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ABSTRACT

In this thesis, the first type (Dirichlet) boundary value problem for the heat equation

on a rectangle is considered. The research has two main successes.

Firstly, we give a two-stage implicit method of second order accuracy for the
approximation of the first order derivatives of the solution with respect to the spatial
variables. To approximate the solution at the first stage, the unconditionally stable
two layer implicit method on hexagonal grids given by Buranay and Arshad in 2020
is used which converges with second order in space and time variable on the grids. At
the second stage, for the approximation of first derivatives with respect to the spatial
variables we propose special difference boundary value problems on hexagonal grids
of which the boundary conditions are defined by using the obtained solution from the
first stage. Further, uniform convergence of the solution of the constructed special
difference boundary value problems to the corresponding exact derivatives on

hexagonal grids with second order is shown.

Secondly, we give fourth order accurate implicit methods for the computation of the
first order spatial derivatives and second order mixed derivatives involving the time
derivative of the solution. These methods are constructed based on two stages: At the
first stage of the methods, the solution is approximated by using the implicit scheme
given by Buranay and Arshad in 2020 that gives fourth order of convergence in space
and first order in time variables to the exact solution on the constructed hexagonal
grids. For the approximation of the derivative of the solution to the heat equation
with respect to the time variable an analogous scheme is devised. Subsequently, to

approximate the first order spatial derivatives and the second order mixed derivatives
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of the solution difference boundary value problems on hexagonal grids are constructed
at the second stages. Further, uniform convergence of these implicit schemes to the

corresponding exact derivatives are shown.

Eventually, the developed second order and fourth order accurate two-stage implicit
methods are used to solve some test problems and the numerical results illustrating the

applicability and the accuracy of the methods are presented through tables and figures.

Keywords: Finite difference method; Hexagonal grid; Stability analysis; Two

dimensional heat equation; Approximation of derivatives.
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Bu tezde, dikdortgen iizerindeki 1s1 denkleminin birinci tiirden (Dirichlet) sinir deger

problemi alinmistir. Aragtirmanin iki ana basaris1 vardir.

Ik olarak, 1s1 denkleminin ¢oziimiiniin birinci mertebeden uzay degiskenlere gore
tiirevlerinin ikinci dereceden dogruluklu yaklasik ¢oziimii i¢in iki asamali kapali bir
yontem veriyoruz. 11k asamada ¢oziimii yaklagik olarak hesaplamak icin Buranay ve
Arshad tarafindan 2020 de verilen uzay ve zaman degisterlerine gore ikinci
mertebeden yakinsak altigen 1zgaralarda kosulsuz kararli iki katmanli kapali metod
kullanilmugtir. Ikinci asamada, birinci mertebeden uzay tiirevlerin yaklagik ¢oziimii
icin ilk agamadan elde edilen ¢oziimleri sinir kosullarininin belirlenmesi i¢in kullanan
altigen 1zgaralar iizerinde 6zel fark sinir deger problemleri onerilmistir. Ustelik,
olusturulan 6zel fark siir deger problemlerinin ¢oziimiiniin karsilik gelen kesin

tiirevlerine altigen 1zgaralar {izerinde ikinci mertebeden diizgiin yakinsadig1 gosterilir.

Ikinci olarak, 1s1 denkleminin ¢dziimiiniin birinci mertebeden uzay degiskenlere gore
tiirevleri ve zaman degiskenini iceren ikinci mertebeden karma tiirevlerinin yaklasik
¢Oziimil i¢in dordiincii dereceden dogruluklu kapali metodlar verilir. Bu metodlar iki
asamaya bagl olarak olusturulur. Yontemlerin ilk asamasinda, ¢6ziim, Buranay ve
Arshad tarafindan 2020°de verilen ve uzay degisterlerine gore dordiincii, zaman
degisterlerine gore birinci mertebeden dogruluk ile altigen 1zgaralarda kesin ¢oziime
yakinsama veren semalar kullanilarak yaklasik olarak hesaplanir. Is1 denkleminin
¢cOziimiiniin zaman degiskenine gore tiirevinin yakinlastirilmast i¢in benzer bir sema
tasarlanmistir. Daha sonra, ¢oziimiin birinci mertebeden uzay tiirevlerini ve ikinci

mertebeden karma tiirevlerininin yaklasimi i¢in altigen i1zgaralardaki smir deger
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problemleri ikinci asamada olusturulur. Ayrica, bu kapali semalarin karsilik gelen

kesin tiirevlerine diizgiin yakinsamasi gosterilir.

Sonunda, gelistirilen ikinci dereceden ve dordiincii dereceden dogruluklu iki asamali
kapali yontemler bazi test problemlerini ¢dzmek icin kullanmilir ve yOntemlerin
uygulanabilirligini ve dogrulugunu gosteren sayisal sonuglar tablo ve sekiller araciligi

ile takdim edilir.

Anahtar Kelimeler: Sonlu fark yontemi; Altigen 1zgara; Kararlilik analizi; Iki

boyutsal 1s1 denklemi; Tiirevlerin yaklagimi.
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Chapter 1

INTRODUCTION

1.1 Motivation

Numerical methods have gained considerable attention in many applications, since the
exact solution of many problems arising in the models of chemistry, physics, biology,
engineering, and many other fields of different sciences is an uphill task. Modeling
of these problems leads us to consider a number of physical quantities, representing
physical phenomena on a modeling domain. These physical quantities then occur in
the model via functions or function derivatives of which for a considerable number
of them the Newtonian concept of a derivative satisfies the complexity of the natural
occurrences. However, “time’s evolution and changes occurring in some systems do
not happen in the same manner after a fixed or constant interval of time and do not
follow the same routine as one would expect. For instance, a huge variation can occur
in a fraction of a second, causing a major change that may affect the whole system’s

state forever” as stated in [1].

Consequently, the modeling of numerous phenomena in diverse scientific fields leads
us to consider conventional or fractional boundary value problems of time dependent
differential equations on a modeling domain such as the first and second type
boundary value problems to heat equation or diffusion equation. For example, the
Brownian motion problem in statistics is modeled by heat equation via the
Fokker—Planck equation (Adriaan Fokker [2] and Max Planck [3]). It is also named as

the Kolmogorov forward equation, who discovered the concept in 1931, see in [4]
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independently. The stock market fluctuations represent one of the several important
real-world applications of the mathematical model of Brownian motion. It was first
given in the PhD thesis titled as “The theory of speculation”, by Louis Bachelier (see

Mandelbrot and Hudson [5]) in 1900.

Another representative sample of problems that mathematical modeling brings about
the heat equation is the image processing problems appearing through many applied
sciences from archaeology to zoology. Examples of archaeological investigations
include a camcorder for 3D underwater reconstruction of archeological objects in the
study of Meline et al. [6]. Furthermore, a recent investigation by WozZniak and
Polap [7] gave soft trees with neural components as image processing technique for
archeological excavations. In zoology, a study of image reconstruction problem by
the application of magnetic resonance imaging was given by Ziegler et al. [8] and in
medical sciences as medical image reconstruction was studied in Zeng [9].
Furthermore, tomography, and medical and industrial applications are archetypal
examples where substantial mathematical manipulation is required. In some cases,
the aim is humble denoising or de-blurring. Witkin [10] and Koenderink [11] gave the
modeling of blurring of an image by the heat equation. Later, a problem of solving
the reverse heat equation known as de-blurring is studied in Rudin et al. [12] and

Guichard and Morel [13].

Additionally, in mathematical biology, Wolpert [14, 15] gave a phenomenological
concept of pattern formation and differentiation known as positional information. The
pre-programming of the cells for reacting to a chemical concentration and
differentiate accordingly, into different kinds of cells such as cartilage cells was

proposed.  Afterwards, the animal coat patterns, pattern formation on growing



domains as alligators, snakes and bacterial patterns were modeled by reaction
diffusion equations in Murray [16]. Furthermore, therein, gliomas or glioblastomas,
which are highly diffusive brain tumors, are analyzed and a mathematical model for
the spatiotemporal dynamics of tumor growth was developed. Therefore, the basic
model in dimensional form was given by the diffusion equation

%:Wﬂz, (1.1)
where ¢(X,7) is the number of cells at a position X and time 7, p represents the net rate
of growth of cells including proliferation and death (or loss), and J diffusional flux of

cells taken J = DVe, where D (x) (distance?/time) is the diffusion coefficient of cells

in brain tissue and V is the gradient operator.

In general, finding analytical solutions of these modeled problems is a difficult task or
even not possible. Approximations are needed when a mathematical model is
switched to a numerical model. Finite difference methods (FDM) are a class of
numerical techniques for solving differential equations that each derivative appearing
in the partial differential equation has to be replaced by a suitable divided difference
of function values at the chosen grid points, see Grossman et al. [17]. In the last
decade, the use of advanced computers has led to the widespread use of FDM in
modern numerical analysis. Some recent studies are: for the solution of problems
with both stiff and nonstiff components a second order diagonally-implicit-explicit
multi-stage integration method given in Zang and Sendu [18]. An implicit method for
numerical solution of singular and stiff initial value problem developed in Hasan et
al. [19]. For the epidemic models latest studies include the Crank Nicolson difference
scheme and iteration method used for finding the approximate solution of system of

nonlinear observing epidemic model in Ashyralyev and Hincal [20]. In addition, the



article by Ahmed et al. [21], in which a novel and time efficient positivity preserving
numerical scheme was designed to find the solution of epidemic model involving a
reaction-diffusion system in three dimension. Furthermore, we specify the fractional
diffusion equation-based image denoising model constructed in Abirami et al. [22],

by using Crank—Nicholson and Griinwald Letnikov difference schemes (CN-GL).

Apart from rectangular grids, hexagonal grids have been also used to develop finite
difference methods for the approximate solution of modeled problems in many
applied sciences for more than the half century. These studies include the hexagonal
grid methods given in meteorological and oceanographic applications by Sadourney
et al. [23]-Nickovi€ et al. [33], of which favorable results were obtained compared
with rectangular grids. Hexagonal grids were applied in reservoir simulation in Pruess
and Bodvarsson [34] and it was shown that for seven-point floods, hexagonal grid
method provides good numerical accuracy at substantially less computational work
than rectangular grid method (five or nine point methods). Hexagonal grids were also
used in the simulation of electrical wave phenomena propagated in two dimensional
reserved-C type cardiac tissue in Lee et al. [35]. The exhibited linear and spiral waves
were more efficient than similar computation carried out on rectangular finite volume
schemes. Furthermore, hexagonal grids were applied to approximate the solution of
the first type boundary value problem of the heat equation in Richtmyer and
Morton [36], Buranay and Arshad [37], Arshad [38], convection-diffusion equation in
Karaa [39], and Dirichlet type boundary value problem of the two dimensional
Laplace equation in Dosiyev and Celiker [40]. In the most recent investigation by

Buranay and Arshad [37] computation of the solution to the heat equation

(B0,
or ax% ax%

>+f(x1,x2>l), (1.2)



on special polygons, where ® > 0 and f is the heat source by using implicit schemes
defined on hexagonal grids was given. Therein, under some smoothness assumptions
of the solution, two implicit methods were developed both on two layers with 14-point
that have convergence orders of O (h* + %) and O (h* + 1) accordingly to the solution
on the grids. It was assumed that the heat source and the initial and boundary functions

. . .. 6+0,3+%
are given such that the exact solution belongs to the Holder space Cx;ra 2 ,0<a<1.

On the other hand, besides the solution of a modeled problem, the high accurate
computation of the derivatives of the solution are fundamental to determine some
important phenomena of the considered model problem. For example in the
electrostatics the first derivatives of electrostatic potential function define electric
field. As the calculation of ray tracing in electrostatic fields by the interpolation
methods require the specification at each mesh point not only the potential function ®

. . o 2
but also the gradients _aq>7_aq> and the mixed derivative <22, Further, for the
dxp’ dxp ox10xp

diffusion problem (1.1) the functions 3—? and J gives the rate of change of the cells and
diffusional flux of cells, respectively.

1.2 Literature Review

In the literature, exhaustive studies exist for the approximation of the derivatives of
the solution to Laplace’s equation under some smoothness conditions of the boundary
functions and compatibility conditions. For the 2D Laplace equation, research was
conducted by Volkov [41] and Dosiyev and Sadeghi [42]. For the 3D Laplace
equation on a rectangular parallelepiped, studies were given by Volkov [43] and

Dosiyev and Sadeghi [44], and recently by Dosiyev and Abdussalam [45], and

Dosiyev and Sarikaya [46].

For the heat equation, the derivative of the solution of one-dimensional heat equation



with respect to the space variable was given in Buranay and Farinola [47]. Within this
paper, two implicit schemes were developed that converge to the corresponding exact

spatial derivative with O (h2 + ‘I:) and O (hz + ‘Ez) accordingly.

In regard to the equilateral triangulation with a regular hexagonal support, we remark
the research by Barrera et al. [48] where a new class of quasi-interpolant was
constructed which has remarkable properties such as high order of regularity and
polynomial reproduction. Furthermore, on the Delaunay triangulation, we mention
the study by Guessab [49] that approximations of differentiable convex functions on
arbitrary convex polytopes were given. Further, optimal approximations were
computed by using efficient algorithms accessed by the set of barycentric coordinates
generated by the Delaunay triangulation.

1.3 The Achievements and Organization of the Study

The motivation of the contributions of this thesis is the need of highly accurate and
time-efficient implicit methods for the computation of the derivatives of the solution
of the heat Equation (1.2). Hence, in this study a second order accurate two-stage
implicit method for the approximation of the first order spatial derivatives of the
solution of the Dirichlet problem (1.2) on rectangle is developed. The smoothness

.. 7+a, 52 . ) )

condition u € C,, ~ * , 0 < a < 1 in the Holder space is assumed and uniform
convergence on the grids to the respective spatial derivatives of O (h2 —H:Z) accuracy
for r = % < % is proved. Subsequently, these achievements are given in Buranay et
al. [50], [51]. Furthermore, fourth order accurate implicit methods are constructed for
the approximation of the first order spatial derivatives and second order mixed
derivatives of the solution involving the time derivative. It is assumed that
u c C?;ra’%Ta, and uniform convergence on the grids to the respective spatial
derivatives of 0(h4+1:) of accuracy for r = % > 1—16 is given. The obtained

6



theoretical and numerical results are presented in Buranay et al. [52], [53].

The thesis is organized as follows: Chapter 2 has 3 sections. In Section 2.1, we
consider the first type boundary value problem for the heat equation in (1.2) on a
rectangle D. Hexagonal grid structure and basic notations are given. It is assumed that

the heat source and the initial and boundary functions are given such that on

7+

Y (0r),

where x = (x1,x;) € D,t € [0,T], and D is the closure of D. Further, at the first stage,

Qr = D x [0,T] the solution u (x1,x2,¢) belongs to the Holder space C,ZJ,r

a two layer implicit method on hexagonal grids given in Buranay and Arshad [37]
with 0(h2+12) order of accuracy, where i and ‘/Tgh are the step sizes in space
variables x; and x,, respectively, and 7T is the step size in time is used to approximate
the solution u(x,x,,t). For the error function when r < %, we provide a pointwise
prior estimation depending on p (x1,x2,¢), which is the distance from the current grid
point to the surface of Qr. In Section 2.2, and Section 2.3, the second stages of the
two-stage implicit method for the approximation to the first order derivatives of the
solution u(xy,x,7) with respect to the spatial variables x; and x, are proposed,
respectively. It is proved that the constructed implicit schemes at the second stage are
unconditionally stable (see Theorem 1 in Lax and Richtmyer [54] which gives the

sufficient condition of stability). For r = % < % priory error estimations in

maximum norm between the exact derivatives 5)7”1, aa—;‘z and the obtained corresponding

approximate solutions are provided giving 0(h2+rz) order of accuracy on the

hexagonal grids.

In Chapter 3, a numerical example is constructed to support the theoretical results
given in Chapter 2. We applied incomplete block preconditioning given in Buranay

and Iyikal [55] (see also Concus et al. [56], Axelsson [57]) for the conjugate gradient



method to solve the obtained algebraic systems of linear equations for various values

of r.

In Chapter 4 we study hexagonal grid computation of the derivatives of the solution to
the heat equation by using fourth order accurate two-stage implicit methods. We
organize the chapter in sections as follows: In section 4.1 the first type boundary
value problem (Dirichlet problem) for the heat Equation (1.2) on a rectangle D is
considered. The smoothness of the solution u is taken from the Holder space

C9+oc, 2

(Or). At the first stage, an implicit scheme on hexagonal grids given in
Buranay and Arshad [37] with O (h4 —|—’c) order of accuracy is used to approximate
the solution u (x1,x2,¢). An analogous implicit method is also given to approximate
the derivative of the solution with respect to time. In section 4.2 and section 4.3 at the
second stages, computation of the first order spatial derivatives and second order
mixed derivatives involving time derivatives of the solution u(xy,x,¢) of (1.2) are
developed. When r = ‘M > 1 1¢ uniform convergence of the approximate derivative to

the exact derivatives g”, 5> and aa gt, i = 1,2 with order O (h4 +T) of accuracy on

the hexagonal grids are proved.

In Chapter 5, numerical examples are given and for the solution of the obtained
algebraic linear systems preconditioned conjugate gradient method is used. The
incomplete block matrix factorization of the M-matrices given in Buranay and
Iyikal [55] (see also Concus et al. [56], Axelsson [57]) is applied for the

preconditioning.

In Chapter 6 concluding results and remarks are given.



Chapter 2

HEXAGONAL GRID COMPUTATION OF THE
DERIVATIVES OF THE SOLUTION TO THE HEAT
EQUATION BY USING SECOND ORDER ACCURATE

TWO-STAGE IMPLICIT METHODS

In this chapter, we consider the first type boundary value problem for the heat
equation in (1.2) on a rectangle D. Hexagonal grid structure and basic notations are
given. In the first stage of the two-stage method, a two layer implicit method on
hexagonal grids given in Buranay and Arshad [37] with O (h2 + ’52) order of accuracy
is used to approximate the solution u (x1,x,¢). For the error function, we provide a
pointwise prior estimation depending on p (x1,x2,7), which is the distance from the
current grid point to the surface of Q7. In the second stage of the two-stage implicit
method, second stages for the approximation to the first order derivatives of the
solution u(xy,xp,¢) with respect to the spatial variables x; and x, are proposed,
respectively. It is proved that the constructed implicit schemes at the second stage are
unconditionally stable. Priory error estimations in maximum norm between the exact
derivatives aa—;l,a%”z and the obtained corresponding approximate solutions are
provided giving O (h2 + 12) order of accuracy on the hexagonal grids.

2.1 Dirichlet Problem of Heat Equation and Second Order Accurate
Solution by Using Hexagonal Grids

Let D = {(x1,x2) : 0 < x; < a1,0 <xp <ap} be a rectangle, where we require a, to

be multiple of V/3. Next, let Yj» J = 1,2,3,4, be the sides of D that starting from the
9



side x; = 0 are labeled in anticlockwise direction. Furthermore, the boundary of D is
4 _
shown by S = |J ;. Next, we indicate the closure of D by D =DUS. Let x = (x1,x2)
j=1

and Or = D x (0,T), with the lateral surface S; = {(x,7) : x = (x1,x2) € S, € [0,T]}

s

and Qr is the closure of Qr. Let s be a non-integer positive number, C,? (Qr) be the

I

Banach space of functions u (x,) that are continuous in Q7 together with all derivatives

of the form
5t+s1+s2,,
mf0r2§+51+sz<s (21)
1 942

with bounded norm

(s) ()
55 = + , 2.2
||u||CX;t2(QT) () op E()WQT (2.2)
where
. a§+sl+szu
<l/t>(]) = max | =35 7j:O,1,2,...,[S], (23)
Or %lemz ; Or |0t%0x) 0xy
w8 = )+ (P, 2.4)
—[s
Q5 ts1ts2y,
() = <—> , 2.5)
2r+51§v2—[s] at&axllax; ¥
g s—2§—2s1—s2
s a +S|+S‘2M
<”><2) = <ﬁ> ; (2.6)
t O<s2§Zslsz<2 Jr5ox}' x5’ .

further, (u)¥, <u>£5 for o, B € (0, 1) are defined as

X

Ju(x,1) —u(x',1)|

(u)y = sup ) 2.7)
o). (g, P
o I
<u>l[5 — Sup ’M(x7l) u(x7t )| (2.8)

@), canegy 1P

Volkov [58] gave the differentiability properties of solutions of boundary value
problems for the Laplace and Poisson equations on rectangle. On cylindrical domains
with smooth boundary, the differentiability properties of solutions of the parabolic

equations were given in LadyZenskaja et al. [59] and Friedman [60]. On regions with

10



edges, Azzam and Kreyszig studied the smoothness of solutions of parabolic
equations for the Dirichlet problem in [61] and for the mixed boundary value problem

in [62].

Our interest is the following problem for the heat equation

BVPG) w_ (Fu, o
or ax% ax%

) +f(X1,X2,t) on QT;

u(x1,%2,0) = @(x1,x2) on D,

M(.Xl,Xz,l') :(I)(xl;xZ?t) on ST7 (29)

where ® is positive constant. This problem is known as first type (Dirichlet)

boundary value problem.

Let the heat source function f (x,x»,7) and the initial and boundary functions ¢ (x1,x7)
and ¢ (x1,xp,t), respectively, be given such that the BVP(«) has a unique solution u
. 7+o, 5% — . )
belonging to the Holder class C,, ~ > (Qr).Let h > 0, with h = a1 /Ny, where Ny is
positive integer and assign D" a hexagonal grid on D, with step size &, defined as the

set of nodes

) 3(i 4 i
’2meT:VFO+J)

D = {x: (x1,x2) €D :x; =

i'=1,2,..;j/=0+£1%2,...}. (2.10)

Let Y;?,j = 1,...,4 be the set of nodes on the interior of y; and let?’} =v;j—1 MY, be the
4 —
jth vertex of D, S" = | (yﬁ’ U?‘?), D" = D" US". Further, let D*'*, D*" denote the set
j=1
of interior nodes whose distance from the boundary is % The hexagons in this set will

be referred as irregular hexagons with left ghost point as shown in Figure 2.1 or a right

ghost point as presented in Figure 2.2, emerging through the left or right side of the

11



rectangle, respectively. We also define the sets D*" = D*/* U D*"* and D" = D"\ D*".

Next, let
kzl,...,M’}, (2.11)
kzO,...,M’}, (2.12)
and the set of internal nodes and lateral surface nodes be defined by

Dlye = D' x4 = {(x,t) x=(x, ;) eD" 1 e yt} , (2.13)

sh :ShXVT:{(x,t):x:(xl,xz)eSh, te?T}, (2.14)

accordingly. Let D*/y. = D*" x y. D"y, and D*""y, = D*"" x y; C D"y, and D*"y, =

D*y. U D*y.. In addition, D%y, = D"y \ D*y; and Dhy, is the closure of D"y;.

Figure 2.1: The illustration of an irregular hexagon with a left ghost point at time
moments ¢ = kT and (k+1)7.

12



Figure 2.2: The illustration of an irregular hexagon with a right ghost point at time
moments f = kt and (k+ 1)7.

Let Py denote the center of the hexagon and Part (Py) denote the pattern of the hexagon
consisting the neighboring points P;,i = 1,...,6. In addition, u’;,;“l denotes the exact

solution at the point P; and u’ﬁl
A

denotes the value at the boundary point for the time
moment ¢ + T as follows:

h 3 h 3
ullgjrl = u(Xl — E,Xz + %h,t—FT), MII(J;H = M(Xl - vaz - \/T—hvt+fc)7

k-1 k+1
uP;_ :u(X1—h,X2,t+T), MP:_ :u(X1+h,X2,t+T)7

h 3 h 3
”];’jl :”(xl+§7x2—\/7_h,t+1), u’;):] zu(x1+§,x2+\/7_h,t+r),

M]lgg_l = M(X],Xz,l—}-‘l?), u];jl = M(ﬁ,)@,l—f—f), (ﬁ,)@ﬂf—f—f) S Sél"a

where the value of p = 0 if Py € D*y; and p = ay if Py € D*""y;. Analogously, the

values u’j,j ,1=0,...,6 and u’,‘,A present the exact solution at the same space coordinates

of P;,i=0,...,6 and Py, respectively, but at time level ¢t = kt. Further, u];lj;}ﬂ, i=0,...,6,

k+1 k . __ k ; ;
Uy e py> and Uy g ps 1= 0,...,6, Uy,  p, Present the numerical solution at the same space

coordinates of P;, i =0, ...,6 and P4 for time moments # + T and ¢ = kT, respectively and
) _

Ip, f(x1,x2,64 %), and fﬁ:l = f(p,x2,t+7). The illustration of the exact solution

13



at the irregular hexagons with a ghost point at time levels t — T, t and 7 + T is given in

Figure 2.3.

Buranay and Arshad [37] studied the numerical solution of the BVP(u) using
hexagonal grids and gave the following difference problem (named as Difference
Problem 1). We call this problem Stage 1(H 2nd (u)) of the two-stage implicit method:

Stage 1(H*' (u))

Oty = Anztty o+ on Dy, (2.15)
@* k+1 _A* k 1B * *h 2.16
haltpr = Dralpg + h,r¢+\|l on D™y, (2.16)
he =@ (x1,x2), 1=00nD", 2.17)

upz = O (x1,%2,¢) on S, (2.18)

fork=0,...,M' — 1, where

Figure 2.3: The illustration of the exact solution on the irregular hexagons with a ghost
point at time levels t — 7, ¢ and ¢ + 7.
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V= fp (2.19)
R Y as
= fp - < for 2 (2.20)
1 20 0 L
@ = <_ + _> ubtt — — Y Ukt (2.21)
T h 0 3h2; i
X 1 2w\ ; o O k
At = T upo+3ﬁziupi, (2.22)
1=

1 To o
* k+1 k+1
O, u " = <E+_3h2) Up, ~ 32 (u(p+m,x2,t+7)

3 3
—i—u(p,xz—i—\/?_h,t—i—r)—l—u(p,xz—gh,t%—‘c)) , (2.23)

1 7o ® V3
* k_ k
Ah;cl/t = (E — _3h2> Up, + _3]’12 (u(p,xz + _2 h,t)

3
Fu(p,x: - glm +u<p+n,xz,r>> , (2.24)

\ 20 ( . V3 V3
Fh,‘cq) = W <¢(p,)€2 + That—{_T) +¢(p7x2 - 7h7t +T)

+ ¢(ﬁaX2+ ?hat) +¢(ﬁ,)€2 - ?hJ))

1 8w 1 8o
o T )0 ——+53 )0 2.2
+ (6T+9h2>¢(17,x2,t+1)+( 6T+9h2>¢(p,x2,t), (2.25)

and

p=h,p=0m="24if Py e D"y,
(2.26)

p=a—hp=a;,n= _g if Py € D*"y,.
We label the interior grid points using standard ordering as L;, j = 1,2,...,N, and then

obtain the algebraic linear system of equations in matrix form
AU = Bk + 14k, (2.27)
as given in Buranay and Arshad [37] where A,B € RVV are

A= (1+ %c) B— (1—%c>, (2.28)
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and
1 N XN
C=D,— glnc €ER , (2.29)

and ii*, g¥ € RN . The matrix Inc is the neighboring topology and has the nonzero entries
as unity for the points in the pattern of the hexagon center. In addition, 7 is the identity
matrix, D is a diagonal matrix with entries
2if Lj € D%y,
dyjj= , j=1,2,...,N. (2.30)
JifLj € D*'y,
Lemma 2.1: (Buranay and Arshad [37])

a) The matrix A in (2.27) is symmetric positive definite and an M-matrix

b) Also for r = ¥ > 0 the inequalities || A~'||, < 1 and ||[A7'B||, < 1 are valid.

Let

€ ¢ = Upz—uon Dy, (2.31)

From (2.15)-(2.18) and (2.31), the error function €} _ satisfies the following system as

given in Buranay and Nouman [37]

Op e = Apstls + 1" on Dy, (2.32)
Oh<ti | = Aj&hs + 25" on DMy, (2.33)
u _I’l
€=0,1=00nD", (2.34)
g, =0onS7, (2.35)
where

P = Ap gk — Ot T+, (2.36)

2 =Nyt hett I 0+ Y, (2.37)

and y,y*, and ¢ are the given functions in (2.15), (2.16), and (2.18), respectively.

16



2.1.1 Pointwise Priory Estimation For the Error Function (2.32)-(2.35)

Consider the following systems

Ond)s = Anadly+ & on D'y, (2.38)
@18y = N2l +Thadonc+8 on D'y, (2.39)
Ghe=Gop t=00nD", (2.40)
Ghx = oz ON S, (2.41)
®n<dyy s = A+ on Dy, (2.42)
O« = Miclhs +Thcdons+85 on DM, (2.43)
Ghe =Gopes 1 =0o0n D', (2.44)
Tne = qopz O ST, (2.45)

fork=0,....,M" — 1, where g1, 2> and g,,g, are given functions. For every time level
k=0,...,M' —1 the algebraic systems (2.38)-(2.41) and (2.42)-(2.45) can be written

in matrix form

AGt! = BgF + 15, (2.47)

accordingly, where A and B are the matrices given in (2.27) and g*,3*,g%,g* € R".
Furthermore, for A = [a,-ﬂ and B = [b,-ﬂ, i=1,2,..,Nand j=1,2,...,N of real
matrices, we denote by A >0 (A > 0)if q; j; > 0(a; ; > 0) forall i, j. AlsoA<B(A<B)
if a; j < b; j (a; j < b; ;). Analogous notation is also used for the vectors. Additionally,
let w be a vector with coordinates wj, j = 1,2,...,N, the vector with coordinates ‘w j’

is denoted by |w]|.

Lemma 2.2: (Buranay et al. [51]) Let 6"“ and qu be the solutions of the difference
equations (2.46) and (2.47) respectively. For r = % < %, if

17



fork=0,...,.M’' — 1, then

7! >0 and (a"“‘ < g fork=0,...M —1.

(2.48)
(2.49)

(2.50)

(2.51)

Proof. On the basis of Lemma 2.1, A '>0andifr= % < % then B > 0 and from

(2.48) we have g > 0,k =0,.... M’ — 1 and g° > 0. Then, assume that g* > 0 by using

induction we have
qk-Fl :A_quk—f—TA_lgk Z O,

which gives 7! >0,k =0,...,M’ — 1. In addition,

that ‘Zi" | < g", by using (2.50) and induction gives
g =A""Bg" +1A7'g",
7 <ats | a2
< A7'BgF 4 1A gk = gL,
Thus, we obtain (2.51).

Let
Sty =7 % (0,T] = {(0,x2,¢) : (0,x2) € y1,¢ € (0,T]},
Sty2 =7 x (0,T] = {(x1,0,7) : (x1,0) € v2,1 € (0,T]},
Stys =3 x (0,T] = {(a1,x2,t) : (a1,x2) € 3,1 € (0,T]},
St¥a = Ya x (0,T] = {(x1,a2,t) : (x1,a2) € Y, € (0, T},

StY5 = {(xl,XZ,O) D (x1,x0) € D,t= O},

(2.52)

?10‘ < qo from (2.49). Next assume

(2.53)

(2.54)

(2.55)

and S}}y,-,i =1,2,...,5 define the corresponding sets of grid points. Furthermore, let

18



F= U ST7; denote the surface of Q7.

i=1

Theorem 2.1: (Buranay et al. [51]) For the solution of the problem (2.32)-(2.35), the

following inequality holds true

& o| < dQ (h,T)p (x1,x2,1), on Dy, (2.56)

forr = h"’—; < % where
Qi (h7) =5, (14 6w)B* + 31—(8)h2(x*, (2.57)
ot :max{m g:l nézix 312 max % }, (2.58)
e R Y| BT
d:max{g—clo,;—j),l}, (2.60)

and u is the exact solution of BVP(u) and p (x1,x2,7) is the distance from the current

grid point in D"y, to the surface F of Qr.

Proof. We consider the system

O 8yt = ApEn +Q1 (h,T) on DMy, (2.61)
O &t = A+ 291 (h,T) on D"y (2.62)
g =g, .=0,1=00nD", (2.63)
& =8 ,, =0onS}, (2.64)

and the majorant functions

1
& (x1,20,1) = 5 Q1 (,7) (a1x1 —x7) >0 on Dy, (2.65)
1 -
& (11,3,1) = 5 -Q1 (h,7) (a2x2 = x3) > 0 on Dy, (2.66)
&4 (x1,x2,1) = Q1 (h,7)t > 0 on Dhy, (2.67)
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that each satisfies the next difference boundary value problem

OByt = Al +Q1 (h,T) on DMy, (2.68)
O it = Aalhe  Thalost 201 (7)o DM, (2:69)
& = o pe = B (11,1,0) >0, 1=00n D", (2.70)
&0 =Elpp > 0on S, (2.71)

The difference equations (2.68) and (2.69) are established by using the following

results. First let us show that for regular grid points
O BT A = Qi (hyT), i=1,2,3.

i,h,t

®h‘c thh‘t _2(1)9 (h ’C) {(4 hz)(alxl—xl)

(20 AN 2
24t 32 )\ TS Ty
h n\?
+a; <x1—§>—(x1—§> +a1(x1—h)
2
—(xl—h)z—l—a] (xl—g)—()q—g) +a ()ﬂ-#%)

+ —(x +g)2+al(xl +h) — (x +h)2)]

1 aixi x% h?
=—Qh1)|——————+20|, 2.72
20 1(h,7) { T T 87 T 272)
and
A sk 1 Q. (h 3 2 1 2 2
h€l g = 70 1(h,7) pr (a1x1 —xl) + o (6a1x1 6x7 —3h )
1 aixi X% h2

=—Qh1)|—————]1. 2.73
20 1(h,7) [ T T 87 273)

Using (2.72) and (2.73) gives

—u.k+1 —u.k
@h 181 h T _Ah71817h,'t - Q] (h, T).
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4t h?
2
1 20 V/3h V/3h
— =12 Yo e
+(24'c 3h2) @\t <x2+ 2 )

2
3h 3h
+ 21 a (xz—\/—T> — (xz—\/_T> +2(a2x2—x%)

— 1 3 4o
%;%jﬁl = %Ql(h,f) [(— + —> (a2x, —x3)

1 arxs x% h?
(0| 222 0], @79
ApEt = igl (h,7) i(am —x3) + L (6azx, — 6x3 — 3h?)
AT 2@ "4t 241
1 ajrxn x% h2
=—Qh1)|————=——]|. 2.75
20 1(h,7) { T T 81 273)
Using (2.74) and (2.75) it follows that
G)hﬁgg:z;l - Ahvtgg:z,’t = Ql (h7t)'
—uk+1 3 4o 1 2m
) — Q I _ -
On,183 ', ¢ 1(h,7) [(4“5 + h2) (t+1)+ (24r 2 (6(t+1))
t
— Q,(h,7) [E n 1} , (2.76)
ApE =y (k1) S L —o(h)|! (2.77)
L AT 7T i E '

From (2.76) and (2.77) we get
—u,k+1 —u,k
Ons e — AniEsy . = Qu1(h,7).

Next let us show that for irregular grid points with a ghost point, the difference equation
(2.69) is valid. We give the details only for irregular hexagons with a left ghost point

as follows since for the case of a right ghost point it is analogous.
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v kst 1 17 l4o ) 1 2
011 = 55009 | (33 + 3 e =)+ (57~ 3

3
X (alh—hz +arth—h*+ =ajh— ghz)}

2 4
:Lgl(hﬂ) Vaxy 1737 14oaix;  140x] | Tarh
20 24t 247 32 32 487

17h> 7coa1h+l7co
967 3h2 6

1 17a1x;  17x}  Tath  17h?
=—0(h - - : 2.78
201 ’T){ 24t 24t | 48t 961 (278)
03281 gne =0, (2.79)
1 17a1x;  17x3  14oarx
x =uk+1 =k 1X1 1 1X1
Oh €l _Ahvfebfvhﬂ_%gl(h’ﬂ{ 24t 24t 302
14ox3 L Taih 170> Toaih L 70 Vaix
3n2 48t 96t 3h? 6 241
17 Taih N 171*
24t 48t 967
1 l4oaix; 14ox?  Toa 17o
=—Q(h - —~ — 2.80
201 ’T)[ 342 s n 6] @80

from (2.78)-(2.80) and evaluating at x; = % gives

vkt ik . 1 l40a; 140h®
®h7181it7h7t _AZ’TSIit7h7T_ h7‘c£lit’¢’h"c - %Ql(k,r) |: 6h 12h2
Toa; 17® 5
— — | =2Q(h
3h 6 1 6

Also,
2
ook 1 17  l4o V/3h V/3h
®h7’teg,h; :%Ql(h,’f) <E+W ay X2+T — X2+T

2
3h 3h
+ ay <x2 — \/—T> — <XZ — L) +arxo —x%

1 [20a2x2 ZOx% 8Warxr S(DX% h?

— 0 (h
T Ll B vy v e e M T
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20 247 247
20apx;  20x5  h? }

. 1 17 1 3
AMSZZI}‘M =—Q4(h,7) {—(azxz —x3) - <3a2x2 —3x3 — Ehz)}

= iQI (h7 T) |:

2.82
241 24t 167 (2.82)

1 16w 5 1 3,
+ <E +W) (azxz—xz) +% (2a2x2—2x2 _ Eh >

1
_E (a2x2 — X%):|

1 8waxy 8awxs 2
=—0(h,1 — — = 2.83
20 1<’){ 3w 3m2 3 (283)
From (2.81)-(2.83) we obtain
1 20arx
* ck =k * = 242
®h7r82,+h,11 - AZ,TSLM - Fh7r£3,¢,h,r = %Ql (h,7) { 24t
2002 8w 8wx3 h? 20
241 3h 3h 167 241
20x3 N K 8wayx; 8w 2o
24t 167 3h2 3h2 3
5
=-Qi(h,1).
6 1 ( J )
Further,
17 14 1 20
* =k+1
o) [ Bt ==
O e = (T +7) [(24«; T ) I (24r 3h2)]
20 8w
= Q. (h.t)(t -+ 2.84
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Ay B e = Qb0 |+ —} = Q(h,T) [2} (2.85)

x = [ 1 4o 1 16w

21
Q L
(k) [361 181:]

— Q1 (h,7)(t +7) [8“’ (2.86)

e

From (2.84)-(2.86) results

. . . 20 8w
®hr ISH}_zlt Ah tgghr Fh,reg@,hr —Ql(h T)O"'T) {24 +3h21
20 80
—Qy(h ol
0| 2]~ e+ | S

5
=20 (h

Consequently, for fixed k > 0 the difference problems (2.61)-(2.64) and (2.68)-(2.71)

may be given in matrix form

Agwktl — gk 4 qpuk, (2.87)
AEM = petk et i =1,2,3, (2.88)
respectively, and A and B are the matrices given in (2.27). Also, & k,ei i=1,2,3

and 8%, &% € RV. From(2.57) and (2.61)-(2.71) results ° > 0 , [¢°| <&, and

e >0,and [e+¥| <&, i=1,2,3, fork=0,....M — 1. On the basis of Lemma 2.2,

we get [g44F1] < g k=0,..,M" —1 and using that Q; (h,7) > “Pﬁ‘k on D%y,
and %Ql (h,T) > "ng on D*y; gives
| < min € (x1,32,1) <dQ (h,1)p (31,%2,1) on Dy, (2.89)
’ = 1=
0
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2.2 Difference Problem Approximating 597”1 on Hexagonal Grids with
O(h? +1?) Order of Accuracy
. Let the

(Px2t+3)

boundary value problem BVP(u) be given. We denote p; = 57”1 on Sry,,i=1,2,...,5

. k+4 +1
We use the notation 8xlfP0 2 = 887]; T and amfg 7 — &?TJ:
X1,X2, 2

and establish the following BVP for v = aa—;‘l

Boundary Value Problem for v = 887"1 (BVP (%))

Ly— af (x1,x2,1) on Or.
0x1
v(xl,xz,t)zp,- on Stvy;,i=1,2,....5, (2.90)

where, f (x1,xp,t) is the given heat source function in (2.9) and

0 2  0?
L=—-0|—+=—])- 291
3 (aﬁ - axg) (291
4o a
From u € CZ;F(X’ z (QT) , we assume that the solution v € C)?;ra’ﬂz (QT) .

We take

(

ﬁ (_3u(07x27t> + 4uh,‘t (h,XZ,I>

ond —Upr (2h7x27l)) if Py € DOh’YT .\
Pin = on S7i, (2.92)
o (—8u(0,x2,1) + upz (1, x2,7)

—Upg (%,Xz,t)) if Py € D*lh’yt

ﬁ (314((11,)62,2‘) —4uh7¢ (a1 —h,XQ,t)

i +upz (a1 —2h,x2,1)) if Py € DOy, .
p3h = on ST’Y37 (293)

o (8u(ar, x2,t) — uy - (a1 — 4,x2,1)

+upq (a1 — %h,XQ,l‘)) if Py € D*rh’YT

a¢ (X],Xz,f)

L Shoyii =24, (2.94)
00 (x1,x
psh = %12) on Stys. (2.95)
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Here, @ (x1,x2), ¢ (x1,x2,¢) are as given in BVP(u), presented in the Equation (2.9) and
the solution of the difference problem in Stage 1 (H 2nd (u)) is uy, 7. Further, we give the
derivation of the forward and backward schemes in (2.92) and (2.93) for the irregular
grid points that have a center /4/2 units away from the boundary x; = 0 and x; = a;.

For the forward scheme of the irregular hexagons we define the grid points as follows:

A:u(xy,xo,t)
B: u(xﬁ—%,xz,t)
C:u(x;+ %h,xz,t)
B:u (x1 ~|—g X2, ) = u(xy,x2,1) +§axlu(x1,xz,t)
+ 1h2a§1u (x1,x2,7)
+Eh3a3 u(xy +oh,xa,t) . (2.96)
C:u (x1 + 32h X2, ) = u(x1,x2,1) +%8xlu(x1,x2,t)

9
+ ghza)%lu(xl,xz,t)

9
+ E/faiI u(xq +oh,x3,1), (2.97)

where, 0 < 0y < § and 0 < & < 3. Multiplying the Equations (2.96) and (2.97) by 3

and —% respectively we get
h 3h
3u (x1 + = 52, ) =3u(x1,x2,1) + 7axlu(x1,x2,t)

3
+ —hza)%lu(xl,xz,t)

1—6h383 u(xq +oh,xa,1) (2.98)
1 3h 1 h
—3U (x1 + ?,xz,t> = —gu(xl,xz,t) — Eaxlu(xl,xz,t)
3.2
— —h oy, u (x1,x2,1) (2.99)

— 1—6h383 (x1 —f—()C]h,XQ,t)

Adding (2.98) and (2.99) gives
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2

1 3h h
——u(x1+—,x2,t | +3u|x1+<,x,¢
3 2
8
= gu (x1,Xx2,1) 4+ hoy,u (x1,x2,1)

1 - - 3h
_§h3a)3€1u(xl’x2’t)’ x1 < x1 <xp —|—7 (2.100)

—8 +9 X —|— X ulx X
u xl,x y u 1 2, 2, 1 2 9 27

= Oy, u (x1,X2,1) + O (hz) )

(2.101)

For the backward scheme for the irregular hexagons we take the grid point as follows:
A u(xy,x,t)

B:u(x; — %,xz,t)
C:u(x;— %h,xz,t)
3h 3h
C:u (xl — E,xz,t) =u(xy,x,t) — Eaxlu(xl,xz,t)

9
+ ghzaﬁlu(xl,xz,t)

9
- Ehgailu(xl + B1h7-x27t) ’

(2.102)
h h
B:u (xl — E,xz,t) =u(xy,x,t) — Eaxlu(xl,xz,t)
1
+§h28§1u(x1,x2,t)
1
— E;ﬁa?qu (x1 + Bah,x2,1) | (2.103)

where, —3 < By < 0and —} < B, < 0. Multiplying the Equations (2.102) and (2.103)
by —% and 3 respectively we get

—=u

1 3h 1 h
3 (x1_75x27t> :_§u(x17-x27t)+§axlu(~x1;x27t>
=329 wxy )

3 o WX, X2,

3
+ 1—6h38)3qu(x1 +Bih,x2,1) (2.104)
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h 3h
3u (x1 - E,xz,t> =3u(x1,x2,1) — Eaxlu(xl,xz,t)

3
+ ghzailu(xl,xz,t)

1

16h38)3qu(x1 + Baoh, x2,1) (2.105)

Adding (2.104) and (2.105) yields
lu X 3h t|+3 h t
—_—— —_—— x —_——
3 1 5 25 ulxi 27XZa
8
= 3u (x1,x2,1) — hoy, u (x1,X2,1)

1 3h
+§h3a§1u(x—1,x2,r), X =5 < X <xn (2.106)

1 h 3h
T <8u (x1,x2,1) —9u <x1 — E,xz,t) +u <x1 — j,xz,t))

= Oy, u (x1,X2,1) + O (hz) .

Lemma 2.3: (Buranay et al. [51]) The following inequality

nd nd

P2 (upz) — P (u)( <3dQ, (h1), i=1,3. (2.107)

o

holds true for r = 33

< %, where u is the solution of the boundary value problem
BVP(u) and uy, is the solution of Stage 1(H*'/ (u)) and Q| (h,7) is as given in (2.57),
d is as presented in (2.60).

Proof. From Theorem 2.1, and the equations (2.56), (2.92), and (2.93) when Py €

DOhYT, we have

nd nd 1
P (unz) —pj, ()| < 5 (4hdQ (h,7) +2hdQ (h.7))
<3dQ (h,7), i=1,3if Py € D"y, (2.108)

where € is as in (2.57) and d is the positive constant defined in (2.60). When Py €

Dy, yields
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nd ond 1 h 3h
pzzh (uh,‘f) plh ( )‘ <z 9_dQI (h7T) + _dQI (l’l,’C)
3\ 2 2
<2dQ (h,1), i=1,3if Py e D"y, (2.109)
Thus, we obtain (2.107). [

Lemma 2.4: (Buranay et al. [51]) For r = mz % the following inequality

max
ShoyUShys

P (i) = pi| < MuP +3d91 (h7), i=1,3, (2.110)

holds true where u,  is the solution of the difference problem in Stage 1(H Z”d) and

Pu

M = 3)max ox’

Or

and Q; and d are as given in (2.57) and (2.60), respectively.

T+a, 7+0L

Proof. Since u € Cy, (@T) at the end points <O n\{h kT) c St Y1 and

<a1 ,MN \Z[h k’c) € STY3 of each line segment
3 3
[(xl,ngh,]ﬂ> 0<x1<a,0<x, :ngl’l <ay, 0<t=kt < T] ,

difference formulae (2.92) and (2.93) give the second order approximation of aa—;‘l,
respectively. From the truncation error formula (see Burden and Faires [63]) it

follows that

. h? 03
max |ph' (u) — pi| < “omax|ox |, i=1,3if Py € DYy, Q2.111)
ShoyUShys 3 0 |ox
Analogously,
ond h2 31/! . . «h
max |pj, (u)—pi| < omax|——|, i=1,3if P € D"'yr. (2.112)
StnUShys 8 0r ax1
Using Lemma 2.3 and the estimations (2.111) and (2.112) follows (2.110). O

The numerical solution of BVP( ) using hexagonal grids is developed as:

Stage 2 (H 2nd ( e > )
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k+1 k Oh
@h Tv + Ah7ﬁtvh7,t +D-xl W on D ’th

k+1 x Kk x ond * «lh
0, Vi =MVt 0hepin + Dy W on D™y,

k+1 * _k * ond * *rh
Oh Ve = MiVie +TheP3, + Dy W on D™y,

2nd h .
vh,’t = pih (uh,‘t) on ST’Yiul = 17 37

Vit = Pip ON SI;‘Ylvl = 274757

(2.113)
(2.114)
(2.115)
(2.116)

(2.117)

where p%:,d,pgzd, and p;, ,i = 2,4,5 are defined by (2.92)-(2.95) and the operators

Onz, Ang, ), Aj . and I . are the operators given in (2.21)-(2.25), respectively.

Additionally,
Dy y = axlfﬁﬁ,
Do =00 4~ cdfn
Let

€)1 =Vt —Von Dy,

where v = a” From (2.113)-(2.117) and (2.120), we have

vk+1 = Ay ’Cehf—i_‘PVk on DOh’Y‘ca

®h 18
®h 18271?_1 = Ah rgh T + l_‘h tsh:}r + IP;k on D*h'Yn
eht =0on STyl,z =2,4,5,
EZ,T = SZ,VT = piz;:'d (uhﬂ) — pion S}le,-, i=1,3,
where

vk _ k k+1
\Pl — Ah,fcv - ®h7rv + Dxl lll,

Wt = Ay F— @) T pi+ Dy, i = 1,3,
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(2.118)

(2.119)

(2.120)

(2.121)
(2.122)
(2.123)

(2.124)

(2.125)

(2.126)



Let

0; = max { max dtv max oty max dtv
= [ 7§T 8)(‘21 7§T axfax% ’
G| = max <{ max Gl max dtv max dv
' oy 1083 |7 g, |0x30r2| " g, |Oxto2| |’
and
40M
6:max{91, 1+12doooc*}, (2.127)
6 = max {o1,3dB"}, (2.128)

where o*, B* are as given in (2.58), (2.59), respectively, and M is as given in (2.110).

Theorem 2.2: (Buranay et al. [51]) In Stage 2(5)7”1) the given implicit scheme is

unconditionally stable.

Proof. Writing the algebraic linear system of equations (2.113)-(2.117) in matrix form
AV = B gk, (2.129)

k=0,1,....M" — 1, where A and B are the matrices given in (2.27) and VK q]v‘ € R and

from assumption that v which is exact solution of the BVP(%‘I) belongs to

6+0,3+5

Cyy (@T) and by using Lemma 2.1 and induction we get
w1 | < il o4 el ]
k
<[+ Y 4], (2.130)
K'=0 2

Thus, Lax and Richtmyer sufficient condition for stability given in Theorem 1 of [54]

is satisfied and the scheme is unconditionally stable. 0

Theorem 2.3: (Buranay et al. [51]) The solution vy, ; of the finite difference problem
given in Stage 2 (Hznd (%)) satisfies

c 30
max vy —v| < 5 (1+60) (T + 1)+ Ehz (1+af+a3), (2.131)
Dhy
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forr = % < % where 0,6 are as given in (2.127), (2.128), respectively, and v = aa—“ is

the exact solution of BVP(%).

Proof. Let
Oy = AniEs+Q (x1) on DOy, (2.132)
O B = A B+ T+ Qo (1) — é Q, (p) on D™y, (2.133)
&) .= 0on Shy,i=2,4,5, (2.134)
& =8 =p% (uns) —pion Shyii=1,3, (2.135)
where
Qs (1)) = zfal (1+60) 2 (2a; —x1) + 319(;Dh2
> 2 (14 60)t +£h2> ‘lp (2.136)
24 10
i (1+60)7 (5 = g ) + 5202 if Py € Dby,

Qo (x1) — e (p) =

(1+60)7 (5 + 385, ) + 2082 if Py € D™y,

) (2.137)

v,k
> |

and x; = % and p=0if Py € D"y, and x; = a1 — &, p = ay if Py € D*"y;. We take

the majorant function

g’ (.X],Xz,l') = E‘l} (XI,Xz,l') —|—§‘£ (X17XQ,1‘) , (2.138)
where
ot?
€] (x1,x2,1) = 2 (1+60)(t+1)(2a; —x;) >0on Dy, (2.139)
aj
_ 30
& (x1,x2,1) = mhz (1 +at+as—x3 —x%) > 0 on D'y, (2.140)

The function in (2.138) satisfies the difference problem
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OniEe = AnaB)s +Qa (x1) on DOy, (2.141)

O 4" = ALES AT B Q) — () on DT, (214)
& . =& =E] (0,x2,1) + & (0,x2,) on S}y, (2.143)
& =&} (x1,0,1) + & (x1,0,7) on 772, (2.144)
€. =8 =& (a1,x2,1)+ & (a1,x2,1) on i3, (2.145)
€1 = €] (x1,a2,1) + & (x1,a2,t) on Shyy, (2.146)
&) =& (x1,X2,0) +& (x1,x2,0) on Stys. (2.147)

In accordance, the following are used to establish the equations (2.141) and (2.142).
vk+1 o

_ 1 2m
Opagy), = 2a, (E + ﬁ) (2a1 —x1)

® h h
—W<2a1 — (xH_E) +2a; — <x1—§) +2a; — (x1 —h)
h h
+2a; — xl_i +2a1 — x1+§ +2a;— (x1+h)

(1+60))(t+1+1)12{(%+i—(;> (Zal—xl)}, (2.148)

(1+6w)(t+14+1)7°

" 24q,

kel 30K 1 20 ®
On i€y )z =10 (;"‘ﬁ)(a%‘i‘a%'i'l—x%—xﬁ)—— ai+az+1

3h2

h 3h h
L Y IR

2 2 2

3h
—<xz+f7>2+a%+a§+1—(x1—h)z—x%+a%+a%+1

h 3h h
S P L B R

2 2 2

3h
—(xz—\/_T)2+a%+a%+1—(x1+h)2—x%)

301 (1, , 5 2 2

Using (2.148) and (2.149) gives,
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—v,k+1 —v,k+1 —vk+1
Oni€r = Ona€l)yr +Oney), o

c (1 20
= S (1+60)(t+T+1)7 [(E_h_z) (2a; —xl)}
300 | 1
wlz (ai +aj+1—xi—x3) +20)|, (2.150)
M =T 460) )| (=22 241 —x) - -2 (1241 — 6x1)
ML T D4q, T o2 ) 3h2 o
1
1 1)7%| = (2a; — 2.151
— e (1+60) (4 ) (20 )|, @.151)
ok 38R (1 2w
AnaByy = 0 [ (E +57 (af+a3+1—xi—x3)
+ 32 (6a1 +6a3 +6— 6x7 — 6x3 — 6h2)]
360 | 1
:T[E (a%+a§+1—x%—x§)—2m]. (2.152)
Adding (2.151) and (2.152) yields
A,mg;;/; = Ah’TEY:’;l e AME;:/Z .
=% (460) 4+ 12| L 20y —x)
24a, T
300h?
20 [T (af+a3+1—x x%)—Z(o]. (2.153)
Now using (2.150) and (2.153) it follows that
—v.k+1
®h18hr Ahrg L= (x)
300’ h?
= 1 1)7% (2a; — :
24a1( +6w) (t+1)t° (2a; —x1) + 70
Subsequently we show that equation (2.142) hold true as follows:
ha€1nt _24611( +60)(t+1T+1)7T ;( ap—xi)
8way 4cox1 20
LAt 2.154
32 3 3h] (2.154)
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. gkl 307 |1, 5 5 > gy, 40ai | Awad
O = g0 |z @@+ 1—x—x)+ =5+

4o 4doxp  4oxg | 4dax

2.155
+3h2 3h? 3h? + 3h ( )

Adding (2.154) and (2.155) we get

* —vk—l—l x =Vk+1 x =Vk+1
Oh&r = On € O, E) 0

1
(1 —|—6OJ) (l‘—l-’C-l— 1)’52 E(2a1 —xl)

24a1

8wag 40)x1+20)
3h? 3h? 3h

403a% 40)(1%

30K | 1
—[; (ai +aj+1—xi—x3) + T RS

40

4o 4ox;  4oxg  4dax

+3h2 3h2 32 3 (2:136)
1
)T

8way
3h?

x vk 2
Ah718¥,h,1_m(1+6m) (t+ 1))~ (2a1 —x1) =

4o 20
—_—— 2.157
3h? 3h] ( )

. ok 30k 2 2 oy 4dwal  4wad
Nhef2ha = S0 [E(al+“2+1_x1_x2)_ VT

40 dox] doxs  dox
il isiead BEPN B 2.158
32 3 T A @ (2.158)

Adding (2.157) and (2.158) gives

8(,0611

1
A T

* —, G
A,”,V” 24a1(1+60))(t+1)12

40x, 2(0] 30K2

32 3n |40 [r( iratl-x-x)

40)61% 40)61% 4_(,3 4(DX% 40)x% _4(,0)61 -0, (2.159)
3232333 3h

160)a1:|

*  GV* o
Fh,‘tg‘l}.,h.,r -y (1 +6(’)) <t+ 1)12 { 3h2

24a 1

2
(14 6)7° {8‘”‘” + ﬂ} (2.160)

* 32 6t

24a,
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_ 3017 | 8w  8wa; 8wa, 8wx: 2w
e =— | — -2, 2.161
h®2.ht = 40 lshz+ 3 T 32 3 (2.161)
From (2.160) and (2.161) we get:
x —px (o) 2 16(,0611
Fh7re;17t:%(l+6m)(t+l)r { 2 1
() 8may 2a1
— (1+6m)1° —
22, 116007 [3h2 61]’
30h° | 80 8mwa;  8way 8wy 20
— | = — - = 2.162
40 [3h2+ 3 T3 a3 | ( )
By using (2.156), (2.159) and (2.162) we obtain
o kbl Ak vk e =k 1 .
®h,T8h,T — AI’l,TSh,’C — rh’,cahﬂ = Qz (Xl) — EQZ (p) 5 (2163)

where the right side of (2.163) is as given in (2.137).

The algebraic system of equations (2.132)-(2.135) and (2.141)-(2.147) can be written

in matrix form as

AL — pevk 4 vk (2.164)
Agv,kJrl — BEVJ( —|—‘CEv’k, (2.165)

respectively, for k = 0,...,M’ — 1, where A,B are matrices as given in (2.27) and
gvk gk gk vk ¢ RN Using (2.136)-(2.147), we have €° >0 , and 2% > 0, and
’?’k‘ <e"* fork=0,...M —1, and ‘@’0| < £"0. Then, on the basis of Lemma 2.2,
we get [ < e fork=0,....M — 1. From

o (x1 ,)Q,l‘) <g (0,0,T)

O

30
5 (1+60) (T+1)12+Eh2 (1+ai+a3),

and using (2.136) and (2.137) follows (2.131). ]
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2.3 Difference Problem Approximating a% on Hexagonal Grids with

O (h* +1%) Order of Accuracy

.. ) k+3  df +3 df
Additionally the notations 9y, Ip, © = 7 PR and 0y, fg =3 G+ ) and
VLY 2 VLY 2

also g; = 37”2 on Stvy;,i = 1,2,...,5 are introduced. Let the problem BVP(u) be given,

then we develop the next boundary value problem for z = 5)7“2

Boundary Value Problem for z = 2- (BVP (%))

0xy
x>
z(xl,xz,t)zq,- on Stvy;,i=1,2,....5. (2.166)

where the operator L is defined in (2.91) and f (x1,x2,7) is the given function in (2.9).

6+0,3+%

We assume that the solution z € C,., (Or) and take
md 1 ( ( >
= —— | —3u(x1,0,t) +4u X 7\/gh,t
92n 2\/§h ( 1 ) ht | X1
—Uns (X1,2\f3h,t)> on S, (2.167)
md 1 < ( )
= —— (3u(xy,ap,t) —4up - | x1,a —\/§h,t
qap 2\/§h (12) hr | X1,02
Fitpz (xl,az - 2\/§h,t)) on Sy, (2.168)
d t
qin = W (xixt) Sty i=1,3, (2.169)
x>
0
qsh = M on S7s, (2.170)
X2

where, the solution of the difference problem in Stage 1(H*™ (u)) is upz and @ (x1,x2),
¢ (x1,x,1) are as given in (2.9). We give the derivation of the formulae (2.167) and

(2.168) as follows:

Au(xy,xp,t)
B:u(xi,x2+/3h,t)

C:u(xy,x +2\/§h,t)
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B:u <x1,xz + \/§h,t> = u(x1,x2,1) + \/ghaxZu(xl,xz,t)

3
+ Ehza)zczu (x1,x2,1)

V3
2

C:u (xl,xz —|—2\/§h,t> = u(x1,x2,1) +2\/§hax2u(x1 ,X2,1)

+ 1003 u(xy,x2+Eiht), (2.171)
+6h28)262u(x1,x2,t)
+4V3IP u(x1,20 + Eaht), (2.172)
where, 0 < &; < v/3 and 0 < &, < 21/3. From (2.171) and (2.172) we get

—4u <x1,x2 + \/gh,t) +u (xl,xz + 2\/§h,t> + 3u (x1,x2,1)
= —2v/3hdy,u (x1,%2,1) +2V3W03 u (x1,%2,1), xo < ¥ <x2+2V3h,  (2.173)
giving

1
2v/3h

= Oyt (x1,%2,2) + O (h?). (2.174)

<—3u(x1,x2,t) +4u (xl,xz + \/§h,t> — <x1,x2 +2\/§h,t>>

Further, the validation of the backward difference scheme follows from
A u(xy,x,t)
B :u(xi,xy —/3h,t)
C: (x1,x2—2v/3h,1)
B:u <x1,xz — \/gh,t) = u(x1,x2,1) — \/ghaxZu(xl,xz,t)
+ %hza)%zu (x1,x2,1)
. %iﬁ@;zu (xl,xz +Elh,z) , (2.175)
C:u (x1 X — 2\/§h,t> — u(x1,x2,1) — 2V/3h0,u (x1,x2,1)
+6h28)262u (x1,x2,1)

— 430 u (x1 X +I§2h,t) , (2.176)
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where, —/3 < El <0and —2V/3 < Ez < 0. From (2.175) and (2.176) we get
—4u (xl , X — \/gh,t> +u <x1 , X0 — 2\/§h,t> + 3u (x1,x2,1)

= 2V/3huy, (x1,%2,1) = 2V3H03 u(x1,3%,1), X2 —2V3h <X <xp,  (2.177)

and

1
m <3u (x1,%2,1) —4u <x17x2 — \/§h,t) +u <x17x2 — 2\/§h,t>>

= Oyt (x1,X2,1) + O (H?). (2.178)

Lemma 2.5: (Buranay et al. [S1]) The following inequality holds

nd nd .
dn (unz) —qi (w)| <3dQ(h,1), i=2,4, (2.179)

forr:%g

N[9S}

, where u is the solution of the boundary value problem BVP(u) and
up 7 1s the solution of the difference problem (2.15)-(2.18) in Stage l(H 2nd (u)) and
Qj (h,7) is as in (2.57) and d is presented in (2.60).

Proof. Taking into consideration Theorem 2.1, and using (2.56), (2.167), and (2.168),

we have
znd 2nd 1 <
. _ < — (4v/3hdQ, (h,7) +2V/3hdQ (b1 )
din (uhﬂ?) din (u) = 2\/§h 1( ) 1( )
<3dQ (h), i=2,4, (2.180)
thus, we obtain (2.179). ]

Lemma 2.6: (Buranay et al. [51]) The following inequality is true

|, max @ (unz) — qi| < Mah®+3dQ (h,7), i=2,4, (2.181)

TY2UST Y4

forr= h@z < %, where M> = max 337’3‘ and uy, 7 is the solution of the difference problem
2

Or
in Stage 1(H?"“(u)) and Q (h,7) and d are as given in (2.57) and (2.60), respectively.

Tta
Proof. Since the exact solution u € CZ:OC’ 2> (Qr), at the end points (9h,0,kt) € Shy,
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and (Oh,ay,kt) € Shys of each line segment
[(Oh,x2,kt) :0<x1 =0h<a;,0<x;<ay, 0<t=kt<T],
f Jdu

difference formulas (2.167) and (2.168) give the second order approximation of 5~

respectively. From the truncation error formula (see [63]), it follows that

3
max |3’ (u) —gi| < h*max —? L i=2,4. (2.182)
Sty UShyy or |0x;
Taking M, = néax ‘ e g and using Lemma 2.5 and the estimation (2.180) and (2.182)

follows (2.181). O

Subsequently we establish the numerical solution of the BVP( ) on hexagonal grids

as the second stage by

Stage 2 <H 2nd ( a;‘z > )

Onezyt' = AniZ)o+ Dy, on DYy, (2.183)
* k+1 «lh
O 12h ! = A1+ T oqin+ D™ on Dy, (2.184)
GZ,tZﬁl = A, ‘th <+ aq3n+ D,,y" on D*rh%, (2.185)
nd .
Zha = qlzh (uhﬂ?) on S?"Yial = 2747 (2186)
Zng = qin on St i=1,3,5, (2.187)

where q%Zd,qﬁzd, and g, i = 1,3,5 are defined by (2.167)-(2.170) and the operators
Oz, A, O A} ., and Iy  are the operators given in (2.21)-(2.25), respectively. In

addition,
Do,y =0y fp *; (2.188)

« 3 1 3
Doy* =0, sz—gam for 2. (2.189)

Let
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efm =Zpr—2Z 0N DT\(T
From (2.183)-(2.187) and (2.190), we have
O €, M Z A, T8 i L33 * on DOy,
Q) TSZ];H =Aj Tsh T ‘Pék on D"y,
i—:,” =0on ST'y,,l =1,3,5,
& . =db (1nx) —qi on Shyii =24,
where ¢g;;, are defined by (2.167)-(2.170) and
‘le’k = Ahﬂ;zk - ®h7rzk+1 +D,V,

\ng = AZ,tZk - GZ,tZkH + 124+ Dy ¥ i =1,3.

Let
K] = max { ma k: ,ma k: ,ma Gk:
] = max{ max | —; X X
o, |oxt|" 0, 8x2 Or ox2ox2 20x3
d; = ma 83 Gk: k:
X
' RS R PYerv) B sl PYeves
and
M-
K:maX{Kl, 2+12d0)0c*},

& =max{d;,3dp"},

(2.190)

(2.191)
(2.192)
(2.193)

(2.194)

(2.195)

(2.196)

(2.197)

(2.198)

(2.199)

(2.200)

o*,B* are as given in (2.58), (2.59), respectively, and M, is the constant given in

Lemma 2.6 and z is the solution of BVP (%)

Theorem 2.4: (Buranay et al. [51]) In Stage Z(H 2nd (%)) the constructed implicit

scheme is unconditionally stable.

Proof. The equations (2.183)-(2.187) can be given in matrix form:
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AT = B g, (2.201)

fork=0,1,...,M’' — 1, where, A, B are as given in (2.27) and Z¥ ,qZ € RN. Based on the

assumption that z belongs to CXJroc 33 (QT) and using Lemma 2.1 and induction we
get
~k+1 -1 =k -1 k
A A s
SE @20
Therefore, the scheme is unconditionally stable. [

Theorem 2.5: (Buranay et al. [51]) The solution z;, ; of the finite difference problem

given in Stage 2 (Hznd (5’7”2)) satisfies

o 3K
max |z, ¢ — z]<— 14+60) (T +1)T + — (1+af +a3) h?, (2.203)

Dy, 12 40 (
for r = % S , where K, 0 are as given in (2.199), (2.200) respectively and z = a— is

the exact solution of BVP(%).

Proof. Let
O e = AncEy + Q3 (x2) on DOy, (2.204)
* X * X 5 *
O] 8y =N T Q3 (x2) on DMy, (2.205)
<=0onSfy,i=135, (2.206)
ond .
€ =q (unz)—qion Shy,i=2,4, (2.207)

where g2 g% .qin i = 1,3,5, are defined by (2.167)-(2.170) and

3
% (1460)T (a2 —x2) + X2
2

Q p—
3(12) 10

3K®
> (1460) T+ S2h > ‘lpzlv" , (2.208)
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5 56

Q3 (1) = s (1+60) 1> (2a; —x2) + Thz
SELNEPINPE IR RS ‘lpgf" . (2.209)
= 144 4
We take the majorant function
€ (x1,x2,1) =€ (x1,x2,1) + & (x1,x2,1), (2.210)
where
& (x1,x2,1) = 240212 (1460)(r+1)(2az —x2) > 0 on Dy, (2.211)
& (x1,x0,1) = i—ohz (1+af+a3 —xi —x3) >0 on Dhy,. (2.212)
The majorant function in (2.210) satisfies the difference problem
@8y = ApcEys+ Q3 (x2) on DOy, (2.213)
O En = A B A Th B+ 293 (x2) on D™y, (2.214)
& . =& =& (0,x2,1) +& (0,x2,1) on S7y1, (2.215)
&, =& (x1,0,1) +& (x1,0,7) on S}y, (2.216)
&, . =& =& (a1,x2,1) + & (a1,x2,) on S}y, 2.217)
€, =& (x1,a2,1) +& (x1,a2,1) on Sty (2.218)
&, = & (x1,%2,0) +& (x1,x2,0) on S7s. (2.219)

We write the algebraic system of Equations (2.204)-(2.207) and (2.213)-(2.219) for

fixed £ > 0 in matrix form
AeAHT = gtk 4 gook, (2.220)

A§Z7k+1 — B§Z7k _|_ Tzz7k, (2.221)

respectively, where A,B are as given in (2.27) and gvk,éz’k,?’k,éz’k € RV, Using

1,...M —1and &0 >0,

’?:7’0’ < &Y Then, on the basis of Lemma 2.2 follows ’?7"“‘ < goktl
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k=0,1,....M" —1. From

g (xl,)Cz,l‘) < [ (0,0, T)

) 3k
= 5 (1+60) (T+1)1:2—|—E(1—|—a%+a%)h2, (2.222)
and using (2.208), (2.209) follows (2.203). L]
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Chapter 3

EXPERIMENTAL INVESTIGATION OF THE SECOND

ORDER ACCURATE IMPLICIT METHOD

To show the efficiency of the proposed two-stage implicit method we construct a test
problem of which the exact solution is known. Further we take
D= {(xl,xz) 0<x1<1,0<x < \/T§} and ¢ € [0,1]. We used Mathematica in
machine precision on a personal computer with the properties AMD Ryzen 7 1800X
Eight Core Processor 3.60GHz. Moreover, the obtained linear algebraic systems of
equations are solved by using incomplete block-matrix factorization of the block
tridiagonal stiffness matrices which are symmetric M —matrices for the all considered
pairs of (h,t). Then these incomplete block-matrix factorizations are used as
preconditioners for the conjugate gradient method as given in Buranay and lyikal [55]
(see also Concus et al. [56] and Axelsson [57] ). Additionally, the notations given
below are used in tables and figures:

H>d ( ) denotes the proposed two-stage implicit method on hexagonal grids for

the approximation of the derivative aa”
H>d (a 2) denotes the proposed two-stage implicit method on hexagonal grids for

the approximation of the derivative g“

2nd ( du
CcT <3X1) presents the Central Processing Unit time in seconds (CPUs) per time

level for the method H*"¢ (g—“) .

X1
2nd< Jdu ) . o . .
Ccr %2/ presents the Central Processing Unit time in seconds (CPUs) per time

level for the method H*"4 ( aa;‘ )
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H2nd ( Ju

TCcr ox] ) shows the total Central Processing Unit time in seconds required for the

X1

solution at # = 1, by the method H>"¢ (5’—“) .

H2d (O . T .
TCT (8)(2) shows the total Central Processing Unit time in seconds required for the

solution at ¢ = 1, by the method H>"¢ ( 2 ) .
2

For the approximation of the derivatives du 0 we denote the given method by
dx1’ dxp

H>d (%’l) , and H*"d (g“) respectively. Additionally, the corresponding solutions
are denoted by v, 5, and z,-, , -1, respectively, for h =27# and T = 2~* where u, A
are positive integers. On the grid points Dy, which is the closure of Dy, we present

H2nd Jdu
the error function € ; obtained by H 2nd <aa; ) , and H>" <(-)a—;‘2> by e (3)61) and by

H2nd Jdu . . . .
€ <a"2>, respectively.  Furthermore, on the grid points the maximum errors

H2nd(aau ) H2nd (aau )
€ 2 € 1

max and

Dy,

H2nd ( Ju )
€ dxy
u

approximate solution v, ,-» to the exact solution v = E?Tl obtained by using the

are presented by

o)

an( Ju )
€ oy and max
Dhy,

, accordingly. Further, we denote the order of convergence of the

[}

two-stage implicit method H*"? (a%”l) by

SHZ"d( Sleany

pond (2w N
R (a 1) = H2nd<aa)7”1>(2*(H+1)72*(7\+1)) . (3.1)

€

[}

Analogously, the order of convergence of the approximate solution z,-, ,-» to the exact

solution z = a “ obtained by using the two-stage implicit method H>"? (a%) is given

by

= (3.2)

o5}

Remark 3.1: We point out the numerical values in (3.1), (3.2) are ~ 22 showing the

convergence of the approximate solution v, ., and z,,, converge to the
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respective exact solution v = 887”1 and z = aa—;‘z with second order both in the spatial

variables x1,x> and in time z.

Example 3.1: 0 *u  0%u
p a_btt: <82 82)+f(X1,x2, ) on Or,

57 57 _
u(x1,x2,0) = 0.0001 (xl8 (1 —x1)+cos (x28) (?—xz)) on D,

u(xy,xp,t) =u(xy,x2,t) on Sy,

where

49

f(x1,x2,1) = 0.00035625 (z 16 — 6. 125x1 +8.125x
3249 4 57
+ (\/—m —17. 125x2> .X24 COS (x28 )
2793 41 57
+ (fm -8. 125x2> x} sin (x2 ))

51 51 3
u(xy,x2,¢) =0.0001 (t?g +x (1 —x1)+cos <x28 ) <\/7_ —x2>> ;

2nd Ju
are the heat source and exact solution. Table 3.1 demonstrates CT (axl)

2nd ( du
TCT <a)‘1>, maximum norm of the errors for h = 27, u = 4,5,6,7 when

T=2"*\=13,14,15,16, that is r = 0,— < % and the order of convergence of v, 1 to

the exact derivatives v = aa” with respect to 4 and T obtained by using the constructed

2nd< Ju > Han( Ju )
two-stage implicit method A% < ) Table 3.2 shows CT /) TCT 9%

maximum norm of the errors for the same pairs of (4,7) as in Table 3.1 and the order

of convergence of zj ¢ to the exact derivative z = aa” with respect to 4 and T obtained

by using the constructed two-stage implicit method H>"¢ ( > Table 3.1 and Table
3.2 justify the theoretical results given such that the approximate solutions v; ; and

zp,¢ of the proposed method converge to the corresponding exact derivatives v = 837“1

and z = (-?” with second order both in the spatial variables x,x, and the time variable

t forr < %, as given in Remark 3.1.
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H2nd ( Ju

2nd [ du_
Table 3.3 presents the cr” <ax1 >, TCcr 9"1> maximum norm of the errors for

h=27#p=45678whent=2""%=8,9,10,11,12, that is r = %3¢ > 3 and the

order of convergence of v, ¢ to the exact derivative v = 837”1 with respect to 4 and T

obtained by using the constructed two-stage implicit method H>™ (%‘) Table 3.4
1

F2nd Ju 2nd
H : .
shows the CT"" <a’“2> ,TCT (a’@) , maximum norm of the errors for the same pairs

of (h,7) as in Table 3.3 and the order of convergence of zj; to the exact derivative

7= g” with respect to & and T obtained by using the constructed two-stage implicit

method H>"¢ ((-?7”2) . Numerical results given in Table 3.3 and Table 3.4 demonstrate
that when r > %, the approximate solutions vy, ; and zj, ¢ of the proposed method also
converge with second order both in the spatial variables x;, x> and the time variable ¢ to

their corresponding exact derivatives v = aa” and z = aa;‘z , as explained in remark 3.1.

. . . H2nd< )(2—4 2—13)
Figure 3.1 illustrates the absolute error functions |€

EHan( >(2 52714

Y

(5 ) (270.2719) (G ) @72719)

€ , and |€ at time moment

t = 0.2 obtained by using H>"¢ ( g") Figure 3.2 demonstrates the absolute error

8H211d< >(2—42 13) €H2nd< >(2 5214y 8H2nd( )(2 6 2-15)

functions , and

Y

H2nd Ju 2—7 2—16
€ ( X2>( 27 at time moment ¢ = 0.2 obtained by using H>"¢ ( aa;‘ ) . The exact

derivative v = aa—;l and the grid function v,-6,-15 for h = 2761 =215 at time

moment ¢ = 0.2 obtained by using H>* (%) are presented in Figure 3.3. Further,

Figure 3.4 shows the exact derivative z = 387“2 and grid function z,-6,-15 at time

moment ¢ = 0.2 obtained by using H>"? (5’;‘ > .
2
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2nd ( du_ 2nd Ju 2nd ( Ju F2nd Jdu
Table 3.1: The CT" <ax1), rcr” <a*1) el (aﬂ) and R <a*1> when
r= 0 3 § for the Example 3.1 .
nd [ Ou nd ( du nd [ Ou nd [ u
o] G @ [ re @) | [FE] w)
276 [ (27275 0.03 197.34 [ 9.34750x 10 | 3.1457
27 [ (27271 0.09 1187.55 | 2.97147x107% | 3.5508
274 [ (27271 0.59 18501.80 | 8.36840x 1097 | 3.7737
273 [ (27,2719 3.69 14450521 | 2.21757 x 10"
2nd [ du_ 2nd [ du 2nd ( du H2nd Jdu
Table 3.2: The 7™ (3), 7er™ (35, [ (3)]|  ana ™ (%) when
r= OhSZT § for the Example 3.1 .
nd [ Ou nd ( du nd [ Ou nd ( du
r= 05 (1) | cr'™ d(éxz) rer™(38) ||l () & (3%)
276 | (274,271 0.02 181.88 3.72134x107% | 1.7362
270 [ (27271 0.13 1187.55 | 2.14336x107%° | 2.6720
27 [ (27%27D) 0.70 21557.80 | 8.02154x 10797 |  3.2757
273 [ (2772719 4.09 169305.04 | 2.44880 x 107"’
2nd J2nd ( du 2nd ( Ou J2nd ( du
Table 3.3: The CT" <a*1> rcr” <ax1) e’ <a*1> and %" <3X1> when
r= 0 3t > 5 3 for the Example 3.1 .
nd [ Ou nd ( du nd [ Ou nd [ u
r= % (h,7) CTH2 d<ax1> TCTH2 d(an) gHz d(ﬁ) 9{H2 d(ﬁ)
271 ] (274279 0.02 4.75 9.34796 x 10°%° | 3.1458
1 (27,279) 0.08 37.30 2.97159 x 1079 |  3.5508
2 (27,2719 0.42 347.70 8.36871 x 10777 | 3.7737
22 | (277,271 3.47 3988.83 | 2.21765x 10" | 3.8889
22 (28271 41.25 68313.10 | 5.70258 x 10-%®
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Table 3.4: The e/ (35)_ ropt™ (3%),

)

. 2nd (

=5 > % for the Example 3.1 .

[}

ou

F2nd (
and R ox)

) when

TCT Hzm( 887142 8H2nd< % ) R F2nd ( aaTMz
7.52 3.72102 x 1079 1.7361
64.38 2.14327 x 1079 | 2.6720
533.53 8.02135x 10797 | 3.2757
5122.09 244877 x 10797 | 3.6202
73957.51 | 6.76426 x 10-08

t=0.2
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Figure 3.1: The grid function of absolute errors at time moment ¢ = 0.2 achieved by
) for the Example 3.1.




=3
Figure 3.2: The grid function of absolute errors at time moment ¢ = 0.2 achieved by
H>d (887”2) for the Example 3.1.

0.00001

0.00000

-0.00001
-0.00002

00 Y

t=02
Figure 3.3: The exact solution v = g—;l and the approximate solution v, -1s at7 = 0.2

for the Example 3.1.
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Figure 3.4: The exact solution z = aa” and the approximate solution z, 6 ,-15 at = 0.2

for the Example 3.1.

H2nd(ﬂ) 2nd( ou ) )
Table 3.5 shows the CT ) TCT %1/ maximum norm of the errors for r <

Ju

3, and the order of convergence of v to the exact derivative v = i with respect to &

~J

and T obtained when third order approximations for v = 5)7”1

.

L (= 11u(0,%2,£) + 18ty ¢ (,x2,1)

37 — upz (2h,x2,1) + 2up z (3h,x2,1)) if Py € DOy,
Pin = § on Sy, (3.3)
oo (—184u(0,32,1) + 225115 (3, %2,1)

\ —50uhr(2,xz )+9uht(2,x2, )) ifP()GD*lh’YT

6Lh (11u(a1,x2,t) — 18up (a1 —h,x2,t)

3 + up 1 (ar —2h,x2,t) — 2up 1 (a1 — 3h,XQ,t)) if Py € DOh’YT Y
P3p = 4 on ST’Y3,
aon (184u(ay, xp,t) — 225up (a1 — 4,x2,1)

\ + SOth (a1 — %,)Q,t) — 9uh71 (a1 — %,xz,t)) if Py € D*rh’yr
3.4)

H2nd Ju
are used on S’;yi, 1,3 for the Stage 2 (Hz"d ( )) Table 3.6 shows CT" (axz)

2nd ( Ou
TCT (a"Z) , maximum norm of the errors for r < % and the order of convergence of

Zh1 to the exact derivative 7 = aa” with respect to 4 and T obtained when third order
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Jdu

Table 3.5: The 7 (%) rort™ (),

Jdu

i—:Hznd (aaxul > and R e <a*1 > when

r=93% <3 and (3.3), (3.4) are used for the Example 3.1.

o] o | er™ @) rer™ @] [ @] o E)
276 [ (27275 0.03 216.25 3.93819x 10°% |  4.5863
270 [ (27,271 0.09 1695.39 | 8.58690 x 10°7 [ 4.6031
274 [ (275,275 0.63 1894540 | 1.86547x 10777 | 4.6131
273 [ (27,2719 3.67 218517.01 | 4.04385x 10 %8

approximations for z = aa—;z

1
3rd _ (—1 lu(x1,0,1) 4+ 18uy 1 <X1,\/§h,t>

don = 6\/§l’l
— e (x1,2V/3,1) +2uc (x1,3V3h,1) ) on Shp, (3.5)
3rd . ; B _
%n = 5 73 (Uu(xhaz,t) 18up <X1,az \/§h,t>
+ 9z (xl,az - 2\/§h,t) —Dupx <x1,a2 - 3f3h,t)) onShy  (3.6)

are used on S’%y,-,i = 2,4 for the Stage 2<H2”d <aa—“>> Table 3.7 presents

X2
H2nd ( Ju

Ju )
91 ) maximum norm of the errors for r > %, and the order of

2nd
cr™ () rer
convergence of v, ¢ to the exact derivatives v = 387”1 with respect to 4 and T obtained by
using the difference formulae (3.3), (3.4) on STy,,z = 1,3 for the Stage

an( ou ) 2nd< du )
Z(H 2nd ( )) Table 3.8 gives CT ) TCT %/ maximum norm of the

errors for r > % and the order of convergence of zj ¢ to the exact derivative z = 387”2

with respect to 4 and T obtained by using the difference formulae (3.5), (3.6) on

Si}y,-,i = 2,4 for the Stage 2 (H 2nd (%)) . Numerical results given in Table 3.5-Table

3.8 demonstrate that the approximate solution v, ¢ and zj ¢ of the proposed method
ou ou

converge to the corresponding exact derivatives v = i and z = 5> v with second order

both in the spatial variables x,x; and the time variable ¢ with better error ratios.
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Jdu

and R e <a*2 > when

[}

Jdu

Table 3.6: The 7/ (%) rort™ (3)||e#(3%)

r=93% <3 and (3.5) and (3.6) are used for the Example 3.1.

nd ( du nd ( u nd [ Ou nd [ u
r= (% (h,’t) CTH2 d<3x2> TCTH2 d(a*z) gHz d(%) 9{H2 d(%)
276 [ (27275 0.03 251.27 337221 x10°% || 25722
27 [ (27271 0.13 2088.16 [ 1.31103x10°% || 4.3277
274 [ (27271 0.63 18945.40 | 3.02939x 1077 [| 4.4163
273 | (2772719 3.85 234313.60 | 6.85956 x 10~

H2nd<aiu> H2nd<aiu>
£ oxp and R %) when

r= Ohgf >z 3 and (3.3), (3.4) are used for the Example 3.1.

Table 3.7: The 7/ (%) port™ (3).

nd [ Ou nd ( du nd [ Ou nd ( du
r= 05 (h,7) cr'”’ “(3) rer™ “(3%) e ‘(5%) R ‘(3%)
27 ] (274,279) 0.02 5.08 3.93866x Y6 | 4.5862
1 (27°,279) 0.08 38.19 8.58815x 07 | 4.6030
2 (276,2719) 0.44 352.03 1.86579x 7 | 4.4176
22 [ (27727 3.52 3994.16 | 4.22355x %

Jdu

and R we <3x2 ) when

Jdu

Table 3.8: The e (32)_ rert™(#5) || ™(35)

r= 0,3‘ > 5 3 and (3.5) and (3.6) are used for the Example 3.1.

nd ( Ou nd ( u nd ( Ou nd ( du
r= % (h’fc) CTH2 d<9-’f2> TCTH2 d(%) gH2 d(a)fz) ERHZ d<aX2>
271 | (274279 0.02 5.89 3.67669x 0 | 2.8278
1 (272,277 0.11 45.67 1.30019x % | 4.4268
2 (276,2719) 0.50 414.27 2.93712x 9 | 45165
22 | (277,271 3.72 447591 | 6.50300x %
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Chapter 4

HEXAGONAL GRID COMPUTATION OF THE
DERIVATIVES OF THE SOLUTION TO THE HEAT
EQUATION BY USING FOURTH ORDER ACCURATE

TWO-STAGE IMPLICIT METHODS

In this chapter, we discuss hexagonal grid computation of the derivatives of the
solution to the heat equation by using fourth order accurate two-stage implicit
methods. We consider first type boundary value problem (Dirichlet problem) for the
heat Equation (1.2) on a rectangle D. In the first stage of the two-stage an implicit
scheme on hexagonal grids given in Buranay and Arshad [37] with O (h4 —|—’c) order
of accuracy is used to approximate the solution u (xj,x3,7). An analogous implicit
method is also given to approximate the derivative of the solution with respect to
time. In the second stage, computation of the first order spatial derivatives and second
order mixed derivatives involving time derivatives of the solution u (x1,x,¢) of (1.2)
are developed.  Uniform convergence of the approximate derivatives to the
corresponding exact derivatives g_;," %—’l‘, and %, i = 1,2 with order O (h4—|—‘c) of
accuracy on the hexagonal grids are proved.

4.1 Hexagonal Grid Approximation of the Heat Equation and the
Rate of Change by Using Fourth Order Accurate Difference Schemes
We assume that the initial and boundary functions @ (x1,x2), ¢ (x1,x2,t), respectively,
also the heat source function f (xy,x;,7) possess the necessary smoothness and satisfy

ora
the conditions that the BVP(u) in (2.9) has unique solution u € Czja’ 2 (Qr) - Wealso
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Table 4.1: Basic notations for the heat source function f and f;.

f fz
k+1 _ k+1
X1,X2,1 +7T =
f f( 1,X2, ) f 8[ (xl,xz,t+‘t)
k1 ktl _
FE = (st +7) fiby =
(p X2,141)
— 7
fPA - f(p7x27t) f;‘ Pa o ([/7\7)(271‘)
. k 0*f _
axjpr axl (Boxat) J=12 axjfh ~ Oxjor (Poxant) ,J=1,2
k41 82 . k+1 83 7
&2l = f =12 R fih = =12
(X] ,;62./[4*'5) ! (XL,)QJ‘FT)
— f 2 k+1 _ _O*f
2 9. fHl — dy,0x
x Y1) Py 0x30x (x1,%2,047) ftPO 0x30 01 (x1,22,1+7)
R o, flrl = 9 2y [l = 2L
x1-X2J Py Bxfaxz (x1.22,047) xRSk Bx%axzal (x1.x2,t+7)

use the following notations in Table 4.1 to denote the values and partial derivatives of

the heat source function f and f; = af with respect to the space variables.

4.1.1 Dirichlet Problem of Heat Equation and Difference Problem: Stage

1 (H4zh (u))

For computing numerically the solution of the BVP(u) we use the following difference

problem given in Buranay and Arshad [37] and call this Stage 1(H ah (u))

Stage 1(H*" (u
ge 1(H™ () Opctf ' = Apatf, -+ on DOy,

@} k£ = Aj b+ T 0+ on Dy,
upr =@ (x1,x2), t=0o0n Bh,
upz = ¢ (x1,x2,¢) on S¥, 4.1)

k=0,...M — 1, where ¢,¢ are the initial and boundary functions in (2.9),

respectively, also

fk+1Jr h2 (82 fk+1+az fk+1>7 (4.2)
~ k+1 _ 2 pktl ok
V= 96'coof 9610)fp A f f
+ 16h2 <a2 fk-‘r] +82 fk+]> , (43)
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and

~ 17 140 1 20 V3
* k+1 _ 20 2 k+1 e v
Ohett = (24r+ 312 ) i (241 3h2) (”(p’x2+ 7 Mt

3
+M(P,X2—\/T_h,t+1)+M(P+T1,X2J+T)), (4.6)

~, 1 4o R V3 R V3
I 0= (—% + @) (q)(l’axz + Thal +71) +¢(p,x2 — That +T)>

1 16m N | BN
+ ( + )q)(pvxZ:t_'_T)_l_g,cq)(paxZat)

181 9R2
1 3 3
+% <¢(pax2+7h7t)+¢(p7x2_7h7t)> ) (47)
~ 17 1 V3
* ok 'k - v
Ah,‘tu - 24TMP0+24T (u(p7'x2+ 2 h7t)
3
—I—u(p,x2—gh,t)—{—u(p—l—n,xz,t)) ) (48)

p=hp=0m="2%if Py e D"y,
(4.9)

p=ai —h,]/)\: a,n= —% if Py € D*rh’yr.

4.1.2 Dirichlet Problem for the Rate of Change and Difference Problem: Stage

0)

Further, for the computation of % we construct the next boundary value problem

denoted by u; = % which defines the rate of change function

BVP(%) ouy _ (azut o%u;

+—) + fi (x1,%2,1) on Qr,

ot ﬁ Bx%

u; (x1,x2,0) = @ (x1,x2) on D,

Uy (x17-x27t):¢l (Xl,Xz,t) on ST) (410)
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where of (x1,x2,1)

fi= Ll
N ¢ %9
—o( 22427 0
(ax% + ax%> —|—f<X1,X2, )7
a(l)(xl,xZ,l‘)
o o ) 4.11)

and @, ¢ are the initial and boundary functions BVP(u) given in (2.9).

7+oc, o

Assuming u; € C (Or), fourth order accurate implicit schemes for the solution

of the BVP(%) is proposed with the following difference problem. This stage is
4th (9
called Stage 1 <H ! <a—?>>
4th (0
Stage 1<H ! (a—’t‘)>
tht AhT“tht""W on D"y,
®Z,T ler Ah ’Cut T l—‘h tq)t +Vy; on D*hytv
~ +h
upr=0,t=0onD",
Uy iz = O (¥1,%2,) on S}, (4.12)

k=0,...,M" — 1, where the operators @hm Khmé;; o IN“;‘M and 7\7[1 are presented in

(4.4)—(4.8), respectively, and

f;k}t()l h2 (az fk+1+82 fk+1)7 (413)
~x k+1 k+1 k+1
Ve = 961:03 96*ccof’PA__ tiy T
+- 6h2 (292 foE 49 f,",to'> (4.14)

4.1.3 M—Matrices and Convergence of Finite Difference Schemes in Stage
1(H*" (u)) and Stage 1 <H4’h (%))

For a fixed time level kK > 0 we present the equations (4.1) and (4.12) in matrix form
with N unknown interior grid points L;, j = 1,2,...,N, labeled using standard ordering

as
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A = Bt -1,
Aut! = B+, (4.15)

respectively, where A, B € RV*N and ¥, g%, ¥, g% € RV and

~ Y] 1 O)TN ~ Y] 1

A= |E +—1I - B=|E +—I 4.1
(1+24nc+h2C>, (1+24nc), (4.16)

~ 2

C:Ez—glnceRNXN. (4.17)

and Inc is the neighboring topology matrix, £, E, are diagonal matrices with entries

§ 2ifL; e D%y
[E1]. .= ,j=12,...,N, (4.18)
\ Iif L € D"y,

)
4ifLj e D%y,

[Ey] . = ,j=12,...,N, (4.19)
\ BifL; € Dy,

respectively (see Buranay and Arshad [37]).

Lemma 4.1: (Buranay and Arshad [37])
(a) The matrices A and B in (4.15) are symmetric positive definite (spd) matrices

~ ~ o~ ~—1
(b)A=1+ %B*ICis spd matrix and HA H2 < 1.

Lemma 4.2: (Buranay et al. [53]) The matrix A in (4.15) is nonsingular M —matrix

for r =% >

L
h 16°

Proof. Taking into consideration Lemma 4.1, the matrix Aisa spd matrix. Further,
using the Equations (4.16)—(4.19), A s strictly diagonally dominant matrix with

positive diagonal entries. Furthermore, off-diagonal entries are non-positive for

o

2 > 1—16. Therefore, it is nonsingular M —matrix. OJ

r =
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Let

&he = tnz —uon Diy; (4.20)

éZ’T = Uy . — Uy on Dy, (4.21)
From (4.1) and (4.20) the error function (4.20) satisfies the following system as given
in Buranay and Arshad: [37]
@M Z:ﬁ“ = /KMF,ZI; + q’i’k on D%y,
Opabis =Nz + 5" on DM,

Ehe=0,1 —0onD",

& .=0on Sy, 4.22)

where
Pk = Ak — O T+, (4.23)
Wyt = A}t — O T T 0+ (4.24)

and y,y* and ¢ are as presented in (4.1). Analogously, using (4.12) and (4.21) the

error function (4.21) satisfies the following system:
= J+1 Y k| Gtk Oh
®h,TE-'Zt,t = Ahﬂézt,r +‘P’14t on D™z,
Opctie | = Aicbie +5 " on Dy,

h,T

—h
ne=0,1=00onD",

i =0on S}, (4.25)

where
Pk = Ak — Ol (4.26)
Pyt = A — O T+ T 00+ (4.27)

and ¢, V,, and ;" are the given functions in (4.11), (4.13) and (4.14) respectively.
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Further, the following systems are considered:
Oh
®hrWh —Amwht—l—Kk on D™y,
41 ~k T = h
®}kz Whir AZ Whe T FZ,TW¢7h7T + Klé on D™y,
. e +h
Whpt =Went, t=0o0nD",

Whr = Wz On S, (4.28)

0 ka“ Kh,rwlfm +% on DYy,
®Z t_l}{z—;l = AZ r_z T fz,rwdhhﬂ + Ekz on D*h%’

Whe = Weh, I =000 Bh,

Wi = Wonz ON S, (4.29)
fork=0,....,M"—1, where ﬁ’f , /1515 and T<’1‘,Kk2 are given functions. The algebraic systems
(4.28) and (4.29) at a fixed time level k > 0 may be given in matrix representation as

AW = Bk 4 1k, (4.30)
AW = Bk 4 1%, 4.31)

accordingly. In these equations, w*, w~, ®*, %" € RN and the matrices A and B are given

in (4.16).

Lemma 4.3: (Buranay et al. [53]) Let the solutions of (4.30) and (4.31) be presented

Tok+1

by w*t! and w*T!, respectively, for r = 9% > 1—16. If

"
W' >0and % >0 (4.32)
w0 <, (4.33)
‘E") <% (4.34)

fork=0,...,M’ —1 then
]wk“‘ <WHl k=0, M —1, (4.35)
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Proof. From Lemma 4.2, when r = “—Y; > % the matrix A is nonsingular M —matrix
therefore, Al > 0. Furthermore, from (4.16) B > 0 and using (4.32) it follows that
I >0,k=0,....M —1and #wY > 0. Further, assuming Wk > 0 and from induction we

achieve -~
e W — A-1Bwk 4 1A'k > 0, (4.36)

which gives wtl >0 fork = 0,...,M’' — 1. Next, assume that ‘Wk‘ < wk using (4.30)-
(4.34), and by induction it follows that
Wl = A7 Bk A IR (4.37)
] < ATUB|H | A [RY
<A B +1A 'R =Wt fork=0,.. .M —1. (4.38)

O]

Remark 4.1: Writing the implicit schemes on hexagonal grids for the problems (4.1)
and (4.12) in the canonical form it follows that the maximum principle holds when r =
(”—2 > %. Further, Lemma 4.3 is the consequence of comparison theorem (see Chapter
4, Section 4.2 Theorem 1 and Theorem 2 in Samarskii [64]) applied to the systems

(4.28), (4.29).

Additionally, let

(1) = max max Pu Gl Pu
u) = _-°
H ator | g, |axdar| oy [ox2axdar |
a6u 86u 86 ou
— —— 4.39
HEX ox{ox3 |’ TX 0x30x5 |’ @aTX 0x9 néaTx x5 } (439)
d%u

w (u) = max (4.40)

2|

Theorem 4.1: (Buranay et al. [53]) For the solution of the systems (4.22) and (4.25)
when r = “’—2 > %, the following pointwise error estimations hold true:
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g (xl,xz,t)’ < dQy (h,7)p (x1,%2,1) on Dhys, (4.41)

‘% (x1,x271)’ <dQ; 1 (h,7)p (x1,x2,¢) on Dy, (4.42)

respectively, where

~ 3~ 3 47 ~
Q == — 4 4.4
1(h7) SBT+<160+2880 )ah’ (4.43)
Q[’l (h,T) = gBtT—f— (160 —+ m ) (X[h s (444)

and & = 1y (), G = 1 (u;) and B = up (ut), By = po () and d is as given in (2.60) and
u is the solution of BVP(u) and p (x1,x2,7) is the function giving the distance from the

considered hexagonal grid point (x1,x2,t) € DY, to the surface of Q7.

Proof. We give the proof of (4.41) by considering the auxiliary system

h,T

‘u ~ 5~ §
G)h 1:&,. k1 Ah rghr + 6Q1 (h T) on D h%
EZ’T - E?Pyhﬂ = Oa t=0o0n Bh,

& o =&pne =0o0n S}, (4.45)

and the majorant functions

_ 1 ~
E,'f (x1,X2,t) = %Ql (h,7) (a1x: —x%) > 0 on Dy, (4.46)
_ 1 ~ S

&, (x1,x2,1) = 5 (1,7) (202 —x3) >0 on Dhy, (4.47)
& (x1,x2,1) = Q) (h,7)t > 0 on Dy, (4.48)

which EZM (x1,x2,1), satisfy the following difference problem for [ = 1,2,3,

respectively.

k41 ~
®h ‘C&ll/lh‘t =Ay 1§1h1+91 (h,T) on DOh’YT,

zuk+l o~ S5~ N
®hr§1hr _Aht&vlht +Fhr§z¢m+691 (h,T) on D*yy,
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U = U —h

& ne="Clons =5 (11,12,0) >0, =00nD",

U — Uk h

& ne =8 0nr>00nST. (4.49)

For establishing (4.49) the following are used. First for regular interior grid points we

have:
~  —uk+l 1 ~ 3 4w 1 20 h
®h,’5&1,h,’t = %Ql (h,’C) <E + h_> (al)Cl —X%) + (% - W) <a1 <XI + E)
n\? h A% )
_(XH_E) +a; (X1_§ _(XI_E) +a1(x1—h)—(x1—h)
h n\? h n\ >
+a R B +a x1+§ - xl"f‘i
+a1(xl+h)—(x1+h)2) ,
I ~ _alxl x% h?
=—Q(h —— — ——+420]|. 4.50
20 1 ( 71) T T 8T + ( )
~ k1 [ 3 o1 .,
Ans&ipe = %Ql (h,7) T (a1x) —x7) + YT (6a1x; — 6x7 —3h )]
1 ~ _alxl x% h?
=—Q; (h —_— = ——. 4.51
2m 1( ’T) T T 81 ( )

Using equations (4.50) and (4.51) we can show that for i =1

~  cuk+l  ~ zuk I ~ 2 2
®h,IE.>1,h;c - Ah,’c&l,h,fc = %Ql (h,7) [— ————— —+ —

2

h
— +2m
+81+

1 ~ ~
=—Q 20=Q .
20 1 <h7T) X 20 1 (haT)

For i = 2, we obtain
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1 ~ —az)Q X3 h2
=—Q; ()| ———=——+20 4.52
Kh Eu’k = ifll (h ’E) —i (apcz —X2) + L (6(12)62 — 6x2 — 3h2)
TRATT 20" N | 4n Y e 2
i 2 2
~ ajyxn X3 h
=—Q ()| ————=—— 4.53
20 " (h,7) T T 8t (4.53)
Using (4.52) and (4.53) gives
~  —uk+l  ~  zuk 1 ~ ax, X3 W axy X3
Onbans ~Mnkane = 5,01 () [T IR
2
—4+2m
+ = +
1 ~ ~
= %Ql (h,7) X 20 =Q (h,7).
Similarly, for i = 3 we have
~  uk+l < [ 3 4o 1 20
’ =Q N I
OuEine = (07 [ (2455 ) 40+ (32— a3 ) (6(0+7)
~ _t
< uk =~ /31 - 3t
Aps = Q1 (h —t+—6t) | =Q1(h,T) |—+—
ni&3a = () (41 T om ) RN e
~ _l‘
= Qi (h,7) %] . (4.55)
Using (4.54) and (4.55) yields
~  Zuk+l ~  —uk ~ t ~ t ~
®hﬂ§37h7r _Ah,’5§3,h;c =0 (/’Z,T) %—I— 1| —Q (h,’t) [% =0 (/’l,’C) .

Next for the irregular hexagons with a left ghost point for i = 1, the following are
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achieved.

~. zuk+l I ~ 17 14w 2 1 20 2
=—0Q — - = —
®h’cE->l /Ko 20 l(haT) [(24’C+ 3]’!2) (611)61 'xl) + (241 3]’12) (alh h
3 9
R )
+ah—nh —|—2a1h 4h )]

s )[17a1x1_17x% l4oaix;  140x3  Tarh

20 24t 241 32 3R2 48t
—;1'5—7z°:sh+1zw]
hablhe = 1 (T [ (arx1 —x} +%(a1h W +ayh—h?
+ = alh——hz ]
2
ool S
i:;;,rgll:;,h,r =0. (4.58)

Using equations (4.56), (4.57), and (4.58) with substituting x; = % for i = 1 we have

~. Zuk+1 ~, —uk ~, Uk 5~
®h &1, A Az,rgl,h,r - Fz,rgl,q),h,«: = 891 (h,7).

Consequently, for i = 2, the following are valid:

~ zuktl 1 ~ 17 14w V3h
®hr§2m :%Ql (h,7) [(27%+W) (az <x2+7>
2
x‘f‘ﬂ +a )C—ﬂ — x——\/gh
2 ) 2 2 > 2 5
+a2xz—x%>],

1~ (200,01, 202 Bwarx,; 8ad K
— O (h _ _ T e
w0 ) o T T e T A e

(4.59)

x gt I ~ 17 1 3
Ap&one= %Ql (h,7) 24 (ax2 —x3) + T <3a2x2 —3x3 — Ehz)]
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1 ~ 20apx;  20x3  h?
= —0 =2 T 4.60
20 1(’)[24c 24t 161] (4.60)
S— ~ 1 4o V/3h
Th8oonr = 51 (h,T) [ (_361 @) (az <x2 + T)
N V3h N V3h V3h
— | x+— a|lx——|—|x——7
2 > 2 | x2 > 2 >
1 16
+ayy—x5 | + T8 T o (arx2 — x3)
2
1 V3h V3h
+%<“2 (X”T) B (X”T)
2
V/3h V3h 5
T | n——F |- |(X——F— | tax—Xx
2 2
1
1 ~ 8warx; 8wx; 2
=—0(h - ~Zol. 4.61
Tl ’T)[ 32 32 3 (4.61)
Using equations (4.59), (4.60), and (4.61) we get
~ skl o~y cwk =, 1 ~ 20axy  20x3
0y18ont —MirGont —Thi&oont = %Ql (h,7) [ ot WTZ
8warx, 8wxs  h? o 20a0% 20x3  hH?
3h2 3h2 161 241 24t 167
8warxy 80))6% 2(0
3h2 3h2 3
1 ~ 20 5~
Next, for i = 3, the following is obtained.
~ugl ~ /17 4w 1 20
0; & . =Q1(h,1)(t ) 43— ==
heSaae = (7 (147) (24r“L 3112>Jr (24«: 3h2)]
- (20 8w
=0 (h t — 4 4.62
~_  =uk ~ 17 3
A CEY,  =Q(hT)t| —+ —
h,‘C§3,h,T 1 ( 71) 24T + 24T
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~ 20
o[ 1 n 4m 43 1 n 16w
361 9h? 18t 9h?

+§1(h,r)f[(3_zr_%>]

=Q(h,1)(t+7)

FZ,IEM),h,t =Q (h,7)(t+7)

8w

7 |- 4.64
3 h2] (4.64)
Using (4.62), (4.63), and (4.64), it follows that

~, gk+l ~, zuk ~ TUX 5~
G)Z,‘CE.B,h,‘t - AZ,«&s,h,T - Fz,r’iz»,cp,h,r = 691 (h,7).

In a similar way we can show that second equation of (4.49) holds true on D*"y,.

Therefore, difference problems (4.45) and (4.49) in matrix form are

ggu,kﬂ _ BE””( +Tﬁ”’k, (4.65)

~ ~ wk sk uk =
accordingly, and A and B are as given in (4.16) and 1; ’k, F,fl ,i=1,2,3 and & ik, €

Z1,0 = —1,0 _ N _
RN satisfying & >0 ,[g°| <&, and 7** > 0, and n“k| < ek i =1,2,3, for

k=0,...,M" — 1. Using that Q (h,t) > ‘{IV"fk on D"y, and %le (h,T) > “?gk on
D*"y; and on the basis of Lemma 4.3 we obtain
‘{;Z,’c ()C],xz,l‘)) < Eng BE? (x17x27t) < dﬁl (h,’C) p (xl,xz,t) on DhYT- (467)

<y

The proof of (4.42) is analogous and follows from Lemma 4.3 by taking the majorant

functions
—u; 1 ~ -
&l (x1,x0,1) = 5o (h,7) (a1x1 —23) > 0 on Dhyy, (4.68)
—u, 1 ~
&) (x1,x2,1) = 5 (1) (a2x2 —x3) > 0 on Dy, (4.69)
EY (x1,x2,1) = Q, 1 (h,T)¢ > 0 on Dhy, (4.70)

3 , Y
where ét,l (h,7) is as given in (4.44). O
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Ju

4.2 Second Stages of the Implicit Methods Approximating . and
a a - with O (h4 + 1:) Order of Convergence

4.2.1 Hexagonal Grid Approximation to : Stage 2 (H ath ( 5 ))

For obtaining fourth order accurate numerical approximation to v = i I first we apply
the implicit method given in Stage 1 (H ath (u)) and compute the approximate solution
up 7. Next, we denote p; = 387”1 on S7Y;,i=1,2,...,5 and use the problem (BVP (aa—;l»

given in Chapter 2.

9

Taking into consideration u € C,, (QT) we require v € Cx QT). Further,

we take

127 (—25u(0,x2,1) + 48uy 1« (h,x2,1)

— 361/!;” (2h,X2,t) + 16uh71; (3/’1,)62,1‘)

i — 3up; (4h,xp,1)) if Py € DOy, ,

Pin = on StY1, 4.71)
saor (—28160(0,x2,1) + 36751 (4, x2,1)

12251/!;” ( 5 5X2, ) +441up . ( 3 ,XQ,Z‘)

~T5upr (L,x2,1)) if Py € Dy,

ﬁ (25u(a1 ,X2,1) —48uy 1 (a1 — h,x2,1)

+ 36uy 1 (a1 —2h,x2,t) — 16wy 1 (a1 — 3h,x2,1)

o + 3wy 1 (a1 —4h,x2,1)) if Py € DOy, i

p3h = on ST’Y:;7 (472)
84_10h (2816u(a1 ,X2,t) —3675up - (a1 — %,xz,t)

+ 1225uy, 1 (a1 — %,xz,t) —441up, 1 (a1 — %h,xz,t)

+ 75upx (a1 — Jx2,1)) if Py € DMy,

d t
Din = % on S]%yi, i=2.4, (4.73)
1
00 (x1,x
mzﬁ%fhw%, (4.74)
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where @ (x1,x2), ¢ (x1,x2,7) are as in (2.9), and u;. is obtained by using Stage
1(H¥" (u)). The derivation of the forward difference formula (4.71) for the irregular
grid points which have a center % units away from the boundary x; = 0 is as follows:
A u(xy,x,t)
B:u(x;+ %,xz,t)
u(xy + %,xz,t)

C
D :u(x; + %,xz,t)

b

u(x1+%,xz,t)
h h
B:ulx+= 5 , X2, 1 :u(xl,xz,t)—f—Eaxlu(xl,xz,t)

h2
+§a)261u<xl;x27 )+ 83 (Xl,Xz,t)

48 xn
h* w
—|——af; (x1,x2,¢ )—|——a§ (x1 +v1h,x2,1), 4.75)
384 i 3840 i

3h 3h
CZM(xl—i— > , X2, ) :u(xl,xz,t)—I—jaxlu(xl,xz,t)

9h2 27h3
82 (XI,XQ,Z‘)-FKEP u(xl,xz,t)
81h4 243}
384 34 (x1,x2,1) + 3840 as (x1 +2h,x2,1) (4.76)
5h 5h
D: u(x1+ o , X2, > :u(xl,xz,t)—l—Taxlu(xl,xz,t)
25h2 125h3
82 (Xl,xz,t) 83 (.Xl,xz,t)
625h4 3125h5
T 84 (x1,x2,8) + 3340 8§1u(x1+'03h,x2,t), 4.77)
Th Th
E: M<X1+ X 1 X2, ) :u(xlax%t)"‘?uxl (x1,X2,1)
49h2 343h3
82 (Xl,xz,t) 83 (xl,)Q,t)
2401h4 16807h5
sea Ont () + = =R u vt vshn,t),  (478)

where, 0 <v; < %—1— (i—1) for i = 1,...,4. By multiplying the equations (4.75),

(4.76), (4.77) and (4.78) with 385, ’225 , % — i ¢ respectively and adding them we get the
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following:
35 n h , 35 ML 3h n 21 Lok 5h ;
—UulXx —, X ——Uu\\Xx , X —Uul X y X
3 1 27 2 24 1 2 2,1 40 1 2 2

+ hdy, u (x1,X2,1) — B 88’5‘1 u(xy +Oh,x2,1). (4.79)

where, 0 < ¥ < 7. Simplifying yields

1 h 3h
% (3675u (x1 + E,Xz,t) —1225u <X1 + — 5 , X2, )
5h Th
+441u (X1 + 7,)62,2‘) —75u (x1 + 7,x2,t> —2816u (xl,XQ,Z‘))

= hoy,u (x1,x2,1) — ﬁaxlu (x1 +Vh,x2,1) (4.80)

hence

1 h 5h
m (—281614()61,)62,1‘)—1—367514 <X1 —l—E,XQ, ) —1225u (x1 +—= > , X2, )

5h Th
—|—4411/t<)61-|-7,2627 ) —75u (X1+ 5 , X2, >>

zaxlu(xl,xz,t)+0(h4) (4.81)

Lemma 4.4: (Buranay et al. [53]) Let u be the solution of BVP(u) in (2.9) and uy, ; be

the solution of (4.1) in Stage 1(H*" (u)). Then, it holds that

th

P (unz) — Pl ()| < 15dQ (h,7), i=1,3, (4.82)

where Q, (h,7) in (4.43) and d in (2.60) was defined.

Proof. Using (4.71), (4.72) and from Theorem 4.1, and using (4.41) when Py € D%y,

gives
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Y " 1
P (unz) — P (u)‘ < (48thl (h,7) + 36 (2h) < (h,7)

416/ (3h)dQ (h,7) +3 (4h) dQ, (h,r))

<15dQ; (h,7), i=1,3, if Py € D"y, (4.83)

where Q, (h,T) in (4.43) and d in (2.60) was defined. In the case Py € D*"y; it follows

that 4 h 3h
P (unz) —Plh ‘ < 310h (36752d£21 (h,T)+1225— 5 dQ (h,7)
Sh ~ Th ~
+ 441?d§21 (h,7) +757d§21 (h,*c))
<6dQ (h,7), i=1,3if Py € D"y, (4.84)
Therefore, (4.82) follows. [

Lemma 4.5: (Buranay et al. [53]) Let ), ; be the solution of the problem (4.1) in Stage

1(H*" (u)). Then, it holds that

max | p4 (unz) — pi < Mh* 41549 (h7), i=1,3, (4.85)
Sty uShys
where M| = 5maX g 24\ and Q (h,7) in (4.43) and d in (2.60) was defined.
Q 231
9+0£
Proof. On the basis of the assumption u € C, jq (QT) it follows that at the points

(0,x2,kt) € S%y; and (a1, x,,kt) € Sys of each line segment
3 3
[(.X],n\/T_h,kT) 10 <x §a170§x2:n\/7_h§a2, 0<t=kt<T]|,

we obtain fourth order approximation of 887”] by the formulae (4.71) and (4.72). From

the truncation error formula (see Burden and Faires [63]) results

i n* Pul . . 0h
max | py, (u) — pi| < —max ——|, i=1,3if Py €D"yr. (4.86)
Shy UShys 5 0p |0x)
Analogously,
5
4th ’ a u . . «h
max |py (u) < ——max ,i=1,3if Py D"y, (4.87)
ShyUSEY3 g 128 ax? !
Using Lemma 4.4 and the estimations (4.86) and (4.87) follows (4.85). ]
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Subsequently, for a fourth order numerical solution of BVP(aaTMI) we propose the

following problem and call this Stage 2 (H dh ( o ))
Stage 2 <H4’h (aa;‘l ))
@hﬂvl}‘;l = /Khﬂvlfm + 5X1 ¥ on DYy,
@)h Tvﬁ_l /KZ’TVI;M + fz7rp?21 (uh_‘r) + BXI\TI* on Dy,
@h < k“ 7\2,1"271 + lN"ZJng: (um) + lN),C1 V" on D"y,
Vie =P (i) on Shyii=1,3,
©= pinon Sk, i =2,4,5 (4.88)

where p‘l‘I:, pgzl, pin i = 2,4,5 are defined by (4.71)—(4.74) and the operators (:jh;c,

K;m, (:)Z o f’;"” and KZ . are given in (4.4)-(4.8), respectively. Furthermore,

D=0/ + —h2 (83 fE 120, fﬁ(jl), (4.89)
h? > 1
Dy V" = 9%t 1];:1 96T® 9 fp, = ¢ Ifg:lJraﬂ p
1
+Eh2 <a3 fk+l +a)2528 fk+l) (490)
Let
Ehx = Vax —von Dhy, 4.91)

where v = a” From (4.88) and (4.91) we have
@m Zﬁ“ = Ay J; + ‘I’Vk on DYy,
O e = A iEe+ Db+ P on Dy
&hr=0o0n Sty i=2,4,5,

&= = ph (uhﬂ.) —pion Sty i=1,3. (4.92)

where
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PE = Aok — 0 F T 4D, (4.93)

lP;k = XZ,TVk - @Z,rvk+l + fi,rpi +5x1\T’*7 i=1,3. (4.94)

Next, let 61 = u1(v), 61 = up(v), where uy,u are given in (4.39), (4.40), respectively,

and

_ ~ M, d{ 3 470\~
6 =max{ 6, L 152 (2 4 2P 4.95
max{ by T p(16o+2880)“}’ (4.93)

& = max {61, 15d[§} , (4.96)

where 0 = (1), B = up(u) and d in (2.60), also M, is as given in Lemma 4.5 and

_ 3,4
P = &doew T 11520

Theorem 4.2: (Buranay et al. [53]) The solution vy, ; of the finite difference problem

given in Stage 2 (H‘”h <§—;‘1>> satisfies

6 3 47
max v, —v| < 26 (T +1) T+

142+ d2)ont 4
D, 5 (6400)+11520>( taita)6t, (497

for r = % > 1—16 where 6,6 are as given in (4.95), (4.96), respectively, and v = 887”1 18

the exact solution of BVP(%).

Proof. Consider the next system

N vkl X vk X 0h
®h7T nt :Ahﬂ&hﬂ_—kﬂz (xl) on D™y,

e R S AT 1~
O} Z7,r+ = AZ@@Z’J*‘FZ,IE-*/V:I + Q) (x1) — ¢ Q (p) on D*My,
& =0onSky, i=2,4.5,
L . |
& =& =piy (unz) —pionShy, i=1.3, (4.98)

where
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~ 3 . 3 47 ~
Q) (x1) = 5—(5’5(2(11 —x1)+ (— + —0)> oh*,

ar 160 ' 2880
3 3 47 ~ Gvk
> 6T+ —+—0)6n*> "P“ 4.99
=5 +(160+2880 ) -t @
sy Lo,y = 3 % (17 1) + (G ) B it Py < 07
Q) (x1) — 892 (p) = , -
~ (1, 3 1 47 . *r
ch<§+IOal)+(a+mm)eh4lfP06D h’Y‘D

Further, x; = % and p =0 if Py € D*""y; and x; = a; — 4,p = ay if Py € D"y, We

take the majorant function

=V

E" (x1,x2,1) =&, (x1,%2,1) + &) (x1,%2,1), (4.101)

where

_ 3
& (x1,x2,1) = 5.0 (t+1)(2a; — x1) on Dy,

=V 3 47 \ = —
&, (x1,x2,1) = (W) +m> on* (1 —l—a%—ka%—x%—x%) on Dhy,.

The function in (4.101) satisfies the difference problem

~  —vk+l1 ~  —vk ~
®hﬂihx = Ahﬂahx + Q) (xl) on DOh’yT,

~. gwkt+l  ~. Zvk =y TVF ~ 1~ %
®h,‘c§h,‘c = Ah,t&h,t + Fh;c&h;c +& (xl) - EQZ (p) onD hY’Ca
EZ,I = EZ; = E‘I} (0,x2,1) +E; (0,x2,1) on Sl%yla

EZA: = E‘I} (xbovt) +E; (xlao,t) on Sél"YZa

=V = Vx =V =V

E.,hx = E.>h7r =&, (a1,x2,1) +&; (a1,x2,1) on 54737
=V =V =V

&h,r = &1 (xl,(lz,l) +§2 ()C],az,t) on S?’Y‘L

EZ’T = a (x1,x2,0) —I-E; (x1,X2,0) on SHys. (4.102)

The equation (4.102) is established using the following. Let us first give the validation

=~ _v7k+1 ~ —vvk ~
®hﬂ§h,t - Ahﬂ&}m = Q) (x) on DOh'YT,
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~ k41 3
®h1§‘1}ht = Sa; 6t(t+t+1)

3 4o 1 20
(3:+22) e (- 2) (s

h h h
+2a; — (X1 +§) +2a; — <x1 —§> +2ay — (x1 —h) +2a; — (xl —5)

v (n+5) )]

:ic’c(t—k‘c—l—l) 6a; 3x; 8wa; 4dox; 2a; x1  240a;

4t 41 + h2 h2 + 4t 47 3h2

5611
1260)61
302 |’
3 .
=—0G6(({t+t+1) 2a1—x1]. (4.103)
5a1
~  —vk+l 3 47 ~ 3 4o
Onope = (640w+m) On* (E+h—2) (af + a5+ 1 —x] —x3)

1 2m n\ 2 J3h
+(% 3h2) <6+6a1+6az (r1+h)* =3 — <x1+§) —<x2+—2 )

o) 2] )]

3 47 1 h?
= — on* 24 +1—-x -8 —— | +4o|. 4.104
(640c0+11520) ['c (a1+“2+ A (4104)
Adding (4.103) and (4.104) we get
=V k+1 3
@)m&m Z—G(Z+T+1) 2611—)61]
5a1
3 47 \x 4|1 h?
— 4+ —— ) ont| = -3 —x3——
+(6400)+11520> [r( @i a3+ 1 —x3 8)
s (4.105)
~ vk 36 3 1
Ahﬂgl.,hﬂ:gﬂc(t_l_l) 4_‘5(2(11 x1)+g(12a1 6X1)]
56 —(t+1) |2 (4.106)
a)] — X .
5a1 1 —X1
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T vk 3 47 ~ 3
Ahﬂélh,r = (m + m) on* [E (a% + a% +1 _x% _x%)

1
+—(6+6a%+6a§—6x%—6x§—6h2)]

2471

3 47 41 a a2 % W
= (——— )| =+ L 2L _2_ | 4.107
(6400)+11520> ’C+‘E+’I: T 81 ( )

From (4.106) and (4.107) we get

~ vk 36 3 47 \x 4|1 a a3
Ml .= —(t+1) |2a; — — 4 — ot |-+ L+ 2
e = 5 (1) 20— +(640c0+11520) [r+ T T
2 .2 2
h
_ﬁ_x___] (4.108)
T T 81
Now using (4.105) and (4.108) we get
~  —vk+l ~ vk 36 3 47 ~
Ol — Ay = —1(2a; — — 4+ o|6n*
h,r&h,r h,r&h,r Salt( ap—xp)+ (1200)"‘ 2880w>
= Q) (x1).
Second, we show that
~.  gwktl =, gvk = VX ~ ~ «
®h71§h,’c _Ah;cgh,’c _Fh;t&h,’[::QZ (Xl) - %Qz (p> onD hYT7
~  —vk+1 3 17 14w
0 & = 2 &t 1 —+ — | (2a; —
1 20 3h
—— ) (2a1 —h+2a1 —h+2a; — =
+(24T 3/’12) < ay—h+2a; —h+2a; > )]
3 . S5a; h 160a;
=—06T(t+Tt+1) | —— — — 4.109
5a; (t+7+1) 3t 2t 3h? ]’ ( )
~ 4 —vk+1 3 47 ~ 4 17 140) 2 2 2 2
Ohbone = (6400) + 11520) on <E * W) (a1 +a3+1-x1 —x3)

2
L A R +\/§h
24t 312 T 2T

2 2 2 \/gh : 2 2 9h2 2
—l—l—{—al—i—az—h — Z—T —|—1—|—a1+a2—T—x2
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3 47 \ x. 41 5 542 54*
——r— )| =+ =L 2
<640(o 11520) [6t+ 6t 6t

3h? + 3h? 3h? 3h? + 6

8wa? Swd? ldor 8ok 230 23h2]
96t |

Adding (4.109) and (4.110) yields

~. wvk+l o~ ovk+l  ~. Zvk+]
GZ,Tah,’C = GZ,’C&L/’L,T +®Z,r£2,h,t
3 Sai h
=—0t(t+1T+1) | —— — —
Say (t+7+1) 3 27

3 47 \x 4|5
4 — et =
* (6400) * 11520> lér *

50 80 8wal 8wad 14mx} 8wx3

6T

160a;
3h?

|

67T

61

o 32T e T

8w
352

Sa% Sa% 17x%
247

3K2 3K2
23m  23h>
6 967 |
Also,
T V¥ 3 - 1 4
Fh,r&l,q),h,r = 5_(116’5 (1 +T+ 1) (—% + W) (2611 +2a1)
1 16m
— (2
+(181+ 9h2>( “1)]
b St 1) | e (2 +2a1) — —— (2a1)
- - a a _— a
5a, 36t 1 T g v
3 16ma;
=" 61(¢ 1
SaIGT( +otl) 3K2 ]
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~ 1 40
Fh’CE.’Zh’C ( 11520) 9h4[<_ﬁ+9h2> ((l%—Fa%—f—l

(2 seer- (5 2))
(150

160
9h2) 1+a1+a2 2)

2 2
V3h V3h
+% a1+a2+1—(XZ+T taita+1- | n-—

(Cl] +a2+1—xZ)]

_|_

187

4 . 8wa? 8wa: 8wx: 2
=(—3 IO )6h4[8—w+ il Wb b 30)] (4.113)

6400 11520 32 3h? 3h2 3h2

Adding (4.112) and (4.113) it follows that

16ma; L 3 L 47 & 3o
3h? 64000 11520 3h?

8wal 8wa5 8mx3 20)]

S 3
ThaSona = 54,°° t+1+1)

4.114)

382 1 3n2 0 32 3

~y WK 3 -
Ah,‘Cgl,h,T = S—aIGT (l +T+ 1)

17 1
2ai — — (2
2ag 2 =)+ o (“‘

3h
—h+2a; —h+2a —7>]

4.115
3t 21|’ ( )

3
= &r(r 1
5a1m( +1+1)

5a, h]

~  —vk 3 47 ~ 17
Ay Eope = oot e | O 1—x}—x3
B2 (6400)+11520> [24 (i +a3+1-x—x)

24 (3 + 3(11 + 302 — 3X2) ]

3 47 \x 4|5 542 543
= — 4 )ept| L2
(6400)+ 11520) [6*1:Jr 67 + 61

1762 23Kh%  5x2
il g ) (4.116)

Adding (4.115) and (4.116) we get
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3t 21

3 47 \ ~ 4| 5 54% 543
+( + >9h4[—+ﬂ+ @

~ Wk 3 -
Ah,T&Z,h.,T = S—CllGT (t +T+ 1)

&_zl

6400 = 11520 6t 6T @ 6T

17x3  23h*  5x3
_ I 23h7 Sx ) @.117)
247 967 6T
using (4.111), (4.114), and (4.117) gives
~. gwkt+l . vk =y TVK ~ 1~
0, Chr —Anhr —Dhlne=Q(x1) — - (p) (4.118)

6

where the right side of equation (4.118) is as given in (4.100).

Next, for k =0,...,M’ — 1, we put the equations (4.98) and (4.102) in matrix form as

AGHH! — BEK 1k, (4.119)
AEVJH»I _ BEV,k+Tﬁv,k, (4.120)
-~ oo vk
where A, B are as given in (4.16) and £ & 7" "% € RV Using (4.99)~(4.102) we
have Ev’o >0,andN"* >0, and | < N fork=0,...M —1, and E“O < EV’O.
= k1
Then Lemma 4.3 implies that F,V'fk“‘ < E.,v’ i Furthermore,
& (x1,22,1) <€ (0,0,7)
6. 3 47 .
=-0c(T+1 ——+—— | (1 0h
ST+t (640(0+ 11520) (1 a+ay) 00,
yielding (4.97). U

4.2.2 Boundary Value Problem for %’gz and Hexagonal Grid Approximation:

2
Stage 2 <H4th (aax—lgt»

First, we construct BVP(%) and obtain the approximate solution u; 5 r by using the

implicit method given in Stage 1 (H ath (%)) . Next, we denote p; ; = %gt on S7Yi, i =

1,2,...,5 and propose the below problem for v; = %

Boundary Value Problem (BVP (%))
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azf(xl,X2,t)

Ly, =
ve (x1,x2,1) = prion Styi,i=1,2,...,5. (4.121)
9+0c . o
From u € ija (Or) , we assume that the solution v, € CS;FOL 2+2 2 (Qr) . We take

.

12h ( 25”t(0 X2, )+48ut,h,’t <h7x2at)
— 36u; o (2h,x2,1) + 16u; j 2 (3h,x2,1)
o — 3uy pr (4h,x2,1)) if Py € DOy, i
Prin = on S7Y1, (4.122)
o (—2816u,(0,x2,1) +3675u; .1 (%,%2,1)

— 12250 j 1 (3, x0,1) +441u; 2 (3, 32,1)

~75uy jr (B, x2,1)) if Py € D'y,

7 (25u(ar,x2,1) — 48uy < (a1 — h,x2,1)
+ 36w pi (a1 —2h,x2,t) — 16u; 1 (a1 —3h,x2,1)
b + 3ugp (a1 — 4h,xp,1)) if Py € DOy, ,
Pr3n = 9 on S7ys  (4.123)
aor (2816u;(a1,x2,1) —3675u 1 (a1 — 5, x2,1)

+ 1225u; j, 1 (a1 — %,xz,t) —441us j (a1 — %,xz,t)

+T5up px (a1 — B x2,1)) if Py € Dy,

ad; (x1,x2,1)

Prin = =g i on Sty i = 2,4, (4.124)
09 X1,X2
Prsh = (P(Tl) on S}Ys, (4.125)

where @ (x1,x2) and ¢ (x1,x2,7) are as given in (4.11) and u, 7 is the approximate

4th
solution achieved by using Stage 1 (H ! (a, ))

For a fourth order accurate hexagonal grid approximation of BVP( 0 t) we propose

Stage 2<H4”’ (aXIBt)> :
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a k+1 X k noo Oh
®h7Tvt7h,'c = A;mvt’h’T + Dy, y; on D™y,

~e e+l Ih
©), v t;:r—Ahrvrhr+rhrpr1h(”thr)+Dx1\|’t on D™y,

ok _Ax Lk T 4th N ok *rh
@V he = MuaVins + TnaPrsn (Uene) +Dx Yy on D™y
4Ih

vt,h’t P Jih (”th'c) on STY!? — 1737

Vet = PrinOn STy, i =2,4,5 (4.126)

where pf’f I pf;h, Prin »i=2,4,5 are defined by (4.122)—(4.125) and the operators @hm
/A{hat, @;‘l o /~\;‘l . and f;; . are the operator given in (4.4)—(4.8), respectively. Furthermore,

V¢ hx 18 the numerical solution of (4.126) and

R O A h2 (a3 FiET+02,0y, ,’f,fo'>, (4.127)
N Tk h2 h2 1
Dxlwl‘ 96Tmaxl tkal %W)axl-fl]fPA - gaxlfk+1 +axlfk+1
16 1 n (33,15 +9%,0 1)) (4.128)
Let
&) c = Vihr— v on Dy, (4.129)

where v, = a at From (4.126) and (4.129), we have
O TE_,V”kH = Ay T& + ‘PV’ on DYy,
®h Tgv,,k—}—l o Ah Tgvt, +rh ré*w _l_\Pv, on D*h'YTy
=0on ST'yl, i=2,4,5,
vy v,

th .
we =&t = plin (wnz) = prion Spv, i=1,3, (4.130)

where
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@Yh _Ahtvz ®hrvk+l+5x1qft7 4.131)

P = A vk — O VT T i+ DV, i = 1,3 (4.132)

Let 5,71 = w1 (), O¢1 = wa(vy) where uy,up are given in (4.39), (4.40), respectively,

and let

~ M, d/{ 3 4o
9 9, Ml st (2 2O 4.133
r= max{ Lh g 0 (160+2880)a} (4.133)
5, = max {ct L 15d[?>t} (4.134)

where o, = (1), Bt = w(u;) and d is as given in (2.60). Furthermore,

aut
0x

= _ 3 47
M = Srréax‘ and p = &55 + 11520

Theorem 4.3: (Buranay et al. [53]) The solution v, achieved by using Stage

2(H4’h (a a;)) satisfies

6. 3 47 \ =
gle;f}v,m v,|<gct(T+1)r+(m+m>et(1+a%+a§)h4, (4.135)

for r = “’—2 > % where 5,,8, are presented in (4.133), (4.134), respectively, and v; =

2
a?c 55 is the exact solution of BVP (8?( ar>

Proof. The proof basically is analogous with the proof of Theorem 4.2 and follows

. 6+a,3+%
from the assumption v; € C; T2 (

QT) . ]
4.3 Second Stages of the Implicit Methods Approximating 837”2 and

aa >t with O(h* 4 t) Order of Convergence

4.3.1 Boundary Value Problem for % and Hexagonal Grid Approximation:

4th
Stage 2 <H ! (axz))
Let the BVP(u) be given. First, we apply Stage 1 (H ath (u)) and obtain the approximate
solution uy, ; on the hexagonal grids. Then, by denoting g; = a on StY;,i=1,2,...,5
we use the boundary value problem BV P < ) for z = "2 , given in Chapter 2. We

take
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4th 1 ( (
= (—25u(x1,0,1) +48uy. . (x ,\/§h,t) —36u <x ,2\/§h,t>
q2n 12\/§h ( 1 ) h,t A1 h,t | X1
+ 161y (x1,3\/§h,t) — By <x1,4\/§h,z>) on Sy, (4.136)
gn _ 1 _ _ N
Gap = 12v3h (25u(x1,a2,t) 48up ¢ <x1,a2 ﬁh,t) +36uy, ¢ <x1,a2 2\/§h,t>
161z <x1,a2 — 3\/§h,t> +3up (xl,az — 4\/§h,t)> on Sy, (4.137)
0 t
ain = O (x1,x2,7) on Sty i=1,3, 4.138)
0x>
d
g5 = 220 o sty (4.139)
X2

and @ (x1,x2), O(x1,x2,¢) given in (2.9) are the initial and boundary functions,
respectively, uy, 1 is the solution taken by using Stage 1 (H drh (u)) Further we give the
derivation of the forward difference formula (4.136) as follows: Let
A u(xy,x,t)
B :u(xq,x++/3h,t)
C : u(xy,x2 +2v/3h,1)
D :u(xy,x2+3/3h,1)

E :u(x1,x +4+/3h,t)

B:u (xl,xz + \@h,t) = u(x,x2,1) + \@h@nu(xl,xz,t)

3 V3
+ Ehza)zczu (x1,%2,1) + 7h38)362u (x1,x2,1)
9 4 3V3 5.5
—I—ﬁh axzu(xl,xz,t)—i—wh oy, u (x1,%2 + @1 h,t), (4.140)

C:u (xl,xz +2\/§h,t> = u(x1,x,1) +2\/§haxZu(x1,xz,t)

+ 6h28§2u (x1,x2,8) + 4\/§h38§2u (x1,x2,7)

18 12v/3
i ?h“a;tzu (x1,22,1) + T\/_hSanu (x1,22 + @l 1), (4.141)
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D:u (xl,xz +3\/§h,t> = u(x1,x2,1) +3\/§haxZu(x1,x2,t)

27 27
+ —hzaﬁzu (x1,%x2,1) + —\/§h3a§2u (x1,x2,1)

243 729
-l—?ha u(xy,x2,1) + \/_

h5a5 (x1,%2 4+ 03h,t), (4.142)

E:u (xl,xz —|—4\/§h,t> = u(x1,x2,1) —|—4\/§haxZu(x1,x2,t)

+ 24h28§2u (x1,%x2,1) + 32\/§h3a3 u(xy,x2,1)

384
+ 96h48ﬁ2u (x1,x2,8) + \/_h585 (x1,x2 + O4h,t), (4.143)

where, 0 < 0; < V/3i, i = 1,..,4. Multiplying the equations (4.140)—(4.143) with
4\/ /3, 4f =3

=5~ respectively and adding the resulting equations we get the

following:

\/gu (xl,xz + \/gh,t) —V3u (xl,xz +2\/§h,t>

+ %gu (xl,xz + 3\/§h,t> - \1/—2§u <X1,x2 +4\/§h,t>

253
36

9 ~
u(x1,x2,t) + hoy,u (x1,x2,1) — §h5a§2u (x1,X2,1), (4.144)

where x; < X < x3 +4+/3h. Simplifying equation (4.144) yields

1

12—\/§h (481/[ (Xl,xz + \/gh,t> —36u <X1,X2 +2\/§h,t>

+16u <x1,x2+3\/§h,t) 3y (xl,xz+4\/§h,t> —25u(x1,x2,t)>

— Oy, 1t (X1,X2,1) — §h5a§2u(x1,f2,t). (4.145)
Therefore,

1

—25u (x1,xp,t) +48u (x , X —I—\/gh,t) —36u (x X +2\/§h,t>
273 ( (x1,x2,1) 1,X2 1,X2

+16u (x1 X0+ 3\/§h,t> — 3 <x1 X +4\/§h7t))
= Dyt (x1,%2,1) + O (B*). (4.146)

In a similar way we one can obtain fourth order accurate backward difference formula

for approximating dy, u as:
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1
25u (x1,xp,1) — 48u (x , X —I—\/gh,t) + 36u (x ,X +2\/§h,t)
12\/§h( (x1,%2,1) 1,X2 1,X2

—16u <x1,xz +3\/§h,t) +3u (xl,xz +4\/§h,t>)

= Oy, u (x1,X2,1) + O (h4) )

(4.147)

Lemma 4.6: (Buranay et al. [53]) Let u be the solution of BVP(«) in (2.9) and uy, ; be

the approximation achieved by using Stage 1 (H*" (u)). Then, the following inequality

holds true
Ath 4th ~ .
qin (”hﬁ) — g (u)‘ <15dQ; (h,t), i=2.4, (4.148)
for r > 1i6 where, Q, (h,7) is given in (4.43) and d is defined in (2.60).
Proof. From Theorem 4.1, and using (4.136), (4.137), we have
' ' 1 ~ ~
g (unz) — g (u)‘ < (48\/§th1 (h,7) +36(2v/3hd %y (h,7))
’ 12v/3h
+16(3V3hdQy (h,7)) + 3(4V/3hd O (h,r)))
<15dQ (h,7), i=2,4. (4.149)
Thus, we obtain (4.148). ]

Pu

o and uy, ; be the approximation
2

Lemma 4.7: (Buranay et al. [53]) Let 1\712 = %nlax
T
taken by using Stage 1 (H ath (u)) Then, the following inequality is true:

max
STRUSHYs

@ (unz) — i

< Moh* +15dQ (h,1), i = 2,4, (4.150)

where Q, (h,7) is given in (4.43) and d is defined in (2.60).

940, 2L
Proof. Fromu € Cy,;

2 (Qr) , at the points (x1,0,kt) € Sy, and (x2, a2, kt) € Shys
of each line segment

[(Gh,x;k‘t):()éxl =ch<ap, 0<x <a, OSl:k’EST],

we get fourth order approximation of aa—;z by the difference Formulas (4.136) and
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(4.137). Then, the truncation error in (4.145) yields

4th

Gin (u) —qi| < ,i=2,4. (4.151)

max
ShypUSty

Taking M, = %rgax ‘ 3%? and using Lemma 4.6 and the estimation (4.148) and (4.151)
Or 2

follows (4.150). ]

Second stage of the fourth order accurate implicit method for the numerical solution to

BVP( ) is given as follows:

Stage 2<H4”’ ( Ju ))

X2

O Tzk+1 /N\h,rzl,;T + D, on D%y,
®h 7% kH KZ,TZ'Z,T + f;;,:‘llh + 5x2\Tf* on D*lh'Yt,
@} 12kt = Ajy12h .+ T q3n + D, ¥ on D™y,
Zh,t = gip ON S}}y,-,i =1,3,5,
=g} on Shyi,i = (4.152)
where q?;lh,i = 2,4 and ¢q;; , i = 1,3,5 are defined by (4.136)—(4.139) and the

operators @)hﬂ, /N\hﬂ,(:);‘”, i:;;r and X};T are the operators given in (4.4)—(4.8)

respectively. Furthermore, zj, ¢ is the numerical solution and

f)xz\T;: axsz+1 hz (82 A 50+1 43 fk+1> ’ (4.153)
DX2"|I 96T(D x2ijl 96 o XszA xz le_‘_axZ +1
+ e <a§18x2 FARNEER f"“) (4.154)
Let
&)« = 2nz—zon Dy (4.155)

From (4.152) and (4.155), we have
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~ zk+1 X 2k | \pzk Oh
®h7t§hﬂ = Ahﬂghﬂ +¥7" on D™y,
% ewLk+l  Tx ek | gk «h
®h,r§h,r - Ah,ﬂ:&h,r + lI12 on D™y,
¢ =0onShy,i=1,3,5
h,T TYi> 3Dy

5 o= din" (unz) — qion Sjyii =2,4, (4.156)

where q‘zv:, qf: are defined by (4.136), (4.137) accordingly, and
P = Apodt — 04 4+ Dy, (4.157)
W = A - 05 T 4T i+ Dy Vi = 1,3, (4.158)

Further, let A; = u(z), 5 = 2 (z) where uy, up are given in (4.39), (4.40), respectively,

and

~ ~ M, d{ 3 470\ -
_ 258 (2 2 4.1
A max{?»l, 0 + 5p (160+2880> Oc} (4.159)

8 = max {Sl, 15d6} (4.160)

where & = u; (1), Pp = o (1) and d is presented in (2.60) and M, is as given in Lemma

4.7 and z is the solution of BVP(aa—;‘z) .

Theorem 4.4: (Buranay et al. [53]) The solution z;; achieved from Stage
2(H4’h <aa7”>) satisfies
2

6~ 3 47 \~
—7l < =8(T+1 4+ A1+t 4.161
mDhayf}Z“ <30T+ )T+(640m+11520> (L+ar+ap) k', (4.161)

> %, where A?L,g are as given in (4.159), (4.160), respectively, and z = 887“2
is the exact solution of BVP <aa—;2> .

Proof. We take the system
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&Z k1 _ 7\ 77/;_‘_63 (XZ) on DOh'Y‘c,

S5~ *
893 (Xz) onD h'YT,

T
§hr =0on ST'Yl,l =1,3,5,
E;,T = q?;,h (unz) —gi on Sty i=2,4.
qgt:, qf: are defined by (4.136), (4.137) accordingly and

~ 3~ 3 47 \=x
Q3 ()Cz) = 5—a28T (2612 —xz) —+ (ﬁ —+ m > )\J’l4

> — SR > )
> S+ (160 + 288000) Mh* > )lpl

-Q = —0t(2ar — + +— Ml4
6 3(x2) 2a» T< @2 xz) (64 3456 )

—~ — > (P50
26«:+(64+3456m)kh _’1112

Furthermore, construct the following majorant function:

& (x1,x2,1) = & (x1,%2,1) + & (x1,%2,1),

where

3 ~ -
Ej (.x1,X2,l') = 5—61261: (l‘—|— 1) (202 —X2) on Dh’YT,

640 11520

=z 3 47 \~
E'é (x1,x2,8) = <—+—) 7\,h4(1+a%+a%—x% xz) on Dy, Y,

which satisfies the difference problem

=z,k+1

O &he = = A ’c&h T Qs (x2) on DYy,

~ Zk+1 Tk —Z7k ~x —7% 5N "

CH tE.»h T Ah,’t&bh,’c + Fhﬂ&hﬂ + 893 (x2) on D h’yt,
=< Ivéd =z =z
&h,r = &h,’c = &] (O,Xz,t) +§2 (07x27t) on Sél"’Yla

&c =8 (x1,0,1) +&; (x1,0,) on Sy,
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Bie=Bue =81 (ar.21) + & (ar.20.1) on Spys,

€0 =& (x1,a2,1) +& (x1,a2,1) on Siyy,

EZ’T = EZI (x1,x2,0) —I-E; (x1,X2,0) on SHys. (4.166)
By writing (4.162) and (4.166) in matrix form as

&Zk—l—l azk_l_,cnzk (4167)

Azz,k-f—l _ EEZJ{‘FTT_]Z’IC, (4168)

~z,k =2k

-~ ~ o1 ok .
respectively, where A, B are as given in (4.16) and £ ,&Z N7k " € RN and using

(4.163)~(4.166) we get T > 0 and || < 7 fork=0,1,...M"— 1 and € > 0

EZ’O < EZ’O. Then, on the basis of Lemma 4.3 follows {f k+" < §2k+1
k=0,1,....M" —1. From
& (x1,x2,1) <& (0,0,7)
6% 3 47 \~
=_8(T+1 ——t—— |\ A(1+a]+a3) h’
SO+ )H(640m+11520) (I+ar+a) i,
follows (4.161). L]

%u

4.3.2 Boundary Value Problem for I and Hexagonal Grid Approximation:

Stage 2 (H‘”h (axzat»

Let the BVP(u) be given. Then, as the first step we apply the Stage 1 (H dth <%>> and

obtain the approximate solution u; 5 ; on the hexagonal grids. Subsequently, denote

2 2
Gri = aax_zgz on S7v;,i = 1,2,...,5 and develop the next problem for z; = aax—zuat

Boundary Value Problem for -2 Frover] a ; <BVP ( I at>>

azf(xl,xz,t)

Lz, —
“ Ax201

on Qr,

Z;(Xl,XQ,t):qui on ST’Yi,i: 1,2,...,5, (4.169)
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6+a.,3+5

We assume z; € Cy (@T) . We take
=15 ( (1. V3h1) (
— —— (=25u(x1,0,) +48u, o (x1,V3ht ) — 360, 0 (x ,2\/§h,t)
y 2n 273 1(x1,0,1) th | X1 th | X1
+ 16Uy iz (x1,3f3h,r) — By (xl ,4\/§h,t>) on Sy, (4.170)
=3 ( ( )
= —— (25u;(x1,a2,t) —48u x1,a2 —V/3h,t ) +36u (x ,a —2\/§h,t>
qy an 1273k t(x1,a2,1) thr | X102 thr (X102
— 16u; 5, ¢ (xl,az - 3\/§h,t> +3us oz (xl,az —4\/§h,t>> on S}}w, 4.171)
0 t
Grin = O, (35;,2)627 ) on S}}'Yi,i: 1,3, 4.172)
) X1,X2
Gi.5h = (P(TZ) on Shs. (4.173)

where @ (x1,x2) and ¢; (x1,x2,7) are as given in (4.11) and u, 7 is the approximate

. 4th ( Ju
solution taken by Stage 1 (H ! (3) > .

. . 2
For a stable fourth order accurate numerical solution of BVP(aax—;‘at) we propose the

next problem:
Stage 2 <H4’h (%))
(:)hﬂfﬁlr = /Kh,rZﬁh,T + 5x2‘-l’t on Dy,
@Zrzﬁlr = K;kmzﬁhm + i:Z,r%,lh + 5x2\N|!f on D"y,
@Zrzlet = /N\Z,rzﬁh; + f;;;ﬂrﬁh + D, on D*"y,
Ze = Gran 0N SV, i = 1,35,
Zhe = on Shyii =2,4 (4.174)
where q?,;h,i =2,4 and ¢q;, , i = 1,3,5 are defined by (4.136)—(4.139) and the

operators @hﬁ, /~\h71,@;‘m, f’;‘m and K}"M are the operators given in (4.4)—(4.8)

respectively. Additionally,
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DoV =[5 + h2 (a)%lax2 Y f"“), 4.175)

2 2
o= " k1B f LY gkt g ke
X2 ¥t T 96T0) X2Jt,Py 96T® X2J1,Py 6 X2Jt,Py x2Jt,Py

+1 2 (3 0u 5 L) (4.176)

Let

= Zuhs— & on Dhyg, @.177)
from (4.174) and (4.177) we have
Tﬁz”kH = Ans Z” —I—‘PZ“ on DYy,
O & = A} & + 95 on DMy,
=0on STy,, =1,3,5

lh

= g (unz) —qri on Shyi,i = 2,4, (4.178)

where qff;h , qﬁh y Gr,in » 1 =1,3,5 are defined by (4.170)-(4.173) accordingly and
Pk = Apazk — 02 + Dy, (4.179)
WK = Ak — O T g+ Dy Wi = 1,3, (4.180)

Let 7»,71 = u1(z), 5,71 = w(z;), where up,up are given in (4.39), (4.40), respectively,

and
~ M, d{ 3 4o
7» A : 5 —t— 4.181
= max{ oh o TRg (160+2880) } (4181)
3, = max {5, L 15dB,} (4.182)
where o, = (1), [3, w2 (uy) and d is presented in (2.60) also M, 2= 2max aa’g’ and
Or

p= 640(0 + 11520 and z; is the solution of BVP(ax a;)

Theorem 4.5: (Buranay et al. [53]) The solution z,: achieved by Stage

2(H4’h (ax a;)) satisfies
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47

6~
— 7| <& T+ )T+ | o+ s
max |z .t Zr\—s f )T (6400) 11520

>5L,(1+a%+a§)h4, (4.183)
Dhy,
for r = & > %, where 7»,,5, are positive constants given in (4.181), (4.182),

: 2, . : 2
respectively, and z; = a?cz’st is the exact solution of BVP ( az 2’5I> ,

Proof. The proof is analogous to the proof of Theorem 4.4, and follows from the

. 6+a,3+5 —
assumption z; € Cy, %= (QT) ) H
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Chapter 5

EXPERIMENTAL INVESTIGATIONS OF THE FOURTH
ORDER ACCURATE TWO-STAGE IMPLICIT

METHODS

The proposed fourth order two-stage implicit methods are applied on two test
problems such that for the first example the exact solution is known. However, for the
second example the exact solution is not given. We take
D= {(xl ) 0<x <1,0<xm < 4} and ¢ € [0, 1]. Further, Mathematica is used
for the realization of the algorithms in machine precision. Also we used
preconditioned conjugate gradient method with the preconditioning approach given in
Buranay and lyikal [55] (see also Concus et al. [56] and Axelsson [57]). We define
the following:

H4h <g—)’:l> ,i=1,2 is the given fourth order method for the computation g—)’:i, i=1,2,

respectively.

> , , o Pu .
H4h (%) ,i=1,2 is the given fourth order method for the computation aiigt, i =

1,2, seriatim.

C Tg‘m ,i=1,2 presents the CPUs for one time level spend by the method H*" <aa7”) ,

i
Jx;

i = 1,2, accordingly.

C Tglzth ,i =1,2 shows the CPU's for one time level spend by the method H*" (%) ,
axiat

i = 1,2, respectively.

Furthermore, vy 51, Zy-up-n 5 Uy p-up-2, N V5 usa; Z -y are the computed
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grid functions obtained by the methods H*" ((%“), i = 1,2, H% <%) and

HY" <ax az> , i =1,2, accordingly for 7 =2"# and © = 2~* where u,\ are positive
integers. The error function €, on the set Dh\(T obtained by H¥" ( = ) i=1,2 for

h=2M1=2"is presented by elg:h (2_“,2_7‘) ,i = 1,2 while the error function
ox;

resulting by the methods H*" <ax a;) i = 1,2 are shown with

H4t h

(2 K2 ) ,i = 1,2, respectively. Furthermore,
ax at

ath (. 4th .
max ag (2 o *)‘ - eg-;’l =12, (5.1)
D Tt Xi X oo

4th _ _ Ath .
max [ef’ (2 ) 7“) et =12 (5.2)
DhYT ox;or 9x;01 || oo

Further, we denote the order of convergence of the approximate solution v, ,-» and

Zy-u o to the functions v = aa” and 7z = a”z obtained by using the fourth order implicit

method H‘”h( ) i=1,2by

Ath

4th [: <2 ! 2 )

R = i © _ji=1,2. (5.3)
xj ‘ 81;1:”' (2—(,u+1)72—(7»+4))

ox;

1

(o]

Furthermore, the order of convergence of the approximate solutions v, ,,,-2 and

. . . 2 2 .
%, »-u o to their corresponding exact solutions v, = aax_luaz and z; = a‘_’x—;a‘l obtained by

Hh (axa[> ,i = 1,2 are given by

4th
ath ‘ I:a (2 2 )
R, = © __ ji=1,2. (5.4)
ot || gHMh (9 —(ut1) D—(A+4))
ox; 0t oo

Remark 5.1: We remark that the computed values of (5.3) and (5.4) are ~ 2* showing

the fourth order convergence of the given methods in x1,x; and linear convergence in
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E le 5.1: ou u  u
xample _o. 5(

> o az)+f(x1 x2,t) on Qr,

u(x1,x2,0) =0. 005)6?+Oc +0. 03x9+°° +14x3x on D,
u(xy,xp,t) =u(xy,xp,t) on Sr,
where
f(x1,x0,1) = — (%—Toc) 2% sin (t7§a>

—x1xe”" —0.25(9+ o) (8 + ) [0.005x] T +0.03x]T¢]

9ta t

i (x1,%2,1) = 0.005x] T +0.03x3 " * +cos(t 2 ) +xjx2e”

present the heat source and the exact solution respectively and we take o0 = 0.5. For

the Example 5.1, Table 5.1 demonstrates C THM SI:M SKHTM i = 1,2 achieved
axl ox; oo ax;
by H*" (a”) i = 1,2 respectively while Table 5.2 shows C TH th7 Ig;;h and EKH o

ax at ox;or ax at

i =1,2 taken by the method H*" (a at) , 1 = 1,2 accordingly. Tables 5.1 and 5.2

Justify the theoretical results given such that the approximate solutions vy, t,2s 1, Vs n1

. . 2
and z; , ; converge to the corresponding exact functions v = aa” and z = (.?2 v = a?c lgt

and z; = aa 5 with fourth order in spatial variables and first order in time for r > 16,
as explained in Remark 5.1 and presented in the fourth and last columns of Tables 5.1
and 5.2. Moreover, the last two rows in Tables 5.1 and 5.2 demonstrate that the order
of convergence is also O (h* +1) when r < 1.

4th , &
efl" (273,277,
ox;

4th , o _
el (274,273)
ax[

Figures 5.1 and 5.2 illustrate the grid functions

Y

gl (2-6 2-11)| and

ox;
by the corresponding method H*" (%‘) , 1 =1,2 for the Example 5.1. Figures 5.3

4th _ _
el (277,271)
8)([

,1=1,2, respectively, when r = 0.8 obtained

H4th(2 5 2 )

dx;or

and 5.4 demonstrate the grid functions 8H4;h(2_4,2_3)
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Ath 4th .
Table 5.1: C Tg t , e’;’u’ for i = 1,2 and the convergence orders of v, ¢ and zj, ¢ to

x; TX[ oo

their exact respective derivatives for the Example 5.1.

( h, ’E) CT g_{fth e I_g;lth m I_g;lth CT 5441/1 ¢ I_g:th g{ [_g;tth

G| 9 oo ar| G5 9%;_lloo 9y

(27%27%) | 033 [45384x10%]14.634] 031 [5.3873x10°|14.595

(27°,277) | 20.55 [3.1012x 10 *]15.901| 19.03 |3.6911x 10~*|15.895

(27°,2711) 1 1309.02 [1.9503 x 107>|15.991| 1220.01 [2.3222 x 107> |15.992
(277,271)[82622.60[1.2196 x 10~° 78092.10]1.4521 x 10~°

(27427 79.27 [1.8788x10°|15.980| 73.06 |2.0209 x 10~>|16.006
(27°,271%)] 5209.05 |1.1757 x 10°° 4880.77 [1.2626 x 107°

4th 4th
Table 5.2: CTH ", ||,
ax,-at 8xi8t oo

to their exact respective derivatives for the Example 5.1.

, for i = 1,2 and the convergence orders of v; ;, ¢ and z; j, ¢

H4th H4Th H4th H4th H4th H4th
(h’T> CcT 92y € 02u 9( 92y cT 02y £ 2y g{ 02u
8x1 ot axl ot axl ot axz ot 8x2 ot aX2 ot

(27%279) | 041 [4.42644x107°|15.451| 0.39 |4.2937x107° |[15.401
(27°,277) [ 2478 [2.8648 x 10~ |15.925]| 22.593 | 2.7879 x 10~ 7 [ 15.892

(276,271 ] 1595.03 | 1.7989 x 108 [15.997|1436.69| 1.7543 x 10~® [15.993
(277,2715)]100555.00| 1.1245 x 10~ 92543.1]1.0969 x 10~ 1°
(274271 ] 96.94 |1.8392x 1078 [15.997] 88.61 | 1.7381 x 10~® [15.920
(272,2719)] 6414.28 | 1.1497 x 10~° 5733.49] 1.0918 x 1077

for i = 1,2 respectively, for r = 0.8 achieved

ef" (2762711 and

HY" (n—7 5—15
g5, (279,277)
;o ;o

3xl~at

by applying the corresponding method H*" (%) , 1 =1,2 for the Example 5.1.
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&L 227

t=0.8

Figure 5.1: The grid function of absolute errors when ¢ = 0.8 obtained by the method
H4h (837”1) for the Example 5.1.

1.0 00

t=08 10 00
Figure 5.2: The grid function of absolute errors when ¢ = 0.8 obtained by the method
H4h ((-?7”2) for the Example 5.1.
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H“‘"( -7 —15)
£, (2722
ES

t=0.8 1.0 >

Figure 5.3: The grid function of absolute errors when ¢ = 0.8 obtained by the method
H4h (%“&) for the Example 5.1.

1.0 0.0

Figure 5.4: The grid function of absolute errors when ¢ = 0.8 obtained by the method
H4h (%)for the Example 5.1.
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Example 5.2: ) *u  0?
Xample _M:025 (a_);t_}__u) +f(X17x27t) on QT,
1

ot ax%
3 _
u(x1,x2,0) =0.01x1x; (1 —x7p) (%— —x2> onD,

u(xy,x2,t) =0on St.

The heat source function is

3
f(x1,x2,1) = —0.01x1x2 (1 — x1) (% —xz) sint

3
+0.005 <x1 (I —x1)+x2 (%— —x2>> Cost.

The problem in Example 5.2 is a benchmark problem such that the solution is not
provided. An analogous problem with zero heat source was also considered in Henner
et al. [65]. By applying the proposed methods H*" (g—)’c‘l) ,i = 1,2, we obtain the
approximate solutions v, - and z, . - accordingly at every time level for the
considered values u = 5,6,7 and A = 7,11,15. Tables 5.3 and 5.4 present
Vou g (X1,%2,¢) and  zZpu 52 (X1,X2,1), respectively, at the grid points
(0.125,3,1), (025.53,1), (0375, 1), (05,%%,1), (0.625,1),
(0.75, */?g, 1) and (0.875, ‘/Tg, 1) and the corresponding order of convergence

9{15';”” (P) for i = 1,2 at the grid point P (x1,x;,) given as
o

ath V-5 9-7 (P)— V-6 o1 (P)
R, (P) = , (5.5)
pr Vy-6 5-11 (P)— Vo7 9-15 P)
4th 2527 (P)— 26 911 (P)
R, (P) = . (5.6)
axy 2p-62-11 (P) —Z2p-72-15 (P

By the same way Tables 5.5 and 5.6 show v, 5. 5 (x1,x2,¢) and z, 5 51 (X1,%2,1),
respectively, at the the considered grids and the corresponding convergence orders

E)ilg;;h (P) for i = 1,2 at the point P (x1,xp,¢) defined as
axiat
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Table 5.3: The numerical solution vy, ¢ at seven points when 7 = 1, and the

convergence orders obtained by H 4’h(a—“) for the Example 5.2.

axl

P s r(P) | veapn ()| waps(P)|RET(P)
<0.125,§,1> 0.000569713036 | 0.000569841548 | 0.000569849555 | 16.052
(0.25,%,1) 0.000379748416 | 0.000379890609 | 0.000379899468 | 16.049
(0.375,\?,1) 0.000189857076 | 0.000189944236 | 0.000189949667 | 16.048
(0 5,33, 1) 522%x10°16 | —327x1077 | 187x1078 | 16.046
<0.625,§,1> —0.000189857076 | —0.000189944236| —0.000189949667| 16.048
(0.75,%,1) —0.000379748416 | —0.000379890609 | —0.000379899468| 16.049
(0 875,‘?,1) —0.000569713036| —0.000569841548 | —0.00056984955 | 16.052

Table 5.4: The numerical solution z;, ¢ at seven points when 7 = 1, and the

convergence orders obtained by H 4’h(§7"2) for the Example 5.2.

The computed solutions v,-7 515

Ju

%t -6 2-11 (P) — 27215 (P)

P 9s07(P) | mepn(P) | mags(P) | RE(P)
(0.125, \/?g, 1> 0.000255810101 | 0.000255886243 | 0.000255890985 16?052
<0.25, \/T§7 1> 0.000438524584 | 0.000438661691 | 0.000438670233 | 16.052
(0.375, \/?g, 1> 0.000548151240 | 0.000548326834 | 0.000548337774 | 16.052
(0.5, \/?§7 1) 0.000584693185 | 0.000584881865 | 0.000584893620 | 16.052
(0.625, \/?g, 1> 0.000548151240 | 0.000548326834 | 0.000548337774 | 16.052
<0.75, \/?g, 1) 0.000438524584 | 0.000438661691 | 0.000438670233 | 16.052
(0 875, \é, 1> 0.000255810101 | 0.000255886242 | 0.000255890985 | 16.052

93[{;: (P) Vi2-52-7(P) =V 56 511 (P) , 5.7)

e Vin-62-11 (P) =V 57515 (P)
9{’75;“: (P) = Z2-52-71(P) =256 -1 (P) . (5.8)

and z,-7-15 achieved by using the corresponding

two-stage method H*" <B_x,> ,i = 1,2 are demonstrated in Figures 5.5 and 5.6 for the

time levels r = 0.2 and t = 0.8. Figures 5.7 and 5.8 illustrate the approximate solutions

: : 4th ( Qu
V;2-72-15 and z; 57 515 taken by using the respective two-stage method H ( o a[> ,

101




Table 5.5: The numerical solution v, ;, ¢ at seven points when ¢ = 1, and the

convergence orders obtained by H*( 0x, 0t

%u

) for the Example 5.2.

P Masar () [ viaeean(P) | viaps(P) [, (P)
(0.125,%2,1) | ~0.000887304144 | ~0.000887477357 | ~0.000887488206 15.966
(0.25,%3,1) | ~0.000591460365| ~0.000591646827| ~0.000591658507 | 15.964
(0.375,%2,1) | ~0.000295709687 | ~0.000295822129 | —0.000295829173| 15.963
(05.53,1) | 72210718 333x1071° | —9.86x 1072 | 15.957
(0.625,%3,1) | 0.0002957096868 | 0.000295822129 | 0.000295829173 | 15.963
(0.75,%3.1) | 0.0005914603655 | 0.000591646827 | 0.000591658507 | 15.964
(0.875,%3,1)| 0.0008873041426 | 0.000887477357 | 0.000887488206 | 15.966

Table 5.6: The numerical solution z; 4 ¢ at seven points when 7 = 1, and the

convergence orders obtained by H*" (%) for the Example 5.2.

P Gasa1(P) [ zpean ()| gaaps(P) | R, (P)
<0.125,‘/?§,1> —0.000398417531| —0.000398520228 | —0.000398526661 15?966
(O.ZS,@,I) —0.000682992442| —0.000683176968 | —0.000683188526| 15.966
<0.375,%§,1> —0.000853734894 | —0.000853970855 | —0.000853985635| 15.965
(0.5,%,1) —0.000910648720 | —0.0009109021308 | —0.000910918003 | 15.966
(0.625,%,1) —0.000853734894 | —0.0008539708553 | —0.000853985635 | 15.966
(0.75,§71) —0.000682992442| —0.000683176968 | —0.000683188526| 15.965
<0.875,§,1> —0.000398417531| —0.000398520228 | —0.000398526661 | 15.966

i=1,2 for time levels t = 0.2 and t = 0.8.
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1=0. 1=08
Figure 5.5: The approximate solution v,-7,-15 at time levels = 0.2 and ¢ = 0.8
obtained by the method H*" (5’7"1) for the Example 5.2.

-n.mms\‘l
-0.0010

=02 1=08
Figure 5.6: The approximate solution z,-7,-15 at time levels 1 = 0.2 and t = 0.8
obtained by the method H*" (%’2) for the Example 5.2.
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1=0. 1=08
Figure 5.7: The approximate solution v, ,-7,-15 at time levels # = 0.2 and 7 = 0.8
obtained by the method H*" ( 9 t) for the Example 5.2.

=02 =08

Figure 5.8: The approximate solution z,,-7,-15 at time levels 7 = 0.2 and 7 = 0.8
obtained by the method H*" ( 3 at) for the Example 5.2.
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Chapter 6

CONCLUSION AND FINAL REMARKS

In this thesis we developed numerical methods using implicit schemes defined on
hexagonal grids for computing the derivatives of the solution to Dirichlet problem of
the heat equation on a rectangle. We gave highly accurate two-stage implicit methods
on hexagonal grids for the approximation of the first order derivatives of the solution
with respect to the spatial variables and second order mixed derivatives involving the
time derivative. At the first stage, for the error function, we obtained a pointwise prior
estimation depending on p (x1,x,¢), which is the distance from the current grid point
to the surface of Q7. At the second stage, we constructed special difference problems
for the approximation of the first order spatial derivatives with the two-stage implicit
methods of second order and fourth order accuracy. In the case, when second order
accurate implicit method is used uniform convergence of O (h2 —|—’cz) order of
accuracy to the corresponding exact derivatives aa—)’:i,i = 1,2 when r = % < % is
proved. When fourth order accurate implicit methods are used uniform convergence
of O (h4+‘c) of the constructed difference schemes on the hexagonal grids to the

Ju %u

respective exact derivatives 3¢ and ;=i = 1,2 for r = 37
l l

7z % is shown.

Furthermore, the given two-stage implicit methods are applied on some test problems
and the given theoretical order of convergence of the implicit methods are validated
with the obtained numerical order of convergence and demonstrated by using tables

and figures.
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Remark 6.1: The approximation of the first order partial derivatives of solution of first
type boundary value problem of heat equation in three space dimension is a challenging
problem. The methodology given in this research may be used to construct highly
accurate implicit splitting schemes (fractional step methods) and alternating direction
methods (ADI) (see Peaceman and Rachford [66], Douglas [67], Bagrinovskii and

Godunov [68], and Marchuk [69]).

Remark 6.2: Additionally, the numerical computation of the spatial derivatives of
the solution of the time-fractional structure of the heat equation is a second interesting
problem. The given approach may be extend on rectangular or triangular grids to give
approximate solution of the spatial derivatives. For example the time-space fractional
convection-diffusion equation, see Gu et al. [70], in which for the solution a fast

iterative method with a second order implicit difference scheme was studied.
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