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ABSTRACT 

Hate speech is a phenomenal issue for social media platforms. Recently a rapid 

increase in hate speech happened all over social media platforms. 

The aim of this thesis is to improve the performance of the current state-of-the-art for 

binary text classification in terms of hate speech on social media platforms. 

The popularity of social media has grown dramatically in recent years. Because of the 

ease of use and anonymity of the user identity, this increase coincided with the growth 

of hate speech on social media platforms. 

Due to the increasing propagation of hate speech, these platforms must implement an 

automatic hate speech identification system. Hate speech recognition is a difficult task 

in text mining, due to the use of colloquial language, intentional or incorrect spelling 

variations. The limitation of the message size on social media platforms also 

complicates the task since the context of the message is not readily available. Various 

approaches have been applied to text classification using supervised machine learning 

models, unsupervised machine learning models, and ensemble approaches. 

Nevertheless, these approaches did not acquire sufficient confidence to be 

implemented on social media platforms to address the classification of hate speech. 

Through this thesis, we proposed two models for detecting hate speech on social media 

platforms. In the first proposed approach, we developed a model using the novel 

stacking approach, when two levels of classifiers are used for improving hate speech 

performance. The second approach based on genetic programming (GP), which is an 
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optimization technique. In the GP approach, a novel mutation technique that combines 

the standard one-point mutation with a novel feature mutation is employed. 

Both proposed methods were tested on four publicly available datasets of varying 

sizes. The experimental results show an improvement in the performance over the 

other used approaches in this thesis. The results show that the GP approach improves 

the performance on all datasets, compared to the state-of-the-art in terms of F1-score. 

On the other hand, in comparison with the state-of-the-art, the stacking approach 

improves the performance on three over four of the used datasets. 

Keywords: hate speech, text classification, classifier, classifier ensembles, stacking 

ensemble, text mining, genetic programming, pattern classification. 
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ÖZ 

Bu tezin amacı, sosyal medya platformlarında nefret söylemi tespit etmek için makine 

öğrenimi yaklaşımlarının kullanımını araştırarak son teknolojiyi geliştirmektir. 

Kitlelerin günlük yaşamlarında sosyal medyanın yaygın kullanımındaki keskin artışa 

paralel olarak sosyal medyanın nispeten kontrolsüz doğası ve kullanıcıların kimliğinin 

saklanabilmesi nedeniyle üretilen küfürlü ve nefret dolu içerik miktarı da artmaktadır. 

Nefret söyleminin yayılmasının bireyler ve toplum üzerinde ciddi sonuçları 

olabileceğinden sosyal medya platformları, nefret söylemini tespit etmek ve önlemek 

için otomatik nefret söylemi tanımlama sistemleri uygulamalıdır. Bununla birlikte, 

sosyal medyada nefret söyleminin tespit edilmesi, günlük konuşma dilinin 

kullanılması, kasıtlı veya kasıtsız yanlış yazım varyasyonları nedeniyle zor bir 

görevdir. Sosyal medya platformlarında mesaj boyutunun sınırlı olması nedeniyle 

mesajın bağlamının belirlenememesi de görevi karmaşıklaştırmaktadır. Denetimli 

makine öğrenimi modellerini, denetimsiz makine öğrenimi modellerini ve topluluk 

yaklaşımlarını kullanan çeşitli sınıflandırma yaklaşımları önerilmiş olsa da hala nefret 

söylemi tespiti konusunda elde edilen başarı yeterli değildir. 

Bu tez ile sosyal medya platformlarında nefret söylemini tespit etmek için iki model 

önerilmiştir. Önerilen ilk yaklaşımda hem temel sınıflandırıcıların hem de meta 

sınıflandırıcının aynı özellik setini kullandığı iki seviyeli bir yığınlama mimarisi 

önerilmiştir. Önerilen ikinci yaklaşım, bir optimizasyon tekniği olan genetik 

programlamaya (GP) dayanmaktadır. GP yaklaşımında, standart tek noktalı 

mutasyonu yeni bir özellik mutasyonu ile birleştiren yeni bir mutasyon tekniği 

kullanılmıştır. 
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Önerilen her iki yöntem de çeşitli boyutlarda halka açık dört veri kümesi üzerinde test 

edilmiş ve deneysel sonuçlar, bu tezde kullanılan diğer yaklaşımlara göre performansta 

bir gelişme olduğunu kanıtlamıştır. Yığınlama yaklaşımı, kullanılan veri kümelerinin 

dördünden üçünde en son teknolojinin performansını iyileştirmiştir. Ayrıca sonuçlar, 

GP yaklaşımının performansının tüm veri kümelerinde en son teknolojiyi aştığını 

göstermektedir. 

Anahtar Kelimeler: nefret söylemi, metin sınıflandırması, sınıflandırıcı, sınıflandırıcı 

toplulukları, yığınlama topluluğu, metin madenciliği, genetik programlama. 
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Chapter 1 

2 INTRODUCTION 

1.1 Motivation 

Hate speech has increased dramatically as a result of the freedom of speech and, to 

some extent, the anonymity of users on social media platforms. Hate speech is one of 

the most important concerns on social media sites. Detecting hate speech is critical for 

victim protection, which has ramifications for the entire society. Nevertheless, due to 

the nature of material posted on social media, it is difficult to determine whether or not 

a text involves hate speech. 

Despite an increase in research on automatic detection of hate speech, to the best of 

our knowledge, a completely automated solution has not been implemented yet. Social 

media platforms try to solve this issue by mainly relying on user’s reports of hate 

speech and blacklists consisting of hate-related or offensive words. Facebook, 

YouTube, and Instagram all composed such blacklists. Although Facebook built a 

model called RoBERTa in 2019 to recognize toxic posts, the reliance on user reports 

for hate speech detection has not yet been eliminated. On the other hand, Twitter does 

not apply a blacklist but has recently reused the terms regarding hate speech breaches.  

None of the currently used approaches can automatically eliminate the hate speech 

messages before they are shared. For instance, in the case of a user report, an 

experienced team is necessary to deal with reported posts or tweets due to the 
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colloquial language and users' manipulation of keywords. Moreover, before being 

deleted, the reported posts are visible on the social networking platform and thus can 

be disseminated. 

In machine learning, hate speech detection is treated as a classification task. In that 

context, each tweet or post is annotated as hateful or not. Hate speech on social media 

platforms is a complicated subject to categorize due to various characteristics such as 

the person’s hateful comments target as the target varies, so would the employed 

language and the distinguishing characteristics. Moreover, hate-related words are 

employed in a variety of forms, spellings, and synonyms. Additionally, there is no 

standard definition of hate speech. Each social media platform has its definition of hate 

speech. However, all of them agree that hate speech attacks specific targets based on 

exact characteristics such as religion, race, etc. The social media platform Twitter 

defines hate speech: “Hateful conduct: You may not promote violence against, 

threaten, or harass other people on the basis of race, ethnicity, national origin, sexual 

orientation, gender identity, religious affiliation, age, disability, or serious disease” [1]. 

While Instagram defines hate speech as: “Attack anyone based on their race, ethnicity, 

national origin, sex, gender identity, sexual orientation, religious affiliation, 

disabilities, or diseases” [2]. In Facebook, the definition is as follows: “Direct attack 

on people based on what we call protected characteristics- race, ethnicity, national 

origin, disability, religious affiliation, caste, sexual orientation, sex, gender identity, 

and serious disease” [3]. 

Hate speech is highly contextual, the same message shared by two different persons 

may be interpreted or classified differently. Thus, hate speech classification is 

determined by various circumstances, including the people's histories, the timing of 
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the comment, media exposure of the tweet, and a host of other concerns [4]. 

Furthermore, regardless of the context and time, if the person using hate speech is in 

the same group as the target, such utterances are not considered hate speech. 

Even though in general hate speech messages have aggressive and negative content, 

relying only on such characteristic is not viable.  In certain circumstances, the model 

may incorrectly classify the text due to a lack of hostility or profanity [5]. All these 

concerns make hate speech detection even more challenging. 

Various approaches have been employed to detect hate speech on social media 

platforms. There are several popular classifiers used as supervised techniques such as 

Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), K-

Nearest Neighbors (KNN), Naïve Bayes (NB), Convolutional Neural Network (CNN), 

Decision Tree (DT) [6]. Also, as an unsupervised method: Recurrent Neural Network 

(RNN) [7], Long Short-Term Memory Network (LSTM) [8], Bidirectional Encoder 

Representations from Transformers (BERT) [9]. Furthermore, the GP and various 

ensembling algorithms have also been employed in classification tasks [10,11, 12, 13]. 

The choice of this topic was motivated by the growing interest in hate speech 

classification and its influence on society. Since one of the most productive social 

media platforms is Twitter, the experiments mainly use tweets. 

1.2 Thesis Contribution 

In this thesis, we address the hate speech classification problem, as is a supervised 

machine learning task. There are two types of classification: binary (two classes) and 

multi-class (more than two classes). Our work focuses on a binary classification 

problem (Hate or Not Hate). 
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The main contributes of this thesis are as follows: 

• Improving current state-of-the-art performance in hate speech terms of F1-

score. 

• Designing a novel stacked ensembling technique for binary text 

classification of hate speech on social media. 

• Designing another model based on the GP with a novel mutation technique 

and comparing the experimental results with the results produced from 

other approaches. 

• Evaluating the proposed models for the English hate speech detection task. 

• Comparing the performances of two proposed models—Stacking and 

GP— for the English hate speech detection task on four datasets. 

1.3 Thesis Outlines 

The remaining of this thesis is organized as follows chapters: 

Chapter 2 reviews the literature on hate speech on social media platforms. We start by 

introducing the hate speech topic. Then we give an overview of the main methods 

namely preprocessing, feature extractions, and classifiers employed to detect hate 

speech on social media platforms. Chapter 3 gives background knowledge for hate 

speech detection approaches in the literature. In Chapter 4, we introduce four publicly 

available datasets of hate speech on social media, which are used in this thesis. Chapter 

5 presents the experimental setting and results for the first model of detection, called 

the "Stacking” technique. In Chapter 6, we describe the second approach applied for 

detection, which is the GP approach. The last chapter (Chapter 7) summarizes the 

thesis findings and presents the future work. 

 



 

5 
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https://doi.org/10.3390/app112411684 [16]. 



 

6 

 

Chapter 2 

1 RELATED WORK 

Within the last decade, hate speech detection has become a popular topic in Natural 

Language Processing (NLP), and there has been a rapid growth in the interest of this 

task. There are lots of studies that presented automatic approaches for detecting hate 

speech in social media. However, there are some challenges facing these approaches, 

such as various definitions of hate speech, dataset accessibility, response-time 

requirement. 

The majority of people have switched to online communication, where they converse 

and communicate through social media platforms that have created a diversity of 

virtual worlds. These platforms express all sorts of user’s feelings, including hatred. 

Hate speech can lead to more serious psychological issues, including hate crimes and 

suicide. 

Many researchers have been investigated the hate speech classification task and have 

contributed to the literature by proposing hate speech detection models and datasets. 

In this section, we summarize a number of these studies and highlight the hate 

classification approaches that have been used. 

In 2016, Waseem and Hovy [17] addressed hate speech detection on Twitter as a multi-

class text classification. Through this research, the authors also created a publicly 

available dataset from English Twitter consisting of 16k tweets. Their best system 
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using a combination of character N-gram and linguistic features and LR as a classifier 

achieved an F1-score of 73.93%. 

The largest publicly available dataset for hate speech on English Twitter was formed 

in 2017 by Davidson et al. [18] and it consists of 24k tweets. Using this dataset, the 

authors proposed a multi-class classifier for detecting hate speech. They employed a 

combination of features, namely TF-IDF, N-gram, and sentiment lexicon, and the LR 

as a classifier. Even though the classifier performance was 90% F1-score, it was biased 

to the non-hateful class. Thus, misclassifying tweets continuing hate speech as not 

hate.  

For building a hate speech classifier, Badjatiya et al. [19] used three deep learning 

approaches: CNN, FastText, and LSTM with word embeddings. The authors used a 

variety of neural networks, GBDT, and word embedding techniques such as GloVe or 

random embeddings. The authors used machine learning techniques namely, LR, 

Gradient Boosted Decision Tree (GBDT), SVM, and RF as baselines. For the 

evaluation, they used Waseem and Hovy [17] dataset. Their method outperformed the 

baseline methods, with the ensemble strategy of LSTM + GBDT with random 

embeddings achieving the best result, with a 93% F1-score, surpassing Waseem and 

Hovy’s system by 10.93%. 

Al-Hassan and Al-Dossari [20] proposed a deep learning approach to detect hate 

speech on the Arabic Twitter dataset. They applied an SVM classifier as a baseline 

and four deep learning techniques namely, LSTM, CNN-LSTM, CNN-GRU, and 

GRU. The authors compared the results of baseline and the deep learning approaches 

in terms of F1-score and showed that all deep learning approaches outperformed the 
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SVM. Among the deep learning methods proposed by the researches, the CNN-LSTM 

classifier achieved the highest performance with a 73% F1-score. 

In [21], various machine learning techniques namely: SVM, RF, and NB, have been 

used for hate speech detection on Indonesian Twitter. They addressed detection as a 

multi-classification hate speech on a set of three public datasets [22, 23, 24] as well as 

their newly created dataset. They achieved the best result with 77.36% accuracy by 

utilizing RF as a classifier and unigram as a feature. 

One of the most frequently used ensemble algorithms in text classification is stacking. 

Wolpert [25] proposed the stacking method in 1992. One of the benefits of this method 

is that the misclassification of each Base-Level classifier is decreased [25]. It has been 

tested on a variety of real-world datasets and has outperformed stand-alone models 

[26, 27]. This strategy is also popular in several competitions, such as Kaggle1. It has 

a high rate of adoption across Kaggle users; because of its outstanding results on real-

life datasets and adoption by top participants. 

Kokatnoor and Krishnan [28] introduced a stacked weighted optimization technique 

for binary hate speech classification. They used a five classifiers combination using 

NB, RF, LR, soft voting, and hard voting. The researchers compared the proposed 

system to stand-alone classifiers, and they found that the proposed system produced 

better results, with a 95.54% accuracy. 

 
1 http://kaggle.com 
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In [29], Gao and Huang employed an ensemble model using LR and LSTM to detect 

hate speech. The authors evaluated each model separately as a stand-alone classifier 

then combined them. The ensemble model improved both of the stand-alone models 

in terms of F1-score by 7% on the Fox News corpus. MacAvaney et al. [30] presented 

a stacked ensemble. In their model, multiple view SVMs, where each SVM used 

different features, were combined. They evaluated their model in terms of accuracy 

and F1-score on four datasets. The authors also explored the difficulties of automatic 

hate speech identification in social media. 

On the HatEval dataset from SemEval-2019 Task 5, Nourbakhsh et al. [11] used an 

ensemble technique with three classifiers, SVM, RF, and BiLSTM, for hate speech 

detection. They employed N-gram in the SVM and RF as features, and word 

embedding in the BiLSTM. The stacked ensemble of the three classifiers had an F1-

score of 75.2% on the development set, but obtained F1-score on the test set was 

39.2%. The authors point out that the dataset was not shuffled before the split, also the 

training and testing sets are vastly different. Indurthi et al. [31], on the other hand, used 

only SVM with one feature, namely universal sentence encoder (USE). They tested 

their model on a publicly accessible HatEval dataset from SemEval-2019 Task 5, and 

their model scored 65.1% F1-score. 

In [32], Fauzi and Yuniarti proposed an ensemble approach using NB, KNN, RF, and 

SVM for hate speech detection on the Indonesian Twitter dataset. The authors firstly 

trained and evaluated each classifier separately as stand-alone classifiers. To 

implement the proposed ensemble, all classifiers were combined using majority voting 

with hard voting and soft voting approaches. The authors compared the single 

classifiers with ensembles and showed that the ensemble approach using majority 
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voting with the soft voting approach achieved the best performance with an 84.1% F1-

score. 

Zimmerman et al. [12] introduced an ensemble method in which ten CNNs with varied 

weight parameters and initializations are combined. For the evaluation of the suggested 

method, two datasets were used, with an 85:15 ratio for training and testing sets. As a 

feature, the authors employed word embedding. The proposed method outperformed 

the individual classifiers by an average of 1.97 percent on the F1-score proving that 

the ensemble approach can achieve substantial performance over an individual 

classifier. 

In [13], Zhang et al. combined CNN and Gated recurrent unit network (GRU) to 

present a model to detect hate speech. They used word2vec as a feature. The 

authors tested their method on a variety of datasets. In comparison to the state-of-the-

art and baselines, the authors got better results. 

In 1994, Koza [33] first introduced the GP, which is an evolutionary algorithm that 

develops a solution based on Darwin's principle of survival of the fittest. Individuals 

represent programs in the GP architecture, and GP improves programs to offer the best 

solution [34]. 

Kuo et al. [35] used the GP approach to build a binary classifier for categorizing credit-

card applications into approving and disapproving categories. In the GP framework 

classifiers were expressed as rules, and they were evolved based on correctness and 

complexity, using novel genetic operators used to exclude or combine the rules based 

on their correlations, reducing the complexity of the tree. 
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Muni et al. [36] proposed a novel model for developing a multi-class classifier. Five 

datasets were utilized to evaluate their model, two of the datasets are binary and three 

are multi-class. These real-life datasets were about Iris flowers, breast cancer, liver 

disorder, vehicle, and landsat-TM3 satellite image.  They used a GP framework with 

only a single run to get the optimal solution. The selection method employed was the 

Roulette wheel to select the trees based on their unfitness.  

Kishore et al. [37] proposed a GP model for multiclassification tasks. They evaluated 

their model on a real-life dataset for flower species classification. The authors designed 

a GP classifier expression (GPCE) for a specific class, which is recognized as one of 

the binary classes; all the other classes are recognized as the other class. The strength 

of association measure was employed with every GPCE to handle the problem 

of conflict since the GPCE identifies its class based on the strength of association 

value. Similar to [36] the authors used the Roulette wheel scheme to choose parents 

for representation and crossover. They were able to achieve 96% accuracy by 

employing this strategy. 

GP proved to be a successful approach in many other classification tasks, including 

image classification such as in [38], and in diagnosing diseases such as diabetes in [39, 

40] and breast cancer in [41] achieving an accuracy of 99.6%, 87.0%, 78.5%, and 

98.94%; respectively. 
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Chapter 3 

2 BACKGROUND 

In this chapter, the background, methods, and materials on hate speech recognition as 

a subtask of text classification are presented. Moreover, brief information on existing 

strategies for hate speech classification in social media platforms are given. Text 

classification can be defined as the task of assigning a text to a predefined group of 

categories or classes based on its context [42]. One of the applications of text 

classification is the detection of hate speech.  

Recently the number of users of social media platforms has significantly increased. 

This growth in usage and anonymity leads to the proliferation of hate speech 

extensively on these platforms. Uncontrolled spread of hate speech may result in 

societal problems or psychological and eventually loss of users. Therefore, the need to 

an automatic detection method is necessary. 

In 2021, Antonakaki et al. [43] ranked Twitter as the world's third most popular social 

media network. A high number of individuals use Twitter to express their opinions 

including their hatred and outrage toward another person or group. Specifically, this 

high traffic results in the collection of a high amount of information. Therefore, most 

hate speech studies utilize data from Twitter. It should be noted that all of the datasets 

used in this thesis are texts obtained from Twitter in English. 
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3.1 Hate Speech Classifications 

In general, all hate speech recognition follows the same general workflow shown in 

Figure 3.1.  

 

Figure 3.1: Flowchart of the general hate speech recognition 

As shown in the figure, the first step is preprocessing where the data is prepared for 

the subsequent phases. This is followed by features extraction to extract from the data 

and other sources the properties that will be used to train the classifiers. If a supervised 

learning approach is used, the data must be labeled with the correct class. After the 

classifiers are trained “unknown” test data is classified by the classifiers. These steps 

are discussed in detail in the following subsections. 

3.1.1 Preprocessing 

Preprocessing is the process of removing extraneous information that does not 

contribute to the classification and the noise such as misspelling, symbols, and 

repeated characters or words from the text with the aim of making it more meaningful. 

This process results in decreasing the size of the dataset, and the training time and is 

expected to increase the performance. 



 

14 

 

It is possible to use a combination of various preprocessing steps to clean and prepare 

the text for the subsequent phases. The most frequently used preprocessing steps are 

listed below:  

• Tokenization: splitting the text into individual tokens or words. 

Tokenization process is important as generally the list of tokens is used as 

input of other preprocessing steps as well as the feature extraction phase. 

• Removal of the stop-words:  eliminating words such as is, at, you, will, 

then, the, or, and, what, that occur very frequently in text and thus carry 

little or no information. There are several libraries or lists such as NLTK2, 

spacy3, and scikit-LEARN4 that can be used for stop-word removal. The 

stop-word list may change from one language to the next. It should also be 

noted that stop-word lists may be modified to fit the scope of the text 

mining application.  

•  Removal of the punctuation: such as (% ^ & () - % ^ & [ ] { } ; : * _'' \ , < 

> . / # $ ? @ ! ~ ') from the text. 

• Stemming: reducing the words in the text to their base form by eliminating 

affixes from words. 

• Lemmatizing: reducing the words in the text to their meaningful base form 

considering the context including grammatical information about part of 

speech. 

• Letter-case modification: primarily consists of converting all words in 

the text to the same case such as lower case letters. 

 
2 https://www.nltk.org/ 

3 https://spacy.io/ 

4 https://scikit-learn.org/stable/ 
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• Removal of URL and user mentions: eliminating the URL and user 

mentions as they do not add anything to the text. In some applications 

instead of removing these special tokens completely, they can be replaced 

by placeholders.  

• Removal of numbers: eliminating the numbers that do not add any useful 

information to the task.   

• Removal of one-character words: generally used to eliminate single 

characters that may be entered by mistake or may result from other 

preprocessing steps. These single character words are not expected to carry 

useful information. 

• Removal of white space: elimination of two or more consecutive white 

spaces. 

• Emoji or special symbol processing: deals with the special visual 

representation used for conveying emotions or sentiments. of the user. 

There are two options for dealing with such representations. The first 

option is to replace them with an actual text, while the second option is to 

eliminate them. 

3.1.2 Feature extraction 

Feature extraction process transforms the raw data into features that are representative 

properties of the data samples. The aim of feature extraction is to eliminate redundant 

and irrelevant information and develop a set of features that could be used instead of 

the raw data in order to efficiently perform subsequent tasks such as categorization or 

prediction. The widely used features in the hate speech and text mining domain are 

briefly explained in the following subsections. 
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3.1.2.1 Bag of Words (BOW) 

BOW feature represents the words in the text without consideration of their location. 

When the BOW feature is used, the text is represented as an array where each item of 

the array represents a word. The array values may take the values 1 or 0 representing 

the existence or absence of a word or a frequency value or integer or floating point 

values representing the number of occurrences of the words or any other measure. 

Even though BOW is a robust, simple, and efficient feature, it has some disadvantages 

such as disregarding the ordering, semantics, and syntactic role of the word, which can 

lead to misclassification of the text. Therefore, employing BOW as a stand-alone 

feature can cause an increase in false positive rate which results in a low accuracy in 

text classification. 

3.1.2.2 N-gram 

N-gram refers to collecting a sequence of N words or characters in a document. When 

N is one, it is called unigram when N is 2 it is called bigram and when N is equal to 

three, it is called trigram.  As an example, for ‘Hate speech detection …’ the character 

bigrams are Ha, at, te, etc and the word bigrams are Hate speech, speech detection, 

etc. The character N-gram proved to be better than the word N-gram approach for 

abusive language detection as it is more predictive as a feature [44].  

3.1.2.3 Word Embedding  

Word Embedding feature represents text such as words, phrases, or paragraphs as 

vectors of real numbers. A large corpus is often used for training word embedding 

feature [45] where the resulting feature represents words with similar meanings using 

similar vectors. In contrast to BOW, the words that have similar contexts will be given 

a similar representation. The two approaches of word embedding that are frequently 

used are: 
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• Word2Vec: used with unsupervised approaches. It is an effective feature 

based on a neural network [46]. A unique vector in the numerical form will 

be assigned to every word. In vector space, the vectors that represent 

similar words (mathematically) will cluster together. The semantic 

meaning is taken into account in Word2Vec. In 2014, Tomas Mikolov has 

developed this technique and applied it to text data to learn word 

embedding [47]. There are two ways to establish Word2Vec: Continuous 

Bag of Words (CBOW) and Skip Gram [48]. 

• Paragraph2vec: assigns a unique vector to each paragraph or document. 

Every word in the paragraph is assigned a unique vector as well. It differs 

from the word2vec only in terms of the input since Paragraph2vec employs 

paragraph and word instead of just a word. 

3.1.2.4 Sentence Embedding 

Sentence Embedding feature represents text as a vector of real numbers. An example 

of this feature is the Universal Sentence Encoder (USE) which encodes the text into a 

high dimensional vector [49]. The inputs of the USE are the text, which can be words 

or sentences, and the outputs are vectors with 512 dimensions. USE can capture the 

semantic information of the sentence and represent it as a vector, which provides a 

good illustration of the context in the entire sentence. This representation of the entire 

text is difficult to achieve by other features. 

3.1.2.5 Sentiment Opinion Words 

Sentiment Opinion Words feature takes the text, in the form of a sentence or paragraph, 

as an input and gives a tag as output. The output reflects the polarity of the text based 

on the frequency of opinion words. The sentiment polarity of text containing hate 

speech is mainly negative; therefore, the sentiment feature can be used with 
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unorganized text such as social media comments and posts to classify unstructured 

text. 

3.1.2.6 Lexical Features  

Lexical features are utilized to provide more understanding of a word depending on its 

context and make it easier to forecast their meanings [50]. Many authors utilized the 

use of such terms as a feature, attempting to rely on the popular perception that hateful 

texts involve abuse and trauma words. To collect such kinds of information, lexical 

features need to comprise such prediction words. There are several freely searchable 

lists of common hate words from the web.  Some lists concentrate on a specific 

serotype of hate speech, such as the ones used by [51], which are based on gender 

expression5, disability6, and ethnicity7.  Other authors expressly developed their lists, 

especially for their study. [52] utilized a lexicon that includes good verbs and 

adjectives. [53] created a dictionary of abusing and insulting language. The public 

lexicon dictionary SentiWordNet is described by [54] for opinion mining. [55] 

compiled a list of verbs that support or promote violent behavior. Moreover, the 

Stanford NLP group utilized NLP parser8 to extract the grammar dependency in a 

sentence. 

3.1.2.7 Term Frequency – Inverse Document Frequency (TF-IDF) 

TF is a measure of a word corresponding to the frequency of that word in a document. 

IDF, on the other hand, is calculated using the frequency of a word in a set of 

documents. IDF feature tends to correlate a low weight to each word if it appears 

 
5 https://en.wikipedia.org/wiki/List_of_LGBT_slang_terms 

6 https://en.wikipedia.org/wiki/List_of_disability-related_terms_with_negative_connotations 

7 https://en.wikipedia.org/wiki/List_of_ethnic_slurs 

8 https://nlp.stanford.edu/ 

 

https://en.wikipedia.org/wiki/List_of_disability-related_terms_with_negative_connotations
https://en.wikipedia.org/wiki/List_of_ethnic_slurs
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frequently throughout the documents and high weight to words that appear seldom 

throughout the documents. Mazzonello et al. [56] used the following formula for TF-

IDF: 

TF(𝑤, c) =
|occurrence of w in c|

|words in c|
 

 (1) 

 

CT = ∑
|documents in Cw in which w appears|

|documents in Cw|Cw∈∁
 

 (2) 

 

IDF(w) = log
|C|

CT
  

 (3) 

 

TF − IDF (w, c) =  TF(w, c) ∗  IDF(w)  (4) 

where (C): The set of all the classes c. 

TF (w, c): The frequency of word w in class c. 

Cw: The class c in which word w appears. 

IDF (w): The percentage of documents in class c in which w appears. 

3.1.2.8 Brown Clustering (BC) 

The brown clustering algorithm groups the equivalent distributional information 

together in one class. In 1992, Brown et al. [57] defined it as clustering words into 

classes by applying a statistical algorithm for classifying words based on how often 

they appear. A corpus of vocabulary is the input of this feature and based on the 

contexts; the output is a hierarchical vocabulary clustering that provides leaves in a 

binary tree. These leaves have distinctive bit-string (0-1). The vocabularies cluster in 

classes according to the similarity of the bits. By changing the number of bits to be 

compared, you can modify the number of clusters. This feature is statistical and does 

not require a lexicon or training data. 
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3.1.3 Classifiers 

3.1.3.1 Support Vector Machine (SVM) 

 SVM is one of the most popular supervised machine learning approaches. Joachims 

[58] developed SVM as a model for high-dimensional feature text categorization in 

1998. SVM is non-probabilistic, and in its basic form it is used on data, that can be 

linearly divided to provide an identification of two classes. SVM maximizes the 

margin between the two classes. Therefore, it has good generalization and less chance 

to overfit [59]. The SVM has been seen used effectively for sentiment prediction [60, 

61]. 

3.1.3.2 Naïve Bayes (NB) 

NB is a supervised machine learning approach. NB is a probabilistic classifier placed 

on the Bayes theorem with speculation of the strong independence of all words. This 

approach computes the word’s probability then assigns a tag to the high probability 

words as an output. NB is simple to design, and it is capable of working on large size 

of datasets. 

3.1.3.3 Logistic Regression (LR) 

LR is a supervised machine learning method. This classifier is statistical and 

probabilistic; it has two types: binary classification and multi-classification. LR 

considers as an efficient classifier especially on large size of datasets. It is not a 

complex classifier, also it has less risk of overfitting [62]. LR is suitable for binary 

classification tasks as it has the sigmoid function, as the LR hypothesis states that the 

sigmoid function is limited to a value between 0 and 1, where the threshold is 0.5. 

Therefore, the class is negative in case the sigmoid function is greater than 0.5, and 

positive when the sigmoid function is less than 0.5. The name of LR came from this 

function that it has, which is called sigmoid or logistic. 
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3.1.3.4 Recurrent Neural Network (RNN) 

RNN is an unsupervised machine learning method. This classifier is suitable for 

sequential data. The Recurrent Neural Network contains three layers namely: input, 

hidden, and output [63].  It can predict a word and understand the context depending 

on the previous word. Therefore, the inputs of this classifier are the previous output 

plus the current input which, provides gain with NLP as the previous word has the rest 

of the meaning of the current word. The drawback of this classifier is the long-term 

dependencies in a sentence, as it cannot remember this type of sentence. Therefore, it 

might produce a low performance. 

3.1.3.5 Long Short-Term Memory Network (LSTM) 

An unsupervised machine learning method is used for classification problems. It is a 

strong kind of deep neural network; RNN [64]. There are three gates in this classifier 

namely: input, output, and forget gates. As an advantage of this classifier, it overcomes 

the problem of remembrance of the long-term dependencies in a sentence through the 

use of forget gates. Therefore, it can prevent the overfitting issue [65]. Because of the 

memory cell, this classifier is good at catching long-term dependencies, which sets it 

apart from RNN. 

3.1.3.6 K-Nearest Neighbors (KNN) 

KNN is a supervised machine learning method. It is widely known as a lazy learning 

algorithm due to its simplicity as there is no training stage. It is built on the assumption 

that similar data are located in the same neighborhood. KNN performance relies 

crucially on the method used to compute the similarity between various examples [66]. 

The drawback of this classifier is the long time required to search through the whole 

training set to find the nearest neighbors to provide a prediction, and this issue gets 

worse with the increase of the dataset size. 
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3.1.3.7 Convolutional Neural Network (CNN) 

CNN is a supervised machine learning method. It is a special kind of neural network. 

The architecture of the CNN is hierarchical, typically contains three layers, the first 

layer is an input layer, the second one is a hidden layer, and lastly an output layer. The 

hidden layer typically consists of three layers, convolution, pooling, and fully 

connected layers. There are various variants of the CNN models [67]. CNN was firstly 

designed for image classification, therefore, in text classification, the words in the text 

are converted to vectors. 

3.1.3.8 Bidirectional Encoder Representations from Transformers (BERT) 

An unsupervised machine learning method. It is a neural network for natural language 

processing, presented in 2018 by Jacob and his team. BERT can apply bidirectional 

training the prediction of the context of the word will be provided according to the 

adjacent words [68]. 

3.1.3.9 Decision Tree (DT) 

The DT classification structure is a tree, with root, branch, and leaf nodes. The root 

represents the entire dataset, while the branches represent the subsets and the leaves 

indicate the prediction. Starting with the root node, select the suitable feature by 

attribute selection measurement, and then make a decision by splitting the node using 

an algorithm. To get to the leaf nodes, repeat these steps. Overfitting is a critical flaw 

in this model. 

3.1.3.10 Random Forest (RF) 

RF is a supervised algorithm. It is a large number of DT classifiers evolved by Breiman 

in 2001 [69]. Every single tree predicts a class; the output will be the class that 

achieved the majority votes. Stochastic subsets from the training dataset are used to 

train each tree, with various features used to split the dataset. An advantage of this 
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phase is to ensure that the single decision trees are unconnected; therefore, the 

predictions will be more accurate. Unlike the single DT, RF can avoid overfitting. By 

increasing the number of decision trees, the time of training increases as well. 

3.1.3.11 Extra-tree (E-tree) 

E-tree is a type of ensemble classification technique that combines the results of 

numerous less correlated DT ensembled in a forest to provide a classification result. It 

separates nodes randomly based on given cut-points. This classifier argues that precise 

randomization of the cut-point together with ensemble averaging should be capable of 

minimizing variance more effectively than other approaches that have weak random 

methods [70]. 

The E-tree model is a version of the RF model that uses the whole training set to train 

the individual classifiers, whereas the RF trains them on subsets of the training data. 

3.1.3.12 Gradient Boosting (GB) 

GB is a supervised machine method. Boosting is a type of ensemble technique where 

a set of weak low performance classifiers are used to build a strong high performance 

classifiers; the weak classifiers are mostly a group of DT classifiers. The set produces 

a loss function for each classifier in the set, which determines the model effectiveness. 

Every classifier in the set will be added to an iteration. This classifier aims to reduce 

the prediction error as it provides a boosting model. It also offers the benefit of being 

able to parallelize and distribute training across clusters. 

Extreme gradient boosting (XGB) is a special implementation of GB that is faster than 

GB. XGB uses a penalty function, as well as some computational methods that take 

advantage of a computer's equipment to speed up algorithms. 
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3.1.4 Genetic Programming (GP) 

This subsection provides an overview of GP concepts and the steps required to 

adapt GP to the binary classification task.  

 

Figure 3.2: Flowchart of the GP approach 

GP is considered an extension of the genetic algorithm; where the individuals represent 

solutions of a problem and they are evolved until an optimal solution is found. The GP 

process applies a search strategy to find an optimal solution using a computer program 

without prior knowledge from the user regarding the structure of the solution. 

As shown in Figure 3.2. the GP process consists of several steps. The commonly 

employed steps involved in GP are as follows: 
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• GP starts with generating an initial random population of individuals or 

solutions. 

• A fitness function is used to evaluate each individual. 

• Two parents are chosen. 

• Genetic operators are applied to the parents with the probability to create 

new individuals. 

• The previous three steps are repeated until a solution is achieved or the 

termination criteria are met. 

• The best individual of the population according to the fitness function value 

is returned. 

The process starts with the initialization step where an initial population is formed 

from randomly generated trees. To simulate evolution, the parents are chosen at 

random, giving priority to the fittest individuals. As a result, each new generation 

contains the offspring of the randomly chosen fitter parents. Each individual is 

evaluated using the fitness function. Individuals are evolved via genetic operators such 

as crossover, reproduction (replication), and mutation to produce new populations 

from offspring. When the termination criteria are satisfied, the process is terminated, 

and the best individual is returned. 

In the GP framework, each individual or chromosome represents a program or 

solution. As shown in Figure 3.3, leaf nodes are terminals which consist of variables, 

constants, and ephemeral and internal nodes are primitives which are in general 

functions such as mathematical functions or logical or conditional operators as shown 

in Table 3.1. 
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Table 3.1: Sample of functions and operators employed by GP approach 

Function Contents 

Mathematical Functions +, -, *, sin, cos, log, sqrt, tan, tanh, and protected division 

Logical Operators AND, OR, NOT 

Conditional Operator if-then-else 

 

 

Figure 3.3: A sample classification tree employed by the GP model where the leaf 

nodes contain features denoted by F## 

3.1.4.1 Initialization 

The first step of the GP approach is the initialization of the population known as 

generation zero. To randomly initialize to the population, there are various methods to 

use. The popular methods Full method, Grow method, and Ramped-half-and-half 

method are briefly described below: 

• Full method: The depth of each tree is equal to the maximum depth used; 

therefore, all generated trees will have equal depth. 
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• Grow method: In contrast to the Full method, there is no limit on the depth 

of the tree. The nodes of the tree select randomly from the leaf or internal 

nodes. The output is trees with different depths and structures. 

• Ramped-half-and-half method: This method presented by Koza [33], is a 

combination of two methods, Grow and Full methods. Half of the initial 

population was created by the Grow method and the other half by the full 

method. 

3.1.4.2 Selection 

One of the most important processes of the genetic or evolutionary framework is the 

selection of appropriate parents that will mate and reproduce to form a new generation. 

It is crucial to ensure that the fittest individuals are more probable to be chosen as 

parents. But it is also important to ensure diversity. There are various methods for 

selection; the most common methods are Tournament and Roulette wheel methods 

[71]. 

• Tournament selection: In this approach, k individuals in the population are 

chosen randomly. Among these k individuals, the fittest is selected as a 

parent. k is known as tournament size and determines the selection pressure 

where higher selection pressure results in the selection of fitter individuals. 

• Roulette wheel selection: The probability of an individual being chosen is 

directly proportional to its fitness. Thus, the individuals with higher fitness 

values have a higher probability of being chosen as parents. 

 3.1.4.3 Genetic Operators 

The GP approach used genetic operators to generate a new individual or offspring from 

the selected parents. There are three popular genetic operators, namely crossover, 

reproduction, and mutation [33]. 
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• Crossover: The crossover operator is applied on two parents selected using 

one of the selection methods to generate two new individuals or offsprings. 

The offsprings are created by exchanging sub-trees between the two 

parents. In this process, a subtree rooted at a randomly selected point in a 

parent is exchanging with another subtree thus, chosen in the other parent. 

• Reproduction: This operator copies the selected parent to the next 

generation as a new individual without any alternation. The reason behind 

that is to reserve the good individuals. 

• Mutation: The mutation operator produces a new individual or offspring by 

replacing a random sub-tree of a single parent with a randomly generated 

sub-tree. The mutation can lead to rapid growth in the size of the new 

individual’s tree; therefore, in general, a control mechanism to limit the 

maximum tree depth is employed. The aim of using mutation is to increase 

diversity among individuals. 

3.1.4.4 Fitness Function 

Choosing an appropriate fitness function that can be used to identify the fitness or 

success of individuals is crucial for the GP process. In each generation, the fitness 

function is used to evaluate the fitness of all individuals. It is used to determine how 

good the optimal solution obtained from the GP approach is.  

3.1.4.5 Termination Criteria 

Since the aim of the GP framework is to find a solution to a problem. The evolution 

may end when the target is achieved. Nevertheless, it is also possible to terminate the 

GP after the completion of the given number of generations, even when the optimal 

solution is not found. When the termination criteria is met the solution will the highest 

fitness is the optimal solution.  
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3.1.4.6 Weakness and Strengths  

There are several strengths and weaknesses of the GP approach. The main strengths 

may be listed as follows: 

• The randomness provided by the GP in different steps such as the 

initialization, selection of the parents, and choosing the point in parents to 

apply the genetic operations leads to variety in solutions that allow 

exploration of a wider search space. 

• A comprehensive knowledge of the issues and their solutions is not 

required in the GP approach. 

• The interpretability of the GP solution, as the obtained solution can be 

understandable in human terms. 

• It can eliminate unnecessary features for optimal solution. 

While the main weaknesses are: 

• Evolution in GP framework may result in a solution that grows 

unpredictably complicated without any improvement in the performance or 

fitness, this issue is also known as Bloat [71]. It caused problems in the 

performance. Bloat can happen because of introns, which are parts of the 

solution that do not add anything to the solution in terms of fitness; while 

increasing the size. 

• Time-consuming, because of long training time. 

• No guarantee for the optimal solution. 

3.1.5 Evaluation Metrics 

For evaluating the performance of a classifier, numerous performance measures such 

as Confusion Matrix, Accuracy, Precision, Recall, Specificity, F1-score. 
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3.1.5.1 Confusion matrix 

It is a metric to measure the classifier performance in supervised machine learning. 

The diagonal values True Positive (TP), and False Negative (FN) give the number of 

correct predictions. The best confusion matrix has high diagonal values. The other 

values in the metric represent the False Negative (FN), and False Positive (FP) which 

are the false predictions. 

Table 3.2: Confusion matrix for binary classification 

  Predicted Class 

  Positive Class Negative Class 

Actual Class Positive Class TP FN 

Negative Class FP TN 

The common measure for the effectiveness of the classifier’s performance is accuracy. 

That is defined as the ratio between the number of correct predictions by the classifier 

and the total number of cases as show in equation 5.  

Accuracy =
TP + TN

TP + TN + FP + FN
 

 (5) 

Inspection of the accuracy formula shows that in the case of an imbalanced dataset, it 

is possible to get a high overall accuracy even when the minority class is misclassified. 

Precision or positive predictive value is the proportion of correct positive prediction to 

all of the positive predicted values. The low Precision may reflect the huge number of 

FP. 

Precision =
TP

TP + FP  
 

 (6) 

 Recall or true positive rate is the proportion of correct positive prediction to all of the 

positive’s values. In another way, it is the positive predictions divided by the actual 
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positive classes. It is also known as sensitivity. The low Recall may reflect the huge 

number of FN. 

                             Recall =
TP

TP + FN
                                     

 (7) 

Specificity or True negative rate measures the correctly negative predicted values. 

  Specificity =
TN

TN + FP 
 

 (8) 

F1-score is the harmonic mean between Precision and Recall. It is a commonly used 

metric for measuring the effectiveness of a classifier especially in the case of the 

imbalanced dataset. F1-score reflects the balance between the Recall and Precision.  

                             F1 − score =
2(Precision ∗ Recall)

Precision + Recall
                                     

 (9) 
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Chapter 4 

3 DATASETS 

This chapter presents an overview of the datasets used throughout this dissertation. 

The proposed models were developed and tested using four publicly available English 

Twitter datasets retrieved from different repositories as shown in Table 4.1. The 

datasets were selected with different sizes. 

Table 4.1: Datasets employed in this thesis 

Dataset Repositories 

HatEval http://hatespeech.di.unito.it/hateval.html 

Davidson https://data.world/thomasrdavidson/hate-speech-and-offensive-language 

COVID-

HATE 

http://claws.cc.gatech.edu/covid/#dataset 

ZeerakW https://github.com/ZeerakW/hatespeech/blob/master/NAACL_SRW_2016.csv 

 

4.1 HatEval Dataset 

The HatEval dataset was released as a part of a competition in 2019, from SemEval 

Task 5. It addressed the detection of hate speech against immigrants and women on 

Twitter. It consists of three sets namely: train, development, and test sets containing 

9000, 1000, and 3000 tweets respectively.  HatEval is a binary classification dataset 

annotated with two classes: Hate and Not Hate. The targets of hateful tweets in this 

dataset are immigrants and women. In the training set, 39.76% of the tweets are 

targeted at immigrants and 44.44% are targeted women, while in the testing set, 42.0% 

http://hatespeech.di.unito.it/hateval.html
https://data.world/thomasrdavidson/hate-speech-and-offensive-language
http://claws.cc.gatech.edu/covid/#dataset
https://github.com/ZeerakW/hatespeech/blob/master/NAACL_SRW_2016.csv
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and 42.0% towards immigrants and women respectively. On the other hand, 60.24% 

and 55.24% of Not Hate tweets towards immigrants and women respectively in the 

training dataset, while in the testing dataset, 58.0% and 58.0% of Hate tweets towards 

immigration and women respectively. 

 
Figure 4.1: Class distribution of HatEval train set 

  

Figure 4.2: Class distribution of HatEval development set 

 
Figure 4.3: Class distribution of HatEval test set 

4.2 Davidson Dataset 

This dataset is considered the largest publicly available dataset for hate speech. It 

consists of 24783 tweets, produced in 2017 by Davidson et al. [18]. The annotations 
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or labels of the Davidson dataset are Hate, Offensive, and Neither. In this dissertation, 

hate speech detection is treated as a binary classification problem. Therefore, the 

tweets with labels Hate and Offensive combined and labeled as Hate tweet, while the 

tweets with the label Neither relabeled as Not Hate tweet [72]. 

The Davidson dataset where 17% of the tweets are categorized as Not Hate, and 83% 

are categorized as Hate is an imbalanced dataset.  Therefore, we applied a synthetically 

oversampling technique (SMOTE) on the training set to deal with this issue [73]. 

 
Figure 4.4: Class distribution of Davidson dataset 

4.3 COVID-HATE Dataset 

COVID-HATE dataset is a small dataset with 2319 tweets released in 2020 related to 

COVID-19 hateful tweets against Asian people, created by Ziems et al. [74]. This 

dataset has four labels namely Hate, Counter-Hate, Neutral and Non-Asian 

Aggression, with 678, 359, 961, and 321 tweets respectively. In this dissertation, the 

tweets with labels Hate and Non-Asian Aggression combined to Hate label, while 

Counter-Hate and Neutral set to the Not Hate label. 

83%

17%

Hate Tweet

Not Hate
Tweet
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Figure 4.5: Class distribution of COVID-HATE dataset 

4.4 ZeerakW Dataset 

The ZeerakW dataset compressed 16135 tweets, annotated as Racism, Sexism, and 

Neither [75]. The tweets with Racism and Sexism labels combined to perform the Hate 

label, while the tweets with Neither label set to Not Hate label instead. 

 
Figure 4.6: Class distribution of ZeerakW dataset 

All the datasets have been split into two sets namely, train (80%) and test sets (20%), 

except for HatEval. HatEval was available as training, development, and test sets. 

Table 4.2: Distribution of Not Hate and Hate tweets in all datasets 

Dataset Size Not Hate Tweet Hate Tweet 

HatEval 13000 7530 5470 

Davidson 24783 4163 20620 

COVID-HATE 2319 1320 999 

ZeerakW 16135 11033 5102 
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Chapter 5 

4 STACKING APPROACH  

This chapter presents the experimental setup and results for binary hate speech 

classification using a novel stacking classifier ensemble.  The four datasets described 

in Chapter 4 are employed to show the effectiveness of the proposed stacked ensemble 

compared to single classifiers, standard stacking ensemble, and simple majority voting 

ensembles as well as the state-of-the-art. Parts of this chapter were previously 

published in [16]. 

5.1 Experimental Settings 

We employed the Gensim package in Python using Python 3.7 for the implementation 

of the proposed approach. The general principle behind the stacked ensemble is to use 

predictions from the classifiers at the first level as input to the classifiers at the 

subsequent levels. The novelty of the proposed stacking architecture is that in addition 

to the predictions of the first level classifiers we use the features input to the first level. 

The figure and tables of this chapter are from our work published in [16].  

HatEval dataset is available as pre-divided into three parts train, development, and test 

sets. To develop and test the proposed stacking ensemble approach, we divide the 

remaining three datasets using 80:20 ratio as training and testing datasets respectively. 

We further divide the training set into training and development sets using a 90:10 

ratio respectively. 
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Table 5.1: Distribution of Not Hate and Hate tweets in train, test, and development 

sets of HatEval dataset 

 Not Hate Tweet (0) Hate Tweet (1) Total 

Train 5217 (58%) 3783 (42%) 9000 

Development 573 (57%) 427 (43%) 1000 

Test 1740 (58%) 1260 (42%) 3000 

Total 7530 (58%) 5470 (42%) 13000 

We use the training set to train the first level classifiers referred to as Base-Level 

classifiers and the development set to train the second level classifier referred to as 

Meta-Level classifier. The final performance of the proposed system is given using the 

predictions on the previously unseen test set. 

Table 5.2: Distribution of Not Hate and Hate tweets in the train, test, and development 

sets of Davidson dataset 

 Not Hate Tweet (0) Hate Tweet (1) Total 

Train 3010 (17%) 14833 (83%) 17843 

Development 327 (17%) 1656 (83%) 1983 

Test 826 (17%) 4131 (83%) 4957 

Total 4163 (17%) 20620 (83%) 24783 

Table 5.3: Distribution of Not Hate and Hate tweets in train, test, and development 

sets of COVID-HATE dataset 

 Not Hate Tweet (0) Hate Tweet (1) Total 

Train 965 (58%) 704 (42%) 1669 

Development 106 (57%) 80 (43%) 186 

Test 249 (54%) 215 (46%) 464 

Total 1320 (57%) 999 (43%) 2319 
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Table 5.4: Distribution of Not Hate and Hate tweets in train, test, and development 

sets of ZeerakW dataset 

 Not Hate Tweet (0) Hate Tweet (1) Total 

Train 7935 (68%) 3682 (32%) 11617 

Development 877 (68%) 414 (32%) 1291 

Test 2221 (69%) 1006 (31%) 3227 

Total 11033 (68%) 5102 (32%) 16135 

 

Figure 5.1. shows the architecture of the proposed stacking approach which consists 

of four stages namely preprocessing, feature extraction, and two levels of classifiers. 

The classifiers of the first level are called Base-Level classifiers. In order to avoid 

overfitting, we chose a diverse set of machine learning architectures as Base-Level 

classifiers. We employed seven Base-Level classifiers namely SVM, LR, KNN, NB, 

RF, E-tree, and XGB. As the second level classifier, also known as Meta-Level 

classifier, we employed LR due to the shorter training time and the fewer number of 

parameters [76, 77]. As shown in the figure, the same set of features are used as input 

to both the Base-Level classifiers and Meta-Level classifier.  
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Figure 5.1: Proposed stacking ensemble architecture  

At the preprocessing stage first, we applied the following steps on the train, 

development, and test sets: 

• Each tweet is tokenized. 

• Hashtag symbols ‘#’ are removed. 

• Mentions ‘@’ are removed. 

• URLs are removed. 

• All characters are changed to lowercase. 

• All words are stemmed. 

• Words with 1 character are removed. 



 

40 

 

We used a combination of two features word2vec and USE to train all Base-Level 

classifiers. The extracted features from the training set are fed as an input to the Base-

Level classifiers. To train the Meta-Level classifier, pre-trained Base-Level classifiers 

make the predictions on preprocessed development set, which forms the input to the 

Meta-Level classifier together with the features used as input to the Base-Level 

classifiers. When the Meta-Level classifier training phase is completed the Meta-Level 

classifier computes the final decision of the proposed stacking ensemble for previously 

unseen data using the combination of the Base-Level classifier predictions and the 

features. 

5.2 Results and Discussion 

5.2.1 Results from proposed stacking experiment 

For each dataset, all Base-Level classifiers were trained using a training set and their 

performance on the development set were presented in Table 5.5. Five different 

combinations of these Base-Level classifiers were used in the stacking system. It can 

be seen that in this experiment the best performing classifier for each dataset varies, 

XGB is always in the top 3. 

Table 5.5: F1-score of the Base-Level classifiers on development sets 

Base-Level classifier HatEval Davidson COVID-HATE ZeerakW 

KNN 0. 6061 0.9296 0. 6982 0.7480 

LR 0. 6434 0.9343 0. 7761 0.8406 

SVM 0.6180 0.9517 0. 7632 0.8398 

NB 0. 6845 0.8669 0. 7201 0.7402 

RF 0. 6443 0.8671 0. 7963 0.6081 

E-tree 0. 5808 0.9358 0. 7745 0.7180 

XGB 0. 6745 0.9500 0. 7960 0.8253 

Bold entries show the highest performance for each dataset 
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The development set is used to train the Meta-Level classifier in each proposed 

stacking ensemble. We explored every possible combination of the seven individual 

classifiers in our experiment. The five highest performing stacking combinations in 

terms of F1-score are shown in Table 5.6.  

Table 5.6: F1-score of proposed stacking ensemble using different Base-Level 

classifier combinations on test sets  

Base-Classifier 

combination 

HatEval Davidson COVID-HATE ZeerakW 

SVM, LR, XGB 0.6551 0.9713 0. 7301 0.7392 

KNN, SVM, NB 0.6405 0.9613 0. 6920 0.7049 

LR, NB, RF 0.6407 0.9601 0. 7136 0.7226 

KNN, LR, NB 0.6410 0.9710 0. 7261 0.7150 

SVM, LR, E-tree 0.6428 0.9710 0. 7255 0.7253 

Bold entries show the highest performance for each dataset 

As shown in the table for all four test sets used, the Base-Level classifier combination 

(SVM, LR, XGB) has the highest performance compared to the other combinations. 

On the test set, Table 5.6 demonstrates the performance of the proposed stacking 

system.  

5.2.2 Results from single classifier experiment 

Table 5.7 shows the performance of single classifiers on test sets in terms of F1-score 

on test sets. 

It can be observed that the LR classifier performed the best on two of the datasets, 

HatEval and ZeerakW. The single classifiers SVM and XGB, respectively, achieved 

the best F1-score for the other two datasets Davidson and COVID-HATE. 
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Table 5.7: F1-score of the Base-Level classifiers on test sets  

Classifier HatEval Davidson COVID-HATE ZeerakW 

KNN 0.5885 0.9281 0. 6580 0.6037 

LR 0.6407 0.9365 0. 7146 0.7179 

SVM 0.6394 0.9530 0. 6843 0.7030 

NB 0.6024 0.8745 0. 6539 0.5508 

RF 0.6016 0.8797 0. 6710 0.6274 

E-tree 0.6031 0.9397 0. 6542 0.6747 

XGB 0.6353 0.9498 0. 7246 0.7058 

Bold entries show the highest performance for each dataset 

The Base-Level classifiers were tested on the development in the proposed stacking 

experiment and test sets in the single classifier experiment of each dataset, and the 

results are given in Tables 5.5 and 5.7, respectively. Close inspection of HatEval test 

and development sets show that the frequently used words in these two sets are 

different. This difference is expected to affect the Meta-Level classifier’s performance. 

The discrepancy between the train and test sets has also been indicated by Paula et al. 

[78] for their system's poor performance. Tables 5.5 and 5.7 showed that, as previously 

stated, the data in the test, development, and training segments of the dataset differ, 

which is reflected in the Base-Level classifiers' performance. Furthermore, it may be 

argued that using the development set to train the Meta-Level classifier is harmful. 

5.2.3 Results from majority voting experiment  

We conducted an experiment with the majority voting approach using the same 

combinations of the proposed stacking approach, in order to compare both approaches. 

Table 5.8 shows that for all datasets, the majority voting ensemble of (LR, NB, RF) 

consistently has the worst performance. RF is an ensemble strategy that comprises tree 

estimations, which are provided by each tree's majority voting [79]. Throughout most 
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scenarios, within (LR, NB, RF) combination, RF concurs with LR, NB, or both in 

incorrect predictions, resulting in misclassification in the majority voting strategy. 

Furthermore, RF has better performance with multiclassification tasks [79]. 

Table 5.8: F1-score of majority voting ensembles on results on the test sets 

Classifiers  HatEval Davidson COVID-HATE ZeerakW 

SVM, LR, XGB 0. 6296 0.9521 0. 7050 0.7221 

KNN, SVM, NB 0.6170 0.9509 0. 7188 0.7005 

LR, NB, RF 0.6135 0.9309 0. 6950 0.6280 

KNN, LR, NB 0.6167 0.9547 0. 7208 0.6289 

SVM, LR, E-tree 0.6307 0.9552 0. 7081 0.7210 

Bold entries show the highest performance for each dataset 

As indicated in Table 5.8, the results obtained using the majority approach are not as 

good as those obtained using the proposed stacking approach. 

On both the HatEval and Davidson datasets, the majority voting ensemble with (SVM, 

LR, E-tree) provided the maximum F1-score. On the COVID-HATE dataset, the 

(KNN, LR, NB) combination achieved the best F1-score. Finally, the majority voting 

ensemble utilizing (SVM, LR, XGB) combination achieved the maximum F1-score 

for the ZeerakW dataset. Furthermore, LR was still in the combination that achieved 

the maximum performed F1-score for binary classification on every test set in the 

majority voting (SVM, LR, XGB), (KNN, LR, NB), and (SVM, LR, E-tree). 

5.2.4 Results from standard stacking experiment  

The difference between the standard stacking experiment and the proposed stacking 

is that we only utilize the Base-Level classifier predictions as input to the Meta-Level 

classifier (in the proposed stacking approach, the Meta-Level classifier employs both 
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the features and the predictions of the Base-Level classifiers). Table 5.9 shows the 

binary classification performance of the standard stacking in terms of F1-score for 

each dataset. On the HatEval dataset, the results obtained by this method are quite low, 

with the best F1-score for the (SVM, LR, E-tree) combination being 59.43%. The best 

results were found using the (LR, NB, RF), (SVM, LR, XGB) and (KNN, LR, NB) 

combinations on the COVID-HATE, Davidson, and ZeerakW datasets, respectively. 

Table 5.9: F1-score of standard stacking on the test sets  

Classifiers  HatEval Davidson COVID-HATE ZeerakW 

SVM, LR, XGB 0.5910 0.9517 0.7036 0.6657 

KNN, SVM, NB 0.5746 0.9434 0.6623 0.6806 

LR, NB, RF 0.5804 0.9412 0.7047 0.6754 

KNN, LR, NB 0.5873 0.9437 0.7046 0.6815 

SVM, LR, E-tree 0.5943 0.9491 0.6859 0.6472 

Bold entries show the highest performance for each dataset 

 

In the proposed stacking approach, we found that LR and SVM were the most 

successful models out of all the models applied on the test sets in terms of the F1-

score. The best two combinations in the proposed stacking approach namely, (SVM, 

LR, E-tree), and (SVM, LR, XGB), already have LR and SVM in combination. These 

combinations may be the best because they utilized LR as a Meta-Level classifier, but 

LR was also the highest in the other two experiments that did not employ a Meta-Level 

classifier. Among Base-Level classifiers, on two datasets namely, HatEval and 

ZeerakW, LR had the highest F1-score. Additionally, LR was among the combinations 

that produced the best F1-score on all datasets in the majority voting (SVM, LR, 

XGB), (KNN, LR, NB), and (SVM, LR, E-tree). 
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Table 5.10 shows the best binary classification performance on all test sets from the 

four experiments in this chapter. According to the experimental results on the test sets, 

our proposed stacking approach outperforms all other three approaches in terms of F1-

score. Moreover, it can be seen that the standard stacking approach is consistently 

ranked as the lowest performing classifier.  

Table 5.10: F1-score of the best performing system in the four experiments on test sets  

Approaches HatEval Davidson COVID-HATE ZeerakW 

Proposed Stacking 0.6551 0.9713 0.7301 0.7392 

Standard Stacking 0.5943 0.9517 0.7047 0.6815 

Single Classifiers 0.6307 0.9530 0.7208 0.7179 

Majority Voting 0.6407 0.9552 0.7246 0.7221 

Bold entries show the highest performance for each dataset 

Table 5.11 summarize the state-of-the-art on three datasets, HatEval, Davidson, and 

ZeerakW for binary classification There was no published binary classification work 

on the COVID-HATE dataset until the time of writing this thesis. 

Table 5.11:  F1-score and classification model of the state-of-the-art on all datasets 

State-of-the-Art Dataset F1-Score Model Features 

Indurthi et al. [31] HatEval 65.1% SVM USE 

Zhang et al. [13] Davidson 94.0% CNN, GRU (Ensemble) word2vec 

Zhang et al. [13] ZeerakW 74.0% 
 

LR 
N-gram and 

user features 

 

The result of the state-of-the-art on HatEval dataset was 65.1% achieved by using 

SVM as a classifier and sentence embedding feature [31]. The highest performance of 

74.0% F1-score for binary classification on the ZeerakW dataset was achieved by 
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applying LR with a combination of N-gram and user's features [13]. Due to the size 

and the uniformity of the data Davidson dataset contains, many researchers used it for 

classification problems. The highest published result on this dataset for binary 

classification is a 94.0% F1-score, which is achieved using CNN and GRU with word 

embedding as a feature [13]. 

Table 5.12: F1-score of the state-of-the-art and the proposed stacking ensemble on all 

datasets 

Dataset State-of-the-art Proposed Stacking Ensemble 

HatEval 65.1 [31] 65.5 

Davidson 94.0 [13] 97.1 

COVID-HATE - 73.0 

ZeerakW 74.0 [13] 73.9 

Bold entries show the highest performance for each dataset 

For each of the four datasets, Table 5.12 compares the proposed approach to the state-

of-the-art. On the Davidson dataset, the highest published performance is by Zhang et 

al. [13]. Our proposed stacking approach outperformed this result by 3.1%, indicating 

that the stacked ensembling approach we used and the combination of word2vec and 

USE played a role in increasing the classification performance.  

In both HatEval and Davidson datasets, the proposed stacking approach outperformed 

the state-of-the-art. Only on the ZeerakW dataset, the state-of-the-art outperformed the 

proposed stacking approach by merely 0.1%. This is due to the fact the state of the art 

was achieved using feature engineering specifically for the said dataset whereas we 

opted to use the same features for all datasets. Indeed, for this dataset, Waseem and 

Hovy [17] discovered that character N-gram outperformed other features and 
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moreover that other features have a negative impact on performance. Furthermore, 

they also showed that integrating these features with the LR enhances performance.  

Even though the proposed stacking approach outperformed the best performance on 

the HatEval dataset which is achieved by Indurthi et al. [31] using SVM and sentence 

embeddings features, the performance gain is not as significant as on the Davidson 

dataset. Basile et al. [80] present the findings of the SemEval-2019 competition for 

Task 5 HatEval. Zhang et al. [13] used LR as a binary classification model combined 

with N-gram and user characteristics to produce the best result for binary classification 

on the ZeerakW dataset.  

It is important to highlight that no individual classifier or combination of classifiers 

can provide the best performance for all different kinds of datasets. Categories and 

targets of hate speech, the context of the tweets, the ratio of hate to non-hate tweets 

show variation among the datasets [81]. These particular characteristics of the datasets 

make it difficult to adapt the systems with custom built architectures and features to 

the constantly changing hate speech domain.  
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Chapter 6 

5 GENETIC PROGRAMMING APPROACH 

This chapter presents a genetic programming framework to generate an efficient binary 

hate speech classifier. A novel hybrid mutation operator is proposed, and the four 

datasets described in Chapter 4 are employed to show the effectiveness of this new 

mutation operator. A comparison with the state-of-the-art is also provided. Parts of this 

chapter were previously published in [15]. 

6.1 Experimental Settings 

We employed a GP framework named Distributed Evolutionary Algorithms in Python 

(DEAP). The proposed approach was implemented in Python 3.7. A GP model used 

in this work is based on tree representation where the internal nodes are called 

primitive nodes and represent mathematical functions, relational operations, logical 

operators, and a conditional operator, and the leaf nodes called Terminals represent 

features. 

With the proposed GP approach, we used the splitting of 80% training and 20% for 

testing sets, as shown in the next tables.  

The figures and tables of this chapter are from our work published in [15]. 

 



 

49 

 

Table 6.1: Distribution of Not Hate and Hate tweets in train, test, and development 

sets of HatEval dataset 

 Not Hate Tweet (0) Hate Tweet (1) Total 

Train 5217 (58%) 3783 (42%) 9000 

Development 573 (57%) 427 (43%) 1000 

Test 1740 (58%) 1260 (42%) 3000 

Total 7530 (58%) 5470 (42%) 13000 

Table 6.1 is the same as Table 5.1. It is included here to increase the readability of the 

chapter. 

Table 6.2: Distribution of Not Hate and Hate tweets in the train, test, and development 

sets of Davidson dataset 

 Not Hate Tweet (0) Hate Tweet (1) Total 

Train 3350 (16%) 16476 (84%) 19826 

Test 846 (17%) 4111 (83%) 4957 

Total 4196 (17%) 20587 (83%) 24783 

Table 6.3: Distribution of Not Hate and Hate tweets in train, test, and development 

sets of COVID-HATE dataset  

 Not Hate Tweet (0) Hate Tweet (1) Total 

Train 1075 (58%) 780 (42%) 1855 

Test 254 (55%)  210 (45%) 464 

Total 1329 (57%) 990 (43%) 2319 

Table 6.4: Distribution of Not Hate and Hate tweets in train, test, and development 

sets of ZeerakW dataset 

 Not Hate Tweet (0) Hate Tweet (1) Total 

Train 8848 (69%) 4060 (31%) 12908 

Test 2226 (69%) 1001 (31%) 3227 

Total 11074 (69%) 5061 (31%) 16135 
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The data is prepared for DEAP by preprocessing and extracting the USE feature. The 

preprocessing steps with the GP model are tokenization, removing the stop-words, 

removing the punctuation, and stemming. The proposed GP approach is presented in 

Figure 6.1. 

 

Figure 6.1: Flowchart of the GP approach 

6.1.1 GP process 

In the proposed GP model, 200 individuals are evolved over 500 generations. Every 

individual is a hate speech model represented as a tree in the proposed GP model. The 

Ramped-half-and-half method is used to generate the initial population with an initial 

maximum depth tree of 2, while the maximum tree depth during the evolution process 

is 4. The F1-score is used as a fitness function to measure the performance of the 
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model. Parents for crossover and mutation operators are selected using tournament 

selection with a tournament size of 20. The genetic operators, mutation, and crossover 

are used with probabilities of 20% and 80% respectively. The termination criteria used 

is the completion of the generation; therefore, after 500 generations the best individual 

will be provided as a result. The GP parameters which are used in the experiment are 

listed in Table 6.5. A total of 10 runs have been performed due to the randomization 

of the GP model. The GP model outperformed all other models on all datasets. 

Table 6.5: GP parameters 

Parameter Value 

Population Size 200 

Max Number of Generations 500 

Max Initialization Depth 2 

Max Process Tree Depth 15 

Selection Type Tournament 

Tournament Size 20 

Crossover Probability 80% 

One-point Mutation Probability 20% 

Feature Mutation Probability 20% 

Creation Method Ramped-half-and-half 

GP Representation Tree 

Max Evolution Depth 4 

Stop Condition Max number of generations 

Training Set 80% 

Test Set 20% 
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The GP framework is used with a hybrid mutation operator that makes use of the USE 

feature. In the hybrid mutation approach, one of the standard one-point mutation and 

the novel feature mutation techniques are used randomly. The standard one-point 

mutation produces a new individual by changing a subtree at a randomly chosen node 

with another randomly generated subtree, as shown in Figure 6.3 (a). 

Algorithm 1 Hybrid Mutation 

1: Procedure Mutation  

2:   Initialization 

3:    Mp ← Probability of mutation 

4:    Fp ← Probability of feature mutation 

5:    begin 

6:   for each offspring Si do 

7:        Generate a random number m ϵ [0,1] 

8:         if m < Mp then 

9:             Generate a random number n ϵ [0,1] 

10:               if n < Fp then 

11:                         for each feature node Ni do 

  12:                              Generate random feature node Nf 

13:                              Replace Ni by Nf 

14:                            end for 

15:               else 

16: Select random point (Pt )  in Si tree 

17: Generate random subtree (Rs) 

18:  Replace the subtree rooted at Pt with Rs 

19:               end if 

20:         end if 

21:    end for 

22: end procedure 

The mutation technique randomly chooses between two mutations standard one-point 

mutation, novel feature mutation as presented in the algorithm above. The novel 

feature mutation replaces each feature node randomly with another feature from the 

512-dimensional elements of the USE. The novel feature mutation technique only 

affects the features; the rest of the tree's structure and nodes are unaffected, as shown 

in Figure 6.3 (b). 
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Figure 6.2: Example of a standard one-point crossover  

 

 

(a) Standard one-point subtree mutation  
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(b) Novel feature mutation  
 

Figure 6.3: Example of hybrid mutation techniques employed in the proposed GP 

model 

6.2 Results and Discussion 

We discuss the results of the proposed GP technique in this section and compare them 

to other results on the same four datasets. 

We applied three different settings of the mutations. We utilized the standard one-point 

mutation in the first experiment, where a randomly generated subtree replaces a 

random subtree in the offspring. In the second experiment, we used a novel method 

named feature mutation, in which the offspring structure is left intact, but all of the 

feature nodes are changed with a given probability. The third experiment is the 

proposed approach, where the standard one-point and novel feature techniques of 

mutation are combined.  
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Table 6.6 illustrates the comparison between the three experiments and the state-of-

the-art on the four datasets, also the features and the classifiers of the state-of-the-art 

are shown. The proposed GP approach outperforms all other results on the four 

datasets employed. As Table 6.6 shows the feature mutation technique is only slightly 

better than standard mutation but the hybrid mutation improves the standard mutation 

by more than 1%.  

Table 6.6: F1-score of the state-of-the art and different GP approaches on all datasets  

Dataset Name State-of-the-art Standard 

mutation 

Feature mutation Hybrid 

mutation 

HatEval 65.10 [31] 72.27 72.61 75.30 

COVID-HATE - 74.47 75.03 77.59 

ZeerakW 74.00 [13] 74.97 75.15 77.33 

Davidson 94.00 [13] 93.34 93.45 94.40 

The proposed GP approach outperformed the state-of-the-art in terms of F1-score on 

the HatEval test set with 10.2%, moreover, this result outperformed the other results 

from the other two experiments. The proposed GP approach on COVID-HATE 

achieved an F1-score of 77.35%, which is higher than the other two experiments of 

the standard and feature mutations with 74.47% and 75.03% F1-score, respectively, 

proving the effectiveness of this approach. On the ZeerakW test set, the GP model with 

a standard one-point mutation achieved a 74.97% F1-score, which is the lowest 

performance among the GP models; however, there was an improvement in the result 

achieved with the feature mutation by 0.18%. The best performance was a 77.33% F1-

score, which was attained by hybrid mutation. GP proposed approach resulted in an 

F1-score of 94.40% on the Davidson test set which surpasses the best score by 0.4%. 
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It is seen that the best results on each dataset were achieved using different 

architectures and features.  In [31], SVM was used as a binary classification model 

with USE feature on the HatEval dataset. The LR, which is suitable for large datasets, 

was applied as a classifier on the ZeerakW dataset with a combination of N-gram and 

user features as features. In the Davidson dataset, a deep learning approach CNN, 

which is a black-box model, was employed with the word2vec feature by [18]. 

 

Figure 6.4: The F1-score with different approaches on all datasets 

There are many factors that contribute to the scores of a GP system. Increasingly the 

number of generations allows the evolution of new individuals and it was seen 

empirically that increasing the number of generations and population size during 

training improved performance on the test dataset. Furthermore, the dataset's size 

influences performance because a large dataset provides a broad search space for 

evolution. Another factor that affects the performance is the ratio of positive and 
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negative classes in the dataset. Consequently, to balance the unbalanced dataset, an 

oversampling or undersampling technique is recommended. Furthermore, the GP 

parameters can be customized to improve performance for each dataset.  

The performance of 10 runs of the GP proposed approach on the HatEval test set has 

been illustrated in Figure 6.5. It can be observed that runs 6, 7, 9, and 10 have the 

lowest performance of the initial generation among the ten runs with an F1-score of 

57.96%. Even though one of the lowest performances in the initial generation was run 

10, it achieved the best individual performance by 76.33% F1-score in the final 

generation on the HatEval test set.  

 

Figure 6.5: F1-score of the best individual in ten runs on HatEval test set 

Moreover, Figure 6.6 shows the proposed GP approach on the COVID-HATE dataset 

with ten runs. The lowest performance in the initial generation was in run 5 with a 

56.46% F1-score. On the other hand, run 10 achieved the highest initial generation 

with a 72.67% F1-score.  
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Figure 6.6: F1-score of the best individual in ten runs on COVID-HATE test set 

For the ZeerakW test set, the 10 runs are demonstrated in Figure 6.7. The lowest score 

in the initial generation was in run 9 with a final generation of 77.7% F1-score, while 

the highest final generation was stated by run 10 with a 78.3 % F1-score. 

 

Figure 6.7: F1-score of the best individual in ten runs on ZeerakW test set 

Figure 6.8 shows the 10 runs using the proposed approach on the Davidson test set. 

The highest initial generation was reached by run 4 with 75.76% F1-score and final 

generation with 94.2%, while the lowest was by run 6 with 57.67% F1-score. Run 9 
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reached the best final generation by scoring 95.53% F1-score, while the initial 

generation was 62.7% F1-score. 

 

Figure 6.8: F1-score of the best individual in ten runs on Davidson test set 

As an observation from all the performance Figures 6.5 to 6.8, the highest initial 

generation does not necessarily lead to the best final result. From all ten runs on all 

used test sets, there was just one case of getting the best initial and final generation 

within the same run which was obtained by run 9 on the Davidson test set. On the other 

hand, the best final result may occur in the same run that started with the lowest initial 

score as seen in run 10 on the HatEval test set. In terms of the best individual as shown 

in Figures 6.5 to 6.8 the convergence of all runs was towards a similar range of 

performance. This proves that the hybrid mutation produced sufficient variation 

successfully across the individuals which lead the proposed GP model to the optimal 

results despite the starting populations. Overall, the experimental results from the 

proposed GP approach illustrate the superiority and effectiveness of this approach, 

with outperforming results on all datasets. Figures 6.9 - 6.12 show the standard 

deviation of the performance in terms of F1-score for the 10 runs on each dataset. 
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Figure 6.9: Standard deviation comparison of ten runs on HatEval test set 

 

Figure 6.10: Standard deviation comparison of ten runs on COVID-HATE test set 

 

Figure 6.11: Standard deviation comparison of ten runs on ZeerakW test set 
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Figure 6.12: Standard deviation comparison of ten runs on Davidson test set 

Table 6.7 presents the best standard deviation achieved by the hybrid mutation with 

0.2%. The highest standard deviation in all experiments was 0.0613 on the Davidson 

test set by the hybrid mutation which is still acceptable. This can be related to the huge 

size of this dataset.  

Table 6.7: The standard deviation of the F1-scores on each dataset 

 Standard Deviation 

Dataset Name Standard Mutation Feature Mutation Hybrid Mutation 

HatEval 0.0292 0.0283 0.0221 

COVID-HATE 0.0410 0.0405 0.0233 

ZeerakW 0.0323 0.0326 0.0301 

Davidson 0.0534 0.0505 0.0613 
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Chapter 7 

CONCLUSION AND FUTURE WORK 

Various approaches have been employed to classify text into binary or multi classes 

thus far. Due to the popularity of social media platforms and the danger of hate speech 

dissemination on them, there is an urgent need to automatically detect hate speech. In 

this thesis, we introduced two approaches for binary text classification. The 

performance of the two approaches has been evaluated and tested on four different 

datasets from English Twitter.  

The novel stacking approach employed two levels of classifiers, Base-Level and Meta-

Level. The training set is used to train the Base-Level classifiers. The Meta-Level 

classifier is then trained using the development set. The inputs to the Meta-Level 

classifier are the predictions of the Base-Level classifiers together with the features 

used for training the Base-Level classifiers. Our model was used to classify the 

preprocessed unseen test set. We compared the performance of the proposed approach 

to the performance of single classifiers, standard stacking,  majority voting ensembles, 

and the state-of-the-art on all of the analyzed datasets. The results showed that 

discriminating between hateful and non-hateful tweets is a difficult process. On all 

datasets, the proposed stacking approach achieved the best F1-score when compared 

to, standard stacking, single classifiers, and majority voting. Moreover, utilizing the 

same combinations of features (word2vec and USE) as well as the same Base-Level 

classifiers combination of (SVM, LR, XGB) with Meta-Level classifier LR, the 
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proposed stacking approach outperformed the state-of-the-art on three out of four 

datasets. Even though it can be argued that the classifiers are trained in two steps, this 

is justified because it is not repetitious. The features which may be valuable for correct 

classification are connected to the structure and composition of the data to be 

classified, therefore fine-tuning the feature engineering step may increase performance 

even more. More extensive datasets with a longer timeline would better represent the 

time-varying character of tweets and help classifiers to capture the dynamic nature of 

hate speech. 

 The GP approach is based on the Darwinian principle implemented as a GP approach 

with a hybrid mutation technique. This technique contributes to the improvement of 

the evolutionary process, which evolves the best individual. The proposed GP 

approach used only one feature called USE. The hybrid mutation strategy selects one 

of two mutations with probability:  standard one-point or novel feature mutation.  Four 

publicly available datasets of English Twitter messages of various sizes were used to 

evaluate the proposed approach. On the four datasets, a comparison of performances 

with various approaches was performed. The proposed GP model's experimental 

findings demonstrated its efficacy and superiority, with performance improvement on 

all datasets that outperformed all existing classification approaches with no post-

processing. Additionally, the findings collected using the proposed hybrid approach 

outperformed those obtained using other methods, with standard mutation and feature 

mutation. It has been demonstrated that utilizing the proposed GP model improved the 

F1-score. It was found that expanding the number of generations could lead to even 

better results. 
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As future work, there is a number of points we are planning to address. The proposed 

approaches treats text categorization as a binary classification issue. Adapting the 

presented approaches to multiclass classification is considered a future study, 

therefore, our models will be tweaked for the multiclassification challenge, although a 

binary decision for identifying hate speech on highly active social media platforms is 

more helpful. Moreover, as future work, we will apply both proposed models on other 

datasets retrieved from different social media platforms such as Facebook, Instagram, 

YouTube. Additionally, future research will focus on the imbalanced datasets and the 

development of a method for resampling, as the real world datasets are mostly 

imbalanced. 
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