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ABSTRACT

The achievement of this research is bifurcated. Firstly, for the numerical solution of
the first kind linear Fredholm and Volterra integral equations with smooth kernels a
numerical method by using Modified Bernstein-Kantorovich operators is given. The
unknown function in the first kind integral equation is approximated by using the
Modified Bernstein-Kantorovich operators. Hence, by applying discretization the
obtained linear equations are transformed into systems of algebraic linear equations.
Due to the sensitivity of the solutions on the input data significant difficulties may be
encountered, leading to instabilities in the results during actualization. Consequently,
to improve on the stability of the solutions which implies the accuracy of the desired
results, regularization features are built into the proposed numerical approach. More
stable approximations to the solutions of the Fredholm and Volterra integral equations
are obtained especially when high order approximations are used by the Modified
Bernstein-Kantorovich operators.  Test problems are constructed to show the
computational efficiency, applicability and the accuracy of the method. Furthermore,
the applicability of the proposed method on second kind Volterra integral equations

with smooth kernels is also demonstrated with examples.

Secondly we give hybrid positive linear operators which are defined by using the
Bernstein-Kantorovich and Modified Bernstein-Kantorovich operators on certain
subintervals of [0,1]. Additionally, we consider second kind linear Volterra integral
equations with weak singular kernels of the form (x—1) " K (x,1), 0 < v < 1, where
K is a smooth function. It is well known that the solution usually possess singularities
at the initial point. Subsequently, we develop a combined method which uses the

proposed hybrid operators and approximates the solution on the constructed
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subintervals. Two algorithms are developed through the given combined method and
applied on some examples from the literature. Furthermore, numerical validation of
the combined method is also given on first kind integral equations, by first utilizing
regularization. Eventually, it is shown that the proposed combined method hence, the
given computational algorithms are numerically stable and give acceptable accurate

approximations to solutions with singularities.

Keywords: Volterra integral equations; Fredholm integral equations; Modified
Bernstein-Kantorovich operators; Moore-Penrose inverse; Regularization; Weakly
singular Volterra integral equations; Asymptotic rate of convergence; Error analysis;

Numerically stable algorithm.

v



0Y/

Bu aragtirmanin basarisi ikiye ayrilir. Ilk olarak, Modifiye Bernstein-Kantorovich
operatorlerini kullanarak diiz(smooth) cekirdekli birinci tiir lineer Fredholm ve
Volterra integral denklemlerininin ¢6ziimii i¢in niimeriksel bir yontem verilir. Birinci
tiir integral denkleminde bilinmeyen fonksiyon, Modifiye Bernstein-Kantorovich
operatorlerini kullanalarak yaklagik hesaplanir. Boylece, ayristrima uygulanarak elde
edilen lineer denklemler cebirsel lineer denklem sistemlerine doniistiiriiliir. Yontemin
niimeriksel olarak gerceklesmesi asamasinda ¢oziimlerin giris verileri {izerindeki
hassasiyeti elde edilen sonuglarda kararsizliklara yol acabilen Onemli zorluklar
olusturabilir. Sonug olarak, istenen yaklasik ¢oziimlerin kararligini artirmak icin ki bu
niimeriksel ¢oziimlerin dogrulugunu belirler, Onerilen niimeriksel yodntemde
diizenlilestirme Ozellikleri kullanilir. Fredholm ve Volterra integral denklemlerinin
coziimlerinde, Ozellikle Modifiye Bernstein-Kantorovich operatorleri tarafindan
yiiksek dereceli yaklagimlar kullanildiginda daha kararli yaklasimlar elde edilir.
Yontemin hesaplama verimliligini, uygulanabilirligini ve dogrulugunu gostermek i¢in
test problemleri olusturulur. Ayrica, 6nerilen yontemin diiz (smooth) cekirdekli ikinci

tiir Volterra integral denklemleri izerindeki uygulanabilirligi de 6rneklerle gosterilir.

Ikinci olarak, [0,1] arliginin belirli alt arahklarinda Bernstein-Kantorovich ve
Modifiye Bernstein-Kantorovich operatorlerini kullanarak tanimlanmig hibrit lineer
pozitif operatorler verilir. Ayrica K diizgiin bir fonksiyon olup (x—1)""K (x,1),
0 < v < 1, seklindeki zay1f singiilerli cekirdege sahip ikinci tiir lineer Volterra integral
denklemleri dikkate alimir. Coziimiin genellikle baslangic noktasinda singiilerlige
sahip oldugu iyi bilinmektedir. Sonradan, onerilen hibrit operatorlerini kullanan ve

cOziimil hibrit operatorlerin tanimlandig: alt araliklarda yaklasik olarak hesaplayan bir
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birlesik yontem olusturulur. Verilen birlesik yontem ile iki algoritma gelistirilir ve
literatiirden bazi o6rnekler iizerinde uygulanir.  Ustelik, ©nce diizenlilestirme
kullanarak birinci tiir integral denklemler iizerinde de birlesik metodun niimeriksel
dogrulamasi yapilir. Sonucta Onerilen sayisal birlesik yontemin, dolayisiyla verilen
hesaplama algoritmalarinin sayisal kararli oldugu ve singiilerli§i olan c¢oziimlere

kabul edilebilir dogruluklu yaklagimlar verdigi gosterilir.

Anahtar Kelimeler: Volterra integral denklemleri; Fredholm integral denklemleri;
Modifiye Bernstein-Kantorovich operatorleri; Moore-Penrose ters; Diizenlilestirme;
Zayif singiiler Volterra integral denklemleri; Asemptotik yakinsama hizi; Hata analizi;

Sayisal olarak kararli algoritma.
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Chapter 1

INTRODUCTION

1.1 Motivation and Review of Literature
The need of stable, reliable and time efficient methods for the numerical solution of
Fredholm and Volterra integral equations of first kind with continuous and square

integrable kernels is the first motivation of this research.

Fredholm and Volterra integral equations of the first kind play an important role in
many problems from science and engineering. It is known that the Fredholm integral
equations can be derived from boundary value problems with given boundary
conditions. For example, Fredholm integral equations of the first kind arise in a
mathematical model of the transport of fluorescein across the blood-retina barrier in
the transient state and the subsequent diffusion of fluorescein in the vitreous body
given in Larsen et al. [1]. Some other applications are in palaeoclimatology given in
Anderssen and Saull [2], antenna design in Herrington [3], astrometry in Craig and
Brown [4], image restoration in Andrews and Hunt [5]. The investigation of Volterra
integral equations is very important in solving initial value problems of usual and
fractional differential equations arising from the mathematical modelling of many
scientific problems, including population dynamics, spread of epidemics,
and semi-conductor devices, such as the biological fractional n-species delayed
cooperation model of Lotka—Volterra type given in Tuladhar et al. [6]. Examples of
Volterra integral equations of first kind can be extended to mathematical model of

animal studies of the effect of the deposition of radioactive debris in the lung by
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Hendry [7], the heat conduction problem in Bartoshevich [8], tautochrone problem of
which Abel integral equation was derived by Abel [9], (see also Groetsch [10]),
electroelastic of dynamics of a nonhomogeneous spherically isotropic piezoelectric
hollow sphere problem in Ding et al. [11]. Additionally, the use of a dynamical model
of Volterra integral equations in energy storage with renewable and diesel generation

has been analysed in Sidorov et al. [12].

As a classical ill-posed problem, the numerical solution of Fredholm integral
equations of the first kind has been investigated by many authors, such as an early
study by Phillips [13] and a recent work by Neggal et al. [14]. The well-known early
methods are the regularization methods given with a technique by Phillips in [13] and
the Tikhonov regularization by Tikhonov in [15, 16]. In the Tikhonov method, a
continuous functional is usually used and the minimizer for the corresponding
functional is difficult to obtain. Consequently, several methods have been proposed to
obtain an effective choice of the regularization parameter in Tikhonov method such as
the discrepancy principle, the quasi-optimality criterion (see Groetsch [17],
Bazan [18] and references therein). Further, in Caldwell [19], a direct quadrature
method and a boundary-integral method were examined for solving Fredholm integral
equations of the first kind. Additionally, a regularization technique which replaces
ill-posed equations of the first kind by well-posed equations of the second kind was
employed to produce meaningful results for comparison purposes. Later,
the extrapolation technique by Brezinskietal. [20] and a modified Tikhonov
regularization method to solve the Fredholm integral equation of the first kind under
the assumption that measured data are contaminated with deterministic errors was
given in Wen and Wei [21]. Recently, a variant of projected Tikhonov regularization

method for solving Fredholm integral equations of the first kind was proposed in



Neggal et al. [14] in which for the subspace of projection, the Legendre polynomials

were used.

Early studies for the solution of Volterra integral equations of the first kind involve the
high order block by block methods in Hoog and Weiss [22, 23]. However, these
methods suffer from the disadvantage of requiring additional evaluations of the
kernels and the solution of systems of algebraic equations for each step. Later,
Taylor [24] used inverted differentiation formulae, which the resulting methods were
explicit corresponding to local differentiation formulae. As the author stated “the
main disadvantage of this method is that weights must be calculated from the
recurrence relation (2.9) and the differentiation formula must be chosen so that the
Dahlquist root condition is satisfied”. Integral equations of the first kind associated
with strictly monotone Volterra integral operators were solved in Brunner [25] by
projecting the exact solution of such an equation into the space S,(n_l)(ZN) of
piecewise polynomials of degree m > 0 possessing jump discontinuities on the set Zy
of knots. Besides, the asymptotic behavior of solutions to nonlinear Volterra integral
equations was analysed in Hulbert and Reich [26]. The future-sequential
regularization method and predictor-corrector regularization method for the
approximation of Volterra integral problems of first kind with convolution kernel were
given in Lamm [27] and Lamm [28], respectively. The numerical solution of Volterra
integral equations of the first kind by sequential Tikhonov regularization coupled with
several standard discretizations (collocation-based methods, rectangular quadrature,

or midpoint quadrature) was given in Lamm and Eldén [29].

New approaches have been developed for the solution of integral equations that use

the basis functions and transform the integral equation to the system of linear or



nonlinear equations. One of these approaches is the use of wavelet basis. For the
solution of the Abel integral equation, Legendre wavelets were used in Yousefi [30]
and the wavelet basis were used in Maleknejad et al. [31] for the numerical solution
of Volterra type integral equations of the first kind. Another approach is the use of
polynomial approximations. In Mandal and Bhattacharya [32], Fredholm integral
equations of the second kind and a simple hypersingular integral equation and a
hypersingular integral equation of the second kind were numerically solved using
Bernstein polynomials. At the same year, in Maleknejad et al. [33] numerical solution
of linear and nonlinear Volterra integral equations, of the second kind by using
Chebyshev polynomials was given. Afterwards, a new approach to the numerical
solution of Volterra integral equations by using Bernstein’s approximation was given

in Maleknejad et al. [34].

Recently, exhaustive studies on the use of CESTAC method for the solution of Volterra
first type integral equations has been given in Noeiaghdam et al. [35] in which the
control of accuracy on Taylor-collocation method to solve the weakly regular Volterra
integral equations of the first kind has been studied. Furthermore, in Noeiaghdam et al.
[36] that the numerical validation of the Adomian decomposition method for solving

Volterra integral equation with discontinuous kernels was given.

In this research our second interest is the numerical solution of Volterra integral

equations of second kind

X

f(x) +/<p(x,z)1?(x,z,f(z))dt =g(x), x€0,1], (1.1)

0

with weak singularities. The function ¢ (x,¢) is the singular part of the kernel and is

unbounded function in the domain of integration. Also, g (x) and K (x,, f (t)) denote



the given smooth functions and f (¢) is the unknown function to be determined. In
practical applications one very frequently encounters the linear counterpart of (1.1) in
the form K (x,1, f (1)) = K (x,) f(t). These equations arise in a number of important
practical applications. Such as stated before in Bartoshevich [8] and Abel [9], heat
transfer problem between solids and gasses under nonlinear boundary conditions in
Mann and Wolf [37] also in Chambre [38] for nonlinear heat transfer problem and

additionally in theory of superfluidity by Levinson [39]. Typical forms of ¢(x,¢) such

as
(x—1)7",0<v<, (1.2)
(-2 0<v<, (1.3)
log (x—1), (1.4)
I
—, u>1, (1.5)
xH

were considered in some works, (see Linz [40], Brunner [41] and Diago [42]) for the
numerical solution of (1.1). Exhaustive studies analysing the existence and uniqueness
of the solution of second kind Volterra integral equations with singular kernels under
some smoothness conditions on the input functions and the differentiability properties
of the solution exist in the literature, such as Miller and Feldstein [43], de Hoog and
Weiss [44], Logan [45], Lubich [46], Brunner [41,47], Brunner and van der Houwen

[48] and additionally, Han [49].

Despite the practical importance of these equations only a few papers dealing with
appropriate numerical methods were published till the last quarter of the twentieth
century. Approaches, based in some way on the concept of product integration were
given in the earliest research by Huber [50]. Later Wagner [51], and Noble [52]

extended the results. Oules [53] treated the special case for which K (x,z, f) = h(f).



A rigorous theoretical justification of the algorithms and an easy way of generalizing
the results by using finite difference schemes based on product integration were
investigated by Linz [40]. In the literature Volterra integral equations with kernels
involving singular parts of (1.2) are also known as Volterra Abel-type integral
equations. Subsequently, Atkinson [54] gave the numerical solution of an Abel

integral equation by a product trapezoidal method.

Afterwards, with the use of advanced computers the numerical solution of weakly
singular Volterra integral equations has gained more interest by many authors. In most
practical examples, a smooth forcing function leads to a solution which has typically
unbounded derivatives at the initial point. It is well-known that in this case high-
order accuracy of product integration and collocation schemes is lost and convergence
of order 1 —v has been proved (see Brunner and Norset [55], Brunner and van der
Houwen [48]). Again, if one is interested in finding an approximate solution which
exhibits high-order accuracy, one may resort to approximation with polynomial splines
on graded grids which reflect the singular behaviour of the exact solution near the
initial point as given in Brunner [41], [47], Brunner and van der Houwen [48], and
Brunner [56]. Also, as in Tang [57] by which the application of a class of spline
collocation methods to first-order Volterra integro-differential equations (VIDEs) that
contain a weakly singular kernel of the Abel-type (1.2) were given by using graded

meshes.

On the other hand one may keep the uniform meshes but then use nonpolynomial spline
approximating functions reflecting the singularity as given in Brunner [58], Riele [59].
It has been observed in numerical experiments given in Riele [59] that as x increases

the errors appear to be of order 2 — v, who considered the case of particular practical



importance v = % Later on variable transformations followed by standard methods
have also been considered by several authors. Galperin et al. [60], Baratella and Orsi
[61], and Pedas and Vainikko [62] are examples of this kind of studies. Subsequently,
Yousefi [63] gave a numerical solution of Abel integral equation by using Legendre
wavelets. Most recently based on Picard iteration and a suitable quadrature formula,
Micula [64] gave an iterative numerical method for the solution of linear fractional

integral equations of the second kind,

/ b(e)(x— 1) fle)dt = g (x), 0<x <1, (1.6)

for0 <v <1, where, I'(v) = [e*x""!dxand a,b and g € [0,/] — R were assumed to
0

be continuous functions.

1.2 The Achievements and the Organization of the Study

The main achievements of this research and the organization of the thesis are given as

follows:

In Chapter 2, the Modified Bernstein-Kantorovich operators and asymptotic rate of

convergence of these operators for f € C2[0,1] is given.

In Chapter 3, using the Modified Bernstein-Kantorovich operators, a numerical
approach is developed for the solution of Fredholm and Volterra integral equations of
the first kind with continuous kernels. Furthermore, regularized integral equations are
considered to obtain more smooth solutions especially when high-order
approximations are used by Modified Bernstein-Kantorovich operators. The proposed
approach is applied by building regularization features into the algorithm and

perturbation error analysis are given.

In Chapter 4, test problems are conducted and theoretical results given in Chapter 3



are justified with obtained numerical result. The presented theoretical and numerical

results in Chapters 2,3 and Chapter 4 respectively are published in Buranay et al. [65].

In Chapter 5, we consider Abel-type integral equations of the second kind and give
the assumptions and smoothness results. Next, the hybrid operators are defined by
using classical Bernstein-Kantorovich operators and Modified Bernstein-Kantorovich
operators K, o where, n € N and o > 0 is constant. Further, for the numerical solution
of the Abel-type integral equations of the second kind two algorithms are developed
by giving a combined method for the values of 0 < o < 1 and o > 1. Additionally,
the numerical solution of first kind Volterra Abel-type integral equations are also
investigated by first utilizing a regularization and then applying the given algorithms
to the yielded second kind equations. Eventually, we give the convergence analysis of

the constructed algorithms.

In Chapter 6, experimental investigations of the proposed combined method are
provided by applying the constructed algorithms to the considered test problems of
second kind linear Volterra Abel-type integral equations. Also first kind Volterra
Abel-type integral equations are considered and the given algorithms are used after
utilizing regularization techniques. Furthermore, it is numerically shown that the
given method hence also the developed algorithms provide accurate and stable
numerical approximations to the solution of the Volterra Abel-type integral equations.
The obtained theoretical results in Chapter 5 and numerical results in Chapter 6 are
presented at the Conference MICOPAM 2020-2021 in Buranay et al. [66, 67]. Also,

this study is under review in an SCI Journal.

In Chapter 7, some concluding remarks are given.



Chapter 2

MODIFIED BERNSTEIN-KANTOROVICH OPERATORS

In this chapter the Modified Bernstein-Kantorovich operators and asymptotic rate of

convergence of these operators for f € C2[0, 1] are given.

The Modified Bernstein-Kantorovich operators K, o (f;x) were used to approximate a

function f : [0, 1] — R ( Ozarslan and Duman [68]) where,

Kna (f:x) = ZPnk /f(l;fl) @.1)

and

n

Poi(x) = K1 =x)"F, 2.2)
k

and o > 0 is constant. For o = 1, the equation (2.1) reduces to classical Bernstein-

Kantorovich operator

k+1
n+1

Ky =Kp1(f;x)=(n+1) Zn: Py k(%) /f(t)dt. (2.3)
k=0

k
n+1

Theorem 2.1: (Ozarslan and Duman [68]) For each @ > 0 and every f € C[0,1] we

have K, o (f) =2 f on [0, 1], where the symbol = denotes the uniform convergence.

Lemma 2.1: (Buranay et al. [65]) For each fixed n € N, > 0 and x € [0, 1] we have

B(a)
sup |Ky.o ((t—x);x)| < ;
s K (0591 < L

(2.4)



1
sup |Ky o <(t—x)2;x)‘ < 5 (E +G(Oc)) ) (2.5)
x€[0,1] (n41)" \4
where,
1 .
— if0<a<l1
B(a)={ * (2.6)
aiﬂ ,if oo >1
l .
——,if0<a<1
ola)=4{ **" 2.7)
202 .
(a+1)((xZoc+1) ifa>1
Proof. From (2.1) it follows that
1 1
K, ot —xx) = ——x, 2.8
na(t —X;X) n+1(oc+1 X) (2.8)
1
Kno((t—x)%1x) = 5 (nx(1—x)+ ¢ (a,x)), (2.9)
(n+1)
where
2x 1
2
=x"— ) 2.10
¢(ax) =x a+1+2a+1 (2.10)

For each fixed n € Nja > 0 the inequality (2.4) is obtained from

B(a) = m[ax] ‘a+-1 —x|. The function @ (a,x) > 0 for o >0 on x € [0,1]. Further,
x€[0,1

. _ a? 1 — _1 =
xgéglw(a,x) = ariP@asyy occurring at x = o7 and xrél[gﬁ]q)(a,x) o(a)
occurring at the end points of the interval [0, 1]. Also using that m[ax] x(1—x)| =1

x€[0,1
yields (2.5). U

1
1 2
Next, we use the notations ||¢|| = sup |g| and ||¢||, = <f |q(x)|2dx) to present the
0

x€[0,1]
maximum norm for ¢ € C [0, 1] and L?>—norm of the function g € L2[0, 1]. Further we

n
denote ||Y||, = \/< y (Y (k))2> and ||P||, = /p (PTP) to present the discrete
Euclidean norm of a vector ¥ € R" and the spectral norm of a matrix P € R™*"

respectively, where p is the spectral radius and PT is the transpose of P.

10



Voronowskaja [69] gave the asymptotic rate of convergence of the Bernstein operators

< k

By (fix) =) Pui(x)f (—) , (2.11)
k=0 n

using the linearity property of the Bernstein operators and Taylor formula at a point x

as

limn (B, (f:3)) ~ 1)) = 51— )f" (3). (2.12)

n—so0

Based on the analogous approach in Voronowskaja [69] we give the asymptotic rate of

convergence of the Modified Bernstein-Kantorovich operators by the next theorem.

Theorem 2.2: (Buranay et al. [65]) If f is integrable in [0, 1], and admits a derivative

of second order at some point x € [0, 1] then

1 1

r}l_r;lo [Kno(fsx)— f(x)] = (oc—+1 —x> 1 (x) +§x(1 —x)f" (x). (2.13)

Additionally, this limit is uniform if f € C?[0, 1], thus the rate of convergence of the
operator K, o (f3x) to f(x) is O (1) forx € [0,1].
Proof. Assume that f is integrable in [0, 1], and has second order derivative at a point

x € [0, 1] then from Taylor’s formula at x we have

(t—x)°

S W)+ (=) E (1 —x), (2.14)

fO)=flx)+—x)f (x)+

and E (u) — 0 as u — 0 and E is integrable function on [—x, 1 —x]. Using the linearity

property of the operators K, o and (2.8), (2.9) and (2.10) we have

Kna i) = £09 = 7 (G =) £/

Tatl\a+l
1 , 2 1 ;
+—x - + +nx(l—x X
2(n+1)2( o+1 20+1 ( )>f (x)
+E(n,o,x), (2.15)

11



where,
1

k+t® 2 (k@
(n,a,x) ank /<+ x) E(r:l_l—x)dt. (2.16)

0

To show that the asymptotic rate of convergence is O (rll) it is sufficient to show that
li_r}n nE (n,o,x) =0. Let M| = sup |E (u)| and for arbitrary € > 0 there exist
e ue[—x,1—x]

01 > 0 such that |E (u)| < € whenever |u| < §;. For all ¢ € [0,1] it follows that

‘E (k“ >‘ <Ee+M (’i—x> /8% Then let

14
=[] +ka), p=1,2,3,4. (2.17)
k=1

Using Lemma 2.1 estimation (2.5) gives

M

Ko ((t —x>2;x) ] + 5 [Kna ((z —x)4;x)‘

€ n MM (n, )
i eat A e I

where, o (@) is as given in (2.7) and M (n,&) = sup |Q(n,o,x)|. In addition for a
x€[0,1]

fixed ot, M (n, o) is second degree polynomial in n and Q (n, &, x) is

|E (n,0,x)| < €

0(at,n,x) =1+6a+11a*+60>

+(14+40) (=47, (a)+ (1+30) (11 + (174 20x) )n)x

Vs (@)
V2 (@)
B V4 (@)

ni@

+ 7, (o) (1+n(—20+3n))x*. (2.19)

- (6(1+ o) — (41 + (87 +220))n+ 3y, (&) n*)x*

(2+n(=25+30(—54n) +3n))x°

It is obvious from (2.18) and (2.19) that for n large enough we have |nE (a,n,x)| < €
and using (2.15) we obtain (2.13). If f € C?[0,1] then this limit is uniform, thus the

rate of convergence of the operator K, o(f;x) to f(x) is O (1) forx € [0,1]. O

Corollary 2.1: (Buranay et al. [65]) If f € <C)‘ ﬂLz) ([0,1]) for A > 2 then

12



K0 sl < L
%@H.{ ”1”)2 (1= x) + 9 (1)),
le[fﬁ”K”’“(f;x)_ﬂx)' < ,!ﬂﬁ(“) z(lf—J:q)zQ“LG( )>’
Ko =l < L () |
2(|,Lf_+"||l)2<m<1-x>+<p<a,x» X
e ]

hold true where, ¢ (,x) is the given function in (2.10)

E(Oﬂ) —VI_O‘JFO‘
(1+a)v3’
¢() ¢2( @)

¢1(a):6+2a(3+4a\(/1§a(—1+3a))),

Y

¢, (n,a)=B3+oa(—1+6a))n,

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
(2.25)

(2.26)

and B (a),o (o) are as given in (2.6) and (2.7) respectively and 7, (¢) is the same as

in (2.17).

Proof. The inequality (2.20) is the consequence of the Theorem 2.2. The proof of

(2.21) is obtained by using (2.20), Lemma 2.1 and estimations (2.4), (2.5). For a > 0

and n € N the proof of (2.22) follows from the integral values

f |

) 2
0

L ax] =B,

— =X

D=

1

[me(-2)+plan)Par )| =5 na).
0
given in (2.23), (2.24) respectively.
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Chapter 3

NUMERICAL SOLUTION OF THE FREDHOLM AND
VOLTERRA INTEGRAL EQUATIONS BY USING

MODIFIED BERNSTEIN-KANTOROVICH OPERATORS

In this chapter, by using the Modified Bernstein—Kantorovich operators, a numerical
approach is developed for the solution of Fredholm and Volterra integral equations of
the first kind with continuous kernels. Furthermore, regularized integral equations are
considered to obtain more smooth solutions especially when high-order
approximations are used by Modified Bernstein-Kantorovich operators. The proposed
approach is applied by building regularization features into the algorithm and
perturbation error analysis are given. The result presented in this chapter are
published in the research article in Buranay et al. [65].

3.1 Representation of the K, , Operators and Discretization of First
Kind Integral Equations

We consider the Fredholm integral equation of the first kind (FK1)
1
sz/K(x,t)f(t)dt:g(x),0§x§1, 3.1)
0
and Volterra integral equations of the first kind (VK1)

ff:/mx,wf(t)dr:g(x), 0<x<1, (3.2)
0

Definition 3.1: (Groetsch [17], Hansen [70]) By means of the singular value

14



expansion (SVE) any square integrable kernel K (x,7) can be written in the form

K (x,t) = i)uiu,- (x)vi(2). (3.3)

The functions u;,v; are the singular functions of K and they are orthonormal with
respect to the usual inner product (.,.) and the number u; are the singular values of K.
For degenerate kernels the infinite sum (3.3) is replaced with the finite sum upto the

rank of the kernel. The system {u;,v;; u;} is called the singular system of K.

Let W : Hy — H, be a compact linear operator on a real Hilbert space H{, taking values
in a real Hilbert space H,. The next theorem is known as the Picard’s theorem on the

existence of the solutions of first kind equations.

Theorem 3.1: ( Groetsch [17]) Let W : Hy — H> be a compact linear operator with
singular system {u;,v;;1;}. In order that the equation ¥f = g have a solution it is
necessary and sufficient that g € N (‘P*)L (orthogonal complement of the nullspace of

the adjoint of W) and

Y 1 [(g,vi)]* < oo. (3.4)
i=0

On the basis of Theorem 3.1 we consider the following hypothesis:
Hypothesis A:
1. The kernel K (x,t) is continuous hence square integrable function on [0, 1] x
[0,1].
2. g€C[0,1] and for FK1 g € N (T*)* and for VK1 g € N (f) *also the Picards

condition (3.4) is satisfied.

15



Without loss of generality the solution f of FK1 and VK1 denotes the pseudoinverse

solution or the Moore-Penrose generalized inverse solution for FK1 and VK1
f=Tigand f=T"g, (3.5)

respectively. Further, in order to determine the effect of & > 0 in the numerical solution
we represent the Modified Bernstein-Kantorovich operators (2.1) for 0 < p < 1 in the

form

Koo (1) = ZPnk /f(k“a)d +/f("+’a)

u
u 1 k+1t*
:w(n,a)I;)Pmk(x) w(n,a)()/f(n+1)dt+ / qg(w)du |, (3.6)

where
F@) (- Du—k) @ ifo#1,
q(u) = (3.7)
fu) ifa=1,

(3.8)

For the numerical solution of FK1 and VK1 we approximate the function f by using

the Modified Bernstein-Kantorovich operators in (3.6). We obtain the following

equation for FK1
kel
1 H n+1
@) [k Y Pus) | oo [ (S5 )i [ gtyau | ar= g0
= o(n, ) n+1 ’
0 0 kpd

and for VK1 we get

X

a)(n,a)/K(x,t)Iimek(t) w(;,w/uf(];—:tr)dtqt / g(u)du | dt=g(x).
o 0

0

(3.10)
Subsequently we take the grid points x; = £+ g, j=01,..,n—1and x, = 1—g¢,

where 0 < € < ﬁ Then, the equations (3.9), (3.10) are transformed into algebraic

16



systems of equations
AX = B, and AX = B, (3.11)

respectively, where the coefficient matrices A and A have the entries
1

Al a1 = 001 @) A g4 = “’(”70‘)/1{(’%#) Poi()dt, (3.12)
0

[X} I CXC) [X ]M’kﬂ - a)(n,OC)/K(xj,t) P, (1), (3.13)
0

j=0,1,...n,k=0,1,...,n, and

k+1
n+1

X (k+1) /f Kt dt+/ (W)du, k=0,1,.,n,  (3.14)
nOC l’l+1 q ) T MYy Ly eyl .

k+u%
n+1

B(j+1)=g(xj), j=0,1,...,n. (3.15)

g (u) and @(n,a) are as given in (3.7 ) and (3.8) respectively. The coefficient matrices
A and A in (3.11) are ill-conditioned matrices and may be rank deficient or even

singular matrices. Therefore, we consider the following minimum norm least squares

problem for FK1

)I;I‘g;l IX]l,, S1={XeR"""||B-AX|,=min}, (3.16)
and for VK1

min X[, ;= {X e R HB—XXHZ :min}. (3.17)

Lemma 3.1: (Buranay et al. [65]) The problems (3.16) and (3.17) have the unique
minimum norm least squares solutions X = A"B and X = A'B respectively.

Proof. Proof is analogous to the proof of Theorem 1.2.10 in Bjorck [71]. [
By solving the algebraic systems (3.16) and (3.17) we get a numerical solution of the
unknown X in (3.14) and denote this approximation by X,,. Further, let us use F, to
denote the obtained numerical approximation to f that is in the implicit form in X,, and

17



obtained by using the proposed approach. Substituting F, in (3.6) we get K, o (Fp;X)

as

Ko (Fiix) = 0(n, ank n(k+1), (3.18)

Definition 3.2: (Bjorck [71]) The condition number of U € R™*" (U # 0) is

o1
_ UTH Ul =
v) = v, vl = 5~
where T = rank(U) < min(m,n), and 6| > 6, > ... > 0 > 0 are the nonzero singular

values of U.

Theorem 3.2: (Buranay et al. [65]) Consider FK1 and VK1 in (3.1), (3.2) respectively
and assume that the conditions of the Hypothesis A are satisfied also the solution f

belongs to <C7L ﬂL2> ([0,1]) for some A > 2 then for FK1

1Kt (F) — fll, < Wi (n, s ) + MaWa (n, ct, ) HfiAHz) (3.19)
and for VK1
|Kna (F2) = Flly < Wi (n, 01, £) + MaWa (n, 0t f) | g) (3.20)
hold true where, 2
Wi (n,a, f) = %B(aHz(lf—ﬂ)zg("’m’ (3.21)
W (n, L, f) = ”Ji‘lﬁ( )+2(lf—ﬂ)2<2+o(a)). (3.22)

and B(a), o(a),B () and G (n, ) are given in (2.6), (2.7), (2.23) and (2.24)

respectively. Furthermore, M> = |||, where S(j+ 1) = sup |K (xj,7)|, xj = %—{—8,
t€[0,1]

j=0,1,...n—1and x, =1—¢, and 0 < € < %; . Further, K, o (Fy;x) is the

approximate solution obtained by the proposed method and A, and A, are given in

(3.12) and (3.13) respectively.
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Proof. For FK1 it follows that
1K (Fn) = flly < 1Ko (f) = Sl + 1Ko (Fn) = Ko (F) 1] - (3.23)
Based on Corollary 2.1 and the estimation (2.22) and taking (3.21) we obtain
1Ko (f) = fll, < Wi (n, et f). (3.24)

Nextlet X (k+1) =X, (k+1) =X (k+1) for k=0,1,...,n from (3.6) and (3.18) and
n
using that Y. P, x(x) = 1 gives
k=0

1
1 2 2

1Ko (F) = Konoe ()], = / (n, 0t ZPnk X (k+1)| dx
0
n+1 % / n g é
<ota (E @) ( [|Era) o) - a2
k=1 o 1k=0
It follows that Ko () = Kn (), < @(n, ) H}_(Hz (3.26)

From Theorem 2.1, the operator K, 4 (f;x) uniformly converges to f for any

f €C|0,1] and for any computationally acceptable small € > 0,

||f||

l

Ko (f32) = f(0)] < &+ =57 Knal((t —x)*3),

where, as usual, §; comes from the uniform continuity of the function f € [0, 1] and
Ky a((t —x)2 ;x) is given in (2.9) (see Ozarslan and Duman [68]). Therefore, for the

numerical solution of FK1 and VK1 equations in (3.1), and (3.2) in accordance we

1
assume /K(x ) Ko (fi1)di = g(x), 0<x < 1, (327)

/K Kuo (f3t)dr=g(x), 0<x <1, (3.28)
0

respectively. If we substitute F, (x) instead of f(x) in (3.27), (3.28) we get new

function g (x) on the right sides of these equations accordingly,
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K (x,t)Kno (Fpit)dt =3 (x), 0<x < 1, (3.29)

o _

K(x,t) Ko (Fpst)dt =3 (x), 0<x<1. (3.30)

S,

Thus, for FK1 using (3.27) and (3.29) and by taking the grid points x; = ﬁ +€,j=

0,1,....n—1landx, =1—¢,where 0 < & < ﬁ we obtain the algebraic system
AX =B, B(j+1)=32(xj) —g(x;), j=0,1,...,n. (3.31)

The minimum norm solution of the least squares problem for (3.31) is

X=A"B. (3.32)
Thus
w(n, ) [X]|, < w(n.a) 4" ||B]l, | (3.33)
and for VK1
w(n, ) [X]|, < w(n.a) |41 ||B]|, = (3.34)

I i
Next consider FK1 and let g(x) = [ K (x,7) Kno (f32)df and g (x) = [ K (x,1) f (¢)dt,
0 0

then it follows that
1

/K (K (f31) — £ (1)) dr, (335)

0
then using Corollary 2.1 and estimation (2.21) and (3.31) and (3.35) and taking S(j +

1) = sup |K (xj,7)| for j=0,1,....,nand M, = ||S||, and using (3.22) we get
t€[0,1]

1
1 2\ 2

(j_iol(g(xj)—g(m) 2>2= f/lK Xjt) (K (f21) = £ 1)) i

J=0

(i (+1) ) sup |Kn.o (f32) = f (1)]

t€[0,1]

< MW, (n7 (X,f) . (336)
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Substituting (3.36) into (3.33) and the obtained result in (3.26) gives

1K () = Ko ()], < MW (m, ) ]

. (3.37)

Further, using the estimations (3.24) and (3.37) in (3.23) and also from

K(Ay) = ’AI ) lA«]|, we get (3.19). Analogously, for VK1 it follows that
X
80 -8 = [ Kun) (Ko (i)~ ()t (339)
0

Using Corollary 2.1 and estimation (2.21) and taking (3.22) we obtain

1 xj 2 %
(fl(?(xj)—g(m)!z) =X / K (xj,t) (Knoo (f32) — f (£)) dt
j=0 j=0 0

< (i(s(j+1))2> sup |Kyo (fi1) = f(1)]

j=0 t€[0,1]
<MW, (n, o, f). (3.39)
Next substituting (3.39) in (3.34) and the obtained result in (3.26) we get

1K (F2) = Ko (£) 1, < MaWa (n, 1. £) |4

. (3.40)
2

Therefore using the estimations (3.24) and (3.40) in (3.23) follows (3.20). L]

Remark 3.1: If the matrix A in (3.12) and the matrix A in (3.13) are invertible then
AT =A"! and AT = A~'and the inequalities (3.19) and (3.20) hold true.

3.2 Regularized Numerical Solution

The numerical solution of the general least squares problems (3.16) and (3.17) may
be extremely difficult because the solution is very sensitive to the perturbations of the
coefficient matrices A and A and the right side vector B. This is reflected in the fact that

K(A), and k(A) are very large and increases as n increases which is the degree of the

constructed polynomial by the Modified Bernstein- Kantorovich operator used for the
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approximation of the solution. High condition numbers of the matrices A and A cause
rounding errors that prevent the computation of an accurate numerical solution of the
problems (3.16) and (3.17) respectively. Moreover, the obtained discrete problems are
always perturbed by approximations such as the integrals given as the entries of A and
A are evaluated numerically. Therefore, even if we were able to solve the discrete
algebraic problems (3.16) and (3.17) without rounding errors we would not obtain a
“smooth” solution because of the oscillations in the singular vectors. By a smooth
solution we mean “a solution which has some useful properties in common with the
exact solution to the underlying and unknown unperturbed problem”as stated in Hansel
[72]. Furthermore, the function g is typically a measured or observed quantity and

hence in practice the true g is not available to us (see Tikhonov [15, 16] and Groetsch

[17]).

Consider the first kind integral equation

Af =g (3.41)
In many practical problems one needs to solve an approximate equation

Af=§, (3.42)
instead of the exact equation (3.41). The operator Ais approximation to A and the
function g is approximation to g satisfying

|A=A| <801z gl < 82, 6 = max{5,,5},

where d > 0 is called the noise level. Therefore we consider the following regularized
problems for the Fredholm integral equation of the first kind (RFK1) (see Tikhonov

[15] and [16] and Groetsch [17])

K (x,t) fo (t)dt+1(8) fp (x) = g5 (x), 0<x <1, (3.43)

o —__
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and Volterra integral equations of the first kind (RVK1)

X

/K(x,t>f$ (1)di+1(8) £2 (x) = g5 (x), 0 < x < 1. (3.44)
0

where, 1 (8) is positive regularization parameter coordinated with 6. The regularized

problems (3.43) and (3.44) can be presented in the operator equation as
(A+n)E) 2 = 5. (3.45)

and E is the unity operator.

Hypothesis B: The following are assumed to be fulfilled:

a.

H(A+n(5)ﬁ)l < %(n(8)), (3.46)

where, 52 (n) is a continuous function.
b. For ¢ € (0,1) the noise level 6 is selected such that for 6 < § the inequality

07(n (0)) < g holds true.

lim ¢ (7 (8)) = o, limn (6) =0, lim8¢(n (8)) =0 (3.47)

For the convergence of the regularized solutions of (3.43) and (3.44) see Tikhonov [15]
and [16] and Groetsch [17]), Muftahov et al. [73] and the references therein. It is
clear that (3.43) and (3.44) are second kind Fredholm and Volterra integral equations
respectively. For the numerical solution of RFK1 and RVK1 by the proposed method
M (K, o) we take the grid points x; = %—i—é‘, j=0,1,....,n—1and x, = 1 — &, where
0<e< %1 and is sufficiently small number also 17 (8) > 0 is called the regularization

parameter. We assume the following algebraic equations for RFK1
1

[ KG0Kal i+ 0(nam (6)X3 G 1) =gs (1), (348)
0
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and for RVK1

Xj
/ K (xj,t) Kna(f:0)dt + @(n, )1 (8) X (j+1) = g5 (%)) (3.49)
0

for j=0,1,...,n, k=0,1,...,n. Then, the discrete regularized equations (3.48), (3.49)

can be presented in matrix form
AX) =B, AX} =B, (3.50)

for the RFK1 and for the RVK1 respectively where,

k+1
n+1

u
X8 (k4 1) = — /fa k19 dt+/ S (w)du, k=0,1,...n,  (351)
! _(U(l’l,a) N n+1 qu , K=U,1,...,n, .
0

k+p®
n+1

-

6 Du—k) @ ,if 1,
q;i () = S ) ((n+1)u—k) if o # 3.52)
72 (u) Jifa=1.

and the vector B € R*!
B(j+1)=g5(x;), j=0,1,...,n. (3.53)

which can be written as B = B+ AB such that AB is the priori error level ||AB|, < 8.
Also A = A+ AA where A is the matrix in (3.12) and AA = @ (n, &)1 (8) I+ AA, with
the addition of diagonal matrix @(n,)n (8)1 and AjA which is the defect matrix of
the numerical errors of the computation of the integrals in (3.48) with a predescribed
error 8" = 6" (8) > 0, depending on §. Analogously, X:g—l—A;\\ and A is as in (3.13)
and the matrix AA = o(n,o)n (8) I+ A A has the defect matrix A A of the numerical
errors of the computed integrals in (3.49) with a predescribed error 8 = 6" (8) > 0.
Therefore, it is possible to choose 1 (8),8" such that |[AA||, < h and HAXHz < h.
Clearly, the numbers i and & are estimates of the errors of the approximate data
(K, §> , (Z\, §) of the problem (3.11) for FK1 and VK1 respectively with the exact

data (A,B), (X, B) accordingly. Thus, the given regularized systems (3.50) use 4 and
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0 explicitly. In this connection, about the remarks on choosing the regularization
parameter using the quasi-optimality and ratio criterion, see Bakushinskii [74] and for
the data errors and an error estimation for ill-posed problems see Yagola et al. [75].

Next we consider the following general least squares problem for RFK1

min — {Xﬁ e R Hﬁ—ﬁXﬁH - min} , (3.54)
XgESl 2
and for RVK1
min S = {Xﬁ R | H§ —AX}| = min} . (3.55)
XSes, 2

Theorem 3.3: (Theorem 1.4.2 in Bjorck [71]) If rank(U + AU ) = rank(U) and n =

|UT||, AU, < 1 then

w0y, < =5 o],

Theorem 3.4: (Theorem 1.4.6 in Bjorck [71]) Assume that rank(U + AU ) = rank(U)

and let

AU AB
H HZ S ey, H ||2 S £p. (356)
U1l 1Bl

Then if n = K (U) €y < 1 the perturbations AX and Ar in the least squares solution X

and the residual r = B — UX satisty

k(U) 18, Il
x| s—( eu X, +ea B2 4 ey k()
2 <755 AR 1015

+eyk(U)|X]l,, (3.57)

1Ar]ly < eu [ X1, [1U]l2 + € |Bll, + evx (U) |7l (3.58)

Let ngn denote the minimum norm solution obtained by solving the general least
squares problems (3.54), (3.55). Further, F,ﬁn denote the obtained approximation to

function fg appearing implicitly in (3.51). Substituting F,?yn in (3.6) we get
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Koo (F,fnx) o, o ank (k- 1). (3.59)

We also present the residual error of the obtained algebraic linear system (3.11) for
FKl1byr=B—-AX (r=B8B — AX for VK1). The regularized residual error of the
system (3.50) for RFK1 is rg =B —AVXT‘]S ( rg =B —XXT‘? for RVK1). Furthermore,
the corresponding numerical calculation of the regularized residual error is rg n= B—

KX 5 a ( rn n= —B— A ) accordingly. Next the following priory bound for the error

of the approximation follows.

Theorem 3.5: (Buranay et al. [65]) Assume that the conditions of Hypothesis A are
satisfied and the solution f,‘? of (3.43) belongs to (C’l ﬂL2> ([0,1]) for some A > 2.
Consider the regularized linear system ZXT‘? =B given in (3.50) where A=A+AAand
A is the matrix in (3.12) and ||AA||, < k. Also B = B+ AB as in (3.53) and B is the
vector in (3.15) and [|AB||, < §. Additionally X = X + AX and rJ = r+ Ar and let
S(j+1)= sup |K Xj,t | for x; = —|—8, j=0,1,...n—1 and x,, = 1 — &, where

t€[0,1]
0 < & < 5- and M, = ||S||, . Further,

AAl, A lIABl, 8
> A> >
1Al ~ (1Al 1Bll, — Bl

= €. (3.60)

If rank(A) = rank(A) and 7] = Kk (A) €4 < 1 then

Kna (Fia) = 2|, < Wi (na.f7)

+M2W2 (m%fg) +1(8)W3 <”=f$> K (A,)

. (3.60)
l—n [A][5
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< K(A)
b= =) Al
Mot (m,ct, 1) +11 (8)Ws (.13 ()

)
x - x2

(R[[Xly + 6 +ear (A) [Irll2) +ear (A) [1X]l

t = , (3.62)
I=n 1]l
r=ryall, S hIXIo+ 8 +eak ()]l
MyWs (n,a, f3) +1 (8) Wi (n, £
+(1+e4) ) ( n)K'(A), (3.63)

1-7

hold true where, 7 (6) is the regularization parameter and W, (n,oc, f,?),

s
W, (n, «, 9) are as in (3.21) and (3.22) respectively. Also W3 ( n, R e—— n
n y n Vn+1 || dx

and A, A, are as given in (3.12).

Proof. For RFK1 it follows that

“ (F’;S”> _ngz = ‘

Based on Corollary 2.1 and the estimation (2.22) by replacing f with f,‘; in estimation

Ko (f’(73> _f’(73H2+ ‘ Kn.a (F’?’"> ~ K (f’(73> Hz (3.64)

(2.22) and in (3.21) we obtain

—_ n
Let Xg = X,‘?.n —X,‘? then from (3.6) and (3.18) and using that Y, P, ;(x) = 1, follows
’ k=0

Kna (£2,) =R, < Wi (mas). (3.65)

1
2 2

1
o (Fan) —Kna (£3)], = / (n, ZPnk O (k+1)| dx
0
Sm(n,a)(i(X k—i—l ) /IZPnk dx
k=0 0
— o(n,q) H)_(f, H2 (3.66)

where
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u
=6 1 S k+fa S k+la
X,(k+1)= F, — dt
n(k+1) a)(n,a)/( n’"<n+1) I n+1
0

t / (Frin ()= 1y (u)) (n+1Du—k) e du. (3.67)

For the numerical solution of RFK1 in (3.43) we use the grid points x; = ﬁ +€& j=

0,1,....n—1landx, =1—¢,where 0 < € < %1 We assume
1
/K(Xj,t) Ko (f,‘?;t) di+ o(n,a)n (8) Xy (j+1) = gs (x)), (3.68)
0

where ©(n, oc)X,‘? (j+1) gives the average value of f,;‘s over the interval [mj—_l’ %] I

we substitute F,in instead of f,‘? in (3.68) we get a new function gg on the right side of

this equation
1

/ K (57:0) Kn (Fit ) di+ 0(n, @) (9)X3, G+ 1) =85 (v).  (3:69)
0
Thus, for RFK1 from (3.68) and (3.69) we obtain

,Z{)_(f] — B, andg(i+ 1) =gs (xj) —gs(x;), j=0,1,...,n, (3.70)

where, X ?1 is as given in (3.67). The general least squares problem of (3.70) has the

minimum norm solution

Xy =A'B. (3.71)
Thus,
%all, = 4712 372
H M, = 2 2 (3.72)
o, = e .

1
Then let g5 (xj) = [ K (x},7) Kna (f,‘?;t) dt+ o(n,o)n (5)X,§3 (j+1) and g5 (x;) =
0
1

JK (xj,t) £2 (t)dt+ 0 (8) f2 (x;) for j=0,1,...,n it follows that
0
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_|_

n(8) (a)(n,a)x,? G+1)—f3 (x,-)) . (3.74)

dfg

d fn afy
dx

From the assumption that f,‘? € (C’l ﬂL2> ([0, 1]) for some A > 2 it follows that
< 1
O;l;gn a)(n,oc)X (j+1)— fn X; ‘ < n+1 . Let W3 (n fn) T

taking S(j+1) = sup |K Xj,t ] for j=0,1,...,n and M, = ||S||, also on the basis of
1€[0,1]

Corollary 2.1 and replacing f with f,‘? in estimations (2.21) and (3.22) we obtain

, by

1

! E 2\ 2
<Z| g5 (xj) —gs XJ))‘2> < Xb /K(xj,t) (Kn,a (f,?;t)—f,‘?(t)) dt
7= 1o
+7(8) ZO o(n,0)Xy (j+1) = fy (xj))z)
=
(3.75)

< (£ s 02) s s () -0

Jj=0 t€[0,1]
+1(8) W3 (nfﬁ) (3.76)
< MoWs (n,a,f,§> 0 (8)Ws <nf,f) 3.77)

Substituting the estimation (3.77) into (3.73) and the result in (3.66) we get

o (Fu) ~Kna (£2)], = (M2 (mt, £3) +m (&) Ws (.12 ) |7

.
(3.78)
Inserting (3.65) and (3.78) in (3.64) and on the basis of Theorem 3.3 and using that

K(AL) = ‘A

i ) |A«||, we obtain (3.61). The inequality (3.62) is obtained by using

5 5 5 o
=i, < x 3]+ 7 -

(3.79)

and based on the Theorem 3.4 and the inequality (3.57) the first term on the right side

of (3.79) is obtained as
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K(A)
(1=n) Al

T earc(A) [Illy) + eax (A) IX ]l (3.80)

HX—X,§H2§ (h||X||,+ &

Next on the basis of Theorem 3.3 and using (3.72), (3.77) and ||A7L||2 = IIAHE we get

(MaW5 (n,a,f;?) +1(6)W3 (n,fr?)) K(A)
I=n Al

1) 1)
Hxn ~x, (3.81)

<
2

Inserting the estimations (3.80), (3.81) into (3.79) gives (3.62). To prove the inequality
(3.63) we use

5
na||,

) ) )
<=l + =i

|r=r

: (3.82)
2

and based on the Theorem 3.4 and the inequality (3.58) the first term on the right side

of (3.82) is obtained as
=3, <hIXl+ 8+ eaxc(a) ol G83)

The second error term on the right side of (3.82) satisfies

)

r n.n

—r

(3.84)

< ZH HX‘S—X5
2‘” 2|71 n.n

S
n
using (3.81), (3.82) and (3.83), and that HK H2 < ||All,+h and from (3.60) follows

(3.63). ]

Theorem 3.6: (Buranay et al. [65]) Assume that the conditions of Hypothesis A are
satisfied and the solution f,? of RVK1 belongs to (C’l ﬂL2> ([0,1]) for some A >
2. Consider the linear system EX,‘; =B given in (3.50) where X —A+AA and A is
the matrix in (3.13) and HAXHz < h. Also B= B+ AB as in (3.53) and B is as in
(3.15) and ||AB]|, < §. Additionally X} =X + AX and r§ = r+ Ar and let S(j + 1) =

sup |K (x;j,t)| for x; = I4e j=0,1,...,n—1andx,=1—g, where 0 < £ < 1 and
t€[0,1]
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M, =||S||, . Further,

|AB]| 4
. 2 -
A Bl ~ Bl

=€

= < =ep. (3.85)
4], Il B

~

If rank(A) = rank(A) and ] = K (X) €5 < 1 then

() 5], ()

+M2W2(n,a,f$)+n(5 W3<”fn) ( )

@)

, (3.86)

-~

|x-x3. [ < il (X1, + 6+ e (4 )||r||2)+egx( A) 11Xl
N
+M2W2 (”’“’fngjg(‘s)% (n13) K;T) (3.87)
2
r—n, +8+e5% (4) |1l
r+ED) MW, (n,Ot,fg? j‘%? (6)W; (n,fr(?) . <Z> | (3.88)

hold true where, 1 (6) is the regularization parameter and W) (n,a, f,‘?),

5
W, <n, a,f,‘?) are as in (3.21) and (3.22) respectively. Also W3 <n,f,‘73) = \/nlﬁ %
and A and X* are as given in (3.13).

Proof. Proof is analogous to the proof of Theorem 3.5. [
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Chapter 4

EXPERIMENTAL INVESTIGATION OF THE GIVEN

NUMERICAL APPROACH

For the theoretical results given in Chapter 3 we focus on the interval [0, 1], however
for the numerical results we also consider examples on [a,b] with the following

extension of the Bernstein operators and Modified Bernstein-Kantorovich operators

Zi‘,( ) L(ba) i kf(a+§(b—a)), (4.1)

Ko (f3x) = i() L(a . a/f<a+ )) (b— a))dt,

4.2)

on the interval [a, b]

respectively. All the computations in this section are performed using Mathematica
in machine precision on a personal computer with properties AMD Ryzen 7 1800X
Eight Core Processor 3.60GHz. We remark that the solution of the Volterra integral
equations by using Bernstein polynomials was given in Maleknejad et al. [34]. All
the considered test problems are also solved by using Bernstein operators (2.11) with
the approach given in Maleknejad et al. [34], additionally regularization is applied.
Further, the obtained algebraic system of equations by applying the methods M (K, ¢)
and M (B,) are solved using the pseudoinverse of the respective matrices. Let the
following error grid functions be defined at the N + 1 grid points x, = a + @,

p=0,1,...,N over the interval |a,b] as
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Ey [Kn,a (Frf,nmp)] = f(xp) —Kna <Fn6,n (xp>> ) 4.3)
En [Bu (Fuixp) | = £ () = Ba (Fiu () ) (44)
Further, we use the following notations in tables and figures:

i) M (Kn) presents the given approach by wusing the Modified

Bernstein-Kantorovich operators K, ¢ .
ii) M (B,) presents the approach Maleknejad et al. [34] by using the Bernstein

operators Bj,.

ii1) Condp, < > denotes the condition number of the perturbed matrix A obtained
by the method M (B,) using LinearAlgebra‘Private‘MatrixConditionNumber

command in Mathematica.

iv) Condg

n,o

< > denotes the condition number of the perturbed matrix A obtained
by the method M (K o) using LinearAlgebra‘Private ‘MatrixConditionNumber
command in Mathematica.

V) REEN (Kn,o) denotes the root mean square error (RMSE) of the regularized

solution

1 N

oy & (B e i)

REg (Kna) =

obtained by M (K, o) -

vi) REg (By)] denotes RUSE of the regularized solution

N 2
RE;, (B,) = (Bw B (F)])
Ey N—|—1 ,,Zo n>+p
obtained by M (By,).

vii) AEEN o (Knq) is the absolute error of the regularized solution
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‘EN [Kn,a <F,$7n;xp)} ‘ at the point x,.
viii) AE Evax (B,) is the absolute error of the regularized solution ’EN [B,, (F,;S n;xpﬂ ‘
A p »
at the point x,, .

ix) MEg (Kn,a) shows the maximum error (ME) of the regularized solution

i 5 .
oz, B[R (P ) ]|

x) MEg (B,) shows the maximum error ME of the regularized solution

max EN [Bn (Fr?,anpﬂ ‘ .

0<p<N

xi) (na) means that the specified method is not applied to the considered example.
xii) (ng) means that the absolute error is not given at the presented grid point by the
specified method.
4.1 Application on Examples of Fredholm Integral Equations
We consider the following test problems of fist kind Fredholm integral equations which
have been used as benchmark problems in the literature. For the implementation of the

approach we have taken 1 (0) = 0.

Example 1: (Ex1) ( Wen and Wei [21] and Baker et al. [76])
1

Mf(t)dt = ,0<x<1

0

and the exact solution is f (x) = e*.

Example 2: (Ex2) ( Wen and Wei [21])
1

/e‘”’f(t)dt =

0

3—3e*cos(3) — e *xsin(3)
x> +9

, 0<x<1,
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where the exact solution is f (x) = sin (3x).

Example 3: (Ex3) ( Baker et al. [76])

1
/\/x2+t2f(t)dt _
0

(1+x2)%—x3, 0<x<1,

W | =

and the exact solution is f (x) = x.

Example 4: (Ex4)

1
1
[————ra
o /1412 4+x2

and the exact solution is f (x) = x2.

4 4
)dt:§\/x2+2—§\/x2+1, 0<x<1,

[\S1[S8]

Table 4.1 presents the RMSE with respect to n obtained by the proposed approach
M (K 10) when N = 51 and € = 0.0001, for the examples of FK1 and when § =
5 x 107! for the Example 1, Example 2 and Example 4 and § = 5 x 10~ for the
Example 3. The absolute errors obtained by the method M (Ko 10) at the points x, = %,
p=0,1,....,8 for the examples FK1 when £ = 0.0001,7n =9 and o = 10 for the same
values of 0 as in Table 4.1 are demonstrated in Table 4.2. Further, Table 4.3 shows the
same quantities as in Table 4.1 obtained by using the approach M (B,,). Table 4.4, Table
4.5, Table 4.6 and Table 4.7 present the condition numbers of the perturbed matrices,
RMSE with respect to the 6 obtained by the proposed method M (K3 ;) and the method
M (Bg) when € = 0.0001, and N = 51 for the Example 1, Example 2, Example 3 and
Example 4 respectively. Table 4.8 presents the RMSE with respect to ¢ obtained by the
proposed approach M (K9 o) , when N =51 and € = 0.0001, for the examples of FK1.
In this Table the parameter § is taken as § = 5 x 10~!2 for the Example 1, Example 2
and Example 4 and § = 5 x 10~° for the Example 3. This table shows that o also has
an effect on the results and for the Example 1 and Example 4, when o = 10 we obtain
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Table 4.1: The RMSE for the examples of FK1 with respect to n when € = 0.0001 and

o = 10, N = 51 obtained by the method M (K, 19).

Ex1 FK1 Ex2 FK1 Ex3 FK1 Ex4 FK1
n REE51 (Kn.10) REE51 (Kn10) REE51 (Kn10) REE51 (Kn,10)
2 0.00564194 0.01652300 1.065 x 1078 0.00585089
3 0.00036214 0.01575890 1.868 x 1078 0.00197745
4 0.00001859 0.00036009 5.625x 1078 0.00095987
5 7.946x 1077 0.00032459 1.552x 1077 0.00073284
6 1.150x10°° 0.00025850 1.195x 1076 0.00070217
7 1.228x10°° 0.00018178 0.00025021 0.00069018
8 2.988x10°° 0.00012625 8.797 x 107° 0.00054624
9 1.126x10°° 0.00009103 2.064 x 107° 0.00029078

lowest RMSE. Similarly, RMSE are minimum when a = 0.1 for the Example 2 and

Example 3.

Figure 4.1 presents the RMSE with respect to & obtained by M (Ko () for the examples
of FK1, when € = 0.0001, and N = 51. It can be viewed that the optimal value of «
is oo = 10 for the Example 1, and Example 4 whereas, oc = 0.1 gives the lowest RMSE
for the Example 2 and Example 3. Figure 4.2 illustrates the RMSE with respect to n
obtained by the methods M (K, 10) and M(B,) for the considered examples of FK1
when € = 0.0001 and N = 51. Also, for the data in Figure 4.1 and Figure 4.2 we take
8 = 5x 1072 for the Example 1, Example 2 and Example 4 and § = 5 x 10~ for the
Example 3. Figure 4.3 shows the RMSE with respect to 6 obtained by the methods

M(K14,1) and M (B14) for the examples of FK1 when € = 0.0001 and N = 51.

Table 4.9 shows the accuracy comparisons of the proposed approach with the known
methods from the literature of which the errors in Baker et al. [76] are given in ME
(maximum error) and other errors are given in RMSE for the Example 1, Example 2

and Example 3 of FK1. The data in the second row presents the results in Wen and
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Table 4.2: The absolute errors at 9 points over [0,1] for the examples of FK1 when

€ =0.0001, n =9 and a = 10 obtained by the method M (Kj ;).

Ex1 FK1 Ex2 FK1 Ex3 FK1 Ex4 FK1
Xp AEEg,x,, (Ko9,10) AEE&x,, (Ko9,10) AEEg,x,, (K9.10) AEES,X[] (Ko9,10)
0.000  1.654 x10°° 0.000192898 2757 x 1076 0.00158317
0.125  3.161 x 1077 0.0000647276 1.081 x 10~° 0.0000844532
0.250  2.285x 1077 0.0000794108 1.402 x 1076 0.000210398
0.375  9.035x 1077 6.929 x 10°° 8.913 x 1077 0.000178284
0.500  4.513x 1077 0.0000914048 1.856 x 10~° 7.728 x 107°
0.625  7.493 x 1077 0.0000112388 3.405 x 10~° 0.0000910857
0.750  1.033x10°° 0.0001048730 1.154 x 107 0.0000799071
0.875  4.732x 1077 0.0001009200 6.462 x 1076 0.0000367732
1.000  3.398 x 10°° 0.0003547500 0.0000147511 0.000193043

Table 4.3: The RMSE for the examples of FK1 with respect to n when € = 0.0001 and

N = 51 obtained by the method M(B,,).

. Ex1 FK1 Ex2 FK1 Ex3 FK1 Ex4 FK1

RE; (B,)  REg (B,)  REp (B.)  REg (By)
2 0.00564200 0.01652300 4.899 x 1072  0.00585089
3 0.00036214  0.01575890 1.162x 1078 0.00197744
4 0.00001860  0.00036020 5.978 x 1078  0.00095794
5 7.899x 1077 0.00032358 1.455x 1077 0.00068048
6 1.470x107° 0.00024038 1.159x107°  0.00068950
7 1.163x107° 0.00016529  0.00011583  0.00069803
8 5.259x107% 0.00011862 8.864x 10°° 0.00054573
9 1.170x107% 0.00009103 2.064 x 107®  0.00029078
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Table 4.4: Condition numbers and the RMSE for the Example 1 of FK1 when € =
0.0001 and o = 1,

n—==~.

0

Condp, (K)

REES] (Bg) COI’ldK&1 (A) REESI (K&])

5%x10°8
5% 1077
5% 10710
5% 101
5% 10712
5% 10713
5% 10714
5x10°1
0

5.136 x 107
4.082 x 108
5.491 x 10°
4.859 x 1010
5.112 x 10!
4.900 x 1012
4.274 x 1013
4.742 x 104
6.590 x 101°

0.00001356
6.675 x 10~°
2.014 x 10~°
1.264 x 10~°
5.259 x 1077
2.005 x 10~°
0.00003837
0.00015707
0.01001490

3.750 x 108
4.944 x 10°
4.424 x 1019
4.600 x 10!
4.419 x 1012
3.890 x 10'3
4.276 x 1014
3.971 x 1015
6.258 x 1010

7.004 x 1076
2.119x10°°
1.276 x 10°¢
5.195x 1077
1.972 x 107°
0.00002177
0.00004387
0.00067454
0.00218054

Table 4.5: Condition numbers and the RMSE for the Example 2 of FK1 when € =
0.0001 and ¢ =1,

n=_.

0

COI’lng (X) REE51 (Bg) CondK&l (AV>

REE51 (Ks1)

5x10°8
5% 1077
5% 10710
5x 101
5%x 10712
5% 10713
5% 10714
5x10°1
0

3.207 x 107
4.691 x 108
3.412 x 10°
2.982 x 1010
2.988 x 10!!
3.052 x 1012
4.182 x 1013
2.772 x 1014
5.498 x 1010

0.00238070
0.00189299
0.00052648
0.00025935
0.00011862
0.00002339
0.00004678
0.00004866
0.01668350

4.013 x 108
3.094 x 10°
2.712 x 1010
2.688 x 101!
2.741 x 1012
3.601 x 1013
2.068 x 104
2.382 x 1010
5.073 x 101°

0.00179104
0.00058267
0.00026338
0.00012597
0.00002467
0.00003398
0.00009016
0.00041590
0.01305410
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Table 4.6: Condition numbers and the RMSE for the Example 3 of FK1 when € =

0.000l and x =1,n = 8.

§  Condg (A)  REg (B) Condg, (A)  RE (Ks)
5x107%  4.902x 107 0.0000121677 3.919x 10  0.00258407
51072 3.424%x10°  0.000028873 3.459x 10° 8.84178 x 10~°
5% 10719 3.898 x 10° 0.0000109539 1.511x 10! 0.000186152
5% 10711 1.006 x 101 0.000117269 2.740 x 10!°  0.0000283152
5% 10712 2.715% 1019 0.0000278597 2.533 x 10'°  0.0000256703
5% 10713 2.531x10'9 0.0000256237 2.514x10'°  0.0000254228
5% 10714 2.513% 1019 0.0000254236 2.512x 10'°  0.0000254052
51071 2.512x 1019 0.0000253998 2.512x 10'°  0.0000253969

0 2.512 x 10'°  0.0000253957 2.512x 101 0.0000254009

Table 4.7: Condition numbers and the RMSE for the Example 4 of FK1 when € =

0.0001 and ox =1, n = 8.

0

COI’la'B8 (Av) REE51 (Bg) COI’ldK&] (Av>

REg (Kg))

5% 1078
5% 1077
5% 10710
5% 101!
5x 10712
5%10°13
5% 10714
5x 10714
0

3.064 x 107
2.645 x 108
2.627 x 10°
2.593 x 1010
2.593 x 10!
2.398 x 1012
2.803 x 10'3
2.573 x 10
5.559 x 101°

0.00051122
0.00049303
0.00051343
0.00053620
0.00054573
0.00050975
0.00050957
0.00065452
0.04357480

2.381 x 108
2.367 x 10°
2.330 x 1010
2.336 x 10!
2.180 x 102
2.530 x 1013
2.322 x 10
2.488 x 1015
7.397 x 1010

0.00048011
0.00051823
0.00054019
0.00054578
0.00051476
0.00049179
0.00069250
0.00031208
0.03460650
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Table 4.8: The RMSE for the examples of FK1 with respect to @ when € = 0.0001,
N =51 and § =5 x 107'2 for the Example 1, Example 2 and Example 4 and § =

5 x 10~ for the Example 3.

o Ex1 FK1 Ex2 FK1 Ex3 FK1 Ex4 FK1
REp (Koo)  REg (Koa) — REg (Koa) — RER (Koo
0.0001  0.00944481 0.00235555 7.270 x 1076 0.00181866
0.001 0.00071458 0.00015984 7.373 x 1076 0.00182835
0.01 0.00033075 0.00002426 8.811x 107 0.00188793
0.1 0.00005143 0.00001386 1.681 x 107 0.00276483
1 0.00001147 0.00002120 4.004 x 1076 0.04152750
10 1.126 x 107° 0.00009103 2.064 x 1076 0.00029078
100 1.699 x 1076 0.00023779 3.526 x 107 0.00040206
1000 2.565x 107 0.00045454 2.775x 107 0.00037842
10,000 6.947 x 10~° 0.00240884 0.00001448 0.00037095
107"
1072
103
Ly
(95
S
Ay
10
107 ¢
106 : ‘
107 1072 109 102 10*

Figure 4.1: The RMSE with respect to o obtained by M (Ky o) for the examples of

«

FK1, when € = 0.0001, and N = 51.

40



MK, B

- MB )Ex)

10
2

MK, )

- MBEX)

Figure 4.2: The RMSE with respect to n obtained by the methods M (K, 10) and M(B,,)

102

MK )(Ex)

il

—4—MB )(Ex)

10*

for the examples of FK1 when € = 0.0001 and N = 51.

MK, (B
—0- MKy, JEX)| |
6 MB, )(Ex1)

1016

1012
)

1M

MK, B
- MK, B
—4 M, B

10
10'18

Figure 4.3: RMSE with respect to 8 obtained by the methods M (Kj41), M(K14,10) and

1016

1o 1012
)

102
MK, X
@ #M(KM“OP(EXZJ ]
—4-MB, JEx2)
Wy
)
S 102
T
104
0% ‘ ‘ ‘ ‘ ‘
01 0 g™ 0 g0 108
)
102
%MK, B
o =W B
of R - UB,)(E)
Wy
)
S
T
1021
10*
101 g o™ 1010 108

102
)

M (B14) for the examples of FK1 when € = 0.0001 and N = 51.



Table 4.9: Accuracy comparison of the proposed approach with the methods from the
literature for the Example 1, Example 2 and Example 3 of FK1.

Ex1 FK1 Ex2 FK1 Ex3 FK1

Approach Error Error Error
[21] 0.0084 0.0154 na
[76] 0.0001 na 0.0752

M(Ks10) 7.95x1077  0.00032  1.55x 107’
M(Bs) 7.90x10~7  0.00032 1.46x 107’
M(Ki210) 223x107%  0.000049 1.71 x 107°
M(By) 2.50x107%  0.000057 1.41x107°

Wei [21] for n = 51 and the error in the third row last column is from Table 1 (s = 3)
given in Baker et al. [76]. The data in row 4 and row 5 are obtained by the methods
M(Ks 10), and M(Bs), respectively for N = 51, while the results in row 6 , row 7 are

achieved by M (K2 10),M(B)2) accordingly also for N = 51.

For the Example 4 the exact solution f € C'[0,1]. Hence, dealing with this test
problem we provide comparisons between the methods M (K, o), and M (B,) based
on the regularization parameter 7 (8) taken as & and on the order n of the
approximation in Figure 4.4 and Figure 4.5 respectively. Figure 4.4 shows the RMSE
with respect to 6 obtained by the methods M(Kg.1), M (K3 1),M(Kg 10), and M(Bg)
for the Example 4 of FK1 when € = 0.0001 and N = 51. It can be viewed that for
8 < 107! the given approach M(Kg 1), M(Ks 1) give more accurate results then
M (Bg). Figure 4.5 illustrates the RMSE with respect to n obtained by the methods
M (Ky.0.0001), M (Kn0.1),M(Ky1),M(Kp 10), and M(B,) for the Example 4 of FK1
when € = 0.0001 and N = 51,6 =5 x 10~ !2. This figure show that K, 1 and K, 10

give more accurate results then B, for large values of n that is for n > 12.
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Figure 4.4: The RMSE with respect to 0 obtained by the methods M(K3g o) for a =
0.0001,0.1,1,10 and M(Bg) for the Example 4 of FK1 when € = 0.0001 and N = 51.

RMSE

Figure 4.5: The RMSE with respect to n obtained by the methods M (K, o) for a =
0.0001,0.1,1,10 and M(B,) for the Example 4 of FK1 when £ = 0.0001 and N = 51
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4.2 Applications on Volterra Integral Equations
In this section we also consider the second kind linear Volterra integral equation

(VK2).
£0)+ 6 /0 K fo)de = g(x)

where ¢ > 0 is constant. For the numerical solution of VK2 by the method M (K, «)
and using the grid points x; = £+£, j=0,1,..,n—landx, =1—-€,0<e< ﬁ

results the following algebraic system of equations
AX =B, (4.5)

where coefficient matrix A has the entries
Xj

A] oy = 0(0,0) [ Pus) - / K (j,0) Bog(0)dt | . k= 0,1, (46)
0
and the vectors X and B are as in (3.14) and (3.15) respectively. The following

examples, are taken

Example 5: (Ex5) ( Maleknejad et al. [33], Rashad [77] )

f(X)—/xtf(t)dt:e_xZ—%(l—e_xz)X, Cl<x<l,

where the exact solution is f(x) =e™, -1 <x < 1.

Example 6: (Ex6) ( Maleknejad et al. [34], Polyamin [78])

X

f(x)—/exf(t)dt:cos(x)—exsin(x), 0<x<1,
0

where, the exact solution is f(x) = cos(x), 0 <x < 1.

Example 7: (Ex7) ( Taylor [24], Brunner [25])
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/(1+x—t)f(t)dt:x—l+ex,
0

where, the exact solution is f (x) = xe™™, and x € [0,3] in Taylor [24] and x € [0, 10] in

Brunner [25].

Example 8: (Ex8) ( Maleknejad et al. [34], Polyamin [78])

X

/ex_’f(t)dt:sin(x),ogxg 1,
0

where the exact solution is f (x) =cos(x) —sin(x), 0 <x < 1.

Remark 4.1: The numerical solution of Example 5 of VK2 by the method M (K}, o)
is analogous by using the extension of the Modified Bernstein-Kantorovich operators

(4.2) on the interval [—1,1].

Table 4.10 presents the RMSE with respect to n obtained by the proposed approach
when o = 10, (M(Ky,10)) and € = 0.001,N = 100 for the Example 5, Example 6 of
VK2 and Example 7, Example 8 of VK1. Table 4.11 and Table 4.12 show the ME
with respect to n obtained by the methods M(K, 10) and M(B,) respectively when
€ =0.001,N = 100 for the considered examples of VK2 and VKI.

From Table 4.10, Table 4.11 and Table 4.12 we conclude that the error is not
improved for n = 20 for the Examples 6-8 due to the large condition numbers of the
coefficient matrices. Table 4.13 demonstrates the RMSE with respect to o obtained
by the proposed approach when n = 20, and € = 0.001,N = 100 for the considered
examples of VK2 and VKI1. This Table shows that M (K ¢) gives stable solution
with respect to o for the taken values of € and 6. Further, in Tables 4.10-4.13 for the
Example 7, when x € [0,3] it can be viewed that the results obtained by given

approach are as good as the results obtained by using Bernstein operators.
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Table 4.10: The RMSE for the Example 5, Example 6 of VK2 and Example 7, Example

8 of VK1 with respect to n when € = 0.001, N = 100 obtained by M (K}, 10).

Ex5 VK2 Ex6 VK2 Ex7 VK1 Ex8 VK1
" REz (Kno)  REz (Ky0)  REg (Ky0)  REg (Kuio)
2 0.0499147 0.00324785 0.112084 0.00859961
3 0.0365226 0.00067710 0.0323648 0.00019578
4 0.00464224 8.702 x 1076 0.00714176 0.00003599
5 0.00317264 1.214 x 107 0.00130879 5.551 x 1077
6  0.000392663 1.494 x 1078 0.000206789 8.283 x 108
7 0.000263753 1.646 x 10~° 0.0000287574  9.974 x 10710
8  0.0000299799  1.815x 10~ ! 3.571 x 10~° 1.234 x 10710
9  0.0000202637  1.626 x 10~12 4.002 x 1077 1.205 x 10712
10 2.0539x10°° 2.734x 10" 4.087 x 1078 6.730 x 10~ 14
11 1.402x10°° 1.140 x 10~ 14 3.831x107° 1.464 x 10713
12 1.266x 1077 1.684x 10~ 3311x10719  1.895x 10713
13 8.720x 1078 6.657x 1071 2.606 x 101! 1.676 x 1013
14 7.060 x 10~° 5783 %1071 1.321x10712  3.036x 10713
15  4.900x 10~° 2.555x 107 1.088x 10712 3.113x10°13
20 1.183x 10712 3.155x 10712  2893x10°19  1.767x 10710

Table 4.11: The ME for the Example 5, Example 6 of VK2 and Example 7, Example

8 of VK1 with respect to n when € = 0.001, N = 100 obtained by M (K}, 19).

Ex5 VK2 Ex6 VK2 Ex7 VK1 Ex8 VK1
" MEg (Kni0) — MEg (Knio)  MEgp (Knpio)  MEg (Knio)
2 0.077679 0.00774279 0.369287 0.0314081
3 0.0651687 0.00140263 0.13734 0.000817017
4 0.0106545 0.0000185564 0.0365845 0.000189993
5 0.00768217 2.947 x 10~° 0.00771289 3.251 x 107°
6 0.0011101 3.299 x 108 0.00135407 5.489 x 1077
7 0.00079366 4.587 x 107° 0.000204093 7.069 x 10~
8  0.0000986807 4.858 x 10711 0.0000269878 9.389 x 1010
9  0.0000699759 5.065 x 10~ 12 3.180 x 10~° 9.587 x 10~ 12
10  7.625%x10°° 6.628 x 10714 3.382x 1077 4.682x 10713
11 5455x10°° 2.687 x 1014 3.276 x 1078 8.972 x 10713
12 5121x1077 4241 x 10714 2.909 x 10~° 1.193 x 10712
13 3.735x 1077 2.498 x 10~ 14 2.341 x 10710 1.487 x 10~12
14 3.143x10°8 1.110 x 10~ 14 1.101 x 10~ 11 2.171 x 10712
15 2277x10°8 1.052x 10~ 13 8.665 x 10712 2.123 x 10712
20 6.127 x 10712 1.908 x 10~ 1! 2.800 x 10~? 1.704 x 10~
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Table 4.12: The ME for the Example 5, Example 6 of VK2 and Example 7, Example

8 of VK1 obtained by M(B,,) for N = 100.

. Ex5 VK2 Ex6 VK2 Ex7 VK1 Ex8 VK1
MEg (B.)  MEp (B,)  ME; (B,)  MEg (By)
2 0.077679 0.00774279 0.369287 0.0314081
3 0.0651687 0.00140263 0.13734 0.000817017
4 0.0106545  0.0000185564  0.0365845 0.000189993
5  0.00768217 2.947x10°°  0.00771289  3.251 x 10
6  0.0011101 3.299x 1078 0.00135407  5.488 x 10~
7 0.00079366  4.588x 1072  0.000204093  7.071 x 10~?
8 0.0000986807 4.859x 10~ 0.0000269878 9.395 x 10~10
9  0.0000699759 5.022x 1012 3.180x107° 9.609 x 10~!2
10 7.624x107° 5440x 10~ 3.382x10°¢® 8811x10° 13
11 5455x107% 2.065x10°1% 3276x10°% 2442 x 101
12 5.121x1077 2.554x1071% 2910x107° 3.484x 10713
13 3.735x 1077 2.809x 1074 2340%x 10710 8.926x 10~ 13
14 3.143x10°% 4508 x 1071 1.265x10°!1 4.927x 10713
15 2277x107%  1.196x 10713 7.290x 10712 3.042x 1013
20 6.659x 10712 1908 x 10711 2.729x 1072 1.659 x 10~°

Table 4.13: The RMSE for the Example 5, Example 6 of VK2, Example 7 and Example

8 of VK1 with respect to o when € = 0.001 and N = 100 obtained by M (K> ).

Ex5 VK2 Ex6 VK2 Ex7 VK1 Ex8 VK1

¢ RE; (Kxna)  REp (Kwoa)  REp (Kxa)  REg (Kxa)
0.0001  1.146 x 10712 3.174 x 10712 3.853x 10710 3.340 x 10~
0.001  1.144 x 1012 3.188 x 10712 3.876 x 10710 3.341 x 10~
0.01 1.101 x 1012 3.189 x 10~ 12 3.857 x 10710 3.346 x 10~°
0.1 1.149x 10712 3116 x 10712 3.861x 10710 3.343 x 10~°
1 1.183 x 10712 1.183 x 1012 2.820x 10710 3.342 x 107°
10 1.137 x 10712 3.181 x 10712 2.879 x 10710 3.341 x 107°
100 1.253 x 10712 3.244 x 10712 2.856 x 10710 3.316 x 10~
1000  1.136 x 10712 3.245 x 10712 2.856 x 10710 3.093 x 10~
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The absolute errors for the Example 5 of VK2 when N = 8 (9 points) obtained by the
methods M(K>0,10) and M (By) are presented in Table 4.14. Additionally, in Table 4.15
absolute errors obtained by the methods M (Ko 10) and M(Bjo) and by the approach
given in Maleknejad et al. [33] (presented in the last column 3 of Table 1 in [33] )
for the same example over the same grid points are compared when n = 10. It can
be concluded from this table that the maximum error (ME) is 1.59792 x 1076 by the
methods M (Kjo,10), M (B1o) and it is 1.593 x 107° by the method in Maleknejad et
al. [33] and occurs at the same grid point x; = 0.75. Furthermore, Table 4.14 shows that
the maximum error decreases down to 8.88623 x 10~!3 by M (K20,10) and t0 9.83824 x
10713 by M(B5g) over the same grid points. Table 4.16 shows the absolute errors (AE)
at 7 points (N = 6) from the interval x € [0,3] for the Example 7 obtained by the
methods M(Kjs 19) and M(B)s) and by the method given in Taylor [24] (presented in

the last column of Table 2 in [24] ).

Table 4.17 gives AE at the points x, = p, p = 0,1,2,3,4,5 from the interval
x € [0,10] for the Example 7 obtained by the methods M(Kjs 10) and M(B;s) and by
the method given in Brunner [25] (given in the second column of Table 3.11 in [25] ).
We conclude from Table 4.16 and Table 4.17 that the presented AE by M (Kls,lo) are
smaller than the given values from Taylor [24] and Brunner [25] respectively.
However we should remark that precision of the computations were not mentioned in
both of these references. Also § =5 x 10~13 for the all considered examples of VK2

and VK1 by the methods M (K, o) and M (B,).

Figure 4.6 illustrates the condition number of the matrix A in (3.50) when the method
M(K, 10) is applied for n = 2,...,20. The RMSE and ME with respect to n obtained by

the methods M (K, 1), M (K, 10) and M(B,) for the Example 5, Example 6 of VK2 and
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Table 4.14: The absolute errors at 9 points for the Example 5 of VK2 obtained by the

methods M(Kz()_‘l()) and M(Bzo).

xp AEEg,xp (KZO,IO) AEEg,xp (Bz())
—1.0 6.667x10713 7.392x 1013
—0.75 2.890x 10713 3.290x 1013
—0.50 1.831x10713 2097 x10° 13
—0.25 9.137x10°™  1.081x10°13

0 6.439x 1071 1.332x 10715
025 1.034x10713 1.106x10°13
0.50 2.086x 10713 2.295x10°13
075 2.984x10°1 3.302x10°13

1.0 8.886x10713 9.838x10713

Table 4.15: Comparison of the absolute errors at 9 points for the Example 5 of VK2
obtained by the methods M (Ko 10), M(Bjo) and by the approach in Maleknejad et

al. [33].

xp  AEg . (Kiogo) AEg . (Bio) Maleknejad etal. [33]
—1.0 3436x1077 3.436x1077 3.524 x107°
—0.75 1.218x1077 1.218x 1077 1.144 x 1077
—0.50 5.820x1077 5.820x 107 5.431 x 1077
—0.25 2.066x1077  2.066 x 1077 2.922 x 1077

0 2.805x 10~ 2.805x 101! 0
0.25 2536x1077 2.536x 1077 3.396 x 10~
050 3.212x1077  3.212x1077 2.902 x 1077
0.75 1.598x107°% 1.598 x10°° 1.593 x 10~°

1.0 9.109x 1077 9.109 x 10~/ 7.823 x 1077
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Table 4.16: Comparison of the absolute errors at 7 points for the Example 7 of VK1
obtained by the methods M (Kjs 10), M(Bis) and by the approach in Taylor [24].

xp AEg . (Kispo) AEg . (Bis) Taylor [24]
0 S5.112x107'2 5.108x 1012 ng
0.5 7.105x107Y  7494%x1071 2.7x1077
1.0 1.499x 1071 2609%x 10" 43x107°
1.5 1.332x10715 2887 x 1071 ng
20 4219x10°P  4996x1071° 23x107°
25 1219x107%  1.355x 10714 ng
3.0 6.841x10712 7290x107'2 1.8x107°

Table 4.17: Comparison of the absolute errors when N = 10 for the Example 7 of VK1
obtained by the methods M (Kjs 10), M(Bis) and by the approach from Brunner [25].

xp AEg . (Kispo) AEg . (Bis) Brunner[25]
0 1.276 x 10~ 1.276 x 1072 1.244 x 1077
1.0 2.069%x10°%  2.069%x10°% 3.128x10°8
20 4418x10°  4418x10° 6.183x107°
3.0 3.748x 10710 3,748 x 10710 ng

40 1.062x107°  1.062x 107 ng

50 1.870x 10710  1.870x 10719 4.87x 10710
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Figure 4.6: Condition number of the matrix A with respect to n obtained by the method
M(K; 10).

Example 7 and Example 8 of VK1, when € = 0.001, and N = 100 are given in Figure
4.7 and Figure 4.8 respectively. Also, for the data in Figure 4.6, Figure 4.7 and Figure
4.8 the parameter § is taken as § = 5 x 10~ for the considered examples of VK2 and
VKI1. It can be viewed from Figure 4.7 that for large n that is n > 10 the proposed
method M (K, ) for o = 1 and o = 10 gives more stable results than M(B,,) for the

Example 6 of VK2.
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Figure 4.7: The RMSE with respect to n obtained by the methods M (K, 1), M (K. 10)
and M(B,,) for the Example 5, Example 6 of VK2 and Example 7 and Example 8 of
VK1 when € = 0.001 and N = 100.
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Figure 4.8: The ME with respect to n obtained by the methods M (K, 1), M (K, 10) and
M(B,) for the Example 5, Example 6 of VK2 and Example 7 and Example 8 of VK1
when € = 0.001 and N = 100.

52



Chapter 5

A COMBINED METHOD OF HYBRID OPERATORS
FOR THE NUMERICAL SOLUTION OF VOLTERRA
INTEGRAL EQUATIONS WITH WEAK

SINGULARITIES

In this chapter , we consider Abel-type integral equations of the second kind. The
hybrid operators are defined on [0,1] by using classical Bernstein-Kantorovich
operators and Modified Bernstein-Kantorovich operators K, o where, n € N and
o > 0 is constant. Further, for the numerical solution of the Abel-type integral
equations of the second kind two algorithms are developed by giving a combined
method for the values of 0 < & < 1 and o > 1. Additionally, the first kind Volterra
Abel-type integral equations are also numerically investigated by first utilizing a
regularization and then applying the given algorithms to the yielded second kind
equations.  Eventually, we give the convergence analysis of the constructed
algorithms.

5.1 Assumptions and Smoothness Results

We start with the existing useful definitions and results which are crucial in our

investigation.

Definition 5.1: (Brunner et al. [79]) Let

D={(x)eR*: 0<x<1,0<r<x}. (5.1)
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The set W&V (D) with k € N, v € R, v < 1 consists of all k times continuously

differentiable functions K : D — R satisfying

;

1, if v+i<0,
o\ (o Y
'(5) (5+5> K(x.0)|=cq 1+log(x—1)|, if v+i=0, (5.2)
| =07 i vti>0,

with a constant ¢ = ¢ (K) for all (x,#) € D and all nonnegative integers i and j such that

i+j<k.

Definition 5.2: ( Brunner et al. [79]) Let / := [0, 1] and C*"(0,1], ke N,veR, v < 1
be the set of all functions f :I — R, which are k times continuously differentiable in

(0,1] and such that the estimation

(
1, if i<1—w
SO0 <ed 14 flogal, i i=1-v, (53)
xl=v= if i>1—v,

\

holds with a constant ¢ = ¢ (f) forall x € (0,1] and i =0, 1,...., k.

We consider the linear second kind Volterra Abel-type integral equations (VAK2) of

the form

f<x>+¢>/<x—r>VK(x,wf(r)dr:g(x), 0<x<l, (5.4)
0

where, 0 < v < 1, ¢ is constant while K (x,#) = (x—1) " K (x,7) is the kernel with the
singular part @(x,7) = (x—1)~". It follows from (5.2) that the kernel K (x,7) of (5.4)
possess a weak singularity as ¢ — x and that if K e C* (5) where
D= {(x,t)eR?*: 0<t<x<1} then K € W5 (D). Further we denote the space

C(I)NC*(0,1] by Ck(0,1].

Theorem 5.1: (Brunner [41] ) For the VAK2 in (5.4) assume g € C¥(I) and K e
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C* (D), k € N. Then the integral equation (5.4) has unique solution f € C (0,1].

The smoothness result of the Theorem 5.1 is sharp in the following sense that even if
g € C=(I) the solution of VAK2 have, in general singularities allowed by the space
C}‘ (0, 1] (see also Kangro and Kangro [80]). Furthermore, it was also given in Brunner
et al. [79] that when g € C*V(0,1], and K ect (5) then unique exact solution f of
(5.4) belongs to C¥V (0,1]. On the basis of Theorem 5.1 we assume that the following

Hypothesis holds.

Hypothesis C: For the VAK2 integral equations we assume K (x,t) € C? (5) and

g € C*(I), and that neither function vanishes identically.
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5.2 Hybrid Operators Defined by Bernstein Kantorovich and
Modified-Bernstein Kantorovich Operators

The Modified Bernstein-Kantorovich operators K, o (f;x) where o > 0 is constant
were given to approximate a function f : I — R (see Ozarslan and Duman [68]). The

extension of these operators on the interval [a, b]

Kna(fi) = 5+ N ) PE() / f<a+ )) (b—a))dn (5.5)
where
_ak —x n—k
Py () = (Z) = ()b Eba)n) : (5.6)

was considered in Buranay et al. [65] for the solution of Fredholm and Volterra
integral equations. For a = 1, K, (f;x) in (5.5) reduces to the classical

Bernstein-Kantorovich operator
Ky (f3x) = b / f <a+ v <b—a>> dr, (5.7)

Lemma 5.1: (see Ozarslan and Duman [68]) For any « > 1 the order of

approximation of K, o (f;x) to f(x) is at least as good as that of the classical
Bernstein-Kantorovich operators whenever x € [0,1). If x € (3,1] then for any
0 < a < 1 the order of approximation of K, 4 (f;x) to f(x) is at least as good as that
of the classical Bernstein-Kantorovich operators.

Definition 5.3: Fix @ >0 and let0 <& < A, where A = égig. For every f € C7(0,1]

we define the hybrid operators in three step as follows when 0 < o < 1
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Ky, (f3x) if x€[0,8],
Hoo (fix) =S K, (fix) if x € [€,A], (5.8)
Ko (fix) if x € [A,1],
and a > 1 Kny.o (f3x) if x € [0,€],

Hylo (f3%) = 3 Ky o (F1%) if x € [€,A], (5.9)

K, (f3x) if x € [A,1],

where, m = ny + n| + ny are positive integers.

Lemma 5.2: Lete; =t',i= 1,2 fort € [a,b]. Then for each fixed n € N, o > 0,

Ko (1ix) =1, (5.10)
K .\ hx+ta b—a 511
maler3x) =77 BT NCENE .11
n(n—1)x* < 2n(b—a)> x
Ky q(€2;x) = ——F5— 3a+b
a(e2ix) (n+1)> T(nGath) (a+1) ) (n+1)?
1 2 2a(b—a)
+(n+1)2 (a abn+—(a+l))
2
b-a) (5.12)
Qa+1)(n+1)

Proof. The Bernstein operators for f € C|a,b] was given in Equation (4.1) as:

"\ (x—a)k(b—x)"k
B,(f;x) = Z <k) ( (39 (b—x) f(a—l—%(b—a))

k=0 —a)"

and the proof of (5.10) is obtained by using

By(1i)= Y (Z) (x—cz)bk(_ba—)nX)n—k ,

k=0

Koa(1,x) ki)(n) Z(ba)x) k(bia)/abdt

= B,(1;x)

Next the following summations are needed

57



3 (f) ek 519
kn() bbx”)k K\ bl 5 (n—1
LW e () e ()

b b
+x( +a—2a>—a—+a21. (5.14)
n n

Consequently, using (5.5) it follows that

S

b—a
*m)
n(x—a) (b—a)
(n+1) " (a+1)(n+1)
_atnx (b—a)
TS RCENICED (5.15)

From (5.14) and (5.15) we obtain (5.11). Further,

Ko (r) — | ()( ()(bx)k

b—a b—a)
b 1a)a 2
X( n+1 Tae1l 07 a)> d’)
- kzo(k) &9( o =
( (a +2a (b a)) dt
(n+611) /a (k+(2%)“)2dt> (5.16)

Transforming the integrating variable from # to u = Z‘TZ Equation (5.16) yields
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-y (Z) (x— (ZZ (ba) x)" (az N 211{ ba)

2a(b—a) (b—a)? 2% 1
(et Din+1)  (n+1)? (k2+ ot 2a+1)> SERNCRY)

Using (5.13) and (5.14) we get

2 2n x—a+ 1
2\o+1b—a 2a+1
2an 2a(b—a)
1T G D

) (n_’:_l)z (x2 (n;l) . (b:a_2a> _@Jra )
L (=) (Zn(x_a))ﬂzafl_)(an)il)z

nin—1 1 2(b—a)n
N (15+1)2)x2+(n+1)2 (2“”(”+1)+(b+a)n—2an2+ (Ot+1) )x
1

+ (n+1)? (az (n+1)* —=2a*n (n+1) — abn + a*n®
n

_(b—a)(OCZZCIJ+2a(b—a)(n+1))Jr (b—a)?

(¢ +1) o+1)(n+1)2

n(n—1) 1 2(b—a)n
o e (oo 25T
(b

2a(b—a)
( 1) (az—abn—l— @i D) >
+( i (5.18)
(n+1)22a+1 .
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Lemma 5.3: For each fixed n € N, > 0 and x € [a,b] we have

Bab(a)
sup Ky o ((f—x);x)| < —F—+, (5.19)
xe[a,b]l 05(( ) )| (n+1)
1
sup |Ky, (t—x)z;x ‘S—Ga,b(n,a), (5.20)
x€[a,b] ¢ < ) (n+ 1)2
where,
b—a (b—a)o
= 21
Busle) =man{ 228 20 521)
Oup(n,0) = Z(b—a)z + 04 (a), (5.22)
* * * b-l-aOC
Cap(0t) = max{}(pa’b(a,a)’ ok, (o), |0k, (m o~ ) ‘} : (5.23)
and
04y (002) =+ ——— (=2 (b +aa))
@b A o+1
2a(b—a) (b—a)®
2
) 24
Ta o+1 (Qa+1) (5-24)
Proof. On the basis of Lemma 5.2 it follows that
1 b+aa
Kn - X = - ) 2
alt = %) n+1(a+1 x) (5.25)
1 X *
Kno((t—x)%:x) = > (g, (X) + 95 (@) (5.26)
(n+1)
where
Vo (X) = —x*+ (a+b)x—ab, (5.27)

and ¢ , (@,x) is as given in (5.24). For each fixed n € N, &t > 0 the inequality (5.19) is
obtained from the fact that K, o (f — x;x) takes its absolute maximum value at the end
points x = a or x = b. Hence, (5.19) follows. The function v, , (x) > 0 for x € [a, b] and
takes its maximum value % at x = %t2. Further ¢, , (@, x) is quadratic function

of x and sup
x€la,b]

(pzb(oc,x)‘ = 0,4 () where 0, (@) is given in (5.23) thus (5.20)
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follows. L

Next, we use the notations ||f{|,, = sup |f| to present the maximum norm of
' x€la, b]
f € Cla,b]. Further we use f’ := dx7f” 4] and denote ||Y|., = max Y (k)| and

IIP|.. = 1r<na<xN ): ‘ k| to present the discrete maximum norm of a vector Y in N
J=<

dimensional real vector space R, and the maximum norm of N x N real matrix

P € RV*N respectively.

Theorem 5.2: Let 0 < € < A where A = égig. Assume that the Hypothesis C holds,

and f is the unique exact solution of (5.4) then there exist positive constants cy, ¢]

both independent from ny € N such that the following inequalities hold true

sup |HH' [ix) = f@)| < (mo+1)"" =0 (%) : (5.28)
x€[0,€] ng,
1

sup |H,,117_a (f5x)— f(x )} <cj(no+1)"" O( 1v> : (5.29)
x€[0,€] "y

Proof. Assume that the Hypothesis C holds. From Theorem 5.1 it follows that f €

C?(0,1]. More precisely it has the form (see Brunner [41])

1)+ Z o,0)*'"V) rel, (5.30)

where @, € C>(I), (s > 1 and note that C>(I) C C*>(0,1]) and the series converges
absolutely and uniformly on /. If v is rational thatis v = g with ¥, g coprime then (5.30)

can be written as

q—1
fO)=ho(t)+ Y b (1) '™V €1, (5.31)

s=1

with hy € C2(I) (0 < s < g— 1). For the sake of simplicity of notation we shall give
the proofs for the case of rational v; the generalization of the ideas involved in the
subsequent arguments to irrational v is straightforward. On the interval [0,€] the
function f is not continuously differentiable unless f(z) = 0. Further, from the

assumptions in Hypothesis C, f is not identically zero. Moreover, since i € C?(I)
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using Taylor expansion at x it follows that
hy(t) =c15+cas(t—x)+Rs(t—x), 1 €[0,€], (5.32)
where,

Clsi=hs (%), c25 = hy (x) (5.33)

"

Rs(t—x):%(f_x)z, 0< &, <. (5.34)

From (5.31) and (5.32) we get
() = ho (x) + g (x) (t = x) + Ro (£ — x)

qg—1 qg—1 ,

+ Y ()T 4 Y b () 0 (2 x)
s=1 s=1
qg—1

+ Y Ry (t—x)rt 1) (5.35)
s=1

For the proof of (5.28) on the base of (5.9) we use H,,,",, (f3x) = Ky o (f3x) forx € [0, €]

and from (5.35) it follows that

HY (f3x) = ho (x) + ho (x) Kng o (£ — %) 1)

q—1
a0+ Eh ks (410

s=1

qg—1
+ Y B () Ky a (f“—V) (r—x) ;x>
s=1

q—1
+ Z Ky o (RS (t—x) ts(lfv);x> . (5.36)
s=1

Next for r € ZT U{0}
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s(1=v)+r

(1- Z "o ke
) 9
Ko (t ) €L Foe / no+ 1 dt

0
2 N\ @ s(1=v)+r
oo (5) .
= _p'o A7
E 078 (x)/ I’l0+18 dt
0
ES(] v)+r—1 nzo . € N s(1=v)+r
+ Pk ( /<k+<x) ) dr. (5.37)
(l’l0+1 1 —v +r €

0
Then, for k,s € Z* and r € Z|J{0} using the integral

()"
0

1 1 —1
SO o (a,s(l—v)—l—r,a+l,7>, (5.38)

where »Fi (a,b,c,z) is the Hypergeometric function given as

b
zFl(abcz)_1+a—z
(a+1)b(b+1)z2
. 53
clc+1) 2! (5.39)

and substituting (5.38) and (5.39) into (5.37) we get
a(1=v)+r po0 (x)

s(1=v)+r. _ 0,
Kno,(x <t ,x) <n0+1)s(l—v)+r 06(s(1—v)—|—r)+1

1 1 -1
P"O’k“V”F — (s(1— — 41,
+Z 2 1<a,(5( V)+r),a+ : >>

k
/g\s(l—v)—i-r Pn(,)\,O (X)
= L (5.40)
(no+ 1)U L a(s(1—v)+r)+1 '

+ZP"°’ Y=+ (1+—S(1O;r>l+r(_7l)+0(%))>.

From (5.40) it follows that we have
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K

np,o

~s(1=v)+r 10,0
<ts(1_v)+r;x> _ E (1-v) P()’g (X)
(no+ 1)U o (s(1—v)+r)+1

(nO)S(I_V)+r s(1—v)+r.
oty (1)

~s(1— n
+ 85( V)+r 0 Pn(kk _ 0] ks(]_v)+r_1
(n0+ 1)s(l—v)+r = 0, o+ 1
Lo <ks(1fv>+r72)> : (5.41)

where @ = s(1 —v) +r and B,, (ts(l_v)”;x) is the Bernstein operator applied to

#SU=v)+r when r c7t U{O} ands=1,2,...,g— 1 that is

By (1077772x) = ZP”"’ (k >(1_V)+r, (5.42)

and Pg%k is as defined in (5.6). Then from (5.36) and (5.41) we get

!/

Hyylo (f3%) = f (%) = g (%) Kng 0 (1 =) 5%) + Ko, (Ro (£ — %) 1)

+ ) hy(x) (Kno’a (ts(lfv);x) —xs(l*v)>

+ Y Knpa (Rs (t—x) zs(‘—”;x) . (5.43)

Therefore,

| 1 [A+ea / 1 .
a5 = 109 = g (FG T =) I+ 5ot (e (9

Pn(ko (X) Es(lfv)

—1
+ Qe () ) g (80) +q_Zlhs (%) (( ! 0.2

no+ 1) 0 as(I—v)+ 1

s(1-v)
) (#072) — 1
(o+1y0 "N

as(1-v) no
€ 19,k _S(l _V) s(1—=v)—1 s(1—v)=2
+(n0+l)s(l—v)kZ1P0,§ (.X) < (X+1 k +0<k )

+
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+ 2Ky o (rS“ _V);x)> (5.44)

From (5.44) it follows that there exist a positive constant c},, depending on €, o and the
functions Ay, h/1 , h/{ and independent from ng such that the inequality (5.28) holds. The
proof of (5.29) is analogous and follows by taking the value of @ = 1, in the formulae

(5.36)-(5.44). [l

As a result of Theorem 5.2 the asymptotic rate of convergence of the hybrid operators

defined in (5.8) and (5.9) on the interval [0,5] is O <%) . Based on the analogous
)
approach in Voronowskaja [69], we give the asymptotic rate of convergence of these

operators on the intervals [€,A] and [A, 1] in the next two theorems.

Theorem 5.3: Let A = 2252 If o > 1 and f € C7 (0, 1], then the following holds true

when x € [€,1]

A
i [Hy (o) = 1) = (55 0) 7 04 w007 00, 549
and when x € [A,1]
1+ A 1
nlziglmnz [Hylo (fix) = f(0)] = (% —x) fH () + sz’l @) f"(x).  (5.46)

The function y ,, is the same as given in (5.27). Additionally, since f € C?[e,1]
then the limit (5.45) is uniform on [€, 1] and the rate of convergence of the operators
Hnl;a (f3x) to f(x)is O (%) for x € [€,A]. Also the limit (5.46) is uniform on [A,1]
and the rate of convergence of the operators H,LZ (f3x)to f(x)is O (n]_2> forx e [A,1].

Proof. Assume that f € C?(0,1], then f € C?[€,1] and when x € [€,A] we have
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H,\% (f3x) = Ky o (f3x) . From Taylor’s formula at x € [€,A] we get

(t—x)*

5 (%) 4 (t —x)*E(t —x), (5.47)

fO) =f)+(—x)f (x) +

with E (1) — 0 as u — 0 and it is integrable function on [€ —x,A —x]. Using the

linearity property of the operators Kj,, o and (5.25), (5.26) we have

1 A+E ,
K (F30) = 10 = - (225 ) )
b (i, ()95, () £ ()
2(n1+1)2 eA €A ’
+Ez 5 (n1,0,x), (5.48)

where, ¢% , (@,x), Y%, (x) are the given functions in (5.24), (5.27) respectively and
A
Ez; (n1,a,x) EZP’”’ / (T—x)2E(t—x)dt. (5.49)
.y J
€

Also P"*(x) is the polynomial in (5.6) and also T = € mzf Let
A polynomial in (5.6) and also 7 = € + (A—¢€). Le

}’l1+1
ciy= sup |E(u)|. For arbitrary €* > 0 there exist 8" > 0 such that |E (u)| < €*
uele—x,A—x]
whenever  |u| < & For all ¢ € [g,A] it follows that

|E(t—x)| <&+ (t—x)*/ (5*)2. Using Lemma 5.3 estimation (5.20) gives

Koy (6 =2)71x) | + ((;’"—*1)2 Koy (1 =25

< ﬁ (L2~ + 052 (o))

C ~
+ (5" <n11 N 1)4Mm (m, o), (5.50)

|Ez 5 (n1,0,x)| < €°

where, 63 ; (@) is as given in (5.23) by taking @ =€ and b = 4 also ]\A/ia;L is second

degree polynomial in n; for a fixed o > 1. To show that the asymptotic rate of

convergence is 0<i> for x € [€,A] it is sufficient to show that

ni
lim nlEg 5 (n1,a,x) = 0. It is obvious from (5.50) that for n; large enough and for
n|p—roo
x € [€,4] we have |nE 2 (n1, @, x)| < &* and by multiplying both sides of (5.48)
with n; and taking limit as n; — oo follows (5.45). Since f € C12 (0, 1] this limit is
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uniform on [€, 4], thus the rate of convergence of the operator H,,lja (f5x) to f(x) is
o (%) for x € [€,A]. Likewise using Definition 5.1, when x € [4,1]

Hy Y, (f3x) = Ky, (f3x) From Taylor’s formula at x € [A,1] and from the linearity

property of the operators K, and (5.25), (5.26) we have

K (i) = 700 = (35 =) £/

1 N * "
NEYrwwT: (m2¥.1 ()05, (1)) £ ()

+Ej 1 (n2,x), (5.51)

where, @3 | (1,x),y; | (x) are the given functions in (5.24), (5.27) respectively. Here,

1
)
Ej 1 (n,x) = ﬁ Y P () / (t* —x)?E (1" —x)dt. (5.52)
k=0
A

t—A
n2+1

and P;Z_z{k(x) is as given in (5.6) for a = A and b = 1. Further, 7" = A + (I1—-21).

Let ¢ = sup |E(u)|. For arbitrary €* > 0 there exist 6* > 0 such that
u€A—x,1—x]

|E (u)| < € whenever |u] < 8. For all r € [A,1] it follows that

|E(t—x)| <& +cy(t—x)*/ (5*)2. Using Lemma 5.3 estimation (5.20) gives

|E;L,1 (nz,x)‘ < €" |Ky, <(t—x)2;x> ‘ + (;*2)2 Ky, <(t—x)4;x>‘
8* ny 2
< m (Z(l —A)"+oa, (1))
2 M (m2,1), (5.53)

T2, 4

(67)" (n2+1)
where 0 ; (1) is defined in (5.23) for x € [A,1]. Additionally, M 2,1 is second degree
polynomial in n, for a fixed o > 1. It is obvious from (5.53) that for n, large enough
we have |n2E;L’1 (nz,x)‘ < €* and using (5.51) we obtain (5.2). From the assumption
that f € C?(0,1] this limit is uniform on [4, 1], thus the rate of convergence of the

operator H\ 'y, (f3x) to f(x) is O <%) forx € [A,1]. O

Theorem 5.4: Let A = 2242 If 0 < e < 1 and f € C7 (0, 1], then the following holds
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true for x € [€,1]

i [ ()= 100] = (255 =0) 70+ 303, 00700, 65

ny—oe 2

and for x € [A,1]

lim s [H) o (f2x) — £(x)] = (

ny—roo

l+Aa , 1, ,
o+ 1 _x)f(x>+§‘/’7t,1(x)f (x).  (5.55)

The function wz’b, is as given in (5.27). Further, the limit (5.54) is uniform on [€, 1]
and the rate of convergence of the operators H,, , (f;x) to f(x) is O ( ) forx € [€,A].
Also the limit (5.55) is uniform on [A, 1] and the rate of convergence of the operators
H) o (fx) to f(x) is 0( ) forx € [A,1].

Proof. The proof can be given in a similar way to the proof of Theorem 5.3. U

Corollary 5.1: Let0 <& <A and A = 222 If ¢ > 1 and f € C7 (0, 1] then

18 )
* H[E,,l < n+1 Bea (@)

L ey
2(711 —+ 1)

1,
Ente (F2) = £y < = B (1)

+ (n2,1) (5.57)
2(n2+1>2 171 25 Y .

||H1+

~, . 2 Sl( 17a)7 (556)

hold true where, the functions (), 0, (n, o) are as given in (5.21) and (5.22)

respectively.

Proof. From Theorem 5.3 using (5.48), we have
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sup |Hy'ly (%) — f(x)]

x€[€,A]

= sup |Kn.a (f3x) — f(x)]

x€[€,A]
A+Ea
< sup |f(x)| sup ( —x)’
”1+1xe[au‘ ‘xe[ax] o+1
+;2 sup |f” (x)| sup ‘(nlwgl(x)jwpzl(a,x))‘ (5.58)
2(m +1)" xelgA) xe[EA] ’ ’

where, ¢, (a,x), v, (x) are the functions given in (5.24), (5.27) respectively.
Then using Lemma 5.3 and estimations (5.19), (5.20) we obtain (5.56). Likewise

from Theorem 5.3 using (5.19), (5.20) and (5.51) the inequality (5.57) follows. []

Corollary 5.2: Let0 <€ < A, where A = %gig If 0< o< 1andf€C?(0,1] then

T
Miea < Syt Pea®

1" e
—_— 1), 5.59
+2(n1+1)2 s),( ) ( )

H Ny
My =701

o (f

[ Horo (f —Plg. (a)

1"
—6 5.60
+ 2t 1) A1 (n2,a), (5.60)

hold true where, 8, ,, (@), 0, (n, ) are as given in (5.21) and (5.22) respectively.

Proof. The proof is analogous as in the proof of Corollary 5.1. [

5.3 Combined Method of Hybrid Operators

Let A = ggig. Further, we propose the following combined method in three step for
the numerical solution of VAK2. We take the intervals [lo, /1] = [0,€], [l1,L] = [€,A]
and [, 3] = [A,1].

5.3.1 Combined Method for the Solution of VAK2 When 0 < o < 1

When 0 < a < 1, we use the hybrid operators H,,, 1~ given in (5.8) to approximate the

solution of VAK?2 by the following algorithm of the proposed combined method.
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Algorithm 5.1: Combined method for the solution of VAK2 when 0 < o < 1.

Step 1: (i) For p = 0,1, take the grid points x\") = I, + Ly — 1) + &,

J
(p)

= — lpri=lp
J=0,1,...n,—Tland xp,’ =1, — €p, where 0 < ¢, < T

(ii) Use the hybrid operator H,, 1~ to approximate the unknown function f in (5.4) on

the interval [ly, /1]
Ky, (f3x) +(])/ VK (x,1) Ky (f31)dt = g (x), (5.61)

and on [I1,l5] as

Koy (£ +0 [ (x=0) R () K (Fir)

—0 / (x—1)""K (x,1) Kny (Fo5t) dt. (5.62)

(iii) Evaluate the equations (5.61) and (5.62) at the grid points xﬁp ), p =01

respectively as given in Step 1 (1) to obtained the algebraic equations

Ky, <f§x§0)) +¢ /j(xgo) —1)'K <x§0)7t) Ko (f31)dt = g (xﬁ.o)) , (5.63)

for j=0,1,..,n9 and

K (£:) +0 / (5 =07 (/1) Ky ()

1
xﬁl)) — ¢/(x5.1) —1)'K <x5'1)’t) Koy (Fpyit) dt, (5.64)

for j=0,1,..,n;. Also,

np, k np—k
Kn Fl_; _ (np + l) (np> (x_ l[)) (lp+1 _nx) Y k+ 1 5.65
! ( " x) (lp+1 - lp) 1;) k (lp+1 - lp) ! pnp( b )

and Yln , p = 0,1 are the unique numerical solution of the linear algebraic equations

(5.63), (5.64) in matrix form

(np+1)

—Al yl— B~ 5.66
Uyt 1) ’ (60
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provided A ;,_, p = 0,1 are nonsingular matrices. Further,

(A5 ] a

<np> (xﬁ-p) — lp>k (lp+1 —xg.p))np_k

k (lp+1 - lp)np

n,—k

1) Ly —1)"™
+ (e) (7. Ul Upri =) 5.67
¢/ J ) (lp+1 _lp) ' ( :

j=0,1,..,ny k=0,1,...,n, and

lp+yfl+7+11(lp+l_lp)

Y, (k+1) = f(w)du, k=0,1,...,n,, (5.68)
lp+nlkﬁ(lp+1_lp)

By i+ =g (x{"), j=0,1,...m, (5.69)

B (j+1)=g <x§.”) —ol- (xg.l),Fn]O_> j=0.1,...n, (5.70)

where,
lp+1
0" (x,Fnlp*) — 0 / (x—1) K (x,0) Ky, (Fnlp*;t) dt, p=0,1. (5.71)

l[’

Step 2: (i) Take p = 2 and consider the grid points xg- ) — =D + (l3 —b)+&, j=
0,1,...,np—1 and x%) =1—¢€, where 0 < & < % Use the hybrid operator H,L,_a

on the interval [/, /3] to approximate the unknown function f in (5.4) as:

Koy (fi) 0 / (e 1) "R (x.0) Ky (fo1) di
o [ R o ()

—0 / (x—1) K (x,1) Kn, (F,5t) dt, (5.72)

where K, (F lp_;x> for p =0, 1 are obtained in Step 1 as given in (5.65).

n
(ii) Evaluate the equation (5.72) at the grid points x( ) for j =1,2,..,ny to obtain the
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following algebraic equations

(2)
Ky (£ +¢>/ D )R (42.1) Ky (fi0)

_g <x§2)> - Z 0" (xg.z),Fnlp*) , (5.73)
p=0
where Q},_, p = 0,1 is defined in (5.71). The system (5.73) can be presented in the

matrix form

(n2+1)

all _lz)Al Y, =B, (5.74)

where,

oy () (o)™

(Iz—DL)™

(2)
) @ )\ (t—h) (5—1)""
+¢>/ CR(P ) | (5.75)

j=0,1,...n, k=0,1,...,ny, and Yzl_,Bé_ are as

12+n"2+—+‘1(l3—12)

Y, (k+1) = g1 (u)du, k=0,1,...,ny, (5.76)
bt (b—1h)
11—«
— 1) 1 o
(=b)mt+1) N\ (5.77)
Is—1
B (j+1) = ( 2) ZQ[;(] E)- ),j:o,1,...,n2. (5.78)

(iii) Subsequently, if the matrix A;_ is nonsingular then the system (5.74) has the

unique solution

_ OC(13 —lz) 1-\—1 51—
yl- =22 2 (4 B, . .
2 n+ 1 ( 2 ) 2 (5 79)

Finally denote the numerical solution of YZI* in (5.79) by Y21 and let F~ 5. Show
the obtained numerical approximation to f over the interval [A,1] = [l»,/3] that is in
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the implicit form in Y21;2. Finally substitute Fnlz’_a in (5.5) to get K,, o (Fnlz’_a;x) for

x€[A,1] as

oy mtl @&\ = A) (-
Ko (FpyoiX) = G2 kzo(k) e Yy, (k+1).  (5.80)

Let us denote the approximate solution obtained by the Algorithm 5.1 by

,
F,~ forx € [0,€],
Foa=1q Fl~forxe[&A], (5.81)

Fl-, forx € [,1].

ny,Qo

\

where, m = ng + nj + ny. Substituting (5.81) into (5.8) we get

¢

Ky, (Fl75x) if x€[0,€],

no

Hya (Fhaix) = Koy (FLoix) if xe [B.4], (5.82)

ni

| Ko (B %) if x € [A,1].

5.3.2 Combined Method for the Solution of VAK2 When o > 1
When o > 1 we use the hybrid operators Hnlfa defined in three step (5.9) to
approximate the solution of (5.4) by using the following algorithm of the combined

method.

Algorithm 5.2: Combined method for the solution of VAK2 when o > 1.
Step 1: (i) For p = 0,1 take the grid points xﬁp) =1, + %(lpﬂ — 1) + €,

(p)

. 1, 1—1
j=0,1,..,n,— 1 and x;, R "

=1lp41—€p, where 0 < g, < 2,
(ii) Use the hybrid operator H,LZ to approximate the unknown function f in (5.4) on

the interval [ly,/;] as:
Ko 040 [ (=) Rt K (Fr)di =g, (589
ly

and on [I1, 1]
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K, o (f3X) +¢/ (x—1) VK (x,1) Kpy 0 (f31) dt

¢/ —1) K (x,1) Kng o (Fy g31) dt. (5.84)

(iii) Evaluate the equation (5.83) and (5.84) at the grid points /), j = 0,1,..,n,, p =

0, 1 respectively as given in Step 1 (i) to obtain the algebraic equations

£
K (35 +¢>/ =0 (1) K (finydr =g (), (5:89)

for j=0,1,...,n9 and
j
Ko () 40 [ 67 =07 R (x0) Ko (i)
l

1
x§1)> —¢ /(xﬁ,l) —1)7K <x§1>7t) Ky (Fpl g3t) dt, (5.86)

for j=0,1,...,n1. Also for p =0,1

(FH— . > — M S (np) (x_lp)k (lp+1 —X
o

np,0>% (lpr1 —1p) &= \ K (L1 — 1)

np—k
© )

np, 0

Y, (k+1).
(5.87)
Further, Y I+ np P = 0,1 are the unique numerical solutions of the corresponding linear

systems

(np+1)

P Aty =B* 5.88
a(lpri—1tp) 77 P 59
provided A},* , p = 0,1 are nonsingular matrices. Here,

| ;7+]j+1,k+1

_ <np> <x§.17) _ lp)k (lp—‘,—] _x§p)>nl,_k

k (lp+1 - lp)np
x;m
k np—k
(.p) _ VK (p) (t B lp) (lp+] B t) d 5 89
p
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j=0,1,..,ny k=0,1,...,n, and

- [k ()
ol =1y L=l
Yt k+1)= "2 — VY (1 —1y) | ar 5.90
ly
11+,1]+1(12 I)
YT (k+1) = / g2 (u) du, (5.91)
ll+nl+l(l2 ll)
u—1I0)(n+1 @
ano) =) (U= ) 7 (5.92)
(b—1)
B (j+1)=g(xV), j=0,1 5.93
o U )_g xj y J =Y, 1,...,np, ( . )
BIF G+ D) =g (")) =0t (Vi) =01 om. (5.94)
Additionally,
p+1
L+ xF1+ ¢/ x—1) K (x,1) Kn o (Fnl;ra, )dt,sz,l. (5.95)

Step 2: () We take p = 2 and the grid points x\) = b + L (s — ) + &2,
j=0,1,...,np — 1 and x,(lz) =1—¢€5, where 0 < &, < l’ lz . Use the hybrid operator

H,™ 1+ o on the interval [I,, /3] to approximate the unknown function f in (5.4) as:

Kﬂﬁﬂ+¢/@—ﬂ”KWﬂ&dﬁ0w
—¢ / (x—1) K (x,1) Kng,ae (Fols) dt

—¢/ —1) K (x,) Ky, o (gt dt, (5.96)

and, Knm (F1 ;x>, p =0, 1 are obtained in Step 1 as defined in (5.87).

(i) Write the equation (5.96) at the grid points x§2)’ j=1,2,...,np as given in Step 1

(i) and get the algebraic equations
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2
J
2 @ v (L2 .
K, (f,xj >—|—¢/(xj 1) K(xj ,t)an(f,t)dt
L

1
2 2
_g <x§ )> “Y ol <x§ ),F,}pfa) , (5.97)
p=0
where Q},* is as presented in (5.95). Framing the system (5.97) in matrix form gives
1
2 1) ey ie _ gie (5.98)
(b—1h)
here,
1+
[Az } JHLk+1
@_ .\ (2)\"
ey (7 28) ()
- \k (B—Dh)™

(5.99)

Ne)
s k no—k
@ N Vsl )\ {t=h) (1)
+¢/<xj t> K(xj ,t) (h—h)" dr |,
173

j=0,1,.,n0,k=0,1,...,n, and ¥, ", B;" are as
b5t (=)
YT (k1) = / f(u)du, k=0,1,...,ny, (5.100)

lz+,,2%(13—12)
1
. 2 2 .
Bl (j+1)=¢g <x§ )> -y ot (x§ ),Fnllja) L j=0,1,...,m. (5.101)
p=0
(iii) Subsequently, if the matrix AéJ“ is nonsingular then the system (5.98) has the

unique solution

I3 —1) -1
Yt = —( At BT, 5.102
2 ny 1 ( 2 ) 2 ( )

Next denote the numerical solution of Y21+ in (5.102) by Yzl:[z and let Fnl;r show the
obtained numerical approximation to f over the interval [l5,/3] that is in the implicit
form in YZI’Z. Finally substitute £, in (5.7) to get Ky, (F,L";x) for x € [l 13] as

ny

ny+1 f ny (x— lz)k <l3 _x)nszYIJr
(l3 _ lz) = k (13 _ lz)nz 2,n;

ny °

(k+1).  (5.103)
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Let us denote the approximate solution obtained by the Algorithm 5.2 by

Ft, forx € [0,€],

Fro= Flt, forxe[€,A], (5.104)

F tforxe[A,1],

\

where, m = ng + nj + ny. Substituting (5.104) into (5.8) we get

;

Kn()7a (Fnlo OC’ ) if x € [0 8]
H’Lj— <F"]17;" ) =\ Kna (Fnll o X) if x € [€,A], (5.105)

K, (FoFsx) if x € [A,1].

ny

5.3.3 Combined Method for the Regularized Solution of Linear Volterra Abel-
type Integral Equations of First Kind

As is well known, Volterra integral equations of the first kind appear to be special cases
of Fredholm integral equations of the first kind and are consequently classified among
the lists of ill-conditioned problems solvable by the classical regularization means.
The early theoretical development of a singular perturbation approach for regularizing
first-kind Volterra problems is generally attributed to Sergeev [81] and Denisov [82] in
the early 1970’s, following the ideas of Lavrent’ev [83]. For this reason, the method
is often referred to as Lavrent’ev’s classical method, or the small parameter method.

Subsequently, we consider the first kind Volterra Abel-type integral equations (VAK1)

¢/ x—1) VK (x,0) f(t)dt =g(x), xel. (5.106)

In this article the regularized processes construction is given by introducing the

following equation
¢/ )R () (0di 40 (8)f5 () =gs (). xe L. (5.107)
where, 1 (9) is positive regularization parameter coordinated with 6. For the

convergence of the regularized solution of (5.107) see Muftahov et al. [73] and the
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references therein. Obviously (5.107) is second kind Volterra integral equation with
weak singularities. For the numerical solution of RVAK1 by the proposed combined
method, we apply the Algorithm 5.1 and Algorithm 5.2 for the equation (5.107) when
0 < a < 1 and o > 1 respectively, by taking into consideration the coefficient n(9) in
the second term of the left side of equation (5.107).

5.4 Convergence Analysis of Algorithm 5.1 and Algorithm 5.2

Theorem 5.5: Let the conditions of Hypothesis C be satisfied and let 0 < € < A where

A=222 1f 0 < a<1and H,, - (f - 'x) is the approximate solution of VAK2 in

6a+3° m,o

(5.4) obtained by the Algorithm 5.1 and f is the unique exact solution then

sup |Hyrg (Faix) = £ ()

x€[0,1]

S EOLP <7’lp,'}’p af) (1
1—\—1 (lp+l —[p)lfv
L (o ) s

1—v

holds true where,

v,if p=0,

Y, =94 Lif p=1,
a,if p=2,

1

L ) _7 == *—7
0 (0,75 ,f) = ¢ ot )

L, (mﬂ’f;f) :‘/Vll,lz (l’l],l,f),

L <n2,7y57f) :u/lz,l3 (n27a;f)7 (5109)

and c7] is a positive constant independent from ng. Also for p = 1,2

Hf/H[l ]
p7p+l
Wi, 1,0 (np, 0, f) = Tl Pleden a)
17
f— il | (), (5.110)
2(np+ 1) lp,lp+] ( P )
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Mlﬂvlp+1: ( max sup ‘I?(xgp),tﬂ , (5.111)

.ij)el:l[)7lp+l] le[lp’lp+1]

(p)

and xX; )= 0,1,...,n, for p =0,1,2 are as defined in Algorithm 5.1. Also 0 <v <
1,B Ipdpi1 QIPJP ., are as given in (5.21) and (5.22) respectively. Further, A},_, p=0,1
are the matrices given in (5.67) and Aé_ is as given in (5.75).

Proof. Since the conditions of Hypothesis C are satisfied then on the basis of Theorem
5.1 VAK2 has the unique exact solution f € C7 (0, 1]. We take the subintervals [ly,[;] =
[0,€], [l1,L2] = [€,A] and [, 13] = [, 1] as defined in Algorithm 5.1. It follows that for

x€[0,1]

sop [t (Faaix) = F(0)] < sup | (fi) = £ 0)

x€[0,1 x€[0,1]
+ sup )H,;—a (f,;;;x> “H=( ;x)‘. (5.112)
xefo,1)! ’ ’

From Theorem 5.2 using equation (5.29), and based on Corollary 5.1 and the

estimations (5.59), (5.60) and from (5.109), (5.110) we obtain

2
sup |Hyo (fix)—f ()] <Y sup  |Hyo (fix) — f (%)

x€[0,1] P=0x€[lplp1]
1

=01
(no+1)

+Wi, 1, (n1, 1, ) + Wy, 1 (2, @, f)
2
-y, <n,,,y;,f). (5.113)
p=0

Next let

—1— B B

Yy, (k1) =Y,0 (k+1)=Y,~ (k+1), (5.114)
fork=0,1,...,n, and p =0, 1,2. From (5.65), (5.82) and using the linearity property

mp
of the operator H,}L_a also from Y Pl’:” f+1 (x) =1, it follows that
k=0 ¥’

79



sup ( m,os X )—Héfa(f;x )z sup (f,i;—f;x)‘

xe[O,l] x€[0,1]

1 n

np+1 Bk —1—
< su _rr- P> 14 Kkt 1
_PZ_OXE[lpalpp 1] (lp+1 —lp) k=0 lpilp+1 (x) P:"p( )
2+1 SR

! S[luz k) (13 ZPZ?& Y2n2 (k+1)

1

np+1

Z o hpTi ( max pn (k—l—l)D

p=0 p+1 —1 ) 0<k<n,

ny+1

a(l—bh) 7 I 11
Jr0‘(13—12) (02}{32512 2m (Kt )D (5.115)

Hence,
1
1 —1_
sup ‘ <Fnl17x’ ) H,}L_a (f;x)‘ < Z Ml ‘ Yllm
x€[0,1] =0 (lp+1 _lp) 2l
I’l2—|—1 —1—
+mH 2m || (5.116)

From Theorem 2.1, since the operator H,, !~ (f3x) uniformly converges to f on the
constructed subintervals for any f € C[0, 1] and for any € > 0, there exist m such that
the inequality | o (fix)—f (x)} < € holds. Therefore, for the numerical solution of

VAK2 when 0 < o < 1 and x € [0, 1] we assume
X
g(x) = Hyo (f3%)+ 9 / (x= 1)K (x,0) Hy g (f21)dr. (5.117)

If we substitute ﬁni;)t given in (5.81) instead of f in (5.117) we get new function g (x)

on the left sides of this equation.
§x) = Hyr (P
+¢/ — 1)K (x,1) H)\ (F,};X, )dt. (5.118)

Then subtracting equation (5.117) from (5.118) gives
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+</)/ —1) K (x,t) Hpg (FL o — f31) dt. (5.119)

Then taking the grid points x( ),] =0,1,...,n, for p=10,1,2 as defined in the Step

1 and Step 2 of Algorithm 5.1 we obtain the algebraic systems in matrix form for

p=0,1,
np—}—l l—<1— —1—
ALY =B, 5.120
(=) T =" o
By (i+1D)=g(x")—g(+"). (5.121)
1 1 1
B (J+1)=g(x§~))—g<x§-)>
—oy (R =), (5.122)
J=0,1,...,n,. Further for p =2 we get
m+1l oi- Sl
2T Ay, =B 12
oa(l—h) 2 rm T ©-123)
1— /. ~ 2 2
B, (J+1)=g(X§~))—g(x§-)>
—ZQI’(, FaT=1), (5.124)

j=0,1,...,ny. Thus ifA;)_,p =0, 1,2 are invertible matrices then for p =0, 1

(np+1) Jlo1- NS

e 8 B OV I/ SRS
and for p =2

(m+1) ||o1- -

m’ 2, H(A H HBz H : (5.126)
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X

Next let g(x) = Hi,(fix) + ¢)({(x — 1)K (x,t)HY, (f3t)dt  and

g(x) = f(x)+ ¢ f K (x,1) f(r)dr as given by VAK2. At the grid points x'7",

J=0,1,...,n, we obtain for p =0,1,2

() s ()~ Bk (4 )

i=1

sup

AP e[ty dpi]

xﬁ[’)

< s 0| [ I -0 R () () - £0) a

< ellpdp] [,
T sup ’HI* (f X ) 7 (xgp)) ‘ . (5.127)
A e[lpdpii]
4P
. J ( " l)lfv
Using (5.111), (5.113) and that sup f p )7Vdt| = ”1— when 0 <
[l,,, Ip+1] Iy
v < 1, and taking Ml,,J,,H =  max sup ‘K( )‘ as given in (5.111)
x§p)6[1P71p+1] [lp> p+1]
gives
=(,(p) (p 4 Flf
e lpdpii] i=1

<oM,,,, L (np,y,,,f) sup / (xy’)—t)*”dt

el dpn] I
+LP (”paY;af)
— (lp+1 - lp) -
=Ly (”p= Yp ,f> ¢M1,,,1,,+11—_v +1]. (5.128)

Substituting (5.128) into (5.125) and the obtained result in (5.116) gives

sup |Hyq (Faix) = Hig (f:)]

x€[0,1]

(lp+1_lp)liv 1—\ !
< ZL (07, .1) (q) lw,pﬂl—_vﬂ) )L s

Substituting (5.113) and (5.129) into (5.112) follows (5.108). ]
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Theorem 5.6: Let the conditions of Hypothesis C be satisfied and let 0 < € < A where

A=220f o> 1and HYY, (ﬁ%f&;x) is the approximate solution of VAK2 in (5.4)

obtained by the Algorithm 5.2 and f is the unique exact solution then

a1 (Fior) 10

x€[0,1
2 o~
<)Ly <”pv?’;af) (1
p=0
1—v
-1 [ 1—l
+ ”(A}a+) H (¢sz,z,,+1%+ 1)) , (5.130)
holds true where,
.
v,if p=0,
Yy =14 aif p=1,
\ 1,if p=2,
and
Z() (I’l() ’}/(J)r f) = C* ;
Y Y o 7V7
(no+ 1)l

Zl (nla'}/f_af) :‘/Vl],lz (nlaaaf)v

Ly (n2,%3 ,f) = Wiy, (n2,1,f) (5.131)

and cj, is a positive constant independent from 7 and additionally, Wl,,,l,, . (np,o, f),

p = 1,2 are given in (5.110) and M, for p = 0,1,2 is defined in (5.111). Also

p+1
0<v<1and A;,Jr, p = 0,1 are the matrices given in (5.89) and Aé+ is as given in
(5.99).

Proof. Based on the Algorithm 5.2 proof is analogous to the proof of Theorem 5.5 and

follows by using the operators Hnlﬁx (f;x) given in (5.9), Theorem 5.2 equation (5.28)

and Corollary 5.1 and the equations (5.56) and (5.57). [
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Chapter 6

EXPERIMENTAL INVESTIGATION OF THE

COMBINED METHOD

This chapter is devoted to experimental investigations of the proposed combined
method by applying the constructed algorithms to the considered test problems of
second kind linear Volterra Abel-type integral equations. Also first kind Volterra
Abel-type integral equations are considered and the given algorithms are used after
utilizing regularization techniques. Furthermore, it is numerically shown that the
given method hence also the developed algorithms provide accurate and stable

numerical approximations to the solution of the Volterra Abel-type integral equations.

All the computations in this chapter are performed using Mathematica in machine
precision. We denote the numerical solution obtained by the Algorithm 5.1 by f,};x
and the solution obtained by Algorithm 5.2 by fniz Also €,,p = 0,1,2 in the

Algorithm 5.1 and Algorithm 5.2 are taken as €, = lp*;—z_l” Let the following error

P
grid functions be defined at the N + 1 grid points x; = 5, s = 0,..., N over the interval

[0,1] as
E [t o (Fran )| = ()~ Hia (Fla (), 6.1)
E[Hy (B ) | = 1 ) =y (B (). (62)
For the implementation of the proposed combined method of hybrid operators we have

considered two versions. In the first version we take two subintervals [0,A],[A, 1]

of the interval [0, 1] and use hybrid linear and positive operators in two step when
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O<axl1

Ky, (f5x) if x€[0,4],

HI= (1) — (fix) if x €[0,A] 63)
Ky o (f5x) if x € [A,1],

and ¢ > 1

Hyto (f3%) = fonaF0) X E 0] (6.4)

K, (f3) if x €[, 1],
where, m = ng+n; and ng, n| are positive integers. We call this implementation as two
step form and therefore, in the Algorithm 5.1 and Algorithm 5.2, step 1 is performed
for [ly,1;] = [0,A] when p = 0 and step 2 is performed for [I},l,] = [A,1] when p = 1.
In the second version we apply the combined method as same as given in the Algorithm

5.1 and Algorithm 5.2. We frame this implementation as three step form. Further, we

use the following notations in tables and figures:

i) M(H)"

m-a)zs’ M (H,};a)3 ¢ present the combined method in two and three steps

respectively when 0 < o < 1.

i) M (H,'y),g:M (Hy'y) g present the combined method in two and three steps
accordingly when o > 1.

iii) Dag(no,n1),D3s (no,n1,n2) show the degrees n,,p = 0,1 for the two step and
np,p = 0,1,2 for the three step applications of the given combined method,
respectively.

iv) Cond (A),"), Cond(A,"), denote the condition number of the matrices A, , A}
obtained by the method M (H,ilja)qs and M (H,i:ra)qs ,q=23forp=0,...,q—1
respectively using LinearAlgebra‘Private ‘MatrixConditionNumber command in

Mathematica.

V) RE (H’}l»_a)qs’ q = 2,3 denotes the root mean square error RMSE of the solution
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1 N

2
]_ - ~1— .
e k= (5717 5 (b (R
=

over N + 1 points obtained by M (Hnlga)qs, for ¢ = 2,3 steps.

vi) RE (H,lnfa)qs, g = 2,3 denotes the root mean square error RMSE of the solution

e ks (s 2 (e[ (Alian)]))
over N + 1 points obtained by M (H,,l;a)qs, for g = 2,3 steps.
viil) AE,, (Hnlﬁfx)qs, q = 2,3 shows the absolute error of the solution at the point x;
obtained by the method M (H,},ﬁx)qs, for g = 2,3 steps.
6.1 Examples of Second Kind Volterra Abel-type Integral Equations
We consider the following test problems of second kind fractional Volterra integral

equations.

Example 9: (Ex9),( Micula [64])

X

0.01 x2 3 x
Hdt = 1 T2 0.02—— I
0

W

1) ¢

and the exact solution is f (x) = /7 (1 +x)_% ,xel.

Example 10: (Ex10), (Micula [64])

1 3
2/3)x— —x3, xel
/3)x 105 X €l

1)~ 5057 | ! e =T
0

where the exact solution is f (x) =T"(2/3)x,x € I.

Furthermore, we consider the next example which has a solution that has singular

behaviour at the initial point x = 0. For the considered examples in this section we
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take € = 0.05.

Example 11: (Ex11), (Dixon [84], Abdalkhani [85] and Saeedi et al. [86])

x—t 2

f(x)+/ ! f(t)dt:ln:x%—\/)_c,xel,
0

where the exact solution is f (x) = \/x, x € I.

Table 6.1 presents AE,, (H;; 0 01) and AE, (H313+ 10) . (the absolute errors (AE))
g g

S

for the Example 9 at the points x; = %7 s =0,1,...10 for g = 2,3, steps with o =
0.01, and a = 10. Further, the results in this table are calculated for D,g(22,11) and
D3g(11,11,11). Figure 6.1 illustrates the data presented in Table 6.1. While, Figure 6.2
demonstrates RE (H ,}17_0.01)%?, and RE (Hr}flo) s (root mean square error (RMSE))
for the Example 9 with respect to ng (« is fixed) for g = 2,3, steps. Also, Figure
6.3 shows RE (H313_ O‘)qs’ and RE <H313Jr O‘>qs’ with respect to & (m = 33 is fixed) by
taking Dys(22,11) for g =2, and D3g(11,11,11) for g = 3. It can be viewed from

Figure 6.3 that the RMSE with respect to a obtained by M (H;; “)35’ M <H313Jr a) i

behaves almost constant.

Table 6.2 illustrates a comparison of the maximum absolute errors (MAE) for the
Example 10 obtained by M (Hnla,_o.001>qsv M <Hnl1+10> S for g = 2,3 steps for
m = 12,18,24 over the points x; = 5, s = 0,1,..., N when N = m and the iterative
method given in Table 2 of Micula [64] with n = 10 iterations. The presented results
for m = 12,18,24 by the given combined method are computed by taking
D75(8,4),D,5(13,5) and D,g(21,3) for the two step and D3s(4,4,4),D35(8,5,5) and
D3s(18,3,3) for the three step applications. On the one hand, these results show that

three stage application gives more accurate results then two stage case and both of the
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Table 6.1: The AE for the Example 9 obtained by the proposed method M (H;;r 10)

M(H”) andM(Hl_ ) ,M(Hl— ) .
33,10 ) 5 33,001 ) 5 33,001 ) 5

28

Ex9 Ex9 Ex9 Ex9
. M <H31;10> 25 M <H313JT10> 35 M <H31:;,o.01)25 M <H§§0.01>
0 3.610x107° 1.599 x 1074 2389 x 10~ 1.865 x 10~ 14
0.1 2.810x107° 3722x 10712 1.928x 10710 1.344 x 10710
02 1.692x10°8 1.747 x 10~ 3,604 x 10~ 11 2777 x 10712
03 3.643x10°10 477510717 4370x 10711 4151 x 10711
04 2.134x10°T  1903x10~1T  7.795x 10~ 11 8.580 x 10~
0.5 1.183x10°10  1.150x 1010  1.536x 10710 1.667 x 1010
06 1.927x10°10  1883x10°10 2851x10° 10 2391 x 10710
0.7 2767x10°10  2707x10°10  2275x 1010 2.277x 10710
0.8 3911x10710 3835x10710 2.965x10~10 2.968 x 10~ 10
09 4526x10°10  4432x10°10  4.236x10°10 4239 x 1010
1.0 5.166x10°10  5051x10°10 4.838x10°10 4.842 x 10710

—%—M(H

) 3

33,1028 | ]
o 1+

M(Hag 10)as |

8L 2 1- |

10° E M(Haa,n 01)23 3

1- E
M(Ha3.001)as | 7

10710 5
101
1012 5

/
107/

1044
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Figure 6.1: The AE for the Example 9 obtained by the combined method M <H313+ 10) s
g

and M <H31370.01>q5 for g = 2,3 steps.
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Figure 6.2: The RMSE with respect to ny obtained by the combined method
M <H1ﬁ0> " and M <H17—0‘01>qs for g = 2,3 steps for the Example 9.
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Figure 6.3: The RMSE with respect to o obtained by the given combined method
M <H313’a> S M <H313+a> S for g = 2,3 steps for the Example 9.
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Table 6.2: The comparison of the MAE for the Example 10 obtained by the methods
M (H,}:r]o) » and M (H,L_O‘OO] ) 8 for g = 2,3 and the iterative method given in Micula
[64].

Method Ex10 Ex10 Ex10
ene MAE,m=12  MAE,m=18  MAE,m=24
M (H'111_<)-001)25 1.656 x 1077 1.313x 1077 7.113 x 10710
M(Hioe), ~ 1656x10°  T114x1071° 1569 107!
M (H,i,ﬁo)zs 4.220 x 1078 8.560x 10710 6.769 x 10~ 10
M (H,ijm> 8.504x 1071 8522x1071° 1761 x 10!
! 38

Micula [64], n=10 2.492919 x 10> 1.304662 x 107> 6.045722 x 10~°

realizations of the proposed combined method give extremely accurate results when

compared with the iterative method given in Table 2 of Micula [64].

Table 6.3 shows AE, (Hi; 0'01>qS and AL, (Hj; 10) » over the points
Xs = 19,5 = 0,1,..,10 for the Example 11 for ¢ = 2,3 steps in accordance with
Dys(35,10) and D3¢(25,10,10). Furthermore, the singular behaviour of the exact
solution at the initial point x = 0 and the efficiency of the three step combined method
is shown.  Table 6.4 presents the comparison of the RE (Hnl1,_().01>3s’ and
RE (H;:lo> 5 for the Example 11 obtained by M <H11l1,7).01)357 M (H,111+10) 3 over the
interval [0.1,1] when m = 8,16,32,64,128 with degrees D3s(%,%,%) and the

operational Haar method given in Table 1 of Saeedi et al. [86]. In this table for the

method in Saeedi et al. [86] m denotes the resolution level of the wavelet.

Additionally, for the Example 11 in Table 6.5 we compare the maximum relative
errors (MRE) over the points x; = 155,58 = 1,..,100 obtained by the proposed method
M <H61470.0]>qs, M (Héi10> 5 for g = 2,3 steps and the method given in Table 1 of

Abdalkhani [85] when polynomials of second (P, ),fourth (Py) and eight (Pg) degrees
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Table 6.3: The AE for the Example 11 obtained by M (Hi; 0.01) . M (Hi; 10) . for
q = 2,3 steps. ! !
Ex11 Ex11 Exl1 Exl1

B M (H‘:5_70~01> 28 M (His_,o.m) 3 M (H‘:;lo) 28 M (Hi; 10) 3s
0 0.0192273 0.0061074 0.0159962 0.0061074
0.1 2.306x107° 1.172 x 107 3.102 x 107 2.623 x 107°
0.2 1.071x107? 2.328 x 10°° 1.595 x 107 9.739 x 10~
0.3 6.982x10°° 2726 x 107 1.073 x 107 5.014 x 1077
0.4 5.056x107° 2.319x 107° 9.154 x 10~° 4.526 x 1077
0.5 3.592x10°° 2.204 x 10°° 6.797 x 10~° 3.779 x 1077
0.6 9.697 x 107 3.565 x 1077 5.350x 10°° 3.215%x 1077
0.7 3.265x10~* 4236 x 1077 4.420 x 107 2.805 x 10~
0.8 1.231x107° 5.997 x 1077 3.728 x 10~° 2.671 x 1077
0.9 7.367x107° 6.046 x 107 3.185x 10°° 2.370 x 1077
1.0 4398 x107° 5117 x 1077 8.447 x 10~° 1.328 x 10~

Table 6.4: The comparison of the RMSE for the Example 11 obtained by the method

M (Hr}1.,_().01 ) i M (H;;jo) 3 and the approach in Saeedi et al. [86].

Ex11

Ex11

m Ex11
RE(Hyoo),  RE(H)5), — Sacedietal. [86]

8 1.065 x 1073 4257 x 1074 1.5713 x 1073

16 3.880x10°* 4.610x 107> 4.5657 x 10~

32 1.820x 107 1.932x10°° 1.3244 x 1073

64 1.114x10°° 9.125x 1077 3.8332x 107

128 7.153x 107’ 7.153 x 10~ 1.1353 x 1072
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Table 6.5: The comparison of the MRE for the Example 11 obtained by the methods
M (Hroo) oM (Hézo0) s fora=2,3 and the method given in Abdalkhani [85].

Method f/;;é

M (Hioo1), 0.0059026
M (Hg;m)“ 7217 x 105
M (Hig o) , 0.0028770
M (H ) 7.217 x 1073

Abdalkhani [85], (P») 0.0756875
Abdalkhani [85], () 0.0408173
Abdalkhani [85], (F5) 0.0307124

were employed. In this table data is computed by taking D,5(48,16),D35(32,16,16)
for the given combined method when two and three step applications are applied
respectively. Consequently, Table 6.3-Table 6.5 demonstrate the high accuracy and
the stability of the proposed combined method. Finally for the Example 11 we present
Figure 6.4 showing the maximum absolute errors (MAE) over the points
Xs = 15,8 = 0,1,..,10 and taking D;s(no, 10),D35(n, 10, 10) that is with respect to n
obtained by the proposed method M <Hnl{0_01> » and M (H;:“w)qs for g = 2,3 steps.
6.2 Examples of First Kind Volterra Abel-type Integral Equations
We consider the following test problems of first kind Volterra Abel-type integral

equations. The regularization parameter 7)(§) is taken as 1 (8) = & °° and

8 =5 x 10~1° and the results are calculated for € = 0.0005.

Example 12: (Ex12)

and the exact solution is f (x) = /x, x € I.
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Figure 6.4: The MAE with respect to ng over the points x; = 15,5 = 0,1,.., 10 obtained
by the proposed method M (H,L_O 01) S and M (Hnlfm) S for g = 2,3 steps for the
g g

Example 11.

Example 13: (Ex13), Yousefi [63],

x—t

Il
/ f()ydt=x,xel,
0

and the exact solution is f (x) = Z/x, x € I.

Example 14: (Ex14), Plato [87],

| et
NN
0

and the exact solution is

(t)dt=e" <x5+x7+x9> , X €1,

. —Xx 4.5 7! 6.5 9! 8.5
flx)=e (r(5.5)x 75 Tres” )’XEI‘

The solutions of the Example 12 and Example 13 have singular behaviour at x = 0.
Table 6.6 presents AEy, (H;};oz> i and AL, <Hr}1—50) 3 for the Example 12 at the

points x; = 15, s = 0,1,...10, for m = 55,64 with degrees D35(25,20,10) and
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Table 6.6: The AE for the Example 12 obtained by the proposed method M (Hr}’t—z())

and M (H5,) , form=55,64.

Ex12 Ex12 Ex12 Ex12

v oM <H515+720> w M (Héi20> w M <H§§0-2) w M <H61‘;0-2) 3s
0 0.0513282 0.0471597 0.0513282 0.0471597
0.1 1.099x10°° 8.281 x 10~ 1.004 x 1072 2.905 x 107°
0.2 1.920x 1077 1.412x 1077 1.112x 107° 7.244 x 10~
0.3 1.739x 107 2.492 x 10°° 3.021 x 1077 2.770 x 1077
04 1.134x107° 3.723 x 1077 3.139x 1078 1.482x 1077
0.5 1.376x10°° 3.218 x 1078 2.299 x 107 2.933x 107°
0.6 5.220x 1077 1.182x 1078 1.153 x 10~* 1.610 x 10~°
0.7 2.893x 1077 1.649 x 1078 9.272 x 10~° 6.353 x 10~ 8
0.8 2.835x10°8 1.311 x 1077 3.304 x 10~° 3.840 x 108
0.9 1.962x 1077 1.172 x 1077 2.148 x 10°° 3.423 x 107°
1.0 1.906 x 10~° 2.235x10°° 8.048 x 1077 5.594 x 1077

3S

D35(32,22,10) accordingly.

Figure 6.5 and Figure 6.6 illustrate the maximum absolute errors (MAE) over the
points x; = f—o,s =0,1,..,10 and Cond (A%_) , Cond (A%Jr) accordingly with respect
to ng by taking Djg(ng,10) and Ds3g(ng,22,10) obtained by M <Hnl1’02> » and
M (H,LE()) » for g = 2,3 steps for the Example 12.

The AE,, (HrLT().OS)%, and AE,, (Hr}:g.)% for the Example 13 at the points x; = 5,
s=0,1,...10, for m = 55,75 are given in Table 6.7 with degrees D35(30,15,10) and
D35(40,20,15) respectively. Further, Table 6.8 shows the AE,, (Hsl(; 0.7>q5 and
AE,, (HSI(}L 10) » for the Example 14 at the same points for ¢ = 2,3 steps in
accordance with D;5(40,10) and Dsg(25,15,10). Figure 6.7 illustrates the AE at the
points x; = 75,5 = 0,1,..,10 by taking Dys(35,15) and D35(20,15,15) for the

Example 13 obtained by M <H510_0 9) S and M (Hsl(;g) : for g = 2,3 steps. From this
7/ q ~/q
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Figure 6.5: The MAE with respect to ng over the points x; = 15,5 = 0,1,.., 10 obtained
by M (H,L_O 2) : and M (Hnljzo> S for ¢ = 2,3 steps for Example 12.
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Figure 6.6: The Cond (Ai’) , Cond (Ai*) with respect to np obtained by M <Hnl1’0 2) s
e q

and M <H,111J50) y for g = 2,3 steps for the Example 12.

95



107 E T
—%—M(H

1+ 3
0525 | ]

—O— M(H,

505)33 4
1

; M(H5009)237

1- 3

x® 1\ MHso0)ss B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.7: The AE for the Example 13 obtained by the combined method
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/g8 7/ qS

figure it can be viewed that at the initial point x = O three step application of the given

method gives better approximation. Furthermore, the MAE with respect to o obtained

by the given combined method M (HSIO_ a) ¢ M (H I+ ) . for g = 2,3 steps for the
/g q

50,0

Example 14 are illustrated in Figure 6.8.
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Table 6.7: The AE for the Example 13 obtained by the proposed method M (H;;r 5)

and M <H515’0'05>q5 for g = 2,3 steps.

Ex13 Ex13 Ex13 Ex13
v (H515+5> s M <H715+5> s M <H515_:0‘05> s M (H715_70~05> 3s
0 2768x10~% 2.068x10~* 2.768x 10~* 2.068 x 1074
0.1 1.564x107° 8349x10°° 3.924x 10 3.489 x 107
0.2 5391x10°° 2827x10° 2.020x 107 1.039 x 107
03 1.650x10° 8.839x1077 1.102x 107 5.543 x 107°
04 1204x107° 3.624x10°° 7379x10°° 3.536 x 10~°
0.5 2.685x10°° 3436x10°% 5745x10°° 2.495 x 10~°
0.6 1.644x10°° 2236x1077 9.393x 107> 6.525 x 107°
0.7 1.202x10°° 2579x1077 1.347x107° 6.303 x 10~°
0.8 9.596x10~7 2.639x10~7 5.185x10°° 8.735 x 10~/
09 7452x1077 2121x1077  3.692x10°° 1.325x 1078
1.0 6.641x10°° 4204x10° 7.559x10°° 2.999 x 10~°

Table 6.8: The AE for the Example 14 obtained by the proposed method M <H510+ 10)
g

1—
and M <H50’0'7>qs for g =2,3.

Ex14 Ex14 Ex14 Ex14

" M (Hsl(;fm) 28 M <H5I&IO> 35 M <H510_70~7> 2 M (H51(I0~7) 3
0 7278x10°10  3436x107 12 4543x10°1Y  3436x10°1¢
0.1 2.995x10° 1.111x10°10  2.845x 101 6.731 x 10~ 11
02 5420x10719  5594x10710  5416x10°1°  5.106%x 1010
03 2.721x107° 2.845x 1077 2.712x107° 2.707 x 10~°
04 6.362x107° 6.278 x 10~° 9.023 x 10~° 8.702 x 10~?
0.5 1.621x1078 2.170 x 108 2.205%x 1078 1.111 x 1078
0.6 5.626x1078 4.955x 1078 4.637 x 1078 4552 x 1078
0.7 9.989 x 108 1.033 x 10~ 1.011 x 1077 1.006 x 10~
0.8 2.067x 1077 2.073 x 1077 2.000 x 1077 1.997 x 1077
0.9 3.656x 1077 3.573 x 1077 3.651 x 1077 3.648 x 1077
1.0 6.115x 1077 4.906 x 1077 6.301 x 10~ 6.237 x 1077
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Chapter 7

CONCLUDING REMARKS

In this thesis we gave an approach that uses Modified Bernstein-Kantorovich
operators to approximate the solution of the Fredholm and Volterra integral equations
of first kind with smooth kernels. The method is developed first by representing the
Modified Bernstein-Kantorovich operators such that the parameter o is also
expressed explicitly in the operator. Further, the unknown function in the first kind
integral equations is approximated by using the given form of the Modified
Bernstein-Kantorovich operators so that the effect of o in the solution is analyzed.
The obtained linear equations are transformed into system of algebraic linear
equations. Furthermore, regularization technique is also applied to obtain more stable
numerical solution when approximations are conducted using high order Modified
Bernstein-Kantorovich operators. The proposed approach is simple and the obtained
numerical results show that the accuracy is high even when low order approximations
are used. Furthermore, hybrid positive linear operators which are defined by using the
Bernstein-Kantorovich and Modified Bernstein-Kantorovich operators applied to
certain subintervals of [0, 1] are given. A combined method using these operators is
developed for solving the Volterra Abel-type integral equations of second kind.
Additionally, the proposed combined method is also applied on the first kind

Abel-type integral equations by first utilizing a regularization.

Remark 7.1: On the basis of experimental analysis we can conclude that the given

numerical approach in Chapter 3 and the combined method in Chapter 5
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consequently, the given algorithms are stable provided that there is no loss of
significant numerical accuracy in the computations. The major reason of loosing
accuracy in the numerical computations is due to the ill-conditioning of the coefficient
matrices in the obtained algebraic linear systems. Therefore, preconditioning methods
may be applied to precondition the obtained algebraic linear systems ( see Buranay et
al. [88] and Buranay and Iyikal [89], [90] ). Furthermore, there are at least three ways
to prevent loss of numerical accuracy in the computations, Kangro and Kangro [80]:
a. High precision arithmetics in computing can be used.

b. The exact formulas can be rewritten in a form that is not sensitive to round-off
errors.

c. The system integrals may be computed numerically with sufficient accuracy.

Remark 7.2: The proposed combined method can be extended to solve the Volterra

Abel-type integral equations on [0,1], [ < oe.

100



REFERENCES

[1] Larsen, J.; Lund-Andersen H.; Krogsaa B., (1983) Transient, transport across the

blood-retina barrier. Bull. Math. Biol., 45, 749-758.

[2] Anderssen, R.; Saull, V., (1973) Surface temperature history determination from

borehole measurements. Math. Geol., 5, 269-283.

[3] Herrington, R.F., (1968) Field computation by Moment Methods, Macmillian,

New York, NY, USA.

[4] Craig, [.J.D.; Brown, J.C., (1968) Inverse Problems in Astronomy, Adam Hilger,

Bristol, UK.

[5] Andrews, H.C.; Hunt B.R., (1977) Digital Image Restoration, Prentice Hall,

Englewood Cliffs, NJ, USA.

[6] Tuladhar, R.; Santamaria, F.; Stamova, 1., (2020) Fractional Lotka-Volterra-
Type Cooperation Models, Impulsive control on their stability behavior, Entropy,

22(9), 970, doi:10.3390/e22090970.

[7] Hendry, W.L. (1976) Volterra integral equation of the fist kind. J. Math. Anal.

Appl., 54, 266-278.

[8] Bartoshevich, M.A. (1975) A heat conduction problem. J. Eng. Phys., 28, 240—

244.
101



[9]

[11]

[12]

[13]

[14]

Abel, N. Aufl6 (1826) sung einer mechanischen Aufgabe. J. Die Reine Angew.

Math., 1, 153-157.

Groetsch, C.W. (2007) Integral equations of the first kind, inverse problems and

regularization: A crash course. J. Phys. Conf. Ser., 73, 012001.

Ding, H.J.; Wang H.M.; Chen W.Q. (2003) Analytical solution for the
electroelastic dynamics of a nonhomogeneous spherically isotropic piezoelectric

hollow sphere. Arch. Appl. Mech, 73, 49-62.

Sidorov, D.; Muftahov, I.; Karamov, D.; Tomin, N.; Panasetsky, D.; Dreglea, A.;
Liu, F; Foley, A. A (2020) Dynamic Analysis of Energy Storage with Renewable
and Diesel Generation using Volterra Equations. IEEE Trans. Ind. Inform., 16,

3451-3459.

Phillips, D.L. (1962) A technique for the numerical solution of certain integral

equations of the first kind. J. Assoc. Comput. Mach., 9, 84-97.

Neggal, B.; Boussetila, N.; Rebbani, F. (2016) Projected Tikhonov regularization
method for Fredholm integral equations of the first kind. J. Inequalities Appl.,

1-21.

Tikhonov, A.N. (1963) Solution of incorrectly formulated problems and the

regularization method. Soviet Math. Dokl. , 4, 1036—-1038.

102



[16] Tikhonov, A.N. (1963) Regularization of incorrectly posed problems. Soviet

Math. Dokl., 4, 1624—1627.

[17] Groetsch, C.W. (1984) The Theory of Tikhonov Regularization for Fredholm
Equations of the First Kind; Research Notes in Mathematics 105; Pitman:

Boston, MA, USA.

[18] Bazan, E.S.V. (2015) Simple and Efficient Determination of the Tikhonov
Regularization Parameter Chosen by the Generalized Discrepancy Principle for

Discrete Il1-Posed Problems. J. Sci. Comput., 63, 163—184.

[19] Caldwell, J. (1984) Numerical study of Fredholm integral equations. Int. J. Math.

Educ. Sci. Technol., 25, 831-836.

[20] Brezinski, C. Redivo-Zaglia, M.; Rodriguez, G. Seatzu, S. (1988) Extrapolation

techniques for ill-conditioned linear systems. Numer. Math., 81, 1-29.

[21] Wen, J.W; Wei, T. (2011) Regularized solution to the Fredholm integral equations

of the first kind with noisy data. J. Appl. Math. Inform., 29, 23-37.

[22] de Hoog, F. Weiss, R. (1973) On the solution of Volterra integral equations of the

first kind. Numer. Math., 21, 22-32.

[23] de Hoog, F.; Weiss, R. (1973) High order methods for Volterra integral equations

of the first kind. SIAM J. Numer. Anal., 10, 647-664.

103



[24] Taylor, P.J. (1976) The solution of Volterra integral equations of first kind using

inverted differentiation formulae. BIT, 16, 416-425.

[25] Brunner, H. (1978) Discretization of Volterra integral equations of first kind, (II).

Numer. Math, 30, 117-136.

[26] Hulbert, D.S.; Reich, S. (1984) Asymptotic behavior of solutions to nonlinear

Volterra integral equations. J. Math. Anal. Appl., 104, 155-172.

[27] Lamm, PK. (1995) Future-sequential regularization methods for ill-posed

Volterra integral equations. J. Math. Anal. Appl., 195, 469-494.

[28] Lamm, PK. (1996) Approximation of ill-posed Volterra problems via Predictor-

Corrector regularization Methods. SIAM J. Appl. Math., 56, 524-541.

[29] Lamm, P.K.; Eldén, L. (1997) Numerical solution of first-kind Volterra equations

by sequential Tikhonov regularization. SIAM J. Numer. Anal., 34, 1432-1450.

[30] Yousefi, S.A. (2006) Numerical solution of Abel’s integral equation by using

Legendre wavelets. Appl. Math. Comput., 175, 574-580.

[31] Maleknejad, K.; Mollapourasl R.; Alizadeh M. (2007) Numerical solution of
Volterra type integral equation of the first kind with wavelet basis. Appl. Math.

Comput., 194, 400-405.

104



[32]

[33]

[34]

[35]

[36]

[37]

Mandal, B. N.; Bhattacharya S. (2007) Numerical solution of some classes of
integral equations using Bernstein polynomials. Appl. Math. Comput., 190, 1707—

1716.

Maleknejad, K.; Sohrani, S.; Rostami, Y. (2007) Numerical solution of nonlinear
Volterra integral equations, of the second kind by using Chebyshev polynomials.

Appl. Math. Comput., 188, 123—-128.

Maleknejad, K.; Hashemizadeh, E.; Ezzati R. (2011) A new approach to
the numerical solution of Volterra integral equations by using Berntein’s

approximation. Commun. Nonlinear Sci. Numer. Simul., 16, 647-655.

Noeiaghdam, S.; Sidorov, D.; Sizikov, V. (2020) Sidorov, N. Control of accuracy
on Taylor-collocation method to solve the weakly regular Volterra integral
equations of the first kind by using the CESTAC method. Appl. Comput. Math.

Int. J., 19, 81-105.

Noeiaghdam, S.; Sidorov, D.; Wazwaz, A.-M. (2021) Sidorov, N.; Sizikov, V.
The Numerical Validation of the Adomian Decomposition Method for Solving

Volterra Integral Equation with Discontinuous Kernels Using the CESTAC

Method. Mathematics, 9, 260, doi:10.3390/math9030260.

Mann, W.R.; Wolf, E., (1951) Heat transfer between solids and gases under

nonlinear boundary condition. Quart. Appl. Math., 9, 163-184.

105



[38] Chambre, P.L., (1959) Nonlinear heat transfer problem, J. Appl. Phys, 30, 1683-

1688.

[39] Levinson, I.N., (1960) A nonlinear Volterra equation arising in the theory of

superfluidity. J. Math. Anal. Appl, 1, 1-11.

[40] Linz, P., (1969) Numrical methods for Volterra integral equations with singular

kernels. SIAM J. Numer. Anal., , 6(3), 365-374.

[41] Brunner, H., (1985) The numerical solution of weakly singular Volterra integral

equations by collocation on graded meshe. Math. Comp.,, 45, 417-437.

[42] Diago, T., (2009) Collocation and iterated collocation methods for a class

of weakly singular Volterra integral equations. Journal of Computational and

Applied Mathematics,, 229, 363-372.

[43] Miller, R.K.; Feldstein, A., (1971) Smoothness of solutions of Volterra integral

equations with weakly singular kernels. SIAM J. Math. Anal.,, 2, 242-258.

[44] de Hoog, F.; Weiss, R., (1973) On the solution of a Volterra integral equation

with a weakly singular kernel. SIAM J. Math Anal., 561-573.

[45] Logan J.E., (1976) The approximate solution of Volterra integral equations of the

second kind, PhD Thesis, University of lowa, lowa City.

106



[46] Lubich, Ch, (1983) Runge-Kutta theory for Volterra and Abel integral equations

of the second kind, Math. Comp., 41, 87-102.

[47] Brunner, H., (1985) The approximate solution of Volterra equations with

nonsmooth solutions. Util itas Math., 27, 57-95.

[48] Brunner, H.; van der Houwen, PJ., (1986) The Numerical solution of Volterra

equations. North Holland, Amsterdam.

[49] Han, W., (1994) Existence, uniqueness and smoothness results for second-kind
Volterra equations with weakly singular kernel. The Journal of Integral Equations

and Applications, 6(3), 365-384.

[50] Huber, A., (1939) Eine Ntherungsmethode zur Auflsung Volterrascher

Integralgleichungen. Monatsh. Math. Phys , 47, 240-246.

[51] Wagner, C., (1954) On the numerical solution of Volterra integral equations, J.

Math. Physics, 32, 289-301.

[52] Noble, B., (1964) The numerical solution of nonlinear integral equations and
related topics, Nonlinear Integral Equations, P. M. Anselone, ed., University of

Wisconsin Press, Madison, 215-318.

[53] Oules, H., (1964) Resolution numerique d’une equation integrale singuliere, Rev.

Francaise Traitement Information,, 7, 117-124.

107



[54] Atkinson, K.E., (1975) The numerical solution of an Abel integral equation by a

product trapezoidal method, SIAM J. Numer. Anal., 11(1), 97-101.

[55] Brunner H.; Norsett, S. P., (1981) Superconvergence of collocation methods for

Volterra and Abel equations of the second kind, Numer. Math., 26, 347-358.

[56] Brunner, H., (1987) Collocation methods for one-dimensional Fredholm and
Volterra integral equations, in The State of the Art in Numerical Analysis (A.

Iserles and M.J.D. Powell, eds.), Clarendon Press, Oxford, 563-600.

[57] Tang, T., (1992) Superconvergence of numerical solutions to weakly singular

Volterra integro-differential equations. Numer. Math. 61, 373-382.

[58] Brunner, H., (1983) Nonpolynomial spline collocation for Volterra equations with

weakly singular kernels, SIAM J. Numer. Anal., 20, 1106—-1119.

[59] te Riele, H.J.J., (1982) Collocation methods for weakly singular second-kind
Volterra integral equations with non-smooth solution. IMA J. Numer. Anal., 2,

437-449.

[60] E.A. Galperin, E.J. Kansa, A. Makroglou, S.A. Nelson (2000) , Variable
transformations in the numerical solution of the second kind Volterra integral
equations with continuous and weakly singular kernels; extension to Fredholm

integral equationsg¢ J. Comput. Appl. Math., , 115, 193-211.

[61] P. Baratella, A.P. Orsi, (2004) A new approach to the numerical solution of
108



[62]

[63]

[64]

[65]

[66]

[67]

weakly singular Volterra integral equations. J. Comput. Appl. Math., 163, 401—

418.

A. Pedas, G. Vainikko, (2004) Smoothing transformation and piecewise
polynomial collocation for weakly singular Volterra integral equations.

Computing, 73, 271-293.

Yousefi, S.A., (2006) Numerical solution of Abel s integral equation by using

Legendre wavelets, Applied Mathematics and Computation, 175, 574-580

Micula, S., (2018) An iterative numerical method for fractional integral equations
of the second kind. Journal of Computational and Applied Mathematics, 339,

124-133.

Buranay, S.C.; Ozarslan, M.A., Falahhesar, S.S., (2021) Numerical solution
of the Fredholm and Volterra integral equations by using Modified Bernstein-

Kantorovich Operators. Mathematics, 9, 1193, 1-32.

Buranay, S.C; Ozarslan, M.A., Falahhesar, S.S., Hybrid Operators for
Solving Weakly Singular Volterra Integral Equations: Theoretical Analysis,
In Proceedings of the 3rd and 4th Mediterranean International Conference of
Pure Applied Mathematics and Related Areas, MICOPAM 2020-2021, Antalya,

Turkey, 11-12 November 2021, 89.

Buranay, S.C; Ozarslan, M.A., Falahhesar, S.S., Hybrid Operators for

Solving Weakly Singular Volterra Integral Equations: Numerical Analysis, In

109



[68]

[69]

[70]

[71]

[73]

[74]

Proceedings of the 3rd and 4th Mediterranean International Conference of
Pure Applied Mathematics and Related Areas, MICOPAM 2020-2021, Antalya,

Turkey, 11-12 November 2021, 91.

Ozarslan, M.A.; Duman, O. (2016) Smoothness properties of Modified

Bernstein-Kantorovich operators. Numer. Funct. Anal. Optim., 37, 92—105.

Voronowskaja, E. (1932) Détermination de la forme asymptotique deproximation
de fonctions par les polynomes de M. Bernstein. Dokl. Akad. Nauk, SSSR 1932,

79-85.

Hansen, P.C. (1998) Rank-Deficient and Ill-Posed Problems: Numerical Aspects
of Linear Inversion; SIAM Monographs on Mathematical Modeling and

Computation; SIAM, Philedelphia, PA, USA.

Bjorck, A. (1996) Numerical Methods for Least Squares Problems, SIAM,

Philadelphia, PA, USA.

Hansen, P.C. (1992) Numerical tools for analysis and solution of Fredholm

integral equations of the first kind. Inverse Probl., 8, 849-872.

Muftahov, I.R.; Sidorov, D. N.; Sidorov, N. A., (2015) On perturbation method
for the first kind equations: regularization and application. Vestnik YuUrGU. Ser.

Mat. Model. Progr., 8(2), 69-80.

Bakushinskii, A.B. (1984) Remarks on choosing the regularization parameter

110



[76]

[77]

[78]

[79]

[80]

using the quasi-optimality and ratio criterion. Comput. Maths. Math. Phys., 24,

181-182.

Yagola, A.G.; Leonov, A.S.; Titarenko, V.N. (2002) Data errors and an error

estimation for ill-posed problems. Inverse Probl. Eng., 10, 117-129.

Baker, C.T.H.; Fox, L.; Mayers, D.F.; Wright, K. (1963) Numerical Solution of
Fredholm Integral Equations of First Kind, Linear Programming and Extensions;

Dantzig, G.B., Ed.; University Press, Princeton, NJ, USA.

Rashed, M.T. (2004) Lagrange interpolation to compute the numerical solutions
of differential, integral and integro-differential equations. Appl. Math. Comput,

151, 869-878.

Polyanin, A.D. Manzhirov, A.V. (2008) Handbook of Integral Equations, CRC

Press, Boca Raton, FL, USA.

Brunner, H.; Pedas A.; Vainikko, G., (1999) The piecewise polynomial
collocation method for nonlinear weakly singular Volterra equations. Math.

Comp., 68(227), 1079-1095.

Kangro, R.; Kangro, I., (2008) On the stability of piecewise polynomial
collocation methods for solving weakly singular integral equations of the
second, Mathematical Modelling and Analysis, 13:1,29-36, DOI: 10.3846/1392-

6292.2008.13.29-36.

111



[81]

[82]

[84]

[87]

Sergeev, V. O., (1971) Regularization of Volterra equations of the first kind, Dokl.
Akad. Nauk SSSR , 197, 531-534, English transl.: Soviet Math. Dokl . 12, 501-

505.

Denisov, A. M., (1975) The approximate solution of a Volterra equation of the
first kind. Z. Vyucisl. Mat. i Mat. Fiz. 1975, 15 (4), 1053-1056, 1091, English

transl.: USSR, Comput. Math. Math. Phys., 15, 237-239.

Lavren’ev, M. M., (1967) O nekotorykh nekorrektnykh zadachakh
matematicheskoui fiziki, Izdat. Sibirsk. Otdel. Akad. Nauk SSSR, Novosibirsk,
English transl. by Robert J. Sacker: Some improperly posed problems of

mathematical physics, Springer-Verlag, Berlin.

Dixon, J,. (1985) On the order of the error in discretization meth ods for weakly
singular second kind Volterra integral equa tions with non-smooth solution. BIT,

25(4), 624-634.

Abdalkhania, J. (1990) Numerical approach to the solution of Abel integral
equations of the second kind with nonsmooth solution, Journal of Computational

and Applied Mathematics, 29(3), 249-255.

Saeedi, H.; Mollahasan, N.; Moghadam, M.M.; Chuev G.N., (2011) An
operational Haar wavelet method for solving fractional Volterra integral

equations, Int. J. Appl. Math. Comput. Sci., 21(3), 535-547.

Plato, R., (2005) Fractional Multistep Methods for Weakly Singular Volterra
112



[89]

[90]

Integral Equations of the First Kind with Perturbed Data. Numerical Functional

Analysis and Optimization, 26:2, 249-269, DOI: 10.1081/NFA-200064396

Buranay, S.C.; Subasi, D.; Iyikal, O.C., (2017) On the two classes of high-order
convergent methods of approximate inverse preconditioners for solving linear

systems, Numerical Linear Algebra with Applications, 24(6), Article ID e2111.

Buranay, S.C.; Iyikal, O.C., (2019) Approximate Schur-Block ILU
Preconditioners for Regularized Solution of Discrete Ill-Posed Problems,
Mathematical Problems in Engineering, vol. Article ID 1912535, 18 pages,

https://doi.org/10.1155/2019/1912535.

Buranay, S.C.; Iyikal, O.C., (2021) Incomplete block-matrix factorization
of M-matrices using two step iterative method for matrix inversion and
preconditioning, Mathematical Methods in Applied Sciences, 44(9), 7634-7650,

https://doi.org/10.1002/mma.6502.

113



	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	1 INTRODUCTION
	1.1 Motivation and Review of Literature
	1.2 The Achievements and the Organization of the Study 

	2 Modified Bernstein-Kantorovich Operators
	3 Numerical Solution of the Fredholm and Volterra Integral Equations by Using Modified Bernstein-Kantorovich Operators
	3.1  Representation of the Kn,0=x"010B Operators and Discretization of First Kind Integral Equations
	3.2 Regularized Numerical Solution

	4 Experimental Investigation of the Given Numerical Approach
	4.1 Application on Examples of Fredholm Integral Equations
	4.2 Applications on Volterra Integral Equations

	5 A Combined Method of Hybrid Operators for the Numerical Solution of Volterra Integral Equations with Weak Singularities
	5.1 Assumptions and Smoothness Results
	5.2 Hybrid Operators Defined by Bernstein Kantorovich and Modified-Bernstein Kantorovich Operators
	5.3 Combined Method of Hybrid Operators
	5.3.1 Combined Method for the Solution of VAK2 When 0<0=x"010B<1
	5.3.2 Combined Method for the Solution of VAK2 When 0=x"010B>1
	5.3.3 Combined Method for the Regularized Solution of Linear Volterra Abel-type Integral Equations of First Kind

	5.4 Convergence Analysis of Algorithm 5.1 and Algorithm 5.2

	6 Experimental Investigation of the Combined Method
	6.1 Examples of Second Kind Volterra Abel-type Integral Equations
	6.2 Examples of First Kind Volterra Abel-type Integral Equations

	7 Concluding Remarks
	REFERENCES

