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ABSTRACT 

Present study tries to simplify seismic resistance design process based on the stability 

coefficient (SC) and /or displacement (rotation) limits defined by practicing codes. 

To this end, a constant ductility response spectrum, derived for the first story with 

total mass acting on it, and known height, in which the P-delta effect and period-

dependent feature of the SC is exclusively inherent, is used. The mentioned spectrum 

plots spectral acceleration, or yield displacement (rotation), versus SC, and hence, is 

referred to as the “stability-coefficient-response-spectra”. The notion of the “first-

storey-single-degree-of-freedom” (FSSDOF) system is presented next. The FSSDOF 

is intended to set the minimum necessary lateral stiffness complying with a pre-

specified ductility level at early stages of design.  Moreover, the pendulum model is 

used to evaluate effects of the geometric-nonlinearity and vertical-component-of-

ground-motion (VCGM) on the global-inelastic-response of non-deteriorating 

bilinear single-degree-of-freedom (SDOF) systems. Results indicate that both 

VCGM and geometric nonlinearity affect the inelastic response, which are significant 

for certain combinations of the initial period of vibration, strength reduction factor 

and ductility demand. In addition, effect of the VCGM is not limited to near fault 

regions.  Furthermore, it is shown that the VCGM could cause dynamic instability of 

SDOF systems; hence, given the importance of SDOF systems in evaluation of 

existing structures, considering the VCGM for collapse assessment is suggested.  

Keywords: P-delta effect, stability-coefficient-response-spectra, first-storey-single-

degree-of-freedom system, vertical-component-of-ground-motion, geometric 

nonlinearity, response/design spectrum. 
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ÖZ 

Bu çalışmada depreme dayanıklı yapı tasarımında mevcut depreme dayanıklı yapı 

tasarımı yönetmeliklerinde belirtilen ikinci mertebe gösterge değeri (İMGD) ve yer 

değiştirme sınırlarını dikkate alarak basit bir yöntemin ortaya konulmasına 

çalışılmıştır. Bu doğrultuda belli bir süneklilik değerine bağlı spektrumlar, birinci 

kata gelen toplam kütle ve belli bir yükseklik için ikinci mertebe gösterge değerinin 

periyoda bağlı özelliği de göz önüne alınarak oluşturulmuş ve kullanılmıştır. 

Yukarıda belirtilen spektrum her İMGD değerine karşı gelen spektral ivme veya 

akma deplasmanı (şekil değiştirme) çizelgesi olarak sunulmuş ve bu nedenle “İkinci 

Mertebe gösterge değeri-etki spektrumu” olarak belirtilmiştir. Bu çalışma 

kapsamında “Birinci kat tek serbestlik dereceli” (BKTSD) sistemler ele alınmıştır. 

BKTSD sistem önceden belirlenen süneklik oranının korunması için gerekli en düşük 

yatay rijitliğin belirlenmesine olanak sağlayarak tasarımın erken evrelerinde 

kullanılabilmektedir. Buna ilaveten bozulmayan bilinear elastik olmayan tek 

serbestlik dereceli ters sarkaç modelleri geometrik nonlineerlik etkisinin ve deprem 

düşey bileşeni (DDB) etkisinin belirlenmesine olanak sağlamaktadır. Sonuçlar DDB 

ve geometrik nonlineerlik etkilerinin özellikle bazı başlangıç doğal titreşim 

periyoduna, süneklik düzeyine ve davranış katsayısının bileşenlerinde önemli etkiye 

sahip olduğu belirlenmiştir. Ayrıca DDB etkisinin sadece yakın faylar tarfından 

üretilen depremlerde etkili olmadığı gözlemlenmiştir. Tüm bunlara ilaveten DDB 

etkisinin dinamik kararsızlığa neden olabileceği ve bu nedenle tek serbestlik dereceli 

olarak modellenen sistemlerin göçme durumlarının belirlenmesinde dikkate alınması 

gerektiği önerilmektedir. 
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Anahtar Kelimeler: ikinci mertebe etki, ikinci mertebe gösterge değeri-etki 

spektrumu, birinci kat tek serbestlik dereceli sistem, deprem düşey bileşeni, 
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Chapter 1 

1 INTRODUCTION 

1.1  Preface 

With increasing knowledge on behavior of structures, and nature of earthquakes, 

seismic design of structures has gone through a number of fundamental 

improvements during the last century. Starting from simple mass proportional lateral 

forces, it continued to recognize influence of period in modifying inertia forces, 

ductility, in resisting more intense disturbances, and drifts, in controlling potential 

damages (Priestley, Calvi, & Kowalsky, 2007). In light of various pioneering studies, 

two major design methodologies have gained global acceptance, namely: 

strength/force-based-design (SBD) and displacement-based-design (DBD) methods. 

While in a strength/force-based approach emphasize is on the necessary strength 

conforming  to a given ductility level, displacement-based design methods debate 

that to limit potential damages, controlling structural deformations is a better 

approach (Priestley, 2000). Nevertheless, both abovementioned methods have a 

common problem to solve; that is, how second-order-effects resulting from action of 

gravity loads going through lateral displacements, the so-called P-delta effect 

(Christoph Adam, Ibarra, & Krawinkler, 2004; Rahimi & Estekanchi, 2015), should 

be counterbalanced.  

On the other hand, previous literature indicates that effect of Vertical-Component-of-

Ground-Motion (VCGM) on seismic response of structures might be very 
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significant, with devastating results in certain cases (Elnashai & Papazoglou, 1997).  

In response to such effects, some of the modern seismic design practicing codes have 

started to recognize effect of VCGM (CEN, 2005; FEMA, 2009; TEC, 2018). This is 

done by providing guidelines for construction of a new response spectrum in vertical 

direction. The mentioned spectrum, however, is based on a mass-spring-damper 

(MSD) vibrator in vertical direction. Obviously, uncoupling earthquake components 

may not perfectly resemble state of a structure during a strong ground motion. 

Therefore, examining behavior of structures under coupled action of earthquake 

components is important. 

Studying the effect of the VCGM is inter-related with P-delta effect, since variations 

of the gravitational acceleration may alter response of a system vulnerable to 

destabilizing secondary effects. Henceforth, present study follows a twofold aim. Its 

first goal is to enhance inclusion of the P-delta effect in the design procedure. This is 

done by means of combining several previously proposed notions. Specifically, it 

tries to give a realistic estimation on the minimum necessary lateral stiffness, 

complying with a given level of ductility, in which P-delta effect is exclusively 

considered. To this end, two new concepts are introduced, namely: the “stability 

coefficient response spectra” (SCRS), and, the “first-storey-single-degree-of-

freedom” (FSSDOF) system. 

The SCRS is a constant ductility response spectrum in terms of the stability-

coefficient (SC) versus spectral acceleration. Alternatively, it can be plotted in terms 

of any other desired spectral information; for instance, spectral displacement. 

FSSDOF system is basically an especial single-degree-of-freedom (SDOF) system, 

utilized to the first-storey of a given Multi-Degree-of-Freedom (MDOF) system, 
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with known height. Therefore, “an alternative response/design spectrum”, with 

further practical advantages, will result (see Chapter 5).  

Both aforementioned notions are developed based on the governing equation of 

motion of an inverted-pendulum model.  This is done since shortcomings of the 

MSD models, as “the SDOF” system, in simulating state of a structure in deformed 

configuration have long been recognized. By use of an inverted-pendulum model, 

explicit consideration of the P-delta effect is facilitated; while all the necessary 

requirements of a SDOF system are satisfied.  

Such a treatment also permits inclusion of the VCGM in derivation of the 

response/design spectrum, as well as, consideration of the “geometric nonlinearity” 

at global level. Specifically speaking, upon consideration of geometric nonlinearity, 

it can be seen that effects of the P-delta and VCGM on a system’s response are 

similar (see chapter 2). Therefore, and as secondary objectives, present study 

systematically evaluates effect of geometric nonlinearity and VCGM on the global 

response of SDOF systems.    

To achieve above-mentioned goals, however, a broad understanding of the effects of 

P-delta and VCGM on global response is necessary. Hence, a relatively 

comprehensive discussion on the previous literature regarding P-delta effect and 

VCGM is presented next.  

1.2  P-delta Effect 

One important mode of failure of structures is associated with gravity loads 

undergoing lateral displacements upon action of ground motion (the so-called global 

P-delta effect) (Rahimi & Estekanchi, 2015). Although inclusion of the P-delta effect 



4 

 

into the both above mentioned design procedures has been the focus of many studies 

(Bernal, 1998; MacRae, 1994; Tjondro, Moss, & Carr, 1992), developing robust 

methods to achieve reliable results is still attractive. For example, one can name 

(Belleri, Torquati, Marini, & Riva, 2017; López, Ayala, & Adam, 2015), as recent 

proposals for treating P-delta effect in a displacement-based context, and (Amara, 

Bosco, Marino, & Rossi, 2014), as a recent effort in a strength-based context.  

P-delta effect, has usually been quantified through SC (sometimes referred to as 

“stability index” or “inter-storey drift sensitivity index”). It reduces lateral resistance 

of a system, which under strong excitation may cause loss of load carrying capacity 

(Gupta & Krawinkler, 2000). For elastic systems under static loading, P-delta effect 

causes elongation of period (reduction of stiffness). However, for inelastic response, 

and under dynamic excitation, its effect becomes complicated. 

Several pioneering studies focused on proposing strategies to ensure safety against P-

delta effect (Jennings & Husid, 1968; Miranda & Akkar, 2003; Sun, Berg, & 

Hanson, 1973; Williamson, 2003). 

Some scholars have suggested that, if SC is kept sufficiently small (i.e. stiffness is 

adequately increased), P-delta effect can safely be ignored (Andrews, 1977; MacRae, 

1994). However, such a strategy demands for several trials that is: after increasing 

lateral stiffness, fundamental period of vibration will change and hence a new set of 

lateral forces should be calculated. Moreover, since the restriction on SC is not 

directly imposed on the fundamental period of vibration, after calculating a 

preliminary base-shear the procedure should be repeated without knowing how much 

increase in lateral stiffness is actually required. In some of the previously conducted 
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studies, it had been noted that the mentioned strategy potentially forces towards 

constant region of a design spectrum, with maximum response (MacRae, 1994). 

Thus, it had been argued that increasing strength, instead of stiffness, may solve the 

problem (Paulay, 1978). Nevertheless, later studies showed that there is a relation 

between strength and stiffness (Priestley, 2000); i.e., changes in one property induces 

changes in the other one.  

Great efforts have been exercised to include P-delta effect into the design procedure 

in a more direct manner. Some studies have argued that P-delta effect can be 

satisfactorily compensated by incorporating strength/displacement amplification 

factors (Wei, Xu, & Li, 2011). Amplification factors are used to ensure that ductility 

demand in presence and absence of P-delta effect remain same. Bernal (1987), 

suggested that ratio of inelastic constant ductility response spectrum constructed for 

the cases with and without P-delta effect can be used to amplify stiffness.  For a 

system with known ductility and SC, a general formula was regressed for direct 

derivation of amplification factors (Bernal, 1987).  

Although there are various different suggestions for derivation of amplification 

factors (MacRae, 1994; Rosenblueth, 1965), generalization of such an approach is 

very complicated. This is mainly because of variety of influential parameters, 

(Amara et al., 2014), and nonlinear relation between strength reduction factor and 

ductility demand (Aschheim & Montes, 2003). Hence, it is not surprising that every 

often code specified amplification factors are subjected to criticism. For instance, 

Amara et al. (2014) have shown that (ASCE/SEI, 2010) provisions tend to 

underestimate strength amplification factors, while those of Euro Code 8 (CEN, 

2005) are conservative.  
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On the other hand, inclusion of P-delta effect in direct-displacement-based-design 

(DDBD) context has also been the focus of several studies. In DDBD method the 

original MDOF system is represented by an Equivalent-Single-Degree-of-Freedom 

(ESDOF) system (Priestley et al., 2007). Hence, one needs a unique SC for the whole 

MDOF system while it is usually defined at each storey (Asimakopoulos, Karabalis, 

& Beskos, 2007). To overcome this problem, in some studies pushover analysis is 

used for derivation of a global inelastic SC (e.g. (L. F. Ibarra & Krawinkler, 2004; L. 

F. Ibarra, Medina, & Krawinkler, 2005; Miranda & Akkar, 2003)). Black (2011), 

proposed the concept of “Modal Inelastic Stability Coefficient” by recognizing effect 

of height in representing the ESDOF system.  Asimakopoulos et al. (2007), proposed 

that the maximum value of SC over the total height of a MDOF system under 

dynamic loading – the so-called dynamic SC – can be considered as a good estimator 

for the SC of the ESDOF system. Based on results of several time history analyses, 

they derived a general formula for SC of moment resisting steel frames. They 

concluded that, EuroCode 8 amplification factors underestimate P-delta effect (a 

result in contrast with (Amara et al., 2014)).  

Reflection of previous studies on seismic resistance codes is a combination of 

previously proposed strategies. For example, according to EuroCode 8 , ASCE7-10, 

and Turkish Standards (ASCE/SEI, 2010; CEN, 2005; TEC, 2018), P-delta effect can 

be neglected if SC is sufficiently small. To neglecting P-delta effect, EC8 and 

ASCE7-10 demand for the SC to be less than 0.1, while Turkish Standards limit is 

0.12. The first two specifications allow counterbalancing P-delta effect by 

amplifying lateral forces/displacements if SC is larger than 0.1, but less than 0.25, 

and 0.3, in ASCE7-10, and EC8, respectively. If the SC is larger than the above-
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mentioned limits, lateral stiffness of the structure should be adjusted to bring it to one 

of the previous conditions.  

Having said this, P-delta effect (sometimes referred to as geometric nonlinearity) has 

usually been taken as a linear reduction in rotational stiffness (L. Ibarra & 

Krawinkler, 2011). The mentioned representation arises from an assumption which 

is: linearization of equation of motion introduces negligible errors in calculating the 

response (Bernal, 1987). Upon linearization, material behavior and P-delta effect are 

collectively embodied into the equation of motion of an equivalent single-degree-of-

freedom system, which is considered to be representative of dynamic characteristics 

of a multi-degree-of-freedom system (Papadrakakis, Fragiadakis, Lagaros, & Plevris, 

2011).  Depending on relative values of stability coefficient and material hardening, 

P-delta effect may result in positive, zero, or negative-post-yield-stiffness (NPYS).  

Previous studies, however, were mostly focused on systems experiencing NPYS. For 

example, it has been argued that P-delta effect is associated with development of 

NPYS and is especially important for flexible structures which are expected to 

experience large displacements under sever ground shaking (Gupta & Krawinkler, 

2000). Effect of period of oscillation and post-yield stiffness on the necessary lateral 

strength to evade instability of SDOF systems by using relatively large values of SC 

has been conducted by Miranda and Akkar (2003). In that study, it was debated that 

NPYS might also arise due to degradation of material or a combination of P-delta 

and material degradation; hence, SC does not necessarily remain small.  As it is clear 

from above discussion, systems which do not experience NPYS have received lesser 

attention. This is mainly because they are not expected to experience dynamic 

instability (Miranda & Akkar, 2003). Moreover, response of such systems is 
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considered to change insignificantly by presence of the P-delta effect. For instance, 

FEMA specification assigns a value of “one” to the P-delta related coefficient in 

displacement coefficient method (FEMA, 2009).  

Obviously when calculating maximum inelastic displacement (rotation) is aimed, 

underlying assumption which permits linearization is violated.  This is because 

maximum displacement does not need to actually happen; instead it gives a measure 

of the demand being imposed on the system.  

1.3  Vertical Component of Ground Motion 

With increasing evidence on ruinous effects of the VCGM, many studies focused on 

revealing its engineering characteristics (Elgamal & He, 2004), presenting analytical 

support for destructive field observations (Papazoglou & Elnashai, 1996), as well as 

proposing simplified peak ground acceleration, peak ground velocity and response 

spectra models to be implemented in seismic codes (Bozorgnia & Campbell, 2016; 

Çağnan, Akkar, Kale, & Sandıkkaya, 2017; Campbell, 2003; Campbell & Bozorgnia, 

2003; Elnashai & Papazoglou, 1997). 

Traditionally, VCGM has been described based on ratio of peak vertical ground 

acceleration to the peak horizontal one (V/H). Newmark, Blume, and Kapur (1973), 

suggested that a scaled version of horizontal design spectrum can be used in vertical 

direction by setting V/H to 2/3. In later studies, deficiencies of the 2/3 rule were 

indicated mainly because of two reasons. First, assuming same spectral shape is not 

consistent with dissimilarities in frequency content of the vertical and horizontal 

components of ground motion. Second, V/H ratio strongly depends on distance from 

fault and above rule underestimates at near-fault regions (Bozorgnia & Campbell, 
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2004; Collier & Elnashai, 2001). In addition to distance from source, V/H was found 

to be related to natural period and soil condition, while faulting mechanism and 

magnitude were found to have weak relation with V/H  (Bozorgnia & Campbell, 

2004; Campbell, 2003; Campbell & Bozorgnia, 2003).  

While many of previous studies were focused on uncoupled action of vertical and 

horizontal components of ground motion, combined action of earthquake 

components has been the focus of a few studies (Rabiei & Khoshnoudian, 2011). For 

instance, Hjelmstad and Williamson (1998), used an inverted-pendulum to study 

dynamic instability of SDOF systems under bi-axial (horizontal and vertical) base 

excitation. By using the well-known “Mathew” equation, they showed that inclusion 

of near periodic vertical excitation may cause parametric resonance (also see 

(Williamson & Hjelmstad, 2001)). In their study,Graizer and Kalkan (2008), 

formulated the governing equation of motion of an inverted pendulum under 

complex inputs. By comparing responses of inverted pendulum model with its 

corresponding mass-spring model they found that the VCGM causes elongation of 

the period of vibration. Their findings are in agreement with results of (Kim, Holub, 

& Elnashai, 2010),  who reported substantial variations in horizontal and vertical 

periods of vibration upon action of the VCGM. Graizer and Kalkan (2008), used an 

inverted pendulum to address coupled action of P-delta effect and VCGM. They 

asserted  that P-delta effect might be magnified, reduced, or remain same upon action 

of VCGM (also see (Kalkan & Graizer, 2007)). This phenomenon was attributed to 

variations of the gravitational acceleration upon action of the VCGM.  Ghaffarzadeh 

and Nazeri (2015) showed that combined action of the P-delta effect and VCGM 

could cause variations in the inelastic-horizontal-response, which is significant for 

certain initial periods. They used a two-degree-of-freedom system by appropriately 
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modifying the stiffness part of the equation of motion in the lateral direction to 

resemble the effects of the VCGM. Their model uses elastic behavior in vertical 

direction. 

1.4  Aims and Objectives 

Based on preceding discussions some important questions may arise: 

 Presenting P-delta effect through a linearized equation of motion, although 

substantially simplifies derivation of the solution, may result in biased 

response. To the best of the author’s knowledge, a systematic evaluation of 

potential effects of inclusion of the geometric nonlinearity at global level on 

the maximum-inelastic-response of SDOF systems is missing in current 

literature. 

 On the other hand, effect of variation of the gravitational acceleration due to 

action of the VCGM and its influence on the P-delta effect, and in turn, on the 

maximum-inelastic-response has received lesser attention. 

 Quantifying P-delta through SC brings up a problem that is; derivation of the 

base shear and lateral forces are based on fundamental period of vibration. 

However, story-wise SC checks impose an upper limit on individual story 

periods, not fundamental period. This fact makes accounting for the P-delta 

indirect and in a trial and error manner. 

Based on above specified gaps, present study aims to: 

 Evaluate effect of the geometric nonlinearity at global level on the inelastic 

response of SDOF systems, 
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 Evaluate effect of the VCGM on the maximum-inelastic-response, and 

specifically, its effect at far field distances and its capability to initiate 

dynamic instability, 

 Present an alternative design/response spectrum based on the SCRS and 

FSSDOF to enhance the seismic design procedure.  

1.5  Guide to the Thesis 

After introduction, the second chapter presents the governing equation of motion and 

fundamental backgrounds for the study. 

The third chapter is devoted to evaluation of effects of geometric nonlinearity on the 

global response. The discussion is categorized into two subsections based on whether 

SC is equal to, or greater than hardening. Effect of geometric nonlinearity for 

systems with the same hardening and SC is evaluated by comparing their 

corresponding estimates of the well-known ductility demand (Chopra, 2007). 

Comparisons are done for several harmonic excitations as well as the FEMA P-695 

far field set of records (C. Haselton et al., 2012). When SC is greater than hardening, 

behaviors of systems are compared near to, and, at the collapse state. Again, both 

harmonic excitations and real recorded motions are used for analysis.  

Forth chapter introduces the SCRS and the FSSDOF system. Based on presented 

notions, it is argued that an alternative response/design spectrum can be developed, 

which greatly enhances inclusion of P-delta effect into the both strength-based and 

displacement-based design methods. Several numerical examples are worked as part 

of presentation. 
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Fifth chapter discusses the effect of VCGM on global response of SDOF systems. It 

is worth noting that since SDOF systems are defined based on inverted-pendulum 

model, both VCGM and P-delta effect are present in analysis. However, their 

corresponding effects are distinguished by including P-delta effect into the analysis 

in presence and absence of the VCGM.  

Finally, based on presented developments and discussions, the sixth chapter presents 

some concluding remarks.  
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Chapter 2 

2 FRAME WORK AND FUNDAMENTALS 

2.1  Equation of Motion 

As stated earlier, MSD models cannot resemble the state of a structure in deformed 

position (i.e. cannot simulate P-delta effect). Having said this, some scholars have 

indicated that P-delta effect might be adequately simulated if the stiffness part of the 

governing equation of motion of a MSD model is appropriately adjusted (Bernal, 

1987; MacRae, 1994). On the other hand, some studies suggested an inverted-

pendulum model as an alternative for the MSD model (Graizer & Kalkan, 2008; 

Hjelmstad & Williamson, 1998). In this way, not only all the necessary requirements 

of SDOF systems are satisfied, but also P-delta effect is inherent in the governing 

equation of motion.  

Referring to Figure (2.1), equation of motion of an inverted pendulum under biaxial 

excitation can be written as: 

 𝑚ℎ2∅̈ − (𝑃 + 𝑚�̈�𝑣)ℎ sin ∅ + 𝑚�̈�ℎℎ cos ∅ + 𝑀(∅) + 𝑐∅∅̇ = 0 (2.1)  

where m denotes the mass lumped at the tip of the SDOF pendulum, h is the  

pendulum’s length, 𝑀(∅) is the rotational resistance of the spring, 𝑃 is the vertical 

load, ∅ is the deviation of the pendulum from vertical axis, which fully defines 

location of the mass, and, �̈�ℎ and �̈�𝑣 are horizontal and vertical base accelerations, 

respectively. Damping is presented by a rotational dashpot damper with parameter 

𝑐∅. 
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Figure 2.1: The SDOF model subjected to biaxial excitation. 

The equation of motion under horizontal excitation can be derived as: 

 𝑚ℎ2∅̈ − 𝑃ℎ sin ∅ + 𝑚�̈�ℎℎ cos ∅ + 𝑀(∅) + 𝑐∅∅̇ = 0 (2.2)  

To reduce the number of independent parameters, the governing equation of motion 

might be further simplified. In this regard, the notion of SC is used.  The SC 

stipulates the static stability of the corresponding elastic system subjected to a 

constant vertical load P, and is defined by: 

 SC = 𝜃 = 𝑃 𝑃𝑐𝑟 =⁄ 𝑃. ℎ/𝐾∅0 (2.3) 

where, 𝐾∅0 is the initial rotational stiffness and 𝑃𝑐𝑟 = 𝐾∅0/ℎ . Substituting Eq.(2.3) 

into Eqs.(2.1 and 2.2) will read: 

 𝑚ℎ2∅̈ − 𝜃𝐾∅0(1 + �̈�𝑣 𝑔⁄  ) 𝑠𝑖𝑛 ∅ + 𝑚�̈�ℎℎ cos ∅ + 𝑀(∅) + 𝑐∅∅̇ = 0 (2.4)  

and, 

 𝑚ℎ2∅̈ −  𝜃𝐾∅0 𝑠𝑖𝑛 ∅ +  𝑚�̈�ℎℎ cos ∅ +  𝑀(∅) +  𝑐∅∅̇ = 0 (2.5)  

which are the geometrically nonlinear equations of motion under uniaxial and biaxial 

excitations, respectively.  
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Numerical solution of Eqs. (2.4 and 2.5) needs a prior knowledge on the value of 𝜃 

which in some studies has been taken as constant (Christoph Adam & Jäger, 2012a; 

Hjelmstad & Williamson, 1998). However, Aydınoğlu and Fahjan (2003) showed 

that SC itself is a period-dependent parameter and using constant values for it 

produces “misleading results”. They indicated that SC of a pendulum with known 

height cannot vary arbitrarily. As an alternative approach, they reminded that 

Eq.(2.3) can be rearranged as: 

 SC = 𝜃 =  (𝑔 ℎ)⁄ /𝜔0
2 = 𝜔𝐺

2 /𝜔0
2 (2.6)  

in which, 𝜔0
2 = 𝐾∅0/(𝑚ℎ2) is the initial circular frequency of the corresponding 

geometrically linear equation of motion and 𝜔𝐺
2 = 𝑔 ℎ⁄  is the so-called “geometric 

frequency”.  

It follows that, by use of Eq.(2.6), the governing equations of motion under biaxial 

and uniaxial  excitations can be written as:  

 𝑚ℎ2∅̈ − 𝜔𝐺
2 (1 + �̈�𝑣 𝑔⁄  ) 𝑠𝑖𝑛 ∅ + 𝑚�̈�ℎℎ cos ∅ + 𝑀(∅) + 𝑐∅∅̇ = 0 (2.7)  

and, 

 𝑚ℎ2∅̈ −  𝜔𝐺
2 𝑠𝑖𝑛 ∅ +  𝑚�̈�ℎℎ cos ∅ +  𝑀(∅) + 𝑐∅∅̇ = 0 (2.8)  

respectively.  

2.2  Inelastic Equation of Motion 

As mentioned before,  𝑀(∅) is the rotational resistance of the spring, which is 

representative of inelastic constitutive relation. There are a variety of possibilities for 

selection of constitutive relation, from simple elastoplastic ones to complicated 

models incorporating cyclic deteriorations  (L. F. Ibarra et al., 2005). In this study, a 

versatile model proposed by Sivaselvan and Reinhorn (2000) will be used. The 

model itself can be considered to be a version of the original Bouc-Wen model 
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(Ismail, Ikhouane, & Rodellar, 2009). In those models, a new state variable is 

defined, which is supposed to govern transition from elastic to inelastic regions (also 

see (Dobson, Noori, Hou, Dimentberg, & Baber, 1997; L. F. Ibarra et al., 2005) for 

more information).  

As indicated above, a new state variable "𝑧"  is defined for modeling hysteresis 

behavior. To this end, 𝑀(∅)/𝑚ℎ2 can be written as: 

 𝑀(∅) = 𝑎𝐾∅0∅ + (1 − 𝑎)𝐾∅0𝑧 (2.9) 

where 𝑎 is the ratio of the post-yield to initial stiffness and: 

 
�̇� = {1 − |

𝑧

∅𝑦
|

𝑛

[𝛽1𝑠𝑖𝑔𝑛(𝑧∅̇) + 𝛽2]} ∅̇ (2.10) 

in which: ∅𝑦 is the yield rotation, and, n, 𝛽1 and 𝛽2 are parameters controlling shape 

of the curve. 

2.3  Geometrically Linear and Nonlinear Equations of Motion 

The secondary objective of present study was defined as evaluation of differences 

between the geometrically linear and nonlinear equations of motion. In other words, 

it is desired to evaluate whether the amount of error which is presented by 

approximating sin(∅) ≈ ∅  and  cos(∅) ≈ 1 in the equations of motion is acceptable 

or not. Starting with Eq. (2.7), the geometrically linear version of equation of motion 

(see section 2.3) under biaxial excitation might be derived as:  

 𝑚ℎ2∅̈ − 𝜔𝐺
2 (1 + �̈�𝑣 𝑔⁄  )∅ + 𝑚�̈�ℎℎ + 𝑀(∅) + 𝑐∅∅̇ = 0 (2.11)  

Accordingly, the geometrically linear version of the equation of motion under 

horizontal excitation, Eq.(2.8), is: 

 𝑚ℎ2∅̈ −  𝜔𝐺
2 ∅ +  𝑚�̈�ℎℎ +  𝑀(∅) +  𝑐∅∅̇ = 0 (2.12)  
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In the next chapter a relatively comprehensive evaluation of the effects of neglecting 

the geometric nonlinearity in estimating the maximum-inelastic-response, and 

subsequently, the ductility demand of SDOF systems under horizontal excitation is 

presented. 
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Chapter 3 

3 EFFECT OF GEOMETRIC NONLINEARITY AT 

GLOBAL LEVEL ON THE DUCTILITY DEMAND OF 

SDOF SYSTEMS 

3.1  Introduction 

Present study tries to systematically evaluate effects of incorporating geometric 

nonlinearity into the equation of motion, and demonstrate the differences between 

linear and nonlinear formulations. Using the geometrically nonlinear formulation 

becomes especially important when large displacements are expected; or, calculating 

maximum-inelastic-displacements (rotations) are aimed. As mentioned earlier, 

derivation of an alternative response spectrum and evaluation of the effect of VCGM 

on the maximum-inelastic-response of SDOFs are the major aims of present study. In 

both cases, the underlying assumption permitting linearization is violated. Therefore 

it is desired to investigate whether the use of geometrically linearized version of 

equation of motion is acceptable or not. 

3.2  Objectives and Methodology 

To compare the effect of geometric nonlinearity just horizontal excitation is 

considered. Moreover, the period-dependent feature of SC is neglected since the aim 

is to compare two formulations under same conditions; while the difference is solely 

the presence or absence of the geometric nonlinearity. The geometrically nonlinear 

equation of motion under uniaxial excitation is:  
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 𝑚ℎ2∅̈ −  𝜃𝐾∅0 𝑠𝑖𝑛 ∅ +  𝑚�̈�ℎℎ cos ∅ +  𝑀(∅) +  𝑐∅∅̇ = 0 (3.1)  

which is same as Eq.(2.5), that is repeated here for convenience. The geometrically 

linear version of Eq.(3.1) can be derived as:  

 𝑚ℎ2∅̈ −  𝜃𝐾∅0∅ +  𝑚�̈�ℎℎ +  𝑀(∅) + 𝑐∅∅̇ = 0 (3.2)  

Different cases are categorized based on relative values of SC and material 

hardening. In particular, two major cases depending on whether stability coefficient 

is equal to or greater than the hardening are investigated. It is worth noting that if 

nonlinear formulation is used equality of mentioned parameters will result in a 

special case in which the stiffness apparent in the system will be driven by nonlinear 

terms of the rotation angle. To show this, it is noted that the apparent stiffness of the 

system in a geometrically linear system (see section 2.3) is given by:  

 𝑀(𝑠)𝐿𝑖𝑛𝑒𝑎𝑟 =   𝑀(∅) − 𝜃𝐾∅0∅  (3.3)  

while that of a geometrically nonlinear formulation might be  approximated as: 

 
𝑀(𝑠)𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 =   𝑀(∅) − 𝜃𝐾∅0∅ + 𝜃𝐾∅0

∅3

3!
− 𝑚�̈�ℎℎ

∅2

2!
 (3.4) 

 

in which:  

 
𝑠𝑖𝑛 ∅ ≈  ∅ −

∅3

3!
   (3.5) 

 

and, 

 
  𝑐𝑜𝑠 ∅ ≈ 1 −

∅2

2!
   (3.6) 

 

are used. Now if 𝑎 = 𝜃, then by use of Eq.(2.9) one has:  

 𝑀(𝑠)𝐿𝑖𝑛𝑒𝑎𝑟 =  (1 − 𝜃)𝐾∅0𝑧 (3.7)  

while for a geometrically nonlinear formulation one has: 

 
𝑀(𝑠)𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 =   (1 − 𝜃)𝐾∅0𝑧 + 𝜃𝐾∅0

∅3

3!
− 𝑚�̈�ℎℎ

∅2

2!
 (3.8) 
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It can be seen that for large responses, i.e. at or near the collapse stage, nonlinear 

terms of the rotation and characteristics of the forcing function will also affect the 

response of geometrically nonlinear systems. 

Both harmonic excitations, with different levels of amplitudes and frequencies, and 

the FEMA p-695 set of recorded motions are used in analysis (Foschaar, Baker, & 

Deierlein, 2012). For harmonic excitations, a sinusoidal excitation introduced as: 

 �̈�ℎ(𝑡)

𝑔
= 𝜈 sin(𝛺𝑡) (3.9) 

is substituted into Eqs.(3.1 and 3.2). Although harmonic excitations do not perfectly 

resemble the earthquakes, their constant frequency and amplitude may highlight 

influential parameters, which may remain hidden otherwise. For instance, in light of 

Eq.(3.9), the effect of excitation characteristics on the apparent resistance of a 

geometrically nonlinear system, Eq.(3.8), becomes clearer.  

The ductility demand predicted by geometrically linear and nonlinear formulations 

are compared for systems with different levels of relative strengths (R-factor). When 

the SC is equal to hardening, significant differences in calculated ductility demands 

were observed. If SC is larger than hardening, differences are manifested in terms of 

stability. While linear approximation shows unstable response, the response of the 

nonlinear formulation remains stable. Stability of the solution of the nonlinear 

formulation might enhance computational performance when investigating full range 

behavior of a system is desired. For instance, such a situation might be encountered 

during collapse evaluation.    
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A bilinear hysteresis relation with positive hardening defines the spring behavior for 

all cases. Using different hysteresis relations is not within the scope of present study. 

This is mainly because previous literature indicates that the necessary increase in 

strength to maintain same ductility level in presence and absence of P-delta effect is 

larger for SDOFs with bilinear hysteric behavior. However, it is worth noting that 

any other hysteric behavior should be incorporated simultaneously into both 

formulations; and thus, results are expected to change in the same manner.  

When SC is equal to hardening, ductility-demands are calculated based on linear and 

nonlinear formulations, and are compared through a percentage difference defined 

as: 

 
 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = |

𝜇𝑛𝑜𝑛 − 𝜇𝑙𝑖𝑛

𝜇𝑛𝑜𝑛
| × 100 (3.10) 

where "𝜇𝑛𝑜𝑛" and "𝜇𝑙𝑖𝑛" represent ductility demands predicted by nonlinear and 

linear formulations, respectively. For the sake of consistency, in all calculations 

maximum elastic rotations are also computed based on linear and nonlinear 

formulations. In other words, maximum elastic rotations used in inelastic-nonlinear 

and inelastic-linear demand calculations are based on, elastic-nonlinear and elastic-

linear formulations, respectively. Elastic linear and elastic nonlinear equations can be 

derived by substituting 𝑀(∅) = 𝐾∅0∅ into Eqs.(3.1 and 3.2). Yield rotations can be 

established by dividing maximum elastic rotations by the R-factor. 

Sinusoidal excitations with three levels of amplitude (0.15, 0.3 and 0.45g), and five 

levels of frequency (5, 10, 15, 20 and 25 rad/s) are chosen as harmonic excitations. 

All  harmonic excitations are applied for 30 seconds followed by 10 seconds of free 

vibration (Hjelmstad & Williamson, 1998). 



22 

 

For values of hardening less than SC, two records, namely: El-Centro and 

Northridge, are used. Systems with four different levels of relative strengths (R-

factor) are studied. Damping ratio in all cases is kept at 5%.  

An established routine in earthquake engineering is to plot changes of a parameter in 

consideration versus system’s initial period.  Here, the percentage of difference 

between ductility demands calculated by either formulations, as defined in Eq. 

(3.10), is plotted against the system’s initial period. Those plots are referred to as 

percentage of difference versus period (PD-T) graphs, here after. 

3.3  Stability Coefficient Equal to Hardening  

3.3.1 Harmonic Excitations  

Obviously it is not plausible to consider all pairs which satisfy the condition 𝑎 = 𝜃. 

Therefore, results are presented for a 5% damped system with 𝑎 = 0.05 and 𝜃 =

0.05.  

Figure 3.1 shows the PD-T graphs under action of a sinusoidal excitation with an 

amplitude of 𝜈 = 0.3g and a frequency of 𝛺 =10 rad/s for four levels of relative 

strengths.  As can be seen, in short period range the level of relative strength has 

significant effect on the differences between the two formulations. The absolute 

value of the difference exceeds 100% for R-factors equal to 4, 6 and 8. On the other 

hand, by increasing the relative strength the range of periods that are sensitive to 

geometric nonlinearity expands.  
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Figure 3.1: PD-T diagrams for four levels of reduction factor (R=2, 4, 6 and 8) under 

a sinusoidal excitation with amplitude of 0.3g and frequency of 10(rad/s). a = 0.05, θ 

= 0.05 and ζ = 0.05. 

Same phenomenon can be seen in Figure 3.2. In that Figure, instead of the 

percentage of difference, the ductility demand calculated by geometrically nonlinear 

formulation is normalized to the ductility demand calculated by geometrically linear 

formulation.  For all levels of relative strength, geometrically linear approximation 

significantly overestimates the ductility demand at short period region. A marginal 

underestimation is noticeable for periods in the range of 0.2 to 0.4s. Hence, the 

geometrically linear formulation is not always conservative and may introduce bias 

in predicting the maximum-inelastic-responses.  

The difference between calculated ductility demands is very sensitive to the 

frequency of excitation, as can be seen in Figure 3.3. 
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Figure 3.2: Ductility demand predicted by nonlinear formulation normalized by 

linear one for four levels of relative strength (R=2, 4, 6 and 8). Amplitude of 

excitation is 0.30g and its frequency is 10 (rad/s). a = 0.05, θ = 0.05 and ζ = 0.05. 

 
Figure 3.3: Effect of frequency of excitation on PD-T for five different levels of 

frequencies. Amplitude of excitation is 0.3g, R=6, a = 0.05, θ = 0.05 and ζ = 0.05. 

It is also worth noting that the effects of the frequency of excitation and relative 

strength are similar in the sense that a larger R-factor has the same effect as a lower 

frequency of excitation (compare with Figure 3.1).  

An increase in the amplitude of excitation results in an increase in the difference in 

predicted ductility demand, as can be seen in Figure 3.4. However, and unlike R-
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factor or the excitation’s frequency, variations of the amplitude does not change the 

range of periods that are sensitive to the geometric nonlinearity.   

 
Figure 3.4: Effect of amplitude of excitation on PD-T diagram for three levels of 

amplitudes. a = 0.05, θ = 0.05 and ζ = 0.05. 

3.3.2 Real Earthquake Records  

As stated earlier, harmonic excitations, with constant frequency and amplitude, do 

not perfectly resemble real earthquakes. Therefore, it might be interesting to examine 

effect of geometric nonlinearity under action of real ground motion records.  

Figure 3.5 shows the PD-T graph for a system with R=8 subjected to the FEAM p -

695 set of recorded motions. Results show that the differences reach up to 100% and 

more in the short period range. Note that differences more than 100% are omitted, 

although values well beyond 100% were observed.  
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Figure 3.5: PD-T diagram for FEMA P-695 set of recorded motions for a system 

with R=8. 

The difference between linear and nonlinear formulation at short period range is 

especially important since the well-known equal displacement rule is not applicable 

in that region (Miranda, 2000).  

Many researchers have tried to approximate maximum-inelastic-displacements based 

on maximum-elastic ones by using various SDOF systems (Miranda & Ruiz‐García, 

2002). However, to the best of the authors’ knowledge, P-delta effect has not been 

considered for systems without NPYS. Therefore, present study becomes especially 

important since it shows that by including the P-delta effect maximum difference 

between linear and nonlinear formulations is expected in the same region. In 

particular, results of present study might be considered in line  with results of Ruiz-

Garcia and Miranda (Ruiz‐García & Miranda, 2003), since the difference between 

geometrically linear and nonlinear formulations in the case of equal SC and material 

hardening is equivalent to a difference between a system experiencing positive-post-

yield-stiffness (PPYS) and an elasto-plastic one. However, it is worth noting that 

PPYS in present study arises from consideration of the P-delta effect and higher 
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order terms of generalized coordinate system, while in the mentioned study material 

hardening was the source of PPYS.  

The mean differences for four levels of the relative strength and under action of the 

FEAM p-695 set of recorded motions are shown in Figure 3.6. It can be seen that 

increasing the relative strength will expand the range of sensitive periods, and hence, 

is in line with results obtained by use of harmonic excitations.  

 
Figure 3.6: Mean PD-T for FEMA P-695 set of recorded motions for four levels of R 

(R=2, 4, 6 and 8). 

Effect of scaling a record is shown in Figure 3.7, where differences of the calculated 

ductility demands by use of the original record are compared to those calculated 

under four various scales of it. It can be seen that the results are quite comparable to 

those obtained by use of harmonic excitations; that is, scaling a record will intensify 

the difference between the calculated ductility demands, without changing the range 

of sensitive periods. 
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Based on the presented results, it can be concluded that in short period range 

significant differences in predicted ductility demands by use of either geometrically 

linear or nonlinear formulations is expected. As a result, neglecting geometric 

nonlinearity may introduce bias in calculating the maximum-inelastic-displacements. 

 
Figure 3.7: PD-T diagram for an individual record scaled to five levels of PGA; 

PGA=1 corresponds to original record. 

3.4  Stability Coefficient Greater Than Hardening  

Because of devastating economic and social consequences, earthquake-engineering 

codes intend to keep the probability of structural collapse endurably low such that 

public safety is assured (C. B. Haselton & Deierlein, 2008; Liel, Haselton, Deierlein, 

& Baker, 2009; Shi, Lu, Guan, & Ye, 2014). This, however, needs a precise 

knowledge on the state of a structure from elastic to inelastic, and finally, to the 

collapse stage.  

Previous studies have mentioned two modes of failure, namely: sidesway collapse 

and vertical collapse, as the most commonly observed ones (Zareian, Krawinkler, 

Ibarra, & Lignos, 2010).  Vertical collapse identifies direct loss of vertical load 
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carrying capacity. On the other hand, sidesway collapse is a result of shearing of 

lateral strength due to excessive deformations under a strong ground motion, which 

will result in strength and stiffness deteriorations, and consequently, will cause total 

or partial loss of load-carrying capacity in a building structure (C Adam & Ibarra, 

2015; Jäger & Adam, 2013). The latter, sometimes referred to as global P-delta 

effect, may lead to development of NPYS, even though structural elements may not 

necessarily experience deterioration.  For instance, ASCE indicates that if a single 

element passes a pre-specified threshold, usually defined in terms of plastic rotations, 

collapse state has reached. Some studies have reminded that such a definition is 

conservative and identifies “near-collapse” state, since a given structure will not 

necessarily become unstable in that condition (C. B. Haselton, Liel, & Deierlein, 

2009). Hence, element failure and global instability need to be distinguished. It 

follows that unstable state of a structure may reach at or beyond the collapse 

threshold, as indicated by Jäger and Adam (2013). This issue may justify using the 

geometrically nonlinear formulation. 

3.4.1 Harmonic Excitations  

If 𝑎 < 𝜃, then the system shows NPYS and under sufficiently strong excitation is 

expected to exhibit dynamic instability. It is desired to investigate effect of higher 

order terms (geometric nonlinearity) on behavior of such systems at or near collapse 

stage.  

In literature there are several definitions for collapse (Haselton, Liel, & Deierlein, 

2009). Some scholars have used the “actual collapse” based on backbone of the 

force-deformation relation. On the other hand, some researchers have used the 

Lyapunov’s criteria. “Roughly, it states that the motion of a structure  is stable if any 
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possible small change in the initial condition can lead only to a small change in the 

response” (Bažant, 2000). In the present work, both mentioned definitions would be 

used for identification of collapse.  

Consider a 5% damped system with 𝑎 = 0.04, θ = 0.05, R=8, and an initial period 

of 0.15s, under a sinusoidal excitation with a frequency of 𝛺 =20 (rad/s) and an 

amplitude of 𝜈 = 0.3g. Velocity versus rotation diagrams (the phase-portrait) of this 

system for geometrically linear and nonlinear systems are presented in Figure 3.8. It 

can be seen that linearly formulated system shows unbounded response while 

nonlinear formulation returns to a stable position.  

 
Figure 3.8: Velocity-rotation diagram for nonlinear (continuous) and linear (dashed) 

formulations under sinusoidal excitation with amplitude of 0.3g and frequency of 

20(rad/s). R=8, T=0.15s, a = 0.04, θ = 0.05. 

The same phenomenon can be seen based on lateral resistance of the system in 

Figure 3.9.  Effect of higher order terms can be seen in that figure; that is, while 

resistance of geometrically linear system drops to zero, the geometrically nonlinear 

system still shows resistance.  
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Figure 3.9: Resisting moment-rotation diagram for nonlinear (continuous) and linear 

(dashed) formulations under sinusoidal excitation with amplitude of 0.3g and 

frequency of 20(rad/s). R=8, T=0.15s, a = 0.04, θ = 0.05. 

Advantage of geometrically nonlinear formulation is in mathematical stability of the 

solution, which helps to overcome convergence problems. When full range behavior 

of a system, from elastic to collapse, is investigated, numerical stability of the 

solution could be greatly enhanced by use of geometrically nonlinear formulation.  

Effect of variations of the excitation’s characteristics on the estimated ductility 

demands by either formulation is demonstrated through normalized ductility demand. 

Consider 5% damped systems with initial periods ranging from 0.05 to 1.25s 

subjected to a sinusoidal excitation with an amplitude of 𝜈 = 0.3g. Other parameters 

are kept same as in the previous example. Five levels of excitation frequencies were 

examined; however, just three of them are presented in Figure 3.10. This is because 

zero ratios were observed for the other two frequencies on the whole range of the 

examined periods. Note that a zero ratio identifies unbounded response of the 

geometrically linear formulation. This conclusion is possible since nonlinear 
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formulation showed stable response for the whole range. Figure 3.10 can also be 

used to identify regions of numerical stability of linear equation of motion.  

Two important issues could be identified based on that Figure. First, except for a 

limited range of periods, the difference between two formulations in calculating the 

ductility demands is very large; i.e., zero ratios were observed for majority of 

periods. Second, for each specific excitation’s frequency, a non-zero ratio 

corresponds to stability of linear equation of motion. Thus, it can be seen that by 

increasing the frequency of excitation the regions where the response is stable shifts 

towards shorter periods.  

 
Figure 3.10: Effect of frequency of excitation on ductility demand predicted by 

nonlinear formulation normalized by linear one for three different frequencies. 

Excitation amplitude is 0.3g, R=8, a = 0.04, θ = 0.05 and ζ = 0.05. 

Effect of the amplitude of excitation on the response can also be studied based on the 

ratio of the ductility demands predicted by each formulation. For example, Figure 

3.11 plots the ratio of the ductility demands predicted by either geometrically linear 

and nonlinear formulations for 5% damped systems subjected to a sinusoidal 

excitation with a frequency of 𝛺 =10 (rad/s) and for three levels of amplitudes. It can 
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be seen that the regions where the response of the geometrically linear system is 

stable does not change by changing the amplitude of excitation.  However, the 

difference in calculated ductility demands is intensified by increasing the amplitude 

of excitation.  

 
Figure 3.11: Effect of amplitude of excitation on ductility demand predicted by 

nonlinear formulation normalized by linear one for three different amplitudes. 

Excitation frequency is 10 (rad/s), R=8, a = 0.04, θ = 0.05 and ζ = 0.05.  

The effect of variations of the strength reduction factor on the predicted ductility 

demands by either formulations is plotted in Figure 3.12.  It can be seen that the 

range of initial periods corresponding to stable response of the geometrically linear 

systems decreases by increasing the R-factor.  Thus, consideration of the geometric 

nonlinearity is specifically important for flexible structures.  
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Figure 3.12: Ductility demand predicted by nonlinear formulation normalized by 

linear one for four levels of reduction factor (R=2, 4, 6 and 8). Amplitude of 

excitation is 0.30g, angular frequency is 10 (rad/s), a = 0.04, θ = 0.05 and ζ = 0.05. 

3.4.2  Real Earthquake Records  

Results under action of real ground motion records are essentially the same as the 

harmonic excitation cases. Specifically, geometrically linear systems lose their 

stability, while geometrically nonlinear systems remain stable. When applying 

response history analysis (RHA), numerical instability of the geometrically linear 

formulation forced the analysis to stop in some cases. However, numerical stability 

of the geometrically nonlinear formulation permitted the analysis to finish in all 

cases. This indicates the reliability of the latter formulation in revealing the behavior 

of a system well beyond its elastic limit.  

To show the difference between the two formulations two classic records, namely, 

the El-Centro and Northridge records are chosen.  

Consider a 5% damped system with an initial period of 0.35s, a hardening of 𝑎 =

0.04, an SC of 𝜃 = 0.05, a reduction factor of R=8, subjected to El-Centro and 

Northridge ground motions. Velocity versus rotation, and resisting moment versus 
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rotation diagrams, are shown in Figures 3.13 and 3.14, for El-Centro record, and in 

Figures 3.15 and 3.16 for Northridge record, respectively.  

 
Figure 3.13: Velocity versus rotation (Phase) diagram for a 5% damped system with 

reduction factor of R=8 and initial period of 0.35s, subjected to El-Centro ground 

motion. a = 0.04, θ = 0.05. 

 
Figure 3.14: Resisting moment versus rotation of a 5% damped system at near 

collapse stage with reduction factor of R=8 and initial period of 0.35s, subjected to 

El-Centro ground motion. a = 0.04, θ = 0.05. 

It is worth noting that in plotting the resisting moment versus rotation graphs the near 

collapse stage is demonstrated for the sake of a more clear presentation. Also, note 
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that the two formulations are not necessarily at the same stage of a RHA. This is due 

to numerical instability of the geometrically linear formulation. 

 
Figure 3.15: Velocity versus rotation diagram for a 5% damped system with 

reduction factor of R=8 and initial period of 0.35s, subjected to Northridge ground 

motion. a = 0.04, θ = 0.05. 

 
Figure 3.16: Resisting moment versus rotation of a 5% damped system at near 

collapse stage with reduction factor of R=8 and initial period of 0.2s, subjected to 

Northridge ground motion. a = 0.04, θ = 0.05. 

For the both mentioned recorded motions, linear system reaches to a state of dynamic 

instability faster, and in earlier stages of analysis. On the other hand, nonlinear 

system shows resistance even when linear system has collapsed. This phenomenon 
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introduces bias in predicting collapse point. Moreover, monitoring behavior of the 

system from elastic to inelastic, and eventually to dynamic instability or up to high 

rotations, is more reliably carried out should the nonlinear formulation is adopted. 

This may overcome some convergence problems and enhance computational 

procedure. 
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Chapter 4 

4 THE FIRST STOREY SINGLE DEGREE OF 

FREEDOM SYSTEM AND THE STABILITY 

COEFFICIENT RESPONSE SPECTRA  

4.1  Introduction 

Among various problems, structural designers are faced with two important issues at 

early stages of a design project. The first one is how to select preliminary dimensions 

for structural elements. The second one is how to reduce the number of necessary 

iterations during design process. 

As stated earlier, reflection of previous studies on seismic codes is a combination of 

previously proposed strategies. For example, according to Eurocode 8, ASCE7-10, 

and Turkish Standards (TEC, 2018), P-delta effect can be neglected if SC is 

sufficiently small. To neglect P-delta effect, Eurocode 8 and ASCE7-10 demand for 

SC to be less than 0.1, while Turkish Standards’ limit is 0.12. The first two 

specifications allow counterbalancing the P-delta effect by amplifying lateral 

forces/displacements if SC is larger than 0.1, but less than 0.25 in ASCE7-10, and 

0.3 in Eurocode 8, respectively. If the SC is larger than the above-mentioned limits 

lateral stiffness of the structure should be adjusted to bring it to one of the previous 

conditions.  
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Two important issues are worth highlighting here. First, satisfying code specified 

limits regarding SC demands for several trials; that is, after increasing lateral 

stiffness, fundamental period of vibration will change and hence a new set of lateral 

forces should be calculated. In addition, since restrictions on SC are not directly 

imposed on the fundamental period of vibration, a design project may potentially 

start with any preliminary selection. Therefore, a reliable starting point may enhance 

the overall procedure.  In this respect, some studies focused on derivation of the 

minimum necessary lateral stiffness, or the critical strength reduction factor, that 

prevents dynamic instability (Bernal, 1992, 1998; Miranda & Akkar, 2003).  For 

instance, Christoph Adam and Jäger (2012a) developed the so-called collapse-

capacity-spectra for SDOF systems, with various levels of SC and hysteresis 

behavior (also see (Christoph Adam & Jäger, 2012b). Although such limits might 

indirectly be used as a design aid, since those methods are mainly assessment 

oriented, the presented limits are rarely practical in satisfying SC restrictions at early 

stages.  

Second, reliable inclusion of P-delta effect in construction of nonlinear constant-

ductility-response-spectrum is a vital step in both SBD and DBD methods. 

Explicitly, derivation of dependable amplification factors demands for construction 

of a reliable response spectrum including P-delta effect in first place. While some of 

previous studies had used constant values for SC (Bernal, 1987), Aydınoğlu and 

Fahjan (2003) showed that SC itself is a period-dependent parameter and treating it 

as a constant value produces “misleading results”. They argued that for developing 

any period-dependent spectrum, for consistency, period-dependence of SC should be 

considered. To achieve a consistent treatment of P-delta effect, they reformulated the 

recursive solution procedure of linear SDOF systems in a unified format to address 
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response of nonlinear SDOF systems with multi-linear hysteresis behavior. The 

unified-piece-wise-exact-method (UPEM) utilizes the so-called “geometric 

frequency” which reflects the period-dependence nature of SC. Importance of the 

period-dependence feature of  SC was also indicated by  Kalkan and Graizer (2007) 

who mentioned that: in  derivation of response spectrum of P-delta affected systems 

period cannot serve as a convenient measure unless the pendulum’s height is kept 

constant. Using constant height is equivalent to adaptation of period-dependent SC, 

which is an important feature of the UPEM. Nevertheless, the method has not been 

extended to MDOFs. 

The fundamental idea behind the first-storey-single-degree-of-freedom (FSSDOF) 

system is to overcome the mentioned problems by setting a reasonable starting point. 

In other words, the FSSDOF system is aimed to set a reasonable minimum 

requirement on the necessary lateral stiffness of a structure, by trying to satisfy code 

specified limits regarding the SC and inter-storey drifts at early stages. 

4.2  Pendulum Based Response Spectra 

In its most general form a response spectrum is a plot of spectral information against 

dynamic properties of a SDOF system. Conventionally, fundamental period of 

vibration has been adopted for construction of the response spectra. As stated earlier, 

for presenting P-delta effect, fundamental period cannot serve as a convenient 

measure unless the pendulum’s height is kept constant. As an example, constant 

ductility response spectra for a 3.0m long inverted-pendulum model (with P-delta), 

and its corresponding MSD model (without P-delta), are compared in Figure 4.1. 

Bilinear material behavior with 5% hardening and 5% damping are considered. In 
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construction of Figure 4.1 Kocaeli earthquake (1999, Turkey), recorded at Yarimca, 

is used as the input motion.  

 
Figure 4.1: Comparing constant ductility response spectra of inverted-pendulum 

model (with P-delta), and its corresponding mass-spring-damper model (without P-

delta), for various levels of ductility. Kocaeli earthquake, recorded at Yarimca, is 

used as input motion. 

It is worth noting that the horizontal axis in Figure 4.1 represents the pendulum’s 

initial period 𝑇0, which is given by: 

 
𝑇0 =

2𝜋

𝜔0
2 (4.1) 

Consequently, it is logical that the divergence between the mentioned spectra 

increases with increasing period (owing to the period-dependent feature of SC). 

However, and as stated earlier, seismic resistance codes demand for the SC to be 

limited to certain thresholds. This is equivalent to imposing an upper limit on the 

pendulum’s period (see Eq. (4.2)). For the above-mentioned example, with 𝜔𝐺
2 =

3.27 rad/s2, the maximum permissible period according to Turkish standards (SC = 
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0.12), ASCE 7-10 (SC = 0.25), and Eurocode 8 (SC = 0.3), can be calculated as 1.20, 

1.74, and 1.90s, respectively. The lateral stiffness of any system with a longer period 

should be increased to bring it to one of the mentioned regions. Therefore, for the 

presented example analysis is followed up to 𝑇0 = 2.0s. 

 

Some important features of Figure 4.1 are worth mentioning at this stage: 

 Regardless of the level of ductility, P-delta effect is negligible for short 

period systems. As discussed earlier, this observation is in agreement with the 

previous studies and code specifications. 

 For systems with longer periods, and for all levels of ductility, the spectral 

acceleration calculated by the pendulum model remains unchanged. 

 The divergence between the two spectra becomes more noticeable by 

increasing the level of ductility.  

 

It might be interesting to investigate the effectiveness of the code specified 

amplification factors and suitability of the SC below which the P-delta effect is 

deemed negligible based on the inverted pendulum model. 

Figure 4.1 shows that except for μ = 2 all the above-mentioned codes overestimate 

the SC below which P-delta effect is trivial. In other words, limiting the SC to a 

value less than 0.1 may not necessarily result in negligible P-delta effect. This might 

be attributed to the fact that ignoring the period-dependent feature of SC causes a 

systematic underestimation of the P-delta effect by increasing period. The mentioned 

phenomenon seems to be more noticeable for highly ductile systems. Likewise, using 
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the amplification factors may not completely counterbalance the P-delta effect for the 

same reason. This might be better viewed in Figure 4.2.   

 
Figure 4.2: Constant-ductility-response-spectrum (μ = 6) based on pendulum model 

(with P-delta), mass-spring model (without P-delta), and amplified version of mass-

spring model per ASCE7-10. Regions of negligible P-delta, and where P-delta is 

allowed to be counterbalanced with amplification factors are indicated.  a) Imperial 

Valley-06, b) Landers, c) Kobe, d) Kocaeli, e) Duzce, f) Bam, g) Parkfield, and h) 

Darfield. 
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In Figure 4.2, suitability of the amplification factors for counterbalancing the P-delta 

effect is assessed on a set of records that are presented in Table 4.1 (Downloaded at 

PEER-NGA2 Ground Motion Database (https://ngawest2.berkeley.edu/)). The 

presented set of ground motions consists of strike-slip earthquakes recorded at near 

fault. The regions of negligible P-delta effect, where it is allowed to be 

counterbalanced, and where according to ASCE 7-10 specifications the system’s 

lateral stiffness should be increased are also illustrated. In addition, and based on the 

amplification factors defined in the mentioned code (1 (1 − 𝑆𝐶)⁄ ), the amplified 

version of the MSD’s spectrum is shown in the relevant region of periods.  Figure 4.2 

indicates that the amplified MSD’s spectrum noticeably underestimates the P-delta 

effect for all the examined records. Notably, Amara et al. (2014) concluded the same 

results although they used constant SC.  

   Table 4.1: The set of recorded motions used in Figure 4.2. 

Earthquake Year Station Magnitude Component 
PGA 

(g) 

Imperial Valley-06 1979 El Centro Array #5 6.53 E05140 0.53 

Landers 1992 Lucerne 7.28 LCN345 0.79 

Kobe 1995 Takarazoka 6.90 TAZ090 0.61 

Kocaeli 1999 Yarimca 7.51 YPT060 0.23 

Duzce 1999 IRIGM 487 7.14 487-EW 0.28 

Bam 2003 Bam 6.60 BAM-T 0.63 

Parkfield-02-CA 2004 Parkfield - Cholame 1E 6.00 C01090 0.44 

Darfield 2010 GDLC 7.00 GDLCN5W 0.76 

Obviously, upon selection of a suitable set of recorded motions, it is possible to 

construct an alternative design spectrum based on the pendulum model. Having said 

this, in the current state-of-practice record selection and scaling strategies are based 

on MSD models. Hence, suitability of such methods when applied on the pendulum 

model should be checked. This, however, is beyond the scope of present study.  

https://ngawest2.berkeley.edu/)
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As stated above, using constant height is an essential part in derivation of the 

pendulum-based response spectra. To utilize such spectra for derivation of the base-

shear of MDOFs, the FSSDOF system is presented next.  

4.3  Conceptual Representation of the FSSDOF System 

For an SDOF system, limiting the SC is equivalent to setting an upper limit on the 

period of vibration (Bernal, 1992, 1998). This can be shown by rewriting Eq. (2.3) 

as: 

 

𝑇0 = 2𝜋√
𝜃. ℎ

𝑔
 (4.2) 

On the other hand, for MDOF systems, SC is defined at each storey separately.  In 

analogy with SDOF systems, limiting SC at each level of a MDOF system is 

equivalent to imposing an upper limit on the “Individual-Storey-Periods”. To show 

this, one notes that Eq.(2.3) can be rewritten as: 

 
𝜃𝑖 =

𝑃𝑖

𝐾∆𝑖 . ℎ𝑖
=  

𝑀𝑖 . 𝑔

𝐾∆𝑖. ℎ𝑖
 (4.3) 

in which, 𝑀𝑖 , is the total seismic mass above ith storey, defined by (see Fig.3): 

 

𝑀𝑖 = ∑ 𝑚𝑗

𝑁

𝑗=𝑖

   (4.4) 

where, 𝑚𝑗 , represents the total seismic mass of the  jth storey and N represents the 

number of storeys. If ith level is assumed as an inverted-pendulum with a height 

equal to its actual height, by use of Eq.(4.3), its period  can be derived as: 

 

𝑇𝑖 = 2𝜋√
𝜃𝑖 . ℎ𝑖

𝑔
 (4.5) 

which is same as Eq.(4.2), utilized to the  ith level. It follows that, for MDOF 

systems, limiting SC corresponds to limiting period of vibration of each storey, 
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modeled as an inverted-pendulum, with a weight equal to the total weight above it, 

and a height equal to its actual height. Such models are shown in Figure 4.3.  

 
Figure 4.3: Conceptual presentation of Storey-wise SDOF systems. a) The original 

MDOF system, and b) Individual-Storey SDOF systems. 

Compared to the fundamental period of vibration, with no restriction on it, 

individual-storey-periods present an effective tool. Particularly, limiting the 

individual-storey-periods enables the designers to estimate the necessary lateral 

stiffness of each storey. However, such a treatment demands for identifying the input 

motion at various levels, while it is usually known at the base of a structure. In 

addition, considering the interaction between floors is complicated. Having said this, 

among all levels of a MDOF, the first-storey is a special case since: 

 Total axial load on the first-storey is equal to the total seismic load acting on 

the structure, 

 the shear force at first-storey is equal to the base-shear, 

 its height rarely changes during design, and, 

 the input excitation at first-storey is known. 
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Owing to above listed properties, first-storey can be presented as a new SDOF 

system, namely: the FSSDOF system, with further practical advantages. It should be 

noted that, the FSSDOF is not aimed to present dynamic characteristics of the 

original MDOF system. It will solely be used as a practical tool that enables 

extension of the pendulum-based response spectra to MDOF systems.  

Since the FSSDOF system is essentially a SDOF system with known height, it 

directly facilitates the implementation of the UPEM and SCRS for derivation of the 

base-shear and lateral seismic forces of MDOFs. Explicitly speaking, upon 

construction of a constant-ductility-response-spectrum exclusively utilized to the 

FSSDOF, the base-shear complying with a given ductility level can be found easily. 

Moreover, by limiting the initial period of the FSSDOF system, it is possible to 

satisfy code requirements regarding the SC at least at the first-storey. 

For instance, Fig.4.1 can be considered to serve as the FSSDOF’s response-spectra 

for a MDOF with a 3.0m long first-storey. As such, Eq. (4.3) can be used to find the 

minimum necessary lateral stiffness at the first-storey, compatible with a permissible 

SC. It follows that, by use of Eq. (4.5) and Fig.4.1, the base-shear complying with a 

given ductility level can be established.  

It should be noted that the FSSDOF is not aimed to represent dynamic characteristics 

of the original MDOF system. It will solely be used as a practical tool that enables 

extension of the SCRS to calculate the necessary lateral stiffness of the first-storey of 

a MDOF.  
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On the other hand, since code specified limits are imposed on the SC and inter-storey 

drifts, it might be helpful if the FSSDOF spectrum is presented in a different format. 

To this end, the SCRS is presented in the next section. 

4.4  The Stability Coefficient Response Spectra (SCRS) 

Period-dependence feature of SC presents an outstanding opportunity for 

representing the pendulum based response spectra in terms of SC. For example, by 

use of Eq.(4.2), the constant ductility response spectra of Figure 4.1 are presented in 

the SCRS format, in Figure 4.4. 

 
Figure 4.4: The response spectra of Figure (4.1) presented in the SCRS format. 

Clearly, SCRS can be developed for any desired spectral parameter. For instance, 

Figure 4.5 represents the spectral displacement SCRS. 
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Figure 4.5: SC Response Spectra of Figure (5.1) plotted in terms of spectral 

displacement. 

4.5  Verification Examples 

It might be important to check reliability of the presented spectrum in estimating 

lateral forces acting on a structure in presence of P-delta effect. For this purpose, two 

numerical examples are presented in the following section. The first example is a 

SDOF and the second one is 5-storey Steel-Moment-Resisting-Frame (SMRF).  

4.5.1 Example 1: SDOF System 

Consider a one-storey, one-bay, reinforced concrete moment resisting frame. It is 

desired to derive the base-shear acting on the frame based on a conventional response 

spectrum and to compare the results to those calculated by use of the SCRS and 

FSSDOF system. The frame has a bay of 5.0 m, and a height of 3.0 m. Seismic 

weight acting on the frame consists of a 50 kN/m dead load and a 30 kN/m live load. 

It is assumed that the 1999 Kocaeli earthquake recorded at Yarimca sufficiently 

resembles the state of hazard. 

Total seismic weight acting on the frame is W = 295 kN, in which 30% live load 

participation factor is considered. To use a conventional MSD spectrum, the 
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fundamental period of vibration, and hence, member sizes should be specified a 

priori. Initially, a square cross-section (30 cm) is selected for all members. Modal 

analysis revealed an initial period of vibration of T1=0.35(s) for this frame. The base 

shear coefficients, lateral displacements, and corresponding SCs for four levels of 

ductility are summarized in Table 4.2. 

Table 4.2: Base-shear, lateral displacement and SC based on conventional MSD 

model (example 1). 

μ 2 4 6 8 

Base-shear-Coefficient =A /g 0.317 0.177 0.140 0.120 

Base-Shear, V1 (kN) 93.52 52.22 41.30 35.40 

Lateral Displacement, Δ (m) 0.0087 0.0049 0.0038 0.0032 

θ 0.0091 0.0092 0.0090 0.0089 

As explained earlier, by use of the SCRS, establishing the member sizes is not 

necessary; instead, one can select a desired SC for the first-storey and consult with 

the spectra of Figure 4.4.  For example, if θ = 0.0092 is selected, the base-shear 

coefficient complying with  𝜇 = 2 is read as:  𝐴 = 0.322 𝑔. This will result in a 

base-shear of V = 95 kN. Now, by applying a lateral force of 95 kN on the frame, the 

maximum lateral displacement is calculated as: ∆= 0.0087 𝑚. Results of such 

analysis repeated for other levels of ductility are summarized in Table 4.3. 

Table 4.3: Base-shear, lateral displacement and SC based on SCRS (example 1). 

μ 2 4 6 8 

Base-Shear-Coefficient = A /g 0.322 0.18 0.15 0.13 

Base-shear, V1 (kN) 95 53.1 44.25 38.35 

Lateral Displacement, Δ (m) 0.0087 0.0049 0.004 0.0035 

θ 0.0092 0.0092 0.0089 0.0090 

It can be seen that the SCRS gives slightly higher results (compare Tables 4.2 and 

4.3), which is due to inclusion of the P-delta effect. However, and in agreement with 
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current state-of-practice, P-delta effect is quite negligible for small values of SC.  

More importantly, using the SCRS makes derivation of the base-shear of a SDOF 

system a one-step procedure; in other words, calculating the initial period of 

vibration, and hence, preliminary selection of the member sizes, is not necessary. 

Specifically, by use of Eq.(4.2), and setting the SC to a suitably selected value, the 

base-shear complying with a desired level of ductility can be found directly.  

4.5.2 Example 2: MDOF System 

As discussed earlier, Asimakopoulos et al. (2007) proposed a method for inclusion of 

the P-delta effect into the DDBD procedure. The method assumes that the maximum 

value of the dynamic-SC (the SC calculated under dynamic loading) over the height 

of a MDOF system sufficiently resembles the SC of the corresponding ESDOF 

system. Applicability of their method was shown on a numerical example, which is 

adopted here.  

Consider a two-bay, five-storey, steel-moment-resisting-frame with storey heights 

and bay widths equal to 3.0, and 4.0 m, respectively. The seismic weight acting on 

the structure is calculated based on a dead load of 25 kN/m, the self-weight of the 

frame members, and a live load of 10 kN/m. Live load participation factor is set to 

30%. Initially, IPE-300 and HEB-260 are used for beams and columns, respectively.  

The fundamental period of vibration was calculated as T1 = 1.242 (s). Here again, it is 

assumed that the 1999 Kocaeli earthquake, recorded at Yarimca, fully specifies the 

state of hazard.  

First, and based on a conventional response spectrum without P-delta effect, the 

base-shear and lateral forces are calculated. For T1 = 1.242(s) the base-shear 

coefficient is equal to 0.185g. This results in a base-shear of: 0.185 × 1201.778 =
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222.32 𝑘𝑁. After calculating the storey-wise lateral drifts and corresponding SCs, 

the floor shears are increased by the amplification factor 𝛼𝑖 = 1 (1 − 𝜃𝑖)⁄  defined in 

Eurocode 8. For the new set of lateral forces, the lateral drifts and corresponding SCs 

are re-calculated. Next, by use of the SCRS and FSSDOF system, and by setting the 

SC to the one which is calculated at the first-storey, a new base-shear is calculated. 

Results are summarized in Tables 4.4 and 4.5.  In addition, the difference in 

calculated drifts, floor forces, and floor shears are depicted in Figure 4.6.  

Results indicate that the FSSDOF system is quite capable of estimating storey-wise 

forces. The maximum difference between the FSSDOF and original case (without P-

delta effect) in estimating the floor shears reaches to 15.57%, which is due to 

inclusion of the P-delta effect. When compared to the amplified seismic actions, the 

FSSDOF estimates are higher, and vary between 10.18 to 13.91% at various floors.  

            Table 4.4: Results of example 2. 

 Mass-Spring (Without P-delta)  Amplified  

Floor 
Lateral 

Force (kN) 
Drift (m) SC  

Lateral Force 

(kN) 
Drift (m) SC  

1 15.15 0.0208 0.0376  15.75 0.0217 0.0377  

2 29.78 0.0299 0.0461  31.23 0.0312 0.0459  

3 44.68 0.0272 0.0367  46.38 0.0282 0.0367  

4 59.57 0.0208 0.0250  61.09 0.0215 0.0252  

5 73.14 0.0125 0.0135  74.17 0.0127 0.0135  

                Table 4.5: Results of example 2 (continued). 

 Mass-Spring (Without P-delta)  FSSDOF (SCRS) 

Floor 
Lateral 

Force (kN) 
Drift (m) SC  

Lateral 

Force (kN) 
Drift (m) SC 

1 15.15 0.0208 0.0376   17.51 0.0241 0.0376 

2 29.78 0.0299 0.0461   34.41 0.0347 0.0463 

3 44.68 0.0272 0.0367   51.61 0.0316 0.0369 

4 59.57 0.0208 0.0250   68.82 0.0241 0.0250 

5 73.14 0.0125 0.0135   84.50 0.0148 0.0138 
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Figure 4.6: Example 2: a) Lateral force distribution, b) Shear distribution, and c) 

Drift distribution. 

Using DDBD and based on extensive time history analysis,  Asimakopoulos et al. 

(2007) reported a 10.9% increase in the floor shears, compared to the case without P-

delta, which well agrees with the presented results.  In the mentioned study, a smooth 

code-based design spectrum was used.  However, in the above example a very jagged 

single record response spectrum is used, and hence, observing small deviations is not 

surprising. Additionally, underestimation of the Eurocode 8 amplification factors was 

reported in their study.  

The advantage of the FSSDOF system over the conventional MSD model is in the 

fact that by use of Eq.(4.5) and Figure 4.4, one can proceed with selection of the 

first-storey member sizes that comply with a given SC and code specified limits.  

Having said this, the maximum SC does not necessarily occur at the first-storey. For 

example, Tables 4.4 and 4.5 show that the maximum SC is calculated at the second-

storey. This is not important in the above presented example since the calculated SCs 

are well below code specified limits. Nonetheless, satisfying the SC limits at the 
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first-storey will present the minimum necessary lateral stiffness, and hence, 

minimum required member sizes at the first-storey.   

A further comparison of the results is performed against the relation proposed by 

Asimakopoulos et al. (2007) for the maximum storey-wise SC under dynamic 

loading. The mentioned relation estimates the maximum SC under dynamic loading 

as a function of the number of stories n and the ratio of the moment of inertia of the 

cross-section of columns to those of beams n1. For the above presented example, 

with 1.5 < 𝑛1 < 2.0, one has:  

 𝑆𝐶 = 𝛼𝑛𝑏 = 0.015 × 50.76 =0.05  (4.6) 

where values of 𝛼 and b correspond to subsoil class C. The FSSDOF system gives 

the maximum SC equal to 0.0463 at the second storey, which well agrees with 0.05.  

Noticeably, derivation of the base-shear and storey-wise lateral forces based on the 

SCRS and FSSDOF is period independent. In other words, setting preliminary 

dimensions for the members is not necessary; rather, selection of member sizes at the 

very early stages of a design process can be enhanced.   

4.6 FSSDOF System in the Context of Yield-Point-Spectra Method 

4.6.1 Pendulum Model Versus Mass-Spring System in Derivation of YPS 

Although limiting the SC is an important step in seismic resistance design, 

controlling the drifts usually imposes a more restrict condition on the final design. To 

control drifts, just like the SC, a designer should derive the floor forces and analyses 

the structure several times, with each step requiring the calculation of a new set of 

lateral forces (owing to changes in fundamental period). Obviously, this will result in 

more trials.  
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In their study, Aschheim and Black (2000), showed that the YPS, which is a 

constant-ductility-response-spectrum in terms of the yield-displacement versus 

spectral acceleration, can greatly enhance controlling displacements in a DDBD 

context. They advanced the method to include the P-delta effect through introducing 

the “effective-height” concept in a later study (Aschheim & Montes, 2003). The 

effective height was defined as the product of actual height by the ratio of the dead 

load to the total vertical load (dead plus live load). Having said this, the method does 

not recognize the period-dependent feature of SC. Explicitly speaking, P-delta effect 

is introduced by linearly increasing the spectral acceleration of a MSD model by a 

factor, which is inversely proportional to the effective-height (Aschheim & Montes, 

2003). Consequently, and by increasing period, a systematic underestimation of the 

P-delta effect can be observed in this method as well. Nevertheless, the idea behind 

the YPS method, which is plotting spectral acceleration versus yield-displacement, 

presents great opportunities for further improvements.  

If the constant-ductility-response-spectra of the pendulum model are plotted in terms 

of the yield-displacement, a modified version of the YPS in which period-

dependence of SC is considered will result.  For example, Figure. 4.7 shows the 

difference between pendulum model (modified) and MDS model (original) in 

derivation of the YPS. The P-delta effect is included in both modified and original 

YPS. Also, note that the modified YPS of Figure 4.7 is essentially a different 

presentation of Figure 4.1. On the other hand, establishing the effective-height is 

necessary for plotting the original YPS. An effective-height equal to the pendulum’s 

height (3.0 m) is adopted for construction of Figure 4.7. Additionally, the spectra of 

Figure 4.7 are constructed up to the same initial period, not the same yield-

displacement. Moreover, to emphasize on permissible SC values, results are limited 
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to a pendulum’s period of 2.0 (s), which results in a maximum first-storey yield-

displacement of 0.015m. Other assumptions are same as those assumed for 

construction of Figure 4.1. 

It can be seen that the divergence between the conventional and modified YPS is 

more significant for highly ductile systems. Effect of various levels of ductility on 

the modified YPS is depicted in Figure 4.8.   

The modified YPS accounts for the period-dependent feature of SC. Therefore, its 

application can be extended to MDOFs through the FSSDOF system. This will allow 

accounting for the displacement limits at the early stages of a design project; and 

hence, will present a yet more practical starting point. The mentioned issue is shown 

on a numerical example in the next subsection. 

 
Figure 4.7: Comparing original YPS derived base on mass-spring and pendulum 

models for various levels of ductility; a) μ=2, b) μ=4, c) μ=6, and, d) μ=8.  
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Figure 4.8: Yield point spectra based on pendulum model for various levels of 

ductility (μ=2,4,6 and 8).  

4.6.2 Example 3 

EC8 specifications, demand for inter-storey drifts to be limited, under a seismic 

action having a larger probability than the design seismic action corresponding to no-

collapse requirements. The limitations depend on brittleness of the non-structural 

elements. On the other hand Turkish seismic design specifications (TEC, 2018), 

demand for inter-storey drifts to be limited to  0.0035ℎ𝑖  in all conditions. In this 

example, the latter requirement will be followed.  

Suppose that for the given five-storey frame of example 2, it is desired to find 

member sizes to satisfy drift limitations imposed by Turkish standards. Obviously, 

this can be achieved by increasing lateral stiffness of the frame through several trials. 

However, as the lateral stiffness changes (increases) fundamental period of vibration 

also changes (decreases) and hence in each step a new set of lateral forces should be 

calculated. For the analysis, again it will be assumed that Kocaeli at Yarimca record 

fully defines the state of hazard. Table 4.6 summarizes some accomplished trials to 



58 

 

satisfy inter-storey drifts. Note that some intermediate trials are not presented for the 

sack of brevity. 

Table 4.6: Some selected iterations performed for example 3 to satisfy drift ratio 

limits. 

Floor 
1st trial  

IPE300 HEB300 

(T1= 0.93s) 

2nd  trial 

IPE330 HEB320 

(T1= 0.90s) 

3rd trial 

IPE330 HEB340 

(T1=0.85s) 

4th trial 

IPE400 HEB400 

(T1=0.67s) 

 Force (∆𝒊)/𝒉 Force (∆𝒊)/𝒉 Forces (∆𝒊)/𝒉 Forces (∆𝒊)/𝒉 

1 18.92 0.0070 18.68 0.0037 20.48 0.0037 16.38 0.0018 

2 37.19 0.0113 36.71 0.0061 40.25 0.0061 32.20 0.0029 

3 55.79 0.0107 55.06 0.0059 60.37 0.0059 48.30 0.0028 

4 74.38 0.0082 73.41 0.0046 80.50 0.0046 64.40 0.0022 

5 91.33 0.0050 90.14 0.0030 98.84 0.0030 79.07 0.0014 

Based on above trials a more refined result, with T1=0.7s, and a base-shear of 

252.37kN, was obtained. Frame members, floor forces, and corresponding drift ratios 

are presented in Table 4.7.  

Table 4.7: Finalized member sizes and corresponding drift ratios at various levels for 

example 3. 

Floor Beams Columns 
Forces 

(without P-delta) 
(∆𝒊)/𝒉 

1 IPE-400 HEB-400 17.20 0.0019 

2 IPE-400 HEB-400 33.81 0.0032 

3 IPE-360 HEB-360 50.71 0.0035 

4 IPE-360 HEB-360 67.62 0.0030 

5 IPE-360 HEB-360 83.03 0.0020 

If it was known from the beginning that the drift ratio at the first-storey is to be 

limited to 0.0019, by consulting with the spectra of Figure 4.8, one would have been 

able to calculate the final result in one-step. For the given frame, if drift ratio at the 

first-storey is limited to 0.0019, the spectrum of Figure 4.8 gives a base-shear 

coefficient of 0.225g, with a corresponding base-shear of 270.4 kN. Compared to the 

previously calculated base-shear, this means a 6% difference, which is because of P-

delta effects. 
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The calculated base-shear is then used to derive a new set of lateral forces and the 

resultant storey-wise drift ratios, together with those calculated through time history 

analysis are presented in Table 7. It can be seen that the differences are quite 

negligible.  

Table 4.8: Comparing drift ratios calculated based on the modified YPS to the time 

history results (example 3). 

Floor 

(∆𝒊)/𝒉 

Modified YPS by use of the FSSDOF 
 

Time History 

1 0.0020  0.0016 

2 0.0033  0.0027 

3 0.0037  0.0030 

4 0.0032  0.0026 

5 0.0021  0.0017 

Having said this, one needs a prior knowledge on the drift ratio limit at the first-

storey such that code requirements at all other levels are satisfied. In absence of such 

information, it is possible to set the minimum necessary lateral stiffness, based on 

drift ratio limits at the first-storey.   
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Chapter 5 

5 EFFECT OF VERTICAL COMPONENT OF GROUND 

MOTION ON GLOBAL RESPONSE 

5.1  Introduction 

As stated earlier, evaluating the potential effects of the VCGM on the global 

response has been the subject of some studies. Effect of the VCGM could be 

considered in two categories. First, it may initiate some modes of failure, like over-

compression, and second, it could adversely influence the horizontal response 

through altering the P-delta effect. The latter is a result of variations of the 

gravitational acceleration, and hence seismic weight, upon action of the VCGM.  

On the other hand, previous literature indicates on the unfavorable effect of the P-

delta effect on the maximum-inelastic-horizontal-response (C Adam & Ibarra, 2015; 

Christoph Adam & Jäger, 2012a; Amara et al., 2014; Asimakopoulos et al., 2007; 

Bernal, 1998; Gupta & Krawinkler, 2000; Jough & Şensoy, 2016; López et al., 2015; 

Rahimi & Estekanchi, 2015). Henceforth, it seems quite reasonable to expect 

variations of the horizontal response upon inclusion of the VCGM in the analysis. 

However, potential influences of the VCGM on the maximum-inelastic-horizontal-

response, and specifically, its capability to initiate dynamic instability is still a matter 

of question.  This might be due to the fact that during field observation representing 

confident evidence for damage from VCGM is a challenging task (Kunnath, Erduran, 
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Chai, & Yashinsky, 2008). Accordingly, distinguishing possible effects of the 

VCGM on the horizontal response might be even more challenging. Hence, 

theoretical approaches might be necessary.  

In response to above mentioned issues, present study discusses: (i) the significance of 

inclusion of the VCGM on the P-delta effect, and in turn, on the maximum-inelastic-

horizontal-response of SDOFs, especially at far distances from the source, (ii) the 

influence of the initial period of vibration and strength reduction factor on deviations 

of the horizontal-response of SDOFs upon inclusion of the VCGM, and particularly, 

(iii) capability of the VCGM to initiate dynamic instability. 

5.2  Record Selection and Framework 

Among various parameters, which may have influential impacts on the response 

under coupled action of earthquake components, present study tries to highlight 

effects of period of vibration and strength reduction factor. To this end, and by 

means of time-history analysis, the maximum-inelastic-horizontal-response under 

biaxial excitation, ∅𝐻+𝑉, is compared to the corresponding response under uniaxial 

excitation, ∅𝐻.  

The main reason for selecting the maximum-inelastic-response as the representative 

engineering parameter is that comparing maximum response of various systems, with 

different characteristics, is a well-tested routine in earthquake engineering (Ruiz‐

García & Miranda, 2003). In addition, maximum response has found various 

applications, like calculation of the ductility-demand imposed on a system (Chopra, 

2007), quantification of the state of damage (Williamson, 2003), evaluation of 
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collapse through monitoring the maximum response under incrementally increased 

excitations (Vamvatsikos & Cornell, 2002), etc.   

To evaluate effects of the VCGM present study uses time-history-analysis. Having 

said this, application of time-history analysis demands for careful selection of input 

motions (C. Haselton et al., 2012).  Obviously for the purpose of present study the 

record selection scheme cannot be based on currently available selection and scaling 

strategies.  This is mainly due to the fact that the available record selection methods 

use uncoupled mass-spring vibrators in horizontal and vertical directions (Baker & 

Lee, 2017). Hence, although a given set of recorded motions may appropriately 

represent the state of hazard in one direction, its effectiveness in representing the 

state of hazard under coupled action of earthquake components is not clear (Çağnan 

et al., 2017). Therefore, one may need to separately select vertical and horizontal 

components, which might logically be questioned. 

Therefore, present study follows two steps to avoid undesirable bias. The first step, 

which focuses on examining the influence of some important parameters, and 

evaluating possible effects of the VCGM at far field, adopts a set of 12 records based 

on an event based record selection scheme. In other words, specific examples from 

available recorded motions corresponding to three major events, Table 5.1, are 

carefully selected to enhance further discussions. The second step evaluates 

capability of the VCGM to initiate dynamic instability. This step adopts a set of 26 

records, Table 5.2, which resembles an assumed target spectrum, Figure 5.1, at a near 

field site. Moreover, previous literature indicates that the SC (Eq.(2.6)) is a period-

dependent parameter and reliable treatment of the P-delta effect demands for 
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consideration of this issue (Aydınoğlu & Fahjan, 2003). Therefore, in this study 

period-dependence of the SC is considered. 

Table 5.1: 12 records corresponding to three major events of 1994 Northridge 

(USA), 1995 Kobe (Japan), and 1999 Kocaeli (Turkey) earthquakes. 

Event Magnitude station Rjb (km) 
PGAH   

(g) 
V/H Vs30(m/s) 

Kocaeli 7.51 

Yarimca 1.38 0.23 0.92 297 

Iznik 30.73 0.12 0.60 476 

Istanbul 49.66 0.04 0.69 595 

Duzce 13.6 0.31 0.65 281 

Northridge 6.69 

Arleta Nord Hoff Fire Sta. 3.30 0.34 1.6 297 

La Saturn 21.17 0.47 0.21 308 

Antelope Butts 46.65 0.10 0.42 572 

Newhall W-Pico Canyon 2.11 0.42 0.70 285 

Kobe 6.90 

Kobe University 0.9 0.27 1.66 1043 

Kakogawa 22.5 0.24 0.71 312 

Chihaya 49.91 0.11 0.64 609 

Port Island 3.31 0.29 1.97 198 

 

 
Figure 5.1: The selected target spectrum for the second step of analysis. 
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Table 5.2: The set of selected records complying with the target spectrum of Figure 

11. 

Earthquake  
Yea

r 
Station  

Magnitud

e 

Rjb 

(km) 

Rrup 

(km) 
Component 

PGAH

(g) 

V/

H 

Imperial Valley-06 1979 Agrarias 6.53 0.00 0.65 

AGR003 0.28 1.64 

AGR273 0.19 2.47 

Imperial Valley-06 1979 El Centro Array #5 6.53 1.76 3.95 

E05140 0.53 1.11 

E05230 0.38 1.55 

Superstition Hills-02* 1987 Parachute Test Site 6.54 0.95 0.95 

B-PTS225 - - 

B-PTS315 - - 

Landers 1992 Lucerne 7.28 2.19 2.19 

LCN260 0.72 1.14 

LCN345 0.79 1.04 

Kobe-Japan 1995 KJMA 6.90 0.94 0.96 

KJM000 0.83 0.40 

KJM090 0.62 0.53 

Kobe-Japan 1995 Takarazuka 6.90 0.00 0.27 

TAZ000 0.69 0.61 

TAZ090 0.61 0.69 

Kobe-Japan 1995 Takatori 6.90 1.46 1.47 

TAK000 0.67 0.42 

TAK090 0.61 0.46 

Bam-Iran 2003 Bam 6.60 0.05 1.70 

BAM-L 0.80 1.21 

BAM-T 0.63 1.54 

Parkfield-02-CA 2004 Parkfield - EADES 6.00 1.37 2.85 

EADES-90 0.32 0.59 

EADES360 0.39 0.49 

Parkfield-02-CA 2004 
Parkfield - Cholame 

1E 
6.00 1.66 3.00 

C01090 0.44 0.52 

C01360 0.36 0.64 

Parkfield-02-CA 2004 
Parkfield - Fault Zone 
9 

6.00 1.22 2.85 

Z09090 0.15 0.63 

Z09360 0.097 0.97 

Darfield-New Zealand 2010 GDLC 7.00 1.22 1.22 

GDLCN5W 0.76 1.63 

GDLCS35

W 
0.70 1.77 

Duzce-Turkey 1999 IRIGM 487 7.14 2.65 2.65 

487-NS 0.3 0.76 

487-EW 0.28 0.82 

* indicates that vertical component of the mentioned record was not available and hence it was eliminated from the 
analysis.  

 



65 

 

5.3  Variation of Stability Coefficient 

Close inspection of Eq.(2.1) shows that the P-delta effect and VCGM similarly affect 

a system’s resistance. However, they may magnify or reduce each other’s effect 

depending on whether VCGM acts in-phase with the gravitational acceleration or not 

(Graizer & Kalkan, 2008). This might be shown by noting that upon action of the 

VCGM, and in analogy with Eq.(2.3), Eq.(2.6) can be modified as: 

 SCV = 𝜃𝑉 =
𝑃 + 𝑃∗

𝐾∅0.
ℎ =

𝜔𝐺𝑉
2

𝜔0
2  (5.1) 

where, 𝑆𝐶𝑉 = 𝜃𝑉 denotes the SC in presense of theVCGM, 𝑃∗ = 𝑚�̈�𝑣 , and,  𝜔𝐺𝑉
2 =

(𝑔 + �̈�𝑣) ℎ⁄ . It follows that, Eq.(2.7) might be modified as: 

 𝑚ℎ2∅̈ − 𝜔𝐺𝑉
2 𝑠𝑖𝑛 ∅ + 𝑚�̈�ℎℎ cos ∅ + 𝑀(∅) + 𝑐∅∅̇ = 0 (5.2)  

In addition, owing to time-dependent variations of  �̈�𝑣, SCV is a dynamic variable. 

For example, Figure 5.2 shows time-dependent variations of the SC under action of 

the vertical component of 1995 Kobe earthquake, recorded at Port Island. 

 
Figure 5.2: a) horizontal and vertical acceleration time histories of the1995 Kobe 

earthquake recorded at Port Island, b) time-dependent variations of the SC under 

uniaxial (constant) and bi-axial excitations of the same record. 
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This phenomenon indicates that in a given time instance the value of SCV might be 

significantly different from SC. Therefore, VCGM may significantly affect the 

maximum-inelastic-horizontal-response, and in turn, the state of damage 

(Williamson, 2003).  

Moreover, although coincidence of vertical and horizontal peaks might be considered 

as the worst scenario, happenstance of a sufficiently large vertical acceleration with a 

sufficiently large horizontal one is enough to considerably alter a system’s SC, and 

consequently, its inelastic response. Thus, value of the vertical acceleration in a 

decisive time instant, and whether it acts in-phase with gravitational acceleration or 

not, may significantly affect a system’s performance. 

5.4  Analysis and Results 

As mentioned above, this study is accomplished in two steps. In the first step, and by 

use of the set of  recorded motions of Table 5.1, maximum-inelastic-rotations of 5% 

damped bilinear SDOF systems, with a post-yield stiffness equal to 5% of the initial 

stiffness, under bi-axial excitations are compared to their uniaxial counterparts. 

Systems with initial periods between 0.2 to 2.0s, with four levels of strength 

reduction factor (R=2,4,6 and 8) are considered. Detailed time history analysis 

reveals that both period of vibration and strength reduction factor influence the 

maximum-inelastic-horizontal-response under biaxial excitation. Figure 5.3 

demonstrates the average fluctuations of the maximum-inelastic-rotations due to 

action of the VCGM over the selected records. 

On average, effet of the VCGM on maximum-inelastic-horizontal-response is 

significant for systems with initial periods ranging from 1.0 to 2.0s. This might be 
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attributed to the period-dependent feature of SC. In the short period range, value of 

the SC is so small that it does not affect the response, even though presence of the 

VCGM fluctuates it. On the other hand, for long period systems, and even under 

uniaxial excitation, the SC becomes so large that results in negative-post-yield-

stiffness, which in turn causes dynamic instability. Henceforth, effect of VCGM may 

be considered as to increase the rate with which dynamic instability occures.  

 
Figure 5.3: Ratio of maximum inelastic rotation under biaxial excitation, MIRV+H, to 

the maximum inelastic rotation under horizontal excitation only, MIRH. (R=2, 4, 6 

and 8).  

In contrast, effect of VCGM is quite significant for,say, medium range of initial 

periods. In the mentioned range, SC is large enough to approximately cancel the 

hardening. As a result, for some records, and upon inclusion of VCGM, system may 

experince negative-post-yield-stiffness while its counterpart under uniaxial excitation 

still shows positive or zero post-yield-stiffness. Therefore, difference between 

responces under bi-axial and uniaxial excitations are more significant in the medium 

range of initial periods.  
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Because of strong record-to-record variation of results, and following the event-

based selection of records, in the subsequent section an event-based discussion is 

presented.  

5.5  Event-Based Discussion of Results 

5.5.1 Event 1: Kocaeli Earthquake 

On the 17 August 1999 an earthquake occurred on the North-Anatolian-Fault with 

devastating consequences. The Kocaeli earthquake was a magnitude 7.51 strikeslip 

earthquake, which struk the densly occupied residential and industerial regions in the 

Turkey. The event caused serious casualties as well as great economic losses (Erdik, 

2001). The event was recorded at various stations and substantially added to existing 

near field data. The Kocaeli earthquake has been followed by extensive studies and 

has gained some international importance for further research (Bommer et al., 2002; 

Erdik & Nuray Aydinoglu, 2011). Having said this, possible effects of VCGM on the 

horizontal response, and consequently, on the degree of experienced damage during 

the Kocaeli earthquake has received lesser attention.  

As showm in Table 5.1, four of the recorded motions corresponding to Kocaeli 

earthquake were used in this study. Figure 5.4 shows the ratio of the maximum-

inelastic response under biaxial excitation to the uniaxial one for the mentioned 

records. It can be seen that VCGM increases the horizontal respose at Yarimca and 

Iznik, decreases the response at Duzce, and has trivial effect on the response at 

Istanbul.  
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Figure 5.4: Ratio of the maximum-inelastic horizontal response under biaxial 

excitation to the maximum-inelastic horizontal response under uniaxial excitation 

under action of 1999 Kocaeli earthquake recorded at: a) Yarimca, b) Iznik, c) 

Istanbul and d) Duzce.   

While effect of the period of vibration can be explained based on period-dependence 

of SC, effects of strength reduction factor and distance to source present great 

complications. Explicitly, while in previous literature effect of VCGM is considered 

to be more significant at near fault regions,  Figure 5 shows that its maximum effect 

on horizontal response corresponds to Iznik record, some 30 km away from the 

source. This might be attributed to the fact that in evaluating possible effects of 

VCGM, previous studies are mostly focused on its engineering characteristics 

(Elgamal & He, 2004), not its effect on horizontal response.  

On the other hand,  for the two records which inclusion of the VCGM resulted in 

increased inelastic response (Yarimca and Iznik), situation is more serious for highly 

ductile systems (R=6 and 8). Even at Istanbul, where VCGM has almost no effect on 
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the response, very little variations of the response can be observed for R=8. 

Contradictory, under action of Duzce record, response of highly ductile systems is 

reduced. Furthermore, under action of Iznik record, and for a system with R=4, upon 

inclusion of VCGM, both increase and decrease of the horizontal response can be 

observed.  

5.5.2 Event 2: Kobe Earthquake 

The January 17, 1995 Kobe earthquake was a magnitude 6.9 strike slip  earthquake 

which was considered one of the most sever events in the past century (Horwich, 

2000). The event is another example which clearly demonstrates destructive potential 

of VCGM (Papazoglou & Elnashai, 1996). Variation of the ratio of the maxumum-

inelastic horizontal response under bi-axial excitation, to the uniaxial one, under 

action of four records (Table 5.1) correspnding to Kobe earthquake are shown in 

Figure 5.5. This example not only confirms the previously presented difficulties 

regarding interpreting effects of distance to source and R-factor, but also provides 

evidence for capability of VCGM to initiate dynamic instability.   

Figures 5.5-a, b and c show that variation of the maximum-inelastic response, with 

the exception of Chihaya record for R=2, remains within ± 5%. For the Chihaya 

record, however, maximum response of a system with R=2 shows an increase of 

about 15%. Considering the distance of the recording station, Chihaya record  is 

another example which violates the general idea of negligible effect of VCGM at far 

distances. On the other hand, the Kobe university and Kakogawa records show a 

clear contradiction regarding influence of strength-reduction factor. Under action of 

Kobe university record, inclusion of VCGM increases the response of highly ductile 

and ductile systems. Contradictory, for Kakogawa record, VCGM causes a reduction 



71 

 

in the response of highly ductile systems while it increases the response of systems 

with low levels of ductility.   

 
Figure 5.5: Ratio of the maximum-inelastic horizontal response under biaxial 

excitation to the maximum-inelastic horizontal response under uniaxial excitation 

under action of 1995 Kobe earthquake recorded at: a) Kobe University, b) Chihaya, 

c) Kakogawa and d) Port Island. 

The Port Island record obviously shows the most interesting results. Boundary of the 

Figure 6-d is limited to 1.2 for presentation consistency.  However, the results show 

significantly larger values, which might be considered as an indication for collapse. 

Due to attention-grabbing results of the Port Island record, full range of the Figure 

5.5-d is replotted in Figure 5.6.  

Figure 5.6 can be considered as a clear example which indicates capability of VCGM 

to cause collapse. Under action of the mentioned record, and for all levels of the 

strength reduction factor, the inelastic response under biaxial excitation is 
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substantially larger than its counterpart under uniaxial excitation. The amount of 

difference identifies that the system under bi-axial excitation might have collapsed. 

This is confirmed in Figure 5.7, where evolution of inelastic-response for a system 

with an initial period of T = 1.35s and R=6, under uniaxial and biaxial action of the 

Port Island record, are compared. 

 
Figure 5.6: Ratio of the maximum-inelastic horizontal response under biaxial 

excitation to the maximum-inelastic horizontal response under uniaxial excitation 

under action of 1995 Kobe earthquake recorded at Port Island. 

 
Figure 5.7: Evolution of inelastic-rotation response under uniaxial and biaxial action 

of Kobe earthquake recorded at Port Island. 
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Obviously, the VCGM not only results in increased inelastic horizontal response, but 

also in certain cases could cause collapse.  Having said this, one may argue that the 

presented record is a unique example. However, the mentioned phenomenon was 

encountered again during evaluation of Northridge earthquake, as will be presented 

next. 

5.5.3 Event 3: Northridge Earthquake 

The January 17, 1994 Northridge earthquake was a magnitude 6.69 reverse 

earthquake. In line with previously presented events, four of the recorded motions 

during the 1994 Northridge earthquake are analyzed in present study (Table 5.1). 

Variation of the ratio of the maximum-inelastic horizontal response under biaxial 

excitation to the uniaxial one, under action of four records (Table 5.1) corresponding 

to Northridge earthquake are shown in Figure 5.8. 

 
Figure 5.8: Ratio of the maximum-inelastic horizontal response under biaxial 

excitation to the maximum-inelastic horizontal response under uniaxial excitation 

under action of 1994 Northridge earthquake recorded at: a) Newhall Wpico 

Canyoun, b) Nordhoff Fire Station, c) LA Saturn and d) Antelop Butts. 
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While action of VCGM is trivial for the LA Saturn record, the Antelope Butts record 

shows how important the effect of VCGM might be at far-field sites. For systems 

with R=2, the maximum response under biaxial action of Antelope Butts record is 

about 20% larger than its response under uniaxial excitation. Moreover, Figures 5.8-

a, b and c indicate on complications regarding influence  of the strength reduction 

factor and initial period on the fluctuations of response under biaxial excitation.   

Interesting results were obtained under action of the Newhall-Wpico Canyon record. 

The full range of the Figure 5.8-a, corresponding to the mentioned record is 

presented in Figure 5.9. It can be seen that, for certain combinations of strength 

reduction factor and initial period, systems under biaxial excitation loose their 

stability. Another example for capabality of the VCGM to cause dynamic instability.   

 
Figure 5.9: Ratio of the maximum-inelastic horizontal response under biaxial 

excitation to the maximum-inelastic horizontal response under uniaxial excitation 

under action of 1994 Northridge earthquake recorded at Newhall-Wpico Canyon. 

Capability of VCGM to initiate dynamic instability is a very important issue, with 

significant consequences, which needs further investigation. To this end, the next 

step emphasizes on this phenomenon.   
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5.6  Capability of VCGM to Initiate Dynamic Instability 

The major aim of the second step is to examine possibility of observing dynamic 

instability under biaxial action of a set of recorded motions, which are selected based 

on currently available selection and scaling strategies. To this end, the spectrum 

matching method implemented in the PEER-NGA2 Ground Motion Database is 

adopted to select and scale a set of records representing a near-field site in Turkey. 

All records are selected from strike slip category and geometric mean of their 

horizontal components is used for scaling. The adopted target spectrum and the 

selected bin of recorded motions were presented in Figure 5.2, and Table 5.2, 

respectively.  

When records were selected, an important question was confronted; that is, how the 

vertical components should be scaled if scaled horizontal components are going to be 

used. Close inspection of Eq.(5.1) shows that the value of vertical acceleration 

directly affects the system’s resistance. Hence, any method for scaling VCGM needs 

to be tested before implementation. Moreover, capability of current state of selecting 

and scaling strategies in reflecting effect of VCGM on the horizontal response is still 

a matter of question. To prevent undesireable bias in analysis due to misscaling the 

vertical components, it was decided to use the unscaled version of records. 

Furthermore, vertical component of one of the records was not available, hence it 

was eliminated from analysis; resulting in a total of 24 remaining records. 

In the second step, 6 levels of R-factor (from 1 to 6) are used. In addition, and 

following the results of the first step,  systems with initial periods between 1.0 to 2.0s 

are considered. 
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Inclusion of VCGM caused dynamic instability under action of four of the records, 

which are presented in Figure 5.10. This observation reconfirms potential capability 

of VCGM to cause collapse. Results of Figure 5.10, together with those of Kobe and 

Northridge earthquakes can serve as counter examples which point to importance of 

considering VCGM, at least for certain combinations of initial period and R-factor, 

in collapse evaluation. 

Moreover, and as shown in Figure 5.11, significant variation of inelastic response 

under biaxial action of three records was observed. For the rest of records, inclusion 

of the VCGM resulted in insignificnt variation of horizontal response. 

 
Figure 5.10: Ratio of maximum-inelastic horizontal response under biaxial excitation 

to the maximum-inelastic horizontal response under uniaxial excitation under action 

of a) Bam, b) Park Field, c) Darfield, and d) Landers. 
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Figure 5.11: Ratio of the maximum-inelastic horizontal response under biaxial 

excitation to the maximum-inelastic horizontal response under uniaxial excitation 

under action of a) Duzce (NS) , b) Park Field Z09 (360), and c) Park Field Z09 (090). 
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Chapter 6 

6 CONCLUSIONS 

The present study has followed a two-fold aim. First, it has tried to present a different 

perspective in treating the P-delta effect by proposing an alternative response 

spectrum. To this end, it was noted that current code specified limits are imposed on 

the storey-wise SCs, not fundamental period of vibration. On the other hand, 

previous literature indicates that the SC is a period-dependent parameter, which 

presents an opportunity to plot spectral information against SC, instead of period. 

Such spectra were developed based on an inverted-pendulum model and were 

referred to as SCRS. It was debated that such a model not only satisfies all the 

necessary requirements of SDOFs, but also the period-dependent feature of SC can 

be considered. Moreover,  P-delta effect is inherent in the pendulum’s governing 

equation of motion, and hence, its effect on the response spectra is directly 

considered. It was also indicated that upon adaptation of the period-dependent SC, 

the inverted-pendulum formulation is equivalent to the UPEM, and hence, it retains 

all advantages of the mentioned method in terms of consistency and accuracy.  

It was discussed that unlike constant SC, using period-dependent SC prevents 

underestimation of the P-delta effect by increasing period. The mentioned 

phenomenon, which seems to be more significant for highly ductile systems, was 

further tested on a set of records. Results indicate on a systematic underestimation of 
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the P-delta effect, by use of the amplification factors; and likewise, an overestimation 

of the SC limit below which the P-delta effect is considered negligible.   

To extend application of the SCRS to derivation of the base-shear of MDOFs, it was 

noted that limiting the SC at various levels of a MDOF is equivalent to imposing an 

upper limit on the individual-storey-periods. Among various stories of a MDOF, the 

first-storey is an especial case with some specific features; for instance, input motion 

at the first-storey is known, shear at the first-storey is equal to the base-shear, and its 

height rarely changes during design. The mentioned properties permit introduction of 

a new SDOF system, namely: the FSSDOF system, with further practical advantages. 

It should be noted that the FSSDOF system is not aimed to simulate dynamic 

characteristics of the original MDOF system; rather, it is a practical tool that enables 

extension of the SCRS to calculation of the base-shear of MDOF systems. Further, it 

was discussed that derivation of a modified version of the YPS, in which the period-

dependent feature of SC is considered, permits accounting for the drift-ratio limits at 

early stages of a design project.  

On the other hand, the maximum calculated SC, or drift ratio, does not necessarily 

occur at the first-storey. However, the use of the SCRS and FSSDOF system permits 

setting the minimum necessary lateral stiffness, complying with the code specified 

limits, at the very early stages of design. 

It is worth mentioning that since present study focuses on design of new structures, 

in developing the presented discussions only bilinear material behavior with 5% 

hardening and 5% damping were used. Moreover, for assessing the suitability of the 

amplification factors a set of strike-slip earthquakes recorded at near field was used. 
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In addition, applicability of the FSSDOF system was tested on regular SMRFs. Thus, 

based on the presented discussions, and limited to the adopted assumptions, it can be 

concluded that: 

 Consideration of the P-delta effect in both strength based, and displacement 

based design approaches can be enhanced by using an alternative response 

spectrum in terms of SC, instead of fundamental period of vibration. 

 The notion of SCRS permits accounting for the SC limits from early stages of 

a design process.  

 By use of the notion of FSSDOF system, it is possible to set the minimum 

necessary lateral stiffness, complying with a given ductility, and based on the 

code specified limits, from early stages of a design process.  

 The modified YPS provides an opportunity to account for the drift ratio 

limits. Thus, it facilitates using the FSSDOF in the DDBD context. 

Second, the fifth chapter has investigated possible effects of the VCGM on the 

maximum-inelastic horizontal response. Since available record selection methods 

rely on uncoupled vibratos in horizontal and vertical directions, present study has 

followed two steps. In the first step, an event-based record selection has been 

adopted, while the second step has followed an available selection strategy. 

Moreover, initial period of vibration, strength reduction factor, and distance to source 

has been used as engineering variables for this investigation. 

Based on presented discussions, and limited to the range of investigated parameters, 

below conclusions can be drawn: 
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 For some combinations of the initial period of vibration and strength 

reduction factor, inclusion of the VCGM significantly affects the maximum-

inelastic-horizontal-response of SDOF systems. This is due to variation of the 

P-delta effect because of variation of gravitational acceleration. The 

mentioned effect is significant for systems with initial periods ranging 

approximately from 1.0 to 2.0 s. This was attributed to period-dependent 

feature of SC.  

 Effect of the VCGM on the maximum-inelastic-horizontal-response is not 

limited to near field regions.  

 The presented examples suggest that inclusion of VCGM may cause an 

increase or decrease in the imposed ductility demand; hence, attributing all 

the observed damage resulting from increased ductility demand to the 

horizontal component of ground motion may cause misevaluation.  

 Although previous literature qualitatively discusses the potential capabilities 

of the VCGM to initiate dynamic instability, present investigation presents 

specific examples of occurrence of dynamic instability. Therefore, it suggests 

consideration of the VCGM for collapse evaluation.  

 

Furthermore, in the third chapter the geometrically linear and nonlinear equations of 

motion were compared. Based on whether SC is equal to or greater than material 

hardening two major cases were considered. Based on the presented results, and 

limited to the range of adopted parameters, it can be concluded that: 

 When the SC is equal to the material hardening including the geometric 

nonlinearity will significantly affect the calculated ductility demand. This 

issue becomes especially important for estimating the maximum-inelastic-
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rotations (displacements). It was also found that variation of the relative 

strength and frequency and amplitude of the excitation affect the differences 

in calculated ductility demands.  

 On the other hand, in addition to the calculated ductility demands,  when the 

SC is larger than material hardening the differences between the two 

formulations are manifested in terms of the stability of the solution. While 

the geometrically linear system loses its stability, the geometrically nonlinear 

system shows stable behavior. This phenomenon might enhance the 

convergence problems encountered in applications dealing with large 

displacements. Furthermore, it will enhance a more detailed understanding of 

full range behavior of a system, from elastic to inelastic, and, eventually to 

collapse stage. 

Further investigation of the possible effects of the VCGM on real structures might be 

performed in light of the results of present study. Moreover, the SCRS and FSSDOF 

might be further extended to irregular MDOFs. 
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