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ABSTRACT

In this thesis, the first type (Dirichlet) boundary value problem for the heat equation

on a rectangle is considered. The research has two main successes.

Firstly, we give a two-stage implicit method of second order accuracy for the

approximation of the first order derivatives of the solution with respect to the spatial

variables. To approximate the solution at the first stage, the unconditionally stable

two layer implicit method on hexagonal grids given by Buranay and Arshad in 2020

is used which converges with second order in space and time variable on the grids. At

the second stage, for the approximation of first derivatives with respect to the spatial

variables we propose special difference boundary value problems on hexagonal grids

of which the boundary conditions are defined by using the obtained solution from the

first stage. Further, uniform convergence of the solution of the constructed special

difference boundary value problems to the corresponding exact derivatives on

hexagonal grids with second order is shown.

Secondly, we give fourth order accurate implicit methods for the computation of the

first order spatial derivatives and second order mixed derivatives involving the time

derivative of the solution. These methods are constructed based on two stages: At the

first stage of the methods, the solution is approximated by using the implicit scheme

given by Buranay and Arshad in 2020 that gives fourth order of convergence in space

and first order in time variables to the exact solution on the constructed hexagonal

grids. For the approximation of the derivative of the solution to the heat equation

with respect to the time variable an analogous scheme is devised. Subsequently, to

approximate the first order spatial derivatives and the second order mixed derivatives

iii



of the solution difference boundary value problems on hexagonal grids are constructed

at the second stages. Further, uniform convergence of these implicit schemes to the

corresponding exact derivatives are shown.

Eventually, the developed second order and fourth order accurate two-stage implicit

methods are used to solve some test problems and the numerical results illustrating the

applicability and the accuracy of the methods are presented through tables and figures.

Keywords: Finite difference method; Hexagonal grid; Stability analysis; Two

dimensional heat equation; Approximation of derivatives.
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ÖZ

Bu tezde, dikdörtgen üzerindeki ısı denkleminin birinci türden (Dirichlet) sınır değer

problemi alınmıştır. Araştırmanın iki ana başarısı vardır.

İlk olarak, ısı denkleminin çözümünün birinci mertebeden uzay değişkenlere göre

türevlerinin ikinci dereceden doğruluklu yaklaşık çözümü için iki aşamalı kapalı bir

yöntem veriyoruz. İlk aşamada çözümü yaklaşık olarak hesaplamak için Buranay ve

Arshad tarafından 2020 de verilen uzay ve zaman değisterlerine göre ikinci

mertebeden yakınsak altıgen ızgaralarda koşulsuz kararlı iki katmanlı kapalı metod

kullanılmıştır. İkinci aşamada, birinci mertebeden uzay türevlerin yaklaşık çözümü

için ilk aşamadan elde edilen çözümleri sınır koşullarınının belirlenmesi için kullanan

altıgen ızgaralar üzerinde özel fark sınır değer problemleri önerilmiştir. Üstelik,

oluşturulan özel fark sınır değer problemlerinin çözümünün karşılık gelen kesin

türevlerine altıgen ızgaralar üzerinde ikinci mertebeden düzgün yakınsadığı gösterilir.

İkinci olarak, ısı denkleminin çözümünün birinci mertebeden uzay değişkenlere göre

türevleri ve zaman değişkenini içeren ikinci mertebeden karma türevlerinin yaklaşık

çözümü için dördüncü dereceden doğruluklu kapalı metodlar verilir. Bu metodlar iki

aşamaya bağlı olarak oluşturulur. Yöntemlerin ilk aşamasında, çözüm, Buranay ve

Arshad tarafından 2020’de verilen ve uzay değisterlerine göre dördüncü, zaman

değisterlerine göre birinci mertebeden doğruluk ile altıgen ızgaralarda kesin çözüme

yakınsama veren şemalar kullanılarak yaklaşık olarak hesaplanır. Isı denkleminin

çözümünün zaman değişkenine göre türevinin yakınlaştırılması için benzer bir şema

tasarlanmıştır. Daha sonra, çözümün birinci mertebeden uzay türevlerini ve ikinci

mertebeden karma türevlerininin yaklaşımı için altıgen ızgaralardaki sınır değer
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problemleri ikinci aşamada oluşturulur. Ayrıca, bu kapalı şemaların karşılık gelen

kesin türevlerine düzgün yakınsaması gösterilir.

Sonunda, geliştirilen ikinci dereceden ve dördüncü dereceden doğruluklu iki aşamalı

kapalı yöntemler bazı test problemlerini çözmek için kullanılır ve yöntemlerin

uygulanabilirliğini ve doğruluğunu gösteren sayısal sonuçlar tablo ve şekiller aracılığı

ile takdim edilir.

Anahtar Kelimeler: Sonlu fark yöntemi; Altıgen ızgara; Kararlılık analizi; İki

boyutsal ısı denklemi; Türevlerin yaklaşımı.
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Chapter 1

INTRODUCTION

1.1 Motivation

Numerical methods have gained considerable attention in many applications, since the

exact solution of many problems arising in the models of chemistry, physics, biology,

engineering, and many other fields of different sciences is an uphill task. Modeling

of these problems leads us to consider a number of physical quantities, representing

physical phenomena on a modeling domain. These physical quantities then occur in

the model via functions or function derivatives of which for a considerable number

of them the Newtonian concept of a derivative satisfies the complexity of the natural

occurrences. However, “time’s evolution and changes occurring in some systems do

not happen in the same manner after a fixed or constant interval of time and do not

follow the same routine as one would expect. For instance, a huge variation can occur

in a fraction of a second, causing a major change that may affect the whole system’s

state forever” as stated in [1].

Consequently, the modeling of numerous phenomena in diverse scientific fields leads

us to consider conventional or fractional boundary value problems of time dependent

differential equations on a modeling domain such as the first and second type

boundary value problems to heat equation or diffusion equation. For example, the

Brownian motion problem in statistics is modeled by heat equation via the

Fokker–Planck equation (Adriaan Fokker [2] and Max Planck [3]). It is also named as

the Kolmogorov forward equation, who discovered the concept in 1931, see in [4]
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independently. The stock market fluctuations represent one of the several important

real-world applications of the mathematical model of Brownian motion. It was first

given in the PhD thesis titled as “The theory of speculation”, by Louis Bachelier (see

Mandelbrot and Hudson [5]) in 1900.

Another representative sample of problems that mathematical modeling brings about

the heat equation is the image processing problems appearing through many applied

sciences from archaeology to zoology. Examples of archaeological investigations

include a camcorder for 3D underwater reconstruction of archeological objects in the

study of Meline et al. [6]. Furthermore, a recent investigation by Woźniak and

Polap [7] gave soft trees with neural components as image processing technique for

archeological excavations. In zoology, a study of image reconstruction problem by

the application of magnetic resonance imaging was given by Ziegler et al. [8] and in

medical sciences as medical image reconstruction was studied in Zeng [9].

Furthermore, tomography, and medical and industrial applications are archetypal

examples where substantial mathematical manipulation is required. In some cases,

the aim is humble denoising or de-blurring. Witkin [10] and Koenderink [11] gave the

modeling of blurring of an image by the heat equation. Later, a problem of solving

the reverse heat equation known as de-blurring is studied in Rudin et al. [12] and

Guichard and Morel [13].

Additionally, in mathematical biology, Wolpert [14, 15] gave a phenomenological

concept of pattern formation and differentiation known as positional information. The

pre-programming of the cells for reacting to a chemical concentration and

differentiate accordingly, into different kinds of cells such as cartilage cells was

proposed. Afterwards, the animal coat patterns, pattern formation on growing
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domains as alligators, snakes and bacterial patterns were modeled by reaction

diffusion equations in Murray [16]. Furthermore, therein, gliomas or glioblastomas,

which are highly diffusive brain tumors, are analyzed and a mathematical model for

the spatiotemporal dynamics of tumor growth was developed. Therefore, the basic

model in dimensional form was given by the diffusion equation

∂c
∂t

= ∇J+ρc, (1.1)

where c(x, t) is the number of cells at a position x and time t, ρ represents the net rate

of growth of cells including proliferation and death (or loss), and J diffusional flux of

cells taken J = D∇c, where D(x) (distance2/time) is the diffusion coefficient of cells

in brain tissue and ∇ is the gradient operator.

In general, finding analytical solutions of these modeled problems is a difficult task or

even not possible. Approximations are needed when a mathematical model is

switched to a numerical model. Finite difference methods (FDM) are a class of

numerical techniques for solving differential equations that each derivative appearing

in the partial differential equation has to be replaced by a suitable divided difference

of function values at the chosen grid points, see Grossman et al. [17]. In the last

decade, the use of advanced computers has led to the widespread use of FDM in

modern numerical analysis. Some recent studies are: for the solution of problems

with both stiff and nonstiff components a second order diagonally-implicit-explicit

multi-stage integration method given in Zang and Sendu [18]. An implicit method for

numerical solution of singular and stiff initial value problem developed in Hasan et

al. [19]. For the epidemic models latest studies include the Crank Nicolson difference

scheme and iteration method used for finding the approximate solution of system of

nonlinear observing epidemic model in Ashyralyev and Hincal [20]. In addition, the
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article by Ahmed et al. [21], in which a novel and time efficient positivity preserving

numerical scheme was designed to find the solution of epidemic model involving a

reaction-diffusion system in three dimension. Furthermore, we specify the fractional

diffusion equation-based image denoising model constructed in Abirami et al. [22],

by using Crank–Nicholson and Grünwald Letnikov difference schemes (CN–GL).

Apart from rectangular grids, hexagonal grids have been also used to develop finite

difference methods for the approximate solution of modeled problems in many

applied sciences for more than the half century. These studies include the hexagonal

grid methods given in meteorological and oceanographic applications by Sadourney

et al. [23]–Ničkovič et al. [33], of which favorable results were obtained compared

with rectangular grids. Hexagonal grids were applied in reservoir simulation in Pruess

and Bodvarsson [34] and it was shown that for seven-point floods, hexagonal grid

method provides good numerical accuracy at substantially less computational work

than rectangular grid method (five or nine point methods). Hexagonal grids were also

used in the simulation of electrical wave phenomena propagated in two dimensional

reserved-C type cardiac tissue in Lee et al. [35]. The exhibited linear and spiral waves

were more efficient than similar computation carried out on rectangular finite volume

schemes. Furthermore, hexagonal grids were applied to approximate the solution of

the first type boundary value problem of the heat equation in Richtmyer and

Morton [36], Buranay and Arshad [37], Arshad [38], convection-diffusion equation in

Karaa [39], and Dirichlet type boundary value problem of the two dimensional

Laplace equation in Dosiyev and Celiker [40]. In the most recent investigation by

Buranay and Arshad [37] computation of the solution to the heat equation

∂u
∂t

= ω

(
∂2u
∂x2

1
+

∂2u
∂x2

2

)
+ f (x1,x2, t) , (1.2)
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on special polygons, where ω > 0 and f is the heat source by using implicit schemes

defined on hexagonal grids was given. Therein, under some smoothness assumptions

of the solution, two implicit methods were developed both on two layers with 14-point

that have convergence orders of O
(
h2 + τ2) and O

(
h4 + τ

)
accordingly to the solution

on the grids. It was assumed that the heat source and the initial and boundary functions

are given such that the exact solution belongs to the Hölder space C
6+α,3+α

2
x,t , 0<α< 1.

On the other hand, besides the solution of a modeled problem, the high accurate

computation of the derivatives of the solution are fundamental to determine some

important phenomena of the considered model problem. For example in the

electrostatics the first derivatives of electrostatic potential function define electric

field. As the calculation of ray tracing in electrostatic fields by the interpolation

methods require the specification at each mesh point not only the potential function Φ

but also the gradients
{

∂Φ

∂x1
, ∂Φ

∂x2

}
and the mixed derivative ∂2Φ

∂x1∂x2
. Further, for the

diffusion problem (1.1) the functions ∂c
∂t and J gives the rate of change of the cells and

diffusional flux of cells, respectively.

1.2 Literature Review

In the literature, exhaustive studies exist for the approximation of the derivatives of

the solution to Laplace’s equation under some smoothness conditions of the boundary

functions and compatibility conditions. For the 2D Laplace equation, research was

conducted by Volkov [41] and Dosiyev and Sadeghi [42]. For the 3D Laplace

equation on a rectangular parallelepiped, studies were given by Volkov [43] and

Dosiyev and Sadeghi [44], and recently by Dosiyev and Abdussalam [45], and

Dosiyev and Sarikaya [46].

For the heat equation, the derivative of the solution of one-dimensional heat equation
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with respect to the space variable was given in Buranay and Farinola [47]. Within this

paper, two implicit schemes were developed that converge to the corresponding exact

spatial derivative with O
(
h2 + τ

)
and O

(
h2 + τ2) accordingly.

In regard to the equilateral triangulation with a regular hexagonal support, we remark

the research by Barrera et al. [48] where a new class of quasi-interpolant was

constructed which has remarkable properties such as high order of regularity and

polynomial reproduction. Furthermore, on the Delaunay triangulation, we mention

the study by Guessab [49] that approximations of differentiable convex functions on

arbitrary convex polytopes were given. Further, optimal approximations were

computed by using efficient algorithms accessed by the set of barycentric coordinates

generated by the Delaunay triangulation.

1.3 The Achievements and Organization of the Study

The motivation of the contributions of this thesis is the need of highly accurate and

time-efficient implicit methods for the computation of the derivatives of the solution

of the heat Equation (1.2). Hence, in this study a second order accurate two-stage

implicit method for the approximation of the first order spatial derivatives of the

solution of the Dirichlet problem (1.2) on rectangle is developed. The smoothness

condition u ∈ C
7+α, 7+α

2
x,t , 0 < α < 1 in the Hölder space is assumed and uniform

convergence on the grids to the respective spatial derivatives of O
(
h2 + τ2) accuracy

for r = ωτ

h2 ≤ 3
7 is proved. Subsequently, these achievements are given in Buranay et

al. [50], [51]. Furthermore, fourth order accurate implicit methods are constructed for

the approximation of the first order spatial derivatives and second order mixed

derivatives of the solution involving the time derivative. It is assumed that

u ∈ C
9+α, 9+α

2
x,t , and uniform convergence on the grids to the respective spatial

derivatives of O
(
h4 + τ

)
of accuracy for r = ωτ

h2 ≥ 1
16 is given. The obtained
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theoretical and numerical results are presented in Buranay et al. [52], [53].

The thesis is organized as follows: Chapter 2 has 3 sections. In Section 2.1, we

consider the first type boundary value problem for the heat equation in (1.2) on a

rectangle D. Hexagonal grid structure and basic notations are given. It is assumed that

the heat source and the initial and boundary functions are given such that on

QT = D× [0,T ] the solution u(x1,x2, t) belongs to the Hölder space C
7+α, 7+α

2
x,t

(
QT
)
,

where x = (x1,x2) ∈ D, t ∈ [0,T ], and D is the closure of D. Further, at the first stage,

a two layer implicit method on hexagonal grids given in Buranay and Arshad [37]

with O
(
h2 + τ2) order of accuracy, where h and

√
3

2 h are the step sizes in space

variables x1 and x2, respectively, and τ is the step size in time is used to approximate

the solution u(x1,x2, t) . For the error function when r ≤ 3
7 , we provide a pointwise

prior estimation depending on ρ(x1,x2, t), which is the distance from the current grid

point to the surface of QT . In Section 2.2, and Section 2.3, the second stages of the

two-stage implicit method for the approximation to the first order derivatives of the

solution u(x1,x2, t) with respect to the spatial variables x1 and x2 are proposed,

respectively. It is proved that the constructed implicit schemes at the second stage are

unconditionally stable (see Theorem 1 in Lax and Richtmyer [54] which gives the

sufficient condition of stability). For r = ωτ

h2 ≤ 3
7 , priory error estimations in

maximum norm between the exact derivatives ∂u
∂x1

, ∂u
∂x2

and the obtained corresponding

approximate solutions are provided giving O
(
h2 + τ2) order of accuracy on the

hexagonal grids.

In Chapter 3, a numerical example is constructed to support the theoretical results

given in Chapter 2. We applied incomplete block preconditioning given in Buranay

and Iyikal [55] (see also Concus et al. [56], Axelsson [57]) for the conjugate gradient
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method to solve the obtained algebraic systems of linear equations for various values

of r.

In Chapter 4 we study hexagonal grid computation of the derivatives of the solution to

the heat equation by using fourth order accurate two-stage implicit methods. We

organize the chapter in sections as follows: In section 4.1 the first type boundary

value problem (Dirichlet problem) for the heat Equation (1.2) on a rectangle D is

considered. The smoothness of the solution u is taken from the Hölder space

C
9+α, 9+α

2
x,t

(
QT
)
. At the first stage, an implicit scheme on hexagonal grids given in

Buranay and Arshad [37] with O
(
h4 + τ

)
order of accuracy is used to approximate

the solution u(x1,x2, t) . An analogous implicit method is also given to approximate

the derivative of the solution with respect to time. In section 4.2 and section 4.3 at the

second stages, computation of the first order spatial derivatives and second order

mixed derivatives involving time derivatives of the solution u(x1,x2, t) of (1.2) are

developed. When r = ωτ

h2 ≥ 1
16 uniform convergence of the approximate derivative to

the exact derivatives ∂u
∂xi

, ∂u
∂t , and ∂2u

∂xi∂t , i = 1,2 with order O
(
h4 + τ

)
of accuracy on

the hexagonal grids are proved.

In Chapter 5, numerical examples are given and for the solution of the obtained

algebraic linear systems preconditioned conjugate gradient method is used. The

incomplete block matrix factorization of the M-matrices given in Buranay and

Iyikal [55] (see also Concus et al. [56], Axelsson [57]) is applied for the

preconditioning.

In Chapter 6 concluding results and remarks are given.
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Chapter 2

HEXAGONAL GRID COMPUTATION OF THE

DERIVATIVES OF THE SOLUTION TO THE HEAT

EQUATION BY USING SECOND ORDER ACCURATE

TWO-STAGE IMPLICIT METHODS

In this chapter, we consider the first type boundary value problem for the heat

equation in (1.2) on a rectangle D. Hexagonal grid structure and basic notations are

given. In the first stage of the two-stage method, a two layer implicit method on

hexagonal grids given in Buranay and Arshad [37] with O
(
h2 + τ2) order of accuracy

is used to approximate the solution u(x1,x2, t) . For the error function, we provide a

pointwise prior estimation depending on ρ(x1,x2, t), which is the distance from the

current grid point to the surface of QT . In the second stage of the two-stage implicit

method, second stages for the approximation to the first order derivatives of the

solution u(x1,x2, t) with respect to the spatial variables x1 and x2 are proposed,

respectively. It is proved that the constructed implicit schemes at the second stage are

unconditionally stable. Priory error estimations in maximum norm between the exact

derivatives ∂u
∂x1

, ∂u
∂x2

and the obtained corresponding approximate solutions are

provided giving O
(
h2 + τ2) order of accuracy on the hexagonal grids.

2.1 Dirichlet Problem of Heat Equation and Second Order Accurate

Solution by Using Hexagonal Grids

Let D = {(x1,x2) : 0 < x1 < a1,0 < x2 < a2} be a rectangle, where we require a2 to

be multiple of
√

3. Next, let γ j, j = 1,2,3,4, be the sides of D that starting from the
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side x1 = 0 are labeled in anticlockwise direction. Furthermore, the boundary of D is

shown by S =
4⋃

j=1
γ j. Next, we indicate the closure of D by D = D∪S. Let x = (x1,x2)

and QT = D× (0,T ) , with the lateral surface ST = {(x, t) : x = (x1,x2) ∈ S, t ∈ [0,T ]}

and QT is the closure of QT . Let s be a non-integer positive number, C
s, s

2
x,t
(
QT
)

be the

Banach space of functions u(x, t) that are continuous in QT together with all derivatives

of the form

∂ξ+s1+s2u
∂tξ∂xs1

1 ∂xs2
2

for 2ξ+ s1 + s2 < s (2.1)

with bounded norm

∥u∥
C

s, s
2

x,t (QT)
= ⟨u⟩(s)QT

+
[s]

∑
j=0

⟨u⟩( j)
QT

, (2.2)

where

⟨u⟩( j)
QT

= ∑
2ξ+s1+s2= j

max
QT

∣∣∣∣∣ ∂ξ+s1+s2u
∂tξ∂xs1

1 ∂xs2
2

∣∣∣∣∣ , j = 0,1,2, ..., [s] , (2.3)

⟨u⟩(s)QT
= ⟨u⟩(s)x + ⟨u⟩(

s
2)

t , (2.4)

⟨u⟩(s)x = ∑
2r+s1+s2=[s]

〈
∂ξ+s1+s2u

∂tξ∂xs1
1 ∂xs2

2

〉s−[s]

x

, (2.5)

⟨u⟩(
s
2)

t = ∑
0<s−2ξ−s1−s2<2

〈
∂ξ+s1+s2u

∂tξ∂xs1
1 ∂xs2

2

〉 s−2ξ−s1−s2
2

t

, (2.6)

further, ⟨u⟩α

x , ⟨u⟩
β

t for α,β ∈ (0,1) are defined as

⟨u⟩α

x = sup
(x,t), (x′,t)∈QT

|u(x, t)−u(x′, t)|
|x− x′|α

, (2.7)

⟨u⟩β

t = sup
(x,t), (x,t ′)∈QT

|u(x, t)−u(x, t ′)|
|t − t ′|β

. (2.8)

Volkov [58] gave the differentiability properties of solutions of boundary value

problems for the Laplace and Poisson equations on rectangle. On cylindrical domains

with smooth boundary, the differentiability properties of solutions of the parabolic

equations were given in Ladyženskaja et al. [59] and Friedman [60]. On regions with
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edges, Azzam and Kreyszig studied the smoothness of solutions of parabolic

equations for the Dirichlet problem in [61] and for the mixed boundary value problem

in [62].

Our interest is the following problem for the heat equation

BVP(u) ∂u
∂t

= ω

(
∂2u
∂x2

1
+

∂2u
∂x2

2

)
+ f (x1,x2, t) on QT ,

u(x1,x2,0) = ϕ(x1,x2) on D,

u(x1,x2, t) = φ(x1,x2, t) on ST , (2.9)

where ω is positive constant. This problem is known as first type (Dirichlet)

boundary value problem.

Let the heat source function f (x1,x2, t) and the initial and boundary functions ϕ(x1,x2)

and φ(x1,x2, t), respectively, be given such that the BVP(u) has a unique solution u

belonging to the Hölder class C
7+α, 7+α

2
x,t

(
QT
)
. Let h > 0, with h = a1/N1, where N1 is

positive integer and assign Dh a hexagonal grid on D, with step size h, defined as the

set of nodes

Dh =

{
x = (x1,x2) ∈ D : x1 =

i′− j′

2
h, x2 =

√
3(i′+ j′)

2
h,

i′ = 1,2, ...; j′ = 0±1±2, ...
}
. (2.10)

Let γh
j , j = 1, ...,4 be the set of nodes on the interior of γ j and let γ̂h

j = γ j−1 ∩ γ j be the

jth vertex of D, Sh =
4⋃

j=1
(γh

j ∪ γ̂h
j), Dh

= Dh ∪Sh. Further, let D∗lh, D∗rh denote the set

of interior nodes whose distance from the boundary is h
2 . The hexagons in this set will

be referred as irregular hexagons with left ghost point as shown in Figure 2.1 or a right

ghost point as presented in Figure 2.2, emerging through the left or right side of the
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rectangle, respectively. We also define the sets D∗h = D∗lh ∪D∗rh and D0h = Dh\D∗h.

Next, let

γτ =

{
tk = kτ, τ =

T
M′ , k = 1, ...,M′

}
, (2.11)

γτ =

{
tk = kτ, τ =

T
M′ , k = 0, ...,M′

}
, (2.12)

and the set of internal nodes and lateral surface nodes be defined by

Dh
γτ = Dh × γτ =

{
(x, t) : x = (x1,x2) ∈ Dh, t ∈ γτ

}
, (2.13)

Sh
T = Sh × γτ =

{
(x, t) : x = (x1,x2) ∈ Sh, t ∈ γτ

}
, (2.14)

accordingly. Let D∗lhγτ =D∗lh×γτ ⊂Dhγτ and D∗rhγτ =D∗rh×γτ ⊂Dhγτ and D∗hγτ =

D∗lhγτ ∪D∗rhγτ. In addition, D0hγτ = Dhγτ\D∗hγτ and Dhγτ is the closure of Dhγτ.

Figure 2.1: The illustration of an irregular hexagon with a left ghost point at time
moments t = kτ and (k+1)τ.

12



Figure 2.2: The illustration of an irregular hexagon with a right ghost point at time
moments t = kτ and (k+1)τ.

Let P0 denote the center of the hexagon and Patt (P0) denote the pattern of the hexagon

consisting the neighboring points Pi, i = 1, ...,6. In addition, uk+1
Pi

denotes the exact

solution at the point Pi and uk+1
PA

denotes the value at the boundary point for the time

moment t + τ as follows:

uk+1
P1

= u(x1 −
h
2
,x2 +

√
3

2
h, t + τ), uk+1

P3
= u(x1 −

h
2
,x2 −

√
3

2
h, t + τ),

uk+1
P2

= u(x1 −h,x2, t + τ), uk+1
P5

= u(x1 +h,x2, t + τ),

uk+1
P4

= u(x1 +
h
2
,x2 −

√
3

2
h, t + τ), uk+1

P6
= u(x1 +

h
2
,x2 +

√
3

2
h, t + τ),

uk+1
P0

= u(x1,x2, t + τ), uk+1
PA

= u(p̂,x2, t + τ), (p̂,x2, t + τ) ∈ Sh
T ,

where the value of p̂ = 0 if P0 ∈ D∗lhγτ and p̂ = a1 if P0 ∈ D∗rhγτ. Analogously, the

values uk
Pi

, i = 0, ...,6 and uk
PA

present the exact solution at the same space coordinates

of Pi, i= 0, ...,6 and PA, respectively, but at time level t = kτ. Further, uk+1
h,τ,Pi

, i= 0, ...,6,

uk+1
h,τ,PA

, and uk
h,τ,Pi

, i = 0, ...,6,uk
h,τ,PA

present the numerical solution at the same space

coordinates of Pi, i= 0, ...,6 and PA for time moments t+τ and t = kτ, respectively and

f
k+ 1

2
P0

= f (x1,x2, t+ τ

2), and f k+1
PA

= f (p̂,x2, t+τ). The illustration of the exact solution
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at the irregular hexagons with a ghost point at time levels t − τ, t and t + τ is given in

Figure 2.3.

Buranay and Arshad [37] studied the numerical solution of the BVP(u) using

hexagonal grids and gave the following difference problem (named as Difference

Problem 1). We call this problem Stage 1
(
H2nd (u)

)
of the two-stage implicit method:

Stage 1
(
H2nd (u)

)
Θh,τuk+1

h,τ = Λh,τuk
h,τ +ψ on D0h

γτ, (2.15)

Θ
∗
h,τuk+1

h,τ = Λ
∗
h,τuk

h,τ +Γ
∗
h,τφ+ψ

∗ on D∗h
γτ, (2.16)

uh,τ = ϕ(x1,x2) , t = 0 on Dh
, (2.17)

uh,τ = φ(x1,x2, t) on Sh
T , (2.18)

for k = 0, ...,M′−1, where

Figure 2.3: The illustration of the exact solution on the irregular hexagons with a ghost
point at time levels t − τ, t and t + τ.
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ψ = f
k+ 1

2
P0

, (2.19)

ψ
∗ = f

k+ 1
2

P0
− 1

6
f

k+ 1
2

PA
, (2.20)

Θh,τuk+1 =

(
1
τ
+

2ω

h2

)
uk+1

P0
− ω

3h2

6

∑
i=1

uk+1
Pi

, (2.21)

Λh,τuk =

(
1
τ
− 2ω

h2

)
uk

P0
+

ω

3h2

6

∑
i=1

uk
Pi
, (2.22)

Θ
∗
h,τuk+1 =

(
1
τ
+

7ω

3h2

)
uk+1

P0
− ω

3h2 (u(p+η,x2, t + τ)

+u(p,x2 +

√
3

2
h, t + τ)+u(p,x2 −

√
3

2
h, t + τ)

)
, (2.23)

Λ
∗
h,τuk =

(
1
τ
− 7ω

3h2

)
uk

P0
+

ω

3h2

(
u(p,x2 +

√
3

2
h, t)

+u(p,x2 −
√

3
2

h, t)+u(p+η,x2, t)

)
, (2.24)

Γ
∗
h,τφ =

2ω

9h2

(
φ(p̂,x2 +

√
3

2
h, t + τ)+φ(p̂,x2 −

√
3

2
h, t + τ)

+ φ(p̂,x2 +

√
3

2
h, t)+φ(p̂,x2 −

√
3

2
h, t)

)

+

(
1
6τ

+
8ω

9h2

)
φ(p̂,x2, t + τ)+

(
− 1

6τ
+

8ω

9h2

)
φ(p̂,x2, t), (2.25)

and 
p = h, p̂ = 0,η = h

2 if P0 ∈ D∗lhγτ,

p = a1 −h, p̂ = a1,η =−h
2 if P0 ∈ D∗rhγτ.

(2.26)

We label the interior grid points using standard ordering as L j, j = 1,2, ...,N, and then

obtain the algebraic linear system of equations in matrix form

Aũk+1 = Bũk + τqk
u, (2.27)

as given in Buranay and Arshad [37] where A,B ∈ RN×N are

A =
(

I +
ωτ

h2 C
)
, B =

(
I − ωτ

h2 C
)
, (2.28)
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and

C = D1 −
1
3

Inc ∈ RN×N , (2.29)

and ũk,qk
u ∈RN . The matrix Inc is the neighboring topology and has the nonzero entries

as unity for the points in the pattern of the hexagon center. In addition, I is the identity

matrix, D1 is a diagonal matrix with entries

d1, j j =


2 if L j ∈ D0hγτ

7
3 if L j ∈ D∗hγτ

, j = 1,2, ...,N. (2.30)

Lemma 2.1: (Buranay and Arshad [37])

a) The matrix A in (2.27) is symmetric positive definite and an M-matrix

b) Also for r = ωτ

h2 > 0 the inequalities
∥∥A−1

∥∥
2 < 1 and

∥∥A−1B
∥∥

2 < 1 are valid.

Let

ε
u
h,τ = uh,τ −u on Dhγτ. (2.31)

From (2.15)-(2.18) and (2.31), the error function εu
h,τ satisfies the following system as

given in Buranay and Nouman [37]

Θh,τε
u,k+1
h,τ = Λh,τε

u,k
h,τ +Ψ

u,k
1 on D0h

γτ, (2.32)

Θ
∗
h,τε

u,k+1
h,τ = Λ

∗
h,τε

u,k
h,τ +Ψ

u,k
2 on D∗h

γτ, (2.33)

ε
u
h,τ = 0, t = 0 on Dh

, (2.34)

ε
u
h,τ = 0 on Sh

T , (2.35)

where

Ψ
u,k
1 = Λh,τuk −Θh,τuk+1 +ψ, (2.36)

Ψ
u,k
2 = Λ

∗
h,τuk −Θ

∗
h,τuk+1 +Γ

∗
h,τφ+ψ

∗, (2.37)

and ψ,ψ∗, and φ are the given functions in (2.15), (2.16), and (2.18), respectively.
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2.1.1 Pointwise Priory Estimation For the Error Function (2.32)-(2.35)

Consider the following systems

Θh,τq̂k+1
h,τ = Λh,τq̂k

h,τ + ĝk
1 on D0h

γτ, (2.38)

Θ
∗
h,τq̂k+1

h,τ = Λ
∗
h,τq̂k

h,τ +Γ
∗
h,τq̂φ,h,τ + ĝk

2 on D∗h
γτ, (2.39)

q̂h,τ = q̂ϕ,h,τ, t = 0 on Dh
, (2.40)

q̂h,τ = q̂φ,h,τ on Sh
T , (2.41)

Θh,τqk+1
h,τ = Λh,τqk

h,τ +gk
1 on D0h

γτ, (2.42)

Θ
∗
h,τqk+1

h,τ = Λ
∗
h,τqk

h,τ +Γ
∗
h,τqφ,h,τ +gk

2 on D∗h
γτ, (2.43)

qh,τ = qϕ,h,τ, t = 0 on Dh
, (2.44)

qh,τ = qφ,h,τ on Sh
T , (2.45)

for k = 0, ...,M′−1, where ĝ1, ĝ2 and g1,g2 are given functions. For every time level

k = 0, ...,M′− 1 the algebraic systems (2.38)-(2.41) and (2.42)-(2.45) can be written

in matrix form

Aq̂k+1 = Bq̂k + τĝk, (2.46)

Aqk+1 = Bqk + τgk, (2.47)

accordingly, where A and B are the matrices given in (2.27) and q̂k,qk, ĝk,gk ∈ RN .

Furthermore, for A =
[
ai, j
]

and B =
[
bi, j
]
, i = 1,2, ...,N and j = 1,2, ...,N of real

matrices, we denote by A> 0 (A≥ 0) if ai, j > 0 (ai, j ≥ 0) for all i, j. Also A<B (A≤B)

if ai, j < bi, j (ai, j ≤ bi, j). Analogous notation is also used for the vectors. Additionally,

let w be a vector with coordinates w j, j = 1,2, ...,N, the vector with coordinates
∣∣w j
∣∣

is denoted by |w| .

Lemma 2.2: (Buranay et al. [51]) Let q̂k+1 and qk+1 be the solutions of the difference

equations (2.46) and (2.47) respectively. For r = ωτ

h2 ≤ 3
7 , if
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q0 ≥ 0 and gk ≥ 0, (2.48)∣∣q̂0∣∣≤ q0, (2.49)∣∣∣ĝk
∣∣∣≤ gk, (2.50)

for k = 0, ...,M′−1, then

qk+1 ≥ 0 and
∣∣∣q̂k+1

∣∣∣≤ qk+1 for k = 0, ...,M′−1. (2.51)

Proof. On the basis of Lemma 2.1, A−1 ≥ 0 and if r = ωτ

h2 ≤ 3
7 then B ≥ 0 and from

(2.48) we have gk ≥ 0, k = 0, ...,M′−1 and q0 ≥ 0. Then, assume that qk ≥ 0 by using

induction we have

qk+1 = A−1Bqk + τA−1gk ≥ 0, (2.52)

which gives qk+1 ≥ 0, k = 0, ...,M′−1. In addition,
∣∣q̂0
∣∣≤ q0 from (2.49). Next assume

that
∣∣q̂k
∣∣≤ qk, by using (2.50) and induction gives

q̂k+1 = A−1Bq̂k + τA−1ĝk, (2.53)∣∣∣q̂k+1
∣∣∣≤ A−1B

∣∣∣q̂k
∣∣∣+ τA−1

∣∣∣ĝk
∣∣∣

≤ A−1Bqk + τA−1gk = qk+1. (2.54)

Thus, we obtain (2.51).

Let

ST γ1 = γ1 × (0,T ] = {(0,x2, t) : (0,x2) ∈ γ1, t ∈ (0,T ]} ,

ST γ2 = γ2 × (0,T ] = {(x1,0, t) : (x1,0) ∈ γ2, t ∈ (0,T ]} ,

ST γ3 = γ3 × (0,T ] = {(a1,x2, t) : (a1,x2) ∈ γ3, t ∈ (0,T ]} ,

ST γ4 = γ4 × (0,T ] = {(x1,a2, t) : (x1,a2) ∈ γ4, t ∈ (0,T ]} ,

ST γ5 =
{
(x1,x2,0) : (x1,x2) ∈ D , t = 0

}
, (2.55)

and Sh
T γi, i = 1,2, ...,5 define the corresponding sets of grid points. Furthermore, let
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F =
5⋃

i=1
ST γi denote the surface of QT .

Theorem 2.1: (Buranay et al. [51]) For the solution of the problem (2.32)-(2.35), the

following inequality holds true∣∣∣εu
h,τ

∣∣∣≤ dΩ1 (h,τ)ρ(x1,x2, t) , on Dhγτ, (2.56)

for r = ωτ

h2 ≤ 3
7 where

Ω1 (h,τ) =
1

24
τ

2(1+6ω)β∗+
3ω

10
h2

α
∗, (2.57)

α
∗ = max

{
max
QT

∣∣∣∣∂4u
∂x4

1

∣∣∣∣ ,max
QT

∣∣∣∣∂4u
∂x4

2

∣∣∣∣ ,max
QT

∣∣∣∣ ∂4u
∂x2

1∂x2
2

∣∣∣∣
}
, (2.58)

β
∗ = max

{
max
QT

∣∣∣∣∂3u
∂t3

∣∣∣∣ ,max
QT

∣∣∣∣ ∂4u
∂x2

2∂t2

∣∣∣∣ ,max
QT

∣∣∣∣ ∂4u
∂x2

1∂t2

∣∣∣∣
}
, (2.59)

d = max
{ a1

2ω
,

a2

2ω
,1
}
, (2.60)

and u is the exact solution of BVP(u) and ρ(x1,x2, t) is the distance from the current

grid point in Dhγτ to the surface F of QT .

Proof. We consider the system

Θh,τε̂
u,k+1
h,τ = Λh,τε̂

u,k
h,τ +Ω1 (h,τ) on D0h

γτ, (2.61)

Θ
∗
h,τε̂

u,k+1
h,τ = Λ

∗
h,τε̂

u,k
h,τ +

5
6

Ω1 (h,τ) on D∗h
γτ (2.62)

ε̂
u
h,τ = ε̂

u
ϕ,h,τ = 0, t = 0 on Dh

, (2.63)

ε̂
u
h,τ = ε̂

u
φ,h,τ = 0 on Sh

T , (2.64)

and the majorant functions

ε
u
1 (x1,x2, t) =

1
2ω

Ω1 (h,τ)
(
a1x1 − x2

1
)
≥ 0 on Dhγτ, (2.65)

ε
u
2 (x1,x2, t) =

1
2ω

Ω1 (h,τ)
(
a2x2 − x2

2
)
≥ 0 on Dhγτ, (2.66)

ε
u
3 (x1,x2, t) = Ω1 (h,τ) t ≥ 0 on Dhγτ, (2.67)
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that each satisfies the next difference boundary value problem

Θh,τε
u,k+1
i,h,τ = Λh,τε

u,k
i,h,τ +Ω1 (h,τ) on D0h

γτ, (2.68)

Θ
∗
h,τε

u,k+1
i,h,τ = Λ

∗
h,τε

u,k
i,h,τ +Γ

∗
h,τε

u
i,φ,h,τ +

5
6

Ω1 (h,τ) on D∗h
γτ, (2.69)

ε
u
i,h,τ = ε

u
i,ϕ,h,τ = ε

u
i (x1,x2,0)≥ 0, t = 0 on Dh

, (2.70)

ε
u
i,h,τ = ε

u
i,φ,h,τ ≥ 0 on Sh

T , (2.71)

The difference equations (2.68) and (2.69) are established by using the following

results. First let us show that for regular grid points

Θh,τε
u,k+1
i,h,τ −Λh,τε

u,k
i,h,τ = Ω1 (h,τ) , i = 1,2,3.

Θh,τε
u,k+1
1,h,τ =

1
2ω

Ω1(h,τ)
[(

3
4τ

+
4ω

h2

)(
a1x1 − x2

1
)

+

(
1

24τ
− 2ω

3h2

)(
a1

(
x1 +

h
2

)
−
(

x1 +
h
2

)2

+a1

(
x1 −

h
2

)
−
(

x1 −
h
2

)2

+a1 (x1 −h)

− (x1 −h)2 +a1

(
x1 −

h
2

)
−
(

x1 −
h
2

)2

+a1

(
x1 +

h
2

)
+ −(x1 +

h
2
)2 +a1(x1 +h)− (x1 +h)2

)]
=

1
2ω

Ω1(h,τ)
[

a1x1

τ
−

x2
1
τ
− h2

8τ
+2ω

]
, (2.72)

and

Λh,τε
u,k
1,h,τ =

1
2ω

Ω1(h,τ)
[

3
4τ

(
a1x1 − x2

1
)
+

1
24τ

(
6a1x1 −6x2

1 −3h2)]
=

1
2ω

Ω1(h,τ)
[

a1x1

τ
−

x2
1
τ
− h2

8τ

]
. (2.73)

Using (2.72) and (2.73) gives

Θh,τε
u,k+1
1,h,τ −Λh,τε

u,k
1,h,τ = Ω1(h,τ).
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Θh,τε
u,k+1
2,h,τ =

1
2ω

Ω1(h,τ)
[(

3
4τ

+
4ω

h2

)(
a2x2 − x2

2
)

+

(
1

24τ
− 2ω

3h2

)2a2

x2 +

√
3h
2

−

(
x2 +

√
3h
2

)2


+ 2

a2

(
x2 −

√
3h
2

)
−

(
x2 −

√
3h
2

)2
+2

(
a2x2 − x2

2
)

=
1

2ω
Ω1(h,τ)

[
a2x2

τ
−

x2
2
τ
− h2

8τ
+2ω

]
, (2.74)

Λh,τε
u,k
2,h,τ =

1
2ω

Ω1(h,τ)
[

3
4τ

(a2x2 − x2
2)+

1
24τ

(
6a2x2 −6x2

2 −3h2)]
=

1
2ω

Ω1(h,τ)
[

a2x2

τ
−

x2
2
τ
− h2

8τ

]
. (2.75)

Using (2.74) and (2.75) it follows that

Θh,τε
u,k+1
2,h,τ −Λh,τε

u,k
2,h,τ = Ω1(h,τ).

Θh,τε
u,k+1
3,h,τ = Ω1(h,τ)

[(
3
4τ

+
4ω

h2

)
(t + τ)+

(
1

24τ
− 2ω

3h2

)
(6(t + τ))

]
= Ω1(h,τ)

[ t
τ
+1
]
, (2.76)

Λh,τε
u,k
3,h,τ = Ω1(h,τ)

[(
3
4τ

t +
1

24τ
6t
)]

= Ω1(h,τ)

[
t
τ

]
. (2.77)

From (2.76) and (2.77) we get

Θh,τε
u,k+1
3,h,τ −Λh,τε

u,k
3,h,τ = Ω1(h,τ).

Next let us show that for irregular grid points with a ghost point, the difference equation

(2.69) is valid. We give the details only for irregular hexagons with a left ghost point

as follows since for the case of a right ghost point it is analogous.
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Θ
∗
h,τε

u,k+1
1,h,τ =

1
2ω

Ω1(h,τ)
[(

17
24τ

+
14ω

3h2

)(
a1x1 − x2

1
)
+

(
1

24τ
− 2ω

3h2

)
×
(

a1h−h2 +a1h−h2 +
3
2

a1h− 9
4

h2
)]

=
1

2ω
Ω1(h,τ)

[
17a1x1

24τ
−

17x2
1

24τ
+

14ωa1x1

3h2 −
14ωx2

1
3h2 +

7a1h
48τ

− 17h2

96τ
− 7ωa1h

3h2 +
17ω

6

]
=

1
2ω

Ω1(h,τ)
[

17a1x1

24τ
−

17x2
1

24τ
+

7a1h
48τ

− 17h2

96τ

]
. (2.78)

Γ
∗
h,τε

u
1,φ,h,τ = 0, (2.79)

Θ
∗
h,τε

u,k+1
1,h,τ −Λ

∗
h,τε

u,k
1,h,τ =

1
2ω

Ω1(h,τ)
[

17a1x1

24τ
−

17x2
1

24τ
+

14ωa1x1

3h2

−
14ωx2

1
3h2 +

7a1h
48τ

− 17h2

96τ
− 7ωa1h

3h2 +
17ω

6
− 17a1x1

24τ

+
17x2

1
24τ

− 7a1h
48τ

+
17h2

96τ

]
=

1
2ω

Ω1(h,τ)
[

14ωa1x1

3h2 −
14ωx2

1
3h2 − 7ωa1

h
− 17ω

6

]
(2.80)

from (2.78)-(2.80) and evaluating at x1 =
h
2 gives

Θ
∗
h,τε

u,k+1
1,h,τ −Λ

∗
h,τε

u,k
1,h,τ −Γ

∗
h,τε

u
1,φ,h,τ =

1
2ω

Ω1(h,τ)
[

14ωa1

6h
− 14ωh2

12h2

−7ωa1

3h
+

17ω

6

]
=

5
6

Ω1(h,τ).

Also,

Θ
∗
h,τε

u,k+1
2,h,τ =

1
2ω

Ω1(h,τ)

( 17
24τ

+
14ω

3h2

)a2

(
x2 +

√
3h
2

)
−

(
x2 +

√
3h
2

)2

+ a2

(
x2 −

√
3h
2

)
−

(
x2 −

√
3h
2

)2

+a2x2 − x2
2


=

1
2ω

Ω1(h,τ)
[

20a2x2

24τ
−

20x2
2

24τ
+

8ωa2x2

3h2 −
8ωx2

2
3h2 − h2

16τ
+ω

]
(2.81)

22



Λ
∗
h,τε

u,k
2,h,τ =

1
2ω

Ω1(h,τ)
[

17
24τ

(a2x2 − x2
2)+

1
24τ

−
(

3a2x2 −3x2
2 −

3
2

h2
)]

=
1

2ω
Ω1(h,τ)

[
20a2x2

24τ
−

20x2
2

24τ
− h2

16τ

]
(2.82)

Γ
∗
h,τε

u
2,φ,h,τ =

1
2ω

Ω1(h,τ)

[(
− 1

36τ
+

4ω

9h2

)(
a2

(
x2 +

√
3h
2

)

−

(
x2 +

√
3h
2

)2

+a2

(
x2 −

√
3h
2

)
−

(
x2 −

√
3h
2

)2

+a2x2 − x2
2


+

(
1

18τ
+

16ω

9h2

)(
a2x2 − x2

2
)
+

1
36τ

a2

(
x2 +

√
3h
2

)
−

(
x2 +

√
3h
2

)2

+ a2

(
x2 −

√
3h
2

)
−

(
x2 −

√
3h
2

)2

+a2x2 − x2
2


− 1

18τ

(
a2x2 − x2

2
)]

=
1

2ω
Ω1(h,τ)

[(
− 1

36τ
+

4ω

9h2

)(
2a2x2 −2x2

2 −
3
2

h2
)

+

(
1

18τ
+

16ω

9h2

)(
a2x2 − x2

2
)
+

1
36τ

(
2a2x2 −2x2

2 −
3
2

h2
)

− 1
18τ

(
a2x2 − x2

2
)]

=
1

2ω
Ω1(h,τ)

[
8ωa2x2

3h2 −
8ωx2

2
3h2 − 2

3
ω

]
. (2.83)

From (2.81)-(2.83) we obtain

Θ
∗
h,τε

k+1
2,h,τ −Λ

∗
h,τε

k
2,h,τ −Γ

∗
h,τε

u
2,φ,h,τ =

1
2ω

Ω1(h,τ)
[

20a2x2

24τ

−
20x2

2
24τ

+
8ωa2x2

3h2 −
8ωx2

2
3h2 +− h2

16τ
+ω− 20a2x2

24τ

+
20x2

2
24τ

+
h2

16τ
− 8ωa2x2

3h2 +
8ωx2

2
3h2 +

2
3

ω

]
=

5
6

Ω1(h,τ).

Further,

Θ
∗
h,τε

k+1
3,h,τ = Ω1(h,τ)(t + τ)

[(
17
24τ

+
14ω

3h2

)
+3
(

1
24τ

− 2ω

3h2

)]
= Ω1(h,τ)(t + τ)

[
20
24τ

+
8ω

3h2

]
(2.84)
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Λ
∗
h,τε

k
3,h,τ = Ω1(h,τ)t

[
17
24τ

+
3

24τ

]
= Ω1(h,τ)t

[
20
24τ

]
(2.85)

Γ
∗
h,τε

u
3,φ,h,τ = Ω1(h,τ)(t + τ)

[
2
(
− 1

36τ
+

4ω

9h2

)
+3
(

1
18τ

+
16ω

9h2

)]
+Ω1(h,τ)t

[
2

36τ
− 1

18τ

]
= Ω1(h,τ)(t + τ)

[
8ω

3h2

]
. (2.86)

From (2.84)-(2.86) results

Θ
∗
h,τε

k+1
3,h,τ −Λ

∗
h,τε

k
3,h,τ −Γ

∗
h,τε

u
3,φ,h,τ = Ω1(h,τ)(t + τ)

[
20
24τ

+
8ω

3h2

]
−Ω1(h,τ)t

[
20
24τ

]
−Ω1(h,τ)(t + τ)

[
8ω

3h2

]
=

5
6

Ω1(h,τ)

Consequently, for fixed k ≥ 0 the difference problems (2.61)-(2.64) and (2.68)-(2.71)

may be given in matrix form

Aε̂
u,k+1 = Bε̂

u,k + τêu,k, (2.87)

Aε
u,k+1
i = Bε

u,k
i + τeu,k

i , i = 1,2,3, (2.88)

respectively, and A and B are the matrices given in (2.27). Also, eu,k
i ,εu,k

i , i = 1,2,3

and ε̂u,k, êu,k ∈ RN . From(2.57) and (2.61)-(2.71) results ε
u,0
i ≥ 0 ,

∣∣̂εu,0
∣∣ ≤ ε

u,0
i , and

eu,k
i ≥ 0, and

∣∣êu,k
∣∣≤ eu,k

i , i = 1,2,3, for k = 0, ...,M′−1. On the basis of Lemma 2.2,

we get
∣∣̂εu,k+1

∣∣ ≤ ε
u,k+1
i ,k = 0, ...,M′− 1 and using that Ω1 (h,τ) ≥

∣∣∣Ψu,k
1

∣∣∣ on D0hγτ,

and 5
6Ω1 (h,τ)≥

∣∣∣Ψu,k
2

∣∣∣ on D∗hγτ gives∣∣∣εu
h,τ

∣∣∣≤ min
i=1,2,3

ε
u
i (x1,x2, t)≤ dΩ1 (h,τ)ρ(x1,x2, t) on Dhγτ (2.89)
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2.2 Difference Problem Approximating ∂u
∂x1

on Hexagonal Grids with

O(h2 + τ2) Order of Accuracy

We use the notation ∂x1 f
k+ 1

2
P0

= ∂ f
∂x1

∣∣∣
(x1,x2,t+ τ

2 )
and ∂x1 f

k+ 1
2

PA
= ∂ f

∂x1

∣∣∣
(p̂,x2,t+ τ

2 )
. Let the

boundary value problem BVP(u) be given. We denote pi =
∂u
∂x1

on ST γi, i = 1,2, ...,5

and establish the following BVP for v = ∂u
∂x1

.

Boundary Value Problem for v = ∂u
∂x1

(
BVP

(
∂u
∂x1

))
Lv =

∂ f (x1,x2, t)
∂x1

on QT ,

v(x1,x2, t) = pi on ST γi, i = 1,2, ...,5, (2.90)

where, f (x1,x2, t) is the given heat source function in (2.9) and

L ≡ ∂

∂t
−ω

(
∂2

∂x2
1
+

∂2

∂x2
2

)
. (2.91)

From u ∈C
7+α, 7+α

2
x,t

(
QT
)
, we assume that the solution v ∈C

6+α,3+α

2
x,t

(
QT
)
.

We take

p2nd

1h =



1
2h

(
−3u(0,x2, t)+4uh,τ (h,x2, t)

− uh,τ (2h,x2, t)
)

if P0 ∈ D0hγτ

1
3h

(
−8u(0,x2, t)+9uh,τ

(h
2 ,x2, t

)
−uh,τ

(3h
2 ,x2, t

))
if P0 ∈ D∗lhγτ

on Sh
T γ1, (2.92)

p2nd

3h =



1
2h

(
3u(a1,x2, t)−4uh,τ (a1 −h,x2, t)

+uh,τ (a1 −2h,x2, t)
)

if P0 ∈ D0hγτ

1
3h

(
8u(a1,x2, t)−9uh,τ

(
a1 − h

2 ,x2, t
)

+uh,τ
(
a1 − 3h

2 ,x2, t
))

if P0 ∈ D∗rhγτ

on Sh
T γ3, (2.93)

pih =
∂φ(x1,x2, t)

∂x1
on Sh

T γi, i = 2,4, (2.94)

p5h =
∂ϕ(x1,x2)

∂x1
on Sh

T γ5. (2.95)
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Here, ϕ(x1,x2), φ(x1,x2, t) are as given in BVP(u), presented in the Equation (2.9) and

the solution of the difference problem in Stage 1
(
H2nd(u)

)
is uh,τ. Further, we give the

derivation of the forward and backward schemes in (2.92) and (2.93) for the irregular

grid points that have a center h/2 units away from the boundary x1 = 0 and x1 = a1.

For the forward scheme of the irregular hexagons we define the grid points as follows:

A : u(x1,x2, t)

B : u(x1 +
h
2 ,x2, t)

C : u(x1 +
3
2h,x2, t)

B : u
(

x1 +
h
2
,x2, t

)
= u(x1,x2, t)+

h
2

∂x1u(x1,x2, t)

+
1
8

h2
∂

2
x1

u(x1,x2, t)

+
1

48
h3

∂
3
x1

u(x1 +α1h,x2, t) . (2.96)

C : u
(

x1 +
3h
2
,x2, t

)
= u(x1,x2, t)+

3h
2

∂x1u(x1,x2, t)

+
9
8

h2
∂

2
x1

u(x1,x2, t)

+
9

16
h3

∂
3
x1

u(x1 +α2h,x2, t) , (2.97)

where, 0 < α1 <
1
2 and 0 < α2 <

3
2 . Multiplying the Equations (2.96) and (2.97) by 3

and −1
3 respectively we get

3u
(

x1 +
h
2
,x2, t

)
= 3u(x1,x2, t)+

3h
2

∂x1u(x1,x2, t)

+
3
8

h2
∂

2
x1

u(x1,x2, t)

+
1

16
h3

∂
3
x1

u(x1 +α2h,x2, t) (2.98)

−1
3

u
(

x1 +
3h
2
,x2, t

)
=−1

3
u(x1,x2, t)−

h
2

∂x1u(x1,x2, t)

− 3
8

h2
∂

2
x1

u(x1,x2, t) (2.99)

− 3
16

h3
∂

3
x1

u(x1 +α1h,x2, t)

Adding (2.98) and (2.99) gives

26



− 1
3

u
(

x1 +
3h
2
,x2, t

)
+3u

(
x1 +

h
2
,x2, t

)
=

8
3

u(x1,x2, t)+h∂x1u(x1,x2, t)

− 1
8

h3
∂

3
x1

u(x̃1,x2, t) , x1 < x̃1 < x1 +
3h
2

(2.100)

1
3h

(
−8u(x1,x2, t)+9u

(
x1 +

h
2
,x2, t

)
−u
(

x1 +
3h
2
,x2, t

))
= ∂x1u(x1,x2, t)+O

(
h2) . (2.101)

For the backward scheme for the irregular hexagons we take the grid point as follows:

A : u(x1,x2, t)

B : u(x1 − h
2 ,x2, t)

C : u(x1 − 3
2h,x2, t)

C : u
(

x1 −
3h
2
,x2, t

)
= u(x1,x2, t)−

3h
2

∂x1u(x1,x2, t)

+
9
8

h2
∂

2
x1

u(x1,x2, t)

− 9
16

h3
∂

3
x1

u(x1 +β1h,x2, t) , (2.102)

B : u
(

x1 −
h
2
,x2, t

)
= u(x1,x2, t)−

h
2

∂x1u(x1,x2, t)

+
1
8

h2
∂

2
x1

u(x1,x2, t)

− 1
48

h3
∂

3
x1

u(x1 +β2h,x2, t) , (2.103)

where, −3
2 < β1 < 0 and −1

2 < β2 < 0. Multiplying the Equations (2.102) and (2.103)

by −1
3 and 3 respectively we get

−1
3

u
(

x1 −
3h
2
,x2, t

)
=−1

3
u(x1,x2, t)+

h
2

∂x1u(x1,x2, t)

− 3
8

h2
∂

2
x1

u(x1,x2, t)

+
3

16
h3

∂
3
x1

u(x1 +β1h,x2, t) (2.104)
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3u
(

x1 −
h
2
,x2, t

)
= 3u(x1,x2, t)−

3h
2

∂x1u(x1,x2, t)

+
3
8

h2
∂

2
x1

u(x1,x2, t)

− 1
16

h3
∂

3
x1

u(x1 +β2h,x2, t) (2.105)

Adding (2.104) and (2.105) yields

− 1
3

u
(

x1 −
3h
2
,x2, t

)
+3u

(
x1 −

h
2
,x2, t

)
=

8
3

u(x1,x2, t)−h∂x1u(x1,x2, t)

+
1
8

h3
∂

3
x1

u(x1,x2, t) , x1 −
3h
2

< x1 < x1 (2.106)

1
3h

(
8u(x1,x2, t)−9u

(
x1 −

h
2
,x2, t

)
+u
(

x1 −
3h
2
,x2, t

))
= ∂x1u(x1,x2, t)+O

(
h2) .

Lemma 2.3: (Buranay et al. [51]) The following inequality∣∣∣p2nd

ih
(
uh,τ
)
− p2nd

ih (u)
∣∣∣≤ 3dΩ1 (h,τ) , i = 1,3. (2.107)

holds true for r = ωτ

h2 ≤ 3
7 , where u is the solution of the boundary value problem

BVP(u) and uh,τ is the solution of Stage 1
(
H2nd (u)

)
and Ω1 (h,τ) is as given in (2.57),

d is as presented in (2.60).

Proof. From Theorem 2.1, and the equations (2.56), (2.92), and (2.93) when P0 ∈

D0hγτ, we have∣∣∣p2nd

ih
(
uh,τ
)
− p2nd

ih (u)
∣∣∣≤ 1

2h
(4hdΩ1 (h,τ)+2hdΩ1 (h,τ))

≤ 3dΩ1 (h,τ) , i = 1,3 if P0 ∈ D0h
γτ, (2.108)

where Ω1 is as in (2.57) and d is the positive constant defined in (2.60). When P0 ∈

D∗hγτ yields
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∣∣∣p2nd

ih
(
uh,τ
)
− p2nd

ih (u)
∣∣∣≤ 1

3h

(
9

h
2

dΩ1 (h,τ)+
3h
2

dΩ1 (h,τ)
)

≤ 2dΩ1 (h,τ) , i = 1,3 if P0 ∈ D∗h
γτ. (2.109)

Thus, we obtain (2.107).

Lemma 2.4: (Buranay et al. [51]) For r = ωτ

h2 ≤ 3
7 the following inequality

max
Sh

T γ1∪Sh
T γ3

∣∣∣p2nd

ih
(
uh,τ
)
− pi

∣∣∣≤ M1h2 +3dΩ1 (h,τ) , i = 1,3, (2.110)

holds true where uh,τ is the solution of the difference problem in Stage 1
(
H2nd) and

M1 =
1
3max

QT

∣∣∣∂3u
∂x3

1

∣∣∣ and Ω1 and d are as given in (2.57) and (2.60), respectively.

Proof. Since u ∈ C
7+α, 7+α

2
x,t

(
QT
)
, at the end points

(
0,η

√
3

2 h,kτ

)
∈ Sh

T γ1 and(
a1,η

√
3

2 h,kτ

)
∈ Sh

T γ3 of each line segment[(
x1,η

√
3

2
h,kτ

)
: 0 ≤ x1 ≤ a1,0 ≤ x2 = η

√
3

2
h ≤ a2, 0 ≤ t = kτ ≤ T

]
,

difference formulae (2.92) and (2.93) give the second order approximation of ∂u
∂x1

,

respectively. From the truncation error formula (see Burden and Faires [63]) it

follows that

max
Sh

T γ1∪Sh
T γ3

∣∣∣p2nd

ih (u)− pi

∣∣∣≤ h2

3
max
QT

∣∣∣∣∂3u
∂x3

1

∣∣∣∣ , i = 1,3 if P0 ∈ D0h
γτ. (2.111)

Analogously,

max
Sh

T γ1∪Sh
T γ3

∣∣∣p2nd

ih (u)− pi

∣∣∣≤ h2

8
max
QT

∣∣∣∣∂3u
∂x3

1

∣∣∣∣ , i = 1,3 if P0 ∈ D∗h
γτ. (2.112)

Using Lemma 2.3 and the estimations (2.111) and (2.112) follows (2.110).

The numerical solution of BVP
(

∂u
∂x1

)
using hexagonal grids is developed as:

Stage 2
(

H2nd
(

∂u
∂x1

))
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Θh,τvk+1
h,τ = Λh,τvk

h,τ +Dx1ψ on D0h
γτ, (2.113)

Θ
∗
h,τvk+1

h,τ = Λ
∗
h,τvk

h,τ +Γ
∗
h,τ p2nd

1h +Dx1ψ
∗ on D∗lh

γτ, (2.114)

Θ
∗
h,τvk+1

h,τ = Λ
∗
h,τvk

h,τ +Γ
∗
h,τ p2nd

3h +Dx1ψ
∗ on D∗rh

γτ, (2.115)

vh,τ = p2nd

ih
(
uh,τ
)

on Sh
T γi, i = 1,3, (2.116)

vh,τ = pih on Sh
T γi, i = 2,4,5, (2.117)

where p2nd

1h , p2nd

3h , and pih , i = 2,4,5 are defined by (2.92)-(2.95) and the operators

Θh,τ, Λh,τ,Θ
∗
h,τ,Λ

∗
h,τ and Γ∗

h,τ are the operators given in (2.21)-(2.25), respectively.

Additionally,

Dx1ψ = ∂x1 f
k+ 1

2
P0

, (2.118)

Dx1ψ
∗ = ∂x1 f

k+ 1
2

P0
− 1

6
∂x1 f

k+ 1
2

PA
, (2.119)

Let

ε
v
h,τ = vh,τ − v on Dhγτ, (2.120)

where v = ∂u
∂x1

. From (2.113)-(2.117) and (2.120), we have

Θh,τε
v,k+1
h,τ = Λh,τε

v,k
h,τ +Ψ

v,k
1 on D0h

γτ, (2.121)

Θ
∗
h,τε

v,k+1
h,τ = Λ

∗
h,τε

v,k
h,τ +Γ

∗
h,τε

∗v
h,τ +Ψ

v,k
2 on D∗h

γτ, (2.122)

ε
v
h,τ = 0 on Sh

T γi, i = 2,4,5, (2.123)

ε
v
h,τ = ε

∗v
h,τ = p2nd

ih
(
uh,τ
)
− pi on Sh

T γi, i = 1,3, (2.124)

where

Ψ
v,k
1 = Λh,τvk −Θh,τvk+1 +Dx1ψ, (2.125)

Ψ
v,k
2 = Λ

∗
h,τvk −Θ

∗
h,τvk+1 +Γ

∗
h,τ pi +Dx1ψ

∗, i = 1,3. (2.126)
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Let

θ1 = max

{
max
QT

∣∣∣∣∂4v
∂x4

1

∣∣∣∣ ,max
QT

∣∣∣∣∂4v
∂x4

2

∣∣∣∣ ,max
QT

∣∣∣∣ ∂4v
∂x2

1∂x2
2

∣∣∣∣
}
,

σ1 = max

{
max
QT

∣∣∣∣∂3v
∂t3

∣∣∣∣ ,max
QT

∣∣∣∣ ∂4v
∂x2

2∂t2

∣∣∣∣ ,max
QT

∣∣∣∣ ∂4v
∂x2

1∂t2

∣∣∣∣
}
,

and

θ = max
{

θ1,
40M1

3
+12dωα

∗
}
, (2.127)

σ = max{σ1,3dβ
∗} , (2.128)

where α∗,β∗ are as given in (2.58), (2.59), respectively, and M1 is as given in (2.110).

Theorem 2.2: (Buranay et al. [51]) In Stage 2( ∂u
∂x1

) the given implicit scheme is

unconditionally stable.

Proof. Writing the algebraic linear system of equations (2.113)-(2.117) in matrix form

Aṽk+1 = Bṽk + τqk
v, (2.129)

k = 0,1, ...,M′−1, where A and B are the matrices given in (2.27) and ṽk,qk
v ∈ RN and

from assumption that v which is exact solution of the BVP
(

∂u
∂x1

)
belongs to

C
6+α,3+α

2
x,t

(
QT
)

and by using Lemma 2.1 and induction we get∥∥∥ṽk+1
∥∥∥

2
≤
∥∥A−1B

∥∥
2

∥∥∥ṽk
∥∥∥

2
+ τ
∥∥A−1∥∥

2

∥∥∥qk
v

∥∥∥
2

≤
∥∥ṽ0∥∥

2 + τ

k

∑
k′=0

∥∥∥qk′
v

∥∥∥
2
. (2.130)

Thus, Lax and Richtmyer sufficient condition for stability given in Theorem 1 of [54]

is satisfied and the scheme is unconditionally stable.

Theorem 2.3: (Buranay et al. [51]) The solution vh,τ of the finite difference problem

given in Stage 2
(

H2nd
(

∂u
∂x1

))
satisfies

max
Dhγτ

∣∣vh,τ − v
∣∣≤ σ

12
(1+6ω)(T +1)τ

2 +
3θ

40
h2 (1+a2

1 +a2
2
)
, (2.131)
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for r = ωτ

h2 ≤ 3
7 where θ,σ are as given in (2.127), (2.128), respectively, and v = ∂u

∂x1
is

the exact solution of BVP
(

∂u
∂x1

)
.

Proof. Let

Θh,τε̂
v,k+1
h,τ = Λh,τε̂

v,k
h,τ +Ω2 (x1) on D0h

γτ, (2.132)

Θ
∗
h,τε̂

v,k+1
h,τ = Λ

∗
h,τε̂

v,k
h,τ +Γ

∗
h,τε̂

v∗
h,τ +Ω2 (x1)−

1
6

Ω2 (p̂) on D∗h
γτ, (2.133)

ε̂
v
h,τ = 0 on Sh

T γi, i = 2,4,5, (2.134)

ε̂
v
h,τ = ε̂

v∗
h,τ = p2nd

ih
(
uh,τ
)
− pi on Sh

T γi, i = 1,3, (2.135)

where

Ω2 (x1) =
σ

24a1
(1+6ω)τ

2 (2a1 − x1)+
3θω

10
h2,

≥ σ

24
(1+6ω)τ

2 +
3θω

10
h2 ≥

∣∣∣Ψv,k
1

∣∣∣ , (2.136)

Ω2 (x1)−
1
6

Ω2 (p̂) =


(1+6ω)τ2

(
5

72 −
h

48a1

)
+ θω

4 h2 if P0 ∈ D∗lhγτ

(1+6ω)τ2
(

5
144 +

h
48a1

)
+ θω

4 h2 if P0 ∈ D∗rhγτ

≥
∣∣∣Ψv,k

2

∣∣∣ , (2.137)

and x1 =
h
2 and p̂ = 0 if P0 ∈ D∗lhγτ and x1 = a1 − h

2 , p̂ = a1 if P0 ∈ D∗rhγτ. We take

the majorant function

ε
v (x1,x2, t) = ε

v
1 (x1,x2, t)+ ε

v
2 (x1,x2, t) , (2.138)

where

ε
v
1 (x1,x2, t) =

στ2

24a1
(1+6ω)(t +1)(2a1 − x1)≥ 0 on Dhγτ, (2.139)

ε
v
2 (x1,x2, t) =

3θ

40
h2 (1+a2

1 +a2
2 − x2

1 − x2
2
)
≥ 0 on Dhγτ, (2.140)

The function in (2.138) satisfies the difference problem
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Θh,τε
v,k+1
h,τ = Λh,τε

v,k
h,τ +Ω2 (x1) on D0h

γτ, (2.141)

Θ
∗
h,τε

v,k+1
h,τ = Λ

∗
h,τε

v,k
h,τ +Γ

∗
h,τε

v∗
h,τ +Ω2 (x1)−

1
6

Ω2 (p̂) on D∗h
γτ, (2.142)

ε
v
h,τ = ε

v∗
h,τ = ε

v
1 (0,x2, t)+ ε

v
2 (0,x2, t) on Sh

T γ1, (2.143)

ε
v
h,τ = ε

v
1 (x1,0, t)+ ε

v
2 (x1,0, t) on Sh

T γ2, (2.144)

ε
v
h,τ = ε

v∗
h,τ = ε

v
1 (a1,x2, t)+ ε

v
2 (a1,x2, t) on Sh

T γ3, (2.145)

ε
v
h,τ = ε

v
1 (x1,a2, t)+ ε

v
2 (x1,a2, t) on Sh

T γ4, (2.146)

ε
v
h,τ = ε

v
1 (x1,x2,0)+ ε

v
2 (x1,x2,0) on Sh

T γ5. (2.147)

In accordance, the following are used to establish the equations (2.141) and (2.142).

Θh,τε
v,k+1
1,h,τ =

σ

24a1
(1+6ω)(t + τ+1)τ

2

[(
1
τ
+

2ω

h2

)
(2a1 − x1)

− ω

3h2

(
2a1 −

(
x1 +

h
2

)
+2a1 −

(
x1 −

h
2

)
+2a1 − (x1 −h)

+2a1 −
(

x1 −
h
2

)
+2a1 −

(
x1 +

h
2

)
+2a1 − (x1 +h)

)]

=
σ

24a1
(1+6ω)(t + τ+1)τ

2
[(

1
τ
+

2ω

h2

)
(2a1 − x1)

]
, (2.148)

Θh,τε
v,k+1
2,h,τ =

3θh2

40

[
(
1
τ
+

2ω

h2 )(a
2
1 +a2

2 +1− x2
1 − x2

2)−
ω

3h2

(
a2

1 +a2
2 +1

− (x1 +
h
2
)2 − (x2 −

√
3h
2

)2 +a2
1 +a2

2 +1− (x1 −
h
2
)2

− (x2 +

√
3h
2

)2 +a2
1 +a2

2 +1− (x1 −h)2 − x2
2 +a2

1 +a2
2 +1

− (x1 −
h
2
)2 − (x2 −

√
3h
2

)2 +a2
1 +a2

2 +1− (x1 +
h
2
)2

− (x2 −
√

3h
2

)2 +a2
1 +a2

2 +1− (x1 +h)2 − x2
2

)]

=
3θh2

40

[
1
τ
(a2

1 +a2
2 +1− x2

1 − x2
2)+2ω

]
. (2.149)

Using (2.148) and (2.149) gives,
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Θh,τε
v,k+1
h,τ = Θh,τε

v,k+1
1,h,τ +Θh,τε

v,k+1
2,h,τ

=
σ

24a1
(1+6ω)(t + τ+1)τ

2
[(

1
τ
− 2ω

h2

)
(2a1 − x1)

]
+

3θh2

40

[
1
τ

(
a2

1 +a2
2 +1− x2

1 − x2
2
)
+2ω

]
, (2.150)

Λh,τε
v,k
1,h,τ =

σ

24a1
(1+6ω)(t +1)τ

2
[(

1
τ
− 2ω

h2

)
(2a1 − x1)−

ω

3h2 (12a1 −6x1)

]
=

σ

24a1
(1+6ω)(t +1)τ

2
[

1
τ
(2a1 − x1)

]
, (2.151)

Λh,τε
v,k
2,h,τ =

3θh2

40

[(
1
τ
+

2ω

h2

)(
a2

1 +a2
2 +1− x2

1 − x2
2
)

+
ω

3h2

(
6a2

1 +6a2
2 +6−6x2

1 −6x2
2 −6h2

)]

=
3θh2

40

[
1
τ

(
a2

1 +a2
2 +1− x2

1 − x2
2
)
−2ω

]
. (2.152)

Adding (2.151) and (2.152) yields

Λh,τε
v,k
h,τ = Λh,τε

v,k
1,h,τ +Λh,τε

v,k
2,h,τ

=
σ

24a1
(1+6ω)(t +1)τ

2
[

1
τ
(2a1 − x1)

]

+
3θωh2

40

[
1
τ

(
a2

1 +a2
2 +1− x2

1 − x2
2
)
−2ω

]
. (2.153)

Now using (2.150) and (2.153) it follows that

Θh,τε
v,k+1
h,τ −Λh,τε

v,k
h,τ = Ω2 (x1)

=
σ

24a1
(1+6ω)(t +1)τ

2 (2a1 − x1)+
3θω2h2

10
.

Subsequently we show that equation (2.142) hold true as follows:

Θ
∗
h,τε

v,k+1
1,h,τ =

σ

24a1
(1+6ω)(t + τ+1)τ

2

[
1
τ
(2a1 − x1)

+
8ωa1

3h2 − 4ωx1

3h2 +
2ω

3h

]
(2.154)
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Θ
∗
h,τε

v,k+1
2,h,τ =

3θh2

40

[
1
τ

(
a2

1 +a2
2 +1− x2

1 − x2
2
)
+

4ωa2
1

3h2 +
4ωa2

2
3h2

+
4ω

3h2 −
4ωx2

1
3h2 −

4ωx2
2

3h2 +
4ωx1

3h
+ω

]
(2.155)

Adding (2.154) and (2.155) we get

Θ
∗
h,τε

v,k+1
h,τ = Θ

∗
h,τε

v,k+1
1,h,τ +Θ

∗
h,τε

v,k+1
2,h,τ

=
σ

24a1
(1+6ω)(t + τ+1)τ

2

[
1
τ
(2a1 − x1)

+
8ωa1

3h2 − 4ωx1

3h2 +
2ω

3h

]

+
3θh2

40

[
1
τ

(
a2

1 +a2
2 +1− x2

1 − x2
2
)
+

4ωa2
1

3h2 +
4ωa2

2
3h2

+
4ω

3h2 −
4ωx2

1
3h2 −

4ωx2
2

3h2 +
4ωx1

3h
+ω

]
(2.156)

Λ
∗
h,τε

v,k
1,h,τ =

σ

24a1
(1+6ω)(t +1)τ

2

[
1
τ
(2a1 − x1)−

8ωa1

3h2

+
4ωx1

3h2 − 2ω

3h

]
(2.157)

Λ
∗
h,τε

v,k
2,h,τ =

3θh2

40

[
1
τ

(
a2

1 +a2
2 +1− x2

1 − x2
2
)
−

4ωa2
1

3h2 −
4ωa2

2
3h2

− 4ω

3h2 +
4ωx2

1
3h2 +

4ωx2
2

3h2 − 4ωx1

3h
−ω

]
. (2.158)

Adding (2.157) and (2.158) gives

Λ
∗
h,τε

v,k
h,τ =

σ

24a1
(1+6ω)(t +1)τ

2

[
1
τ
(2a1 − x1)−

8ωa1

3h2

+
4ωx1

3h2 − 2ω

3h

]
+

3θh2

40

[
1
τ

(
a2

1 +a2
2 +1− x2

1 − x2
2
)

−
4ωa2

1
3h2 −

4ωa2
2

3h2 − 4ω

3h2 +
4ωx2

1
3h2 +

4ωx2
2

3h2 − 4ωx1

3h
−ω

]
, (2.159)

Γ
∗
h,τε

v∗
1,h,τ =

σ

24a1
(1+6ω)(t +1)τ

2
[

16ωa1

3h2

]
+

σ

24a1
(1+6ω)τ

3
[

8ωa1

3h2 +
2a1

6τ

]
, (2.160)
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Γ
∗
h,τε

v∗
2,h,τ =

3θh2

40

[
8ω

3h2 +
8ωa1

3h2 +
8ωa2

3h2 −
8ωx2

2
3h2 − 2ω

3

]
. (2.161)

From (2.160) and (2.161) we get:

Γ
∗
h,τε

v∗
h,τ =

σ

24a1
(1+6ω)(t +1)τ

2
[

16ωa1

3h2

]
+

σ

24a1
(1+6ω)τ

3
[

8ωa1

3h2 +
2a1

6τ

]
,

+
3θh2

40

[
8ω

3h2 +
8ωa1

3h2 +
8ωa2

3h2 −
8ωx2

2
3h2 − 2ω

3

]
, (2.162)

By using (2.156), (2.159) and (2.162) we obtain

Θ
∗
h,τε

v,k+1
h,τ −Λ

∗
h,τε

v,k
h,τ −Γ

∗
h,τε

v∗
h,τ = Ω2 (x1)−

1
6

Ω2 (p̂) , (2.163)

where the right side of (2.163) is as given in (2.137).

The algebraic system of equations (2.132)-(2.135) and (2.141)-(2.147) can be written

in matrix form as
Aε̂

v,k+1 = Bε̂
v,k + τêv,k, (2.164)

Aε
v,k+1 = Bε

v,k + τev,k, (2.165)

respectively, for k = 0, ...,M′ − 1, where A,B are matrices as given in (2.27) and

ε̂v,k,εv,k, êv,k,ev,k ∈ RN . Using (2.136)-(2.147), we have ε
v,0 ≥ 0 , and ev,k ≥ 0 , and∣∣êv,k

∣∣ ≤ ev,k for k = 0, ...,M′− 1, and
∣∣̂εv,0

∣∣ ≤ ε
v,0. Then, on the basis of Lemma 2.2,

we get
∣∣̂εv,k+1

∣∣≤ ε
v,k+1 for k = 0, ...,M′−1. From

ε
v (x1,x2, t)≤ ε

v (0,0,T )

=
σ

12
(1+6ω)(T +1)τ

2 +
3θ

40
h2 (1+a2

1 +a2
2
)
,

and using (2.136) and (2.137) follows (2.131).
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2.3 Difference Problem Approximating ∂u
∂x2

on Hexagonal Grids with

O
(
h2 + τ2

)
Order of Accuracy

Additionally the notations ∂x2 f
k+ 1

2
P0

= ∂ f
∂x2

∣∣∣
(x1,x2,t+ τ

2 )
and ∂x2 f

k+ 1
2

PA
= ∂ f

∂x2

∣∣∣
(p̂,x2,t+ τ

2 )
and

also qi =
∂u
∂x2

on ST γi, i = 1,2, ...,5 are introduced. Let the problem BVP(u) be given,

then we develop the next boundary value problem for z = ∂u
∂x2

.

Boundary Value Problem for z = ∂u
∂x2

(
BVP

(
∂u
∂x2

))
Lz =

∂ f (x1,x2, t)
∂x2

on QT ,

z(x1,x2, t) = qi on ST γi, i = 1,2, ...,5. (2.166)

where the operator L is defined in (2.91) and f (x1,x2, t) is the given function in (2.9).

We assume that the solution z ∈C
6+α,3+α

2
x,t

(
QT
)

and take

q2nd

2h =
1

2
√

3h

(
−3u(x1,0, t)+4uh,τ

(
x1,

√
3h, t

)
−uh,τ

(
x1,2

√
3h, t

))
on Sh

T γ2, (2.167)

q2nd

4h =
1

2
√

3h

(
3u(x1,a2, t)−4uh,τ

(
x1,a2 −

√
3h, t

)
+uh,τ

(
x1,a2 −2

√
3h, t

))
on Sh

T γ4, (2.168)

qih =
∂φ(x1,x2, t)

∂x2
on Sh

T γi, i = 1,3, (2.169)

q5h =
∂ϕ(x1,x2)

∂x2
on Sh

T γ5, (2.170)

where, the solution of the difference problem in Stage 1
(
H2nd (u)

)
is uh,τ and ϕ(x1,x2),

φ(x1,x2, t) are as given in (2.9). We give the derivation of the formulae (2.167) and

(2.168) as follows:

A : u(x1,x2, t)

B : u(x1,x2 +
√

3h, t)

C : u(x1,x2 +2
√

3h, t)
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B : u
(

x1,x2 +
√

3h, t
)
= u(x1,x2, t)+

√
3h∂x2u(x1,x2, t)

+
3
2

h2
∂

2
x2

u(x1,x2, t)

+

√
3

2
h3

∂
3
x2

u(x1,x2 +ξ1h, t) , (2.171)

C : u
(

x1,x2 +2
√

3h, t
)
= u(x1,x2, t)+2

√
3h∂x2u(x1,x2, t)

+6h2
∂

2
x2

u(x1,x2, t)

+4
√

3h3
∂

3
x2

u(x1,x2 +ξ2h, t) , (2.172)

where, 0 < ξ1 <
√

3 and 0 < ξ2 < 2
√

3. From (2.171) and (2.172) we get

−4u
(

x1,x2 +
√

3h, t
)
+u
(

x1,x2 +2
√

3h, t
)
+3u(x1,x2, t)

=−2
√

3h∂x2u(x1,x2, t)+2
√

3h3
∂

3
x2

u(x1,x2, t) , x2 < x2 < x2 +2
√

3h, (2.173)

giving

1
2
√

3h

(
−3u(x1,x2, t)+4u

(
x1,x2 +

√
3h, t

)
−
(

x1,x2 +2
√

3h, t
))

= ∂x2u(x1,x2, t)+O
(
h2) . (2.174)

Further, the validation of the backward difference scheme follows from

A : u(x1,x2, t)

B : u(x1,x2 −
√

3h, t)

C : (x1,x2 −2
√

3h, t)

B : u
(

x1,x2 −
√

3h, t
)
= u(x1,x2, t)−

√
3h∂x2u(x1,x2, t)

+
3
2

h2
∂

2
x2

u(x1,x2, t)

− 3
√

3
6

h3
∂

3
x2

u
(

x1,x2 + ξ̃1h, t
)
, (2.175)

C : u
(

x1,x2 −2
√

3h, t
)
= u(x1,x2, t)−2

√
3h∂x2u(x1,x2, t)

+6h2
∂

2
x2

u(x1,x2, t)

−4
√

3h3
∂

3
x2

u
(

x1,x2 + ξ̃2h, t
)
, (2.176)
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where, −
√

3 < ξ̃1 < 0 and −2
√

3 < ξ̃2 < 0. From (2.175) and (2.176) we get

−4u
(

x1,x2 −
√

3h, t
)
+u
(

x1,x2 −2
√

3h, t
)
+3u(x1,x2, t)

= 2
√

3hux2 (x1,x2, t)−2
√

3h3
∂

3
x2

u(x1, x̃2, t) , x2 −2
√

3h < x̃2 < x2, (2.177)

and

1
2
√

3h

(
3u(x1,x2, t)−4u

(
x1,x2 −

√
3h, t

)
+u
(

x1,x2 −2
√

3h, t
))

= ∂x2u(x1,x2, t)+O
(
h2) . (2.178)

Lemma 2.5: (Buranay et al. [51]) The following inequality holds∣∣∣q2nd

ih
(
uh,τ
)
−q2nd

ih (u)
∣∣∣≤ 3dΩ1 (h,τ) , i = 2,4, (2.179)

for r = ωτ

h2 ≤ 3
7 , where u is the solution of the boundary value problem BVP(u) and

uh,τ is the solution of the difference problem (2.15)-(2.18) in Stage 1
(
H2nd (u)

)
and

Ω1 (h,τ) is as in (2.57) and d is presented in (2.60).

Proof. Taking into consideration Theorem 2.1, and using (2.56), (2.167), and (2.168),

we have ∣∣∣q2nd

ih
(
uh,τ
)
−q2nd

ih (u)
∣∣∣≤ 1

2
√

3h

(
4
√

3hdΩ1 (h,τ)+2
√

3hdΩ1 (h,τ)
)

≤ 3dΩ1 (h,τ) , i = 2,4, (2.180)

thus, we obtain (2.179).

Lemma 2.6: (Buranay et al. [51]) The following inequality is true

max
Sh

T γ2∪Sh
T γ4

∣∣∣q2nd

ih
(
uh,τ
)
−qi

∣∣∣≤ M2h2 +3dΩ1 (h,τ) , i = 2,4, (2.181)

for r = ωτ

h2 ≤ 3
7 , where M2 = max

QT

∣∣∣∂3u
∂x3

2

∣∣∣ and uh,τ is the solution of the difference problem

in Stage 1
(
H2nd(u)

)
and Ω1 (h,τ) and d are as given in (2.57) and (2.60), respectively.

Proof. Since the exact solution u∈C
7+α, 7+α

2
x,t

(
QT
)
, at the end points (ϑh,0,kτ)∈ Sh

T γ2
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and (ϑh,a2,kτ) ∈ Sh
T γ4 of each line segment

[(ϑh,x2,kτ) : 0 ≤ x1 = ϑh ≤ a1,0 ≤ x2 ≤ a2, 0 ≤ t = kτ ≤ T ] ,

difference formulas (2.167) and (2.168) give the second order approximation of ∂u
∂x2

,

respectively. From the truncation error formula (see [63]), it follows that

max
Sh

T γ2∪Sh
T γ4

∣∣∣q2nd

ih (u)−qi

∣∣∣≤ h2max
QT

∣∣∣∣∂3u
∂x3

2

∣∣∣∣ , i = 2,4 . (2.182)

Taking M2 = max
QT

∣∣∣∂3u
∂x3

2

∣∣∣ and using Lemma 2.5 and the estimation (2.180) and (2.182)

follows (2.181).

Subsequently we establish the numerical solution of the BVP
(

∂u
∂x2

)
on hexagonal grids

as the second stage by

Stage 2
(

H2nd
(

∂u
∂x2

))
Θh,τzk+1

h,τ = Λh,τzk
h,τ +Dx2ψ on D0h

γτ, (2.183)

Θ
∗
h,τzk+1

h,τ = Λ
∗
h,τzk

h,τ +Γ
∗
h,τq1h +Dx2ψ

∗ on D∗lh
γτ, (2.184)

Θ
∗
h,τzk+1

h,τ = Λ
∗
h,τzk

h,τ +Γ
∗
h,τq3h +Dx2ψ

∗ on D∗rh
γτ, (2.185)

zh,τ = q2nd

ih
(
uh,τ
)

on Sh
T γi, i = 2,4, (2.186)

zh,τ = qih on Sh
T γi, i = 1,3,5, (2.187)

where q2nd

2h ,q2nd

4h , and qih, i = 1,3,5 are defined by (2.167)-(2.170) and the operators

Θh,τ, Λh,τ,Θ
∗
h,τ,Λ

∗
h,τ, and Γ∗

h,τ are the operators given in (2.21)-(2.25), respectively. In

addition,

Dx2ψ = ∂x2 f
k+ 1

2
P0

, (2.188)

Dx2ψ
∗ = ∂x2 f

k+ 1
2

P0
− 1

6
∂x2 f

k+ 1
2

PA
. (2.189)

Let
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ε
z
h,τ = zh,τ − z on Dhγτ. (2.190)

From (2.183)-(2.187) and (2.190), we have

Θh,τε
z,k+1
h,τ = Λh,τε

z,k
h,τ +Ψ

z,k
1 on D0h

γτ, (2.191)

Θ
∗
h,τε

z,k+1
h,τ = Λ

∗
h,τε

z,k
h,τ +Ψ

z,k
2 on D∗h

γτ, (2.192)

ε
z
h,τ = 0 on Sh

T γi, i = 1,3,5, (2.193)

ε
z
h,τ = q2nd

ih
(
uh,τ
)
−qi on Sh

T γi, i = 2,4, (2.194)

where qih are defined by (2.167)-(2.170) and

Ψ
z,k
1 = Λh,τzk −Θh,τzk+1 +Dx2

ψ, (2.195)

Ψ
z,k
2 = Λ

∗
h,τzk −Θ

∗
h,τzk+1 +Γ

∗
h,τqi +Dx2ψ

∗, i = 1,3. (2.196)

Let

κ1 = max

{
max
QT

∣∣∣∣∂4z
∂x4

1

∣∣∣∣ ,max
QT

∣∣∣∣∂4z
∂x4

2

∣∣∣∣ ,max
QT

∣∣∣∣ ∂4z
∂x2

1∂x2
2

∣∣∣∣
}
, (2.197)

δ1 = max

{
max
QT

∣∣∣∣∂3z
∂t3

∣∣∣∣ ,max
QT

∣∣∣∣ ∂4z
∂x2

2∂t2

∣∣∣∣ ,max
QT

∣∣∣∣ ∂4z
∂x2

1∂t2

∣∣∣∣
}
, (2.198)

and

κ = max
{

κ1,
40M2

3
+12dωα

∗
}
, (2.199)

δ = max{δ1,3dβ
∗} , (2.200)

α∗,β∗ are as given in (2.58), (2.59), respectively, and M2 is the constant given in

Lemma 2.6 and z is the solution of BVP
(

∂u
∂x2

)
.

Theorem 2.4: (Buranay et al. [51]) In Stage 2
(

H2nd
(

∂u
∂x2

))
the constructed implicit

scheme is unconditionally stable.

Proof. The equations (2.183)-(2.187) can be given in matrix form:
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Az̃k+1 = Bz̃k + τqk
z , (2.201)

for k = 0,1, ...,M′−1, where, A,B are as given in (2.27) and z̃k,qk
z ∈ RN . Based on the

assumption that z belongs to C
6+α,3+α

2
x,t

(
QT
)

and using Lemma 2.1 and induction we

get ∥∥∥z̃k+1
∥∥∥

2
≤
∥∥A−1B

∥∥
2

∥∥∥z̃k
∥∥∥

2
+ τ
∥∥A−1∥∥

2

∥∥∥qk
z

∥∥∥
2

≤
∥∥z̃0∥∥

2 + τ

k

∑
k′=0

∥∥∥qk′
z

∥∥∥
2
. (2.202)

Therefore, the scheme is unconditionally stable.

Theorem 2.5: (Buranay et al. [51]) The solution zh,τ of the finite difference problem

given in Stage 2
(

H2nd
(

∂u
∂x2

))
satisfies

max
Dhγτ

∣∣zh,τ − z
∣∣≤ δ

12
(1+6ω)(T +1)τ

2 +
3κ

40
(
1+a2

1 +a2
2
)

h2, (2.203)

for r = ωτ

h2 ≤ 3
7 , where κ,δ are as given in (2.199), (2.200) respectively and z = ∂u

∂x2
is

the exact solution of BVP
(

∂u
∂x2

)
.

Proof. Let

Θh,τε̂
z,k+1
h,τ = Λh,τε̂

z,k
h,τ +Ω3 (x2) on D0h

γτ, (2.204)

Θ
∗
h,τε̂

z,k+1
h,τ = Λ

∗
h,τε̂

z,k
h,τ +

5
6

Ω3 (x2) on D∗h
γτ (2.205)

ε̂
z
h,τ = 0 on Sh

T γi, i = 1,3,5, (2.206)

ε̂
z
h,τ = q2nd

ih
(
uh,τ
)
−qi on Sh

T γi, i = 2,4, (2.207)

where q2nd

2h ,q2nd

4h ,qih , i = 1,3,5, are defined by (2.167)-(2.170) and

Ω3 (x2) =
δ

24a2
(1+6ω)τ

2 (2a2 − x2)+
3κω

10
h2

≥ δ

24
(1+6ω)τ

2 +
3κω

10
h2 ≥

∣∣∣Ψz,k
1

∣∣∣ , (2.208)
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5
6

Ω3 (x2) =
5δ

144a2
(1+6ω)τ

2 (2a2 − x2)+
κω

4
h2

≥ 5δ

144
(1+6ω)τ

2 +
κω

4
h2 ≥

∣∣∣Ψz,k
2

∣∣∣ . (2.209)

We take the majorant function

ε
z (x1,x2, t) = ε

z
1 (x1,x2, t)+ ε

z
2 (x1,x2, t) , (2.210)

where

ε
z
1 (x1,x2, t) =

δ

24a2
τ

2 (1+6ω)(t +1)(2a2 − x2)≥ 0 on Dhγτ, (2.211)

ε
z
2 (x1,x2, t) =

3κ

40
h2 (1+a2

1 +a2
2 − x2

1 − x2
2
)
≥ 0 on Dhγτ. (2.212)

The majorant function in (2.210) satisfies the difference problem

Θh,τε
z,k+1
h,τ = Λh,τε

z,k
h,τ +Ω3 (x2) on D0h

γτ, (2.213)

Θ
∗
h,τε

z,k+1
h,τ = Λ

∗
h,τε

z,k
h,τ +Γ

∗
h,τε

z∗
h,τ +

5
6

Ω3 (x2) on D∗h
γτ, (2.214)

ε
z
h,τ = ε

z∗
h,τ = ε

z
1 (0,x2, t)+ ε

z
2 (0,x2, t) on Sh

T γ1, (2.215)

ε
z
h,τ = ε

z
1 (x1,0, t)+ ε

z
2 (x1,0, t) on Sh

T γ2, (2.216)

ε
z
h,τ = ε

z∗
h,τ = ε

z
1 (a1,x2, t)+ ε

z
2 (a1,x2, t) on Sh

T γ3, (2.217)

ε
z
h,τ = ε

z
1 (x1,a2, t)+ ε

z
2 (x1,a2, t) on Sh

T γ4, (2.218)

ε
z
h,τ = ε

z
1 (x1,x2,0)+ ε

z
2 (x1,x2,0) on Sh

T γ5. (2.219)

We write the algebraic system of Equations (2.204)-(2.207) and (2.213)-(2.219) for

fixed k ≥ 0 in matrix form

Aε̂
z,k+1 = Bε̂

z,k + τêz,k, (2.220)

Aε
z,k+1 = Bε

z,k + τez,k, (2.221)

respectively, where A,B are as given in (2.27) and ε̂z,k,εz,k, êz,k,ez,k ∈ RN . Using

(2.208)-(2.219), we get ez,k ≥ 0 and
∣∣êz,k

∣∣ ≤ ez,k for k = 0,1, ...,M′− 1 and ε
z,0 ≥ 0,∣∣̂εz,0

∣∣ ≤ ε
z,0. Then, on the basis of Lemma 2.2 follows

∣∣̂εz,k+1
∣∣ ≤ ε

z,k+1,
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k = 0,1, ...,M′−1. From

ε
z (x1,x2, t)≤ ε

z (0,0,T )

=
δ

12
(1+6ω)(T +1)τ

2 +
3κ

40
(
1+a2

1 +a2
2
)

h2, (2.222)

and using (2.208), (2.209) follows (2.203).
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Chapter 3

EXPERIMENTAL INVESTIGATION OF THE SECOND

ORDER ACCURATE IMPLICIT METHOD

To show the efficiency of the proposed two-stage implicit method we construct a test

problem of which the exact solution is known. Further we take

D =
{
(x1,x2) : 0 < x1 < 1,0 < x2 <

√
3

2

}
, and t ∈ [0,1]. We used Mathematica in

machine precision on a personal computer with the properties AMD Ryzen 7 1800X

Eight Core Processor 3.60GHz. Moreover, the obtained linear algebraic systems of

equations are solved by using incomplete block-matrix factorization of the block

tridiagonal stiffness matrices which are symmetric M−matrices for the all considered

pairs of (h,τ). Then these incomplete block-matrix factorizations are used as

preconditioners for the conjugate gradient method as given in Buranay and Iyikal [55]

(see also Concus et al. [56] and Axelsson [57] ). Additionally, the notations given

below are used in tables and figures:

H2nd
(

∂u
∂x1

)
denotes the proposed two-stage implicit method on hexagonal grids for

the approximation of the derivative ∂u
∂x1

.

H2nd
(

∂u
∂x2

)
denotes the proposed two-stage implicit method on hexagonal grids for

the approximation of the derivative ∂u
∂x2

.

CT H2nd
(

∂u
∂x1

)
presents the Central Processing Unit time in seconds (CPUs) per time

level for the method H2nd
(

∂u
∂x1

)
.

CT H2nd
(

∂u
∂x2

)
presents the Central Processing Unit time in seconds (CPUs) per time

level for the method H2nd
(

∂u
∂x2

)
.
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TCT H2nd
(

∂u
∂x1

)
shows the total Central Processing Unit time in seconds required for the

solution at t = 1, by the method H2nd
(

∂u
∂x1

)
.

TCT H2nd
(

∂u
∂x2

)
shows the total Central Processing Unit time in seconds required for the

solution at t = 1, by the method H2nd
(

∂u
∂x2

)
.

For the approximation of the derivatives ∂u
∂x1

, ∂u
∂x2

we denote the given method by

H2nd
(

∂u
∂x1

)
, and H2nd

(
∂u
∂x2

)
, respectively. Additionally, the corresponding solutions

are denoted by v2−µ,2−λ , and z2−µ,2−λ , respectively, for h = 2−µ and τ = 2−λ where µ,λ

are positive integers. On the grid points Dhγτ, which is the closure of Dhγτ we present

the error function εh,τ obtained by H2nd
(

∂u
∂x1

)
, and H2nd

(
∂u
∂x2

)
by ε

H2nd
(

∂u
∂x1

)
and by

ε
H2nd

(
∂u

∂x2

)
, respectively. Furthermore, on the grid points the maximum errors

max
Dhγτ

∣∣∣∣εH2nd
(

∂u
∂x1

)∣∣∣∣ and max
Dhγτ

∣∣∣∣εH2nd
(

∂u
∂x2

)∣∣∣∣ are presented by
∥∥∥∥ε

H2nd
(

∂u
∂x1

)∥∥∥∥
∞

and∥∥∥∥ε
H2nd

(
∂u

∂x2

)∥∥∥∥
∞

, accordingly. Further, we denote the order of convergence of the

approximate solution v2−µ,2−λ to the exact solution v = ∂u
∂x1

obtained by using the

two-stage implicit method H2nd
(

∂u
∂x1

)
by

ℜ
H2nd

(
∂u

∂x1

)
=

∥∥∥∥ε
H2nd

(
∂u

∂x1

)
(2−µ,2−λ)

∥∥∥∥
∞∥∥∥∥ε

H2nd
(

∂u
∂x1

)
(2−(µ+1),2−(λ+1))

∥∥∥∥
∞

. (3.1)

Analogously, the order of convergence of the approximate solution z2−µ,2−λ to the exact

solution z = ∂u
∂x2

obtained by using the two-stage implicit method H2nd
(

∂u
∂x2

)
is given

by

ℜ
H2nd

(
∂u

∂x2

)
=

∥∥∥∥ε
H2nd

(
∂u

∂x2

)
(2−µ,2−λ)

∥∥∥∥
∞∥∥∥∥ε

H2nd
(

∂u
∂x2

)
(2−(µ+1),2−(λ+1))

∥∥∥∥
∞

. (3.2)

Remark 3.1: We point out the numerical values in (3.1), (3.2) are ≈ 22 showing the

convergence of the approximate solution v2−µ,2−λ and z2−µ,2−λ converge to the
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respective exact solution v = ∂u
∂x1

and z = ∂u
∂x2

with second order both in the spatial

variables x1,x2 and in time t.

Example 3.1: ∂u
∂t

= 0.5
(

∂2u
∂x2

1
+

∂2u
∂x2

2

)
+ f (x1,x2, t) on QT ,

u(x1,x2,0) = 0.0001

(
x

57
8

1 (1− x1)+ cos
(

x
57
8

2

)(√
3

2
− x2

))
on D,

u(x1,x2, t) = û(x1,x2, t) on ST ,

where

f (x1,x2, t) = 0.00035625
(

t
41
16 −6.125x

41
8

1 +8.125x
49
8

1

+

(√
3

3249
912

−7.125x2

)
x

49
4

2 cos
(

x
57
8

2

)
+

(√
3

2793
912

−8.125x2

)
x

41
8

2 sin
(

x
57
8

2

))
û(x1,x2, t) = 0.0001

(
t

57
16 + x

57
8

1 (1− x1)+ cos
(

x
57
8

2

)(√
3

2
− x2

))
,

are the heat source and exact solution. Table 3.1 demonstrates CT H2nd
(

∂u
∂x1

)
,

TCT H2nd
(

∂u
∂x1

)
, maximum norm of the errors for h = 2−µ,µ = 4,5,6,7 when

τ = 2−λ,λ = 13,14,15,16, that is r = 0.5τ

h2 ≤ 3
7 and the order of convergence of vh,τ to

the exact derivatives v = ∂u
∂x1

with respect to h and τ obtained by using the constructed

two-stage implicit method H2nd
(

∂u
∂x1

)
. Table 3.2 shows CT H2nd

(
∂u

∂x2

)
, TCT H2nd

(
∂u

∂x2

)
,

maximum norm of the errors for the same pairs of (h,τ) as in Table 3.1 and the order

of convergence of zh,τ to the exact derivative z = ∂u
∂x2

with respect to h and τ obtained

by using the constructed two-stage implicit method H2nd
(

∂u
∂x2

)
. Table 3.1 and Table

3.2 justify the theoretical results given such that the approximate solutions vh,τ and

zh,τ of the proposed method converge to the corresponding exact derivatives v = ∂u
∂x1

and z = ∂u
∂x2

with second order both in the spatial variables x1,x2 and the time variable

t for r ≤ 3
7 , as given in Remark 3.1.
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Table 3.3 presents the CT H2nd
(

∂u
∂x1

)
, TCT H2nd

(
∂u

∂x1

)
, maximum norm of the errors for

h = 2−µ,µ = 4,5,6,7,8 when τ = 2−λ,λ = 8,9,10,11,12, that is r = 0.5τ

h2 > 3
7 and the

order of convergence of vh,τ to the exact derivative v = ∂u
∂x1

with respect to h and τ

obtained by using the constructed two-stage implicit method H2nd
(

∂u
∂x1

)
. Table 3.4

shows the CT H2nd
(

∂u
∂x2

)
, TCT H2nd

(
∂u

∂x2

)
, maximum norm of the errors for the same pairs

of (h,τ) as in Table 3.3 and the order of convergence of zh,τ to the exact derivative

z = ∂u
∂x2

with respect to h and τ obtained by using the constructed two-stage implicit

method H2nd
(

∂u
∂x2

)
. Numerical results given in Table 3.3 and Table 3.4 demonstrate

that when r > 3
7 , the approximate solutions vh,τ and zh,τ of the proposed method also

converge with second order both in the spatial variables x1,x2 and the time variable t to

their corresponding exact derivatives v = ∂u
∂x1

and z = ∂u
∂x2

, as explained in remark 3.1.

Figure 3.1 illustrates the absolute error functions
∣∣∣∣εH2nd

(
∂u

∂x1

)
(2−4,2−13)

∣∣∣∣ ,∣∣∣∣εH2nd
(

∂u
∂x1

)
(2−5,2−14)

∣∣∣∣ , ∣∣∣∣εH2nd
(

∂u
∂x1

)
(2−6,2−15)

∣∣∣∣, and
∣∣∣∣εH2nd

(
∂u

∂x1

)
(2−7,2−16)

∣∣∣∣ at time moment

t = 0.2 obtained by using H2nd
(

∂u
∂x1

)
. Figure 3.2 demonstrates the absolute error

functions
∣∣∣∣εH2nd

(
∂u

∂x2

)
(2−4,2−13)

∣∣∣∣ , ∣∣∣∣εH2nd
(

∂u
∂x2

)
(2−5,2−14)

∣∣∣∣ , ∣∣∣∣εH2nd
(

∂u
∂x2

)
(2−6,2−15)

∣∣∣∣, and∣∣∣∣εH2nd
(

∂u
∂x2

)
(2−7,2−16)

∣∣∣∣ at time moment t = 0.2 obtained by using H2nd
(

∂u
∂x2

)
. The exact

derivative v = ∂u
∂x1

and the grid function v2−6,2−15 for h = 2−6,τ = 2−15 at time

moment t = 0.2 obtained by using H2nd
(

∂u
∂x1

)
are presented in Figure 3.3. Further,

Figure 3.4 shows the exact derivative z = ∂u
∂x2

and grid function z2−6,2−15 at time

moment t = 0.2 obtained by using H2nd
(

∂u
∂x2

)
.
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Table 3.1: The CT H2nd
(

∂u
∂x1

)
, TCT H2nd

(
∂u

∂x1

)
,
∥∥∥∥ε

H2nd
(

∂u
∂x1

)∥∥∥∥
∞

and ℜ
H2nd

(
∂u

∂x1

)
when

r = 0.5τ

h2 ≤ 3
7 for the Example 3.1 .

r = 0.5τ

h2 (h,τ) CT H2nd
(

∂u
∂x1

)
TCT H2nd

(
∂u

∂x1

) ∥∥∥∥ε
H2nd

(
∂u

∂x1

)∥∥∥∥
∞

ℜ
H2nd

(
∂u

∂x1

)
2−6 (

2−4,2−13) 0.03 197.34 9.34750×10−06 3.1457
2−5 (

2−5,2−14) 0.09 1187.55 2.97147×10−06 3.5508
2−4 (

2−6,2−15) 0.59 18501.80 8.36840×10−07 3.7737
2−3 (

2−7,2−16) 3.69 144505.21 2.21757×10−07

Table 3.2: The CT H2nd
(

∂u
∂x2

)
, TCT H2nd

(
∂u

∂x2

)
,
∥∥∥∥ε

H2nd
(

∂u
∂x2

)∥∥∥∥
∞

and ℜ
H2nd

(
∂u

∂x2

)
when

r = 0.5τ

h2 ≤ 3
7 for the Example 3.1 .

r = 0.5τ

h2 (h,τ) CT H2nd
(

∂u
∂x2

)
TCT H2nd

(
∂u

∂x2

) ∥∥∥∥ε
H2nd

(
∂u

∂x2

)∥∥∥∥
∞

ℜ
H2nd

(
∂u

∂x2

)
2−6 (

2−4,2−13) 0.02 181.88 3.72134×10−06 1.7362
2−5 (

2−5,2−14) 0.13 1187.55 2.14336×10−06 2.6720
2−4 (

2−6,2−15) 0.70 21557.80 8.02154×10−07 3.2757
2−3 (

2−7,2−16) 4.09 169305.04 2.44880×10−07

Table 3.3: The CT H2nd
(

∂u
∂x1

)
, TCT H2nd

(
∂u

∂x1

)
,
∥∥∥∥ε

H2nd
(

∂u
∂x1

)∥∥∥∥
∞

and ℜ
H2nd

(
∂u

∂x1

)
when

r = 0.5τ

h2 > 3
7 for the Example 3.1 .

r = 0.5τ

h2 (h,τ) CT H2nd
(

∂u
∂x1

)
TCT H2nd

(
∂u

∂x1

) ∥∥∥∥ε
H2nd

(
∂u

∂x1

)∥∥∥∥
∞

ℜ
H2nd

(
∂u

∂x1

)
2−1 (

2−4,2−8) 0.02 4.75 9.34796×10−06 3.1458
1

(
2−5,2−9) 0.08 37.30 2.97159×10−06 3.5508

2
(
2−6,2−10) 0.42 347.70 8.36871×10−07 3.7737

22 (
2−7,2−11) 3.47 3988.83 2.21765×10−07 3.8889

23 (
2−8,2−12) 41.25 68313.10 5.70258×10−08
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Table 3.4: The CT H2nd
(

∂u
∂x2

)
, TCT H2nd

(
∂u

∂x2

)
,
∥∥∥∥ε

H2nd
(

∂u
∂x2

)∥∥∥∥
∞

and ℜ
H2nd

(
∂u

∂x2

)
when

r = 0.5τ

h2 > 3
7 for the Example 3.1 .

r = 0.5τ

h2 (h,τ) CT H2nd
(

∂u
∂x2

)
TCT H2nd

(
∂u

∂x2

) ∥∥∥∥ε
H2nd

(
∂u

∂x2

)∥∥∥∥
∞

ℜ
H2nd

(
∂u

∂x2

)
2−1 (

2−4,2−8) 0.03 7.52 3.72102×10−06 1.7361
1

(
2−5,2−9) 0.13 64.38 2.14327×10−06 2.6720

2
(
2−6,2−10) 0.59 533.53 8.02135×10−07 3.2757

22 (
2−7,2−11) 3.83 5122.09 2.44877×10−07 3.6202

23 (
2−8,2−12) 42.91 73957.51 6.76426×10−08

Figure 3.1: The grid function of absolute errors at time moment t = 0.2 achieved by
H2nd

(
∂u
∂x1

)
for the Example 3.1.
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Figure 3.2: The grid function of absolute errors at time moment t = 0.2 achieved by
H2nd

(
∂u
∂x2

)
for the Example 3.1.

Figure 3.3: The exact solution v = ∂u
∂x1

and the approximate solution v2−6,2−15 at t = 0.2
for the Example 3.1.
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Figure 3.4: The exact solution z = ∂u
∂x2

and the approximate solution z2−6,2−15 at t = 0.2
for the Example 3.1.

Table 3.5 shows the CT H2nd
(

∂u
∂x1

)
, TCT H2nd

(
∂u

∂x1

)
, maximum norm of the errors for r ≤

3
7 , and the order of convergence of vh,τ to the exact derivative v = ∂u

∂x1
with respect to h

and τ obtained when third order approximations for v = ∂u
∂x1

p3rd

1h =



1
6h

(
−11u(0,x2, t)+18uh,τ (h,x2, t)

− 9uh,τ (2h,x2, t)+2uh,τ (3h,x2, t)
)

if P0 ∈ D0hγτ

1
60h

(
−184u(0,x2, t)+225uh,τ

(h
2 ,x2, t

)
− 50uh,τ

(3h
2 ,x2, t

)
+9uh,τ

(5h
2 ,x2, t

))
if P0 ∈ D∗lhγτ

on Sh
T γ1, (3.3)

p3rd

3h =



1
6h

(
11u(a1,x2, t)−18uh,τ (a1 −h,x2, t)

+ 9uh,τ (a1 −2h,x2, t)−2uh,τ (a1 −3h,x2, t)
)

if P0 ∈ D0hγτ

1
60h

(
184u(a1,x2, t)−225uh,τ

(
a1 − h

2 ,x2, t
)

+ 50uh,τ
(
a1 − 3h

2 ,x2, t
)
−9uh,τ

(
a1 − 5h

2 ,x2, t
))

if P0 ∈ D∗rhγτ

on Sh
T γ3,

(3.4)

are used on Sh
T γi, i = 1,3 for the Stage 2

(
H2nd

(
∂u
∂x1

))
. Table 3.6 shows CT H2nd

(
∂u

∂x2

)
,

TCT H2nd
(

∂u
∂x2

)
, maximum norm of the errors for r ≤ 3

7 and the order of convergence of

zh,τ to the exact derivative z = ∂u
∂x2

with respect to h and τ obtained when third order
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Table 3.5: The CT H2nd
(

∂u
∂x1

)
, TCT H2nd

(
∂u

∂x1

)
,
∥∥∥∥ε

H2nd
(

∂u
∂x1

)∥∥∥∥
∞

and ℜ
H2nd

(
∂u

∂x1

)
when

r = 0.5τ

h2 ≤ 3
7 and (3.3), (3.4) are used for the Example 3.1.

r = 0.5τ

h2 (h,τ) CT H2nd
(

∂u
∂x1

)
TCT H2nd

(
∂u

∂x1

) ∥∥∥∥ε
H2nd

(
∂u

∂x1

)∥∥∥∥
∞

ℜ
H2nd

(
∂u

∂x1

)
2−6 (

2−4,2−13) 0.03 216.25 3.93819×10−06 4.5863
2−5 (

2−5,2−14) 0.09 1695.39 8.58690×10−07 4.6031
2−4 (

2−6,2−15) 0.63 18945.40 1.86547×10−07 4.6131
2−3 (

2−7,2−16) 3.67 218517.01 4.04385×10−08

approximations for z = ∂u
∂x2

.

q3rd
2h =

1
6
√

3h

(
−11u(x1,0, t)+18uh,τ

(
x1,

√
3h, t

)
− 9uh,τ

(
x1,2

√
3h, t

)
+2uh,τ

(
x1,3

√
3h, t

))
on Sh

T γ2, (3.5)

q3rd

4h =
1

6
√

3h

(
11u(x1,a2, t)−18uh,τ

(
x1,a2 −

√
3h, t

)
+ 9uh,τ

(
x1,a2 −2

√
3h, t

)
−2uh,τ

(
x1,a2 −3

√
3h, t

))
on Sh

T γ4, (3.6)

are used on Sh
T γi, i = 2,4 for the Stage 2

(
H2nd

(
∂u
∂x2

))
. Table 3.7 presents

CT H2nd
(

∂u
∂x1

)
, TCT H2nd

(
∂u

∂x1

)
, maximum norm of the errors for r > 3

7 , and the order of

convergence of vh,τ to the exact derivatives v = ∂u
∂x1

with respect to h and τ obtained by

using the difference formulae (3.3), (3.4) on Sh
T γi, i = 1,3 for the Stage

2
(

H2nd
(

∂u
∂x1

))
. Table 3.8 gives CT H2nd

(
∂u

∂x2

)
, TCT H2nd

(
∂u

∂x2

)
, maximum norm of the

errors for r > 3
7 , and the order of convergence of zh,τ to the exact derivative z = ∂u

∂x2

with respect to h and τ obtained by using the difference formulae (3.5), (3.6) on

Sh
T γi, i = 2,4 for the Stage 2

(
H2nd

(
∂u
∂x2

))
. Numerical results given in Table 3.5-Table

3.8 demonstrate that the approximate solution vh,τ and zh,τ of the proposed method

converge to the corresponding exact derivatives v = ∂u
∂x1

and z = ∂u
∂x2

with second order

both in the spatial variables x1,x2 and the time variable t with better error ratios.
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Table 3.6: The CT H2nd
(

∂u
∂x2

)
, TCT H2nd

(
∂u

∂x2

)
,
∥∥∥∥ε

H2nd
(

∂u
∂x2

)∥∥∥∥
∞

and ℜ
H2nd

(
∂u

∂x2

)
when

r = 0.5τ

h2 ≤ 3
7 and (3.5) and (3.6) are used for the Example 3.1.

r = 0.5τ

h2 (h,τ) CT H2nd
(

∂u
∂x2

)
TCT H2nd

(
∂u

∂x2

) ∥∥∥∥ε
H2nd

(
∂u

∂x2

)∥∥∥∥
∞

ℜ
H2nd

(
∂u

∂x2

)
2−6 (

2−4,2−13) 0.03 251.27 3.37221×10−06 2.5722
2−5 (

2−5,2−14) 0.13 2088.16 1.31103×10−06 4.3277
2−4 (

2−6,2−15) 0.63 18945.40 3.02939×10−07 4.4163
2−3 (

2−7,2−16) 3.85 234313.60 6.85956×10−08

Table 3.7: The CT H2nd
(

∂u
∂x1

)
, TCT H2nd

(
∂u

∂x1

)
,
∥∥∥∥ε

H2nd
(

∂u
∂x1

)∥∥∥∥
∞

and ℜ
H2nd

(
∂u

∂x1

)
when

r = 0.5τ

h2 > 3
7 and (3.3), (3.4) are used for the Example 3.1.

r = 0.5τ

h2 (h,τ) CT H2nd
(

∂u
∂x1

)
TCT H2nd

(
∂u

∂x1

) ∥∥∥∥ε
H2nd

(
∂u

∂x1

)∥∥∥∥
∞

ℜ
H2nd

(
∂u

∂x1

)
2−1 (

2−4,2−8) 0.02 5.08 3.93866×−06 4.5862
1

(
2−5,2−9) 0.08 38.19 8.58815×−07 4.6030

2
(
2−6,2−10) 0.44 352.03 1.86579×−07 4.4176

22 (
2−7,2−11) 3.52 3994.16 4.22355×−08

Table 3.8: The CT H2nd
(

∂u
∂x2

)
, TCT H2nd

(
∂u

∂x2

)
,
∥∥∥∥ε

H2nd
(

∂u
∂x2

)∥∥∥∥
∞

and ℜ
H2nd

(
∂u

∂x2

)
when

r = 0.5τ

h2 > 3
7 and (3.5) and (3.6) are used for the Example 3.1.

r = 0.5τ

h2 (h,τ) CT H2nd
(

∂u
∂x2

)
TCT H2nd

(
∂u

∂x2

) ∥∥∥∥ε
H2nd

(
∂u

∂x2

)∥∥∥∥
∞

ℜ
H2nd

(
∂u

∂x2

)
2−1 (

2−4,2−8) 0.02 5.89 3.67669×−06 2.8278
1

(
2−5,2−9) 0.11 45.67 1.30019×−06 4.4268

2
(
2−6,2−10) 0.50 414.27 2.93712×−07 4.5165

22 (
2−7,2−11) 3.72 4475.91 6.50300×−08
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Chapter 4

HEXAGONAL GRID COMPUTATION OF THE

DERIVATIVES OF THE SOLUTION TO THE HEAT

EQUATION BY USING FOURTH ORDER ACCURATE

TWO-STAGE IMPLICIT METHODS

In this chapter, we discuss hexagonal grid computation of the derivatives of the

solution to the heat equation by using fourth order accurate two-stage implicit

methods. We consider first type boundary value problem (Dirichlet problem) for the

heat Equation (1.2) on a rectangle D. In the first stage of the two-stage an implicit

scheme on hexagonal grids given in Buranay and Arshad [37] with O
(
h4 + τ

)
order

of accuracy is used to approximate the solution u(x1,x2, t) . An analogous implicit

method is also given to approximate the derivative of the solution with respect to

time. In the second stage, computation of the first order spatial derivatives and second

order mixed derivatives involving time derivatives of the solution u(x1,x2, t) of (1.2)

are developed. Uniform convergence of the approximate derivatives to the

corresponding exact derivatives ∂u
∂xi

, ∂u
∂t , and ∂2u

∂xi∂t , i = 1,2 with order O
(
h4 + τ

)
of

accuracy on the hexagonal grids are proved.

4.1 Hexagonal Grid Approximation of the Heat Equation and the

Rate of Change by Using Fourth Order Accurate Difference Schemes

We assume that the initial and boundary functions ϕ(x1,x2), φ(x1,x2, t), respectively,

also the heat source function f (x1,x2, t) possess the necessary smoothness and satisfy

the conditions that the BVP(u) in (2.9) has unique solution u∈C
9+α, 9+α

2
x,t

(
QT
)
. We also
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Table 4.1: Basic notations for the heat source function f and ft .
f ft

f k+1
P0

= f (x1,x2, t + τ) f k+1
t,P0

= ∂ f
∂t

∣∣∣
(x1,x2,t+τ)

f k+1
PA

= f (p̂,x2, t + τ) f k+1
t,PA

= ∂ f
∂t

∣∣∣
(p̂,x2,t+τ)

f k
PA

= f (p̂,x2, t) f k
t,PA

= ∂ f
∂t

∣∣∣
(p̂,x2,t)

∂x j f k
PA

= ∂ f
∂x j

∣∣∣
(p̂,x2,t)

, j = 1,2 ∂x j f k
t,PA

= ∂2 f
∂x j∂t

∣∣∣
(p̂,x2,t)

, j = 1,2

∂2
x j

f k+1
P0

= ∂2 f
∂x2

j

∣∣∣∣
(x1,x2,t+τ)

, j = 1,2 ∂2
x j

f k+1
t,P0

= ∂3 f
∂x2

j ∂t

∣∣∣∣
(x1,x2,t+τ)

, j = 1,2

∂2
x2

∂x1 f k+1
P0

= ∂3 f
∂x2

2∂x1

∣∣∣
(x1,x2,t+τ)

∂2
x2

∂x1 f k+1
t,P0

= ∂4 f
∂x2

2∂x1∂t

∣∣∣
(x1,x2,t+τ)

∂2
x1

∂x2 f k+1
P0

= ∂3 f
∂x2

1∂x2

∣∣∣
(x1,x2,t+τ)

∂2
x1

∂x2 f k+1
t,P0

= ∂4 f
∂x2

1∂x2∂t

∣∣∣
(x1,x2,t+τ)

use the following notations in Table 4.1 to denote the values and partial derivatives of

the heat source function f and ft =
∂ f
∂t with respect to the space variables.

4.1.1 Dirichlet Problem of Heat Equation and Difference Problem: Stage

1
(
H4th (u)

)
For computing numerically the solution of the BVP(u) we use the following difference

problem given in Buranay and Arshad [37] and call this Stage 1
(
H4th (u)

)
.

Stage 1
(
H4th (u)

)
Θ̃h,τuk+1

h,τ = Λ̃h,τuk
h,τ + ψ̃ on D0h

γτ,

Θ̃
∗
h,τuk+1

h,τ = Λ̃
∗
h,τuk

h,τ + Γ̃
∗
h,τφ+ ψ̃

∗ on D∗h
γτ,

uh,τ = ϕ(x1,x2) , t = 0 on Dh
,

uh,τ = φ(x1,x2, t) on Sh
T , (4.1)

k = 0, ...,M′ − 1, where ϕ,φ are the initial and boundary functions in (2.9),

respectively, also

ψ̃ = f k+1
P0

+
1
16

h2
(

∂
2
x1

f k+1
P0

+∂
2
x2

f k+1
P0

)
, (4.2)

ψ̃
∗ =

h2

96τω
f k+1
PA

− h2

96τω
f k
PA
− 1

6
f k+1
PA

+ f k+1
P0

+
1
16

h2
(

∂
2
x1

f k+1
P0

+∂
2
x2

f k+1
P0

)
, (4.3)
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Θ̃h,τuk+1 =

(
3
4τ

+
4ω

h2

)
uk+1

P0
+

(
1

24τ
− 2ω

3h2

) 6

∑
i=1

uk+1
Pi

, (4.4)

Λ̃h,τuk =
3
4τ

uk
P0
+

1
24τ

6

∑
i=1

uk
Pi
, (4.5)

Θ̃
∗
h,τuk+1 =

(
17
24τ

+
14ω

3h2

)
uk+1

P0
+

(
1

24τ
− 2ω

3h2

)(
u(p,x2 +

√
3

2
h, t + τ)

+u(p,x2 −
√

3
2

h, t + τ)+u(p+η,x2, t + τ)

)
, (4.6)

Γ̃
∗
h,τφ =

(
− 1

36τ
+

4ω

9h2

)(
φ(p̂,x2 +

√
3

2
h, t + τ)+φ(p̂,x2 −

√
3

2
h, t + τ)

)

+

(
1

18τ
+

16ω

9h2

)
φ(p̂,x2, t + τ)− 1

18τ
φ(p̂,x2, t)

+
1

36τ

(
φ(p̂,x2 +

√
3

2
h, t)+φ(p̂,x2 −

√
3

2
h, t)

)
, (4.7)

Λ̃
∗
h,τuk =

17
24τ

uk
P0
+

1
24τ

(
u(p,x2 +

√
3

2
h, t)

+u(p,x2 −
√

3
2

h, t)+u(p+η,x2, t)

)
, (4.8)

and 
p = h, p̂ = 0,η = h

2 if P0 ∈ D∗lhγτ,

p = a1 −h, p̂ = a1,η =−h
2 if P0 ∈ D∗rhγτ.

(4.9)

4.1.2 Dirichlet Problem for the Rate of Change and Difference Problem: Stage

1
(

H4th
(

∂u
∂t

))
Further, for the computation of ∂u

∂t , we construct the next boundary value problem

denoted by ut =
∂u
∂t which defines the rate of change function

BVP
(

∂u
∂t

)
∂ut

∂t
= ω

(
∂2ut

∂x2
1
+

∂2ut

∂x2
2

)
+ ft (x1,x2, t) on QT ,

ut (x1,x2,0) = ϕ̂ (x1,x2) on D,

ut (x1,x2, t) = φt (x1,x2, t) on ST , (4.10)
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where
ft =

∂ f (x1,x2, t)
∂t

,

ϕ̂ = ω

(
∂2ϕ

∂x2
1
+

∂2ϕ

∂x2
2

)
+ f (x1,x2,0) ,

φt =
∂φ(x1,x2, t)

∂t
, (4.11)

and ϕ,φ are the initial and boundary functions BVP(u) given in (2.9).

Assuming ut ∈C
7+α, 7+α

2
x,t

(
QT
)
, fourth order accurate implicit schemes for the solution

of the BVP
(

∂u
∂t

)
is proposed with the following difference problem. This stage is

called Stage 1
(

H4th
(

∂u
∂t

))
.

Stage 1
(

H4th
(

∂u
∂t

))
Θ̃h,τuk+1

t,h,τ = Λ̃h,τuk
t,h,τ + ψ̃t on D0h

γτ,

Θ̃
∗
h,τuk+1

t,h,τ = Λ̃
∗
h,τuk

t,h,τ + Γ̃
∗
h,τφt + ψ̃

∗
t on D∗h

γτ,

ut,h,τ = ϕ̂, t = 0 on Dh
,

ut,h,τ = φt (x1,x2, t) on Sh
T , (4.12)

k = 0, ...,M′− 1, where the operators Θ̃h,τ, Λ̃h,τ,Θ̃
∗
h,τ, Γ̃∗

h,τ and Λ̃∗
h,τ are presented in

(4.4)–(4.8), respectively, and

ψ̃t = f k+1
t,P0

+
1

16
h2
(

∂
2
x1

f k+1
t,P0

+∂
2
x2

f k+1
t,P0

)
, (4.13)

ψ̃
∗
t =

h2

96τω
f k+1
t,PA

− h2

96τω
f k
t,PA

− 1
6

f k+1
t,PA

+ f k+1
t,P0

+
1

16
h2
(

∂
2
x1

f k+1
t,P0

+∂
2
x2

f k+1
t,P0

)
. (4.14)

4.1.3 M−Matrices and Convergence of Finite Difference Schemes in Stage

1
(
H4th (u)

)
and Stage 1

(
H4th

(
∂u
∂t

))
For a fixed time level k ≥ 0 we present the equations (4.1) and (4.12) in matrix form

with N unknown interior grid points L j, j = 1,2, ...,N, labeled using standard ordering

as
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Ãũk+1 = B̃ũk + τq̃k
u,

Ãũk+1
t = B̃ũk

t + τq̃k
ut
, (4.15)

respectively, where Ã, B̃ ∈ RN×N and ũk, q̃k
u, ũ

k
t , q̃

k
ut
∈ RN and

Ã =

(
Ĕ1 +

1
24

Inc+
ωτ

h2 C̃
)
, B̃ =

(
Ĕ1 +

1
24

Inc
)
, (4.16)

C̃ = Ĕ2 −
2
3

Inc ∈ RN×N . (4.17)

and Inc is the neighboring topology matrix, Ĕ1, Ĕ2 are diagonal matrices with entries

[
Ĕ1
]

j, j =


3
4 if L j ∈ D0hγτ

17
24 if L j ∈ D∗hγτ

, j = 1,2, ...,N, (4.18)

[
Ĕ2
]

j, j =


4 if L j ∈ D0hγτ

14
3 if L j ∈ D∗hγτ

, j = 1,2, ...,N, (4.19)

respectively (see Buranay and Arshad [37]).

Lemma 4.1: (Buranay and Arshad [37])

(a) The matrices Ã and B̃ in (4.15) are symmetric positive definite (spd) matrices

(b) Â = I + ωτ

h2 B̃−1C̃ is spd matrix and
∥∥∥Â

−1
∥∥∥

2
< 1.

Lemma 4.2: (Buranay et al. [53]) The matrix Ã in (4.15) is nonsingular M−matrix

for r = ωτ

h2 ≥ 1
16 .

Proof. Taking into consideration Lemma 4.1, the matrix Ã is a spd matrix. Further,

using the Equations (4.16)–(4.19), Ã is strictly diagonally dominant matrix with

positive diagonal entries. Furthermore, off-diagonal entries are non-positive for

r = ωτ

h2 ≥ 1
16 . Therefore, it is nonsingular M−matrix.
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Let

ξ
u
h,τ = uh,τ −u on Dhγτ (4.20)

ξ
ut
h,τ = ut,h,τ −ut on Dhγτ (4.21)

From (4.1) and (4.20) the error function (4.20) satisfies the following system as given

in Buranay and Arshad: [37]

Θ̃h,τξ
u,k+1
h,τ = Λ̃h,τξ

u,k
h,τ + Ψ̃

u,k
1 on D0h

γτ,

Θ̃
∗
h,τξ

u,k+1
h,τ = Λ̃

∗
h,τξ

u,k
h,τ + Ψ̃

u,k
2 on D∗h

γτ,

ξ
u
h,τ = 0, t = 0 on Dh

,

ξ
u
h,τ = 0 on Sh

T , (4.22)

where

Ψ̃
u,k
1 = Λ̃h,τuk − Θ̃h,τuk+1 + ψ̃, (4.23)

Ψ̃
u,k
2 = Λ̃

∗
h,τuk − Θ̃

∗
h,τuk+1 + Γ̃

∗
h,τφ+ ψ̃

∗, (4.24)

and ψ̃, ψ̃∗ and φ are as presented in (4.1). Analogously, using (4.12) and (4.21) the

error function (4.21) satisfies the following system:

Θ̃h,τξ
ut ,k+1
h,τ = Λ̃h,τξ

ut ,k
h,τ + Ψ̃

ut ,k
1 on D0h

γτ,

Θ̃
∗
h,τξ

ut ,k+1
h,τ = Λ̃

∗
h,τξ

ut ,k
h,τ + Ψ̃

ut ,k
2 on D∗h

γτ,

ξ
ut
h,τ = 0, t = 0 on Dh

,

ξ
ut
h,τ = 0 on Sh

T , (4.25)

where

Ψ̃
ut ,k
1 = Λ̃h,τuk

t − Θ̃h,τuk+1
t + ψ̃t , (4.26)

Ψ̃
ut ,k
2 = Λ̃

∗
h,τuk

t − Θ̃
∗
h,τuk+1

t + Γ̃
∗
h,τφt + ψ̃

∗
t , (4.27)

and φt , ψ̃t , and ψ̃∗
t are the given functions in (4.11), (4.13) and (4.14) respectively.
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Further, the following systems are considered:

Θ̃h,τŵk+1
h,τ = Λ̃h,τŵk

h,τ + κ̂
k
1 on D0h

γτ,

Θ̃
∗
h,τŵk+1

h,τ = Λ̃
∗
h,τŵk

h,τ + Γ̃
∗
h,τŵφ,h,τ + κ̂

k
2 on D∗h

γτ,

ŵh,τ = ŵϕ,h,τ, t = 0 on Dh
,

ŵh,τ = ŵφ,h,τ on Sh
T , (4.28)

Θ̃h,τwk+1
h,τ = Λ̃h,τwk

h,τ +κ
k
1 on D0h

γτ,

Θ̃
∗
h,τwk+1

h,τ = Λ̃
∗
h,τwk

h,τ + Γ̃
∗
h,τwφ,h,τ +κ

k
2 on D∗h

γτ,

wh,τ = wϕ,h,τ, t = 0 on Dh
,

wh,τ = wφ,h,τ on Sh
T , (4.29)

for k = 0, ...,M′−1, where κ̂k
1, κ̂

k
2 and κ

k
1,κ

k
2 are given functions. The algebraic systems

(4.28) and (4.29) at a fixed time level k ≥ 0 may be given in matrix representation as

Ãŵk+1 = B̃ŵk + τκ̂
k, (4.30)

Ãwk+1 = B̃wk + τκ
k, (4.31)

accordingly. In these equations, ŵk,wk, κ̂k,κk ∈ RN and the matrices Ã and B̃ are given

in (4.16).

Lemma 4.3: (Buranay et al. [53]) Let the solutions of (4.30) and (4.31) be presented

by ŵk+1 and wk+1, respectively, for r = ωτ

h2 ≥ 1
16 . If

w0 ≥ 0 and κ
k ≥ 0 (4.32)∣∣ŵ0∣∣≤ w0, (4.33)∣∣∣κ̂k

∣∣∣≤ κ
k, (4.34)

for k = 0, ...,M′−1 then ∣∣∣ŵk+1
∣∣∣≤ wk+1, k = 0, ...,M′−1, (4.35)
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Proof. From Lemma 4.2, when r = ωτ

h2 ≥ 1
16 the matrix Ã is nonsingular M−matrix

therefore, Ã−1 ≥ 0. Furthermore, from (4.16) B̃ ≥ 0 and using (4.32) it follows that

κ
k ≥ 0, k = 0, ...,M′−1 and w0 ≥ 0. Further, assuming wk ≥ 0 and from induction we

achieve
wk+1 = Ã−1B̃wk + τA−1

κ
k ≥ 0, (4.36)

which gives wk+1 ≥ 0 for k = 0, ...,M′−1. Next, assume that
∣∣ŵk
∣∣≤ wk using (4.30)–

(4.34), and by induction it follows that

ŵk+1 = Ã−1B̃ŵk + τÃ−1
κ̂

k (4.37)∣∣∣ŵk+1
∣∣∣≤ Ã−1B̃

∣∣∣ŵk
∣∣∣+ τÃ−1

∣∣∣κ̂k
∣∣∣

≤ Ã−1B̃wk + τÃ−1
κ

k = wk+1, for k = 0, ...,M′−1. (4.38)

Remark 4.1: Writing the implicit schemes on hexagonal grids for the problems (4.1)

and (4.12) in the canonical form it follows that the maximum principle holds when r =

ωτ

h2 ≥ 1
16 . Further, Lemma 4.3 is the consequence of comparison theorem (see Chapter

4, Section 4.2 Theorem 1 and Theorem 2 in Samarskii [64]) applied to the systems

(4.28), (4.29).

Additionally, let

µ1 (u) = max

{
max
QT

∣∣∣∣ ∂5u
∂x4

1∂t

∣∣∣∣ ,max
QT

∣∣∣∣ ∂5u
∂x4

2∂t

∣∣∣∣ ,max
QT

∣∣∣∣ ∂5u
∂x2

1∂x2
2∂t

∣∣∣∣ ,
max
QT

∣∣∣∣ ∂6u
∂x4

1∂x2
2

∣∣∣∣ ,max
QT

∣∣∣∣ ∂6u
∂x2

1∂x4
2

∣∣∣∣ ,max
QT

∣∣∣∣∂6u
∂x6

1

∣∣∣∣ ,max
QT

∣∣∣∣∂6u
∂x6

2

∣∣∣∣
}
, (4.39)

µ2 (u) = max
QT

∣∣∣∣∂2u
∂t2

∣∣∣∣ . (4.40)

Theorem 4.1: (Buranay et al. [53]) For the solution of the systems (4.22) and (4.25)

when r = ωτ

h2 ≥ 1
16 , the following pointwise error estimations hold true:
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∣∣∣ξu
h,τ (x1,x2, t)

∣∣∣≤ dΩ̃1 (h,τ)ρ(x1,x2, t) on Dhγτ, (4.41)∣∣∣ξut
h,τ (x1,x2, t)

∣∣∣≤ dΩ̃t,1 (h,τ)ρ(x1,x2, t) on Dhγτ, (4.42)

respectively, where

Ω̃1 (h,τ) =
3
5

β̃τ+

(
3

160
+

47
2880

ω

)
α̃h4, (4.43)

Ω̃t,1 (h,τ) =
3
5

β̃tτ+

(
3

160
+

47
2880

ω

)
α̃th4, (4.44)

and α̃ = µ1(u), α̃t = µ1(ut) and β̃ = µ2(u), β̃t = µ2(ut) and d is as given in (2.60) and

u is the solution of BVP(u) and ρ(x1,x2, t) is the function giving the distance from the

considered hexagonal grid point (x1,x2, t) ∈ Dhγτ to the surface of QT .

Proof. We give the proof of (4.41) by considering the auxiliary system

Θ̃h,τξ̂
u,k+1
h,τ = Λ̃h,τξ̂

u,k
h,τ + Ω̃1 (h,τ) on D0h

γτ,

Θ̃
∗
h,τξ̂

u,k+1
h,τ = Λ̃

∗
h,τξ̂

u,k
h,τ +

5
6

Ω̃1 (h,τ) on D∗h
γτ

ξ̂
u
h,τ = ξ̂

u
ϕ,h,τ = 0, t = 0 on Dh

,

ξ̂
u
h,τ = ξ̂

u
φ,h,τ = 0 on Sh

T , (4.45)

and the majorant functions

ξ
u
1 (x1,x2, t) =

1
2ω

Ω̃1 (h,τ)
(
a1x1 − x2

1
)
≥ 0 on Dhγτ, (4.46)

ξ
u
2 (x1,x2, t) =

1
2ω

Ω̃1 (h,τ)
(
a2x2 − x2

2
)
≥ 0 on Dhγτ, (4.47)

ξ
u
3 (x1,x2, t) = Ω̃1 (h,τ) t ≥ 0 on Dhγτ, (4.48)

which ξ
u
l (x1,x2, t) , satisfy the following difference problem for l = 1,2,3,

respectively.

Θ̃h,τξ
u,k+1
l,h,τ = Λ̃h,τξ

u,k
l,h,τ + Ω̃1 (h,τ) on D0h

γτ,

Θ̃
∗
h,τξ

u,k+1
l,h,τ = Λ̃

∗
h,τξ

u,k
l,h,τ + Γ̃

∗
h,τξ

u∗
l,φ,h,τ +

5
6

Ω̃1 (h,τ) on D∗h
γτ,
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ξ
u
l,h,τ = ξ

u
l,ϕ,h,τ = ξ

u
l (x1,x2,0)≥ 0, t = 0 on Dh

,

ξ
u
l,h,τ = ξ

u∗
l,φ,h,τ ≥ 0 on Sh

T . (4.49)

For establishing (4.49) the following are used. First for regular interior grid points we

have:

Θ̃h,τξ
u,k+1
1,h,τ =

1
2ω

Ω̃1 (h,τ)

[(
3
4τ

+
4ω

h2

)(
a1x1 − x2

1
)
+

(
1

24τ
− 2ω

3h2

)(
a1

(
x1 +

h
2

)
−
(

x1 +
h
2

)2

+a1

(
x1 −

h
2

)
−
(

x1 −
h
2

)2

+a1 (x1 −h)− (x1 −h)2

+a1

(
x1 −

h
2

)
−
(

x1 −
h
2

)2

+a1

(
x1 +

h
2

)
−
(

x1 +
h
2

)2

+a1 (x1 +h)− (x1 +h)2
)]

,

=
1

2ω
Ω̃1 (h,τ)

[
a1x1

τ
−

x2
1
τ
− h2

8τ
+2ω

]
. (4.50)

Λ̃h,τξ
u,k
1,h,τ =

1
2ω

Ω̃1 (h,τ)

[
3
4τ

(
a1x1 − x2

1
)
+

1
24τ

(
6a1x1 −6x2

1 −3h2)]

=
1

2ω
Ω̃1 (h,τ)

[
a1x1

τ
−

x2
1
τ
− h2

8τ

]
. (4.51)

Using equations (4.50) and (4.51) we can show that for i = 1

Θ̃h,τξ
u,k+1
1,h,τ − Λ̃h,τξ

u,k
1,h,τ =

1
2ω

Ω̃1 (h,τ)

[
a1x1

τ
−

x2
1
τ
− h2

8τ
− a1x1

τ
+

x2
1
τ

+
h2

8τ
+2ω

]

=
1

2ω
Ω̃1 (h,τ)×2ω = Ω̃1 (h,τ) .

For i = 2, we obtain
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Θ̃h,τξ
u,k+1
2,h,τ =

1
2ω

Ω̃1 (h,τ)

[(
3
4τ

+
4ω

h2

)(
a2x2 − x2

2
)

+

(
1

24τ
− 2ω

3h2

)(
2

a2

(
x2 +

√
3h
2

)
−

(
x2 +

√
3h
2

)2


+2

a2

(
x2 −

√
3h
2

)
−

(
x2 −

√
3h
2

)2
+2

(
a2x2 − x2

2
))]

,

=
1

2ω
Ω̃1 (h,τ)

[
a2x2

τ
−

x2
2
τ
− h2

8τ
+2ω

]
, (4.52)

Λ̃h,τξ
u,k
2,h,τ =

1
2ω

Ω̃1 (h,τ)

[
3
4τ

(
a2x2 − x2

2
)
+

1
24τ

(
6a2x2 −6x2

2 −3h2)]

=
1

2ω
Ω̃1 (h,τ)

[
a2x2

τ
−

x2
2
τ
− h2

8τ

]
. (4.53)

Using (4.52) and (4.53) gives

Θ̃h,τξ
u,k+1
2,h,τ − Λ̃h,τξ

u,k
2,h,τ =

1
2ω

Ω̃1 (h,τ)

[
a2x2

τ
−

x2
2
τ
− h2

8τ
− a2x2

τ
+

x2
2
τ

+
h2

8τ
+2ω

]

=
1

2ω
Ω̃1 (h,τ)×2ω = Ω̃1 (h,τ) .

Similarly, for i = 3 we have

Θ̃h,τξ
u,k+1
3,h,τ = Ω̃1 (h,τ)

[(
3
4τ

+
4ω

h2

)
(t + τ)+

(
1

24τ
− 2ω

3h2

)
(6(t + τ))

]

= Ω̃1 (h,τ)

[
t
τ
+1

]
(4.54)

Λ̃h,τξ
u,k
3,h,τ = Ω̃1 (h,τ)

[(
3
4τ

t +
1

24τ
6t
)]

= Ω̃1 (h,τ)

[
3t
4τ

+
t

4τ

]

= Ω̃1 (h,τ)

[
t
τ

]
. (4.55)

Using (4.54) and (4.55) yields

Θ̃h,τξ
u,k+1
3,h,τ − Λ̃h,τξ

u,k
3,h,τ = Ω̃1 (h,τ)

[
t
τ
+1

]
− Ω̃1 (h,τ)

[
t
τ

]
= Ω̃1 (h,τ) .

Next for the irregular hexagons with a left ghost point for i = 1, the following are
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achieved.

Θ̃
∗
h,τξ

u,k+1
1,h,τ =

1
2ω

Ω̃1 (h,τ)

[(
17
24τ

+
14ω

3h2

)(
a1x1 − x2

1
)
+

(
1

24τ
− 2ω

3h2

)(
a1h−h2

+a1h−h2 +
3
2

a1h− 9
4

h2
)]

=
1

2ω
Ω̃1 (h,τ)

[
17a1x1

24τ
−

17x2
1

24τ
+

14ωa1x1

3h2 −
14ωx2

1
3h2 +

7a1h
48τ

− 17h2

96τ
− 7ωa1h

3h2 +
17ω

6

]
. (4.56)

Λ̃
∗
h,τξ

u,k
1,h,τ =

1
2ω

Ω̃1 (h,τ)

[
17
24τ

(
a1x1 − x2

1
)
+

1
24τ

(
a1h−h2 +a1h−h2

+
3
2

a1h− 9
4

h2
)]

=
1

2ω
Ω̃1 (h,τ)

[
17a1x1

24τ
−

17x2
1

24τ
+

7a1h
48τ

− 17h2

96τ

]
, (4.57)

Γ̃
∗
h,τξ

u∗
1,φ,h,τ = 0. (4.58)

Using equations (4.56), (4.57), and (4.58) with substituting x1 =
h
2 for i = 1 we have

Θ̃
∗
h,τξ

u,k+1
1,h,τ − Λ̃

∗
h,τξ

u,k
1,h,τ − Γ̃

∗
h,τξ

u∗
1,φ,h,τ =

5
6

Ω̃1(h,τ).

Consequently, for i = 2, the following are valid:

Θ̃
∗
h,τξ

u,k+1
2,h,τ =

1
2ω

Ω̃1 (h,τ)

[(
17
24τ

+
14ω

3h2

)(
a2

(
x2 +

√
3h
2

)

−

(
x2 +

√
3h
2

)2

+a2

(
x2 −

√
3h
2

)
−

(
x2 −

√
3h
2

)2

+a2x2 − x2
2

)]
,

=
1

2ω
Ω̃1 (h,τ)

[
20a2x2

24τ
−

20x2
2

24τ
+

8ωa2x2

3h2 −
8ωx2

2
3h2 − h2

16τ
+ω

]
(4.59)

Λ̃
∗
h,τξ

u,k
2,h,τ =

1
2ω

Ω̃1 (h,τ)

[
17
24τ

(
a2x2 − x2

2
)
+

1
24τ

−
(

3a2x2 −3x2
2 −

3
2

h2
)]
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=
1

2ω
Ω̃1 (h,τ)

[
20a2x2

24τ
−

20x2
2

24τ
− h2

16τ

]
, (4.60)

Γ̃
∗
h,τξ

u∗
2,φ,h,τ =

1
2ω

Ω̃1 (h,τ)

[(
− 1

36τ
+

4ω

9h2

)(
a2

(
x2 +

√
3h
2

)

−

(
x2 +

√
3h
2

)2

+a2

(
x2 −

√
3h
2

)
−

(
x2 −

√
3h
2

)2

+a2x2 − x2
2

)
+

(
1

18τ
+

16ω

9h2

)(
a2x2 − x2

2
)

+
1

36τ

(
a2

(
x2 +

√
3h
2

)
−

(
x2 +

√
3h
2

)2

+a2

(
x2 −

√
3h
2

)
−

(
x2 −

√
3h
2

)2

+a2x2 − x2
2

)

− 1
18τ

(
a2x2 − x2

2
)]

=
1

2ω
Ω̃1 (h,τ)

[
8ωa2x2

3h2 −
8ωx2

2
3h2 − 2

3
ω

]
. (4.61)

Using equations (4.59), (4.60), and (4.61) we get

Θ̃
∗
h,τξ

u,k+1
2,h,τ − Λ̃

∗
h,τξ

u,k
2,h,τ − Γ̃

∗
h,τξ

u∗
2,φ,h,τ =

1
2ω

Ω̃1 (h,τ)

[
20a2x2

24τ
−

20x2
2

24τ

+
8ωa2x2

3h2 −
8ωx2

2
3h2 − h2

16τ
+ω− 20a2x2

24τ
+

20x2
2

24τ
+

h2

16τ

− 8ωa2x2

3h2 +
8ωx2

2
3h2 +

2
3

ω

]

=
1

2ω
Ω̃1 (h,τ)

[
ω+

2ω

3

]
=

5
6

Ω̃1 (h,τ) ,

Next, for i = 3, the following is obtained.

Θ̃
∗
h,τξ

u,k+1
3,h,τ = Ω̃1 (h,τ)(t + τ)

[(
17
24τ

+
14ω

3h2

)
+3
(

1
24τ

− 2ω

3h2

)]

= Ω̃1 (h,τ)(t + τ)

[
20
24τ

+
8ω

3h2

]
, (4.62)

Λ̃
∗
h,τξ

u,k
3,h,τ = Ω̃1 (h,τ) t

[
17
24τ

+
3

24τ

]
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= Ω̃1 (h,τ) t

[
20
24τ

]
(4.63)

Γ̃
∗
h,τξ

u∗
3,φ,h,τ = Ω̃1 (h,τ)(t + τ)

[
2
(
− 1

36τ
+

4ω

9h2

)
+3
(

1
18τ

+
16ω

9h2

)]

+ Ω̃1 (h,τ) t

[(
2

36τ
− 1

18τ

)]

= Ω̃1 (h,τ)(t + τ)

[
8ω

3h2

]
. (4.64)

Using (4.62), (4.63), and (4.64), it follows that

Θ̃
∗
h,τξ

u,k+1
3,h,τ − Λ̃

∗
h,τξ

u,k
3,h,τ − Γ̃

∗
h,τξ

u∗
3,φ,h,τ =

5
6

Ω̃1 (h,τ) .

In a similar way we can show that second equation of (4.49) holds true on D∗rhγτ.

Therefore, difference problems (4.45) and (4.49) in matrix form are

Ãξ̂
u,k+1 = B̃ξ̂

u,k + τη̂
u,k, (4.65)

Ãξ
u,k+1
i = B̃ξ

u,k
i + τη

u,k
i , i = 1,2,3, (4.66)

accordingly, and Ã and B̃ are as given in (4.16) and η
u,k
i ,ξ

u,k
i , i = 1,2,3 and ξ̂u,k, η̂u,k,∈

RN satisfying ξ
u,0
i ≥ 0 ,

∣∣∣ξ̂u,0
∣∣∣ ≤ ξ

u,0
i , and η

u,k
i ≥ 0, and

∣∣η̂u,k
∣∣ ≤ η

u,k
i , i = 1,2,3, for

k = 0, ...,M′− 1. Using that Ω̃1 (h,τ) ≥
∣∣∣Ψ̃u,k

1

∣∣∣ on D0hγτ, and 5
6Ω̃1 (h,τ) ≥

∣∣∣Ψ̃u,k
2

∣∣∣ on

D∗hγτ and on the basis of Lemma 4.3 we obtain∣∣∣ξu
h,τ (x1,x2, t)

∣∣∣≤ min
i=1,2,3

ξ
u
i (x1,x2, t)≤ dΩ̃1 (h,τ)ρ(x1,x2, t) on Dhγτ. (4.67)

The proof of (4.42) is analogous and follows from Lemma 4.3 by taking the majorant

functions

ξ
ut
1 (x1,x2, t) =

1
2ω

Ω̃t,1 (h,τ)
(
a1x1 − x2

1
)
≥ 0 on Dhγτ, (4.68)

ξ
ut
2 (x1,x2, t) =

1
2ω

Ω̃t,1 (h,τ)
(
a2x2 − x2

2
)
≥ 0 on Dhγτ, (4.69)

ξ
ut
3 (x1,x2, t) = Ω̃t,1 (h,τ) t ≥ 0 on Dhγτ, (4.70)

where Ω̃t,1 (h,τ) is as given in (4.44).
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4.2 Second Stages of the Implicit Methods Approximating ∂u
∂x1

and
∂2u

∂x1∂t with O
(
h4 + τ

)
Order of Convergence

4.2.1 Hexagonal Grid Approximation to ∂u
∂x1

: Stage 2
(

H4th
(

∂u
∂x1

))
For obtaining fourth order accurate numerical approximation to v = ∂u

∂x1
first we apply

the implicit method given in Stage 1
(
H4th (u)

)
and compute the approximate solution

uh,τ. Next, we denote pi =
∂u
∂x1

on ST γi, i = 1,2, ...,5 and use the problem
(

BV P
(

∂u
∂x1

))
given in Chapter 2.

Taking into consideration u ∈C
9+α, 9+α

2
x,t

(
QT
)
, we require v ∈C

8+α,4+α

2
x,t

(
QT
)
. Further,

we take

p4th

1h =



1
12h

(
−25u(0,x2, t)+48uh,τ (h,x2, t)

− 36uh,τ (2h,x2, t)+16uh,τ (3h,x2, t)

− 3uh,τ (4h,x2, t)
)

if P0 ∈ D0hγτ,

1
840h

(
−2816u(0,x2, t)+3675uh,τ

(h
2 ,x2, t

)
− 1225uh,τ

(3h
2 ,x2, t

)
+441uh,τ

(5h
2 ,x2, t

)
−75uh,τ

(7h
2 ,x2, t

))
if P0 ∈ D∗lhγτ,

on Sh
T γ1, (4.71)

p4th

3h =



1
12h

(
25u(a1,x2, t)−48uh,τ (a1 −h,x2, t)

+ 36uh,τ (a1 −2h,x2, t)−16uh,τ (a1 −3h,x2, t)

+ 3uh,τ (a1 −4h,x2, t)
)

if P0 ∈ D0hγτ, ,

1
840h

(
2816u(a1,x2, t)−3675uh,τ

(
a1 − h

2 ,x2, t
)

+ 1225uh,τ
(
a1 − 3h

2 ,x2, t
)
−441uh,τ

(
a1 − 5h

2 ,x2, t
)

+ 75uh,τ
(
a1 − 7h

2 ,x2, t
))

if P0 ∈ D∗rhγτ

on Sh
T γ3, (4.72)

pih =
∂φ(x1,x2, t)

∂x1
on Sh

T γi, i = 2,4, (4.73)

p5h =
∂ϕ(x1,x2)

∂x1
on Sh

T γ5, (4.74)
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where ϕ(x1,x2) , φ(x1,x2, t) are as in (2.9), and uh,τ is obtained by using Stage

1
(
H4th (u)

)
. The derivation of the forward difference formula (4.71) for the irregular

grid points which have a center h
2 units away from the boundary x1 = 0 is as follows:

A : u(x1,x2, t)

B : u(x1 +
h
2 ,x2, t)

C : u(x1 +
3h
2 ,x2, t)

D : u(x1 +
5h
2 ,x2, t)

E : u(x1 +
7h
2 ,x2, t)

B : u
(

x1 +
h
2
,x2, t

)
= u(x1,x2, t)+

h
2

∂x1u(x1,x2, t)

+
h2

8
∂

2
x1

u(x1,x2, t)+
h3

48
∂

3
x1

u(x1,x2, t)

+
h4

384
∂

4
x1

u(x1,x2, t)+
h5

3840
∂

5
x1

u(x1 +υ1h,x2, t) , (4.75)

C : u
(

x1 +
3h
2
,x2, t

)
= u(x1,x2, t)+

3h
2

∂x1u(x1,x2, t)

+
9h2

8
∂

2
x1

u(x1,x2, t)+
27h3

48
∂

3
x1

u(x1,x2, t)

+
81h4

384
∂

4
x1

u(x1,x2, t)+
243h5

3840
∂

5
x1

u(x1 +υ2h,x2, t) (4.76)

D : u
(

x1 +
5h
2
,x2, t

)
= u(x1,x2, t)+

5h
2

∂x1u(x1,x2, t)

+
25h2

8
∂

2
x1

u(x1,x2, t)+
125h3

48
∂

3
x1

u(x1,x2, t)

+
625h4

384
∂

4
x1

u(x1,x2, t)+
3125h5

3840
∂

5
x1

u(x1 +υ3h,x2, t) , (4.77)

E : u
(

x1 +
7h
2
,x2, t

)
= u(x1,x2, t)+

7h
2

ux1 (x1,x2, t)

+
49h2

8
∂

2
x1

u(x1,x2, t)+
343h3

48
∂

3
x1

u(x1,x2, t)

+
2401h4

384
∂

4
x1

u(x1,x2, t)+
16807h5

3840
∂

5
x1

u(x1 +υ4h,x2, t) , (4.78)

where, 0 < υi <
1
2 + (i − 1) for i = 1, ...,4. By multiplying the equations (4.75),

(4.76), (4.77) and (4.78) with 35
8 ,

−35
24 , 21

40 −
5

56 respectively and adding them we get the
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following:

35
8

u
(

x1 +
h
2
,x2, t

)
− 35

24
u
(

x1 +
3h
2
,x2, t

)
+

21
40

u
(

x1 +
5h
2
,x2, t

)
=− 5

56
u
(

x1 +
7h
2
,x2, t

)
− 352

105
u(x1,x2, t)

+h∂x1u(x1,x2, t)−
7h5

128
∂

5
x1

u(x1 + υ̃h,x2, t) . (4.79)

where, 0 < υ̃ < 7
2 . Simplifying yields

1
840

(
3675u

(
x1 +

h
2
,x2, t

)
−1225u

(
x1 +

3h
2
,x2, t

)
+441u

(
x1 +

5h
2
,x2, t

)
−75u

(
x1 +

7h
2
,x2, t

)
−2816u(x1,x2, t)

)
= h∂x1u(x1,x2, t)−

7h5

128
∂

5
x1

u(x1 + υ̃h,x2, t) (4.80)

hence

1
840h

(
−2816u(x1,x2, t)+3675u

(
x1 +

h
2
,x2, t

)
−1225u

(
x1 +

5h
2
,x2, t

)
+441u

(
x1 +

5h
2
,x2, t

)
−75u

(
x1 +

7h
2
,x2, t

))
= ∂x1u(x1,x2, t)+O

(
h4) (4.81)

Lemma 4.4: (Buranay et al. [53]) Let u be the solution of BVP(u) in (2.9) and uh,τ be

the solution of (4.1) in Stage 1
(
H4th (u)

)
. Then, it holds that∣∣∣p4th

ih
(
uh,τ
)
− p4th

ih (u)
∣∣∣≤ 15dΩ̃1 (h,τ) , i = 1,3, (4.82)

where Ω̃1 (h,τ) in (4.43) and d in (2.60) was defined.

Proof. Using (4.71), (4.72) and from Theorem 4.1, and using (4.41) when P0 ∈ D0hγτ

gives
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∣∣∣p4th

ih
(
uh,τ
)
− p4th

ih (u)
∣∣∣≤ 1

12h

(
48hdΩ̃1 (h,τ)+36(2h)dΩ̃1 (h,τ)

+ 16(3h)dΩ̃1 (h,τ)+3(4h)dΩ̃1 (h,τ)
)

≤ 15dΩ̃1 (h,τ) , i = 1,3, if P0 ∈ D0h
γτ, (4.83)

where Ω̃1 (h,τ) in (4.43) and d in (2.60) was defined. In the case P0 ∈ D∗hγτ it follows

that ∣∣∣p4th

ih
(
uh,τ
)
− p4th

ih (u)
∣∣∣≤ 1

840h

(
3675

h
2

dΩ̃1 (h,τ)+1225
3h
2

dΩ̃1 (h,τ)

+ 441
5h
2

dΩ̃1 (h,τ)+75
7h
2

dΩ̃1 (h,τ)
)

≤ 6dΩ̃1 (h,τ) , i = 1,3 if P0 ∈ D∗h
γτ. (4.84)

Therefore, (4.82) follows.

Lemma 4.5: (Buranay et al. [53]) Let uh,τ be the solution of the problem (4.1) in Stage

1
(
H4th (u)

)
. Then, it holds that

max
Sh

T γ1∪Sh
T γ3

∣∣∣p4th

ih
(
uh,τ
)
− pi

∣∣∣≤ M̃1h4 +15dΩ̃1 (h,τ) , i = 1,3, (4.85)

where M̃1 =
1
5max

QT

∣∣∣∂5u
∂x5

1

∣∣∣ and Ω̃1 (h,τ) in (4.43) and d in (2.60) was defined.

Proof. On the basis of the assumption u ∈C
9+α, 9+α

2
x,t

(
QT
)
, it follows that at the points

(0,x2,kτ) ∈ Sh
T γ1 and (a1,x2,kτ) ∈ Sh

T γ3 of each line segment[(
x1,η

√
3

2
h,kτ

)
: 0 ≤ x1 ≤ a1,0 ≤ x2 = η

√
3

2
h ≤ a2, 0 ≤ t = kτ ≤ T

]
,

we obtain fourth order approximation of ∂u
∂x1

by the formulae (4.71) and (4.72). From

the truncation error formula (see Burden and Faires [63]) results

max
Sh

T γ1∪Sh
T γ3

∣∣∣p4th

ih (u)− pi

∣∣∣≤ h4

5
max
QT

∣∣∣∣∂5u
∂x5

1

∣∣∣∣ , i = 1,3 if P0 ∈ D0h
γτ. (4.86)

Analogously,

max
Sh

T γ1∪Sh
T γ3

∣∣∣p4th

ih (u)− pi

∣∣∣≤ 7h4

128
max
QT

∣∣∣∣∂5u
∂x5

1

∣∣∣∣ , i = 1,3 if P0 ∈ D∗h
γτ, (4.87)

Using Lemma 4.4 and the estimations (4.86) and (4.87) follows (4.85).
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Subsequently, for a fourth order numerical solution of BVP
(

∂u
∂x1

)
we propose the

following problem and call this Stage 2
(

H4th
(

∂u
∂x1

))
.

Stage 2
(

H4th
(

∂u
∂x1

))
Θ̃h,τvk+1

h,τ = Λ̃h,τvk
h,τ + D̃x1ψ̃ on D0h

γτ,

Θ̃
∗
h,τvk+1

h,τ = Λ̃
∗
h,τvk

h,τ + Γ̃
∗
h,τ p4th

1h
(
uh,τ
)
+ D̃x1ψ̃

∗ on D∗lh
γτ

Θ̃
∗
h,τvk+1

h,τ = Λ̃
∗
h,τvk

h,τ + Γ̃
∗
h,τ p4th

3h
(
uh,τ
)
+ D̃x1ψ̃

∗ on D∗rh
γτ

vh,τ = p4th

ih
(
uh,τ
)

on Sh
T γi, i = 1,3,

vh,τ = pih on Sh
T γi, i = 2,4,5 (4.88)

where p4th

1h , p4th

3h , pih , i = 2,4,5 are defined by (4.71)–(4.74) and the operators Θ̃h,τ,

Λ̃h,τ,Θ̃
∗
h,τ, Γ̃

∗
h,τ and Λ̃∗

h,τ are given in (4.4)-(4.8), respectively. Furthermore,

D̃x1ψ̃ = ∂x1 f k+1
P0

+
1
16

h2
(

∂
3
x1

f k+1
P0

+∂
2
x2

∂x1 f k+1
P0

)
, (4.89)

D̃x1ψ̃
∗ =

h2

96τω
∂x1 f k+1

PA
− h2

96τω
∂x1 f k

PA
− 1

6
∂x1 f k+1

PA
+∂x1 f k+1

P0

+
1
16

h2
(

∂
3
x1

f k+1
P0

+∂
2
x2

∂x1 f k+1
P0

)
(4.90)

Let

ξ
v
h,τ = vh,τ − v on Dhγτ, (4.91)

where v = ∂u
∂x1

. From (4.88) and (4.91) we have

Θ̃h,τξ
v,k+1
h,τ = Λ̃h,τξ

v,k
h,τ + Ψ̃

v,k
1 on D0h

γτ,

Θ̃
∗
h,τξ

v,k+1
h,τ = Λ̃

∗
h,τξ

v,k
h,τ + Γ̃

∗
h,τξ

∗v
h,τ + Ψ̃

v,k
2 on D∗h

γτ

ξ
v
h,τ = 0 on Sh

T γi, i = 2,4,5,

ξ
v
h,τ = ξ

∗v
h,τ = p4th

ih
(
uh,τ
)
− pi on Sh

T γi, i = 1,3. (4.92)

where
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Ψ̃
v,k
1 = Λ̃h,τvk − Θ̃h,τvk+1 + D̃x1ψ̃, (4.93)

Ψ̃
v,k
2 = Λ̃

∗
h,τvk − Θ̃

∗
h,τvk+1 + Γ̃

∗
h,τ pi + D̃x1ψ̃

∗, i = 1,3. (4.94)

Next, let θ̃1 = µ1(v), σ̃1 = µ2(v), where µ1,µ2 are given in (4.39), (4.40), respectively,

and

θ̃ = max

{
θ̃1,

M̃1

ρ
+15

d
ρ

(
3

160
+

47ω

2880

)
α̃

}
, (4.95)

σ̃ = max
{

σ̃1,15dβ̃

}
, (4.96)

where α̃ = µ1(u), β̃ = µ2(u) and d in (2.60), also M̃1 is as given in Lemma 4.5 and

ρ = 3
640ω

+ 47
11520 .

Theorem 4.2: (Buranay et al. [53]) The solution vh,τ of the finite difference problem

given in Stage 2
(

H4th
(

∂u
∂x1

))
satisfies

max
Dhγτ

∣∣vh,τ − v
∣∣≤ 6

5
σ̃(T +1)τ+

(
3

640ω
+

47
11520

)(
1+a2

1 +a2
2
)

θ̃h4, (4.97)

for r = ωτ

h2 ≥ 1
16 where θ̃, σ̃ are as given in (4.95), (4.96), respectively, and v = ∂u

∂x1
is

the exact solution of BVP
(

∂u
∂x1

)
.

Proof. Consider the next system

Θ̃h,τξ̂
v,k+1
h,τ = Λ̃h,τξ̂

v,k
h,τ + Ω̃2 (x1) on D0h

γτ,

Θ̃
∗
h,τξ̂

v,k+1
h,τ = Λ̃

∗
h,τξ̂

v,k
h,τ + Γ̃

∗
h,τξ̂

v∗
h,τ + Ω̃2 (x1)−

1
6

Ω̃2 (p̂) on D∗h
γτ,

ξ̂
v
h,τ = 0 on Sh

T γi, i = 2,4,5,

ξ̂
v
h,τ = ξ̂

v∗
h,τ = p4th

ih
(
uh,τ
)
− pi on Sh

T γi, i = 1,3, (4.98)

where
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Ω̃2 (x1) =
3

5a1
σ̃τ(2a1 − x1)+

(
3

160
+

47
2880

ω

)
θ̃h4,

≥ 3
5

σ̃τ+

(
3

160
+

47
2880

ω

)
θ̃h4 ≥

∣∣∣Ψ̃v,k
1

∣∣∣ , (4.99)

Ω̃2 (x1)−
1
6

Ω̃2 (p̂) =


σ̃τ

(
1− 3h

10a1

)
+
( 1

64 +
47

3456ω
)

θ̃h4 if P0 ∈ D∗lhγτ,

σ̃τ

(
1
2 +

3h
10a1

)
+
( 1

64 +
47

3456ω
)

θ̃h4 if P0 ∈ D∗rhγτ,

≥
∣∣∣Ψ̃v,k

2

∣∣∣ . (4.100)

Further, x1 = h
2 and p̂ = 0 if P0 ∈ D∗lhγτ and x1 = a1 − h

2 , p̂ = a1 if P0 ∈ D∗rhγτ. We

take the majorant function

ξ
v
(x1,x2, t) = ξ

v
1 (x1,x2, t)+ξ

v
2 (x1,x2, t) , (4.101)

where

ξ
v
1 (x1,x2, t) =

3
5a1

σ̃τ(t +1)(2a1 − x1) on Dhγτ,

ξ
v
2 (x1,x2, t) =

(
3

640ω
+

47
11520

)
θ̃h4 (1+a2

1 +a2
2 − x2

1 − x2
2
)

on Dhγτ.

The function in (4.101) satisfies the difference problem

Θ̃h,τξ
v,k+1
h,τ = Λ̃h,τξ

v,k
h,τ + Ω̃2 (x1) on D0h

γτ,

Θ̃
∗
h,τξ

v,k+1
h,τ = Λ̃

∗
h,τξ

v,k
h,τ + Γ̃

∗
h,τξ

v∗
h,τ + Ω̃2 (x1)−

1
6

Ω̃2 (p̂) on D∗h
γτ,

ξ
v
h,τ = ξ

v∗
h,τ = ξ

v
1 (0,x2, t)+ξ

v
2 (0,x2, t) on Sh

T γ1,

ξ
v
h,τ = ξ

v
1 (x1,0, t)+ξ

v
2 (x1,0, t) on Sh

T γ2,

ξ
v
h,τ = ξ

v∗
h,τ = ξ

v
1 (a1,x2, t)+ξ

v
2 (a1,x2, t) on Sh

T γ3,

ξ
v
h,τ = ξ

v
1 (x1,a2, t)+ξ

v
2 (x1,a2, t) on Sh

T γ4,

ξ
v
h,τ = ξ

v
1 (x1,x2,0)+ξ

v
2 (x1,x2,0) on Sh

T γ5. (4.102)

The equation (4.102) is established using the following. Let us first give the validation

Θ̃h,τξ
v,k+1
h,τ − Λ̃h,τξ

v,k
h,τ = Ω̃2 (x1) on D0hγτ.
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Θ̃h,τξ
v,k+1
1,h,τ =

3
5a1

σ̃τ(t + τ+1)

[(
3
4τ

+
4ω

h2

)
(2a1 − x1)+

(
1

24τ
− 2ω

3h2

)(
2a1 − (x1 +h)

+2a1 −
(

x1 +
h
2

)
+2a1 −

(
x1 −

h
2

)
+2a1 − (x1 −h)+2a1 −

(
x1 −

h
2

)
+2a1 −

(
x1 +

h
2

))]

=
3

5a1
σ̃τ(t + τ+1)

[
6a1

4τ
− 3x1

4τ
+

8ωa1

h2 − 4ωx1

h2 +
2a1

4τ
− x1

4τ
− 24ωa1

3h2

+
12ωx1

3h2

]
,

=
3

5a1
σ̃(t + τ+1)

[
2a1 − x1

]
. (4.103)

Θ̃h,τξ
v,k+1
2,h,τ =

(
3

640ω
+

47
11520

)
θ̃h4

[(
3
4τ

+
4ω

h2

)(
a2

1 +a2
2 +1− x2

1 − x2
2
)

+

(
1

24τ
− 2ω

3h2

)(
6+6a2

1 +6a2
2 − (x1 +h)2 − x2

2 −
(

x1 +
h
2

)2

−

(
x2 +

√
3h
2

)2

−
(

x1 −
h
2

)2

−

(
x2 +

√
3h
2

)2

− (x1 −h)2 − x2
2 −
(

x1 −
h
2

)2

−

(
x2 −

√
3h
2

)2)]
,

=

(
3

640ω
+

47
11520

)
θ̃h4

[
1
τ

(
a2

1 +a2
2 +1− x2

1 − x2
2 −

h2

8

)
+4ω

]
. (4.104)

Adding (4.103) and (4.104) we get

Θ̃h,τξ
v,k+1
h,τ =

3
5a1

σ̃(t + τ+1)

[
2a1 − x1

]

+

(
3

640ω
+

47
11520

)
θ̃h4

[
1
τ

(
a2

1 +a2
2 +1− x2

1 − x2
2 −

h2

8

)

+4ω

]
(4.105)

Λ̃h,τξ
v,k
1,h,τ =

3σ̃

5a1
τ(t +1)

[
3
4τ

(2a1 − x1)+
1

24τ
(12a1 −6x1)

]

=
3σ̃

5a1
(t +1)

[
2a1 − x1

]
(4.106)
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Λ̃h,τξ
v,k
2,h,τ =

(
3

640ω
+

47
11520

)
θ̃h4

[
3
4τ

(
a2

1 +a2
2 +1− x2

1 − x2
2
)

+
1

24τ

(
6+6a2

1 +6a2
2 −6x2

1 −6x2
2 −6h2)]

=

(
3

640ω
+

47
11520

)
θ̃h4

[
1
τ
+

a2
1

τ
+

a2
2

τ
−

x2
1
τ
−

x2
2
τ
− h2

8τ

]
. (4.107)

From (4.106) and (4.107) we get

Λ̃h,τξ
v,k
h,τ =

3σ̃

5a1
(t +1)

[
2a1 − x1

]
+

(
3

640ω
+

47
11520

)
θ̃h4

[
1
τ
+

a2
1

τ
+

a2
2

τ

−
x2

1
τ
−

x2
2
τ
− h2

8τ

]
. (4.108)

Now using (4.105) and (4.108) we get

Θ̃h,τξ
v,k+1
h,τ − Λ̃h,τξ

v,k
h,τ =

3σ̃

5a1
τ(2a1 − x1)+

(
3

120ω
+

47
2880

ω

)
θ̃h4

= Ω̃2 (x1) .

Second, we show that

Θ̃∗
h,τξ

v,k+1
h,τ − Λ̃∗

h,τξ
v,k
h,τ − Γ̃∗

h,τξ
v∗
h,τ = Ω̃2 (x1)− 1

6Ω̃2 (p̂) on D∗hγτ,

Θ̃
∗
h,τξ

v,k+1
1,h,τ =

3
5a1

σ̃τ(t + τ+1)

[(
17
24τ

+
14ω

3h2

)
(2a1 − x1)

+

(
1

24τ
− 2ω

3h2

)(
2a1 −h+2a1 −h+2a1 −

3h
2

)]

=
3

5a1
σ̃τ(t + τ+1)

[
5a1

3τ
− h

2τ
− 16ωa1

3h2

]
, (4.109)

Θ̃
∗
h,τξ

v,k+1
2,h,τ =

(
3

640ω
+

47
11520

)
Θ̃h4

[(
17
24τ

+
14ω

3h2

)(
a2

1 +a2
2 +1− x2

1 − x2
2
)

+

(
1

24τ
− 2ω

3h2

)(
1+a2

1 +a2
2 −h2 −

(
x2 +

√
3h
2

)2

+1+a2
1 +a2

2 −h2 −

(
x2 −

√
3h
2

)2

+1+a2
1 +a2

2 −
9h2

4
− x2

2

)]
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=

(
3

640ω
+

47
11520

)
θ̃h4

[
5
6τ

+
5a2

1
6τ

+
5a2

2
6τ

−
17x2

1
24τ

−
5x2

2
6τ

+
8ω

3h2

+
8ωa2

1
3h2 +

8ωa2
2

3h2 −
14ωx2

1
3h2 −

8ωx2
2

3h2 +
23ω

6
− 23h2

96τ

]
. (4.110)

Adding (4.109) and (4.110) yields

Θ̃
∗
h,τξ

v,k+1
h,τ = Θ̃

∗
h,τξ

v,k+1
1,h,τ + Θ̃

∗
h,τξ

v,k+1
2,h,τ

=
3

5a1
σ̃τ(t + τ+1)

[
5a1

3τ
− h

2τ
− 16ωa1

3h2

]

+

(
3

640ω
+

47
11520

)
θ̃h4

[
5
6τ

+
5a2

1
6τ

+
5a2

2
6τ

−
17x2

1
24τ

−
5x2

2
6τ

+
8ω

3h2 +
8ωa2

1
3h2 +

8ωa2
2

3h2 −
14ωx2

1
3h2 −

8ωx2
2

3h2

+
23ω

6
− 23h2

96τ

]
. (4.111)

Also,

Γ̃
∗
h,τξ

v∗
1,φ,h,τ =

3
5a1

σ̃τ(t + τ+1)

[(
− 1

36τ
+

4ω

9h2

)
(2a1 +2a1)

+

(
1

18τ
+

16ω

9h2

)
(2a1)

]

+
3

5a1
σ̃(t + τ+1)

[
1

36τ
(2a1 +2a1)−

1
18τ

(2a1)

]

=
3

5a1
σ̃τ(t + τ+1)

[
16ωa1

3h2

]
, (4.112)
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Γ̃
∗
h,τξ

v∗
2,h,τ =

(
3

640ω
+

47
11520

)
θ̃h4

[(
− 1

36τ
+

4ω

9h2

)(
a2

1 +a2
2 +1

−

(
x2 +

√
3h
2

)2

+a2
1 +a2

2 +1−

(
x2 −

√
3h
2

)2)

+

(
1

18τ
+

16ω

9h2

)(
1+a2

1 +a2
2 − x2

2
)

+
1

36τ

a2
1 +a2

2 +1−

(
x2 +

√
3h
2

)2

+a2
1 +a2

2 +1−

(
x2 −

√
3h
2

)2


− 1
18τ

(
a2

1 +a2
2 +1− x2

2
)]

=

(
3

640ω
+

47
11520

)
θ̃h4

[
8ω

3h2 +
8ωa2

1
3h2 +

8ωa2
2

3h2 −
8ωx2

2
3h2 − 2ω

3

]
.r (4.113)

Adding (4.112) and (4.113) it follows that

Γ̃
∗
h,τξ

v∗
φ,h,τ =

3
5a1

σ̃τ(t + τ+1)

[
16ωa1

3h2

]
+

(
3

640ω
+

47
11520

)
θ̃h4

[
8ω

3h2

+
8ωa2

1
3h2 +

8ωa2
2

3h2 −
8ωx2

2
3h2 − 2ω

3

]
. (4.114)

Λ̃
∗
h,τξ

v,k
1,h,τ =

3
5a1

σ̃τ(t + τ+1)

[
17
24τ

(2a1 − x1)+
1

24τ

(
2a1

−h+2a1 −h+2a1 −
3h
2

)]

=
3

5a1
σ̃τ(t + τ+1)

[
5a1

3τ
− h

2τ

]
, (4.115)

Λ̃
∗
h,τξ

v,k
2,h,τ =

(
3

640ω
+

47
11520

)
θ̃h4

[
17
24τ

(
a2

1 +a2
2 +1− x2

1 − x2
2
)

+
1

24τ

(
3+3a2

1 +3a2
2 −3x2

2
)]

=

(
3

640ω
+

47
11520

)
θ̃h4

[
5
6τ

+
5a2

1
6τ

+
5a2

2
6τ

−
17x2

1
24τ

− 23h2

96τ
−

5x2
2

6τ

]
, (4.116)

Adding (4.115) and (4.116) we get
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Λ̃
∗
h,τξ

v,k
2,h,τ =

3
5a1

σ̃τ(t + τ+1)

[
5a1

3τ
− h

2τ

]

+

(
3

640ω
+

47
11520

)
θ̃h4

[
5
6τ

+
5a2

1
6τ

+
5a2

2
6τ

−
17x2

1
24τ

− 23h2

96τ
−

5x2
2

6τ

]
. (4.117)

using (4.111), (4.114), and (4.117) gives

Θ̃
∗
h,τξ

v,k+1
h,τ − Λ̃

∗
h,τξ

v,k
h,τ − Γ̃

∗
h,τξ

v∗
h,τ = Ω̃2 (x1)−

1
6

Ω̃2 (p̂) (4.118)

where the right side of equation (4.118) is as given in (4.100).

Next, for k = 0, ...,M′−1, we put the equations (4.98) and (4.102) in matrix form as

Ãξ̂
v,k+1 = B̃ξ̂

v,k + τη̂
v,k, (4.119)

Ãξ
v,k+1

= B̃ξ
v,k

+ τη
v,k, (4.120)

where Ã, B̃ are as given in (4.16) and ξ̂v,k,ξ
v,k
, η̂v,k,ηv,k ∈ RN . Using (4.99)–(4.102) we

have ξ
v,0 ≥ 0 , and η

v,k ≥ 0 , and
∣∣η̂v,k

∣∣ ≤ η
v,k for k = 0, ...,M′− 1, and

∣∣∣ξ̂v,0
∣∣∣ ≤ ξ

v,0
.

Then Lemma 4.3 implies that
∣∣∣ξ̂v,k+1

∣∣∣≤ ξ
v,k+1

. Furthermore,

ξ
v
(x1,x2, t)≤ ξ

v
(0,0,T )

=
6
5

σ̃(T +1)τ+

(
3

640ω
+

47
11520

)(
1+a2

1 +a2
2
)

θ̃h4,

yielding (4.97).

4.2.2 Boundary Value Problem for ∂2u
∂x1∂t and Hexagonal Grid Approximation:

Stage 2
(

H4th
(

∂2u
∂x1∂t

))
First, we construct BVP(∂u

∂t ) and obtain the approximate solution ut,h,τ by using the

implicit method given in Stage 1
(

H4th
(

∂u
∂t

))
. Next, we denote pt,i =

∂2u
∂x1∂t on ST γi, i=

1,2, ...,5 and propose the below problem for vt =
∂2u

∂x1∂t .

Boundary Value Problem
(

BVP
(

∂2u
∂x1∂t

))
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Lvt =
∂2 f (x1,x2, t)

∂x1∂t
on QT ,

vt (x1,x2, t) = pt,i on ST γi, i = 1,2, ...,5. (4.121)

From u ∈C
9+α, 9+α

2
x,t

(
QT
)
, we assume that the solution vt ∈C

6+α,3+α

2
x,t

(
QT
)
. We take

p4th

t,1h =



1
12h

(
−25ut(0,x2, t)+48ut,h,τ (h,x2, t)

− 36ut,h,τ (2h,x2, t)+16ut,h,τ (3h,x2, t)

− 3ut,h,τ (4h,x2, t)
)

if P0 ∈ D0hγτ,

1
840h

(
−2816ut(0,x2, t)+3675ut,h,τ

(h
2 ,x2, t

)
− 1225ut,h,τ

(3h
2 ,x2, t

)
+441ut,h,τ

(5h
2 ,x2, t

)
−75ut,h,τ

(7h
2 ,x2, t

))
if P0 ∈ D∗lhγτ,

on Sh
T γ1, (4.122)

p4th

t,3h =



1
12h

(
25ut(a1,x2, t)−48ut,h,τ (a1 −h,x2, t)

+ 36ut,h,τ (a1 −2h,x2, t)−16ut,h,τ (a1 −3h,x2, t)

+ 3ut,h,τ (a1 −4h,x2, t)
)

if P0 ∈ D0hγτ,

1
840h

(
2816ut(a1,x2, t)−3675ut,h,τ

(
a1 − h

2 ,x2, t
)

+ 1225ut,h,τ
(
a1 − 3h

2 ,x2, t
)
−441ut,h,τ

(
a1 − 5h

2 ,x2, t
)

+ 75ut,h,τ
(
a1 − 7h

2 ,x2, t
))

if P0 ∈ D∗rhγτ,

on Sh
T γ3, (4.123)

pt,ih =
∂φt (x1,x2, t)

∂x1
on Sh

T γi, i = 2,4, (4.124)

pt,5h =
∂ϕ̂(x1,x2)

∂x1
on Sh

T γ5, (4.125)

where ϕ̂(x1,x2) and φt (x1,x2, t) are as given in (4.11) and ut,h,τ is the approximate

solution achieved by using Stage 1
(

H4th
(

∂u
∂t

))
.

For a fourth order accurate hexagonal grid approximation of BVP
(

∂2u
∂x1∂t

)
, we propose

Stage 2
(

H4th
(

∂2u
∂x1∂t

))
:
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Θ̃h,τvk+1
t,h,τ = Λ̃h,τvk

t,h,τ + D̃x1ψ̃t on D0h
γτ,

Θ̃
∗
h,τvk+1

t,h,τ = Λ̃
∗
h,τvk

t,h,τ + Γ̃
∗
h,τ p4th

t,1h
(
ut,h,τ

)
+ D̃x1ψ̃

∗
t on D∗lh

γτ

Θ̃
∗
h,τvk+1

t,h,τ = Λ̃
∗
h,τvk

t,h,τ + Γ̃
∗
h,τ p4th

t,3h
(
ut,h,τ

)
+ D̃x1ψ̃

∗
t on D∗rh

γτ

vt,h,τ = p4th

t,ih
(
ut,h,τ

)
on Sh

T γi, i = 1,3,

vt,h,τ = pt,ih on Sh
T γi, i = 2,4,5 (4.126)

where p4th

t,1h, p4th

t,3h, pt,ih , i= 2,4,5 are defined by (4.122)–(4.125) and the operators Θ̃h,τ,

Λ̃h,τ,Θ̃
∗
h,τ, Λ̃

∗
h,τ and Γ̃∗

h,τ are the operator given in (4.4)–(4.8), respectively. Furthermore,

vt,h,τ is the numerical solution of (4.126) and

D̃x1ψ̃t = ∂x1 f k+1
t,P0

+
1

16
h2
(

∂
3
x1

f k+1
t,P0

+∂
2
x2

∂x1 f k+1
t,P0

)
, (4.127)

D̃x1ψ̃
∗
t =

h2

96τω
∂x1 f k+1

t,PA
− h2

96τω
∂x1 f k

t,PA
− 1

6
∂x1 f k+1

t,PA
+∂x1 f k+1

t,P0

+
1

16
h2
(

∂
3
x1

f k+1
t,P0

+∂
2
x2

∂x1 f k+1
t,P0

)
. (4.128)

Let

ξ
vt
h,τ = vt,h,τ − vt on Dhγτ, (4.129)

where vt =
∂2u

∂x1∂t . From (4.126) and (4.129), we have

Θ̃h,τξ
vt ,k+1
h,τ = Λ̃h,τξ

vt ,k
h,τ + Ψ̃

vt ,k
1 on D0h

γτ,

Θ̃
∗
h,τξ

vt ,k+1
h,τ = Λ̃

∗
h,τξ

vt ,k
h,τ + Γ̃

∗
h,τξ

∗vt
h,τ + Ψ̃

vt ,k
2 on D∗h

γτ,

ξ
vt
h,τ = 0 on Sh

T γi, i = 2,4,5,

ξ
vt
h,τ = ξ

∗vt
h,τ = p4th

t,ih
(
ut,h,τ

)
− pt,i on Sh

T γi, i = 1,3, (4.130)

where
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Ψ̃
vt ,k
1 = Λ̃h,τvk

t − Θ̃h,τvk+1
t + D̃x1ψ̃t , (4.131)

Ψ̃
vt ,k
2 = Λ̃

∗
h,τvk

t − Θ̃
∗
h,τvk+1

t + Γ̃
∗
h,τ pt,i + D̃x1ψ̃

∗
t , i = 1,3. (4.132)

Let θ̃t,1 = µ1(vt), σ̃t,1 = µ2(vt) where µ1,µ2 are given in (4.39), (4.40), respectively,

and let

θ̃t = max

{
θ̃t,1,

M̃t,1

ρ
+15

d
ρ

(
3

160
+

47ω

2880

)
α̃t

}
, (4.133)

σ̃t = max
{

σ̃t,1,15dβ̃t

}
, (4.134)

where α̃t = µ1(ut), β̃t = µ2(ut) and d is as given in (2.60). Furthermore,

M̃t,1 =
1
5max

QT

∣∣∣∂5ut
∂x5

1

∣∣∣ and ρ = 3
640ω

+ 47
11520 .

Theorem 4.3: (Buranay et al. [53]) The solution vt,h,τ achieved by using Stage

2
(

H4th
(

∂2u
∂x1∂t

))
satisfies

max
Dhγτ

∣∣vt,h,τ − vt
∣∣≤ 6

5
σ̃t (T +1)τ+

(
3

640ω
+

47
11520

)
θ̃t
(
1+a2

1 +a2
2
)

h4, (4.135)

for r = ωτ

h2 ≥ 1
16 where θ̃t , σ̃t are presented in (4.133), (4.134), respectively, and vt =

∂2u
∂x1∂t is the exact solution of BVP

(
∂2u

∂x1∂t

)
.

Proof. The proof basically is analogous with the proof of Theorem 4.2 and follows

from the assumption vt ∈C
6+α,3+α

2
x,t

(
QT
)
.

4.3 Second Stages of the Implicit Methods Approximating ∂u
∂x2

and
∂2u

∂x2∂t with O(h4 + τ) Order of Convergence

4.3.1 Boundary Value Problem for ∂u
∂x2

and Hexagonal Grid Approximation:

Stage 2
(

H4th
(

∂u
∂x2

))
Let the BVP(u) be given. First, we apply Stage 1

(
H4th (u)

)
and obtain the approximate

solution uh,τ on the hexagonal grids. Then, by denoting qi =
∂u
∂x2

on ST γi, i = 1,2, ...,5

we use the boundary value problem BV P
(

∂u
∂x2

)
for z = ∂u

∂x2
, given in Chapter 2. We

take
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q4th

2h =
1

12
√

3h

(
−25u(x1,0, t)+48uh,τ

(
x1,

√
3h, t

)
−36uh,τ

(
x1,2

√
3h, t

)
+ 16uh,τ

(
x1,3

√
3h, t

)
−3uh,τ

(
x1,4

√
3h, t

))
on Sh

T γ2, (4.136)

q4th

4h =
1

12
√

3h

(
25u(x1,a2, t)−48uh,τ

(
x1,a2 −

√
3h, t

)
+36uh,τ

(
x1,a2 −2

√
3h, t

)
− 16uh,τ

(
x1,a2 −3

√
3h, t

)
+3uh,τ

(
x1,a2 −4

√
3h, t

))
on Sh

T γ4, (4.137)

qih =
∂φ(x1,x2, t)

∂x2
on Sh

T γi, i = 1,3, (4.138)

q5h =
∂ϕ(x1,x2)

∂x2
on Sh

T γ5, (4.139)

and ϕ(x1,x2) , φ(x1,x2, t) given in (2.9) are the initial and boundary functions,

respectively, uh,τ is the solution taken by using Stage 1
(
H4th (u)

)
. Further we give the

derivation of the forward difference formula (4.136) as follows: Let

A : u(x1,x2, t)

B : u(x1,x2 +
√

3h, t)

C : u(x1,x2 +2
√

3h, t)

D : u(x1,x2 +3
√

3h, t)

E : u(x1,x2 +4
√

3h, t)

B : u
(

x1,x2 +
√

3h, t
)
= u(x1,x2, t)+

√
3h∂x2u(x1,x2, t)

+
3
2

h2
∂

2
x2

u(x1,x2, t)+

√
3

2
h3

∂
3
x2

u(x1,x2, t)

+
9
24

h4
∂

4
x2

u(x1,x2, t)+
3
√

3
40

h5
∂

5
x2

u(x1,x2 +ω1h, t) , (4.140)

C : u
(

x1,x2 +2
√

3h, t
)
= u(x1,x2, t)+2

√
3h∂x2u(x1,x2, t)

+6h2
∂

2
x2

u(x1,x2, t)+4
√

3h3
∂

3
x2

u(x1,x2, t)

+
18
3

h4
∂

4
x2

u(x1,x2, t)+
12
√

3
5

h5
∂

5
x2

u(x1,x2 +ω2h, t) , (4.141)
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D : u
(

x1,x2 +3
√

3h, t
)
= u(x1,x2, t)+3

√
3h∂x2u(x1,x2, t)

+
27
2

h2
∂

2
x2

u(x1,x2, t)+
27
2

√
3h3

∂
3
x2

u(x1,x2, t)

+
243
8

h∂
4
x2

u(x1,x2, t)+
729

√
3

40
h5

∂
5
x2

u(x1,x2 +ω3h, t) , (4.142)

E : u
(

x1,x2 +4
√

3h, t
)
= u(x1,x2, t)+4

√
3h∂x2u(x1,x2, t)

+24h2
∂

2
x2

u(x1,x2, t)+32
√

3h3
∂

3
x2

u(x1,x2, t)

+96h4
∂

4
x2

u(x1,x2, t)+
384

√
3

5
h5

∂
5
x2

u(x1,x2 +ω4h, t) , (4.143)

where, 0 < ωi <
√

3i, i = 1, ..,4. Multiplying the equations (4.140)–(4.143) with

4
√

3
3 ,−

√
3, 4

√
3

9 , −
√

3
12 respectively and adding the resulting equations we get the

following:

4
√

3
3

u
(

x1,x2 +
√

3h, t
)
−
√

3u
(

x1,x2 +2
√

3h, t
)

+
4
√

3
9

u
(

x1,x2 +3
√

3h, t
)
−

√
3

12
u
(

x1,x2 +4
√

3h, t
)

=
25

√
3

36
u(x1,x2, t)+h∂x2u(x1,x2, t)−

9
5

h5
∂

5
x2

u(x1, x̃2, t) , (4.144)

where x2 ≤ x̃2 < x2 +4
√

3h. Simplifying equation (4.144) yields

1
12

√
3h

(
48u

(
x1,x2 +

√
3h, t

)
−36u

(
x1,x2 +2

√
3h, t

)
+16u

(
x1,x2 +3

√
3h, t

)
−3u

(
x1,x2 +4

√
3h, t

)
−25u(x1,x2, t)

)
= ∂x2u(x1,x2, t)−

9
5

h5
∂

5
x2

u(x1, x̃2, t) . (4.145)

Therefore,

1
12

√
3h

(
−25u(x1,x2, t)+48u

(
x1,x2 +

√
3h, t

)
−36u

(
x1,x2 +2

√
3h, t

)
+16u

(
x1,x2 +3

√
3h, t

)
−3u

(
x1,x2 +4

√
3h, t

))
= ∂x2u(x1,x2, t)+O

(
h4) . (4.146)

In a similar way we one can obtain fourth order accurate backward difference formula

for approximating ∂x2u as:
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1
12

√
3h

(
25u(x1,x2, t)−48u

(
x1,x2 +

√
3h, t

)
+36u

(
x1,x2 +2

√
3h, t

)
−16u

(
x1,x2 +3

√
3h, t

)
+3u

(
x1,x2 +4

√
3h, t

))
= ∂x2u(x1,x2, t)+O

(
h4) . (4.147)

Lemma 4.6: (Buranay et al. [53]) Let u be the solution of BVP(u) in (2.9) and uh,τ be

the approximation achieved by using Stage 1
(
H4th (u)

)
. Then, the following inequality

holds true ∣∣∣q4th

ih
(
uh,τ
)
−q4th

ih (u)
∣∣∣≤ 15dΩ̃1 (h,τ) , i = 2,4, (4.148)

for r ≥ 1
16 where, Ω̃1 (h,τ) is given in (4.43) and d is defined in (2.60).

Proof. From Theorem 4.1, and using (4.136), (4.137), we have∣∣∣q4th

ih
(
uh,τ
)
−q4th

ih (u)
∣∣∣≤ 1

12
√

3h

(
48
√

3hdΩ̃1 (h,τ)+36(2
√

3hdΩ̃1 (h,τ))

+ 16(3
√

3hdΩ̃1 (h,τ))+3(4
√

3hdΩ̃1 (h,τ))
)

≤ 15dΩ̃1 (h,τ) , i = 2,4. (4.149)

Thus, we obtain (4.148).

Lemma 4.7: (Buranay et al. [53]) Let M̃2 =
9
5max

QT

∣∣∣∂5u
∂x5

2

∣∣∣ and uh,τ be the approximation

taken by using Stage 1
(
H4th (u)

)
. Then, the following inequality is true:

max
Sh

T γ2∪Sh
T γ4

∣∣∣q4th

ih
(
uh,τ
)
−qi

∣∣∣≤ M̃2h4 +15dΩ̃1 (h,τ) , i = 2,4, (4.150)

where Ω̃1 (h,τ) is given in (4.43) and d is defined in (2.60).

Proof. From u ∈C
9+α, 9+α

2
x,t

(
QT
)
, at the points (x1,0,kτ)∈ Sh

T γ2 and (x2,a2,kτ)∈ Sh
T γ4

of each line segment

[(σh,x2,kτ) : 0 ≤ x1 = σh ≤ a1, 0 ≤ x2 ≤ a2, 0 ≤ t = kτ ≤ T ] ,

we get fourth order approximation of ∂u
∂x2

by the difference Formulas (4.136) and
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(4.137). Then, the truncation error in (4.145) yields

max
Sh

T γ2∪Sh
T γ4

∣∣∣q4th

ih (u)−qi

∣∣∣≤ 9
5

h4max
QT

∣∣∣∣∂5u
∂x5

2

∣∣∣∣ , i = 2,4 . (4.151)

Taking M̃2 =
9
5max

QT

∣∣∣∂5u
∂x5

2

∣∣∣ and using Lemma 4.6 and the estimation (4.148) and (4.151)

follows (4.150).

Second stage of the fourth order accurate implicit method for the numerical solution to

BVP
(

∂u
∂x2

)
is given as follows:

Stage 2
(

H4th
(

∂u
∂x2

))
Θ̃h,τzk+1

h,τ = Λ̃h,τzk
h,τ + D̃x2ψ̃ on D0h

γτ,

Θ̃
∗
h,τzk+1

h,τ = Λ̃
∗
h,τzk

h,τ + Γ̃
∗
h,τq1h + D̃x2ψ̃

∗ on D∗lh
γτ,

Θ̃
∗
h,τzk+1

h,τ = Λ̃
∗
h,τzk

h,τ + Γ̃
∗
h,τq3h + D̃x2ψ̃

∗ on D∗rh
γτ,

zh,τ = qih on Sh
T γi, i = 1,3,5,

zh,τ = q4th

ih on Sh
T γi, i = 2,4, (4.152)

where q4th

ih , i = 2,4 and qih , i = 1,3,5 are defined by (4.136)–(4.139) and the

operators Θ̃h,τ, Λ̃h,τ,Θ̃
∗
h,τ, Γ̃∗

h,τ and Λ̃∗
h,τ are the operators given in (4.4)–(4.8)

respectively. Furthermore, zh,τ is the numerical solution and

D̃x2ψ̃ = ∂x2 f k+1
P0

+
1
16

h2
(

∂
2
x1

∂x2 f k+1
P0

+∂
3
x2

f k+1
P0

)
, (4.153)

D̃x2ψ̃
∗ =

h2

96τω
∂x2 f k+1

PA
− h2

96τω
∂x2 f k

PA
− 1

6
∂x2 f k+1

PA
+∂x2 f k+1

P0

+
1
16

h2
(

∂
2
x1

∂x2 f k+1
P0

+∂
3
x2

f k+1
P0

)
(4.154)

Let

ξ
z
h,τ = zh,τ − z on Dhγτ. (4.155)

From (4.152) and (4.155), we have
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Θ̃h,τξ
z,k+1
h,τ = Λ̃h,τξ

z,k
h,τ + Ψ̃

z,k
1 on D0h

γτ,

Θ̃
∗
h,τξ

z,k+1
h,τ = Λ̃

∗
h,τξ

z,k
h,τ + Ψ̃

z,k
2 on D∗h

γτ,

ξ
z
h,τ = 0 on Sh

T γi, i = 1,3,5,

ξ
z
h,τ = q4th

ih
(
uh,τ
)
−qi on Sh

T γi, i = 2,4, (4.156)

where q4th

2h , q4th

4h are defined by (4.136), (4.137) accordingly, and

Ψ̃
z,k
1 = Λ̃h,τzk − Θ̃h,τzk+1 + D̃x2ψ̃, (4.157)

Ψ̃
z,k
2 = Λ̃

∗
h,τzk − Θ̃

∗
h,τzk+1 + Γ̃

∗
h,τqi + D̃x2ψ̃

∗, i = 1,3. (4.158)

Further, let λ̃1 = µ1(z), δ̃1 = µ2(z) where µ1,µ2 are given in (4.39), (4.40), respectively,

and

λ̃ = max

{
λ̃1,

M̃2

ρ
+15

d
ρ

(
3

160
+

47ω

2880

)
α̃

}
(4.159)

δ̃ = max
{

δ̃1,15dβ̃

}
(4.160)

where α̃ = µ1(u), β̃ = µ2(u) and d is presented in (2.60) and M̃2 is as given in Lemma

4.7 and z is the solution of BVP
(

∂u
∂x2

)
.

Theorem 4.4: (Buranay et al. [53]) The solution zh,τ achieved from Stage

2
(

H4th
(

∂u
∂x2

))
satisfies

max
Dhγτ

∣∣zh,τ − z
∣∣≤ 6

5
δ̃(T +1)τ+

(
3

640ω
+

47
11520

)
λ̃
(
1+a2

1 +a2
2
)

h4, (4.161)

for r = ωτ

h2 ≥ 1
16 , where λ̃, δ̃ are as given in (4.159), (4.160), respectively, and z = ∂u

∂x2

is the exact solution of BVP
(

∂u
∂x2

)
.

Proof. We take the system

88



Θ̃h,τξ̂
z,k+1
h,τ = Λ̃h,τξ̂

z,k
h,τ + Ω̃3 (x2) on D0h

γτ,

Θ̃
∗
h,τξ̂

z,k+1
h,τ = Λ̃

∗
h,τξ̂

z,k
h,τ +

5
6

Ω̃3 (x2) on D∗h
γτ,

ξ̂
z
h,τ = 0 on Sh

T γi, i = 1,3,5,

ξ̂
z
h,τ = q4th

ih
(
uh,τ
)
−qi on Sh

T γi, i = 2,4. (4.162)

q4th

2h , q4th

4h are defined by (4.136), (4.137) accordingly and

Ω̃3 (x2) =
3

5a2
δ̃τ(2a2 − x2)+

(
3

160
+

47
2880

ω

)
λ̃h4,

≥ 3
5

δ̃τ+

(
3

160
+

47
2880

ω

)
λ̃h4 ≥

∣∣∣Ψz,k
1

∣∣∣ (4.163)

5
6

Ω̃3 (x2) =
1

2a2
δ̃τ(2a2 − x2)+

(
1

64
+

47
3456

ω

)
λ̃h4,

≥ 1
2

δ̃τ+

(
1

64
+

47
3456

ω

)
λ̃h4 ≥

∣∣∣Ψz,k
2

∣∣∣ . (4.164)

Furthermore, construct the following majorant function:

ξ
z
(x1,x2, t) = ξ

z
1 (x1,x2, t)+ξ

z
2 (x1,x2, t) , (4.165)

where

ξ
z
1 (x1,x2, t) =

3
5a2

δ̃τ(t +1)(2a2 − x2) on Dhγτ,

ξ
z
2 (x1,x2, t) =

(
3

640ω
+

47
11520

)
λ̃h4 (1+a2

1 +a2
2 − x2

1 − x2
2
)

on Dhγτ,

which satisfies the difference problem

Θ̃h,τξ
z,k+1
h,τ = Λ̃h,τξ

z,k
h,τ + Ω̃3 (x2) on D0h

γτ,

Θ̃
∗
h,τξ

z,k+1
h,τ = Λ̃

∗
h,τξ

z,k
h,τ + Γ̃

∗
h,τξ

z∗
h,τ +

5
6

Ω̃3 (x2) on D∗h
γτ,

ξ
z
h,τ = ξ

z∗
h,τ = ξ

z
1 (0,x2, t)+ξ

z
2 (0,x2, t) on Sh

T γ1,

ξ
z
h,τ = ξ

z
1 (x1,0, t)+ξ

z
2 (x1,0, t) on Sh

T γ2,
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ξ
z
h,τ = ξ

z∗
h,τ = ξ

z
1 (a1,x2, t)+ξ

z
2 (a1,x2, t) on Sh

T γ3,

ξ
z
h,τ = ξ

z
1 (x1,a2, t)+ξ

z
2 (x1,a2, t) on Sh

T γ4,

ξ
z
h,τ = ξ

z
1 (x1,x2,0)+ξ

z
2 (x1,x2,0) on Sh

T γ5. (4.166)

By writing (4.162) and (4.166) in matrix form as

Ãξ̂
z,k+1 = B̃ξ̂

z,k + τη̂
z,k, (4.167)

Ãξ
z,k+1

= B̃ξ
z,k

+ τη
z,k, (4.168)

respectively, where Ã, B̃ are as given in (4.16) and ξ̂z,k,ξ
z,k
, η̂z,k,ηz,k ∈ RN and using

(4.163)–(4.166) we get η
z,k ≥ 0 and

∣∣η̂z,k
∣∣≤ η

z,k for k = 0,1, ...,M′−1 and ξ
z,0 ≥ 0,∣∣∣ξ̂z,0

∣∣∣ ≤ ξ
z,0
. Then, on the basis of Lemma 4.3 follows

∣∣∣ξ̂z,k+1
∣∣∣ ≤ ξ

z,k+1
,

k = 0,1, ...,M′−1. From

ξ
z
(x1,x2, t)≤ ξ

z
(0,0,T )

=
6
5

δ̃(T +1)τ+

(
3

640ω
+

47
11520

)
λ̃
(
1+a2

1 +a2
2
)

h4,

follows (4.161).

4.3.2 Boundary Value Problem for ∂2u
∂x2∂t and Hexagonal Grid Approximation:

Stage 2
(

H4th
(

∂2u
∂x2∂t

))
Let the BVP(u) be given. Then, as the first step we apply the Stage 1

(
H4th

(
∂u
∂t

))
and

obtain the approximate solution ut,h,τ on the hexagonal grids. Subsequently, denote

qt,i =
∂2u

∂x2∂t on ST γi, i = 1,2, ...,5 and develop the next problem for zt =
∂2u

∂x2∂t .

Boundary Value Problem for ∂2u
∂x2∂t

(
BVP

(
∂2u

∂x2∂t

))
Lzt =

∂2 f (x1,x2, t)
∂x2∂t

on QT ,

zt (x1,x2, t) = qt,i on ST γi, i = 1,2, ...,5, (4.169)
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We assume zt ∈C
6+α,3+α

2
x,t

(
QT
)
. We take

q4th

t,2h =
1

12
√

3h

(
−25ut(x1,0, t)+48ut,h,τ

(
x1,

√
3h, t

)
−36ut,h,τ

(
x1,2

√
3h, t

)
+ 16ut,h,τ

(
x1,3

√
3h, t

)
−3ut,h,τ

(
x1,4

√
3h, t

))
on Sh

T γ2, (4.170)

q4th

t,4h =
1

12
√

3h

(
25ut(x1,a2, t)−48ut,h,τ

(
x1,a2 −

√
3h, t

)
+36ut,h,τ

(
x1,a2 −2

√
3h, t

)
− 16ut,h,τ

(
x1,a2 −3

√
3h, t

)
+3ut,h,τ

(
x1,a2 −4

√
3h, t

))
on Sh

T γ4, (4.171)

qt,ih =
∂φt (x1,x2, t)

∂x2
on Sh

T γi, i = 1,3, (4.172)

qt,5h =
∂ϕ̂(x1,x2)

∂x2
on Sh

T γ5, (4.173)

where ϕ̂(x1,x2) and φt (x1,x2, t) are as given in (4.11) and ut,h,τ is the approximate

solution taken by Stage 1
(

H4th
(

∂u
∂t

))
.

For a stable fourth order accurate numerical solution of BVP
(

∂2u
∂x2∂t

)
we propose the

next problem:

Stage 2
(

H4th
(

∂2u
∂x2∂t

))
Θ̃h,τzk+1

t,h,τ = Λ̃h,τzk
t,h,τ + D̃x2ψ̃t on D0h

γτ,

Θ̃
∗
h,τzk+1

t,h,τ = Λ̃
∗
h,τzk

t,h,τ + Γ̃
∗
h,τqt,1h + D̃x2ψ̃

∗
t on D∗lh

γτ,

Θ̃
∗
h,τzk+1

t,h,τ = Λ̃
∗
h,τzk

t,h,τ + Γ̃
∗
h,τqt,3h + D̃x2ψ̃

∗
t on D∗rh

γτ

zt,h,τ = qt,ih on Sh
T γi, i = 1,3,5,

zt,h,τ = q4th

t,ih on Sh
T γi, i = 2,4 (4.174)

where q4th

ih , i = 2,4 and qih , i = 1,3,5 are defined by (4.136)–(4.139) and the

operators Θ̃h,τ, Λ̃h,τ,Θ̃
∗
h,τ, Γ̃∗

h,τ and Λ̃∗
h,τ are the operators given in (4.4)–(4.8)

respectively. Additionally,

91



D̃x2ψ̃t = ∂x2 f k+1
t,P0

+
1

16
h2
(

∂
2
x1

∂x2 f k+1
t,P0

+∂
3
x2

f k+1
t,P0

)
, (4.175)

D̃x2ψ̃
∗
t =

h2

96τω
∂x2 f k+1

t,PA
− h2

96τω
∂x2 f k

t,PA
− 1

6
∂x2 f k+1

t,PA
+∂x2 f k+1

t,P0

+
1

16
h2
(

∂
2
x1

∂x2 f k+1
t,P0

+∂
3
x2

f k+1
t,P0

)
. (4.176)

Let

ξ
zt
h,τ = zt,h,τ − zt on Dhγτ, (4.177)

from (4.174) and (4.177) we have

Θ̃h,τξ
zt ,k+1
h,τ = Λ̃h,τξ

zt ,k
h,τ + Ψ̃

zt ,k
1 on D0h

γτ,

Θ̃
∗
h,τξ

zt ,k+1
h,τ = Λ̃

∗
h,τξ

zt ,k
h,τ + Ψ̃

zt ,k
2 on D∗h

γτ

ξ
zt
h,τ = 0 on Sh

T γi, i = 1,3,5

ξ
zt
h,τ = q4th

t,ih
(
uh,τ
)
−qt,i on Sh

T γi, i = 2,4. (4.178)

where q4th

t,2h , q4th

t,4h , qt,ih , i = 1,3,5 are defined by (4.170)-(4.173) accordingly and

Ψ̃
zt ,k
1 = Λ̃h,τzk

t − Θ̃h,τzk+1
t + D̃x2ψ̃t , (4.179)

Ψ̃
zt ,k
2 = Λ̃

∗
h,τzk

t − Θ̃
∗
h,τzk+1

t + Γ̃
∗
h,τqt,i + D̃x2ψ̃

∗
t , i = 1,3. (4.180)

Let λ̃t,1 = µ1(zt), δ̃t,1 = µ2(zt), where µ1,µ2 are given in (4.39), (4.40), respectively,

and

λ̃t = max

{
λ̃t,1,

M̃t,2

ρ
+15

d
ρ

(
3

160
+

47ω

2880

)
α̃t

}
, (4.181)

δ̃t = max
{

δ̃t,1,15dβ̃t

}
, (4.182)

where α̃t = µ1(ut), β̃t = µ2(ut) and d is presented in (2.60) also M̃t,2 =
9
5max

QT

∣∣∣∂5ut
∂x5

2

∣∣∣ and

ρ = 3
640ω

+ 47
11520 and zt is the solution of BVP

(
∂2u

∂x2∂t

)
.

Theorem 4.5: (Buranay et al. [53]) The solution zt,h,τ achieved by Stage

2
(

H4th
(

∂2u
∂x2∂t

))
satisfies
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max
Dhγτ

∣∣zt,h,τ − zt
∣∣≤ 6

5
δ̃t (T +1)τ+

(
3

640ω
+

47
11520

)
λ̃t
(
1+a2

1 +a2
2
)

h4, (4.183)

for r = ωτ

h2 ≥ 1
16 , where λ̃t , δ̃t are positive constants given in (4.181), (4.182),

respectively, and zt =
∂2u

∂x2∂t is the exact solution of BVP
(

∂2u
∂x2∂t

)
.

Proof. The proof is analogous to the proof of Theorem 4.4, and follows from the

assumption zt ∈C
6+α,3+α

2
x,t

(
QT
)
.
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Chapter 5

EXPERIMENTAL INVESTIGATIONS OF THE FOURTH

ORDER ACCURATE TWO-STAGE IMPLICIT

METHODS

The proposed fourth order two-stage implicit methods are applied on two test

problems such that for the first example the exact solution is known. However, for the

second example the exact solution is not given. We take

D =
{
(x1,x2) : 0 < x1 < 1,0 < x2 <

√
3

2

}
, and t ∈ [0,1] . Further, Mathematica is used

for the realization of the algorithms in machine precision. Also we used

preconditioned conjugate gradient method with the preconditioning approach given in

Buranay and Iyikal [55] (see also Concus et al. [56] and Axelsson [57]). We define

the following:

H4th
(

∂u
∂xi

)
, i = 1,2 is the given fourth order method for the computation ∂u

∂xi
, i = 1,2,

respectively.

H4th
(

∂2u
∂xi∂t

)
, i = 1,2 is the given fourth order method for the computation ∂2u

∂xi∂t , i =

1,2, seriatim.

CT H4th
∂u
∂xi

, i = 1,2 presents the CPUs for one time level spend by the method H4th
(

∂u
∂xi

)
,

i = 1,2, accordingly.

CT H4th

∂2u
∂xi∂t

, i = 1,2 shows the CPUs for one time level spend by the method H4th
(

∂2u
∂xi∂t

)
,

i = 1,2, respectively.

Furthermore, v2−µ,2−λ , z2−µ,2−λ , ut,2−µ,2−λ , and vt,2−µ,2−λ, zt,2−µ,2−λ are the computed
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grid functions obtained by the methods H4th
(

∂u
∂xi

)
, i = 1,2, H4th

(
∂u
∂t

)
and

H4th
(

∂2u
∂xi∂t

)
, i = 1,2, accordingly for h = 2−µ and τ = 2−λ where µ,λ are positive

integers. The error function εh,τ on the set Dhγτ obtained by H4th
(

∂u
∂xi

)
, i = 1,2 for

h = 2−µ,τ = 2−λ is presented by εH4th
∂u
∂xi

(
2−µ,2−λ

)
, i = 1,2 while the error function

resulting by the methods H4th
(

∂2u
∂xi∂t

)
, i = 1,2 are shown with

εH4th
∂u

∂xi∂t

(
2−µ,2−λ

)
, i = 1,2, respectively. Furthermore,

max
Dhγτ

∣∣∣∣εH4th
∂u
∂xi

(
2−µ,2−λ

)∣∣∣∣= ∥∥∥∥ε
H4th
∂u
∂xi

∥∥∥∥
∞

, i = 1,2, (5.1)

max
Dhγτ

∣∣∣∣εH4th
∂u

∂xi∂t

(
2−µ,2−λ

)∣∣∣∣= ∥∥∥∥ε
H4th

∂u
∂xi∂t

∥∥∥∥
∞

, i = 1,2. (5.2)

Further, we denote the order of convergence of the approximate solution v2−µ,2−λ and

z2−µ,2−λ to the functions v = ∂u
∂x1

and z = ∂u
∂x2

obtained by using the fourth order implicit

method H4th
(

∂u
∂xi

)
, i = 1,2 by

ℜ
H4th
∂u
∂xi

=

∥∥∥∥εH4th
∂u
∂xi

(2−µ,2−λ)

∥∥∥∥
∞∥∥∥∥εH4th

∂u
∂xi

(2−(µ+1),2−(λ+4))

∥∥∥∥
∞

i = 1,2. (5.3)

Furthermore, the order of convergence of the approximate solutions vt,2−µ,2−λ and

zt,2−µ,2−λ to their corresponding exact solutions vt =
∂2u

∂x1∂t and zt =
∂2u

∂x2∂t obtained by

H4th
(

∂2u
∂xi∂t

)
, i = 1,2 are given by

ℜ
H4th

∂2u
∂xi∂t

=

∥∥∥∥εH4th
∂u

∂xi∂t
(2−µ,2−λ)

∥∥∥∥
∞∥∥∥∥εH4th

∂u
∂xi∂t

(2−(µ+1),2−(λ+4))

∥∥∥∥
∞

, i = 1,2. (5.4)

Remark 5.1: We remark that the computed values of (5.3) and (5.4) are ≈ 24 showing

the fourth order convergence of the given methods in x1,x2 and linear convergence in

t.
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Example 5.1: ∂u
∂t

= 0.25
(

∂2u
∂x2

1
+

∂2u
∂x2

2

)
+ f (x1,x2, t) on QT ,

u(x1,x2,0) = 0.005x9+α

1 +0.03x9+α

2 +1+ x1x2 on D,

u(x1,x2, t) = û(x1,x2, t) on ST ,

where

f (x1,x2, t) =−
(

9+α

2

)
t

7+α

2 sin
(

t
7+α

2

)
− x1x2e−t −0.25(9+α)(8+α)

[
0.005x7+α

1 +0.03x7+α

2
]

û(x1,x2, t) = 0.005x9+α

1 +0.03x9+α

2 + cos(t
9+α

2 )+ x1x2e−t .

present the heat source and the exact solution respectively and we take α = 0.5. For

the Example 5.1, Table 5.1 demonstrates CT H4th
∂u
∂xi

,

∥∥∥∥εH4th
∂u
∂xi

∥∥∥∥
∞

and ℜH4th
∂u
∂xi

i = 1,2 achieved

by H4th
(

∂u
∂xi

)
, i = 1,2 respectively while Table 5.2 shows CT H4th

∂2u
∂xi∂t

,

∥∥∥∥∥εH4th

∂2u
∂xi∂t

∥∥∥∥∥
∞

and ℜH4th

∂2u
∂xi∂t

i = 1,2 taken by the method H4th
(

∂2u
∂xi∂t

)
, i = 1,2 accordingly. Tables 5.1 and 5.2

justify the theoretical results given such that the approximate solutions vh,τ,zh,τ,vt,h,τ

and zt,h,τ converge to the corresponding exact functions v = ∂u
∂x1

and z = ∂u
∂x2

,vt =
∂2u

∂x1∂t

and zt =
∂2u

∂x2∂t with fourth order in spatial variables and first order in time for r ≥ 1
16 ,

as explained in Remark 5.1 and presented in the fourth and last columns of Tables 5.1

and 5.2. Moreover, the last two rows in Tables 5.1 and 5.2 demonstrate that the order

of convergence is also O
(
h4 + τ

)
when r < 1

16 .

Figures 5.1 and 5.2 illustrate the grid functions
∣∣∣∣εH4th

∂u
∂xi

(2−4,2−3)

∣∣∣∣ , ∣∣∣∣εH4th
∂u
∂xi

(2−5,2−7)

∣∣∣∣ ,∣∣∣∣εH4th
∂u
∂xi

(2−6,2−11)

∣∣∣∣ and
∣∣∣∣εH4th

∂u
∂xi

(2−7,2−15)

∣∣∣∣ , i = 1,2, respectively, when t = 0.8 obtained

by the corresponding method H4th
(

∂u
∂xi

)
, i = 1,2 for the Example 5.1. Figures 5.3

and 5.4 demonstrate the grid functions

∣∣∣∣∣εH4th

∂2u
∂xi∂t

(2−4,2−3)

∣∣∣∣∣,
∣∣∣∣∣εH4th

∂2u
∂xi∂t

(2−5,2−7)

∣∣∣∣∣ ,
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Table 5.1: CT H4th
∂u
∂xi

,
∥∥∥∥εH4th

∂u
∂xi

∥∥∥∥
∞

for i = 1,2 and the convergence orders of vh,τ and zh,τ to

their exact respective derivatives for the Example 5.1.

(h,τ) CT H4th
∂u

∂x1

∥∥∥∥εH4th
∂u

∂x1

∥∥∥∥
∞

ℜH4th
∂u

∂x1

CT H4th
∂u

∂x2

∥∥∥∥εH4th
∂u

∂x2

∥∥∥∥
∞

ℜH4th
∂u

∂x2(
2−4,2−3) 0.33 4.5384×10−3 14.634 0.31 5.3873×10−3 14.595(
2−5,2−7) 20.55 3.1012×10−4 15.901 19.03 3.6911×10−4 15.895(
2−6,2−11) 1309.02 1.9503×10−5 15.991 1220.01 2.3222×10−5 15.992(
2−7,2−15) 82622.60 1.2196×10−6 78092.10 1.4521×10−6(
2−4,2−11) 79.27 1.8788×10−5 15.980 73.06 2.0209×10−5 16.006(
2−5,2−15) 5209.05 1.1757×10−6 4880.77 1.2626×10−6

Table 5.2: CT H4th

∂2u
∂xi∂t

,

∥∥∥∥∥εH4th

∂2u
∂xi∂t

∥∥∥∥∥
∞

, for i = 1,2 and the convergence orders of vt,h,τ and zt,h,τ

to their exact respective derivatives for the Example 5.1.

(h,τ) CT H4th

∂2u
∂x1∂t

∥∥∥∥∥εH4th

∂2u
∂x1∂t

∥∥∥∥∥
∞

ℜH4th

∂2u
∂x1∂t

CT H4th

∂2u
∂x2∂t

∥∥∥∥∥εH4th

∂2u
∂x2∂t

∥∥∥∥∥
∞

ℜH4th

∂2u
∂x2∂t(

2−4,2−3) 0.41 4.42644×10−6 15.451 0.39 4.2937×10−6 15.401(
2−5,2−7) 24.78 2.8648×10−7 15.925 22.593 2.7879×10−7 15.892(
2−6,2−11) 1595.03 1.7989×10−8 15.997 1436.69 1.7543×10−8 15.993(
2−7,2−15) 100555.00 1.1245×10−9 92543.1 1.0969×10−10(
2−4,2−11) 96.94 1.8392×10−8 15.997 88.61 1.7381×10−8 15.920(
2−5,2−16) 6414.28 1.1497×10−9 5733.49 1.0918×10−9

∣∣∣∣∣εH4th

∂2u
∂xi∂t

(2−6,2−11)

∣∣∣∣∣ and

∣∣∣∣∣εH4th

∂2u
∂xi∂t

(2−7,2−15)

∣∣∣∣∣ for i = 1,2 respectively, for t = 0.8 achieved

by applying the corresponding method H4th
(

∂2u
∂xi∂t

)
, i = 1,2 for the Example 5.1.
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Figure 5.1: The grid function of absolute errors when t = 0.8 obtained by the method
H4th

(
∂u
∂x1

)
for the Example 5.1.

Figure 5.2: The grid function of absolute errors when t = 0.8 obtained by the method
H4th

(
∂u
∂x2

)
for the Example 5.1.
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Figure 5.3: The grid function of absolute errors when t = 0.8 obtained by the method
H4th

(
∂2u

∂x1∂t

)
for the Example 5.1.

Figure 5.4: The grid function of absolute errors when t = 0.8 obtained by the method
H4th

(
∂2u

∂x2∂t

)
for the Example 5.1.
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Example 5.2: ∂u
∂t

= 0.25
(

∂2u
∂x2

1
+

∂2u
∂x2

2

)
+ f (x1,x2, t) on QT ,

u(x1,x2,0) = 0.01x1x2 (1− x1)

(√
3

2
− x2

)
on D,

u(x1,x2, t) = 0 on ST .

The heat source function is

f (x1,x2, t) =−0.01x1x2 (1− x1)

(√
3

2
− x2

)
sin t

+0.005

(
x1 (1− x1)+ x2

(√
3

2
− x2

))
cos t.

The problem in Example 5.2 is a benchmark problem such that the solution is not

provided. An analogous problem with zero heat source was also considered in Henner

et al. [65]. By applying the proposed methods H4th
(

∂u
∂xi

)
, i = 1,2, we obtain the

approximate solutions v2−µ,,2−λ and z2−µ,,2−λ accordingly at every time level for the

considered values µ = 5,6,7 and λ = 7,11,15. Tables 5.3 and 5.4 present

v2−µ,,2−λ (x1,x2, t) and z2−µ,,2−λ (x1,x2, t), respectively, at the grid points(
0.125,

√
3

8 ,1
)
,
(

0.25,
√

3
8 ,1

)
,
(

0.375,
√

3
8 ,1

)
,
(

0.5,
√

3
8 ,1

)
,
(

0.625,
√

3
8 ,1

)
,(

0.75,
√

3
8 ,1

)
and

(
0.875,

√
3

8 ,1
)

and the corresponding order of convergence

ℜH4th
∂u
∂xi

(P) for i = 1,2 at the grid point P(x1,x2, t) given as

ℜ
H4th
∂u

∂x1

(P) =

∣∣∣∣∣ v2−5,2−7 (P)− v2−6,2−11 (P)
v2−6,2−11 (P)− v2−7,2−15 (P)

∣∣∣∣∣ , (5.5)

ℜ
H4th
∂u

∂x2

(P) =

∣∣∣∣∣ z2−5,2−7 (P)− z2−6,2−11 (P)
z2−6,2−11 (P)− z2−7,2−15 (P)

∣∣∣∣∣ . (5.6)

By the same way Tables 5.5 and 5.6 show vt,2−µ,,2−λ (x1,x2, t) and zt,2−µ,,2−λ (x1,x2, t),

respectively, at the the considered grids and the corresponding convergence orders

ℜH4th

∂2u
∂xi∂t

(P) for i = 1,2 at the point P(x1,x2, t) defined as
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Table 5.3: The numerical solution vh,τ at seven points when t = 1, and the
convergence orders obtained by H4th( ∂u

∂x1
) for the Example 5.2.

P v2−5,2−7 (P) v2−6,2−11 (P) v2−7,2−15 (P) ℜH4th
∂u

∂x1

(P)(
0.125,

√
3

8 ,1
)

0.000569713036 0.000569841548 0.000569849555 16.052(
0.25,

√
3

8 ,1
)

0.000379748416 0.000379890609 0.000379899468 16.049(
0.375,

√
3

8 ,1
)

0.000189857076 0.000189944236 0.000189949667 16.048(
0.5,

√
3

8 ,1
)

5.22×10−16 −3.27×10−17 1.87×10−18 16.046(
0.625,

√
3

8 ,1
)

−0.000189857076 −0.000189944236 −0.000189949667 16.048(
0.75,

√
3

8 ,1
)

−0.000379748416 −0.000379890609 −0.000379899468 16.049(
0.875,

√
3

8 ,1
)

−0.000569713036 −0.000569841548 −0.00056984955 16.052

Table 5.4: The numerical solution zh,τ at seven points when t = 1, and the
convergence orders obtained by H4th( ∂u

∂x2
) for the Example 5.2.

P z2−5,2−7 (P) z2−6,2−11 (P) z2−7,2−15 (P) ℜH4th
∂u

∂x2

(P)(
0.125,

√
3

8 ,1
)

0.000255810101 0.000255886243 0.000255890985 16.052(
0.25,

√
3

8 ,1
)

0.000438524584 0.000438661691 0.000438670233 16.052(
0.375,

√
3

8 ,1
)

0.000548151240 0.000548326834 0.000548337774 16.052(
0.5,

√
3

8 ,1
)

0.000584693185 0.000584881865 0.000584893620 16.052(
0.625,

√
3

8 ,1
)

0.000548151240 0.000548326834 0.000548337774 16.052(
0.75,

√
3

8 ,1
)

0.000438524584 0.000438661691 0.000438670233 16.052(
0.875,

√
3

8 ,1
)

0.000255810101 0.000255886242 0.000255890985 16.052

ℜ
H4th

∂2u
∂x1∂t

(P) =

∣∣∣∣∣ vt,2−5,2−7 (P)− vt,2−6,2−11 (P)
vt,2−6,2−11 (P)− vt,2−7,2−15 (P)

∣∣∣∣∣ , (5.7)

ℜ
H4th

∂2u
∂x2∂t

(P) =

∣∣∣∣∣ zt,2−5,2−7 (P)− zt,2−6,2−11 (P)
zt,2−6,2−11 (P)− zt,2−7,2−15 (P)

∣∣∣∣∣ . (5.8)

The computed solutions v2−7,2−15 and z2−7,2−15 achieved by using the corresponding

two-stage method H4th
(

∂u
∂xi

)
, i = 1,2 are demonstrated in Figures 5.5 and 5.6 for the

time levels t = 0.2 and t = 0.8. Figures 5.7 and 5.8 illustrate the approximate solutions

vt,2−7,2−15 and zt,2−7,2−15 taken by using the respective two-stage method H4th
(

∂2u
∂x1∂t

)
,
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Table 5.5: The numerical solution vt,h,τ at seven points when t = 1, and the
convergence orders obtained by H4th( ∂2u

∂x1∂t ) for the Example 5.2.

P vt,2−5,2−7 (P) vt,2−6,2−11 (P) vt,2−7,2−15 (P) ℜH4th

∂2u
∂x1∂t

(P)(
0.125,

√
3

8 ,1
)

−0.000887304144 −0.000887477357 −0.000887488206 15.966(
0.25,

√
3

8 ,1
)

−0.000591460365 −0.000591646827 −0.000591658507 15.964(
0.375,

√
3

8 ,1
)

−0.000295709687 −0.000295822129 −0.000295829173 15.963(
0.5,

√
3

8 ,1
)

7.22×10−18 3.33×10−19 −9.86×10−20 15.957(
0.625,

√
3

8 ,1
)

0.0002957096868 0.000295822129 0.000295829173 15.963(
0.75,

√
3

8 ,1
)

0.0005914603655 0.000591646827 0.000591658507 15.964(
0.875,

√
3

8 ,1
)

0.0008873041426 0.000887477357 0.000887488206 15.966

Table 5.6: The numerical solution zt,h,τ at seven points when t = 1, and the
convergence orders obtained by H4th( ∂2u

∂x2∂t ) for the Example 5.2.

P zt,2−5,2−7 (P) zt,2−6,2−11 (P) zt,2−7,2−15 (P) ℜH4th

∂2u
∂x2∂t

(P)(
0.125,

√
3

8 ,1
)

−0.000398417531 −0.000398520228 −0.000398526661 15.966(
0.25,

√
3

8 ,1
)

−0.000682992442 −0.000683176968 −0.000683188526 15.966(
0.375,

√
3

8 ,1
)

−0.000853734894 −0.000853970855 −0.000853985635 15.965(
0.5,

√
3

8 ,1
)

−0.000910648720 −0.0009109021308 −0.000910918003 15.966(
0.625,

√
3

8 ,1
)

−0.000853734894 −0.0008539708553 −0.000853985635 15.966(
0.75,

√
3

8 ,1
)

−0.000682992442 −0.000683176968 −0.000683188526 15.965(
0.875,

√
3

8 ,1
)

−0.000398417531 −0.000398520228 −0.000398526661 15.966

i = 1,2 for time levels t = 0.2 and t = 0.8.
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Figure 5.5: The approximate solution v2−7,2−15 at time levels t = 0.2 and t = 0.8

obtained by the method H4th
(

∂u
∂x1

)
for the Example 5.2.

Figure 5.6: The approximate solution z2−7,2−15 at time levels t = 0.2 and t = 0.8

obtained by the method H4th
(

∂u
∂x2

)
for the Example 5.2.
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Figure 5.7: The approximate solution vt,2−7,2−15 at time levels t = 0.2 and t = 0.8

obtained by the method H4th
(

∂2u
∂x1∂t

)
for the Example 5.2.

Figure 5.8: The approximate solution zt,2−7,2−15 at time levels t = 0.2 and t = 0.8

obtained by the method H4th
(

∂2u
∂x2∂t

)
for the Example 5.2.
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Chapter 6

CONCLUSION AND FINAL REMARKS

In this thesis we developed numerical methods using implicit schemes defined on

hexagonal grids for computing the derivatives of the solution to Dirichlet problem of

the heat equation on a rectangle. We gave highly accurate two-stage implicit methods

on hexagonal grids for the approximation of the first order derivatives of the solution

with respect to the spatial variables and second order mixed derivatives involving the

time derivative. At the first stage, for the error function, we obtained a pointwise prior

estimation depending on ρ(x1,x2, t), which is the distance from the current grid point

to the surface of QT . At the second stage, we constructed special difference problems

for the approximation of the first order spatial derivatives with the two-stage implicit

methods of second order and fourth order accuracy. In the case, when second order

accurate implicit method is used uniform convergence of O
(
h2 + τ2) order of

accuracy to the corresponding exact derivatives ∂u
∂xi

, i = 1,2 when r = ωτ

h2 ≤ 3
7 is

proved. When fourth order accurate implicit methods are used uniform convergence

of O
(
h4 + τ

)
of the constructed difference schemes on the hexagonal grids to the

respective exact derivatives ∂u
∂xi

and ∂2u
∂xi∂t , i = 1,2 for r = ωτ

h2 ≥ 1
16 is shown.

Furthermore, the given two-stage implicit methods are applied on some test problems

and the given theoretical order of convergence of the implicit methods are validated

with the obtained numerical order of convergence and demonstrated by using tables

and figures.
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Remark 6.1: The approximation of the first order partial derivatives of solution of first

type boundary value problem of heat equation in three space dimension is a challenging

problem. The methodology given in this research may be used to construct highly

accurate implicit splitting schemes (fractional step methods) and alternating direction

methods (ADI) (see Peaceman and Rachford [66], Douglas [67], Bagrinovskii and

Godunov [68], and Marchuk [69]).

Remark 6.2: Additionally, the numerical computation of the spatial derivatives of

the solution of the time-fractional structure of the heat equation is a second interesting

problem. The given approach may be extend on rectangular or triangular grids to give

approximate solution of the spatial derivatives. For example the time-space fractional

convection-diffusion equation, see Gu et al. [70], in which for the solution a fast

iterative method with a second order implicit difference scheme was studied.
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[33] Ničkovič, S.; Gavrilov, M.B.; Tosič, I.A., Geostrophic adjuctment on hexagonal

grids. Mon. Wea. Rev., 2001, 130, 668–683.

[34] Pruess, K.; Bodvarsson, G.S., A seven-point finite difference method for

improved grid orientation performance in pattern steam floods, Lawrence

Berkerly National Laboratory, LBL-16430, 1983, 1–32.

[35] Lee, D.;Tien, H. -C.; Luo, C. P.; Luk, H.-N., Hexagonal grid methods with

applications to partial differential equations. Int. J. of Comput. Math., 2014,

91(9), 1986–2009.

[36] Richtmyer, R.D.; Morton K.W., Difference methods for initial-value problems,

second edition, Interscience Publishers a division of Jhon Wiley and Sons, 1967.

111



[37] Buranay, S.C.; Arshad, N., Hexagonal grid approximation of the solution of heat

equation on special polygon., Advances in Difference Equations, 2020, 2020:309,

1–24 .

[38] Arshad, N., Hexagonal grid approximation of the solution of two dimensional

heat equation, Doctoral thesis, Supervised by S.C. Buranay, Eastern

Mediterranean University, Famagusta, Cyprus, August 2020.

[39] Karaa, S., High-order approximation of 2D convection-diffusion equation on

hexagonal grid., Numerical Methods for Partial Differential Equations, 2006, 22,

1238–1246.

[40] Dosiyev, A.A.; Celiker, E., Approximation on the hexagonal grid of the Dirichlet

problem for Laplace’s equation. Boundary Value Problems, 2014, 2014: 73, 1–

19.

[41] Volkov, E.A., On convergence in C2 of a difference solution of the Laplace

equation on a rectangle. Russ. J. Numer. Anal. Math. Model 1999, 14, 291–298.

[42] Dosiyev, A.A.; Sadeghi, H.M., A fourth order accurate approximation of the first

and pure second derivatives of the Laplace equation on a rectangle. Adv. Differ.

Equ., 2015, 2015, 1–11.

[43] Volkov, E.A., On the grid method by approxımating the derivatives of the solution

of the Drichlet problem for the Laplace equation on the rectangular parallelpiped.

Russ. J. Numer. Anal. Math. Model., 2004, 19, 209–278.

112



[44] Dosiyev, A.A.; Sadeghi, M.H., On a highly accurate approximation of the

first and pure second derivatives of the Laplace equation in a rectangular

parellelpiped. Adv. Differ. Equ., 2016, 2016, 1–13.

[45] Dosiyev, A.A.; Abdussalam, A., On the high order convergence of the difference

solution of Laplace’s equation in a rectangular parallelepiped. Filomat, 2018, 32,

893–901.

[46] Dosiyev, A.A.; Sarikaya, H., 14-Point difference operator for the approximation

of the first derivatives of a solution of Laplace’s equation in a rectangular

parallelepiped. Filomat, 2018, 32, 791–800.

[47] Buranay, S.C.; Farinola, L.A., Implicit methods for the first derivative of the

solution to heat equation. Adv. Differ. Equ., 2018, 2018, 1–21.

[48] Barrera, D.; Guessab, A.; Ibáñez, M.J.; Nouisser O., Increasing the

approximation order of spline quasi-interpolants. J. Comput. Appl. Math. 2013,

252, 27–39.

[49] Guessab, A., Approximations of differentiable convex functions on arbitrary

convex polytopes. Appl. Math. Comput., 2014, 240, 326–338.

[50] Buranay, S.C.; Matan, A.H.; Arshad, N., Implicit method of second order

accuracy on hexagonal grids for approximating the first derivatives of the solution

to heat equation on a rectangle. In Proceedings of Fifth International Conference

113



on Analysis and Applied Mathematics, 23-30 September, 2020, Nicosia Mersin

10 Turkey, Book of abstracts of ICAAM 2020, 77.

[51] Buranay, S.C.; Matan, A.H.; Arshad, N., Two stage implicit method on hexagonal

grids for approximating the first derivatives of the solution to the heat equation.

Fractal Fract. 2021, 5, 19, 1–26.

[52] Buranay, S.C.; Arshad, N.; Matan, A.H., Highly accurate implicit schemes for

the numerical computation of derivatives of the solution to heat equation. In

Proceedings of The 3rd and 4th Mediterranean International Conference of Pure

and Applied Mathematics and Related Areas, November 11-12, 2021, Antalya,

Turkey, Proceeding Book of MICOPAM 2020-2021, 82.

[53] Buranay, S.C.; Nouman, A.; Matan, A.H. Hexagonal Grid Computation of the

Derivatives of the Solution to the Heat Equation by Using Fourth Order Accurate

Two-Stage Implicit Methods. Fractal Fract., 2021, 5, 203 1–34.

[54] Lax, P.D.; Richtmyer, R.D., Survey of the stability of linear finite difference

equations, Communications on Pure and Applied Mathematics, 1956, 9, 267–

293.

[55] Buranay, S.C.; Iyikal, O.C., Incomplete block-matrix factorization of M-matrices

using two step iterative method for matrix inversion and preconditioning, Math.

Methods Appl. Sci., 2021, 44, 7634–7650.

114



[56] Concus, P.; Golub, G.H.; Meurant, G., Block preconditioning for the conjugate

gradient method. SIAM Journal, 1985, 6(1), 220-252.

[57] Axelsson, O., A general incomplete block matrix factorization method, Linear

Algebra and Its Applications, 1986, 74, 179–190.

[58] Volkov, E.A., Differentiability properties of solutions of boundary value

problems for the Laplace and Poisson equations on a rectangle. Trudy Mat. Inst.

Steklov., 1965, 77, 89–112.

[59] Ladyženskaja, O.A.; Solonnikov, V.A.; Ural’ceva, N.N., Linear and Quasi-

linear Equations of Parabolic Type. In Translation of Mathematical Monographs;

American Mathematical Society: USA, 1967; Volume 23.

[60] Friedman, A., Partial Differential Equations of Parabolic Type; Robert E. Krieger

Publishing Company: Malabar, FL, USA, 1983.

[61] Azzam, A.; Kreyszig, E., On solutions of parabolic equations in regions with

edges. Bull. Aust. Math. Soc., 1980, 22, 219–230.

[62] Azzam, A.; Kreyszig, E., Smoothness of solutions of parabolic equations in

regions with edges. Nagoya Math. J., 1981, 84, 159–168.

[63] Burden, R.L.; Faires, J.D. Numerical Analysis Brooks/Cole; Cengage Learning:

Boston, MA, USA, 2011.

115



[64] Samarskii, A.A. Theory of Difference Schemes; Marcel Dekker Inc.: New York,

NY, USA, 2001.

[65] Henner, V.; Belozerova, T.; Forinash, K., Mathematical Methods in Physics,

Partial Differential Equations; Fourier Series, and Special Functions; AK Peters

Ltd.: Wellesley, MA, USA, 2009.

[66] Peaceman, D.W.; Rachford, H.H. JR, The numerical solution of parabolic and

elliptic differential equations. J. Soc. Industrial Appl. Math., 1955, 3(1), 28-41.

[67] Douglas, J., On the numerical integration of ∂2u
∂x2 +

∂2u
∂y2 = ∂u

∂t by implicit methods.

J. Soc. Industrial Appl. Math., 1955, 3(1), 42–65.

[68] Bagrinovskii, K.A.; Godunov, S.K., Difference schemes for multidimensional

problems, Dokl. Akad. Nauk USSR, 1957, 115, 431–433.

[69] Marchuk, G.I., Splitting and Alternating Methods, Handbook of Numerical

Analysis; Elsevier Science Publishers B.V. (North-Holland), 1990.

[70] Gu, X.M.; Huang, T.Z.; Ji, C.C.; Carpentieri, B.; Alikhanov, A.A., Fast iterative

method with a second-order implicit difference scheme for time-space fractional

convection–diffusion equation. J Sci Comput, 2017, 72, 957–985.

116


	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	1 INTRODUCTION
	1.1 Motivation
	1.2 Literature Review
	1.3 The Achievements and Organization of the Study

	2 Hexagonal Grid Computation of the Derivatives of the Solution to the Heat equation by Using Second Order Accurate two-stage Implicit Methods
	2.1 Dirichlet Problem of Heat Equation and Second Order Accurate Solution by Using Hexagonal Grids
	2.1.1 Pointwise Priory Estimation For the Error Function (2.32)-(2.35)

	2.2  Difference Problem Approximating ux1 on Hexagonal Grids with O(h2+2) Order of Accuracy
	2.3 Difference Problem Approximating ux2 on Hexagonal Grids with O(h2+2) Order of Accuracy

	3 Experimental Investigation of the Second Order accurate Implicit Method
	4 Hexagonal Grid Computation of the Derivatives of the Solution to the Heat Equation by Using Fourth Order Accurate two-stage Implicit Methods
	4.1  Hexagonal Grid Approximation of the Heat Equation and the Rate of Change by Using Fourth Order Accurate Difference Schemes
	4.1.1 Dirichlet Problem of Heat Equation and Difference Problem: Stage 1( H4th( u) )
	4.1.2 Dirichlet Problem for the Rate of Change and Difference Problem: Stage 1( H4th( ut) ) 
	4.1.3 M-Matrices and Convergence of Finite Difference Schemes in Stage 1( H4th( u) )  and Stage 1( H4th( ut) ) 

	4.2  Second Stages of the Implicit Methods Approximating ux1 and 2ux1t with O(h4+) Order of Convergence
	4.2.1 Hexagonal Grid Approximation to ux1: Stage 2( H4th( ux1) ) 
	4.2.2 Boundary Value Problem for 2ux1t and Hexagonal Grid Approximation: Stage 2( H4th( 2ux1t) ) 

	4.3  Second Stages of the Implicit Methods Approximating ux2 and 2ux2t with O(h4+) Order of Convergence
	4.3.1 Boundary Value Problem for ux2 and Hexagonal Grid Approximation: Stage 2( H4th( ux2) ) 
	4.3.2 Boundary Value Problem for 2ux2t and Hexagonal Grid Approximation: Stage 2( H4th( 2ux2t) )


	5 Experimental Investigations of the Fourth Order Accurate Two-Stage Implicit Methods
	6 Conclusion and Final Remarks
	REFERENCES

