV), 2015, pp. 1823-1831, DOI: 10.1109/ICCV.2015.212.

[11] S. Roweis and L. Saul, “Nonlinear Dimensionality Reduction by Locally Linear

Embedding,” Nov. 2000.

[12] K. He, X. Zhang, S. Ren, en J. Sun, “Deep Residual Learning for Image

Recognition”, arXiv [cs.CV]. 2015.

[13] W. Shi et al., “Real-Time Single Image and Video Super-Resolution Using an

Efficient Sub-Pixel Convolutional Neural Network”, arXiv [cs.CV]. 2016.

[14] D. Chansong and S. Supratid, "Impacts of Kernel Size on Different Resized

Images in Object Recognition Based on Convolutional Neural Network," 2021 9th

29

International Electrical Engineering Congress (iEECON), 2021, pp. 448-451,

DOI: 10.1109/iEECON51072.2021.9440284.

[15] A. Youssef, "Analysis and comparison of various image down-sampling and up-

sampling methods," Proceedings DCC '98 Data Compression Conference (Cat.

No.98TB100225), 1998, pp. 583-, DOI: 10.1109/DCC.1998.672325.

[16] B. Lim, S. Son, H. Kim, S. Nah, en K. M. Lee, “Enhanced Deep Residual

Networks for Single Image Super-Resolution”, arXiv [cs.CV]. 2017.

[17] R. Timofte et al., “NTIRE 2018 Challenge on Single Image Super-Resolution:

Methods and Results”, in The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, 2018.

[18] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. Alberi Morel, “Low-

Complexity Single-Image Super-Resolution based on Nonnegative Neighbour

Embedding,” 2012.

[19] J.-B. Huang, A. Singh, en N. Ahuja, “Single Image Super-Resolution From

Transformed Self-Exemplars”, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2015, bll 5197–5206.

[20] D. Gurari et al., “How to collect segmentations for biomedical images? A

benchmark evaluating the performance of experts, crowdsourced non-experts, and

algorithms”, in 2015 IEEE Winter Conference on Applications of Computer

Vision, Waikoloa, HI, USA, 2015.

30

[21] D. P. Kingma en J. Ba, “Adam: A Method for Stochastic Optimization”, arXiv

[cs.LG]. 2017.

[22] K. Yang, K. Qinami, L. Fei-Fei, J. Deng, en O. Russakovsky, “Towards Fairer

Datasets: Filtering and Balancing the Distribution of the People Subtree in the

ImageNet Hierarchy”, in Conference on Fairness, Accountability, and

Transparency, 2020.

[23] A. Krizhevsky, I. Sutskever, en G. E. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks”, in Advances in Neural Information Processing

Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, en K. Q. Weinberger, Reds

Curran Associates, Inc., 2012, bll 1097–1105.

[24] C. Szegedy et al., “Going Deeper with Convolutions”, arXiv [cs.CV]. 2014.

[25] F. Wang, H. Hu, en C. Shen, “BAM: A Balanced Attention Mechanism for Single

Image Super Resolution”, arXiv [eess.IV]. 2021.

[26] Eugene Siow, “super-image,” hugging face. 2021.

31

APPENDIX

32

Project Code

import torch.utils.data as data

import torch

#library to manipulating huge amount of data in numpy format

import h5py

%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

class DatasetFromHdf5(data.Dataset):

 def __init__(self, file_path):

 super(DatasetFromHdf5, self).__init__()

 hf = h5py.File(file_path)

 self.data = hf.get('data')

 self.target = hf.get('label')

def __getitem__(self, index):

 return torch.from_numpy(self.data[index,:,:,:]).float(),

torch.from_numpy(self.target[index,:,:,:]).float()

def __len__(self):

 return self.data.shape[0]

from torchsummary import summary

import torch

import torch.nn as nn

import math

class MeanShift(Conv2d):

33

 def __init__(self, rgb_mean, sign):

 super(MeanShift, self).__init__(3, 3, kernel_size=1)

 self.weight.data = torch.eye(3).view(3, 3, 1, 1) # W H C N

 self.bias.data = float(sign) * torch.Tensor(rgb_mean)

 # Freeze the MeanShift layer

 for params in self.parameters():

 params.requires_grad = False

class phase(nn.Module):

 def phasing_filters (self,kernal_size):

 phases = kernal_size * kernal_size

 tensor = torch.zeros((phases,kernal_size,kernal_size), dtype=torch.float,

device = 'cuda')

 x = 0

 while (x<phases):

 for y in range(kernal_size):

 for z in range(kernal_size):

 tensor[x][y][z] = 1.;

 x = x+1

 tensor = tensor[None,:,:,:]

 tensor = tensor.permute(1,0,2,3)

 return tensor

def __init__(self, size):

 self.phases = size*size

 weight = self.phasing_filters(size)

 super(phase, self).__init__()

34

 self.conv = Conv2d(1, 1,self.phases, (2, 2),False , (2,2))

 self.conv.weight = torch.nn.Parameter(weight)

 self.conv.weight.to(device='cuda', dtype=torch.float)

 # Freeze the MeanShift layer

 for params in self.parameters():

 params.requires_grad = False

 def forward(self, x):

 final = []

 for i in range(len(x[:])):

 x1 = x[None,i,0,:,:]

 x2 = x[None,i,1,:,:]

 x3 = x[None,i,2,:,:]

 x1 = torch.unsqueeze(x1, dim=0).to('cuda')

 x2 = torch.unsqueeze(x2, dim=0).to('cuda')

 x3 = torch.unsqueeze(x3, dim=0).to('cuda')

 conv_x1 = self.conv(x1)

 conv_x2 = self.conv(x2)

 conv_x3 = self.conv(x3)

 outputs = []

 for c in range(self.phases):

 F =

torch.cat((conv_x1[None,:,c,:,:],conv_x2[None,:,c,:,:],conv_x3[None,:,c,:,:]),0)

 outputs.append(F)

 results = torch.cat(outputs, dim=1)

 results = results.permute(1,0,2,3)

35

 results = results[None,:,:,:,:]

 final.append(results)

 final = torch.cat(final, dim=0)

 final = final.permute(1,0,2,3,4)

 return final

class _Residual_Block(nn.Module):

 def __init__(self):

 super(_Residual_Block, self).__init__()

 self.conv1 = Conv2d(256, 256, 3, stride=1, 1,False)

 self.relu = nn.ReLU(inplace=True)

 self.conv2 = Conv2d(256, 256, 3, 1, 1, False)

 def forward(self, x):

 identity_data = x

 output = self.relu(self.conv1(x))

 output = self.conv2(output)

 output *= 0.1

 output = torch.add(output,identity_data)

 return output

class _Residual_Block_phase(nn.Module):

 def __init__(self):

 super(_Residual_Block_phase, self).__init__()

36

 self.conv1 = Conv2d(64, 64, 3,1, 1, False)

 self.relu = nn.ReLU(inplace=True)

 self.conv2 = Conv2d(64, 64, 3, 1, 1, False)

 def forward(self, x):

 identity_data = x

 output = self.relu(self.conv1(x))

 output = self.conv2(output)

 output *= 0.1

 output = torch.add(output,identity_data)

 return output

class Net(nn.Module):

 def __init__(self):

 super(Net, self).__init__()

 rgb_mean = (0.4488, 0.4371, 0.4040)

 self.sub_mean = MeanShift(rgb_mean, -1)

 self.phases = phase(2)

 #input conv

 self.conv_input = Conv2d(3,256, 3, 1, 1,False)

 self.input_phases = Conv2d(3,64, 3, 1, 1,False)

 #residual block

 self.residual = self.make_layer(_Residual_Block, 32)

37

 self.phase_residual = self.make_layer(_Residual_Block_phase, 8)

 #mid convolution

 self.conv_mid = Conv2d(256, 256, 3, 1, 1, False)

 self.conv_mid_phases = Conv2d(64, 64, 3, 1, 1, False)

 self.upscale4x = nn.Sequential(

 Conv2d(256, 256*4, 3, 1, 1, False),

 nn.PixelShuffle(2),

 nn.Conv2d(256, 256*4, 3, 1, 1, False),

 nn.PixelShuffle(2),)

 self.upscale4x_phases = nn.Sequential(

 Conv2d(64, 64*4,3, 1, 1, bias=False),

 nn.PixelShuffle(2),

 Conv2d(64, 64*4, 3, 1, 1, False),

 nn.PixelShuffle(2),

 Conv2d(64, 64*4, 3,1, 1, False),

 nn.PixelShuffle(2),)

 self.conv_output = Conv2d(256*2, 3, 3, 1, 1,False)

 self.add_mean = MeanShift(rgb_mean, 1)

 for m in self.modules():

 if isinstance(m, nn.Conv2d):

38

 n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels

 m.weight.data.normal_(0, math.sqrt(2. / n))

 if m.bias is not None:

 m.bias.data.zero_()

 elif isinstance(m, nn.BatchNorm2d):

 m.weight.data.fill_(1)

 if m.bias is not None:

 m.bias.data.zero_()

 def make_layer(self, block, num_of_layer):

 layers = []

 for _ in range(num_of_layer):

 layers.append(block())

 return nn.Sequential(*layers)

 def forward(self, x):

 out = self.sub_mean(x)

 phases_list = []

 for p in range (self.phases(out).shape[0]):

 phases_list.append(self.phases(out)[p])

 #p1 = self.phases(out)[0]

 #p2 = self.phases(out)[1]

 #p3 = self.phases(out)[2]

 #p4 = self.phases(out)[3]

39

 out = self.conv_input(out)

 for p in enumerate(phases_list):

 phases_list[p] = self.input_phases(p)

 #p1 = self.input_phases(p1)

 #p2 = self.input_phases(p2)

 #p3 = self.input_phases(p3)

 #p4 = self.input_phases(p4)

 residual = out

 rp_list = []

 for rp in phases_list:

 rp_list.append(rp)

 #rp1 = p1

 #rp2 = p2

 #rp3 = p3

 #rp4 = p4

 out = self.conv_mid(self.residual(out))

 for p in phases_list:

 phases_list[p] = self.conv_mid_phases(self.phase_residual(p))

 #p1 = self.conv_mid_phases(self.phase_residual(p1))

 #p2 = self.conv_mid_phases(self.phase_residual(p2))

 #p3 = self.conv_mid_phases(self.phase_residual(p3))

 #p4 = self.conv_mid_phases(self.phase_residual(p4))

40

 out = torch.add(out,residual)

 for p in phases_list:

 phases_list[p] = torch.add(p,rp_list[p])

 #p1 = torch.add(p1,rp1)

 #p2 = torch.add(p2,rp2)

 #p3 = torch.add(p3,rp3)

 #p4 = torch.add(p4,rp4)

 out = self.upscale4x(out)

 for p in phases_list:

 phases_list[p] = self.upscale4x_phases(p)

 #p1 = self.upscale4x_phases(p1)

 #p2 = self.upscale4x_phases(p2)

 #p3 = self.upscale4x_phases(p3)

 #p4 = self.upscale4x_phases(p4)

 for p in phases_list:

 final = torch.cat((out,p),dim = 1)

 final = self.conv_output(final)

 out = self.add_mean(final)

 return out

model = Net()

41

model.cuda()

summary(model, input_size=(3, 48, 48))

import argparse, os

import torch

import math, random

import torch.backends.cudnn as cudnn

import torch.nn as nn

import torch.optim as optim

from torch.autograd import Variable

from torch.utils.data import DataLoader

torch.cuda.empty_cache()

Training settings

batchSize = 16 #training batch size

nEpochs = 960 #number of epochs to train for

tlr = 1e-4 #Learning Rate. Default=1e-4

step = 200 #Sets the learning rate to the initial LR decayed by momentum

every n epochs, Default: n=10

cuda = True #use cuda

start_epoch = 1 #manual epoch number (useful on restarts)

threads = 4 #number of threads for data loader to use

momentum = 0.9 #momentum

tweight_decay = float(1e-4) #weight decay, Default: 0

42

global model

#check if you can use the gpu

if cuda and not torch.cuda.is_available():

 raise Exception("No GPU found")

#preaparing a seed to randomly inisilize wieghts

seed = random.randint(1, 10000)

print("Random Seed: ", seed)

torch.manual_seed(seed)

if cuda:

 cudnn.benchmark = True

print("===> Loading datasets")

train_set = DatasetFromHdf5("data/edsr_x4.h5")

training_data_loader = DataLoader(dataset=train_set, num_workers=threads,

batch_size= batchSize, shuffle=True)

#print(training_data_loader.shape

print("===> Building model")

model = Net()

criterion = nn.L1Loss(size_average=False)

print("===> Setting GPU")

if cuda:

 torch.cuda.empty_cache()

 model = model.cuda()

43

 criterion = criterion.cuda()

checkpoint =

torch.load('/content/drive/MyDrive/EDSR/checkpoint/model_epoch_135.pth')

start_epoch = checkpoint["epoch"] + 1

model.load_state_dict(checkpoint["model"].state_dict())

optionally resume from a checkpoint

#if opt.resume:

if os.path.isfile(opt.resume):

print("=> loading checkpoint '{}'".format(opt.resume))

checkpoint = torch.load(opt.resume)

opt.start_epoch = checkpoint["epoch"] + 1

model.load_state_dict(checkpoint["model"].state_dict())

else:

print("=> no checkpoint found at '{}'".format(opt.resume))

def adjust_learning_rate(optimizer, epoch):

 """Sets the learning rate to the initial LR decayed by 10"""

 lr = tlr * (0.1 ** (epoch // step))

 return lr

def train(training_data_loader, optimizer, model, criterion, epoch):

 lr = adjust_learning_rate(optimizer, epoch-1)

44

 for param_group in optimizer.param_groups:

 param_group["lr"] = lr

 print("Epoch={}, lr={}".format(epoch, optimizer.param_groups[0]["lr"]))

 model.train()

 running_loss = 0

 for iteration, batch in enumerate(training_data_loader, 1):

 input, target = Variable(batch[0]), Variable(batch[1], requires_grad=False)

 if cuda:

 input = input.cuda()

 target = target.cuda()

 torch.cuda.empty_cache()

 loss = criterion(model(input), target)

 running_loss =+ loss.item() *input.size(0)

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

 torch.cuda.empty_cache()

 if iteration%116 == 0:

 print("===> Epoch[{}]({}/{}): Loss: {:.5f}".format(epoch, iteration,

len(training_data_loader), loss.item()))

 loss_value = (running_loss /len(training_data_loader))

 return (loss_value)

def save_checkpoint(model, epoch):

45

 model_folder = "checkpoint/"

 model_out_path = model_folder + "model_epoch_{}.pth".format(epoch)

 state = {"epoch": epoch ,"model": model}

 if not os.path.exists(model_folder):

 os.makedirs(model_folder)

 torch.save(state, model_out_path)

 print("Checkpoint saved to {}".format(model_out_path))

loss_log = open("log.txt","w+")

print("===> Setting Optimizer")

optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=

tlr, weight_decay = tweight_decay , betas = (0.9, 0.999), eps=1e-08)

print("===> Training")

losses = []

for epoch in range(start_epoch,nEpochs + 1):

 torch.cuda.empty_cache()

 eloss = train(training_data_loader, optimizer, model, criterion, epoch)

 losses.append(eloss)

 print(eloss)

 loss_log.write("{}\r\n".format(eloss))

 save_checkpoint(model, epoch)

loss_log.close()

import matlab.engine

import argparse

import torch

from torch.autograd import Variable

46

import numpy as np

import time, math, glob

import scipy.io as sio

import cv2

evalution parameters

cuda = True

tmodel = "checkpoint/model_edsr.pth"

dataset = "Set5"

scalet = 4

def PSNR(pred, gt, shave_border=0):

 height, width = pred.shape[:2]

 pred = pred[shave_border:height - shave_border, shave_border:width -

shave_border]

 gt = gt[shave_border:height - shave_border, shave_border:width -

shave_border]

 imdff = pred - gt

 rmse = math.sqrt(np.mean(imdff ** 2))

 if rmse == 0:

 return 100

 return 20 * math.log10(255.0 / rmse)

eng = matlab.engine.start_matlab()

if cuda and not torch.cuda.is_available():

47

 raise Exception("No GPU found, please run without --cuda")

model = torch.load(tmodel)["model"]

image_list = glob.glob(dataset+"/*.*")

avg_psnr_predicted = 0.0

avg_psnr_bicubic = 0.0

avg_elapsed_time = 0.0

for image_name in image_list:

 print("Processing ", image_name)

 im_gt_y = sio.loadmat(image_name)['im_gt_y']

 im_b_y = sio.loadmat(image_name)['im_b_y']

 im_l = sio.loadmat(image_name)['im_l']

 im_gt_y = im_gt_y.astype(float)

 im_b_y = im_b_y.astype(float)

 im_l = im_l.astype(float)

 psnr_bicubic = PSNR(im_gt_y, im_b_y,shave_border=opt.scale)

 avg_psnr_bicubic += psnr_bicubic

 im_input = im_l.astype(np.float32).transpose(2,0,1)

48

 im_input =

im_input.reshape(1,im_input.shape[0],im_input.shape[1],im_input.shape[2])

 im_input = Variable(torch.from_numpy(im_input/255.).float())

 if cuda:

 model = model.cuda()

 im_input = im_input.cuda()

 else:

 model = model.cpu()

 start_time = time.time()

 HR_4x = model(im_input)

 elapsed_time = time.time() - start_time

 avg_elapsed_time += elapsed_time

 HR_4x = HR_4x.cpu()

 im_h = HR_4x.data[0].numpy().astype(np.float32)

 im_h = im_h*255.

 im_h = np.clip(im_h, 0., 255.)

 im_h = im_h.transpose(1,2,0).astype(np.float32)

 im_h_matlab = matlab.double((im_h / 255.).tolist())

 im_h_ycbcr = eng.rgb2ycbcr(im_h_matlab)

49

 im_h_ycbcr = np.array(im_h_ycbcr._data).reshape(im_h_ycbcr.size,

order='F').astype(np.float32) * 255.

 im_h_y = im_h_ycbcr[:,:,0]

 psnr_predicted = PSNR(im_gt_y, im_h_y,shave_border=opt.scale)

 avg_psnr_predicted += psnr_predicted

print("Scale=", scale)

print("Dataset=", dataset)

print("PSNR_predicted=", avg_psnr_predicted/len(image_list))

print("PSNR_bicubic=", avg_psnr_bicubic/len(image_list))

print("It takes average {}s for

processing".format(avg_elapsed_time/len(image_list)))

	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	1.1 Definition
	1.2 Development of methods
	1.3 Objective

	RELATED WORKS
	2.1 SRCNN
	2.2 Pixels shuffling
	2.3 ResNet

	PROPOSED METHOD
	3.1 Phasor block
	3.2 Deep feature extractor block
	3.3 Reconstructor
	3.4 PENsr model details and variation

	EXPERIMENTS
	4.1 Datasets
	4.2 Training details
	4.3 Development environment
	4.4 Model evaluation

	CONCLUSION AND FUTURE WORK
	REFERENCES
	APPENDIX

