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ABSTRACT 

One of the most critical issues in pavement asset management is evaluating the 

performance of the roads and highways. This crucial task is currently handled by 

regular manual inspection in many countries, which is inaccurate and sometimes 

dangerous. However, this inspection is processed automatically utilizing specifically 

designed vehicles in some developed countries; many municipalities and road agencies 

worldwide are still using manual methods due to the high expenses of purchasing and 

maintaining specific vehicles. Due to the recent advancements in computer vision, 

researchers and scholars use deep learning technology to enhance road inspection. 

Some high-tech infrastructure cities benefit from this technology to handle various 

infrastructural issues. Roads and pavements are no exception in this area. Currently, 

some intelligent cities are using deep learning technology to evaluate road 

performance. Pavement distress detection is one of the critical issues in this field. 

Many researchers worldwide use deep learning technics, expressly object detection 

algorithms, to automate road performance evaluation. 

This study aims to provide a robust and reliable model for detecting and classifying 

several types of pavement distresses with high accuracy. Road agencies and 

municipalities could use this model to collect data on road sections conveniently and 

affordably. In this case, authorities could monitor the pavement condition in short 

intervals and make appropriate decisions on maintenance and rehabilitation strategies 

and methods which could result in maintaining the performance of the pavement an 

acceptable quality by lower costs. 
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This study developed a model to detect and classify pavement distresses on the surface 

of the road utilizing state of the art deep learning algorithm (YOLOv5) as well as most 

recent prominent optimization strategies such as data augmentation and 

hyperparameter tuning to propose an accurate, robust, and reliable model. 628 top-

down view pavement images used in this study were captured in several cities in the 

U.S., including various distress types such as alligator cracking, longitudinal cracking, 

transverse cracking, block cracking, patching, sealing, and manhole. The performance 

of the proposed model is evaluated based on several criteria. The model's accuracy 

reached 0.95, 0.92, and 0.93 in precision, recall, and F1 score, respectively.  

Keywords: pavement  asset  management, automatic   road   condition   monitoring, 

pavement distress detection, artificial intelligence, deep learning. 
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ÖZ 

Üstyapı varlık yönetimindeki en kritik konulardan biri yolların ve otoyolların 

performansının değerlendirilmesidir. Bu çok önemli görev, şu anda birçok ülkede 

hatalı ve bazen tehlikeli olabilen insan gücü ile gerçekleştirilmektedir. Bu muayene 

bazı gelişmiş ülkelerde özel olarak tasarlanmış araçlar kullanılarak otomatik olarak 

işlenmesine rağmen, dünya çapında birçok belediye ve karayolu kurumu, belirli 

araçların satın alınması ve bakımının yüksek maliyetleri nedeniyle hala insan gücü 

kullanmaya devam etmektedir. Bilgisayarlı görü alanındaki son gelişmeler nedeniyle, 

araştırmacılar ve akademisyenler, yol denetimini geliştirmek için derin öğrenme 

teknolojisini kullanıyor. Bazı yüksek teknolojili altyapı şehirleri, çeşitli altyapı 

sorunlarını ele almak için bu teknolojiden yararlanır. Yollar ve kaldırımlar bu alanda 

bir istisna değildir. Şu anda bazı akıllı şehirler, yol performansını değerlendirmek için 

derin öğrenme teknolojisini kullanıyor. Üstyapı tehlike tespiti bu alandaki kritik 

konulardan biridir. Dünya çapında birçok araştırmacı, yol performans 

değerlendirmesini otomatikleştirmek için derin öğrenme tekniklerini, özellikle nesne 

algılama algoritmalarını kullanır. 

Bu çalışma, çeşitli üstyapı bozulma tiplerini yüksek doğrulukla tespit etmek ve 

sınıflandırmak için sağlam ve güvenilir bir model sağlamayı amaçlamaktadır. Yol 

ajansları ve belediyeler, yol kesimleri hakkında uygun olan ve düşük maliyetli 

yöntemlerle veri toplamak için bu modeli kullanabilir. Bu durumda yetkililer, 

üstyapının durumunu kısa aralıklarla izleyebilir ve üstyapı performansının daha düşük 

maliyetlerle kabul edilebilir bir kalitede sürdürülebilmesine yardımcı olacak bakım ve 

iyileştirme stratejileri ve yöntemleri konusunda uygun kararlar verebilir. 
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Bu çalışma, son teknoloji derin öğrenme algoritmasını (YOLOv5) ve ayrıca veri 

büyütme ve hiperparametre ayarlama gibi en son öne çıkan optimizasyon stratejilerini 

kullanarak yol yüzeyindeki kaplama bozukluklarını tespit etmek ve sınıflandırmak için 

doğru, sağlam ve güvenilir bir model geliştirdi. Bu çalışmada kullanılan, ABD’deki 

çeşitli şehirlerden alınmış 628 yukarıdan aşağıya görünüm kaldırım resimleri timsah 

sırtı çatlaması, boyuna çatlama, enine çatlama, blok çatlaması, yama, sızdırmazlık ve 

menhol gibi çeşitli bozukluk türlerini aktarmaktadır. Önerilen modelin performansı 

çeşitli kriterlere göre değerlendirildi. Modelin doğruluğu kesinlik, hatırlama ve F1 

puanlarında sırasıyla 0.95, 0.92 ve 0.93'e ulaştı. 

Anahtar Kelimeler: üstyapı varlık yönetimi, otomatik yol durumu izleme, üstyapı 

tehlike tespiti, yapay zeka, derin öğrenme. 
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Chapter 1 

INTRODUCTION 

1.1 Background 

Transportation plays a significant role in today's society. Higher quality of 

transportation systems could result in a lower cost of accessibility for goods and 

services as well as less environmental contamination. Pavements are one of the most 

crucial parts of transportation in every society. It is essential to construct and maintain 

these invaluable assets in an optimized manner. Pavement Management System (PMS) 

represents the efficient management of the roads and highway assets (Haas, Hudson, 

& Zaniewski, 1994). This concept includes decision-making on constructing new 

roads and highways and maintaining strategies for the current roads. PMS utilizes 

various tools to provide the optimum decisions and funding strategies. One of the most 

critical issues in this topic is evaluating the performance of the pavement and 

predicting the serviceability for each specific road section. The accuracy of pavement 

evaluation helps the agencies make better decisions on pavement treatment methods, 

resulting in higher pavement performance and lower cost. 

1.2 Problem Statement 

Pavement Condition Evaluation (PCE) is one of the most crucial issues in PMS 

(Pavement Management System) (Haas, Hudson, & Falls, 2015). It is essential for road 

agencies and municipalities to acquire robust and reliable data regarding the distresses 

and deficiencies of the roads in various stages for the entire lifetime of the pavements. 

The process of collecting the road data could be done in several ways. First and the 
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traditional manner is collecting the data manually using virtual inspection. This 

method has several deficiencies, such as the low accuracy of the collected data and the 

danger of data collection on highways with high traffic loads. 

Furthermore, it could sometimes be impossible to acquire the appropriate data quality 

on some roads with 24/7 traffic, such as New York City roads. The second method of 

collecting the data is automated data collection utilizing some specifically designed 

vehicles. For instance, Automatic Road Analyzer (ARAN) is a vehicle equipped with 

high-precision sensors to collect pavement data automatically. The cost of purchasing 

such a vehicle could be more than one million dollars and additional thousands of 

dollars monthly for maintaining the device. Although the accuracy of this method is 

higher than the manual inspection, it could be costly, especially for developing 

countries, because of the high price of purchasing these vehicles as well as the high 

expenses of maintenance.  

Nowadays, due to the recent advancement of Artificial Intelligence (AI), it is becoming 

increasingly popular for road agencies and municipalities to leverage this technology 

to overcome complex problems such as data collection. During recent years, many 

types of research and studies have been conducted to automate pavement condition 

evaluation without utilizing expensive facilities. Due to the recent advancements in 

computer science, specifically computer vision, researchers are focusing on benefiting 

from these technologies to enhance their studies. Deep Learning technology enables 

researchers to develop models for automatically detecting the pavement surface's 

distresses (Zakeri, Nejad, & Fahimifar, 2016). However, these studies are still 

challenged for sufficient accuracy, robustness, and reliability.  
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1.3 Research Objectives 

This study developed a pavement condition evaluation model based on the data 

collected from several sources such as Google Street Views and ARAN vehicles in 

various cities in the United States of America (i.e., Jefferson City, Kansas City, and 

Columbia in Missouri). The data collected included several distress types of the 

pavement, and the proposed model is based on the most recent technologies in 

Computer Vision and AI. 

The objectives of the research are: 

• Developing pavement distress detection model based on the state-of-the-art 

deep learning techniques  

• Optimizing and generalizing the proposed model based on recent prominent 

strategies 

• Tuning and standardizing the proposed model for detecting distresses of 

pavement. 
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Chapter 2 

THEORY 

2.1 Pavement Surface Distresses 

The deficiencies in pavements play an essential role in evaluating the performance of 

the pavement. The distresses could have both external and internal causes that 

influence the pavement's quality. Some of these factors are heavy traffic load and 

environmental conditions such as hot and freezing weather, freeze and thaw process, 

and heavy rain or snow. These factors have a destructive impact on the pavement's 

surface, resulting in deterioration of the pavement throughout its lifetime.  

There are several indices for measuring the performance of the pavement, such as the 

Pavement Condition Index (PCI) and International Roughness Index (IRI), which 

indicate the quality of the pavement based on specific measurements. For instance, in 

order to calculate the PCI of a specific road section, it is essential to record the type 

and severity of the existing distresses on that specific section. By counting the number 

of distresses and relative calculation based on (ASTM, 2018) standard, the PCI index 

would be calculated, which indicates the pavement's performance on a 0 to 100 scale. 

Thus, the accuracy of collecting the distress types and severity is crucial for measuring 

the pavement's performance and making proper decisions for maintenance and 

rehabilitation strategies. The following section demonstrates some of the main distress 

types of the pavement's surface and its severity level. 
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2.1.1 Alligator Cracking 

One of the most destructive types of distresses on the pavement surface is alligator 

cracking, which significantly influences the performance of the pavement. These types 

of cracks are a series of interconnected cracks which are similar to the back of an 

alligator that occurs as a result of high traffic load. Figure 1 shows the orientation of 

this type of crack as well as different severity levels. Based on the FHWA standard 

(Miller & Bellinger, 2003), this type of crack is categorized into three groups based on 

different severity levels. The low severity level belongs to those with a few connecting 

cracks without any spalling or pumping. Figure 2 depicts the low severity of alligator 

crack. The moderate level refers to the interconnected cracks which formed a 

recognizable pattern. It might contain a few spalling but without any pumping. Figure 

3 illustrates the moderate alligator cracking. Moreover, the last and most severe type 

of alligator cracking depicted in figure 4 shows a complete pattern of interconnected 

cracks, including spalling and pumping.  

 
Figure 1: Schematic of alligator cracking with different severity level (Miller & 

Bellinger, 2003) 



6 

 

 
Figure 2: Low severity alligator crack 

 
Figure 3: Moderate severity alligator crack 

 
Figure 4: High severity alligator crack 
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2.1.2 Block Cracking 

Another typical distress for the surface of the pavement is block cracking. This type of 

cracking consists of continuous square shape cracks; in other words, these types of 

cracks include connected vertical and horizontal cracks throughout the surface of the 

pavement. One crucial cause of this type of crack is low pavement resistance to the 

shrinkage occurrence due to the varying weather temperature. The FHWA standard 

(Miller & Bellinger, 2003) divided the severity of these types of cracks into three levels 

(low, moderate, and high). The smaller squares of the cracks show the higher severity 

of this type of distress. Figure 5 illustrates the schematic of block cracking and the 

possible sizes of the squares. In order to measure the severity of this type of distress, 

the abovementioned standard defines a numeric approach for categorizing the severity 

level. In this manner, the cracks with a mean width of lower than 6 mm consider as 

low severity. The moderate severity level consists of the mean width of the cracks 

between 6 to 19 mm. Moreover, the high severity level belongs to those with mean 

crack width higher than 19 mm. Figure 6 shows an example of this type of distress. 

 
Figure 5: Schematic and orientation of block cracking (Miller & Bellinger, 2003) 
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Figure 6: Example of block cracking 

2.1.3 Longitudinal Cracking 

Longitudinal cracks are one of the most typical cracks occurring on the pavement's 

surface. These cracks occur parallel to the traffic flow and perpendicular to the 

transverse cracks. The FHWA standard (Miller & Bellinger, 2003) divides these types 

of distress into two general categories based on the location of the occurrence. Wheel 

path longitudinal cracks occur strictly under the tire of vehicles. On the other hand, 

non-wheel path longitudinal cracks occur between the two wheel path. Figure 7 

illustrates the orientation of the longitudinal cracks as well as the difference between 

the wheel pas and non-wheel path cracks. 

In order to differentiate between the severity level of this distress type, the standard 

defines a numerical approach in a way that cracks with a mean width of below 6 mm 

consider as low severity, cracks between 6 and 19 mm consider moderate severity, and 

cracks with higher than 19 mm average width consider as high severity. Figure 8 shows 

the example longitudinal crack. 
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Figure 7: Schematic of longitudinal cracks (Miller & Bellinger, 2003) 

 

 
Figure 8: Example of longitudinal crack 
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2.1.4 Transverse Cracking 

Another typical type of crack is transverse crack which occurs perpendicular to the 

traffic flow. These types of cracks may or may not cover the pavement's whole surface. 

The occurrence of transverse cracking might be a result of two main factors. First is 

the traffic load, and the second is the climatic issues. Due to the temperature changes 

during the year, the freeze and thaw phenomenon could occur inside these types of 

cracks. Transverse cracking could have a dramatic effect on the pavement's rideability 

and could play a significant role in the performance of the pavement. Similar to 

longitudinal cracking, this type is categorized into three severity levels based on the 

average crack width. In this case, cracks with a width lower than 6 mm are considered 

as low severity, between 6 to 19 mm as moderate, and higher than 19 mm as high 

severity. Figure 9 shows the schematic of transverse cracks with different severities. 

Moreover, figures 10, 11, and 12 depicted this distress type with low severity, 

moderate severity, and high severity, respectively. 

 
Figure 9: Schematic of transverse cracking with different severity level (Miller & 

Bellinger, 2003) 



11 

 

 
Figure 10: Low severity transverse crack 

 
Figure 11: Moderate severity transverse crack 

 
Figure 12: High severity transverse crack 
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2.2 Pavement Distress Detection 

Pavement monitoring and evaluating the performance of the pavement is one of the 

crucial issues in Pavement Management Systems (PMS). After construction, the road 

sections need to be monitored and evaluated over their lifetime. This monitoring 

allows the road agencies to decide on an optimum treatment strategy and prioritize the 

maintenance and rehabilitation approaches. Hence, the accuracy of detecting the 

existing distresses of the road surface plays a significant role in providing efficient 

information for decision-making.  

There are two main approaches for evaluating the pavement condition. The first 

approach is manual inspection conducted by specialists to observe and record the type 

and severity of pavement distresses. The other approach is automated distress detection 

using specifically designed vehicles. The first and traditional approach is labor-

intensive and time-consuming. Furthermore, this approach might be dangerous in a 

particular situation, such as visual inspection of highways with high traffic flow. Also, 

the accuracy of this approach is not sufficient. The second and automated approach 

has higher accuracy than the manual inspection. However, it requires expensive tools 

and vehicles such as ARAN to collect the distresses of the roads and evaluate their 

severity.  

Regarding pavement data acquisition, agencies and authorities are interested in 

automated and semi-automated approaches because of the improvements that have 

been made for decision making and better safety of procedures as well as the accuracy 

of the data acquired with these approaches. Nevertheless, this type of pavement 
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monitoring is not affordable for local agencies or municipalities in developing 

countries that face a budget shortage for these types of surveys. 

2.2.1 Automated Pavement Distress Detection 

The concept of automated pavement condition evaluation belongs to 1990, when (Hass 

& Hendrickson, 1990) proposed the method to evaluate the characteristics of the 

pavement. They developed a sensor-based model for automatically extracting the road 

data and properties. In fact, (Hass & Hendrickson, 1990) study  introduces automatic 

pavement monitoring for acquiring pavement data. Figure 13 illustrates the role of 

automatic pavement monitoring throughout the PMS responsibilities.  

 
Figure 13: Position of automated pavement monitoring in PMS (Coenen & Golroo, 

2017) 

After eight years, another research team made significant efforts to develop this 

concept (Cheng & Miyojim, 1998). They studied on classification algorithm for 

eliminating the influence of illumination on the acquired data. This study improved 

the accuracy of collected data for analyzing the properties of the roads. However, these 
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types of research required further investigation to increase the collected data's accuracy 

and quality.  

After several years, a research team from the Georgia Institute of Technology 

collaborated with the U.S. Department of Transportation to develop a laser-based 

technology to detect the cracks on the surface of the pavement (Tsai & Li, 2012). The 

device was able to detect cracks as narrow as 1 mm in width. However, the model 

suffered from some errors in detecting the cracks. Also, the proposed device was 

expensive for many road agencies and was not affordable for local and rural agencies. 

Figure 14 shows the proposed vehicle for pavement crack detection based on laser 

technology. 

 
Figure 14: Laser-based vehicle for pavement data collection (Tsai & Li, 2012) 
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Although much research is conducted to evaluate and monitor the pavement's surface 

automatically, it still has some deficiencies in terms of accuracy, robustness, and 

reliability.  

2.2.2 Image-Based Pavement Distress Detection 

During the recent decades, many scholars and research teams focused on image-based 

pavement evaluation (Zakeri, Nejad, & Fahimifar, 2016). One of the essential 

advantages of this method is decreasing the enormous amount of budget spent on 

developing vehicles for this purpose. Moreover, image-based pavement distress 

detection considers a non-destructive evaluation of the pavement (Chambon & 

Moliard, 2011). 

Furthermore, due to the advancement in digital image processing, the resolution and 

quality of collected data could be higher than in the past (Johri, Diván, Khanam, 

Marciszack, & Will, 2022). Thus, the image-based inspection of the roads could have 

higher accuracy compared to the traditional methods. In addition, many road agencies 

are more interested in utilizing time and cost-effective techniques for pavement 

distress detection.  
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Chapter 3 

LITERATURE REVIEW 

3.1 Artificial Intelligence in Civil Engineering 

During recent years, Artificial Intelligence (AI) is becoming increasingly widespread 

among scholars and researchers in various areas of study. This technology enables 

researchers to solve complex problems and tackle sophisticated issues in many areas 

such as medicine, healthcare, business, and engineering. For instance, many 

researchers are developing AI-based models to detect human brain tumors in medicine 

(Huang, Yang, Fong, & Zhao, 2020). Furthermore, in business, researchers are 

developing models to predict the future behavior and trend of the stock market 

(Ferreira, Gandomi, & Cardoso, 2021). In geographic area of research, scholars are 

developing AI-based models for weather forecasting (Narvekar & Fargose, 2015). It 

seems that many fields of study are focusing on the use of AI in solving complicated 

problems and situations. In the engineering area, chemical engineers are developing 

models to simulate the behavior of various materials under specific circumstances 

(Zhang & Friedrich, 2003). Hence, civil engineering is not an exception for problem-

solving utilizing AI.  

Several studies show that utilizing AI in civil engineering for sustainable development 

has increased drastically in recent years. A recent review study analyzed 105 

publications between the years 1995 to 2021 and demonstrated a significant trend in 
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utilizing AI in civil engineering. Figure 15 depicts the trend during the recent 26 years 

(Manzoor, Othman, Durdyev, Ismail, & Wahab, 2021). 

 
Figure 15: Annual publication trend for use of AI in civil engineering (Manzoor, 

Othman, Durdyev, Ismail, & Wahab, 2021) 

In 2019, the Journal of Advances in Civil Engineering conducted a special edition on 

advanced AI technologies in civil engineering (Dede, Kankal, Vosoughi, Grzywiński, 

& Kripka, 2019). The state-of-the-art applications of AI introduced in this edition were 

related to several areas of study, such as structural engineering, construction 

management, hydrology, transportation, pavement engineering, geotechnical 

engineering, and hydrology. For instance, a research team studies the use of AI in 

predicting the construction time in an early phase. Another study in the transportation 

area was conducted on the use of AI to optimize headways and departure times in 

urban bus networks. In the structural area, a research team studies the damage 

detection methods utilizing the stress and stiffness of trusses using hybrid statistics and 

AI modeling.  



18 

 

Overall, the investigation of the use of AI in civil society is increasing at a high pace. 

Therefore, it could be realized that the use of AI has beneficial potential for problem-

solving in this field of study. 

In order to utilize AI technology and its recent advancement, it is crucial to realize the 

subset of this technology and the variations and different aspects of it. Figure 16 

demonstrates the subsets of AI and a description of each subset. 

 
Figure 16: Virtualizing AI technology and the subsets (Dhande, 2020) 

As illustrated in figure 16, AI technology has two main subsets; Machine Learning 

(ML) represents the statistical techniques which enhance the machine to improve the 

task-solving ability. Moreover, Deep Learning (DL) is the subset of ML which enables 

the machine to create algorithms to train itself to increase its performance on various 

tasks (Ji, Alfarraj, & Tolba, 2020). It is worth mentioning that the ability to conduct 

image processing and analyze huge amounts of data is a significant advantage of DL. 
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3.2 Machine Learning in Pavement Engineering 

As mentioned in the previous section, Machine Learning (ML) is a subset of AI which 

could be divided into two main categories, supervised learning, and unsupervised 

learning. The difference between these categories is based on the data used for machine 

learning. Supervised learning refers to the methods which use a set of data consisting 

of the actual data and the corresponding labels. On the other hand, unsupervised 

learning refers to the methods which use the data without labeling. Figure 17 depicts 

the differences between these two groups and the applications of each one. 

 
Figure 17: Supervised versus unsupervised learning (Bunker & Thabtah, 2019) 

It can be seen that supervised learning is based on the input data, which feeds to the 

model and corresponding output data. Nevertheless, unsupervised learning is lonely 

based on input data without any output.  

Moreover, it is shown that the application of supervised learning is divided into two 

main categories, which are regression and classification. Also, unsupervised learning 
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utilizes for solving the clustering problems. Both supervised and unsupervised learning 

have wide usage in transportation and pavement engineering field of study. 

One of the most critical usages of ML in pavement engineering, specifically in 

Pavement Management Systems (PMS), is the performance prediction of the pavement 

for the rest of its lifetime (Abd El-Hakim & El-Badawy, 2013). This prediction assists 

authorities and agencies in making the proper decision for maintenance and 

rehabilitation strategies or making decisions for constructing or demolishing roads and 

highways. For example, it is possible to develop a model based on ML algorithms for 

predicting the International Roughness Index (IRI) based on the data such as weather 

conditions and traffic load for a particular pavement section (Hossain, Gopisetti, & 

Miah, 2017).  

During recent years, many studies have been conducted on the use of various ML 

algorithms to predict the pavement's performance. A recent study (Marcelino, de 

Lurdes Antunes, Fortunato, & Gomes, 2019) developed a pavement performance 

prediction model based on the random forest algorithm (one of the famous algorithms 

in ML) to predict the condition of the pavement for 5 to 10 years. This study leveraged 

the data collected by Long Term Pavement Performance (LTPP) program (FHWA-

HRT-15-049, 2015) as input and output data for their analysis. Their model was able 

to predict the future IRI value of a specific road section with high accuracy.  

Another study (Issa, Samaneh, & Ghanim, 2022) was conducted on predicting the 

Pavement Condition Index (PCI) based on the distresses and their severity using the 

Artificial Neural Network (ANN) algorithm. The PCI is one of the most critical and 

significant indices for evaluating the performance of the pavement. Acquiring this 
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index is time-consuming and labor-intensive. This study leveraged the ML-based 

algorithm to develop a model to predict PCI value for a specific road section in 

Palestine based on the previously recorded data. After analyzing the model, they 

achieved high accuracy in terms of R2 for correct predictions.  

Overall, utilizing ML-based problem-solving strategies in pavement engineering, 

specifically in PMS, is becoming increasingly popular among scholars and 

researchers. However, further investigation and studies are still required to achieve a 

general, reliable, and robust model for pavement performance predictions. Despite the 

wide use of ML in pavement engineering, many researchers are attempting to leverage 

more facilities of AI Hence, many scholars focus on Deep Learning (DL) technology 

to tackle pavement asset management problems. DL is one of the most prominent 

technologies in computer science, which is becoming popular among other researchers 

in other fields of study. The following section demonstrates more about utilizing this 

technology in pavement asset management. 

3.3 Deep learning in Pavement Condition Assessment 

Despite the high performance of the ML techniques on numerical data for solving 

regression and classification problems and prediction, this technique has some 

deficiencies in handling image-based data. Popular ML algorithms such as Support 

Vector Machine (SVM), Decision Trees (DT), and XGboost struggle to handle huge 

image data. These algorithms could easily involve noises to deal with large amounts 

of data in image-based datasets. Hence, DL technology was invented to deal with more 

complex and sophisticated data. This technology enables the system to extract features 

based on heavy computational algorithms. Creating this technology relies on two main 

factors: the first in advanced technologies in computer science, and the second is the 
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availability of large datasets for analysis. During recent years, DL technology has been 

utilized in various fields of study, such as object detection and localization, voice 

recognition, and Natural Language Processing (NLP).  

Due to the recent advancement of DL technology, many scholars and researchers in 

the pavement engineering field benefit from utilizing this technology in various areas 

of study, such as road network condition evaluation, pavement performance 

prediction, and pavement distress detection. 

Utilizing DL technology in pavement condition assessment could be divided into two 

main categories. First, region level distress detection. Second, pixel level distress 

detection. These two categories will be identified and discussed in the following 

sections. 

3.3.1 Region Level Distress Detection 

In order to evaluate the performance of the pavement, there are several indices, such 

as IRI and PCI. To obtain the PCI value for a specific road section, several factors 

should be considered. One of the most key factors is the number of several distress 

types that occurred on the pavement surface, and the second is evaluating the severity 

of those particular distresses. Regarding the recording of the type of distresses and the 

frequency of occurrence, region-level distress detection should be utilized. On the 

other hand, in order to derive the severity of the distresses, pixel-level detection should 

be used. This section focuses on the recent prominent studies on region-level distress 

diction. 

A recent study on automatic pavement distress detection using DL technology (Arya 

et al., 2021) utilizes a large image dataset of road cracks in Japan, India, and the Czech 
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Republic. The dataset was acquired using smartphone cameras installed on the 

dashboard of a car. They recorded 26,620 road images containing several distress types 

of the pavement. Figure 18 illustrates the position of the camera and the captured 

images from the road surface. 

  
 

 
Figure 18: Road images of (Arya et al., 2021) study 

After collecting the dataset, they annotated the images based on four different distress 

types: alligator cracks, transverse cracks, longitudinal cracks, and potholes. In order to 

develop and train a DL model, they applied three different algorithms, YOLOv5 (You 

Only Look Once), YOLOv4, and RCNN (Region-based Convolutional Neural 

Network). Among these algorithms, the highest accuracy belonged to the YOLOv5 

model by 0.67 in terms of F1 score. Although the model was trained with a large 
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number of images, the accuracy performance of the test data was not high enough. 

Moreover, they eliminated other types of distresses, such as block cracking and 

patching. 

In another study related to pavement distress detection and classification (Du et al., 

2020), a research team prepared a large-scale high-resolution dataset of road distress 

using an industrial camera installed on a vehicle. The dataset consisted of 45,788 

images, including 59,366 distress instances. The distress instances were alligator, 

longitudinal, and transverse cracking, as well as patching and manholes. In order to 

develop a DL model, they decided to use the YOLOv3 algorithm for training. Also, 

they compared this algorithm with R-CNN and SSD (Single Shot Detection) in terms 

of speed. After training the model, they reported accuracy of 0.73 in terms of the F1 

score. Figure 19 depicts some of the sample images for detecting the distresses. 

Despite training with a large number of images, the accuracy metric does not show 

high performance for the testing phase. Moreover, capturing these images with high 

resolution requires industrial cameras, which could be expensive for road agencies to 

purchase.  
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Figure 19: Crack detection examples of (Du et al., 2020) study 

3.3.2 Pixel Level Distress Detection 

In the previous section, Region level pavement distress detection had been discussed. 

This section will demonstrate pixel-level detection, and some of the most recent 

prominent studies will be discussed.  

In addition to recording and collecting different distress types of a specific pavement 

section, it is essential to evaluate the severity of these distresses. In this case, utilizing 

semantic segmentation enables the researchers to automatically record and collect each 
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distress type's severity automatically using ordinary images. For this purpose, many 

studies have been conducted to investigate the possibility of using DL technology to 

develop a robust and reliable model for acquiring the severity of the distresses.  

In 2020 a research team from Canada conducted research to automatically collect the 

severity of cracks on several roads in Ontario (Mei & Gül, 2020). In order to collect 

the data, they utilized a GoPro camera installed on the rear side of a vehicle to capture 

the road images. Choosing this approach lets them capture images in a wide view 

without any noises such as wiper and specks of dirt on the car's mirror. Figure 20 

illustrates the schematic of the data acquisition approach of their study. 

 

 
Figure 20: Data collection approach in (Mei & Gül, 2020) study 
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After collecting the data and annotating the cracks, they used a composite model 

consisting of 121 dense layers and a 5-layer convolution network called ConnCrack, 

and they reported the accuracy based on the F1 score, which was 0.91. 

In another study, a research team from China (Ji, Xue, Wang, Luo, & Xue, 2020) 

conducted a study on automatically obtaining the properties of the cracks such as 

width, depth, and length using DL technology. In this study, they leveraged 

DeepLabV3+ architecture for training the network and developing the model. After 

training, they reported the model's accuracy based on Mean Intersection over Union 

(MIoU); they reached 0.83 for testing 50 images and 0.733 for testing 80 images. 

Moreover, they compared the accuracy with other algorithms such as FCN and 

DeepCrack, which had lower accuracy. Figure 21 depicts an example of analyzing the 

cracks using their model.  

  

  
Figure 21: Example of analyzing the cracks in (Ji & Xue, 2020) study 
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Chapter 4 

METHODOLOGY 

The research gaps have been identified based on an extensive literature review 

demonstrated in the previous chapter. This study aims to fill these gaps and covers the 

research objectives mentioned in the first Chapter. For this purpose, a structured 

methodology has been proposed, which is illustrated in the following flowchart. Figure 

22 depicts the proposed methodology structure. 

Despite previous studies, this study concentrates more on data-centric strategies and 

methods than model-centric approaches to improve the accuracy of the model. First, 

the data annotation proposed several points for improving the consistency of the labels. 

Then the dataset will be analyzed to improve the decision-making for data 

augmentation strategies. Finally, the model will be trained using appropriate data 

augmentation methods to reach acceptable precision.  
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Figure 22: Methodology flowchart 

4.1 Pavement Distress Data 

4.1.1 Data Collection 

One of the most critical issues in developing a distress detection model is acquiring 

sufficient data for training the model. This study utilizes a dataset collected from 

several cities in the United States of America. These cities are Kansas City, Jefferson 
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City, and Columbia in Missouri (Majidifard, Jin, Adu-Gyamfi, & Buttlar, 2020). The 

images were collected using two different methods. Seventy percent of the images 

were captured by ARAN vehicles, and the rest were collected from Google Street View 

API. The resolution of the collected images is 1080 by 960. 

The dataset contains 628 top-down view road images that cover a single lane of the 

road section with different types of distresses and severity levels as well as some noise 

such as tree shadows and oil strains on the roads. This dataset has seven distress types: 

alligator cracking, transverse cracking, longitudinal cracking, block cracking, 

patching, sealing, and manhole. Figure 23 depicts some examples of these images. 

   
Figure 23: Sample images of the proposed dataset 

4.1.2 Data Annotation 

In order to use the images for training the model, the first step is to annotate the images. 

For this purpose, several bounding boxes should be drawn to identify a specific distress 

type and its corresponding location in each image. This study utilized the CVAT 
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annotation tool for annotating the images. This tool allows users to draw bounding 

boxes in various shapes and styles. Then it is possible to extract the annotations in the 

various format required for different algorithms. The available annotation formats are 

JSON, XML, and COCO, which are compatible with different algorithms. This study 

extracted the COCO format of the annotated images. Figure 24 shows the environment 

of this application. 

 
Figure 24: CVAT annotation tool environment 

It can be seen that the environment is user-friendly, containing various tools for 

drawing the bounding boxes. On the left-hand side, it allows users to select different 

shapes of the annotation, such as rectangles and polygons, and on the right side, it 

allows users to select the correct label for each bounding box. 

One of the most critical issues in annotating the images is that the bounding boxes 

should be drawn precisely. It means that the bounding boxes should be drawn close to 

the distresses. In this way, it pretends the model to get confused the target object with 

the background. This approach empowers the model to distinguish between the objects 
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and the background. Figure 25 depicts some examples of the road images containing 

the bounding boxes. 

  
Figure 25: Distress images with bounding boxes of the proposed dataset 

It can be seen that a specific bounding box distinguishes each distress on the surface 

of the road. Also, each color of the bounding boxes represents a particular type of 

distress. For instance, the pink color shows the transverse cracking, and the yellow 

color shows the longitudinal cracking.  

4.1.3 Data Analysis 

Before making decisions on choosing appropriate strategies for data augmentation, it 

is essential to analyze the dataset and realize the consistency of the images and 
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annotations and make a brief understanding of the data. This section aims to analyze 

the entire dataset and its labels.  

First of all, it is crucial to analyze the number of distresses for the entire dataset and 

realize the distribution of each distress type. For this purpose, a bar chart had been 

prepared. Figure 26 depicts this bar chart. 

 
Figure 26: Distribution of the distresses in proposed dataset 

The above chart shows that the highest number of instances belongs to transverse 

cracking by more than 500 instances. Then the longitudinal cracking by the number of 

instances of around 400. on the other hand, the lowest number of instances belongs to 

sealing with lower than 40 instances. After that manhole has around 30 instances, and 

the other distresses have a number of instances between 100 and 200.  



34 

 

It can be realized that longitudinal and transverse cracking with the highest number of 

instances in the entire dataset could easily be recognized by the model. Nevertheless, 

the model might not be able to learn the features of sealing and manhole, which has 

the lowest number of instances. This type of information about the dataset benefits the 

decision-making on selecting appropriate strategies for data augmentation. 

Another fundamental analysis for the dataset is heat map evaluation. In this case, it is 

possible to realize the location of occurrence of the distresses throughout the entire 

dataset. In order to create the heat map figure for each distress in the dataset, this study 

leveraged the Roboflow application. This application allows users to conduct a 

heatmap analysis based on the images and the location of the corresponding 

annotations for each label. Figure 27 illustrates these heat maps. It can be seen that 

most of the longitudinal cracks are located on the edges of the images, which 

demonstrates that in order to choose a cropping strategy for data augmentation, if it 

crops the center of the images, many of the longitudinal cracks will be removed. 

On the other hand, transverse cracking occurs more in the center of the image than at 

the edges of the image. Also, patching has the same distribution. Regarding other types 

of distresses, it could be seen that they are distributed almost over the entire image. In 

fact, this analysis confirms that in order to select a cropping strategy for data 

augmentation, the cropping should be based on the occurrence of the damages. 

Otherwise, the cropping strategy might not be efficient for this dataset. 
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         (a)                                             (b) 

  
       (c)                                               (d) 

  
                                         (e)                                              (f) 

 
(g) 

Figure 27: Heat map analysis of the annotations of proposed dataset. (a) longitudinal 

(b) transverse (c) alligator (d) block (e) patching (f) sealing (g) manhole. 
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Another vital analysis of the dataset is understanding the sizes of the bounding boxes. 

This type of analysis allows the researcher to choose the scaling strategy for 

augmenting the dataset. If the dataset suffers from a wide variety of sizes of objects, 

the scaling strategy should be considered the primary strategy. Figure 28 shows the 

sizes of the bounding boxes, which represent the volume of the distresses on the entire 

dataset.  

 
Figure 28: Distress sizes on the entire proposed dataset 

In figure 28, the blue points show each distress with corresponding height and width. 

The sizes of each bounding boxes scaled between 0 to 1. The lighter blue shows a low 

density of points. Visa versa, the darker blue shows the high density of the points in 

the figure. 

The density of the point on the lower left side of the plot demonstrates that most 

distress contains low, high, and low width. However, some high-density areas on the 
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bottom right and the upper left of the plot shows some distresses with high width and 

low height (transverse cracks) and high height and low width (longitudinal cracks). 

4.1.4 Data Augmentation 

One of the most critical challenges in developing a deep learning model is overfitting. 

Overfitting refers to the situation in which the model is memorizing the data instead 

of learning the features. The model could suffer from overfitting when there is not a 

sufficient number of images, and the model cannot extract the necessary features. In 

order to overcome this problem, data augmentation should be applied. By increasing 

the number of images in the dataset, it is possible to decrease the effect of overfitting. 

However, it is essential to choose an appropriate data augmentation method which is 

compatible with the images in the dataset. There is no rule of thumb for selecting data 

augmentation methods for a specific dataset. The performance of applying each data 

augmentation method might differ for each particular dataset.  

In order to apply data augmentation methods for pavement images, it is essential to 

evaluate the dataset beforehand. Some sort of augmentation method could harm the 

accuracy result. For instance, choosing the rotating augmentation method could 

confuse the model in distinguishing longitudinal cracking and transverse cracking. The 

shear method could have the same effect. In contrast, flipping left to right or up to 

down could be appropriate.  

In this study, two types of augmentation methods were applied:  

• Bounding Box Safe Crop 

• Image Inversion. 
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Based on the analysis conducted in the previous section, it could be realized that these 

two types of augmentations are the appropriate choice for the proposed dataset. 

Bounding box safe crop, make new images by cropping the existing ones in a way that 

it does not lose any bounding boxes in each image. Furthermore, the image inversion 

method was applied to the dataset for creating new images. Figure 29 depicts the effect 

of applying these two augmentation methods on the dataset's images. 

   
(a) 
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(b) 

Figure 29: Example of augmented images of the proposed dataset: (a) actual image 

(b) augmented image 

4.2 Distress Detection Model 

Recent developments in deep learning, precisely computer vision, resulted in various 

deep convolutional neural network architectures that perform accurately and fast on 

different data types and are utilized in a wide range of scientific and industrial areas. 

This study benefited deep learning technology for developing a model to detect and 

classify different distresses on the surface of the roads. One of the state-of-the-art 

object detection and classification algorithms is the YOLO (You Only Look Once) 

algorithm. This algorithm is popular among researchers in the data science domain due 

to its accuracy and speed. This study utilizes the fifth version of this algorithm for 

developing a distress detection model.  

4.2.1 History of YOLO Algorithm 

In 2015, the YOLO (You Only Look Once) algorithm evolved object detection tasks 

in computer vision, outperforming the other models in accuracy and detection speed 

(Redmon, Divvala, Girshick, & Farhadi, 2016). This algorithm divides each image into 

a specified number of grid cells, and each cell is responsible for detecting objects 
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within itself. This method allows the algorithm to detect all the objects and their 

locations in a single glance. This mechanism helps the model improve inference time 

drastically and become a real-time object detection model. 

This algorithm has three main steps for detecting the objects. First, it resizes the input 

images to 448 by 448 and prepares them to feed the network. Then, the images run 

through a deep convolutional neural network to extract the features of each class of 

objects. After that, each specific object will be detected and classified using non-max 

suppression mechanisms. Figure 30 shows the initial architecture of the YOLO 

algorithm. 

 
Figure 30: Initial architecture of YOLO algorithm (Redmon, Divvala, Girshick, & 

Farhadi, 2016) 

Figure 30 demonstrates that the initial YOLO algorithm contains 24 convolutional 

layers followed by two fully connected layers. Each convolutional layer is responsible 

for extracting a specific feature of the image. The maxpooling layer enables the 

network to focus on a particular part of the image. 
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After a year, (Redmon & Farhadi, 2017) introduced the second version of the YOLO 

(YOLOv2) algorithm. In addition to optimizing the model's architecture, they applied 

several functions such as batch normalization and scaling to increase the accuracy and 

inference speed of the algorithm. Figure 31 compares the performance of the YOLOv2 

algorithm with other prominent object detection algorithms. 

 
Figure 31: Performance comparison of YOLOv2 with other algorithms (Redmon & 

Farhadi, 2017) 

It can be seen that the performance of the YOLOv2 algorithm outstands among other 

algorithms such as Faster R-CNN, SSD512, and Resnet in terms of both speed and 

accuracy measured by mean average precision. It should be mentioned that the 

reported accuracy and speed of the algorithms had measured on the Pascal VOC 2007 

dataset, which contains thousands of images, including real-life images. 

After two years, (Redmon & Farhadi, 2018) published the third version of the 

algorithm (YOLOv3). In order to optimize their proposed algorithm, they made 

significant modifications to the architecture of the algorithm. They added the Darknet-

53 backbone to improve the accuracy of the model. Figure 32 illustrates the 

performance of the YOLOv3 algorithm compared to the other models. It can be seen 
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that the YOLOv3 model outperforms the RetinaNet-50 and RetinaNet-101 in terms of 

both accuracy and inference time. It should be mentioned that the performance of the 

model tested on the COCO dataset. 

 
Figure 32: Performance of YOLOv3 algorithm (Redmon & Farhadi, 2018) 

After two years, another research team introduced the YOLOv4 algorithm 

(Bochkovskiy, Wang, & Liao, 2020). They added several functions to the architecture 

to improve the model's accuracy. These functions are Weighted-Residual-Connections 

(WRC), Cross-Stage-Partial-connections (CSP), Cross mini-Batch Normalization 

(CmBN), Self-adversarial-training (SAT), and Mish-activation. Moreover, they 

leveraged the Mosaic augmentation strategy to reduce the overfitting effect of the 

proposed model. Figure 33 shows the performance of the YOLOv4 algorithm 

compared to the other pioneer object detection algorithms. Although the accuracy of 

YOLOv4 is lower than EfficientDet, the inference time reached 120 frames per second, 

which could be considered a real-time object detector algorithm. Moreover, the 
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YOLOv4 outperforms YOLOv3 in both accuracy and inference time. The accuracy 

was recorded based on average precision, and the Microsoft COCO dataset was used 

(Lin et al., 2014). 

 
Figure 33: Performance of YOLOv4 algorithm (Bochkovskiy, Wang, & Liao, 2020) 

4.2.2 YOLOv5 

Up to now, YOLOv5 is the latest version of the YOLO algorithm introduced by Glen 

Jocher in 2020 (Jocher et al., 2020). YOLOv5 is one of the most accurate and fast 

algorithms among all object detection algorithms. This new version added several 

significant functions such as Upsampling and Focus to increase the robustness of the 

model. Additionally, the architecture of the algorithm was optimized by several 

modifications in the neck and head part of the model. This algorithm benefited from 

adaptive learning rates as well as adaptive anchor boxes to produce an efficient training 

process for various types of custom datasets.  
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Recently, the Ultralytics team implemented the YOLOv5 algorithm on the PyTorch 

framework using Python programming language, and the source code is publicly 

available on their GitHub page. This algorithm was developed in various versions to 

utilize different types of datasets. However, the architecture of all the versions is the 

same. Figure 34 depicts the different versions of the YOLOv5 algorithm and 

demonstrates the differences.  

 
Figure 34: Different versions of the YOLOv5 algorithm (Jocher et al., 2020) 

As discussed earlier, the architecture of all five versions, from Nano to XLarge, are 

the same. The difference is related to the size of the network for each version. In fact, 

from Nano to XLarge, the network's height and width will gradually increase by a 

prefixed factor. Figure 34 illustrates the performance metrics of each version on the 

COCO dataset. It can be seen that by increasing the size of the network, the 

corresponding accuracy increases. The performance of the Nano version on the COCO 

dataset was reported as 28.4 in terms of mean average precision (mAP). By enlarging 

the network to XLarge, it was observed that the accuracy increased to 50.7 mAP.  

In contrast, by increasing the size of the network, the inference time will increase as 

well. It is shown that the inference speed of the Nano version on the abovementioned 

dataset is 6.3 millisecond, and the inference time of the largest network size is 12.1 
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milliseconds. This study utilized the XLarge version due to reach higher accuracy. In 

the following section, the architecture of this algorithm will be discussed. 

4.2.3 Architecture of YOLOv5 

The architecture of the YOLO algorithm has been improved gradually from 2015, the 

initial architecture to 2020, the latest architecture up to now, by making significant 

efforts of many research teams. This version of the YOLO algorithm benefited from 

recent prominent advancements in deep learning technology found in the recent years. 

The structure contains several enhancement functions for smooth training and 

preventing overfitting or convergence issues. Furthermore, many complex deep 

convolutional networks have been implemented to improve the feature extraction 

process. This section attempts to perform a brief demonstration of the YOLOv5 

architecture, including various functions utilized in this algorithm and several 

convolutional layers and their functionality and effects. 

The architecture of YOLOv5 consists of three main parts: 

• Backbone 

• Neck 

• Head. 

Each of these sections has several functions and layers inside. The Backbone extracts 

the features related to the overall shape and orientation of the objects. After that, the 

images pass through the Neck part to extract more sophisticated and narrow shapes of 

each class. Finally, the images pass through the Head part as the final part for detecting 

the objects and the location of their occurrence throughout the image. Figure 35 depicts 

the architecture of YOLOv5, including identifying the three main parts as well as the 

layers inside each section. 
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Figure 35: Architecture of YOLOv5 (Jia et al., 2021) 

As illustrated in figure 35, the network consists of the Backbone, Neck, and Head. The 

first stage of the Backbone is the input size. It is shown that the input size of the images 

is 640 by 640 by 3, which means that the network is only compatible with this image 

size. Thus, in order to feed images to the network, it is essential to resize them to the 

abovementioned scale. The second stage is Focus. This stage prepares the images by 

reconstructing them in a low-resolution format. Another essential layer in the 

Backbone is CSPNet (Wang et al., 2020). In figure 35, CSP1_x represents the block 

containing the CBL block and x residual connection unit. Moreover, CSP2_x block 

contains the x CBL blocks. The CBL block represents a convolutional layer followed 

by a batch normalization and an activation function. Another function in this section 

is Spatial Pyramid Pooling (SPP) (He, Zhang, Ren, & Sun, 2015) which is applied 

after the third CBL block.  
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The architecture of the Neck part is derived from the idea of PANet (Wang, Liew, Zou, 

Zhou, & Feng, 2019) to improve the feature extraction of the images. It can be seen 

that this part includes some concatenation and upsampling functions as well. The Head 

part of the architecture is similar to the previous versions (YOLOv3 and YOLOv4). It 

applies anchor boxes on features and generates final output vectors with class 

probabilities, objectness scores, and bounding boxes, and it performs the final 

detection part. It is shown that the final detection part includes one by one 

convolutional layer in three different image sizes. 

It is worth mentioning that the activation function used in this architecture is Sigmoid 

Linear Unit, and the optimization function is Stochastic Gradient Decent (SGD). 

Furthermore, the choice of loss function for this architecture is Binary Cross-Entropy 

with Logits Loss. 

4.3 Evaluation Metrics 

In order to evaluate the model, there are several metrics that are widely accepted 

among scholars and researchers of this domain. For evaluating the performance of the 

object detection and classification model, the following metrics have been provided. 

Equations 1 to 3 demonstrate the computational methods of these metrics. 

(1) Precision   =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                              

(2) 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                               Recall       =   

(3)   
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                             F1 Score   =  2× 

Precision indicates the portion of true positive prediction over the total positive 

prediction. On the other hand, recall indicates the portion of true positives over all 

actual positives. Finally, the F1 Score accumulates precision and recall equally by 

dividing multiplication over their summation. 
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Chapter 5 

ANALYSIS AND RESULTS 

5.1 Training Criteria 

in order to train the model, there are several essential criteria which will be discussed 

in this section. The proposed dataset contains 628 images, including several road 

distress types such as alligator, transverse, longitudinal, and block cracking as well as 

sealing, patching, and manhole. Regarding preparing the dataset for training, the 

dataset is divided into two parts: 

• Training set contains 80 percent of the dataset (505 images) 

• Validation set contains 20 percent of the dataset (123 images). 

 

All images in three sets are fully annotated leveraging the CVAT annotation tool 

platform and resized to 640 by 640 to ensure compatibility with the proposed model. 

This study utilizes the YOLOv5 algorithm as a model for training the dataset. The 

largest version of the model was selected to obtain high accuracy. The algorithm was 

developed using the PyTorch framework (Paszke et al., 2019) scripted in Python 

programming language (Python 3.10). The GPU used for computational progress was 

GeForce RTX 3050. In order to tune the hyperparameters of the algorithm, several 

experiments were done, and the results were compared. The following 

hyperparameters represent the optimized values for each hyperparameter. 
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• initial learning rate (0.01) 

• optimizer weight decay (0.0005) 

• bounding box loss gain (0.01) 

• class loss gain (0.1) 

• object loss gain (0.1) 

• image HSV-Hue augmentation (0.015) (fraction) 

• image HSV-Saturation augmentation (0.7) (fraction) 

• image HSV-Value augmentation (0.4) (fraction) 

• image rotation (0.0) 

• image scale (0.2) 

• image shear (0.0) 

• image flip up-down (0.5) (probability) 

• image flip left-right (0.5) (probability) 

• image mosaic (1) (probability) 

• bounding box safe crop (0.5) (probability) 

• image inversion (0.5) (probability) 

• image mix-up (0) 

• optimizer (Stochastic Gradient Descent) 

• activation function (Sigmoid Linear Unit). 

In order to train the model, pretrain weights were applied as the initial weight for the 

training. These weights were trained with the COCO dataset for 1000 epochs.  

Regarding the training, the number of batch size defied as 16, and the model trained 

for 200 epochs. The computational time for the entire training process was 
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approximately 3 hours. Figure 36 depicts a sample of the training batch for the training 

process. 

 
Figure 36: Sample batch of the training phase 

It can be seen that each training batch consists of 16 images, and each image contains 

several types of pavement damage identified with a specific color of the bounding box. 

5.2 Validation Results 

During the training process, the performance of each epoch is evaluated. The 

evaluation process for 200 training epochs is measured through several metrics such 
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as precision, recall, mean average precision, and loss trend for objects, classes, and 

bounding boxes. This section reports and elaborates on the validation results. 

One of the most essential criteria is evaluating the precision, recall, and mean average 

precision during the training phase. Figure 37 illustrates the trends of these three 

metrics during the training phase. 

 
(a) 

 
(b) 
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(c) 

Figure 37: Validation metrics plot. (a) precision, (b) recall, (c) mean average 

precision 

It is shown that precision, recall, and mean average precision have up-trending until 

approximately 100 epochs, and it fluctuated between 100 and 200 epochs which shows 

that the model is not able to learn the features after 100 epochs. Figure 37 demonstrates 

that the model performs acceptably in the training process.  

Another essential criterion during the training process is the value of losses. YOLO 

algorithm contains three types of losses. "Object loss" represents the loss value related 

to detecting the correct object (distress), "class loss" represents the loss value related 

to identifying the correct label for each class (distress type), and "box loss" indicates 

the loss value for identifying correct location of the objects (distress locations). Figure 

38 illustrates the loss values for the validation set during the training process. 
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(a) 

 
(b) 

 
(c) 

Figure 38: Validation losses plot. (a) object loss, (b) box loss, (c) class loss 
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The figure above shows that object loss value increased during the first 20 epochs, 

which is the warmup stage. After 20 epochs, the object loss value decreased drastically 

until epoch 50, and after that, the value fluctuated for the rest of the training. Moreover, 

the loss values for classes and bounding boxes have a decreasing trend until 50 epochs, 

and they remained steadily till the rest of the training process. The validation loss 

values show an acceptable performance of the model during the training phase. Figure 

39 illustrates the confusion matrix for the accuracy of the predicted images for 

different distress types. 

Figure 39: Confusion matrix of predicted images 
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It can be seen that among all distress types, the highest accuracy belongs to manhole, 

patching, and sealing with 1, 0.88, and 0.86, respectively. Furthermore, the lowest 

accuracy belongs to longitudinal and block cracking with 0.4 and 0.48. Figure 40 

depicts a sample batch of the predicted images. Although it has a few prediction 

mistakes, considerable damages have been successfully identified and localized. 

5.3 Detection Results 

In order to optimize the accuracy of the detection phase, several modifications were 

made as follows: 

• Confidence Threshold (0.4) 

• NMS-IoU Threshold (0.99) 

• Test Time Augmentation (applied). 

Optimizing the abovementioned detection parameters was based on trial and error. 

Non-Max Suppression IoU threshold represents the confidence to deny or approve a 

predicted bounding box. Moreover, the images are augmented using methods 

mentioned in the previous section, such as bounding box safe crop and image 

inversion. After optimizing the detection parameters, the precision, recall, and F1 

scores reached 0.95, 0.92, and 0.93, respectively. 
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Figure 40: A sample batch of the predicted images 
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Chapter 6 

CONCLUSION AND RECOMMENDATIONS 

This study contains an extensive literature review on pavement distress types, 

pavement condition evaluation, and the importance of artificial intelligence, 

specifically deep learning, in pavement management systems. In this regard, essential 

research gaps have been identified and discussed. The main objectives of this study 

aimed to fill the gaps elaborated in the literature review. This study developed a 

pavement distress detection model utilizing the most recent prominent techniques, 

strategies, and algorithms in deep learning technology to achieve an accurate, robust, 

and reliable model for detecting, classifying, and localizing several pavement distress 

types. Moreover, optimizing data-centric and model-centric strategies and approaches 

have been analyzed to improve the proposed model's generalization. 

The dataset used in this study contained 682 top-down view images captured in several 

cities in the U.S. (i.e., Jefferson City, Kansas City, and Columbia in Missouri), 

including various distress types such as alligator, longitudinal, transverse, and block 

cracking as well as patching, sealing, and manhole. In order to train the model, the 

YOLOv5 algorithm was developed on the PyTorch framework using Python 

programming language. Moreover, the proposed model is optimized using data 

augmentation techniques such as bounding box safe crop and image inversion. After 

evaluating the performance of the proposed model, the accuracy reached 0.95, 0.92, 

and 0.93 in terms of precision, recall, and F1 score, respectively. 
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In the future, the author aims to develop a model based on advanced deep learning 

algorithms such as the U-Net to measure the severity of pavement distress as well. In 

this regard, a fully automated pavement condition evaluation would be possible. Also, 

measuring and calculating the pavement performance indices, such as the pavement 

condition index, would be achieved efficiently. 
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