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ABSTRACT

This manuscript presents a geometrical framework for flexoelectric membranes based

on stress tensors which mimic the response of a flexoelectric fluid membrane to an

external electric field. This framework is used to study numerically the morphology

of spherically confined flexoelectric fluid membrane vesicles in an external uniform

electric field. The confinement induces membrane deformations, which lead to its

polarization and interactions with the external field. Without such electric fields, the

equilibrium shapes of the vesicle were categorized in a geometrical phase diagram as

a function of reduced volume and the scaled area in the past [1, 2].

When the area of the flexoelectric fluid membrane is a bit larger than the area of the

confining sphere, an axisymmetric invagination can be found with a simple numerical

integration scheme. A non-vanishing electric field induces an additional elongation of

the confined vesicle, which is either perpendicular or parallel depending on the sign

of the electric field parameter. Higher values of surface area or the electric field

parameter reduce the symmetry of the system resulting in more complex folding. To

find equilibrium configurations as a function of volume, area and coupling with the

electric field, two numerical methods were employed. Despite some rather crude

approximations such as assuming a constant electric field, interesting shape

transformations and symmetry breaking are found. Moreover, the resulting shapes

indicate that transition lines are shifted in the presence of an electric field, which leads

to the transition shapes reminiscent of the main protagonist in the video game

"Pac-Man". In these shapes, the invagination of the membrane is not axisymmetric

but deforms into a large elongated slit reminiscent of shapes that can be found with

the area-difference-elasticity (ADE) model for confined membranes without an
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electric field [3].

Self-contacts, as observed in this work, can potentially lead to a shape transition, from

a spherical to a toroidal vesicle topology via membrane fusion. It turns out that the

spherical topology is preferred for typical values of the material parameters when the

electric field vanishes. Flexoelectricity could potentially facilitate topology changes.

The obtained folding patterns could be of interest to biophysical and technological

applications alike.

Keywords: Membranes, bilayers, vesicles, flexoelectricity, elasticity theory and

dielectric thin films.
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ÖZ

Bu taslak, bir fleksoelektrik akışkan membranının bir dış elektrik alanına tepkisini

taklit eden ve stres tensörlerine dayanan fleksoelektrik membranlar için geometrik bir

çerçeve kurmayı amaçlamaktadır. Bu çerçeve, bir dış üniform elektrik alanı içerisinde

bulunan küresel olarak sınırlanmış fleksoelektrik sıvı membran veziküllerinin

morfolojisini sayısal olarak incelemek için kullanılır. Sınırlandırma, membran

deformasyonlarını tetikler böylece dış alanla polarizasyonuna ve etkileşimlere yol

açar. Bu tür elektrik alanları olmadan, vezikülün denge şekilleri, ölçeklendirilmiş

alanın bir fonksiyonu ve ötesinde azaltılmış hacim olarak bir geometrik faz

diyagramında sınıflandırılmıştır [1, 2].

Membranın alanı sınırlandırma küresinin alanından sadece biraz daha büyük

olduğunda, basit bir sayısal entegrasyon şeması ile tek bir eksenel simetrik

invajinasyon bulunabilir. Kaybolmayan bir elektrik alanı, sınırlandırılan vezikülde ek

bir uzamaya neden olur ve bu elektrik alan parametresinin işaretine bağlı olarak dik

veya paraleldir. Daha yüksek yüzey alanı veya elektrik alanı parametresi, sistemin

simetrisini azaltarak daha karmaşık katlanmaya neden olur. Alan, hacim ve elektrik

alanı ile eşleşmenin bir fonksiyonu olarak denge konfigürasyonlarını bulmak için iki

sayısal çözüm yönteminden faydalanılmıştır. Sabit bir elektrik alanı varsaymak gibi

oldukça kaba yaklaşımlara rağmen, ilginç şekil dönüşümleri ve simetri kırılması

bulunur. Ayrıca, ortaya çıkan şekiller geçiş hatlarının bir elektrik alanının varlığında

değiştiğini gösterir, bu da video oyunundaki “Pac-Man” ana kahramanını andıran

geçiş şekillerine yol açar. Bu şekillerde, membranın invajinasyonu eksenel simetrik

değildir, ancak elektrik alanı olmayan kapalı membranlar için alan farkı esnekliği

(ADE) modeliyle bulunabilen şekilleri anımsatan büyük bir uzun yarık şeklinde
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deforme olur [3].

Bu çalışmada gözlemlendiği gibi kendiliğinden temaslar potansiyel olarak membran

füzyonu yoluyla küreselden toroidal vezikül topolojisine geçişe yol açabilir. Elektrik

alanı kaybolduğunda, küresel topolojinin maddesel parametrelerinin tipik değerleri

için tercih edildiği ortaya çıkmaktadır. Fleksoelektrik, potansiyel olarak topoloji

değişikliklerine olanak tanıyabilir. Elde edilen katlama paternleri, biyofiziksel ve

teknolojik uygulamaların her ikisini de ilgilendirebilir.

Anahtar Kelimeler: Membranlar, iki katmanlı yapılar, veziküüller, fleksoelektriklik,

elastikiyet teorisi ve dielektrik ince filmler.
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Chapter 1

INTRODUCTION

By the early 1980s, the electromechanical behavior of biological membranes,

vesicles, and cells had already received a lot of attention leading to applications and

the interpretation of the mechanical properties of cells, organs, and tissues in the

following years [4, 5]. Significant applications that have been developed in

biomedicine and biotechnology include wound healing, cancer treatment, cell control

and manipulation [6, 7]. For example, applying strong electric fields on lipid

membranes substantially increases the electric conductivity and permeability of the

membranes, which led to the development of electroporation1 as an established

treatment method for gene therapy and delivering drugs into the cells [9]. This

method allows small molecules to pass into different cell types through temporary

membrane pores [8–13].

On the theoretical side, continuum mechanical models of lipid membranes, vesicles,

and cells have been developed mostly without considering the microstructure of

cells [14–23]. Recent research has also studied the dynamical behavior of cell

membranes using discrete cytoskeleton models [24, 25], in which actin microtubules

and filaments are modeled as rods, cords, and junction network with specific

topological structures [24, 25]. These microstructure models help to understand the

1 Electroporation is a phenomenon in which cell membranes become temporarily destabilized in specific
regions due to electric field pulses. During a DC pulse, the membrane is immensely permeable to
exogenous adjacent molecules [8].
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nonlinear mechanics of cell membranes (e.g., adhesion). However, some of the

properties of lipid membranes like flexoelectricity, or dielectric anisotropy, with their

associated phase transformations are not yet fully understood theoretically. For

instance, in the context of flexoelectric fluid membranes Petrov and coworkers have

shown its relevance for biological membranes in experiments [26–28], which

motivated several subsequent theoretical studies [29–32]. Only recently it has been

shown with extensive molecular dynamics simulations that uniform electric fields can

induce biologically relevant membrane deformations [33].

In the context of the formation of cells, vesicles, and organelles, some important open

questions are: "What sort of mechanisms will generate a peculiar structure?", "What

are the possible electromechanical shape deformations of biological membranes

subjected to certain boundary conditions?", and "What are the forces and stresses

transmitted in fluid membranes in an external electric field?". The answer to these

questions has a geometric origin. To be able to understand and control the cell’s

electrophysiological2 properties, morphological phase diagrams of vesicles

responding to electric fields can be helpful. Even though biological membranes have

a very complex structure, it is possible to find answers to such questions by taking

advantage of differential geometry with and without specific parameterizations.

In this thesis, the interplay of electromechanical constraints and the geometry of

flexoelectric fluid membranes is studied in detail. We will see that the correlation

between geometry and stresses exerted on the system leads to an explanation for the

nonlinear electromechanical behavior of flexoelectric membranes. This non-linearity

2 Electrophysiology is to study the effect of electric phenomena in the body (e.g., nerves, cells and
tissues).
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demands a combination of different approaches, such as analytical theory and several

numerical solution methods. While one approach has its limitations, the other gives a

better view of the problem. In the following, the presented model will be based on the

general theory of electromechanics of polarized lipid bilayers introduced by David J.

Steigmann and Ashutosh Agrawal in 2016 [32].

• Chapter. 2 introduces a general review of the mechanical behaviour of

biological membranes characterized as two-dimensional fluid surfaces. The

generalized Monge parametrization framework is developed to capture the

Gaussian and total curvature of curved surfaces. This approach is applied to

spherical and cylindrical surfaces. Moreover, an overview of the different

elastic energies associated with the varying shapes of the fluid membranes in

terms of metric and extrinsic curvatures is provided by using continuum

mechanics.

• Chapter. 3 illustrates how fluid membranes interact with an electric field. A

theoretical framework to capture the behaviour of polarized membranes,

flexoelectric membranes, based on the flexoelectric stress tensor, is illustrated.

To describe their equilibrium behaviour, the shape equation of flexoelectric

membranes in an electric field is derived.

• Chapter. 4 considers the folding patterns of flexoelectric fluid membrane

vesicles in a uniform electric field due to spherical confinement as a non-trivial

example of such systems. The electric field inside the confining cavity is

calculated. By making use of the angle-arc-length parametrization, the

behaviour of the confined flexoelectric fluid membrane vesicles in response to

the uniform electric field is scrutinized. Moreover, the transition of the

morphological phase diagram of the system is exhibited.
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• Chapter. 5 wraps up this manuscript with some concluding remarks and future

directions.

• Appendix. A provides some basic mathematical concepts of the differential

geometry of fluid membranes.

• Appendix. B applies the Monge gauge parametrization approach to particular

cases.

• Appendix. C addresses the numerical approaches used in this manuscript.

• Appendix. D discusses a dielectric sphere model within an electrolyte in an

applied uniform electric field.
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Chapter 2

MECHANICS OF FLUID MEMBRANES

In this chapter, an introduction to the basic phenomenological concepts of biological

membranes is provided.

2.1 Structure and Functions of Biological Membranes

In biology, lipid membranes are a fundamental part of all cell types. They are

involved in different tasks, such as sending nutrients into cells and waste products out.

They can be considered similar to our largest organ, the skin, which separates our

body from the external environment and supports a variety of processes occurring in

our body. Biological membranes also furnish the surface of cells and separate the

extracellular environment from the cell’s interior and its organelles. The cells of

unicellular organisms, such as bacteria, possess only a single main membrane

whereas the cells of multicellular organisms, plants and animals, contain additional

internal membrane-limited subcompartments called organelles. Due to all of the

different tasks that involve membranes, a cell’s molecular membrane is highly

inhomogeneous [34].

Despite this complexity, the biological membrane can be interpreted in a simple way

by looking at its structure. In the last three decades, theoretical biophysicists have

realized that the geometrical diversity of cells needs further explanation, which is why

they have started to look closely at the morphology of cells [1, 2, 22, 23, 35, 36]. Cells

are multi-scale entities with a size of 10µm to 100µm, containing organelles ranging

from 100nm to 10µm in diameter, and with even smaller objects such as
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membrane-embedded proteins varying from 1nm to 5nm [37]. By zooming out from

the membranes’ molecular structure and shifting to the mesoscopic scale, it is

possible to model lipid membranes abstractly. From this point of view, the lipid

bilayer membrane is what all living cells have in common.

2.2 Lipid Bilayer Membranes

The structure of lipids: Lipids are made of amphiphilic molecules with two different

segments: the hydrophilic head segment (i.e., "in love with water") and hydrophobic

segment (i.e., "afraid of water"). This dual characteristics is governed by the chemical

properties of each part of the lipid. Although lipids are in many different sorts in nature,

a few plausible classes of them are used by nature to build the cell membranes of animal

[38]. In terms of the structure of lipids, the tail typically consists of two hydrocarbon

chains created from a varied number of fatty acids ( usually 16 to 24 C-atoms) and

some double bonds, such as palmitic acid [34]. The hydrocarbon chain attaches via

amide covalent bonds, ester bonds, to linker groups to bind with a hydrophilic head

group. Physicists will not concentrate on the chemical details of the lipids, but pay

attention to the following characteristics: i. the length of the fatty acids: the longer

they are, the thicker the lipid membrane, ii. double bonds: the tails tend to be tilted,

and iii. charged head groups [39].

The morphology of lipids: The lipids’ hydrophobic tails hate to dissolve in water.

When inserted in an aqueous environment, they try to avoid the water and aggregate

with a cooperative strategic move in which the tails protect each other from

surrounding water by using the hydrophilic head groups. Therefore, lipid molecules

self-assemble in different morphologies to please the dual characteristic of both

segments. Such aggregations can be micelles, spheres, with all tails inside and all

heads on the surface. In wormlike cylindrical shapes again tails aggregate in the
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inside and the heads on the surface and the opposite as well. Lipids can also form

double-layer surfaces in which two planes of hydrophilic heads will sandwich the

tails. This configuration, called lipid bilayer is the object of interest in this manuscript

(see Figure. 2.1).

Figure 2.1: Lipid molecules’ morphologies: (a) micelle, (b) bilayer surface, (c) vesicle.

Phase behavior of lipid bilayer membranes: Lipid bilayer membranes are

quasi-two-dimensional arrangements which form in an aqueous environment due to

the hydrophobic effect. The fact that most of the cells’ containers- the boundary

which separates the two different phases of water and plasma solutions- are built by

lipid bilayers was discovered in 1925 [40]. Depending on the water concentration and

the temperature, lipid membranes exhibit interesting phase behavior: the

two-dimensional gel phase with a crystal system at low temperature, and a

liquid-crystalline phase at biological temperatures. In the liquid-crystal phase, the

lipid molecules move freely in their tangential plane and form a two-dimensional

fluid membrane [41, 42].

2.3 Generalized Monge Parametrization

As mentioned earlier, it is possible to consider bilayer lipid membranes as

two-dimensional surfaces. Differential geometry, which has been considered a
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sophisticated tool to study lipid membranes, makes the parametrization of biological

membranes possible. In this respect, there exist some parametrization framework to

describe the curvature of surfaces embedded in three-dimensional space. Among all

Monge parametrization, which mostly applied on the horizontal plane, is the interest

of this section (for more details see appendix. B).

By shifting to the terminology of the Einstein theory of gravity, biological membranes

are quite similar to timelike thin-shells, which are membranes in spacetime. Although

the spacetime has been assigned to be 3 + 1−dimensional, the lower dimensional

spacetime i.e., 2 + 1 is also a well-known model. The analogy between the

1 + 1−dimensional thin-shells in 2 + 1−dimensional spacetime and the

2−dimensional surfaces in 3−dimensional space is the point that we shall get into the

formalism in this section. To this end, by making use of mathematical rules of general

relativity for thin-shells, it is possible to develop a new terminology for the basic tools

used in the study of biological membranes. One of the most used concepts in the early

development of the biological membranes is the so-called Monge Gauge (MG). The

MG [43] is a parametrization / mapping of a 2−dimensional surface which is defined

by a height function h(x,y) over a flat plane as a function of orthonormal coordinate

on the plane x and y into a 3−dimensional flat space of coordinates x,y and z. This

parametrization describes the surface by a height function above an arbitrary

reference flat surface as following:

h :


R2 ⊃U −→ R3

(x,y)−→ h(x,y)
. (2.1)

By making use of the standard definition [43], the total curvature is as follows:
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κ =
h,xx
(
1+h2

,y
)
+h,yy

(
1+h2

,x
)
−2h,xyh,xhy

2
(
1+h2

,x +h2
,y
)2 (2.2)

and the Gaussian curvature is:

κG =
h,xxh,yy−h2

,xy(
1+h2

,x +h2
,y
)2 (2.3)

By introducing ∇ =

 ∂

∂x

∂

∂y

 the above usually are compacted as

2κ = ∇.

 ∇h√
1+(∇h)2

 (2.4)

and

κG =
det
(
∂2h
)(

1+(∇h)2
)2 (2.5)

in which the Hessian ∂2h is given by

∂
2h =

 h,xx h,xy

h,yx h,yy

 . (2.6)

For instance, in the research has done by Seifert and Langer [44], the height function

was set to h(x,y) = hexp [iqx] + c.c. in which h and q are two constants. For more

recent research one may look at the work done by Bingham, Smye, and Olmsted [45].

As of [44] and [45], the other studies where the Monge Gauge used, the original

unperturbed surface is locally flat. However, in the case of a blood cell, it is not

possible to consider its membrane flat. Therefore and fluctuation from its original rest

shape needs to be analyzed exactly without using Monge Gauge. Here one may use a

proper Monge gauge which of course is not the one introduced above. Spherically and

cylindrically symmetries are the most common symmetries which occur in nature.
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Hence in the following, this parametrization used for curved coordinate systems.

2.3.1 The Spherical Monge Gauge

Let’s start with a spherical shell of radius R with some fluctuation on its surface given

by the spherical height function h(θ,ϕ) in which θ and ϕ are the polar and azimuthal

angle. Unlike the Cartesian height function, the non fluctuated sphere is given by

h(θ,ϕ) = R. Here, the aim is to find the first and second fundamental forms as well as

the extrinsic curvature tensor and the scalar curvature of the hypersurface Σ in terms

of h(θ,ϕ) only. The outward normal vector on the surface Σ is defined as [46]:

nγ =
1√
∆

dF
dxγ

∣∣∣∣
Σ

(2.7)

in which F := r− h(θ,ϕ) = 0 is the definition of the surface Σ in three dimensional

flat spherical symmetric bulk space M with line element:

ds2
M = gαβdxαdxβ = dr2 + r2 (dθ

2 + sin2
θdϕ

2) . (2.8)

Herein ∆ is defined as:

∆ = gαβ dF
dxα

dF
dxβ

∣∣∣∣
Σ

(2.9)

in which gαβ is the metric tensor of the bulk and nγnγ = 1. Let’s note that the Greek

letters α,β, ...= 1,2,3 are used for the bulk space while the Latin letters i, j, ...= 2,3

shall be used for the hypersurface. Using the definition (2.1) we find:

nr = 1√
∆
, (2.10a)

nθ = −1√
∆

h,θ , (2.10b)

nϕ = −1√
∆

h,ϕ . (2.10c)
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in which:

∆ = 1+
h2
,θ

h2 +
h2
,ϕ

h2 sin2
θ
. (2.11)

The induced metric on the hypersurface Σ is given by:

gi j =
∂xα

∂ξi
∂xβ

∂ξ j gαβ (2.12)

in which the line element on the hypersurface is written as:

ds2
Σ = gi jdξ

idξ
j. (2.13)

Explicitly one finds:

ds2
Σ =

(
h2 +h2

,θ

)
dθ

2 +
(

h2 sin2
θ+h2

,ϕ

)
dϕ

2 +2h,θh,ϕdθdϕ (2.14)

or simply:

gi j =

 h2 +h2
,θ h,θh,ϕ

h,θh,ϕ h2 sin2
θ+h2

,ϕ

 (2.15)

with its inverse:

gi j =
1

h4 sin2
θ∆

 h2 sin2
θ+h2

,ϕ −h,θh,ϕ

−h,θh,ϕ h2 +h2
,θ

 . (2.16)

Having the induced metric and the normal vector on the hypersurface Σ, one can use

the definition of extrinsic curvature tensor of the surface Σ:

Ki j = −nγ

(
∂2xγ

∂ξi∂ξ j +Γ
γ

αβ

∂xα

∂ξi
∂xβ

∂ξ j

)∣∣∣∣∣
Σ

(2.17)
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to find the nonzero components of the extrinsic curvature or second fundamental form.

We note that Γ
γ

αβ
are the Christoffel symbols of the second kind of the bulk space with

the only nonzero components given by:

Γ
θ

rθ
= Γ

θ

θr = Γ
ϕ

rϕ = Γ
ϕ

ϕr =
1
r
, (2.18)

Γ
r
θθ =−r , Γ

r
ϕϕ =−r sin2

θ , (2.19)

and

Γ
ϕ

ϕθ
= Γ

ϕ

θϕ
=

cosθ

sinθ
, Γ

θ
ϕϕ =−sinθcosθ . (2.20)

The components of the extrinsic curvature tensor are:

Kθθ =
h2 +2h2

,θ−hh,θθ

h
√

∆
, (2.21a)

Kϕϕ =
h2 sin2

θ−hh,θ sinθcosθ+2h2
,ϕ−hh,ϕϕ

h
√

∆
, (2.21b)

Kϕθ = Kθϕ =
2h,θh,ϕ +hh,ϕ cosθ

sinθ
−hh,θϕ

h
√

∆
. (2.21c)

In order to find the total and the Gaussian curvature, K j
i is obtained:

Kθ

θ =


(

h2−hh,θθ +2h2
,θ

)
hsin3

θ+
(
hh2

,ϕ +h,θh,ϕh,θϕ−h2
,ϕh,θθ

)
sinθ−h,θh2

,ϕ cosθ

h4 sin3
θ∆3/2

 ,

(2.22a)

Kϕ

ϕ =


(

h2 +h2
,θ

)(
hsin2

θ−h,θ sinθcosθ−h,ϕϕ

)
sinθ+

(
2hh2

,ϕ +h,θh,ϕh,θϕ

)
sinθ−h,θh2

,ϕ cosθ

h4 sin3
θ∆3/2

 ,

(2.22b)

Kθ
ϕ =

(h,θh,ϕ−hh,θϕ

)
hsin3

θ+h,ϕ
(

h2
,θ +h2

)
sin2

θcosθ+
(
h,θh,ϕϕ−h,ϕh,θϕ

)
h,ϕ sinθ+h3

,ϕ cosθ

h4 sin3
θ∆3/2

 ,

(2.22c)
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Kϕ

θ
=


(

h2
,θ +h2

)(
−h,θϕ sinθ+h,ϕ cosθ

)
+ sinθ

(
h,θh,ϕ

(
h+h,ϕϕ

))
h4 sin3

θ∆3/2

 . (2.22d)

The mean curvature κ = 1
2tr
(

K j
i

)
:

κ =
α1 sin3

θ+α2 sin2
θcosθ+α3 sinθ+α4 cosθ

2h4∆
3
2 sin3

θ

(2.23)

in which



α1

α2

α3

α4


=



3hh2
,θ +2h3−h2h,θθ

−h,θ
(

h2 +h2
,θ

)
h2
,ϕ

(
3h−h,θθ

)
+2h,θh,ϕh,θϕ−h,ϕϕ

(
h2 +h2

,θ

)
−2h,θh2

,ϕ


, (2.24)

The Gaussian curvature κG = det
(

K j
i

)
obtains as:

κG =


(

h2
,ϕ +

(
h2 +h2

,θ

)
sin2

θ

)
h7∆3 sin6

θ(
β1 sin4

θ+β2 sin3
θcosθ+β3 sin2

θ+β4 sinθcosθ+β5 cos2 θ
)

h7∆3 sin6
θ

)
,

(2.25)

in which:



β1

β2

β3

β4

β5


=



h
(

h2 +2h2
,θ−hh,θθ

)
−hθ

(
h2 +2h2

,θ−hh,θθ

)
−h,ϕϕh2 +

(
h,θθh,ϕϕ−h2

,θϕ
+2h2

,ϕ

)
h+4h,θh,ϕh,θϕ−2h2

,θh,ϕϕ−2h2
,ϕh,θθ

2h,ϕ
(
−2h,θh,ϕ +h,θϕh

)
−hh2

,ϕ


. (2.26)

respectively.
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2.3.2 The Cylindrical Monge Gauge

By making use of the Generalized Monge parametrization, it is possible to parametrize

a cylindrical shell of radius ρ with some fluctuation on the cylindrical height function

h(ϕ,z) where ϕ is azimuthal angle and z is height distance. Using the standard method

of differential geometry leads us to obtain the first and second fundamental forms of

the general surface. This first fundamental form is the metric tensor of the surface, and

the second fundamental form is the extrinsic curvature tensor of the surface. To this

end, the outward normal vector on the membrane Σ defines as [46]:

nγ =
1√
∆

dF
dxγ

∣∣∣∣
Σ

(2.27)

Where F := ρ−h(ϕ,z) = 0 is the definition of the surface Σ in three dimensional flat

cylindrical symmetric bulk space M with the line element:

ds2
M = gαβdxαdxβ = dρ

2 +ρ
2dϕ

2 +dz2. (2.28)

Also, ∆ is the normalization factor given by:

∆ = gαβ dF
dxα

dF
dxβ

∣∣∣∣
Σ

(2.29)

In which gαβ is the metric tensor of the bulk and nγ satisfies nγnγ = 1. As an extra

explanation the Greek letters α,β, ... = 1,2,3 and the Latin letters i, j, ... = 2,3 are

used for the bulk space and the hypersurface Σ respectively. Using the definition of the

normal vector one finds:

nρ =
1√
∆
, (2.30)

nϕ =
−1√

∆
h,ϕ , (2.31)
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and

nz =
−1√

∆
h,z , (2.32)

with

∆ = 1+
h2
,ϕ

h2 +h2
,z . (2.33)

In which a subindex implies the partial derivative concerning the subletter. The induced

line element of the membrane Σ found to be [46]:

ds2
Σ =

(
h2 +h2

,ϕ

)
dϕ

2 +
(
1+h2

,z
)

dz2 +2h,ϕh,zdϕdz (2.34)

or equivalently the metric tensor is written as:

gi j =

 h2 +h2
,ϕ h,ϕh,z

h,ϕh,z 1+h2
,z

 , (2.35)

with its inverse:

gi j =
1

h2∆

 1+h2
,z −h,ϕh,z

−h,ϕh,z h2 +h2
,ϕ

 . (2.36)

The extrinsic curvature tensor of the surface Σ is defined by:

Ki j = −nγ

(
∂2xγ

∂ξi∂ξ j +Γ
γ

αβ

∂xα

∂ξi
∂xβ

∂ξ j

)∣∣∣∣∣
Σ

(2.37)

In which Γ
γ

αβ
is the Christoffel symbol of the second kind defined by:

Γ
i
kl =

gim (gmk,l +gml,k−gkl,m
)

2
. (2.38)
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To find the Christoffel symbols of the bulk metric tensor the only nonzero components

given by:

Γ
ϕ

ϕρ = Γ
ϕ

ρϕ =
1
ρ
, (2.39)

Γ
ρ

ϕϕ =−ρ . (2.40)

and, using the definition of the extrinsic curvature tensor are find:

Kϕϕ =
−hh,ϕϕ +h2 +2h2

,ϕ

h
√

∆
, (2.41)

Kzz =
hh,zz

h
√

∆
, (2.42)

Kϕz =
h,ϕh,z−hh,ϕz

h
√

∆
, (2.43)

Kzϕ =
h,ϕh,z−hh,zϕ

h
√

∆
. (2.44)

Furthermore, using the inverse induced metric and K j
i = g jkKik one can obtain:

Kϕ

ϕ =

(
1+h2

,z
)(
−hh,ϕϕ +h2)+2h2

,ϕ +h,ϕhz
(
hh,zϕ

)
+(hϕhz)

2

h3∆3/2 , (2.45)

Kϕ
z =

(
1+h2

,z
)(

h,ϕhz−hh,zϕ

)
+hϕh,zhh,zz

h3∆3/2 , (2.46)

Kz
ϕ =

(h2 +h2
,ϕ)(h,ϕhz−hh,zϕ)−h,ϕhz(hh,ϕϕ−h2 +2h2

,ϕ)

h3∆3/2 , (2.47)

and

Kz
z =

(h2 +h2
,ϕ)(−hhzz)−h,ϕhz(h,ϕhz−hh,zϕ)

h3∆3/2 . (2.48)

We can finally find the mean curvature which is defined as κ = 1
2tr
(

K j
i

)
and the
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Gaussian curvature which the definition κG = det
(

K j
i

)
, as:

κ =
(1+h2

,z)(h
2−hh,ϕϕ)+2h,ϕ−h3hzz +hh,ϕ(2h,zϕhz−hzzh,ϕ))

2h3∆3/2 (2.49)

and

κG =

(
(−h3h,zz +h2h,zzh,ϕϕ−h2h2

,zϕ−2hh,zzh2
,ϕ +2hh,zϕh,ϕh,z−h,z2h,ϕ)

h6∆3

((h2
,z +1)h2 +hϕ

2)

h6∆3

) (2.50)

2.4 Membrane Deformations

Thus far lipid molecules morphologies have introduced which induces different

spontaneous curvature to membranes. Besides, Monge parametrization of the curved

surfaces was developed to capture the curvature of membranes embedded in

three-dimensional space. To give the feeling of the connection between different

membranes’ geometry and their curvature, Physicists become interested in capturing

the minimal energy of organelles’ forms or membranes deformations. These

deformations are common phenomena in nature and life science. From geometry’s

angle, the thickness of biological membranes (∼ 5nm), is small compared to their

lateral extension, such that they can be considered as two-dimensional surfaces

embedded in three-dimensional space. The following chapter will aim to model the

specific biological membranes’ configuration. In this respect, it is helpful to address

the four main classes of mechanical and membrane deformations.

2.4.1 Stretching Energy

By stretching the membrane, a force per unit of area on the planar membrane is exerted,

which identified as a tension, σ. The reaction force appears as internal stresses, which

is energy costing deformation. The probability of finding free lipids is low because of
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the repulsion of the hydrocarbon tails in an aqueous environment. So in the stationary

states, lipids have a small exchange rate possibility between the membrane and the

aqueous surrounding [34]. This means that the surface area, A, is a constant which

implies a constraint on the area. Besides, it can translate into the mechanical energy

via a Lagrange multiplier σ. Subsequently, change in the area of the patch of membrane

illustrates its stretch energy due to the non-elasticity of the biological membrane. This

leads us to examine the stretch mechanical deformation by an area energy function

[2, 34]. Thus, the area energy associated with a closed biological membrane without

holes is given by:

Earea =

ˆ
σdA (2.51)

where σ is surface tension and dA =
√

gdxidx j is the surface area element (see more

detailes in Appendix. A).

2.4.2 Bending Energy

Among all classes of energies associated with fluid membrane surfaces, the energy

due to bending deformations is the dominant one [34]. Consequently, considering the

contribution of the bending energy can help us to identify the energy of

two-dimensional surfaces, plasma membranes. This energy is captured by the

geometry of surfaces, known as the curvature concept of surfaces (see Appendix. A).

Bending energy is scale-invariant since the dimension of curvature is an length. The

unique characteristic of three-dimensional bending energy is not only scale-invariance

but, additionally, invariance with respect first-order conformal transformations of the

two-dimensional induced metric [34]. Here the proper terminology is differential

geometry. To understand what is behind the morphology of the cells’ membrane, one
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can use the Canham-Helfrich-Evans Hamiltonian [46–48] of isotropic and

homogeneous membranes as following:

Ebending =

ˆ
Ω

(
κ

2
(K−C0)

2 +κKG

)
dA (2.52)

where Ω is the surface domain, K = c1+c2
2 is the mean curvature, and KG = c1c2 is

the Gaussian curvature in which c1 and c2 are the principal curvatures 3 . C0 is the

spontaneous curvature, which represents an asymmetry of the bilayer membrane in

its ground state. κ and κ denote the bending rigidity, and the saddle-splay modulus

respectively. The well-known Gauss-Bonnet theorem, κ
´

Ω
KGdA = 4π(1−g), implies

that for a specific topology of genus g, the Gaussian curvature is a topological invariant.

Therefore, for spherical topology, the second term in Eq. (2.52) is constant, which leads

to a vanishing variation. In the stationary state, this term is negligible and the bending

energy reads:

Ebending =

ˆ
Ω

κ

2
(K−C0)

2dA (2.53)

2.4.3 Energy Due to the Changes in the Thickness

Membrane proteins can deform biological membranesdue to their hydrophobic

segments. In such a situation, their hydrophobic segment can align with the

surrounding membrane to deform the membrane. This deformation will appear as a

change in the thickness of the biological membrane (For details see section 11.6.2

of [34]). It turns out that the thickness deformation has the lowest energy

contribution. It can be obtained similar to Hooke’s law as:

Ewidth =
Kw

2

ˆ (
w−w0

w0

)
dA (2.54)

3 Principal curvatures are the eigenvalues of Kb
a = gabKcb
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where w0 is the half-thickness equilibrium, and w is the half-thickness deformation of

the membrane. Besides, the units of Kw ≈ 60kBT/nm2 is an energy over unit of area.

2.4.4 Shearing Energy

Lipids form bilayer membranes, and they can move around without costing energy

while remaining in the tangential plane. Therefore, they do not assist any shear energy.

According to their similar behavior with fluid in their tangent plane, they are known as

fluid membranes even though they are not fluid in their normal direction [34].
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Chapter 3

HOW TO MODEL A FLEXOELECTRIC FLUID

MEMBRANE IN AN ELECTRIC FIELD

The current chapter aims to model a flexoelectric fluid membrane, by making use of

the basic phenomenological concepts of biological membranes which were

introduced in Chap. 2. The overarching concepts give answers to the questions: "How

do fluid membranes interact with an electric field?". Finding the answer to this

question is the focus of this chapter. Biological membranes are dielectric materials

that display a variety of electromechanical coupling mechanisms [49]. A classic

example is piezoelectricity, which was discovered by the Jacques and Pierre Curie in

1880 [50]. Piezoelectricity results from a linear coupling allowing a crystalline

material with no inversion symmetry to convert a uniformly applied electric field into

a mechanical contraction or dilatation and vice-versa. For instance, barium titanate,

lead zirconate titanate, and quartz are piezoelectric with a non-centrosymmetric

crystalline structure [49]. Piezoelectricity has been exploited for industrial and

biomedical applications such as sensorics [51], artificial muscles [52], or

implantology [53].

In 1969 Robert B. Meyer suggested a similar linear coupling mechanism between the

electric polarization and the curvature strain of liquid crystals [54]. In contrast to

piezoelectricity, flexoelectricity is a ubiquitous phenomenon displayed by all

dielectrics. In particular, bendable two-dimensional structures like fluid lipid
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membranes and graphene sheets exhibit the flexoelectric effect [49]. In the context of

flexoelectric fluid membranes Petrov and coworkers have shown its relevance for

biological membranes in experiments [26–28], which motivated several subsequent

theoretical studies [29–32]. Only recently it has been shown with extensive molecular

dynamics simulations that uniform electric fields can induce biologically relevant

membrane deformations [33].

This chapter focuses on introducing a generic geometrical framework to investigate

the response of a flexoelectric fluid membrane to electric field stresses exerted on the

system. To include the flexoelectric effect, we base our model on a recent theory by

Steigmann and Agrawal, which was obtained as the thin-film limit of the continuum

electrodynamics of nematic liquid crystals [32]. In this model, the authors assume

free charges to be absent. Moreover, it is supposed that the polarisation vector is

tangential to the membrane surface, a simplification which is supported to a certain

extent by molecular dynamics simulations and quantum mechanical

considerations [55–57]. The electric self-field of the membrane can be neglected in

this case, which yields a justification for its suppression [32]. Here, lipid bilayers

consider as thin-film nematic liquid crystals, as it was introduced in Chap. 2, in an

analogous method with what was suggested for the first time in 1973 by Helfrich and

resulted in the growing literature on this subject ( see for example Ou-Yang et al.

1999 and David Steigmann et al. 2016).

To understand the effect of electromechanical stresses, one has to determine the

shapes that flexoelectric fluid membranes adopt in equilibrium under given boundary

conditions in a first step. By minimizing the energy, one can mathematically

determine the shapes of such membranes. This minimization is, for instance, possible
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with the help of the Lagrange multiplier framework (see [58]), which allows

identifying the electromechanical stresses and the stresses due to the elasticity of the

membrane.

To this end, the starting point is to introduce the analytical model for the case of a

general electric field. In the next step, the electric field stress tensor governed by the

membrane and its geometry will be derived. The shape equation of the system by

introducing a generic electric field Hamiltonian will then be obtained. Finally, the

general boundary conditions at the flexoelectric fluid membranes’ interface located in

an inhomogeneous electric field Eext will be discussed.

3.1 Equilibrium Theoretical Model

As discussed in chap. 2, fluid membranes are composed of two layers of polar lipids

held together by their amphiphilic properties. The thickness of such a bilayer is

typically much smaller than its lateral extension, which implies that it can be

modelled as a two-dimensional surface Ω. Moreover, since the lipids can move freely

within each layer, one can consider the bilayer as fluid in the tangential plane.

Including flexoelectricity, it is possible to describe the mechanical characteristics of

the fluid membranes by taking into account four main contributions [2, 32] (see also

discussion in chap. 2): the bending energy, which penalizes the curvature of the

surface, and, the surface energy of the membrane which originates from changes of

the membrane’s area, the pressure difference between the inner and the outer part of

the membrane, and finally, the electromechanical energy which arises from the

response of the electrically polarized surface to an external electric field.

Accordance to the classical spontaneous curvature model, the Canham-Helfrich-Evans

Hamiltonian description, the bending energy Eb of a vesicle described by a surface
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integral involving a second-order expansion in curvatures [22, 46–48, 59] is given by:

Eb =

ˆ
Ω

[
κ

2
(K−C0)

2 +κKG

]
dA, (3.1)

where K, KG, and C0 are the mean, the Gaussian, and the spontaneous curvature,

respectively. The constant κ is the bending rigidity, and κ denotes the saddle-splay

modulus. In the following, only vesicles of spherical topology and zero spontaneous

curvature will be considered. This allows discarding all terms but the first one

involving the square of the mean curvature. Based on the Gauss-Bonnet theorem for a

surface of genus g ,
´

κKdA = 4π(1−g), where g refers to the number of "handles" of

flexoelectric fluid membrane vesicles this term can be neglected in Eq. (3.1) leading

to:

Eb =

ˆ
Ω

κ

2
(K−C0)

2dA . (3.2)

In this section, the total energy of a thin flexoelectric membrane in an external electric

field Eext will be studied. Molecular dynamics simulation and experimental studies by

Warshavic et al. in 2011 [57] have estimated that the dipole potential arises from (i) the

dipole moments of the lipid’s polar headgroups (phosphatidylcholine (PC) lipids have

dipole moment of 18-25 Debye), (ii) the carbonyl group of the acyl chains (the dipole

moment is nearly 2.5 Debye), and (iii) the aligned water molecules (dipole moment

of a water molecule≈ 1.8 Debye). Besides, they illustrated that the PC head group’s

dipole moment is placed more parallel to the surface of the bilayer rather than its

normal component of 6±3 Debye pointing towards the aqueous phase. As a result the

polarization vector is mainly tangential to the membrane surface (see also [55,56]). As

discussed earlier, the effect of the electric self-field for fluid membranes is neglected.

Flexoelectricity adds another contribution to the total energy when an external electric
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field Eext is present. Following Steigmann and Agrawal the corresponding energy of

the flexoelectric membrane is given by [32]:

Ef =

ˆ
Ω

[
1

2D
[(Eext ·n)2−|Eext|2]

]
dA, (3.3)

where n is the normal vector of the membrane surface. The flexodielectric constant

D = χ⊥− c2
2

k3
indicates the strength of the flexoelectric effect. It is a combination of the

inverse of the electric polarisability, χ⊥, exhibited by the membrane when the electric

field Eext acts in the tangential plane, the bending modulus k3 of the Frank energy of

nematic liquid crystals, and the flexoelectric constant c2 in the coupling term between

the polarization vector and the tangent vectors of the membrane [32]. The strength of

the flexoelectric effect will determine the sign of D. This finally allows writing the

total energy functional of a flexoelectric fluid membrane in the presences of pressure

and an electric field as:

Etot =

ˆ
Ω

dA
(

κ

2
(2K−C0)

2 +κKG +σ+
1

2D
[(Eext ·n)2−|Eext|2]

)
+

ˆ
dV P (3.4)

where Eext is the applied electric field, n is the normal vector, and P is the pressure

difference.

3.2 Flexoelectric Field Stress Tensor

This section aims to identify the electric field stress tensor with the help of auxiliary

variables that facilitate the variational problem to mimic the response of the surface to

the deformation. To this end, it is possible to characterize the surface by an intrinsic

tensor of the metric gab, and an extrinsic curvature tensor Kab, which is an auxiliary

field on the curved space. Auxiliary fields are describing the geometry of the

flexoelectric membrane by a Hamiltonian, which only depends on metric tensor and

extrinsic curvature induced on the surface [58]. In the following, the stress tensor–
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multiplier f̃a– which originates from the direct derivation of the shape equation will

be exploited.

3.2.1 General Hamiltonian

In this section, the behavior of a flexoelectric fluid membrane is discussed for the

general case. According to Eq. (3.4), the curvature terms are quadratic. In the case of

strong bending deformations, higher-order terms which originate from the nonlinearity

of the curvature [60] cannot be neglected, and a generic description of the Hamiltonian

is given by [61]:

HΣ[X] =

ˆ
Σ

dAH (gab,Kab) , a,b,∈ {1,2} , (3.5)

where H depends on the metric gab, and the extrinsic curvature tensor Kab (see Sec.

The Geometry of Fluid Membranes: Variational Principles, Symmetries and

Conservation Laws in [62]).

Geometry

It is straightforward if one examine the minimum energy with respect to the surface

deformation function X = X + ∂X. In this respect, it is possible to track this

deformation through gab, Kab,
√

g, and all covariant derivatives.

gab = ea · eb , (3.6a)

Kab = ea ·∂bn = ea ·∇bn . (3.6b)

with

ea = ∂X/∂ξ
a = ∂aX = ∇aX , (3.7a)

ea ·n = 0 , (3.7b)

n2 = 1 . (3.7c)
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Now by using Lagrange multiplier functions, which was pointed out by Guven [58] for

the first time, it is possible to consider gab, Kab, ea, and n as independent variables to

reformulate the generic Hamiltonian function as below:

H̃c = H̃[gab,Kab]+

ˆ
Σ

dA[λ̃ab(gab− ea · eb)+ Λ̃
ab(Kab− ea ·∇bn)]

+

ˆ
Σ

dA[f̃a · (ea−∇aX)+ λ̃a
⊥(ea ·n)+ λ̃n(n2−1)] .

(3.8)

in which Lagrange multipliers fix the constraints Eqs. (3.6) and (3.7).

Flexoelectric Hamiltonian

Using the auxiliary variables approach [61] which simplifies the variational problem,

and Eq. (3.8) enables us to derive the new Hamiltonian of the system in the presence

of osmotic pressure and electric field as follows:

H̃c,P,E = H̃c−
P
3

ˆ
dAn ·X− 1

2D

ˆ
dA
(
Eext

2− (Eext ·n)2) . (3.9)

Deformations of all these variables lead us to find the response of the Hamiltonian,

which will equilibrate in the presence of pressure and electric field. In the following,

a straightforward approach to identify the flexoelectric surface stress tensor will be

provided.

3.2.2 Euler-Lagrange Equations

The Euler-Lagrange derivatives with respect to X, ea, n, gab, and Kab, respectively, are

written as:
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∇af̃a
=

1
3

Pn+π · ∂Eext

∂X
, (3.10a)

f̃a
= (Λ̃acKb

c +2λ̃
ab)eb− λ̃

a
⊥n , (3.10b)

0 =

[
∇bΛ̃

ab + λ̃
a
⊥−

1
3

PX · ea +
1
D
(Eext ·n)(Eext · ea

b)

]
ea

+

[
2λ̃n− Λ̃

abKab−
1
3

PX ·n+
1
D
(Eext ·n)2

]
n , (3.10c)

λ̃
ab =

1
2

T̃ ab +
1
6

PX ·ngab +
1

4D

(
E2

ext− (Eext ·n)2)gab , (3.10d)

Λ̃
ab = −H̃ab . (3.10e)

To obtain Eq. (3.10), the Weingarten equations ∇an = Kb
a eb, and the Gauss equations

∇aeb =−Kabn are used. One also uses:

H̃ ab := δH
δKab

and , (3.11a)

T̃ ab :=−2δ(
√

gH )√
gδgab

. (3.11b)

where T̃ ab is known as the intrinsic stress tensor associated to the metric tensor gab

[63]. Equation (3.10a) reveals the existence of a non-equilibrium expression for the

multiplier f̃a (i.e., equilibrium situation: ∇af̃a
= 0).

In Eq. (3.10d) it is possible to implement the derivatives of
√

g with respect to the

metric (i.e., ∂
√

g
∂gab

= 1
2
√

ggab); in Eq. (3.10c) completeness X = (X · ea)ea +(X ·n)n is

used. Using the equations (3.10c), (3.10d), and (3.10e), it is feasible to easily

eliminate the Lagrange multipliers on the right hand side of Eq. (3.10b) to provide an

explicit expression for f̃a in terms of geometrical and electoromechanical variables.

From Eq. (3.10c) λ̃a
⊥ = −∇bΛ̃ab + 1

3PX · ea− 1
D(Eext · n)(Eext · ea

b) due to the linear

independence of ea and n is found; Eqs. (3.10d) and (3.10e) reveal λ̃ab and Λ̃ab.

Therefore, with simplifications of Eq. (3.10b) an expression for the multiplier f̃a,

which pins the tangent vector to the flexoelectric membrane surface is obtained:
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f̃a
= fa− 2

3
PJa− 1

D

(
1
2

[(
(Eext ·n)2−E2

ext
)

gab
]

eb− [(Eext ·n)(Eext · ea)]n
)

= fa− 2
3

PJa +Ea

(3.12)

where fa =
(
T ab−H acKb

c
)

eb −
(
∇bH ab)n, is the original stress tensor without

flexoelectricity [62] and osmotic pressure. Moreover,

Ja =
1
2
[(X · ea)n− (X ·n)ea] =

1
2

X× (n× ea) . (3.13)

is the Jemal tensor. The divergence of the Jemal tensor equals the normal vector as:

n = ∇aJ a . (3.14)

with this in mind, one can reformulate Eq. (3.10a) as:

∇af̃a
= Pn+π · ∂Eext

∂X
. (3.15)

which indicates pressure as a source of normal stress [64].

It, then, can be simplified further by defining the new effective flexoelectric stress

tensor of the membrane fa
e , which is normalized by κ as below:

fa
e = fa− P̃Ja +Ea (3.16)

Where the flexoelectric stress tensor term stems from the external electric field:

Ea =
1
D

(
1
2
[
E2

ext− (Eext ·n)2]ea +[(Eext ·n)(Eext · ea)]n
)

(3.17)

The divergence of the flexoelectric stress tensor (3.17) calculates as below:
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∇aEa =
1
D

{−K
2
[
E2

ext− (Eext ·n)2]n+∇a [(Eext ·n)(Eext · ea)]n

+
1
2

∇a
[
E2

ext− (Eext ·n)2]ea +(Eext ·n)(Eext · ea)∇an
}

; ,

=
1
D

{−K
2
[
E2

ext− (Eext ·n)2]+∇a [(Eext ·n)(Eext · ea)]

}
n+[π ·∇aEext]ea .

(3.18)

Therefore, the electric field acts as a source of normal and tangential stresses which

have to be equilibrated by the geometrical stresses.

3.2.3 Shape Equation

In the last section, the stress tensor has been obtained. Here, the shape equation

expression provided by conservation of the stress tensor and the projection onto the

normal vector [62] as below:

E := n ·∇afa
e (3.19)

Which is zero in equilibrium.

3.2.4 External Forces Across an Arbitrary Contour of Surface

To identify the external forces, the first step is considering the effective stress tensor,

fa
e(a∈{1,2}), of the flexoelectric fluid membrane at every point by knowing the shape

of the free flexoelectric membrane [62, 64]:

fa
e =

{
K(Kab− K

2
gab)− [

P̃
2
(X ·n)+ σ̃− 1

2D
(E2

ext− (Eext ·n)2)]gab
}

eb

−
{

∇aK− P̃
2
(X · ea)− 1

D
(Eext ·n)(Eext · ea)

}
n .

(3.20)

The local force density ( f̃⊥ := laea), i.e., the force per unit length, transmitted along

the contour on the flexoelectric membrane, obtained by the projection onto the unit

vector, conormal, l = laea which is perpendicular to the contact line, gives the local

force density:
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lafa
e =

{
1
2
(K2
⊥−K2

‖ )−
[

P̃
2
(X ·n)+ σ̃− 1

2D
(E2

a − (Eext ·n)2)

]}
l

−
{

∇⊥K− P̃
2
(X · l)− 1

D
(Eext ·n)(Eext · l)

}
n

(3.21)

where l and n are conormal and normal vectors respectively which are perpendicular to

the contour and to one another in every point of the curve. Besides, l is tangential to the

flexoelectric membrane while n is normal. K⊥ and K‖ are curvatures perpendicular (in l

direction) and tangential to the curve. The ∇⊥ shows the derivation along l. Integration

of the flux along an arbitrary enclosed curve,γ, on the flexoelectric fluid membrane will

give the external force acting on the membrane:

Fext =−ea ·
˛

γ

dslafa
e . (3.22)

3.3 Inhomogeneous Electric Field

As already described, the total energy function of the flexoelectric fluid membranes

provided in Eq. (3.4) is highly nonlinear. Thus, there exists no magical way to find an

exact solution for the shape equation. It is feasible to introduce a practical half-

numeric method in this section. In this respect, one can shift to the arc-length

parametrization (ψ(s)) (see details in an appendix. C), where ψ is the angle along the

tangent to the flexoelectric membrane and the horizontal axis. It is possible to

consider a general inhomogeneous electric field in the cylindrical coordinate system

as:

Eext(ρ,z) = Eext
ρ
ρ+Eext

zz . (3.23)

Shape equation:

By making use of Eqs. (3.12) and (3.19), and the normal vector projection of the

conservation law, one can derive an expression for the shape equation as:
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E = P+
1
D

[
− K

2
(Eext

ρ2 +Eext
z2−Eext

ρ2 sin2
ψ−

−Eext
z2 cos2

ψ−Eext
ρEext

z sin2ψ)+

+(∂ρ(Eext
ρ2)ρ̂−∂z(Eext

z2)ẑ)
sin2ψ

2
+

+∂ρ(Eext
ρ)Eext

z
ρ̂cos2ψ+∂z(Eext

z)Eρ
a ẑcos2ψ

]
(3.24)

3.3.1 Hamilton Equations for Inhomogeneous Electric Field

In the following, the equation which illustrates the extension of ψ(s) across the cross-

section of the free flexoelectric membrane will be examined. This equation is a fourth-

order ordinary differential equation. To facilitate the numerical integration, one can

reformulate this by making use of the Hamilton formalism.

The scaled energy of the free part of an axisymmetric flexoelectric fluid membrane

with purely tangential polarization and subject to the availability of an inhomogeneous

electric field can be written as:

Ẽ :=
E
πκ

=

ˆ s̄

s
ds

[
ρ

(
ψ̇+

sinψ

ρ

)2

+2σ̃ρ+λρ(ρ̇− cosψ)+λz(ż− sinψ)+ P̃ρ
2 sinψ

− ρ

2D

(
(Ēρ

ext)
2 +(Ēz

ext)
2− (Ēρ

ext)
2 sin2

ψ− (Ēz
ext)

2 cos2
ψ− Ēρ

ext Ē
z
ext sin2ψ

)]
,

(3.25)

where P̃ := P
κ

is the scaled pressure and σ̃ := σ

κ
is the scaled tension. The

parametrized angle-arc-length couple to the Euclidean coordinate system (ρ,z) by

Lagrange multipliers λρ and λz. The last five terms of Eq. (3.25) are obtained from

the flexoelectric energy term:
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−1
2D

(
| Eext |2 −(Eext ·n)2

)
:=
−1
2D

(
(Ēρ

ext)
2 +(Ēz

ext)
2− (Ēρ

ext)
2 sin2

ψ− (Ēz
ext)

2 cos2
ψ− Ēρ

ext Ē
z
ext sin2ψ

)
.

(3.26)

The scaled energy, Ẽ := E
πκ

=
´ s̄

s dsL̃, allows to peel the scaled Lagrangian off the Euler

Lagrange equation:

L̃ = ρ

(
ψ̇+

sinψ

ρ

)2

+2σ̃ρ+λρ (ρ̇− cosψ)+λz (ż− sinψ)+ P̃ρ
2 sinψ

− ρ

2D

(
(Ēρ

ext)
2 +(Ēz

ext)
2− (Ēρ

ext)
2 sin2

ψ− (Ēz
ext)

2 cos2
ψ− Ēρ

ext Ē
z
ext sin2ψ

) (3.27)

The systems’ conjugate momenta , pi =
∂L̃
∂qi

, read:

pψ = ∂L̃
∂ψ̇

= 2ρ

(
ψ̇+

sinψ

ρ

)
, (3.28a)

pρ = ∂L̃
∂ρ̇

= λρ , (3.28b)

pz = ∂L̃
∂ż = λz . (3.28c)

The scaled Hamiltonian is then given by:

H̃ = ψ̇pψ + ρ̇pρ + żpz− L̃

=
p2

ψ

4ρ
− pψ

sinψ

ρ
−2σ̃ρ+ pρ cosψ+ pz sinψ− P̃ρ

2 sinψ

+
ρ

2D

(
(Ēρ

ext)
2 +(Ēz

ext)
2− (Ēρ

ext)
2 sin2

ψ− (Ēz
ext)

2 cos2
ψ− Ēρ

ext Ē
z
ext sin2ψ

)
(3.29)

H̃ is a conserved quantity since it does not explicitly depend on the arc-length s. By

making use of the Hamiltonian formalism one can obtain six first-order ordinary

differential equations instead of having a fourth-order equation. These Hamilton

equations are:
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ψ̇ =
∂H̃
∂pψ

=
pψ

2ρ
− sinψ

ρ
, (3.30a)

ρ̇ =
∂H̃
∂pρ

= cosψ , (3.30b)

ż =
∂H̃
∂pz

= sinψ , (3.30c)

ṗψ = −∂H̃
∂ψ

=

(
pψ

ρ
+ P̃ρ

2− pz

)
cosψ+ pρ sinψ

− ρ

2D

(
(Ez

ext
2−Eρ

ext
2
)sin2ψ−2Eρ

extE
z
ext cos2ψ

)
, (3.30d)

ṗρ = −∂H̃
∂ρ

=
pψ

ρ

(
pψ

4ρ
− sinψ

ρ

)
+2σ̃+2P̃ρsinψ

− 1
2D

((Ēρ

ext)
2 +(Ēz

ext)
2− (Ēρ

ext)
2 sin2

ψ

− (Ēz
ext)

2 cos2
ψ− Ēρ

ext Ē
z
ext sin2ψ)

− ρ

2D

(
∂ρ(E

ρ

ext
2
)−∂ρ(E

ρ

ext
2
)sin2

ψ−∂ρ(E
ρ

ext)E
z
ext sin2ψ

)
, (3.30e)

ṗz = −∂H̃
∂z

=− ρ

2D

(
∂z(Ez

ext
2)−∂z(Ez

ext
2)cos2

ψ−Eρ

ext∂z(Ez
ext)sin2ψ

)
.(3.30f)

where ∂ρ := ∂

∂ρ
, and ∂z := ∂

∂z .

It is possible to solve these six Hamilton equations by a shooting method for a given

external electric field [65] (see Chap. 4 as an example).

3.3.2 External Force for the Axisymmetric Flexoelectric Membranes

The generic form of the external force Eq. (3.22) cannot be integrated. However, the

arc-angle-length axisymmetric parametrization facilitates its integration. In this

parametrization, the principal curvatures are K⊥ :=−ψ̇, and K‖ := sinψ

ρ
where ρ is the

polar radius and ψ is the angle between the polar direction, and the tangent along the

meridian. Consequently, in this parametrization with an inhomogeneous

axisymmetric electric field as Eext = Eρ

extρ + Ez
extz, we can identify the local force

density along the contact line as follows:
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lafa
e =

{
1
2
(ψ̇2− sin2

ψ

ρ2 )− [
P̃
2
(X ·n)+ σ̃

− 1
2D

((Eρ

ext
2
+Ez

ext
2)− (Eρ

extρ ·n+Ez
extz ·n)2]

}
l

−
{

ψ̈+
ψ̇cosψ

ρ
− cosψsinψ

ρ2 − P̃
2
(X · l)

− 1
D

(
(Eρ

extρ ·n+Ez
extz ·n)(Eρ

extρ · l+Ez
extz · l)

)
+

}
n

=

{
1
2
(ψ̇2− sin2

ψ

ρ2 )− [
P̃
2
(X ·n)+ σ̃

− 1
2D

((Eρ

ext
2
+Ez

ext
2)− (−Eρ

ext sinψ−Ez
ext cosψ)2]

}
l

−
{

ψ̈+
ψ̇cosψ

ρ
− cosψsinψ

ρ2 − P̃
2
(X · l)

− 1
D

(
(Eρ

ext
2−Ez

ext
2)sinψcosψ+Eρ

extE
z
ext(1−2sinψ)

)}
n ,

(3.31)

where one can use the projection of the tangent and normal vectors onto the basis

vectors as follows:

z · l =−ρ ·n = sinψ , (3.32)

z ·n = ρ · l =−cosψ , (3.33)

in which the normal vector n points towards the outside of the vesicle. The integral of

its flux through an arbitrary contour γ gives the force as below:

−Fext =−z ·
˛

γ

dslafa
e

=−
˛

γ

ds
({

1
2
(ψ̇2− sin2

ψ

ρ2 )− [
P̃
2
(X ·n)+ σ̃

− 1
2D

((E2ρ

ext +E2z
ext)− (−Eρ

ext sinψ−Ez
ext cosψ)2]

}
(z · l)

−
{

ψ̈+
ψ̇cosψ

ρ
− cosψsinψ

ρ2 − P̃
2
(X · l)

− 1
D2

(
(E2ρ

ext−E2z
ext)sinψcosψ+Eρ

extE
z
ext(1−2sinψ)

)}
(z ·n)

(3.34)
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3.4 Boundary Condition at Contact Lines

In the previous sections, a Hamiltonian has indicated the energy of the flexoelectric

fluid membranes. Besides, one can calculate the external forces that imprint the shape

equation of the flexoelectric membranes by the integration of the stresses. The

surrounding environment can originate such stresses. For example, if there exists an

interface with a solid substrate or another fluid surface, the system may have different

domains. Consequently, it is possible to face additional stresses along the contact line.

As soon as the system equilibrates, the contact line will locally adapt to minimize the

total energy. Subsequently, one can have boundary conditions that are related to the

properties of the surface deformation energy. In the following, we derive a general

boundary condition due to the jump occurring in the contact line by making use of the

geometric framework, which was introduced earlier in this chapter.

3.4.1 Variation of the Contact Line

There exists a discontinuity across the contact line of the membrane’s interface due to

the form of the energy density. Thus, one can calculate the related boundary conditions

by considering the variation of energy change in the contact line to vanish (∂Hcl = 0)

[63, 66].

The total energy of adhering membranes concerning the contact line’s variation along

the substrate should be stationary. Suppose that the contact line is moving locally

in a way that part of the membrane detaches from the substrate. This will eliminate

the corresponding binding energy and lead to a change in the related energy ∂Hbound .

Besides, the free part of the flexoelectric membrane at the contact line would want to

win this energy such that a change in the energy of the free part also occurs ∂H f ree.

Consequently, it is feasible to have the stationary boundary condition at the contact
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line as:

∂Hcl = ∂Hbound +∂H f ree = 0 (3.35)

where ∂Hbound and ∂H f ree are the change in the energy associated with the bound part

and free part respectively.

3.4.2 Discontinuity at the Contact Line

The total energy of the flexoelectric fluid membrane Eq. (3.4) illustrates the

continuous behavior of the membranes. Since it is a quadratic equation, the

membrane is differentiable along the contact line that varies locally (see chapter 3

of [63] ). Thus, we expect a discontinuity in the slope at the contact point as

following:

4w
κ

=
1
2
[κν]

2 +(wc
~π−w f

~π
) (3.36)

where w is the adhesion energy [67,68], and w~π =
1
2
~D |~π|2−~π ·Eext =

−1
2 (φ2− | Eext |2

) =
−E2

ext
2D sin2

ψ =−Eext sin2
ψ [32, 69].

2w
κ

= [κν]
2 +
(

Ēc
ext− Ē f

ext

)
sin2

α (3.37)

with [κν] = 1− ψ̇ and w = 0.
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Chapter 4

FLEXOELECTRIC FLUID MEMBRANE VESICLES IN

SPHERICAL CONFINEMENT

4.1 Folding Patterns in Nature

Among all of the enigmatic shapes in nature, there exist countless mysterious shapes,

just think of the shape of mountains, hills or the cerebellum, mitochondria, and

kidney [70–72]. Folding patterns are observed in all of these forms. Besides, folding

patterns give us insight into the morphology of complex shapes occurring in

inanimate nature and living matters [73, 74]. To investigate these phenomena,

morphologists or zoologists have a very different scientific approach in comparison to

physicists [73,74]. In contrast, physicists, who are dealing with universal laws and the

cause and effect of each phenomenon, consider the mechanical stresses that are

exerted on the system to capture the folding patterns [1, 2, 14, 18–23, 36, 73].

Therefore, the main question in this context is: "Why do folding patterns in a specific

system occur?". As a physics student, the answer to such a question would be: "It

happens either by exerting internal stresses on the system which leads to growth [73]

or by applying external stresses or constraints on the system [1, 2, 36, 73].

As an example, the folding patterns of spherically confined fluid membrane vesicles

have been studied by Kahraman et al. [2]. In this work, the basic deformation patterns

of the membranes were identified resulting from an interplay of geometry and

mechanics.
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This chapter aims to describe how an additional electric field will change these shapes.

In this respect, the main task is to capture the folding patterns of a flexoelectric fluid

membrane vesicle inside a spherical cavity in the presence of a uniform electric field,

which will exert additional stresses on the system. To this end, one can make use of

the general expression introduced in Chap. 2 and the specific framework derived in

Chap. 3.

4.2 Theoretical Calculation of Electric Fields in a Spherical

Confinement

To be able to determine the shape of the flexoelectric membrane vesicle, one first has

to calculate the electric field inside the confining cavity when the whole system is

immersed in an external electric field. For the sake of simplicity, an applied uniform

electric field, Eext, which is antiparallel to the z-axis is considered. In the calculations,

one has to make sure that the electric field fulfils all boundary conditions.

4.2.1 Dielectric Sphere Model in an Applied Uniform Electric Field Eext

Consider a simple system consisting of a spherical hard shell 4 with inner radius a and

outer radius b, which is inserted in an applied uniform electric field, Eext =−Eextz, in

an aqueous environment (see Fig. 4.1).

Here, the system is divided into three different spherical domains; an inner spherical

environment with water, a hard shell dielectric, and the outer environment filled with

water. In this system, εw is the dielectric constant of the inner and outer environment

and, εM is the dielectric constant in the shell membrane. In the following, the three

domains are labelled by 1, 2, and 3, corresponding to inside, between, and outside

of the shell, respectively (see Fig. 4.1). This shell will serve as the confining sphere

4 This shell corresponds for example to the outer membrane of a mitochondrion
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in which we will insert the flexoelectric membrane vesicle in Sec. 4.3. To determine

the electric field inside the shell one has to solve the Laplace equation. The general

solution of the Laplace equation in spherical coordinates with azimuthal symmetry

is [75]:

Φl(~r,θ) =
∞

∑
l=0

[
Alrl +Clr−(l+1)

]
Pl(cosθ) . (4.1)

Figure 4.1: Spherical lipid fluid membrane vesicle with inner radius a and outer radius
b, which is subjected to an applied uniform electric field in an aqueous environment.

It is possible to obtain the coefficients Al and Cl with the help of the electrostatic

boundary conditions. In this respect, the shell considered being a spherical dielectric

which is immersed in a uniform electric field. When the radius of the shell is an infinite,

electric potential becomes a constant value of φ =−Eextz = Eextrcos(θ), and when the

radius is zero, electric potential will be zero. Such that the expressions for the potential

at any point in space are given by [75]:
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φ1(~r,θ) =

(
Eext +

A
a

)
r cosθ 0 < r < a εw , (4.2a)

φ2(~r,θ) =

(
Eext +

B
a

)
r cosθ+C

b2

r2 cosθ a < r < b εM , (4.2b)

φ3(~r,θ) =

(
Eextr+D

b2

r2

)
cosθ r > b εw . (4.2c)

where φ1, φ2, and φ3 are the electric potentials inside, between, and outside of the

shell respectively. Besides, εw is the dielectric constant of water and εM is the

dielectric constant of the spherical confinement. To simplify further, we have scaled

our parameters: all lengths are scaled with the inner radius a, and ε̃ = εM
εw

is the scaled

permittivity. All potentials scaled with Eext ·a and Φ̃ = Φ

Eexta
, Ã = A

Eexta
, B̃ = B

Eexta
,

C̃ = C
Eexta

, D̃ = D
Eexta

. Therefore, the scaled electric potentials at any point in space are

given by:

Φ̃1(~r,θ) =
(

1+ Ã
)

r̃ cosθ 0 < r̃ < 1 , (4.3a)

Φ̃2(~r,θ) =
(

1+ B̃
)

r̃ cosθ+C̃(
b̃
r̃
)2 cosθ 1 < r̃ < b̃ , (4.3b)

Φ̃3(~r,θ) =

(
r̃+ D̃(

b̃
r̃
)2

)
cosθ r̃ > b̃ . (4.3c)

The scaled boundary conditions due to the continuity of the potential at r = a and r = b

can be written as:

Φ̃1(1,θ) = Φ̃2(1,θ) , (4.4a)

Φ̃3(b̃,θ) = Φ̃2(b̃,θ) . (4.4b)

The boundary conditions of the scaled normal components of the electric displacement

field, D, are:

∂Φ̃1(1)
∂r̃

= ε̃
∂Φ̃2(1)

∂r̃
, (4.5a)

ε̃
∂Φ̃2(b̃)

∂r̃
=

∂Φ̃3(b̃)
∂r̃

. (4.5b)
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Inserting Eq. (4.3) into Eqs. (4.4) and (4.5), results in four linear relations for the scaled

coefficients:

Ã = B̃+C̃b̃2 B̃ =
2C̃ε̃−2D̃− ε̃+1

ε̃
, (4.6a)

D̃ = B̃b̃+C̃ C̃ =
B̃ε̃− Ã+ ε̃−1

2ε̃b̃
. (4.6b)

Solving this set of four equations, the general scaled coefficients turn out to be:

Ã =
2(b̃3ε̃− b̃2ε̃2− b̃3 + b̃2ε̃+ ε̃2−2ε̃+1)

4b̃3ε̃+2b̃2ε̃2 +2b̃3 + b̃2ε̃−2ε̃2 +4ε̃−2
, (4.7a)

B̃ =− 2b̃2ε̃2− b̃2ε̃− b̃2−2ε̃2 +4ε̃−2

4b̃3ε̃+2b̃2ε̃2 +2b̃3 + b̃2ε̃−2ε̃2 +4ε̃−2
, (4.7b)

C̃ =
2b̃ε̃−2b̃+ ε̃−1

4b̃3ε̃+2b̃2ε̃2 +2b̃3 + b̃2ε̃−2ε̃2 +4ε̃−2
, (4.7c)

D̃ =− 2b̃3ε̃2− b̃3ε̃− b̃3−2b̃ε̃2 +2b̃ε̃− ε̃+1

4b̃3ε̃+2b̃2ε̃2 +2b̃3 + b̃2ε̃−2ε̃2 +4ε̃−2
. (4.7d)

Hence, the general expression for the scaled electric field at any point of space is given

by:

Ẽ1(~r,θ) = −(1+ Ã)cosθr̂+(1+ Ã)sinθθ̂ , (4.8a)

Ẽ2(~r,θ) = −
(

1+ B̃−2C̃
b̃2

r3

)
cosθr̂+

(
1+ B̃+C̃

b̃2

r3

)
sinθθ̂ , (4.8b)

Ẽ3(~r,θ) =

(
−1+2D̃

b̃2

r3

)
cosθr̂+

(
1+ D̃

b̃2

r3

)
sinθθ̂ . (4.8c)

After simplification we obtain:

Ẽ1(~r,θ) = (1+ Ã)
(
−cosθr̂+ sinθθ̂

)
, (4.9a)

Ẽ2(~r,θ) = (1+ B̃)
(
−cosθr̂+ sinθθ̂

)
+C̃

b̃2

r3

(
2cosθr̂+ sinθθ̂

)
, (4.9b)

Ẽ3(~r,θ) =
(
−cosθr̂+ sinθθ̂

)
+ D̃

b̃2

r3

(
2cosθr̂+ sinθθ̂

)
, (4.9c)
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where Eq. (4.9b) implies a uniform electric field inside the cavity. To understand this

model better, one can look at a couple of simple experimental models in the following.

Giant unilamelar vesicles (GUVs)

Giant unilamellar vesicles (GUVs) are spherical vesicles bound by a single bilayer

membrane containing an aqueous solution. Their diameter is of the order of 10µm [76].

They are in vitro used as model systems for biological membranes. For a typical GUV,

the scaled parameters are obtained as; a = 5µm, b̃ = 1+ 10−3, εw = 80, εM = 4, and

ε̃ = εM
εw

= 1
20 . Inserting these numerical values into the Eq. (4.7) leave us the numerical

values of the scaled coefficients as: Ã = −0.012, B̃ = 6.24, C̃ = −6.24, D̃ = 0.007.

Therefore, substituting the scaled coefficients into Eq. (4.9) the scaled electric field at

any point in space are derived as:

Ẽ1(~r,θ) = −0.988z , (4.10a)

Ẽ2(~r,θ) = −7.24z− 6.24
r̃3 (2cosθr+ sinθθ) , (4.10b)

Ẽ3(~r,θ) = −z+
0.007

r̃3 (2cosθr+ sinθθ) . (4.10c)

where z = cosθr− sinθθ.

Mitochondra

Mitochondria are double membrane-bound organelles which are found in all

eukaryotic organisms. They commonly are between 0.75 and 3µm in diameter [77].

For a typical mitochondria the scaled parameters are; a = 0.5µm, b̃ = 1 + 10−2,

εw = 80, εM = 4, and ε̃ = 1
20 [78]. Inserting these numerical values into Eq. (4.7), the

scaled coefficients are; Ã = −0.11, B̃ = 5.54, C̃ = −5.54, and D̃ = 0.06. By making

use of Eq. (4.9), the scaled electric field in each region is obtained as:

43



Ẽ1(~r,θ) = −0.89z , (4.11a)

Ẽ2(~r,θ) = −6.54z− 5.54
r̃3 (2cosθr+ sinθθ) , (4.11b)

Ẽ3(~r,θ) = −z+
0.61
r̃3 (2cosθr+ sinθθ) . (4.11c)

In conclusion, we are allowed to assume a uniform electric field inside the cavity when

a uniform external external electric field is applied. The only effect of the cavity is an

attenuation of the value of the field which is of the order of 1%-10%.

4.3 Confined Flexoelectric Fluid Membrane Vesicles in the Presence

of an Applied Electric Field

In Sec. 2.1, the structure of lipid bilayers that are the essential part of the walls of cells

and its compartments was introduced. They consist of two layers of phospholipids that

can form intricate structures. The mitochondrion, for example, is a system built by

two of such membranes: the highly folded inner membrane and the confining outer

one. The mitochondria provide the energy to the cells via the adenosine triphosphate

(ATP) molecules. The folds called, cristae, increase the area of the inner membrane

to enhance the ability of mitochondria to produce ATP [79]. Mitochondria in vivo can

have diverse shapes from large tubes to small sphere. In vitro they are ellipsoidal or

spherical [80].

As an abstract model of such systems, one can study a fluid membrane vesicle inside a

spherical outer membrane. The inner membrane is modelled as an elastic fluid surface,

whereas the outer one is assumed to be much stiffer. This system has stimulated several

studies only recently [1, 2, 76, 81–83]. For instance, Kahraman et al. [2] numerically

obtained the morphology of spherically confined fluid membranes. They indicated that

the transformation of axisymmetric invaginations to ellipsoidal invaginations happens

when increasing the surface area, followed by a transition to a stomatocyte.
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As another research review on this subject, one can mention the research by Bouzar et

al. [36] on a spherically confined toroidal membrane. This study demonstrates a shape

transition from spherical to a toroidal configuration, for different values of volume and

area. It also displays that a change in the topology can be energetically favourable.

In the following, we will switch on an external uniform electric field and investigate

the folding patterns of a spherically confined flexoelectric membrane due to external

stress.

4.3.1 Theoretical Model

In Sec. 3.2 the total energy of a flexoelectric fluid membrane in the presence of an

electric field, Eq. (3.4), was introduced to find equilibrium solutions and to identify

the energy minima. Here, the main aim is to capture the folding pattern of a closed

flexoelectric fluid membrane of constant volume and area surrounded by spherical

confinement in the presence of an electric field. Since the energy scales of the surface

and pressure contributions are much larger than the bending energy [22], these terms

are included as constraints on the total surface area Ā and enclosed volume V̄ of the

membrane vesicle. For simplification, the two quantities with the corresponding area

A0 and volume V0 of the confining container are scaled [1, 2]:

a = Ā/A0 and v = V̄/V0 . (4.12)

Flexoelectricity adds another contribution to the total energy when an external electric

field Eext is present. Following Steigmann and Agrawal, the corresponding energy of

the flexoelectric membrane is given by [32]:

Ef =

ˆ
Ω

[
1

2D
[(Eext ·n)2−|Eext|2]

]
dA , (4.13)
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where n is the normal vector of the membrane surface and D = χ⊥− c2
2

k3
the material

constant which indicates the strength of the flexoelectric effect (see Sec. 3.1).

In the following, a uniform electric field, which is pointing in the antiparallel

z-direction, Eext =−Eextz will be considered. In Sec. 3.2, total energy was found:

Etot =

ˆ
Ω

dA
(

κ

2
(2K−C0)

2 +κKG +σ+
1

2D
[(Eext ·n)2−|Eext|2]

)
+

ˆ
dV P (4.14)

In equilibrium, lipids will not exchange between the membrane and the solution. This

implies that the area is constrained. The pressure difference between the inside and

the outside of the membrane must be constant in equilibrium. The resulting forces

lead the volume v inside the vesicle to remain invariant as well. Thus, volume and

area constraints enter the energy expression via the Lagrange multipliers σ and P. One

can also consider the flexoelectric membrane to be flat without any other constraints,

which results in a vanishing spontaneous curvature ( C0 = 0). It is then possible to

reformulate the total energy of the system:

E =

ˆ
dA
(

κ

2
(2K)2 +σ+

1
2D

[(Eext ·n)2−|Eext|2]
)
+

ˆ
dV P . (4.15)

For the sake of simplicity, one can define a dimensionless electric field parameter:

e =
E2

extR
2

Dκ
, (4.16)

where R is the radius of the confining sphere. This finally allows writing the scaled

total energy of a free flexoelectric membrane vesicle as:

Ẽtot =

ˆ
Ω

udÃ =

ˆ
Ω

[
2K̃2 +

1
2

e[(z ·n)2−1]
]

dÃ + constraints , (4.17)
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where all lengths are scaled with R. The expressions for the constraints on area and

volume depend on the numerical solution methods, as explained in the Appendix. C.

Inverting the direction of the electric field does not change the equilibrium shapes since

Eext enters the equations quadratically.

To include the effect of the confinement, one can model the spherical cavity as a rigid

container. A simple calculation shows that a uniform electric field, which is applied at

infinity, Sec. 4.2, stays uniform inside the container as long as the whole

system—except the membrane vesicle which does not contribute due to the

neglection of the self-field—consists of isotropic dielectric media [75]. This rather

crude approximation allows obtaining a first idea of the shapes that flexoelectric

membrane vesicles can adopt in a spherical confinement. To make contact with more

realistic experimental setups, one would have to take into account an electrolyte in the

interior of the container.

Because of the nonlinearity of Eq. (4.15), a simple solution cannot be found. To

minimize the energy of the system, the first variation of the total energy, as explained

in the Chp. 3, is essential. There are two possibilities to proceed: numerical

simulations or Runge-Kutta integration for the axisymmetric case. If we suppose that

the folding of the flexoelectric membrane is axially symmetric concerning the z-axis,

we can make use of the angle-arc-length parametrization ψ(s) (see Sec. 3.3.1). In this

parametrization, ψ(s) is the angle between the tangent vector and the x axis, whereas

s denotes the arc length (see Figure. 4.2, and Appendix. C).
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Eext

x

z

α ψ

s

Figure 4.2: Parametrization of the axially symmetric flexoelectric fluid membrane
in spherical confinement. The solid black line represents the cross-section of
the axisymmetric flexoelectric membrane. The dashed line indicates the spherical
confinement. s is the arc-length, ψ is the angle between the x axis and the tangent of
the flexoelectric membrane and α represents the detachment angle of the flexoelectric
membrane from the confinement. The flexoelectric free membrane consists of two
segments, a spherical segment in contact with the confinement (bottom part) and an
upper free segment whose shape is determined by solving the Hamilton equation (4.26)
together with the appropriate boundary conditions (4.27).

In this parametrization the area element dA is given by:

dA = 2πρds (4.18)

and the volume element dV :

dV = πρ
2 sinψds (4.19)

The mean curvature is obtained as:

K =−1
2

(
ψ̇+

sinψ

ρ

)
, (4.20)

where the curvature in the meridian direction is c⊥ =−ψ̇, and the curvature along the

parallel direction is c‖ =− sinψ

ρ
. The flexoelectric energy term simplifies to:
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−1
2D

(
| Eext |2 −(Eext ·n)2)= −Eext

2

2D
sin2

ψ . (4.21)

Inserting Eqs. (4.18), (4.19), (4.20), and (4.21) into Eq. (4.15) allows to formulate

the scaled energy functional of the free part of an axisymmetric flexoelectric confined

membrane with purely tangential polarizations as follows:

Ẽ :=
E
πκ

=

ˆ s̄

s
dsL̃

=

ˆ s̄

s
ds

[
ρ

(
ψ̇+

sinψ

ρ

)2

+2σ̃ρ+λρ(ρ̇− cosψ)+λz(ż− sinψ)+ P̃ρ
2 sinψ−ρesin2

ψ

]
,

(4.22)

where σ̃ = σR2

κ
and P̃ = PR3

κ
are the scaled surface tension and pressure, respectively.

The Lagrange multiplier functions λρ and λz fix the geometrical constraints ż = sinψ

and ρ̇ = cosψ along the profile. In the integral, s represents the arc-length at the

contact point and s̄ corresponds to the arc-length at the z-axis where the tangent of the

membrane is parallel to x. All lengths are scaled with the radius R of the confining

sphere. The dimensionless electric field parameter e is defined as:

e =
E2

extR
2

Dκ
, (4.23)

which can be positive or negative depending on the flexodielectric constant, D. If the

flexoelectric effect is weak, e is positive, and if the flexoelectric effect is strong e is

negative [32].

4.3.2 Hamilton Equations and Boundary Conditions

To simplify the numerical integration, one can resort to the Hamiltonian formulation

of the problem.

Hamilton equations
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In this respect, the conjugate momenta of the system are:

pψ =
∂L̃
∂ψ̇

= 2ρ

(
ψ̇+

sinψ

ρ

)
, (4.24a)

pρ =
∂L̃
∂ρ̇

= λρ, (4.24b)

pz =
∂L̃
∂ż

= λz . (4.24c)

From Eqs. (4.24) and (4.22), one obtains the scaled Hamiltonian via the Hamiltonian

formalism:

H̃ = ψ̇pψ + ρ̇pρ + żpz− L̃

=
p2

ψ

4ρ
− pψ

sinψ

ρ
−2σ̃ρ+ pρ cosψ+ pz sinψ− P̃ρ

2 sinψ+ eρsin2
ψ .

(4.25)

Instead of having one fourth-order equation one obtains six first-order ordinary

Hamilton equations:

ψ̇ =
∂H̃
∂pψ

=
pψ

2ρ
− sinψ

ρ
, (4.26a)

ρ̇ =
∂H̃
∂pρ

= cosψ , (4.26b)

ż =
∂H̃
∂pz

= sinψ , (4.26c)

ṗψ = −∂H̃
∂ψ

=

(
pψ

ρ
+ P̃ρ

2− pz

)
cosψ+ pρ sinψ−2eρsinψcosψ , (4.26d)

ṗρ = −∂H̃
∂ρ

=
pψ

ρ

(
pψ

4ρ
− sinψ

ρ

)
+2σ̃+2P̃ρsinψ− esin2

ψ , (4.26e)

ṗz =
∂H̃
∂z

= 0 . (4.26f)

For e = 0 one obtains the classical Hamilton equations of a lipid membrane vesicle

as expected [2]. The flexoelectric effect adds terms which are linear in e and simple

analytical functions of the surface parametrization. The Hamilton equations can be

solved with a standard shooting method [65] subject to boundary conditions which we

discuss in the following.
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Boundary conditions

The Hamiltonian H does not explicitly depend on the arc length s. Since we have not

fixed the total arc length s̄− s for the integration, the Hamiltonian is conserved [JS94,

CVG07]:

H̃ = 0 . (4.27a)

At the contact point (s = s) the free part of the flexoelectric membrane detaches from

the container and the angle ψ has to equal α since the membrane must not have kinks.

At the z axis (s = s̄) the free profile is horizontal, which leaves us with the following

boundary conditions:

ψ(s) = α , ψ(s̄) = π . (4.27b)

As we have seen in Sec. (3.6) by making use of the variation along the contact line,

∂Hcl = 0, it is possible to peal the last boundary condition out as:

ψ̇(s) = 1+
√
|ec− ef|sinα , (4.27c)

where ec is the electric field parameter at the membrane in contact with the confinement

and ef is the electric field parameter of the free membrane. For a uniform external

electric field, however, the second term equals zero and we are left with the classical

contact curvature condition of the case without electric field.

4.3.3 Uniform Electric Field Stress Tensor

In Sec. 3.2, the generic form of the flexoelectric field stress tensor was derived. With

this in mind, it is simple to specialize to a uniform electric field. Since the uniform

electric field is oriented antiparallel to the z-axis, Eext =−Eextz, one obtains the scaled
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multiplier f̃a with the help of Eq. (3.12):

f̃a = fa− 2
3

P̃Ja− e
(

1
2
((z ·n)2−1)gab)eb− [(z ·n)(z · ea)]n

)
, (4.28)

where P̃ = PR3

κ
, and e = E2

extR
2

Dκ
.

Consequently, the part of the stress tensor originating form the external electric field is

given by:

Ea =−e
(

1
2
((z ·n)2−1)ea− (z ·n)(z · ea)n

)
, (4.29)

The divergence of Eq. (4.29) is written as:

∇aEa

e
=

{−K
2

[(z ·n)2−1]n+∇a[(z ·n)(z · ea)]

}
n

− 1
2

∇a[1− (z ·n)2]ea +(z ·n)(z · ea)∇an ,

=

{−K
2

[(z ·n)2−1]+∇a[(z ·n)(z · ea)]

}
n

− (z ·n)(z · eb)Kb
a ea +(z ·n)(z · ea)Kb

a eb ,

=

{−K
2

[(z ·n)2−1]+∇a[(z ·n)(z · ea)]

}
n .

(4.30)

Thus, it is feasible to write the effective stress tensor of the flexoelectric membrane as:

f̃a
e = fa− P̃Ja +Ea

=

{
K(Kab− K

2
gab)− [

P̃
2
(X ·n)+ σ̃− e(

1
2
(1− (z ·n)2))]gab

}
eb

−
{

∇aK− P̃
2
(X · ea)− e((z ·n)(z · ea))

}
n .

(4.31)

Projection onto the unit vector l = laea perpendicular to the contact line gives the local

force density:
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laf̃a
e =

{
1
2
(K2
⊥−K2

‖ )− [
P̃
2
(X ·n)+ σ̃− e(

1
2
(1− (z ·n)2)]

}
l

−
{

∇⊥K− P̃
2
(X · l)− Ēa((z ·n)(z · l))

}
n

=

{
1
2
(ψ̇2− sin2

ψ

ρ2 )− [
P̃
2
(X ·n)+ σ̃− e

2
sin2

ψ

}
l

−
{

ψ̈+
ψ̇cosψ

ρ
− cosψsinψ

ρ2 − P̃
2
(X · l)+ esinψcosψ

}
n ,

(4.32)

where z ·n = −cosψ, and z · l = sinψ relations. The normal vector n points towards

the outside of the vesicle.

Applied forces

The integral of the flux through an arbitrary contour γ gives the force as below:

−Fext =−z ·
˛

γ

dslaf̃a
e

=−
˛

γ

ds
[

1
2
(ψ̇2− sin2

ψ

ρ2 )− [
P̃
2
(X ·n)+ σ̃− e

2
sin2

ψ]

]
(z · l)

−
[

ψ̈+
ψ̇cosψ

ρ
− cosψsinψ

ρ2 − P̃
2
(X · l)+ esinψcosψ

]
(z ·n)

=−
˛

γ

ds
[

1
2
(ψ̇2− sin2

ψ

ρ2 )− [
P̃
2
(X ·n)+ σ̃− e

2
sin2

ψ]

]
sinψ

+

[
ψ̈+

ψ̇cosψ

ρ
− cosψsinψ

ρ2 − P̃
2
(X · l)+ esinψcosψ

]
cosψ

(4.33)

Calculation of ψ̈:

It is possible to calculate the second derivative of ψ̈, by taking the derivative of

Eq. (4.26a) ψ̇ =
pψ

2ρ
− sinψ

ρ
:

ψ̈ =
ṗψ

2ρ
− pψ

2ρ2 cosψ− ψ̇cosψ

ρ
+

sinψcosψ

ρ2 ,

=
1

2ρ
(P̃ρ

2− pz)cosψ+
pρ

2ρ
sinψ− esinψcosψ− ψ̇cosψ

ρ
+

sinψcosψ

ρ2 .

(4.34)

One has to take into account Eq. (4.26), H̃ = 0, to find p̃ρ.
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ψ̈cosψ =
1

2ρ
(P̃ρ

2− pz)−
p2

ψ sinψ

8ρ2 +
pψ sin2

ψ

2ρ2 + σ̃sinψ

− esin3
ψ

2
− esinψcos2

ψ− ψ̇cos2 ψ

ρ
+

sinψcos2 ψ

ρ2 .

(4.35)

ψ̈ at the contact line, where sinψ

ρ
= 1, is:

ψ̈c.l cosψ =
1

2ρ
(P̃ρ

2− pz)+ρσ̃− eρ

2
(ρ2 +2cos2

ψ),

=
1

2ρ
(P̃ρ

2− pz)+ρσ̃− eρ

2
(2−ρ

2) .

(4.36)

Therefore, pz at the equator ψ = π

2 is as following.

pz =
(
P̃+2σ̃− e

)
. (4.37)

where pz at ρ = 1 is calculated. Inserting Eq. (4.35) into Eq. (4.33), the external force

is obtained as:

Fext =
1
2

˛
γ

ds
{
−P̃(X ·n)sinψ+ P̃ρ− pz

ρ
− P̃(X · l)cosψ

}
, (4.38)

At the circular contact line; c⊥ = c‖ = 1 , X ·n = 1, and X · l = 0, it is possible to write

force as:

Fext =−
1
2

˛
γ

ds
(

pz

ρ

)
. (4.39)

One can obtain the projections as:

ρ · lafa
e =−

(
P̃
2
+ σ̃

)
sinψ+ ψ̈cosψ+ e

(
sinψcos2

ψ− sin3
ψ

2

)
. (4.40)

z · lafa
e =−

(
P̃
2
+ σ̃

)
cosψ− ψ̈sinψ+ e

(
3
2

sin2
ψcosψ

)
. (4.41)
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4.4 Results

To study the axially symmetric folding patterns of the spherical confined flexoelectric

fluid membranes in the presence of the uniform electric field, one can suppose that the

external electric field, Eext, in the vicinity of the system is constant, and locates anti-

parallel to z-axis. This section aims to search for axisymmetric equilibrium solutions

of spherically confined flexoelectric fluid vesicles as a function of their surface area Ā,

and the volume V̄ by making use of the continuum model described in detail above.

One can examine the system based on the dimensionless scaled area A0 and scaled

volume V0 of the confining container [1, 2]:

a = Ā/A0 and v = V̄/V0 . (4.42)

in which A0 and V0 are the area and the volume of the confining sphere, respectively.

Figure. 4.3 exhibits the cut of the system for a = 1.2, and v = 0.8 in the absence of an

electric field.

Figure 4.3: Runge-Kutta equilibrium solution for a flexoelectric fluid membrane
(coloured line) inside a spherical container (black solid circle) with scaled area a =
1.2 and scaled volume v = 0.8 in the absence of an electric field, Eext = 0.

55



This system has been treated before in the absence of an electric field by Kahraman et

al. (see details in [1, 2]). Flexoelectricity adds another term to the total energy in the

presence of an external electric field Eext. It is trivial that as soon as an area becomes

slightly larger than one (i.e., a > 1), the flexoelectric fluid membrane will not fit into

the confinement and starts to detach from the confinement. This leads the flexoelectric

membrane to fold inward. This is only possible when the volume enclosed by the

vesicle is smaller than the confining volume. Since the system is highly nonlinear, the

analytical treatment of this problem is not accessible. We will thus resort to numerical

calculations in the following.

Numerical solution methods

Equilibrium solutions are determined by minimising Eq. (4.17) for fixed parameters a,

v, and e. Here, two different numerical methods are used: (i) Axisymmetric shapes

without self-contact can be found with the help of a Hamiltonian formulation (see

Sec. 4.3.2). One, then, can solve the resulting differential equations with a traditional

shooting method. The cavity is handled as a hard constraint. Volume and area are

conserved with the help of Lagrange multipliers. This method searches for the simplest

axisymmetric shapes, which consist of one part in contact with the container and one

free part. (ii) The finite element method is the second approach and can search for

more intricate configurations, including symmetry breaking and self-contacts. In this

method, the surface of the flexoelectric membrane is discretized into a triangular mesh.

A discretized version of Eq. (4.17) is used to determine the forces that act on each node.

To equilibrate the system, one can add a damping force on the nodes and integrate

Newton’s equations of motion in time. In the simulations, the container is modelled as

a soft constraint with a quadratic repulsive force. The constraints on area and volume

are implemented via a penalty method.
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The details of both solution methods with the flexoelectric contribution can be found

in Appendix. C [2]. Flexoelectricity appends additional terms to the differential

equations of method (i). These are linear in e and simple analytical functions of the

surface parametrization. A subtlety, however, lies in the boundary conditions. A

variation of the contact line as was, for example, done for the non-electric case in

Refs. [66, 69] yields an additional term in the contact curvature condition (see

Sec. 4.3.2). For a uniform external electric field, however, this term equals zero. To

employ method (ii), one needs to determine the local flexoelectric force on the

membrane. Its continuous version can be found in Ref. [32] and is discretized and

added to the forces that act on each node. The following sections focus on the results

obtained by the two methods.

4.4.1 Solutions from the Classical Shooting Method

To determine the equilibrium profiles of the flexoelectric membrane in the presence of

the electric field the Hamilton equations, Eq. (4.24), are integrated with a fourth-order

Runge-Kutta method. For a fixed σ̃ and P̃ and a trial angle α, we search for shapes

which fulfil all of the boundary conditions Eq. (4.22) (see also Appendix. C for more

details). When a profile is found, we calculate its area and volume a posteriori. By

scanning the parameter space (σ̃, P̃) we obtain vesicles with variable area and volume.

4.4.1.1 Influence of the Electric Field

In this section, we will scrutinize the response of the axisymmetric flexoelectric fluid

membrane to different strengths of the flexoelectric effect. For moderate values of the

parameters a, v, and e, the equilibrium solutions consist of an axisymmetric

invagination connected to the contacting part of the membrane via a neck. To study

the behavior of the system, one can first consider different values of e with area and

volume fixed to (a,v) = (1.2,0.8) (see Fig. 4.4) which were found by the shooting

method. The sign of the electric field parameter, Eq. (4.16), depends on the sign of D,
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which, in turn, is determined by the strength of the flexoelectric effect. The latter is

encoded in the constant c2. When the flexoelectric effect is weak, c2
2 < k3χ⊥, and e is

positive, whereas e is negative for c2
2 > k3χ⊥. An inspection of Eq. (4.17) reveals that

the flexoelectric energy density is minimized when e(z · n)2 is as small as possible.

For positive e this term is minimized when the surface normal n is perpendicular to z

leading to elongation in the direction of the electric field. When the flexoelectric

effect is strong, the surface normal prefers to be parallel to z as far as possible. This

explains the elongation of the invagination perpendicular to Eext for e < 0.

Weak flexoelectric effect:

Figure. 4.4 shows axisymmetric shapes for e = 0,0.5,1,5 and 10 which were obtained

with the shooting method. An electric field parameter of the order of 0.5 and 1 does

not influence the resulting shape dramatically. One can observe, however, that the

circle at which the vesicle detaches from the container depends crucially on the value

of e (dots in Figure. 4.4). Therefore, the flexoelectric membrane with weak

flexoelectric effect, e > 0, is elongated vertically along with the electric field

orientation (see the coloured profiles in Figure. 4.4) in comparison to the reference

double confined membrane which is equilibrated in the absence of an external field

(see the black profile in Figure. 4.4).

Even though a modification of the membrane along the field direction in response

to the electric field is barely noticeable for weak flexoelectricity, the change of the

position at which membrane starts to detach from the confinement is pretty clear (see

the two points in the profiles with e= 0.5 (the solid magenta curve) and e= 1 (the cyan

solid curve) in Figure 4.4). Consequently, with slightly increasing the strength of the

flexoelectric field, the detachment angle is decreasing. Besides, when increasing the
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flexoelectricity strength effect, the free membrane folds inward heavily, and the neck

starts to open (see Figure. 4.4).

Figure 4.4: Slices of numerical equilibrium solutions of spherically confined
flexoelectric fluid membrane vesicles in an external uniform electric field with
fixed area and volume (a,v) = (1.2,0.8) for different strengths of e > 0. The
flexoelectric membrane is composed of two segments, one completely in contact with
the confinement (below the two points), and the other, the free part, (above the two
points) (a) e = 0 (solid black line), (b) e = 0.5 (solid magenta line), (c) e = 1 (solid
cyan line), (d) e = 5 (solid blue line), and e = 10 (yellow dash line).The dots indicate,
at which point the membrane starts to detach from the container. All the slices are
obtained with the shooting method.

Strong flexoelectric effect:

Figure. 4.5 shows axisymmetric shapes for e = 0,−0.5,−1,−5 and −10 which were

obtained with the shooting method. An electric field parameter of the order of −0.5

and−1 does not influence the resulting shape dramatically. One can observe, however,

that the circle at which the vesicle detaches from the container depends crucially on the

value of e (dots in Figure. 4.4) as we have already seen for positive e. The flexoelectric
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membrane with strong flexoelectric effect, e < 0, is vertically compressed along the

electric field direction (see the coloured profiles in Figure. 4.5) in comparison with the

reference membrane which is equilibrated in the absence of an external electric field

(see the black profile in Figure. 4.5).

Similar to the previous case, one does not observe a strong deformation of the

membrane along the field direction for e close to zero. However, the change of the

position at which the membrane starts to detach from the confinement is again evident

(see the two points in the profiles with e = −0.5 (red dashed curve) and e = −1

(magenta dashed curve) in Figure. 4.5. Thus, by slightly increasing the strength of the

flexoelectric effect, the detachment angle increases and the free part of the membrane

folds upward exhibiting an increasingly narrower neck (see Figure. 4.5).

For a better comparison, let us look at the response of the confined flexoelectric fluid

membrane at constant |e| (see Figures. 4.6, and 4.7). One finds that the membrane with

a weak flexoelectric effect detaches earlier than the membrane with a strong effect; this

behaviour is consistent. For the low strength value, the membrane starts to detach even

earlier than the reference membrane (see Figure. 4.6 ), and for the high strength, the

detachment initiates above reference membrane (see Figure. 4.7).
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Figure 4.5: Slices of numerical equilibrium solutions of spherically confined
flexoelectric fluid membrane vesicles in an external uniform electric field with fixed
area and volume (a,v) = (1.2,0.8) for different strengths of e < 0. (a) e = 0 (solid
black line), (b) e = −0.5 (red dashed line), (c) e = −1 (solid magenta line), and (d)
e = −5 (solid blue line), and e = −10 (solid green line). The dots indicate at which
point the membrane starts to detach from the container. All the slices are obtained with
the shooting method.

When one increases the flexoelectric effect such that e =±50, or even ±100, it is not

possible to find any profile for the specific values (a,v) = (1.2,0.8). The results of the

Runge- Kutta calculations for these values are limited to a narrow region of a and v

values, which will be discussed further in the following sections. This method does not

only find the minimum solutions that are the interest of this manuscript, but it also finds

the maximum ones. One, thus, has to apply full-numerical treatments (FES) to identify

minimum solutions, to find all axisymmetric solutions and beyond, and to understand

them precisely.
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4.4.1.2 Solutions of Constant Area

To study the effect of the area of the confined vesicle, we determine the axisymmetric

solutions of constant a by changing its volume.

Figure 4.6: Response of flexoelectric fluid membrane with (a,v) = (1.2,0.8) for small
values of |e|. The black curve indicates the flexoelectric membrane in the absence of
an electric field.

Figure 4.7: Response of flexoelectric fluid membrane with (a,v) = (1.2,0.8) for
moderate values of |e|. The black curve indicates the flexoelectric membrane in the
absence of an electric field.

Solutions of weak flexoelectric effect:

In the following examples for a small area, a= 1.1, and positive electric field parameter
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e > 0 are given. Figure. 4.8 shows flexoelectric membranes deformations for a = 1.1,

and e = 5 with different volumes of v = 0.8, and v = 0.9.

Figure. 4.9 shows flexoelectric membranes deformations for a = 1.1, and e = 10 with

different volumes of v= 0.8, and v= 0.9. Similar shapes are found for moderate values

of area and volume as long as of e > 0 is small enough.

Figure 4.8: Axisymmetric solutions obtained with the shooting method for a
flexoelectric fluid membrane inside a spherical container with scaled area a = 1.1 and
scaled volumes of v = 0.8, and v = 0.9 for e = 5.

Figure 4.9: Axisymmetric solutions obtained with the shooting method for a
flexoelectric fluid membrane inside a spherical container with scaled area a = 1.1
and scaled volumes of v = 0.8, and v = 0.9 for e = 10. For e = 10 one observes
an additional detachment of the membrane in the finite element simulations (see
Figures. 4.19c and 4.19d), which is not taken into account in the shooting method.
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For e > 0, the invagination is axisymmetric and orients itself parallel to the electric

field.

Solutions of strong flexoelectric effect:

Here, examples for a small area, a = 1.1, and negative electric field parameter e < 0

are discussed. Figure. 4.10 displays flexoelectric membranes deformations for a = 1.1,

and e =−5 with different volumes of v = 0.6, v = 0.7, v = 0.8, and v = 0.9.

Figure. 4.11 displays flexoelectric membranes deformations for a = 1.1, and e =−10

with different volumes of v = 0.6, v = 0.7, v = 0.8, and v = 0.9. Similar shapes can be

found for moderate values of area and volume as long as e < 0 is small enough.

For e < 0, the invagination is axisymmetric and orients itself perpendicular to the

electric field. The Eq. (4.17) indicates that the flexoelectric energy density is

minimized when e(z · n)2 is as small as possible. When the flexoelectric effect is

strong, the surface normal prefers to be parallel to z as far as possible. This explains

the elongation of the invagination perpendicular to Eext for e < 0. For larger values of

e < 0 one observes a new detachment of the membrane in contact with the container

in the finite element simulations (see Figs. 4.19c and 4.19d), which we cannot capture

with our simple shooting method.
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Figure 4.10: Axisymmetric solutions obtained with the shooting method for a
flexoelectric fluid membrane inside a spherical container with scaled area a = 1.1 and
scaled volumes of v = 0.6, v = 0.7, v = 0.8, and v = 0.9 for e = −5. For e = −5
one observes an additional detachment from the bottom of the membrane in the finite
element simulations, which we could not find with our simple shooting method.
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Figure 4.11: Axisymmetric solutions obtained with the shooting method for a
flexoelectric fluid membrane inside a spherical container with scaled area a = 1.1 and
scaled volumes of v = 0.6, v = 0.7, v = 0.8, and v = 0.9 for e = −10. For e = −10
one also observes an additional detachment from the bottom of the membrane in the
finite element simulations (see Figs. 4.19c and 4.19d), which we could not find with
our simple shooting method.

4.4.1.3 Solutions of Constant Volume

In this section, we will see how a vesicle of constant volume v = 0.8 deforms when

changing the values of e and a.

Solutions of weak flexoelectric effect:

In the following shape deformations for a fixed volume, v = 0.8, and positive electric

field parameter e > 0 are shown for different values of vesicle area. These shape

deformations were again obtained by the shooting method.
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Figure. 4.12 exhibits flexoelectric membranes deformations for v = 0.8, and e = 5

with increasing area in the range of a = 1.0, a = 1.1, a = 1.2, and a = 1.3. The folding

patterns for the moderate value of surface growth are found to be axisymmetric and

orient themselves parallel to the electric field within the numerical errors. As the area

is increased, the inner membrane folds further inwards and gets more deformed, while

the neck contracts.

Figure 4.12: Axisymmetric solutions obtained with the shooting method for a
flexoelectric fluid membrane inside a spherical container for fixed volume of v = 0.8
with increasing area in the range of a = 1.0, a = 1.1, a = 1.2, and a = 1.3 for e = 5.
For e = 5 one observes an additional detachment from the equator of the membrane in
the finite element simulations (see Figures. 4.19c and 4.19d), which we could not find
with our simple shooting method.
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Figure 4.13: Axisymmetric solutions obtained with the shooting method for a
flexoelectric fluid membrane inside a spherical containerfor fixed volume of v = 0.8
with increasing area in the range of a = 1.0, a = 1.1, a = 1.2, and a = 1.3 for e = 10.
For e = 10 one observes an additional detachment from the equator of the membrane
in the finite element simulations (see Figures. 4.19c and 4.19d), which we could not
find with our simple shooting method.

Figure. 4.13 shows flexoelectric membranes deformations for v = 0.8, and e = 10 with

increasing area in the range of a = 1.0, a = 1.1, a = 1.2, and a = 1.3.

One can observe, however, that as the electric field increases, the inner flexoelectric

membrane folds inwards further while the neck contracts.

Solutions of strong flexoelectric effect:

Figure. 4.14 confined membrane vesicles with v = 0.8, and e = −5 with increasing
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area in the range of a = 1.0, a = 1.1, a = 1.2, and a = 1.3. The deformation for these

moderate values of surface growth is again axisymmetric. As the area is increased, the

inner flexoelectric membrane folds outward further and gets more folded, and the neck

decreases.

Figure 4.14: Axisymmetric solutions obtained with the shooting method for a
flexoelectric fluid membrane inside a spherical container for fixed volume v = 0.8 with
increasing area in the range of a = 1.0, a = 1.1, a = 1.2, and a = 1.3 for e =−5. For
e =−5 one can observe an additional detachment from the bottom of the vesicle in the
finite element simulations (see Figures. 4.19c and 4.19d), which we could not obtain
with our simple shooting method.

Figure. 4.15 shows flexoelectric membranes deformations for v = 0.8, and e = −10

with increasing area in the range of a = 1.0, a = 1.1, a = 1.2, and a = 1.3. As the

electric field increases, the inner flexoelectric membrane folds more and more outward

69



whereas the neck contracts.

Figure 4.15: Axisymmetric solutions obtained with the shooting method for a
flexoelectric fluid membrane inside a spherical container for fixed volume v = 0.8
and a = 1.0, a = 1.1, a = 1.2, and a = 1.3 for e = −10. For e = −10 one again
observes an additional detachment from the bottom of the membrane in the finite
element simulations (see Figures. 4.19c and 4.19d), which we could not obtain with
our simple shooting method.

4.4.1.4 Morphological Phase Diagram from Shooting Method

The previous sections have given us a general idea of how the vesicle behaves as a

function of the parameters a, v, and e. With this in mind, one can now take a look at

the following phase diagrams, display the behavior of the system in more detail.

Phase diagram for small |e|< 1
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Figure. 4.16 recalls the axisymmetric results for the system without electric field,

e = 0, which was obtained in Refs. [1, 2]. In the green region, one finds axisymmetric

solutions with the shooting method. In the pink region below, the finite element

solutions are also axisymmetric but display a more complicated configuration with

several free parts or self-contact, for example. In the yellow area above, the finite

element solutions display even more intricate shapes with several self-contacts. For a

small absolute value of the electric field parameter |e| < 1, shifting of the lower

boundary separating the axisymmetric (green region in Figure. 4.16) and the

axisymmetric - with - detachment (pink region in Figure. 4.16) region is observed in

the phase diagram. Figure. 4.16 shows downward and upward shifting of the lower

boundary of the axisymmetric region for strong, e < 0, and weak, e > 0, flexoelectric

effect respectively.
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Figure 4.16: Morphological phase diagram (a,v) is displaying the axisymmetric
extrema (green region) which obtained with the shooting method. Besides, it exhibits
the axisymmetric - with - detachment (pink area), and self-contact (yellow zone) which
were found with the finite element method. The magenta curve, which shows the
lower boundary of the axisymmetric region of electric field parameter of e = 0.5, is
shifting upward. Whereas, the blue curve which sets out the lower boundary of the
axisymmetric region of electric field parameter of e = −0.5, is shifting downward.
However, the upper boundary of the axisymmetric area for the small absolute value of
electric field parameter |e|< 1 stays approximately the same as the upper boundary of
the region without electric field.

Phase diagram for moderate values of e > 0

If one increases the electric field parameter, our simple shooting method predicts a

shift of the axisymmetric area for moderate positive value of e. Not only the

axisymmetric region decreases in size but also a change in the upper boundary
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appears. To investigate our solutions, one can take a look at each two-dimensional

vertical slice of the membrane’s profile and compare it with the finite element results.

Figure. 4.17 investigates the change in the morphological phase diagram of the

axisymmetric region for electric field parameter e = 5 (blue dotted curves) in

comparison with the axisymmetric area of e = 0 (green area).

With this in mind, let us consider a few vertical slices obtained from the shooting

method without electric field, one obtains a perfect spherical invagition ("a sphere

inside a sphere") with a vanishing neck along the black dotted boundary. However,

as shown in Figure. 4.17 the flexoelectric effect induces an axisymmetric elongation

which implies that the upper (blue dotted) boundary is shifted. When moving along

the upper boundary and slightly increasing the area of the membrane larger than the

area of the container at (a,v) = (1.16,0.94), one can observe a folding inward parallel

to the direction of the electric field. At the kink, when the axisymmetric region stops,

one can take a look at (a,v) = (1.48,0.66). An inspection of the shape reveals that

the membrane starts to touch the container at this point. At (a,v) = (1,0.73) a simple

axisymmetric invagination is obtained.
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Figure 4.17: Shift of the axisymmetric area for the electric field parameter of e = 5
in the morphological phase diagram with vertical slices of the shapes found with the
shooting method. The green shaded region displays simple axisymmetric solutions
in the absence of electric field e = 0. Moreover, the dotted blue curved zone shows
axisymmetric results for the electric field parameter of e = 5 (see also the main text).

The axisymmetric region is shifting more and more and decreasing more and more

when the positive value of the electric field parameter is increased. To gain more

insight into the behaviour of the system, let us look at the system with an electric

field parameter of e = 10. Figure. 4.18 displays the change in the morphological phase

diagram of the axisymmetric area for electric field parameter e= 10 (red dotted curves)

in comparison to the axisymmetric area of e = 0 (green shaded region). In Fig. 4.18

the axisymmetric region (red dotted curves) is smaller compared to the axisymmetric
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area of e = 5 in Figure. 4.17, (blue dotted curves), with a change in the upper boundary

for electric field parameter e = 10.

With this in mind, let us consider a few two-dimensional vertical profiles obtained

from the shooting method. At (a,v) = (1.13,0.95), the system displays a simple

axisymmetric. The flexoelectric effect induces an axisymmetric elongation. When

moving to the end of the upper boundary and increasing the area of the membrane to a

value that is larger than the area of the container at (a,v) = (1.39,0.77), one can

observe a folding inward parallel to the direction of the electric field which forces the

membrane to touch the container. At the kink, when the axisymmetric region stops,

one can take a look at (a,v) = (1.29,0.73) where the membrane still touches the

container displaying a bigger neck. At (a,v) = (1,0.78) a simple axisymmetric

invagination is found.

For large positive and negative values of the electric field parameter, it was only

possible to find a narrow axisymmetric region from shooting method, which is why

one needs to switch to the finite element method to obtain further solutions.
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Figure 4.18: Shift of the axisymmetric area for the electric field parameter of e = 10
in the morphological phase diagram with vertical slices of the shapes found with the
shooting method. The green shaded region displays simple axisymmetric solutions
in the absence of electric field e = 0. Moreover, the dotted red curved zone shows
axisymmetric results for the electric field parameter of e = 10 (see also the main text).

4.4.2 Finite Element Solutions

In the previous section, equilibrium solutions were obtained by minimising Eq. (4.17)

for fixed parameters a, v, and e with our simple shooting method. Axisymmetric shapes

without self-contact were determined with the help of a Hamiltonian formulation. The

resulting differential equations are solved with a classical Runge-Kutta method. The

container was treated as a hard constraint. Area and volume were conserved with the

76



help of Lagrange multipliers. The simplest axisymmetric shapes consisting of one free

segment, and one portion in contact with the container were obtained. This method

has its limitations, for instance, it is not possible to isolate minima solutions, and the

shapes with more and complicated folding pattern.

To isolate minimum solutions, one needs to apply full-numerical treatments. When

geometries become more complex, including symmetry breaking and self-contacts,

the finite element simulations (FES) technique as a fully three-dimensional approach

is more practical. In this approach, the first step is designing the initial mesh. For this

purpose, one has to discretise the flexoelectric fluid membrane surface into a triangular

mesh. This FE method was adjusted to fluid membranes by Klug et al. [84, 85]. A

discretised version of Eq. (4.17) is used to determine the forces that act on each node.

To equilibrate the system, we add a damping force on the nodes and integrate Newton’s

equations of motion in time. In the simulations, the container is modelled as a soft

constraint with a quadratic repulsive force. The constraints on area and volume are

implemented via a penalty method (for more detail see Appendix. C).

For moderate values of the parameters a, v, and e, the equilibrium solutions consist

of an axisymmetric invagination connected to the contacting part of the membrane

via a neck as we have already seen before (see Figure. 4.19). To get an insight into

the behaviour of the system, first, different values of e with area and volume fixed to

(a,v) = (1.2,0.8) are considered, which yields the shapes shown in Figure. 4.19. The

free vesicle without electric field adopts the form of an oblate-discocyte as the global

energy minimum [86] 5 . Figure. 4.19a exhibits the confined equilibrium result which

5 For the free vesicle with e = 0 one also finds two local minima with higher bending energy:
a stomatocyte and a prolate configuration. The energies of stomatocyte and oblate-discocyte are
comparably close. However, the energy barrier between these shapes is high enough to avoid a transition
due to thermal energy [86].
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can be similar to a stomatocyte [1, 2]. The flexoelectric effect induces an elongation

of the invagination. Depending on the sign of e this deformation is either parallel or

perpendicular to the direction z of the external electric field (see Figures. 4.19b-4.19d

and discussion in the previous sections) 6 .

6 When the electric field is not directed along the invagination at the beginning of a simulation, the mesh
reorients during equilibration until symmetry axis and electric field coincide.

78



(a)

umin

umax

(b)

(c)

Eext

(d)

Figure 4.19: Numerical equilibrium results of a spherically confined membrane vesicle
in an external uniform electric field with area a = 1.2 and volume v = 0.8 for different
values of the electric field parameter e. (a) Finite element simulation solution for
e = 0 [1, 2]. (b) The shooting method’s axisymmetric solutions for e = 0,±1 and
±10. The membrane is formed of two segments, one in contact with the confinement
and one which is free. The detachment points are indicated with dots. The solutions for
e = 0 and e =±1 coincide with the results from finite element simulations within the
numerical error. For e =±10 one observes an additional detachment of the membrane
in the finite element simulations (see Figures. 4.19c and 4.19d), which is not considered
in the shooting method. (c) Finite element simulation solution for e =−10. (d) Finite
element simulation solution for e = 10. Colours in (a), (c), and (d) indicate the values
of the scaled total energy density ranging from umin to umax with (umin,umax) = (0,10)
in (a), (2,14) in (c), and (−5,10) in (d). The external electric field in (b)-(d) is aligned
along the symmetry axis.

For larger values of |e| one observes a new detachment of the membrane in contact with

the container in the finite element simulations (see Figures. 4.19c and 4.19d), which
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we cannot capture with our simple shooting method. The corresponding solutions thus

have to be treated with prudence and should always be confirmed by finite element

simulations.

4.4.2.1 Morphological Phase Diagram from Finite Element Simulation

With this in mind, one can now take a look at Figure. 4.20, which exhibits phase

diagrams of our system. Figure. 4.20a recalls the results for the system without an

external electric field, which was studied in Refs. [1, 2]. The vertical slices were

obtained from finite element simulations. In the green region, one finds axisymmetric

results with the shooting method. In the pink region below, the solutions are also

axisymmetric but show a more intricated configuration with several free segments or

self-contact, for instance. Figure. 4.20b presents the corresponding part of the phase

diagram for e =±10, where the above-mentioned detachment of the membrane takes

place (slices of detached shapes highlighted with confining circle in blue).

a

v e = 0

(a)

a

v e = 10

a

v e = −10

(b)

Figure 4.20: Morphological phase diagrams with vertical slices of the shapes from
finite element simulations (a) for e = 0 as obtained in Ref. [1] and (b) for e = ±10.
The dotted lines and coloured regions in all figures were obtained for e = 0. In (b) they
are duplicated for a better comparison with the detached vesicle shapes (see also main
text).
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4.4.2.2 Strong Electric Field and Symmetry Breaking

A flexoelectric membrane vesicle in a spherical cavity without electric field (e = 0)

can be forced to break axisymmetry by increasing its area above a critical value

(corresponding approximately to the upper black curve in Figure. 4.20) [1]. Consider,

for instance, the vertical slices in Figure. 4.20a at constant volume v = 0.7. Below

a = 1.5 the equilibrium solutions are axisymmetric. For a = 1.5, a metastable

ellipsoidal state is observed. The corresponding ground state breaks axisymmetry

with an invagination which is reminiscent of a prolate (comparable to the one of

(a,v) = (1.5,0.8) in Figure. 4.20a). For e = ±10 similar shapes are observed which

orient themselves parallel (e > 0) or perpendicular (e < 0) to the electric field (see

again Figure. 4.20b). However, the neck connecting the invagination with the rest of

the vesicle is not a slit with self-contact but exhibits an ellipsoidal cross-section.

(a)

Eext

(b)

Figure 4.21: Symmetry breaking for a = 1.1, v = 0.7 and e =−50 (from finite element
simulations). The invagination of the membrane is not axisymmetric but deforms into
a large elongated slit reminiscent of shapes that can be found with the ADE model for
confined membranes without electric field (see Ref. [3] and references therein). (a)
Side view and (b) top view of the invagination. The electric field is oriented vertically
in (a) and (b). The color code of the profiles is the same as in Figure. 4.19 with
(umin,umax) = (0,54).
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A stronger coupling between the membrane and an external electric field provokes

symmetry breaking at lower values of a. Figure. 4.21 shows one example for small

area a = 1.1 and high negative electric field parameter e = −50. Similar shapes can

be found for other areas and volumes as long as the absolute value of e < 0 is large

enough. The invagination is slit-like and orients itself perpendicular to the electric

field. The minimisation of the flexoelectric energy density, e(z · n)2, now leads to

almost flat membrane parts since this term dominates the bending energy term for high

|e|.

Eext

Eext

(a)

Eext

Eext

(b)

Eext

Eext

(c)

Figure 4.22: Symmetry breaking for constant volume v = 0.7, electric field parameter
e = 100 and increasing area. Equilibrium solutions of finite element simulations with
(a) a = 1.3, (b) a = 1.4, and (c) a = 1.5. (top) Side view and (bottom) top view of the
invagination. The direction of the electric field is exhibited in every figure. The color
code of the profiles is the same as in Figure. 4.19 with (umin,umax) = (−50,30) in (a),
(−50,38) in (b), and (−50,31) in (c).

A high positive electric field parameter has a similar effect on the membrane vesicle.

Figure. 4.22 shows how the electromechanical coupling induces a symmetry breaking

for e = 100 and constant volume v = 0.7. The transition is similar to the
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axisymmetric-to-prolate transition of e = 0 but happens already between a = 1.2 and

1.3. Figure. 4.22a shows the ground state for a = 1.3. The system contains two

symmetry planes. The slit-like invagination is parallel to Eext as expected. For

a = 1.4 large portions of the membrane come into contact. One of the planar

symmetries is broken (see Figure. 4.22b). A further increase of a deforms the slit-like

neck even further (see Figure. 4.22c).
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Chapter 5

CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Conclusions

In this thesis, we have seen how flexoelectric membranes respond to external

constraints. In the following, the essential accomplishments of this study will be

summed up:

• A framework for flexoelectric lipid bilayers in the presence of an external

electric field is developed, leading to geometrical expressions for the stress

tensor and the shape equation. This model is generic; however, we have

restricted our discussion to one particular system: a spherically confined

flexoelectric membrane vesicle in a uniform electric field. The resulting shapes

are presented and the transition lines, that shift due to the presence of an

electric field, are shown. The folding patterns that the bilayer membrane can

adopt could be of interest to biophysical and technological applications alike.

• To find equilibrium configurations as a function of area, volume and the coupling

with the electric field, two numerical methods were exploited. Despite some

rather crude approximations such as assuming a constant electric field, we have

found exciting shape transformations and symmetry breaking.

• When the area of the vesicle is larger than the area of the spherical confinement,

the membrane has to form an invagination inside the container. This is only

possible when the volume enclosed by the vesicle is smaller than the confining

volume. For moderate values of the parameters a, v, and e, the equilibrium
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solutions consist of an axisymmetric invagination connected to the contacting

part of the membrane via a neck. To gain more insight into the behavior of the

system, we have considered different values of e with area and volume fixed to

(a,v) = (1.2,0.8). It turns out that the flexoelectric effect induces an elongation

of the invagination. Depending on the sign of e this deformation is either parallel

or perpendicular to the direction of the external electric field. An electric field

parameter of the order of±1 does not influence the resulting shape dramatically.

One can observe, however, that the circle at which the vesicle detaches from the

container depends crucially on the value of e. A word of caution is due here. For

larger values of |e| one observes an additional detachment of the membrane in

contact with the container, which cannot be captured with the simple shooting

method. The corresponding solutions thus have to be treated with prudence and

should always be confirmed by finite element simulations.

• When the electric field parameter is large, complex folding patterns that result

from the interplay of the confinement and the flexoelectric effect were obtained.

Self-contacts, as observed in this work, can potentially lead to a transition from

a spherical to a toroidal vesicle topology via membrane fusion. This question

was studied for the system without electric field in Ref. [36]. It turns out that

the spherical topology is preferred for typical values of the material parameters.

Flexoelectricity could potentially facilitate topology changes. For a definite

statement, however, one would have to study confined flexoelectric fluid

membrane vesicles of toroidal topology in detail for e 6= 0.

• The morphological phase diagram of the system displays three different

regions: simple axisymmetric solutions, axisymmetric-with-detachment, and

more complicated configurations with several free parts or self-contact.

• To confirm that the obtained shapes are stable and do not rupture due to the
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stresses induced by the electric field in experiments, one has to check whether the

resulting surface tension is below the membrane’s rupture tension. This question

can be addressed qualitatively by comparing the membrane stresses due to the

area constraint and the external electric field. The latter is linear in the electric

field parameter e whereas the former is linear in the scaled surface tension σ̃ =

σR2

κ
, where σ is the unscaled surface tension and R is the radius of the confining

sphere. One expects a maximum surface tension of the order of a few mN/m,

which is approximately the rupture tension for a fluid phospholipid bilayer [15].

Inserting typical values for the other parameters, R = 0.5µm and κ = 20kBT ,

one obtains σ̃≈ 3000 which is much larger than the values of e that we consider.

However, when R is reduced to 0.1µm, the normalised tensions from the area

constraint and the electric field become comparable. An experimental check of

our results would have to take this into account to avoid membrane rupture.

5.2 Future Directions

Experiments on confined fluid membrane vesicles are still sparse. The case without

electric field has been studied together with numerical simulations in Ref. [76]. One

can find a large amount of literature on unconfined vesicles in spatially uniform electric

fields. DC pulses can, for instance, lead to elongation [87], wrinkling [88] or even

bursting [89] of the vesicle for strong electric fields. I am not aware of an experimental

study of the confined system, but the hope is that the results of this thesis arouse interest

in this subject.

In this work, we have focused on the effects of polarization and assumed free charges

to be absent. These would have to be included to get closer to real experimental

conditions, where charges accumulate near the membrane [87, 90]. Moreover, it

would be interesting to apply the model to other systems in more complicated electric
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fields. A dynamic study could be very fertile as well given experimental observations

that show dynamic transitions of membranes induced by electric fields [90, 91].
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Appendix A: Differential Geometry of Fluid Membranes

Differential Geometry of fluid membranes

From a geometrical point of view, fluid lipid bilayer membranes can be modeled as

two-dimensional surfaces at physiological temperature due to having a large-scale

length in comparison with their thickness. This section aims to summarize some of

the critical aspects of the differential geometry of the membrane (two-dimensional

surfaces). For more information in this context see [92–94], and [95].

Basic definitions

Parametrization of surfaces

It is possible to describe a surface membrane by mapping surface parametrization into

the three-dimensional space, R3, as following:

X(u1,u2)→ X(u1,u2) (A.1)

in which u1,and u2 are two local curvilinear coordinates. In this parametrization, the

two tangent vectors of the membrane at every point define as:

eα = ∂αX , α = 1,2 , (A.2)

the surface Jacobian is constructed as
√

g = |e1× e2|. By making use of these vectors,

one can describe the normal vector as:

n =
e1× e2√

g
, (A.3)

One should consider n unit normal vector, however ea are not generally unit vectors.

It is possible to construct any vector field on the surface by making use of these basis
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vectors e1,e2,n, in which eα·n = 0, and n·n = 1.

The metric tensor

One can construct the metric tensor induced on the membrane or the first fundamental

form with the two tangent vectors as following:

gab := ea·eb , (A.4)

The determinant of the first fundamental form given by:

g := detg = det(gab) = g11g22−g22g11 = |e1× e2|2 , (A.5)

by taking advantage of g, one can calculate the infinitesimal area element as following:

dA = |e1× e2|ds1ds2 =
√

gd2s . (A.6)

Curvatures

To compute the curvatures of surfaces, one needs to fit the best circles pass through

the specific point on the plane such that it cuts through the surface. The intersection

result of surface and plane will be a space curve. One can calculate the best circle

that fits the specific point. Therefore, the curvatures’ value depends on the orientation

of the intersected plane, but searching for a unique solution is the aim. To bypass

this problem, one can consider two orthogonal planes as specific choices that they

have extreme curvatures known as principal curvatures, one maximum, and the other

minimum. For instance, principal curvatures captured by a sphere are identical and

equal to 1
R , in which R is the sphere’s radius. A cylinder with radius r has principal

curvatures of 1
r and 0.
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The extrinsic curvature tensor

Surfaces with different curvature properties can have the same metric tensor gab. To

be able to illustrate curvature properties, one may assume the existence of a curve on

the surface where its curvature at any point is k > 0, with the parametrization

X(u1(s),u2(s)) with s as the arc length of the curve. On every point of this curve, one

may define a comoving coordinate {t,p,b} with t = Ẋ as the unit tangent vector,

p = ṫ
|ṫ| =

ṫ
k as the unit principal normal vector, and b = t× p as the unit binormal

vector. One may define the following equations:

p ·n = cosψ , ṫ = kp , and ṫ ·n = k cosψ (A.7)

In which ψ is the angle between the two unit vectors of n and p. The normal

curvature which is the relations between first and second fundamental forms

calculates how membrane bends in space. One may define the normal curvature in the

direction of t at any point on the curve as:

Kn :=−ṫ ·n =−k(p ·n) =−k cosψ, (A.8)

and the definition of the geodesic curvature which calculates how curve curves on a

membrane given by:

Kg := t · (t×n) = kt · (p×n) = k sinψ (A.9)

The extrinsic curvature tensor obtains:

Kab :=−n ·∇aeb . (A.10)

It is possible to define the trace of the extrinsic curvature:
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K := Tr(Kb
a ) =−gabKab = k1 + k2 , (A.11)

and the Gaussian curvature as:

KG := det(Kb
a ) = k1k2 . (A.12)

The Gauss and Weingarten equations

By making use of the extrinsic curvature it is possible to capture the relation between

intrinsic and extrinsic geometry. The Gauss equations are:

∇aeb =−Kabn , (A.13)

And the Weingarten equations are:

∂an = ∇an = Kb
a eb . (A.14)

The Gauss-Bonnet formula

The relation between the geometry of surfaces and their topology known as the Gauss-

Bonnet theorem.

ˆ
∂M

dsKg +

ˆ
M

dAKG = 2πχ(M) (A.15)

Where χ(M) is the Euler characteristic of M. One may apply this theorem to the closed

membranes that they have homomorphic topology to the sphere with g handles, which

known as a genus of the surface. In this respect, a sphere has genus 0, and a torus has

genus 1, etc. For any closed oriented membrane of genus g:

ˆ
M

dAKG = 4π(1−g) (A.16)
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Surface Parametrization

There exist some parametrization framework to describe the curvature of a surface

embedded in three-dimensional space.

Monge parametrization

Monge parametrization, as one of the surface parametrization, is mostly applying to

the horizontal plane. This parametrization describes the surface by a height function

above an arbitrary reference flat surface as following:

h :


R2 ⊃U −→ R3

(x,y)−→ h(x,y)
. (A.17)

In the cartesian coordinate system, the position vector and two tangent vector obtain

as:

X =


x

y

h(x,y)

 , ex =


1

0

hx

 , and ey =


0

1

hy

 . (A.18)

where hi = ∂ih(i, j ∈ {x,y}). In this parameterization, one may write the metric tensor

as:

gi j = δi j +hih j, (A.19)

where δi j is the Kronecker symbol. For the two-dimensional surfaces, one can

describe the nabla operator ∇, which can have the below form for the local Cartesian

coordinates:
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∇ =

∂x

∂y

 , (A.20)

which leads us to redefine the following equations. The metric determinant as:

g = 1+(∇h)2 (A.21)

the normal vector:

n =
(−∇h+ z)√

1+(∇h)2
. (A.22)

the extrinsic curvature tensor:

Ki j =−
hi j√

g
(A.23)

its trace is:

K =−∇ ·
(

∇h√
1+(∇h)2

)
. (A.24)

Angle-arc length parametrization

It is possible to parametrize the membranes by the angle ψ(s) between the horizontal

plane and the tangential plane, which is the function of arc length s, in the case that

surfaces have translational or rotational symmetry. The surface profile does not vary

along the y−axis if the surface is translational symmetric. One can write the projection

of the tangent and normal vectors in the Cartesian coordinate system as:

ρ · l = z ·n = cosψ, and ρ ·n =−z · l =−sinψ . (A.25)

In the case of having axisymmetric surfaces, it is possible to describe the principal

curvatures by the meridians and parallels on the surface as:
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K⊥ =−ψ̇, and K‖ =−
sinψ

ρ
. (A.26)

where ρ and l are the horizontal and the tangential vector, respectively.
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Appendix B: Monge Gauge

The spherical Monge gauge

Special cases

First case: The perfect sphere with h(θ,ϕ) = R. This in turn implies h,θ = h,ϕ = 0 and

therefore:

K j
i =

 1
R 0

0 1
R

 (B.1)

and therefore κ = 1
R and κG = 1

R2 .

Second case: By setting h(θ,ϕ) = h(ϕ) and consequently h,θ = 0. These result in

gi j =

 h2 0

0 h2 sin2
θ+h2

,ϕ

 (B.2)

and

K j
i =

 h2 sin2
θ+h2

,ϕ

h3 sin2
θ∆3/2

h,ϕh2 sin2
θcosθ+h3

,ϕ cosθ

h4 sin3
θ∆3/2

h,ϕ cosθ

h2 sin3
θ∆3/2

h2 sin2
θ−hh,ϕϕ+2h2

,ϕ

h3 sin2
θ∆3/2

 (B.3)

in which ∆ = 1+
h2
,ϕ

h2 sin2
θ
.

Following K j
i one finds:

κ =
2h2 sin2

θ+3h2
,ϕ−hh,ϕϕ

2h3∆3/2 sin2
θ

(B.4)

and
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κG =
h2 sin4

θ+
(

2h2
,ϕ−hh,ϕϕ

)
sin2

θ−h2
,ϕ cos2 θ(

h2 sin2
θ+h2

,ϕ

)2 . (B.5)

Third case: By setting h(θ,ϕ) = h(θ) with h,ϕ = 0. The induced metric tensor

becomes:

gi j =

 h2 +h2
,θ 0

0 h2 sin2
θ

 (B.6)

with the second fundamental form

K j
i =

 h2−hh,θθ+2h2
,θ

h3∆3/2 0

0
(h2+h2

,θ)(hsinθ−h,θ cosθ)
h4 sinθ∆3/2

 . (B.7)

Finally we find

κ =

(
3hh2

,θ +2h3−h2h,θθ

)
sinθ−h3

,θ cosθ−h2h,θ cosθ

2h
(

h2 +h2
,θ

) 3
2 sinθ

(B.8)

and

κG =

(
h2−hh,θθ +2h2

,θ

)(
hsinθ−h,θ cosθ

)
h
(

h2 +h2
,θ

)2
sinθ

(B.9)

with

∆ = 1+
h2
,θ

h2 . (B.10)

Fourth case: A spheres with a bump

In Fig. B.1 a sphere with a bump is plotted, whose equation is given by:

h(θ) = R
(
1+ ε0 exp

(
−αθ

2)) (B.11)
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Figure B.1: A sphere with a bump on the left and a miss/reverse bump on the right.
The exact value of the parameters in Eq. (B.11) are as follows: R = 1, α = 40 and
ε0 = ±0.2. The positive and negative ε0 results in the left and in the right figures,
respectively.

in which R is the radius of the background sphere and ε0 and α are constants.

Depending on the value of ε0 and α, the size of the bump changes and even results in

a reversed shape with negative ε0 (see fig. B.1 right). Using Eqs. (B.8) and (B.9) we

find:

κ =

(
λ1ε2

0e−2αθ2
+λ2ε0e−αθ2

+(1+∆)sinθ

)
2R
(
1+ ε0e−αθ2)3

∆3/2 sinθ

(B.12)

κG =


(

1+ ε0e−αθ2 (−4α2θ2 +2α+2
)
+ ε2

0e−2αθ2 (
4α2θ2 +2α+1

))
R2 sinθ

(
1+ ε0e−αθ2)(1+2ε0e−αθ2

+ ε2
0e−2αθ2

(4α2θ2 +1)
)2

(
ε0e−αθ2

(2αθcosθ+ sinθ)+ sinθ

)} (B.13)

in which

 λ1

λ2

=

 (
2α+4α2θ2 +∆+1

)
sinθ+2∆αθcosθ

2∆αθcosθ+
(
2−4α2θ2 +2α+2∆

)
sinθ


and

∆ = 1+
4ε2

0α2θ2e−2αθ2(
1+ ε0e−αθ2)2 . (B.14)
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At θ = 0 one finds ∆ = 1 and consequently

κ =
2αε0 + ε0 +1

R(1+ ε0)
2 (B.15)

and

κG =
(2ε0α+ ε0 +1)2

R2 (1+ ε0)
4 = κ

2. (B.16)

Fifth case: A sphere with a delta type inflation: It is considered

h = R

1+
ζ(

(θ−θ0)
2 +ζ2

)
π

 (B.17)

in which θ0, ζ and R are constants. This model provides a delta-type inflation at θ = θ0

on a sphere of radius R such that a smaller ζ produces more localized and sharper

inflation. In Fig. B.2 we plot h for R = 1, θ0 =
π

2 and ζ = 0.1. The sharp symmetric

deformation at the equator of the sphere is displayed in this figure.

Figure B.2: A delta-dirac form of inflation at the equator of a sphere with radius R = 1.
The other parameters in Eq. (B.17) are as follows: θ0 = π

2 and ζ = 0.1. For a better
visibility we imposed ϕ ∈ [0,11π/12] .
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Using the general equations we find the total curvature given by:

κ =
−xζ

(
Λ2π2H4 +4ζ2x2)cotθ+πH2Λ

(
Λ2π2H4−π

(
3x2−ζ2)ζHΛ+6ζ2x2)

RΛ(Λ2π2H4 +4ζ2x2)
3
2

(B.18)

in which x = θ− θ0, H = (θ−θ0)
2 + ζ2 and Λ = 1+ ζ

πH . In addition, the Gaussian

curvature is also obtained as:

κG =

(
−6ΛζπHx2 +2Λζ3πH +Λ2π2H4 +8ζ2x2)(ΛπH2−2ζxcotθ

)
πH2

R2Λ(Λ2π2H4 +4ζ2x2)
. (B.19)

The limit of κ and κG when θ→ θ0 are found to be:

lim
θ→θ0

κ =
1+ζ2 +ζ3

Rζ(1+ζ)2 , (B.20)

lim
θ→θ0

κG =
2+ζ2 +ζ3

R2 (1+ζ)3 (B.21)

while their limits when ζ→ 0 becomes 1
R and 1

R2 , respectively, for all θ except for

θ = θ0. At θ = θ0 we find limζ→0 κ = ∞ and limζ→0 κG = 2
R2 . In Fig. B.3. we plot κ

and κG in terms of θ for the specific choice of the parameters presented in Fig. B.2.
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Figure B.3: κ (red/above) and κG(blue/below) in terms of θ for the second example
i.e., Eq. (B.17). The specific values of parameters are as given in Fig. B.2.

The cylindrical Monge gauge

Special cases

First case: the perfect cylinder with h(ϕ,z) = ρ. This in turn implies h,z = h,zz =

h,ϕϕ = h,zϕ = h,ϕz = 0 , ∆ = 1,

K j
i =

 1
R 0

0 0

 (B.22)

and consiquently κ = 1
2R and κG = 0.

Second case: one can set h(ϕ,z) = h(ϕ) which implies h,z = h,zz = h,zϕ = h,ϕz = 0.

The induced metric and its inverse are given by:

gi j =

 h2 +h2
ϕ 0

0 1

 (B.23)

114



and

gi j =
1

h2∆

 1 0

0 h2 +h2
ϕ

 (B.24)

which the extrinsic curvature tensor becomes:

K j
i =


−hh,ϕϕ+h2+2h2

,ϕ

h3∆
3
2

0

0 0

 (B.25)

where ∆ = 1+
h2
,ϕ

h2 . Following K j
i , one finds:

κ =
−hh,ϕϕ +h2 +2h2

,ϕ

2h3∆
3
2

(B.26)

and

κG = 0. (B.27)

Third case: it is possible to write as h(ϕ,z) = h(z) with h,ϕ = h,ϕz = h,zϕ = h,ϕϕ = 0.

The induced metric tensor and its inverse becomes:

gi j =

 h2 0

0 h2
,z +1

 (B.28)

and

gi j =
1

h2∆

 1+h2
z 0

0 h2

 (B.29)

with the second fundamental form given by:
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K j
i =

 (1+h2
,z)

h∆3/2 0

0 −h,zz

∆3/2

 . (B.30)

The mean and Gaussian curvature are given as:

κ =
(1+h2

,z−hh,zz)

2h∆
3
2

(B.31)

and

κG =
−h,zz(h2

,z +1)
h∆3 (B.32)

in which

∆ = 1+h2
,z. (B.33)

Fourth case: Deformation of Cylindrical Symmetric Lipid Membrane

In the following, it is possible to consider an infinitely large cylinder of radius ρ0 which

is deformed at z = 0 (XY-plane) such that the function h(z) is symmetric to z-axis (

h(z) is an even function).

Biophysicists have been interested in the deformation of the living-cells membrane

for a long time. Cylindrical symmetric bio-cells are deformed by imposing external

forces; for example, one can mention the aggregation of proteins on the plasma

membrane. The crucial point is that geometry is the only degree of freedom on the

bilayer membrane on a large scale. To model the deformation, we can consider these

kinds of cells as two-dimensional hypersurfaces embedded in three-dimensional

cylindrical space R3. In the current work, we would like to apply the geometrical

approach for finding the minimum energy of our deformed system by perturbation
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methods, to predict the deformation effect on the membrane.

Let us now consider the third special case which was identified as h(ϕ,z) = h(z) with

h,ϕ = h,ϕz = h,zϕ = h,ϕϕ = 0. In order to find the total energy of our deformed large

cylinder, one needs to find the action of the Hamiltonian

HCH =
¸

M dA(σ+ 1
2κ(K0−K)2 +κKG), by substituting K and KG from Eq. B.31 and

Eq. B.32 into HCH , we get:

HCH =
1
2

˛ σ+κ

(
(

1+h,z−hh2
,zz

(2h(1+h2
,z)

3/2 )−K0

)2

−κ

(
h,zz

h(1+h2
,z)

)dA (B.34)

In which dA =
√

gdzdϕ is area element of the bilayer membrane, and g is the the

determinant of 2−dimensional induced metric tensor of the membrane, given by:

g = h2(1+h,z) (B.35)

Finally, equation (B.34) turns to:

HCH =
1
2

ˆ ˆ σ+κ

(
(

1+h,z−hh2
,zz

(2h(1+h2
,z)

3/2 )−K0

)2

−κ

(
h,zz

h(1+h2
,z)

)√
h2(1+h,z)

dzdϕ

(B.36)

Henceforward, applying the variational methods, we will try to find the shape equation

of a gradually deformed long cylinder. considering our Lagrangian as:

L(h,zz,h,z,h,θ) = σ+κ

(
1+h,z−hh2

,zz

2h(1+h2
,z)

3/2 −K0

)2

−κ

(
h,zz

h(1+h2
,z)

)√
h2(1+h,z)

(B.37)

One can write the Euler-Lagransian equation:
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d2

dz2 (
∂L

∂h,zz
)− d

dz
(

∂L
∂h,z

)+
∂L
∂h

= 0 (B.38)

we will try to solve the linearized shape equation analytically, considering some

assumptions. Primary, since we are investigating small deformations, we assume:

h(z) = ρ0((1+λε(z)) (B.39)

where ε(z) represents the deviation from the initial unit cylinder and ‖ε(z‖<< 1. Also,

the magnitude of first, second third and fourth derivatives of ε(z) concerning z are all

presumed to be much smaller than a unit. In which surface tension is given by:

σ = κ
(2K2

0 ρ2
0−1)

2ρ2
0

(B.40)

And,

ε(z)+2ρ
3
0

d2

dz2 ε(z)K0 +ρ
4
0

d4

dz4 ε(z) = 0 (B.41)

where spontaneous curvature defined as K0 =
ξ

ρ0
which can be solved exactly with the

following solution:

ε(z) =C1e
−
√
−ξ−
√

ξ2−1
ρ0

z
+C2e

−
√
−ξ−
√

ξ2−1
ρ0

z
+C3e

−
√
−ξ+
√

ξ2−1
ρ0

z
+C4e

−
√
−ξ+
√

ξ2−1
ρ0

z

(B.42)

We suppose that our surface is spontaneous curvature free, ξ = 0, one can obtain:

ε(z) =C1e
−( 1√

2
− i√

2
)

ρ0
z
+C2e

( 1√
2
− i√

2
)

ρ0
z
+C3e

−( 1√
2
− i√

2
)

ρ0
z
+C4e

−( 1√
2
− i√

2
)

ρ0
z (B.43)

Solution of this equation written as:

118



ε(z) = e
z√
2ρ0

[
C1cos(

z√
2ρ0

)+C2sin(
z√
2ρ0

)

]
(B.44)

as first boundary condition we demand d2

dz2h(z) , and so d2

dz2 ε(z) to vanish at z = 0, and

z = ∞. Exerting these two conditions to (B.44) equation we get C1 =C2 and C1 = ε0.

Substituting the latter results into (B.44), we will have:

ε(z) = e
z√
2ρ0 ε0

[
cos(

z√
2ρ0

)+ sin(
z√
2ρ0

)

]
(B.45)

which in turn, considering equation (B.39), gives rise to:

h(z) = 1+ e−
√

(z2)
λ

(
cos(

√
z2)+ sin(

√
z2)
)

(B.46)

To have a better understanding of the validity of the solution (B.39), we draw:

Figure B.4: A large cylinder with small deformation on the z = 0 (xy− plane) and
λ =−0.3
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Appendix C: Numerical Approaches

Numerical approaches

In this appendix, we briefly present the numerical methods we have used in this

manuscript. The details of both methods without the flexoelectric contribution can be

found in the Appendices of Ref. [2]. Flexoelectricity appends additional terms to the

differential equations of the system.

Finite Element Analysis

To find the equilibrium shapes of spherically confined flexoelectric fluid membrane

vesicles in an external uniform electric field, we use a finite elements method based on

the subdivision surface concept [84, 85, 96]. This ensures the necessary C1 continuity

of the surface vector function X(s1,s2) of the flexoelectric membrane. The membrane

is parametrized by local curvilinear coordinates (s1,s2) (see Fig. C.1). The covariant

tangent vectors are given by eα = ∂αX with α = 1,2. The normal vector is defined as

n = e1×e2√
g , and the surface Jacobian is constructed as

√
g = |e1× e2| so that the area

A =
´

Ω
dA =

´
Ω

√
gds1ds2.

In the simulations the membrane surface is discretised by a set of triangles with N ∼

3000 nodes.

x
y

z

n

e1

e2
X(s1, s2)

Ωs1

s2

Figure C.1: Surface parametrization.
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The position of the surface is then interpolated by the weighted sum:

Xh(s1,s2) =
N

∑
i=1

X iNi(s1,s2) , (C.1)

where X i is the position of node i, and the Ni are the loop subdivision trial functions

[96].

The energy functional

EM =

ˆ
Ω

{
2κH2 +

1
2D

[
(Eext ·n)2−|Eext|2

]}√
gds1ds2 +

ˆ
Ω

µA

2
(
√

g−√ḡ)2 ds1ds2 +
µV

2
(V −V̄ )2

(C.2)

is minimised while taking into account the container constraint and self-contacts of

the membrane (see below). The constraints on surface and volume are enforced in

Eq. (C.2) via a penalty method to improve convergence [2]. The constants µA and µV

are chosen large enough to fulfill these constraints to a numerical error of about 10−3.

Their values range from 104 to 107 depending on the value of the electric field Eext.

Note that the area constraint is local to avoid mesh distortions during the simulation.

Energy (C.2) can be discretised in terms of the nodal positions X i. To calculate the

force f M
i that acts on each node, one considers the variation of the energy with respect

to a displacement of the nodal position:

δEM =
∂EM

∂X i δX i =− f M
i δX i , (C.3)

which gives:

f M
i =

ˆ
Ω

[
sα ·∂ieα +mα · (∂in),α + f Ni]√gds1ds2 , (C.4)
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where

sα = 2κHgαβn,β +2κH2eα− 1
D
(Eext ·n)(Eext · eα)n− 1

2D

[
E2

ext− (Eext ·n)2]eα

+ µA(
√

g−√ḡ)eα +µV
V −V̄

3
[(X ·n)eα− (X · eα)n] , (C.5)

mα = −2κHeα , and (C.6)

f = µV
V −V̄

3
n . (C.7)

are the stress and moment resultants. In addition to the terms already implemented by

Klug and coworkers [84, 85], sα now contains a contribution due to the flexoelectric

effect. Note that its continuous version was found in Ref. [32].

The contact between the membrane and the container is modeled by a quadratic force

field applied to the nodes that leave the container. The corresponding force is given by:

fC1
i =−k1d2

i n , (C.8)

where k1 ∼ 105 is the stiffness constant, di the penetration depth, and n the

outward-pointing normal of the container surface. An additional force field is needed

to disentangle intersections of the membrane surface that occur during the course of

the simulation: at first the contour line of the intersecting polygons is determined. In a

second step, the gradient Gi of the contour length with respect to the position of each

node i of a triangle involved in the intersection is calculated. The resulting contact

force is linear in Gi:

fC2
i = k2Gi , (C.9)

where we set k2 = 10. Adding all terms together one obtains the resulting force on

each node
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Eext

x

z

α ψ

s

Figure C.2: Parametrization of the axisymmetric flexoelectric fluid membrane in
spherical confinement. The solid black line represents the cross-section of the
membrane. The dashed line indicates the spherical confinement. s is the arc length,
ψ is the angle between the x axis and the tangent of the flexoelectric membrane and α

represents the detachment angle of the flexoelectric membrane from the confinement.
We assume that the membrane consists of two segments, a spherical segment in
contact with the confinement (bottom part) and an upper free segment whose shape
is determined by solving the Hamilton equations (C.19) together with the appropriate
boundary conditions (C.20).

f i = f M
i + fC1

i + fC2
i . (C.10)

During the simulation, we integrate these nodal forces in time according to Newton’s

equations of motion with a damping term until we reach equilibrium, f i = 0 (for more

details see Appendix B of Ref. [2]).

Hamiltonian formulation for the axisymmetric case

Angle-arc-length parameterization

In the special case of an axisymmetric configuration, one can resort to a Hamiltonian

formulation of the problem. In the following we assume that the flexoelectric

membrane vesicle is symmetric with respect to the z axis (see Fig. C.2). We make use

of the angle-arc length parametrization ψ(s), where ψ is the angle between the

tangent vector and the x axis, whereas s denotes the arc length.
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In this parametrization the area element dA is given by:

dA = 2πρds (C.11)

and the volume element dV :

dV = πρ
2 sinψds . (C.12)

The mean curvature is obtained as:

H =−1
2

(
ψ̇+

sinψ

ρ

)
, (C.13)

where the curvature in the meridian direction is c⊥ =−ψ̇, and the curvature along the

parallel direction is c‖ =− sinψ

ρ
. The flexoelectric energy term simplifies to:

1
2D

[
(Eext ·n)2−|Eext|2

]
=
−Eext

2

2D
sin2

ψ . (C.14)

The scaled energy functional of the free part of the membrane vesicle follows as:

Ẽ :=
E
πκ

=

ˆ s̄

s
L̃ds

=

ˆ s̄

s

[
ρ

(
ψ̇+

sinψ

ρ

)2

+2σ̃ρ+λρ(ρ̇− cosψ)+λz(ż− sinψ)+ P̃ρ
2 sinψ−ρesin2

ψ

]
ds,

(C.15)

where σ̃ = σR2

κ
and P̃ = PR3

κ
are the scaled surface tension and pressure, respectively.

The Lagrange multiplier functions λρ and λz fix the geometrical constraints ż = sinψ

and ρ̇ = cosψ along the profile. In the integral, s represents the arc length at the

contact point and s̄ corresponds to the arc length at the z axis where the tangent of the

membrane is parallel to x. All lengths are scaled with the radius R of the confining
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sphere. The dimensionless electric field parameter e is defined as:

e =
E2

extR
2

Dκ
. (C.16)

The conjugate momenta of the system are:

pψ =
∂L̃
∂ψ̇

= 2ρ

(
ψ̇+

sinψ

ρ

)
, (C.17a)

pρ =
∂L̃
∂ρ̇

= λρ , (C.17b)

pz =
∂L̃
∂ż

= λz . (C.17c)

One obtains the scaled Hamiltonian via the Hamiltonian formalism:

H̃ = ψ̇pψ + ρ̇pρ + żpz− L̃

=
p2

ψ

4ρ
− pψ

sinψ

ρ
−2σ̃ρ+ pρ cosψ+ pz sinψ− P̃ρ

2 sinψ+ eρsin2
ψ

(C.18)

yielding the Hamilton equations:

ψ̇ =
∂H̃
∂pψ

=
pψ

2ρ
− sinψ

ρ
, (C.19a)

ρ̇ =
∂H̃
∂pρ

= cosψ , (C.19b)

ż =
∂H̃
∂pz

= sinψ , (C.19c)

ṗψ = −∂H̃
∂ψ

=

(
pψ

ρ
+ P̃ρ

2− pz

)
cosψ+ pρ sinψ−2eρsinψcosψ , (C.19d)

ṗρ = −∂H̃
∂ρ

=
pψ

ρ

(
pψ

4ρ
− sinψ

ρ

)
+2σ̃+2P̃ρsinψ− esin2

ψ , (C.19e)

ṗz = −∂H̃
∂z

= 0 . (C.19f)

For e = 0 one obtains the classical Hamilton equations of a lipid membrane vesicle

as expected [2]. The flexoelectric effect adds terms which are linear in e and simple

analytical functions of the surface parametrization. The Hamilton equations can be

solved with a standard shooting method [97] subject to boundary conditions which we
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discuss in the following.

The Hamiltonian H does not explicitly depend on the arc length s. Since we have not

fixed the total arc length s̄− s for the integration, the Hamiltonian is conserved:

H̃ = 0 . (C.20a)

At the contact point (s = s) the free part of the flexoelectric membrane detaches from

the container and the angle ψ has to equal α since the membrane must not have kinks.

At the z axis (s = s̄) the free profile is horizontal, which leaves us with the following

boundary conditions:

ψ(s) = α , ψ(s̄) = π . (C.20b)

A variation of the contact line as was, for example, done for the non-electric case in

Refs. [66, 69], yields:

ψ̇(s) = 1+
√
|ec− ef|sinα , (C.20c)

where ec is the electric field parameter at the membrane in contact with the confinement

and ef is the electric field parameter of the free membrane. For a uniform external

electric field, however, the second term equals zero and we are left with the classical

contact curvature condition of the case without electric field.

The Hamilton equations are integrated with a fourth-order Runge-Kutta method. For a

fixed σ̃ and P̃ and a trial angle α we search for shapes which fulfill all of the boundary

conditions. When a profile is found we calculate its area and volume a posteriori. By

scanning the parameter space (σ̃, P̃) we obtain vesicles with variable area and volume.
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For more details we again refer to Ref. [1].
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Appendix D: Dielectric Sphere Model Within Electrolyte in an

Applied Uniform Electric Field Eext

Dielectric sphere model within electrolyte in an applied uniform electric field

Eext

This section takes a step into a more realistic model of the system. One may adds an

electrolyte (e.g, Na+Cl−) inside of our system, a dielectric sphere with inner radius a

and outer radius b in the uniform electric field Ea which is anti-parallel to the z-axis

(see Fig. 4.1). It is possible to examine the behavior of the electric field inside,

between, and outside of the membranes. In the new model, the challenge is to

formulate the electric field inside of confinement. For this purpose, one may capture

the potential inside of the sphere by making use of the Poisson-Boltzmann equation:

∇
2
Φ =−4π

εw
ρ(~r) (D.1)

where ρ(~r) = ez+n+ + ez−n− is the Poisson equation for the charge density, n± =

n0e
−ez±φ

kBT is the Boltzmann distribution for the number density and n0 is the electrolyte

concentration in the reservoir. The valency of the cations and anions for Na+Cl− is

z± = ±1, kB is the Boltzmann constant, and T is the temperature [98]. The potential

inside of the sphere is φ-independent due to the symmetry along the z-axis. Suppose

there exist a small electrostatic potential: as a result, one can linearize the Poisson-

Boltzmann equation as:

∇
2
φ−K2

Dφ = 0 (D.2)

where KD =
√

8πe2n0
εwkBT is the Debye-Hückel screening length. The solution of the

linearized Poisson-Boltzmann equation in spherical coordinates with azimuthal

symmetry is as below:
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φl(~r,θ) =
∞

∑
l=0

(
Al(i)lil(KDr)+Blkl(KDr)

)
Pl(cosθ). (D.3)

The second term diverges at the origin, and one can rewrite the potential as:

φl(~r,θ) =
∞

∑
l=0

Al(i)lil(KDr)Pl(cosθ), (D.4)

where i1 is the modified spherical Bessel function of the first kind. This problem

is closely related to a dielectric sphere in an external uniform electric field, which

discussed in Chapter. 4. The potential of the initial field is φ0 = E0Z = E0r cosθ =

E0rP1(θ) in which θ is the polar angle with respect to the z-axis and P1 is the Legendre

polynomial of first order [75]. Thus, it is possible to recollect the previous case, a

uniform dielectric sphere where the potential contains terms only in P1, and one may

expect the same here. So, the electric potential inside of the sphere reads as:

φ1(~r,θ) = A1(i)1i1(KDr)P1(cosθ) (D.5)

in which the spherical Bessel function is:

i1(KDr) =
KDr cosh(KDr)− sinh(KDr)

(KDr)2 . (D.6)

It is possible to keep the potentials of the second and third regions from the previous

model without electrolyte. Therefore, the potentials of all regions are:

φ1(~r,θ) = −A′i1(KDr)cos(θ) 0 < r < a; εw (D.7a)

φ2(~r,θ) = E0r cos(θ)+B
r
a

cos(θ)+C
b2

r2 cos(θ) a < r < b; εM (D.7b)

φ3(~r,θ) = E0r cos(θ)+D
b2

r2 cos(θ) r > b; εw (D.7c)

where A′ = A
i , and εw is water dielectric constant, and εM is the dielectric constant of
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the membrane. For the sake of simplicity, one can scale the potentials in all regions

again:

Φ̃1(~r,θ) = −Ã′i1(K̃Dr̃)cosθ 0 < r̃ < 1 (D.8a)

Φ̃2(~r,θ) =
(

1+ B̃
)

r̃ cosθ+C̃(
b̃
r̃
)2 cosθ 1 < r̃ < b̃ (D.8b)

Φ̃3(~r,θ) =

(
r̃+ D̃(

b̃
r̃
)2

)
cosθ r̃ > b̃ (D.8c)

Considered as a boundary-value problem, the perturbation of the field Eext must be

finite at r = 0 and r = ∞, and the potential is continuous at r = a and r = b [75].

Therefore, the scaled boundary conditions are:

Φ̃1(1,θ) = Φ̃2(1,θ), (D.9a)

Φ̃3(b̃,θ) = Φ̃2(b̃,θ). (D.9b)

and boundary conditions of the scaled normal components of the electric displacement

field, D, are:

∂Φ̃1(1)
∂r̃

= ε̃
∂Φ̃2(1)

∂r̃
, (D.10a)

ε̃
∂Φ̃2(b̃)

∂r̃
=

∂Φ̃3(b̃)
∂r̃

. (D.10b)

With operating the scaled boundary conditions into the four linear equations, it is

possible to obtain four unknown parameters:

Ã =
−k̃D(1+ B̃+C̃b̃2)

k̃D cosh(k̃D)− sinh(k̃D)
, (D.11a)

B̃ =
2ε̃C̃− ε̃b̃−2D̃+ b̃

ε̃b̃
, (D.11b)

C̃ =
Ãk̃2

D sinh(k̃D)+ ε̃B̃k̃2
D + ε̃k̃D

2−2Ãk̃D cosh(k̃D)+2Ãsinh(k̃D)

2ε̃k̃D
2
b̃2

, (D.11c)

D̃ = B̃b̃+C̃. (D.11d)

Therefore, one can write down the general expression for the scaled electric field at
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any point in the space as:

Ẽ1(~r,θ) = Ã

(
sinh(k̃Dr̃)

r̃
+2

sinh(k̃Dr̃)− k̃Dr̃ cosh(k̃Dr̃)

k̃2
Dr̃3

)
cosθr̂ (D.12a)

+ Ã

(
sinh(K̃Dr̃)− K̃Dr̃ cosh(K̃Dr̃)

r̃3K̃2
D

)
sinθθ̂, (D.12b)

Ẽ2(~r,θ) = −
(

1+ B̃−2C̃
b̃2

r̃3

)
cosθr̂+

(
1+ B̃+C̃

b̃3

r̃2

)
sinθθ̂, (D.12c)

Ẽ3(~r,θ) =

(
−1+2D̃

b̃2

r̃3

)
cosθr̂+

(
1+ D̃

b̃2

r̃3

)
sinθθ̂. (D.12d)

After simplification, one may calculate:

Ẽ1(~r,θ) = Ã

(
i0(K̃Dr̃)cosθr̂+

i1(K̃Dr̃)
r̃

(−2cosθr̂+ sinθθ̂)

)
, (D.13a)

Ẽ2(~r,θ) = (1+ B̃)
(
−cosθr̂+ sinθθ̂

)
+C̃

b̃2

r3

(
2cosθr̂+ sinθθ̂

)
, (D.13b)

Ẽ3(~r,θ) =
(
−cosθr̂+ sinθθ̂

)
+ D̃

b̃2

r3

(
2cosθr̂+ sinθθ̂

)
. (D.13c)

by making use of ascending series for modified spherical Bessel functions of the first

kind as below:

in(x) =
√

π

2x
In+ 1

2
=

xn

(2n+1)!
1+

x2

2

1!(2n+3)+ x4

4

2!(2n+3)(2n+5) (D.14)

i0(K̃Dr̃) = 1+
(K̃Dr̃)2

6
+

(K̃Dr̃)4

120
+ ... (D.15)

i1(K̃Dr̃) =
(K̃Dr̃)

6
+

(K̃Dr̃)3

60
+ ... (D.16)

it is possible to simplify the electric field inside of the membrane:

Ẽ1(~r,θ) = Ã

(1+
(K̃Dr̃)2

6
+ ...)cosθr̂+

( (K̃Dr̃)
6 + ...)

r̃
(−2cosθr̂+ sinθθ̂)

 (D.17)

One may simplify further for a pair of experimental examples, by assign the parameter

values of the following figure:
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Parameters Giant vesicle Mitochondria

a 5µm 0.5µm

b̃ 1+10−3 1+10−2

K̃D 5 0.5

ε̃
1

20
1
20

Figure D.1: Scaled parameters.

Giant unilamelar vesicles (GUVs)

For giant unilamellar vesicles, the numerical value of the scaled coefficients are Ã =

−0.04, B̃ = 12.57, C̃ = −13.08, and D̃ = −0.49. Therefore, substituting the scaled

coefficients into the Eqs. (D.13) and Eqs. (D.17) one may write the scaled electric

field at any point in the space as:

Ẽ1(~r,θ) =−0.04
(

sinh(5r̃)
r̃

cosθr̂+
(5r̃ cosh(5r̃)− sinh(5r̃))

25r̃3 (−2cosθr̂+ sinθθ̂)

)
,

(D.18a)

Ẽ2(~r,θ) =−13.57ẑ− 13.11
r̃3

(
2cosθr̂+ sinθθ̂

)
, (D.18b)

Ẽ3(~r,θ) =−ẑ− 0.49
r̃3

(
2cosθr̂+ sinθθ̂

)
. (D.18c)

After simplification, one may obtain:

Ẽ1(~r,θ) = −0.04
(

i0(5r̃)cosθr̂+
i1(5r̃)

r̃
(−2cosθr̂+ sinθθ̂)

)
, (D.19a)

Ẽ2(~r,θ) = −13.57ẑ− 13.11
r̃3

(
2cosθr̂+ sinθθ̂

)
, (D.19b)

Ẽ3(~r,θ) = −ẑ− 0.49
r̃3

(
2cosθr̂+ sinθθ̂

)
. (D.19c)

Mitochondrion

For a mitochondrion, it is possible to calculate the numerical value of the scaled
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coefficients as: Ã =−5.13, B̃ = 5.72, C̃ =−5.73, and D̃ = 0.049. Thus, one can write

the scaled electric fields in all regions as:

Ẽ1(~r,θ) =−5.13
(

sinh(0.5r̃)
r̃

cosθr̂+
0.5r̃ cosh(0.5r̃)− sinh(0.5r̃)

0.25r̃3 (−2cosθr̂+ sinθθ̂)

)
,

(D.20a)

Ẽ2(~r,θ) =−6.72ẑ− 5.79
r̃3

(
2cosθr̂+ sinθθ̂

)
, (D.20b)

Ẽ3(~r,θ) =−ẑ+
0.05
r̃3

(
2cosθr̂+ sinθθ̂

)
. (D.20c)

After simplification, one can get:

Ẽ1(~r,θ) = −5.13
(

i0(0.5r̃)cosθr̂+
i1(0.5r̃)

r̃
(−2cosθr̂+ sinθθ̂)

)
,(D.21a)

Ẽ2(~r,θ) = −6.72ẑ− 5.79
r̃3

(
2cosθr̂+ sinθθ̂

)
, (D.21b)

Ẽ3(~r,θ) = −ẑ+
0.05
r̃3

(
2cosθr̂+ sinθθ̂

)
. (D.21c)
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