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ABSTRACT 

The theme of this thesis is based on the solutions of fractional differential equations. 

We investigate the existence and uniqueness results of the fractional differential 

equations with boundary value conditions. Mostly, in this thesis, one of the fractional 

differential equation which is the Caputo type fractional differential equation is used 

and also, for the boundary conditions, different types of boundary conditions are used 

such as nonlocal Katugampola fractional integral conditions and nonlinear boundary 

conditions. The existence and uniqueness results of solutions are discussed by using 

standard fixed point theorems such as Banach fixed point theorem, Leray-Schauder 

nonlinear alternative and Krasnoselskii's fixed point theorem. Furthermore, Perov's 

fixed point theorem is investigated for multivariable operators. Moreover, Ulam Hyers 

stable is studied. In addition, for the nonlinear boundary conditions of Caputo type 

fractional differential equation, parametrization technique is used. So, numerical 

analytic scheme is established for finding the successive approximations. Theories 

which are studied in this thesis are illustrated with examples.  

 

Keywords: Fractional differential equations; Katugampola fractional integral; Caputo 

fractional derivative; Riemann-Liouville fractional integral; fixed point theorems; 

parametrization technique; successive approximations; multivariable operations. 
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ÖZ 

Bu tezin konusu kesirli diferansiyel denklemlerin çözümüne dayanmaktadır. 

Tanımlanmış olan kesirli diferensiyel denklemlerin varlığı ve tek çözüm olma 

sonuçları araştırıldı. Bu tezde, çoğunlukla, kesirli diferansiyel denklemlerden biri olan 

Caputo tipi kesirli diferansiyel denklem kullanılmıştır. Ayrıca, sınır koşulları için, 

yerel olmayan Katugampola kesirli integral koşulları ve doğrusal olmayan sınır 

koşulları gibi farklı sınır koşulları uygulanmıştır. Çözümlerin varlığı ve tek olma 

sonuçları, Banach sabit nokta teoremi, Leray-Schauder'ın doğrusal olmayan alternatifi 

ve Krasnoselskii'nin sabit nokta teoremleri kullanılarak tartışılmıştır. Ayrıca, Perov'un 

sabit nokta teoremi çok değişkenli operatörler için incelenmiştir. Ek olarak, Caputo 

tipi kesirli diferensiyel denklemin doğrusal olmayan sınır koşulları için parametreleme 

tekniği kullanılmıştır. Böylece, ardışık yaklaşılanları bulmak için sayısal analitik şema 

kullanılmıştır. Ayrıca, bu tezde incelenen teoriler örneklerle gösterilmiştir. 

Anahtar Kelimeler: Kesirli diferansiyel denklemler; Katugampola kesirli integral; 

Caputo kesirli türevi; Riemann-Liouville kesirli integral; sabit nokta teoremleri; 

parametrizasyon tekniği; ardışık yaklaşımlar; çok değişkenli işlemler.   
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Chapter 1

INTRODUCTION

In recent years, boundary value problems for nonlinear fractional differential equa-

tions have been studied by several researches. In fact, fractional differential equations

have been played important role in physics, chemical technology, biology, economics,

control theory, signal and image processing, see [9, 10, 11, 12, 22, 35, 55, 45] and the

references cited therein.

Boundary value problems of fractional differential equations and inclusions involving

different kind of boundary conditions such as nonlocal, integral and multipoint bound-

ary conditions. The fractional integral boundary conditions were introduced lately in

[11] and nonlocal conditions were presented by Bitsadze, see [22].

In chapter 3 and 4, we study the existence and uniqueness solutions of Caputo type

fractional differential equation with Katugampola fractional integral boundary condi-

tions. In chapter 3, we consider the Caputo type boundary value problem for α ∈ (2,3]

and α ∈ (1,2] with Katugampola fractional integral boundary conditions. In chapter

4, we study the Caputo type boundary value problem for α ∈ (2,3] subjected to addi-

tional case of Katugampola fractional integral boundary conditions which considered

in chapter 3. In both chapters, the first results are related with existence and uniqueness

of the solutions and the results are based on Banach fixed point theorem. The second
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results of chapter 3 and chapter 4 are about the existence of the solutions and the results

are proved by using Leray-Shauder and Krasnoselskii’s fixed point theorem. Also, in

both chapters, the obtained results are illustrated with several examples.

In chapter 5, we consider the Caputo type fractional differential equation of order

α ∈ (0,1 ] with nonlinear boundary conditions. An appropriate parametrization tech-

nique is used to transform the nonlinear boundary conditions of the Caputo type frac-

tional differential equation to the linear boundary conditions. Thus, the successive ap-

proximations are constructed for studying of Caputo type fractional differential equa-

tion with parameterized boundary conditions. Furthermore, uniform convergence of

the successive approximations are discussed. Under the some assumptions, we state

the relationship between the parameterized limit function and exact solution. Finally,

in the last part of chapter 5, we give an example to illustrate the theory of this study.

In last chapter, we investigate the existence and uniqueness solutions of Caputo type

fractional differential equations with parameterized boundary conditions. Also, Ulan-

Hyers stability is discussed for the solution of Caputo type boundary value problem.

The result is based on Perov-type fixed point theorem.
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Chapter 2

PRELIMINARIES

In this section, we recall some basic definitions of fractional calculus and present some

standard fixed point theorems which are needed for analyzing of the study.

Definition 2.0.1 ([35]) Let β > 0 and h be a continuous function from (0,∞) → R.

Then,

Jβ h(r) =
1

Γ(β )

∫ r

0
(r− t)β−1h(t)dt,

is called Riemann-Liouville fractional integral of order β . Here, the notation Γ is

gamma function which is defined by

Γ(β ) =

∞∫
0

e−ssβ−1ds.

Definition 2.0.2 ([35]) Let β > 0 and h be a continuous function from (0,∞) → R.

Then,

Dβ

0+h(t) =
1

Γ(n−β )

(
d
dt

)n ∫ t

0
(t− s)n−β−1h(s)ds, n−1 < β < n,

is called Riemann-Liouville fractional derivative of order β , where n = [β ] + 1, and

[β ] denotes the integer part of real number β .

Definition 2.0.3 Let β > 0 and h be a continuous function from (0,∞)→ R. Then,

3



cDβ h(t) = Dβ

0+

(
h(t)−

n−1

∑
k=0

tk

k!
h(k)(0)

)
, t > 0 , n−1 < β < n.

is called Caputo derivative of order β .

Lemma 2.0.4 (Nonlinear alternative for single-valued maps) Given a Banach space

R, let C be a closed, convex subset of R. Also, U be an open subset of C and 0 ∈U.

Assume that F :
−
U→C is a continuous, compact (that is, F(

−
U) is a relatively compact

subset of C) map. Then either

a) F has a fixed point in
−
U , or

b) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0,1) with u = λF(u).

Lemma 2.0.5 ([36]) (Krasnoselskii’s fixed point theorem) Given a Banach space X,

let N be a closed, bounded, convex and nonempty subset of a Banach space X. Let

A,B be the operators such that (a) Ax+By ∈ N whenever x, y ∈ N; (b) A is compact

and continuous; (c) B is a contraction mapping. Then there exists z ∈ N such that

z = Az+Bz.

Remark 2.0.6 Given a space Cn [0,∞) , let h ∈Cn [0,∞) . Then,

cDβ h(t) =
1

Γ(n−β )

∫ t

0

h(n)(s)
(t− s)β+1−n

ds = In−β h(n)(t), t > 0, n−1 < β < n.
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Definition 2.0.7 ([33]) Let q,ρ > 0. Then, for all t ∈ (0,∞) , the following integral is

called Katugampola integral of a function h(t) with orders q and ρ as follows:

ρ Iqh(t) =
ρ1−q

Γ(q)

∫ t

0

sρ−1h(s)
(tρ − sρ)1−q ds. (2.0.1)

Remark 2.0.8 The definition (2.0.1) is equivalent to the one for Riemann-Liouville

fractional integral of order q > 0 when ρ = 1, while the famous Hadamard fractional

integral is written as follows for ρ → 0 :

lim
ρ→0

ρ Iqh(t) =
1

Γ(q)

∫ t

0

(
log

t
s

)q−1 h(s)
s

ds.

Lemma 2.0.9 ([7]) Let ρ, q > 0 and β > 0 be the given constants. Then the following

formula holds:

ρ Iqtβ =
Γ

(
β+ρ

ρ

)
Γ

(
β+ρq+ρ

ρ

) tβ+ρq

ρq .

Lemma 2.0.10 ([35]) Let q > 0 and x ∈C (0,T )∩L(0,T ) . Then,

x(t) = k1tq−1 + k2tq−2 + ...+ kntq−n,

is a unique solution of the fractional differential equation Dqx(t) = 0 where ki ∈ R,

i = 1, ...,n, and n−1 < q < n.

Lemma 2.0.11 Let q > 0 and x ∈C (0,T )∩L(0,T ). Then,

JqDqx(t) = x(t)+ k1tq−1 + k2tq−2 + ...+ kntq−n,

where ki ∈ R, i = 1, ...,n, and n−1 < q < n.
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Theorem 2.0.12 Let {hn}∞

1 be a bounded and equicontinuous sequence in C(X). Then,

the sequence {hn} has a uniformly convergent subsequence. In this statement,

(a) " F ⊂ C(X) is bounded" means that there exists a positive constant M < ∞ such

that |h(x)| ≤M for each x ∈ X and each h ∈ F and

(b) " F ⊂ C(X) is equicontinuous" means that: for every ε > 0 there exists δ > 0 (

which depends on ε ) such that for x,y ∈ X :

d(x,y)< δ =⇒ |h(x)−h(y)|< ε ∀ h ∈ F,

where d is the metric on X .
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Chapter 3

BOUNDARY VALUE PROBLEMS FOR NONLINEAR

CAPUTO TYPE FRACTIONAL DIFFERENTIAL

EQUATIONS WITH KATUGAMPOLA

FRACTIONAL INTEGRAL CONDITIONS

In chapter 3 , nonlinear differential equations are considered with Katugampola frac-

tional integral boundary conditions. The aim of the study is to investigate the existence

and uniqueness of solutions. In order to obtain the existence and uniqueness of so-

lutions, some classical results of the fixed point theory are applied. Moreover, the

obtained results are illustrated with the aid of examples. As a first problem, Caputo

type fractional differential equation is considered for 2 < α ≤ 3 as follows:



cDαx(t) = f (t,x(t)), t ∈ [0,T ] ,

x(0) = 0, x(T ) = β ρ Iq x(ξ ), 0 < ξ ≤ T,

x′(T ) = γ ρ Iq x′(η), 0 < η ≤ T,

(3.0.1)

and as a second problem, Caputo type fractional equation of order 1 < α ≤ 2 is ob-

tained as follows: 

cDαx(t) = f (t,x(t)), t ∈ [0,T ] ,

x(T ) = β ρ Iq x(ξ ), 0 < ξ ≤ T,

x′(T ) = γ ρ Iq x′(η), 0 < η ≤ T.

(3.0.2)
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In both problems, cDα is the Caputo fractional derivative, ρ Iq is the Katugampola

fractional integral of order q > 0, ρ > 0. Also, the function f : [0,T ]×R→ R is a

continuous function in both (3.0.1) and (3.0.2) and β ,γ ∈ R.

The solutions of problem (3.0.1) and (3.0.2) are obtained for their associated linear

problem. Consequently, the following lemmas are considered with the linear variant

of the problems (3.0.1) and (3.0.2).

Lemma 3.0.1 ([56]) Let 2 < α ≤ 3 and β ,γ ∈ R . Then, for any y ∈C ([0,T ] ,R) , x is

a solution of the following Caputo type fractional boundary value problem:



cDαx(t) = y(t),

x(0) = 0, x(T ) = β ρ Iq x(ξ ), 0 < ξ ≤ T,

x′(T ) = γ ρ Iq x′(η), 0 < η ≤ T,

(3.0.3)

if and only if

x(t) = Jαy(t)+
t
∆
(2ω2 (γ,η) +tω1 (γ,η))β

ρ Iq Jαy(ξ )

+
t
∆
(−ω3 (β ,ξ )+ tω2 (β ,ξ ))γ

ρ Iq Jα−1y(η)

− t
∆
(2ω2 (γ,η)+ tω1 (γ,η))Jαy(T ))

+
t
∆
(ω3 (β ,ξ )− tω2 (β ,ξ ))Jα−1y(T ), (3.0.4)

where

∆ = 2ω2 (β ,ξ )ω2 (γ,η)+ω3 (β ,ξ )ω1 (γ,η) 6= 0, (3.0.5)
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ω1 (β ,ξ ) =

(
β

ξ ρq

ρq
1

Γ(q+1)
−1
)
, (3.0.6)

ω2 (β ,ξ ) =

(
T −β

ξ ρq+1

ρq

Γ(1+ρ

ρ
)

Γ(1+ρq+ρ

ρ
)

)
, (3.0.7)

ω3 (β ,ξ ) =

(
T 2−β

ξ ρq+2

ρq

Γ(2+ρ

ρ
)

Γ(2+ρq+ρ

ρ
)

)
. (3.0.8)

Proof. By using Lemmas (2.0.10)-(2.0.11), the general solution of the fractional dif-

ferential equation in (3.0.3) can be expressed as:

x(t) = c0 + c1t + c2t2 + Jαy(t) (3.0.9)

where c0,c1,c2 ∈ R are unknown arbitrary constants. Then, the Katugampola frac-

tional integral operator is applied on (3.0.9) and simultaneously, Lemma (2.0.9) is

used. Thus, the following equation is obtained:

ρ Iq x(t) = c0
tρq

ρq
1

Γ(q+1)
+ c1

tρq+1

ρq

Γ(1+ρ

ρ
)

Γ(1+ρq+ρ

ρ
)

+ c2
tρq+2

ρq

Γ(2+ρ

ρ
)

Γ(2+ρq+ρ

ρ
)
+ ρ Iq Jαy(t). (3.0.10)

After that, second boundary condition of (3.0.3) is applied on (3.0.10) and the equa-

tion (3.0.11) is found as follows:

Jαy(T )+ c2T 2 + c1T + c0 = βc0
ξ ρq

ρq
1

Γ(q+1)
+βc1

ξ ρq+1

ρq

Γ(1+ρ

ρ
)

Γ(1+ρq+ρ

ρ
)

+βc2
ξ ρq+2

ρq

Γ(2+ρ

ρ
)

Γ(2+ρq+ρ

ρ
)
+β

ρ Iq Jαy(ξ ). (3.0.11)

Also, by using the fractional integral condition of (3.0.3), c0 is equal to 0. Therefore,

the equation (3.0.11) is rewritten as follows:

9



c1

(
T −β

ξ ρq+1

ρq

Γ(1+ρ

ρ
)

Γ(1+ρq+ρ

ρ
)

)
+ c2

(
T 2−β

ξ ρq+2

ρq

Γ(2+ρ

ρ
)

Γ(2+ρq+ρ

ρ
)

)

= β
ρ Iq Jαy(ξ )− Jαy(T ). (3.0.12)

Besides, the first derivative of the general solution of the fractional differential equation

in (3.0.3) is written as follows:

x′(t) = c1 +2c2t + Jα−1y(t). (3.0.13)

After applied the Katugampola fractional integral on (3.0.13) and used Lemma (2.0.9),

the following equation is obtained:

ρ Iqx′(t) = c1
tρq

ρq
1

Γ(q+1)
+2c2

tρq+1

ρq

Γ(1+ρ

ρ
)

Γ(1+ρq+ρ

ρ
)

+ ρ IqJα−1y(t). (3.0.14)

By using the equations (3.0.13) and (3.0.14), following equation is obtained as fol-

lows:

Jα−1y(T )+2c2T + c1

= γc1
ηρq

ρq
1

Γ(q+1)
+ γ2c2

ηρq+1

ρq

Γ(1+ρ

ρ
)

Γ(1+ρq+ρ

ρ
)

+ γ
ρ Iq Jα−1y(η). (3.0.15)

After collecting similar terms on one side, the following equation is obtained:

c1

(
1− γ

ηρq

ρq
1

Γ(q+1)

)
+ c2

(
2T −2γ

ηρq+1

ρq

Γ(1+ρ

ρ
)

Γ(1+ρq+ρ

ρ
)

)

= γ
ρ Iq Jα−1y(η)− Jα−1y(T ). (3.0.16)

In order to find the values c1 and c2, the equations (3.0.12) and (3.0.16) are considered.

The results are found as follows:
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c1 =
1
∆
(2ω2 (γ,η)(β ρ Iq Jαy(ξ )− Jαy(T ))

−ω3 (β ,ξ )
(
γ

ρ Iq Jα−1y(η)− Jα−1y(T )
))

and

c2 =
1
∆

(
ω2 (β ,ξ )

(
γ

ρ Iq Jα−1y(η)− Jα−1y(T )
)

+ω1 (γ,η)(β ρ Iq Jαy(ξ )− Jαy(T )))

As a final step, c0,c1 and c2 are inserted in (3.0.9), then the formula (3.0.4) is ob-

tained. Conversly, the general solution (3.0.4) satisfies the problem (3.0.3) by direct

computation. The proof is completed.

The following lemma is involved with the solution of the problem (3.0.2). The proof

is not provided as it based on the similar method with previous proof.

Lemma 3.0.2 ([56]) Let 1 < α ≤ 2 and β ,γ ∈R. Then, x is a solution of the following

fractional boundary value problem for any y ∈C ([0,T ] ,R) ,



cDαx(t) = y(t) ,

x(T ) = β ρ Iq x(ξ ), 0 < ξ ≤ T,

x′(T ) = γ ρ Iq x′(η), 0 < η ≤ T,

if and only if

x(t) = Jαy(t)+
1

ω1 (β ,ξ )
(Jαy(T ) −β

ρ Iq Jαy(ξ ))

+

(
1

ω1 (γ,η)

(
ω2 (β ,ξ )

ω1 (β ,ξ )
+ t
) (

Jα−1y(T )− γ
ρ Iq Jα−1y(η)

))
,

11



where

ω1 (β ,ξ ) 6= 0 and ω1 (γ,η) 6= 0

which is given in (3.0.6).

3.1 Main Results

This section is dedicated to the main results concerning the existence and uniqueness

results for the problems (3.0.1)− (3.0.2). The results are proved by using Banach

fixed point theorem, Leray-Schauder nonlinear alternative and Krasnoselskii’s fixed

point theorem which are the standard fixed point theorems.

In order to prove the existence theorems for boundary value problems (3.0.1)−(3.0.2),

the operators S, Ŝ : C→C are introduced as follows:

(Sx)(t) = Jα f (s,x(s))(t)− t
∆
(2ω2 (γ,η)

+tω1 (γ,η))Jα f (s,x(s))(T )+
t
∆
(ω3 (β ,ξ )

−tω2 (β ,ξ ))Jα−1 f (s,x(s))(T )+
t
∆
(2ω2 (γ,η)

+tω1 (γ,η))β
ρ Iq Jα f (s,x(s))(ξ )+

t
∆
(−ω3 (β ,ξ )

+tω2 (β ,ξ ))γ
ρ Iq Jα−1 f (s,x(s))(η), (3.1.1)

(Ŝx)(t) = Jα f (s,x(s))(t)+
1

ω1 (β ,ξ )
(Jα f (s,x(s))(T )

−β
ρ Iq Jα f (s,x(s))(ξ ))+

(
1

ω1 (γ,η)

(
ω2 (β ,ξ )

ω1 (β ,ξ )
+ t
)

×Jα−1 f (s,x(s))(T ) −γ
ρ Iq Jα−1 f (s,x(s))(η)

)
.
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Also, the notations are defined as follows:

Ω :=
T |β |(2 |ω2 (γ,η)|+T |ω1 (γ,η)|)

|∆|

×
Γ(α+ρ

ρ
)

Γ(α+ρq+ρ

ρ
)

ξ α+ρq

ρq
1

Γ(α +1)

+
T |γ|(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

|∆|

×
Γ(α−1+ρ

ρ
)

Γ(α−1+ρq+ρ

ρ
)

ηα−1+ρq

ρq
1

Γ(α)
, (3.1.2)

Ω1 :=
T α

Γ(α +1)

+
T
|∆|

T α

Γ(α +1)
(2 |ω2 (γ,η)|+T |ω1 (γ,η)|)

+
T
|∆|

T α−1

Γ(α)
(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

+

(
T |β |(2 |ω2 (γ,η)|+T |ω1 (γ,η)|)

|∆|

×
Γ(α+ρ

ρ
)

Γ(α+ρq+ρ

ρ
)

ξ α+ρq

ρq
1

Γ(α +1)

)

+

(
T |γ|(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

|∆|

×
Γ(α−1+ρ

ρ
)

Γ(α−1+ρq+ρ

ρ
)

ηα−1+ρq

ρq
1

Γ(α)

)
, (3.1.3)

and

Θ :=
|β |

|ω1 (β ,ξ )|
ξ α+ρq

ρq

Γ(α+ρ

ρ
)

Γ(α+ρq+ρ

ρ
)

1
Γ(α +1)

+

(
|γ|

|ω1 (γ,η)|

(
|ω2 (β ,ξ )|
|ω1 (β ,ξ )|

+T
)

×
Γ(α−1+ρ

ρ
)

Γ(α−1+ρq+ρ

ρ
)

ηα−1+ρq

ρq
1

Γ(α)

)
, (3.1.4)
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Θ1 :=
T α

Γ(α +1)

+

(
1

|ω1 (β ,ξ )|Γ(α +1)

×

(
T α +

|β |Γ(α+ρ

ρ
)

Γ(α+ρq+ρ

ρ
)

ξ α+ρq

ρq

))

+

(
1

|ω1 (γ,η)|Γ(α)

(
|ω2 (β ,ξ )|
|ω1 (β ,ξ )|

+T
)

×

(
T α−1 +

Γ(α−1+ρ

ρ
)

Γ(α−1+ρq+ρ

ρ
)

ηα−1+ρq

ρq
|γ|

Γ(α)

))
. (3.1.5)

In the following subsections, existence and uniqueness results for problem (3.0.1) are

stated and proved. Also, existence and uniqueness results for problem (3.0.2) are

defined but the proofs are omitted because of the having similar results with problem

(3.0.1) .

3.1.1 Existence and Uniqueness Results

The first result is about the existence and uniqueness of the solution. The result is

proved by Banach fixed point theorem.

Theorem 3.1.1 ([56]) Let f : [0,T ]×R→ R be a continuous function. Assume that

(A1) Let L > 0 and x, y ∈ R. Then, | f (t,x)− f (t,y)| ≤ L‖x− y‖ , for all t ∈ [0,T ] ,

(A2) LΩ1 < 1, then unique solution exists on [0,T ] for the boundary value problem

(3.0.1) .
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Proof. From the definition of S in (3.1.1) and assumption (A1), the following inequal-

ity is written for x, y ∈C and ∀ t ∈ [0,T ] as follows:

|(Sx)(t)− (Sy)(t)|

≤ Jα | f (s,x(s))− f (s,y(s))|(T )

+
T |β |
|∆|

(2 |ω2 (γ,η)|+T |ω1 (γ,η)|) ρ Iq Jα | f (s,x(s))− f (s,y(s))|(ξ )

+
T |γ|
|∆|

(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|) ρ Iq Jα−1 | f (s,x(s))− f (s,y(s))|(η)

+
T
|∆|

(2 |ω2 (γ,η)|+T |ω1 (γ,η)|)Jα | f (s,x(s))− f (s,y(s))|(T )

+
T
|∆|

(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)Jα−1 | f (s,x(s))− f (s,y(s))|(T )

≤ L‖x− y‖Jα(1)(T )+L‖x− y‖
[

T |β |
|∆|

(2 |ω2 (γ,η)|+T |ω1 (γ,η)|)

× ρ Iq Jα(1)(ξ )]+L‖x− y‖
[

T |γ|
|∆|

(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

× ρ Iq Jα−1(1)(η)
]
+L‖x− y‖

[
T
|∆|

(2 |ω2 (γ,η)|+T |ω1 (γ,η)|)

×Jα(1)(T )]+L‖x− y‖ T
|∆|

(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)Jα−1(1)(T )

≤ L
[

T α

Γ(α +1)
+

T
|∆|

T α

Γ(α +1)
(2 |ω2 (γ,η)|+T |ω1 (γ,η)|)

T
|∆|

T α−1

Γ(α)
(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)+

(
T |β |
|∆|

T (2 |ω2 (γ,η)|+T |ω1 (γ,η)|)

×
Γ(α+ρ

ρ
)

Γ(α+ρq+ρ

ρ
)

ξ α+ρq

ρq
1

Γ(α +1)

)
+

(
T |γ|
|∆|

(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

×
Γ(α−1+ρ

ρ
)

Γ(α−1+ρq+ρ

ρ
)

ηα−1+ρq

ρq
1

Γ(α)

)]
‖x− y‖

= LΩ1 ‖x− y‖ .
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Hence,

‖Sx−Sy‖ ≤ LΩ1 ‖x− y‖ .

As LΩ1 < 1, by the assumption (A2) the operator S : C→C is a contraction map. Here

C is a Banach space. As a result, by the Banach fixed point theorem the boundary value

problem (3.0.1) has a unique solution on [0,T ]. The proof is completed.

Theorem 3.1.2 ([56]) Given a continuous function f which is from [0,T ]×R→R, let

(A1) holds. If

LΘ1 < 1,

where Θ1 is defined by (3.1.5) , then the boundary value problem (3.0.2) has a unique

solution on [0,T ] .

3.1.2 Existence Results

The second result is related with existence of solutions. To prove this result, Leray-

Schauder and Krasnoselskii’s fixed point theorem are used.

Theorem 3.1.3 ( [56]) Given a continuous function f : [0,T ]×R→R be a continuous

function. Assume that

(A3) Let φ ∈C([0,T ] ,R) be a nonnegative function and Ψ : [0,∞)→ (0,∞) be a non-

decreasing function. Then,

| f (t,u)| ≤ φ(t)Ψ(|u|) for any (t,u) ∈ [0,T ]×R

.(A4) Let N > 0 be a positive constant such that

N
Ψ(N)‖φ‖Ω1

> 1,
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where Ω1 in (3.1.3) , then at least one solution exists for the problem (3.0.1) on

the interval [0,T ] .

Proof. A set

B` = {x ∈C : ‖x‖ ≤ `}

is defined as closed and bounded in C([0,T ] ,R). Existence of a solution of the problem

(3.0.1) is equivalent to the problem of finding fixed point of S from B`→C([0,T ] ,R).

Then ∀ t ∈ [0,T ] , we have:

‖(Sx)(t)‖ ≤ Jα | f (s,x(s))|(T )

+

(
T |β |(2 |ω2 (γ,η)|+T |ω1 (γ,η)|)

|∆|

× ρ Iq Jα | f (s,x(s))|(ξ ))

+

(
T |γ|(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

|∆|

× ρ Iq Jα−1 | f (s,x(s))|(η)
)

+

(
T (2 |ω2 (γ,η)|+T |ω1 (γ,η)|)

|∆|

×Jα | f (s,x(s))|(T ))

+

(
T (|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

|∆|

×Jα−1 | f (s,x(s))|(T )
)

≤Ψ(‖x‖)Jα
φ(s)(T )

+

(
Ψ(‖x‖) |β |T (2 |ω2 (γ,η)|+T |ω1 (γ,η)|)

|∆|

× ρ Iq Jα
φ(s)(ξ ))
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+

(
Ψ(‖x‖) T |γ|(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

|∆|

× ρ IqJα−1
φ(s)(η)

)
+

(
Ψ(‖x‖) T (2 |ω2 (γ,η)|+T |ω1 (γ,η)|)

|∆|

×Jα
φ(s)(T ))

+

(
Ψ(‖x‖) T (|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

|∆|

×Jα−1
φ(s)(T )

)
≤ ‖φ‖Ψ(`)

{
T α

Γ(α +1)

+
T
|∆|

T α

Γ(α +1)
(2 |ω2 (γ,η)|+T |ω1 (γ,η)|

+
T
|∆|

T α−1

Γ(α)
(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

+

(
T |β |(2 |ω2 (γ,η)|+T |ω1 (γ,η)|)

|∆|

×
Γ(α+ρ

ρ
)

Γ(α+ρq+ρ

ρ
)

ξ α+ρq

ρq
1

Γ(α +1)

)

+

(
T |γ|(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

|∆|

×
Γ(α−1+ρ

ρ
)

Γ(α−1+ρq+ρ

ρ
)

ηα−1+ρq

ρq
1

Γ(α)

)}

= Ψ(`)‖φ‖Ω1 < `.

Secondly, we show that the map S : C ([0,T ] ,) → C ([0,T ] ,R) is completely con-

tinuous. Therefore, the map S sends bounded sets into relatively compact set of

C ([0,T ] ,R) . Let τ1,τ2 be in the interval [0,T ] . Also, let us consider τ1 < τ2. Then,

|(Sx)(τ2)− (Sx)(τ1)| ≤ |Jα f (s,x(s))(τ2)− Jα f (s,x(s))(τ1)|
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+

(
|τ2− τ1|
|∆|

(2 |ω2 (γ,η)| +(τ2 + τ1) |ω1 (γ,η)|)

×|β | ρ Iq Jα | f (s,x(s))|(ξ ))+
(
|τ2− τ1|
|∆|

(|ω3 (β ,ξ )| +(τ2 + τ1) |ω2 (β ,ξ )|)

×|γ| ρ IqJα−1 | f (s,x(s))|)(η)
)
+

(
|τ2− τ1|
|∆|

(2 |ω2(γ,η)|

+(τ2 + τ1) |ω1 (γ,η)|) ×Jα | f (s,x(s))|(T ))+
(
|τ2− τ1|
|∆|

(|ω3 (β ,ξ )|

+(τ2 + τ1) |ω2 (β ,ξ )|) ×Jα−1 | f (s,x(s))|(T )
)

≤ Ψ(r)‖φ‖
Γ(α)

 τ1∫
0

[
(τ2− s)α−1 −(τ1− s)α−1]ds +

τ2∫
τ1

(τ2− s)α−1ds


+

Ψ(r) |τ2− τ1|
|∆|

{(2 |ω2 (γ,η)|) +(τ2 + τ1) |ω1 (γ,η)|

×|β | ρ Iq Jα
φ(s)(ξ )+(|ω3 (β ,ξ )|) ×|γ| ρ IqJα−1

φ(s)(η)
)
+(2 |ω2(γ,η)|

+(τ2 + τ1) |ω1 (γ,η)|)Jα
φ(s))(T )

+(|ω3 (β ,ξ )| +(τ2 + τ1) |ω2 (β ,ξ )|)Jα−1
φ(s)(T )

)}
.

From the previous inequality, it follows that the difference of (Sx)(τ2) and (Sx)(τ1)

are not depent on x. Therefore, the right hand side of the inequality tends to zero. Thus,

S is equicontinuous. Consequently, by the Arzela-Ascoli Theorem 2.0.12, the operator

S : C([0,T ] ,R)→C([0,T ] ,R) is completely continuous.

In the following step, we show that the map S has a fixed point. Let us define

A = {x ∈C ([0,T ] ,R) : ‖x‖< N} .

Then, the operator S is defined as continuous and completely continuous from A to

C ([0,T ] ,R) . From the choice of A, for some η ∈ (0,1) , there is no x which belongs to

∂A such that x = ηSx. Here, for proving this result we use contradiction. Then, there
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exists x ∈ ∂A such that x = ηSx for some η ∈ (0,1) . Then,

‖x‖= ‖µSx‖ ≤ ‖Sx‖

≤Ψ(‖x‖)‖φ‖Ω1

which means

‖x‖
Ψ(‖x‖)‖φ‖Ω1

≤ 1

This is contradict with

‖N‖
Ψ(‖N‖)‖φ‖Ω1

> 1.

Consequently, according to the Leray-Scahauder’s nonlinear alternative, the operator

S has a fixed point x in A which is the solution of the problem (3.0.1) . This completes

the proof.

Theorem 3.1.4 ([56]) Given a continuous function f: [0,T ]×R→ R. Assume that

(A3) holds. If there exist a constant N > 0 such that

N
Ψ(M)‖φ‖Θ1

> 1.

where Θ1 is defined in (3.1.5) , then at least one solution exists on the inteval [0,T ] for

the boundary value problem (3.0.2).

Theorem 3.1.5 ([56]) Given a continuous function f :[0,T ]×R→R. Assume that (A1)

holds. Then, the function f satisfies the following assumptions:

(A5) there exist a nonnegative function φ ∈C ([0,T ] ,R) such that

| f (t,u)| ≤ φ(t) for any (t,u) ∈ [0,T ]×R
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(A6) LΩ < 1 where Ω is defined in (3.1.2). Then the boundary value problem (3.0.1)

has at least one solution on [0,T ].

Proof. The new operators S1 and S2 are defined as

S1x = Jα f (s,x(s))(t)− t
∆
(2ω2 (γ,η)

+tω1 (γ,η))Jα f (s,x(s))(T )

+
t
∆
(ω3 (β ,ξ ) −tω2 (β ,ξ ))Jα−1 f (s,x(s))(T )

and

S2x =
t
∆
(2ω2 (γ,η) +tω1 (γ,η))β

ρ Iq Jα f (s,x(s))(ξ )

+
t
∆
(−ω3 (β ,ξ ) + tω2 (β ,ξ )γ

ρ Iq Jα−1 f (s,x(s))(η)

First of all, we define B` = {x ∈C : ‖x‖ ≤ `} with

`≥ ‖φ‖Ω1,

and Ω1 is defined in (3.1.3). Now, we show that S1x+S2y ∈ B`. For any x, y ∈ B`, we

have :

‖S1x+S2y‖ ≤ Jα | f (s,x(s))|(T )

+

(
T (2 |ω2 (γ,η)|+T |ω1 (γ,η)|)

|∆|
Jα | f (s,x(s))|(T ))

+

(
T (|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

|∆|
Jα−1 | f (s,x(s))|(T )

)
+

(
T |β |(2 |ω2 (γ,η)|+T |ω1 (γ,η)|)

|∆|
ρ IqJα | f (s,y(s))|(ξ ))

+

(
T |γ|(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

|∆|
ρ Iq Jα−1 | f (s,y(s))|(η)

)
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≤ Jα
φ(s)(T )

+
T (2 |ω2 (γ,η)|+T |ω1 (γ,η)|)

|∆|
Jα

φ(s)(T )

+
T (|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

|∆|
Jα−1

φ(s)(T )

+

(
|β |T (2 |ω2 (γ,η)|+T |ω1 (γ,η)|)

|Λ|
ρ Iq Jα

φ(s)(ξ ))

+

(
T |γ|(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

|∆|
ρ Iq Jα−1

φ(s)(η)
)

≤ ‖φ‖
{

T α

Γ(α +1)
+

T
|∆|

T α

Γ(α +1)
(2 |ω2 (γ,η)|

+T |ω1 (γ,η)|)+ T
|∆|

T α

Γ(α +1)
(|ω3 (β ,ξ )|

+T |ω2 (β ,ξ )|)+
(

T |β |(2 |ω2 (γ,η)|+T |ω1 (γ,η)|)
|∆|

×
Γ(α+ρ

ρ
)

Γ(α+ρq+ρ

ρ
)

ξ α+ρq

ρq
1

Γ(α +1)
+

(
T |γ|(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

|∆|

×
Γ(α−1+ρ

ρ
)

Γ(α−1+ρq+ρ

ρ
)

ηα−1+ρq

ρq
1

Γ(α)

)}

= ‖φ‖Ω1 ≤ `.

So, it is obvious that S1x+S2y ∈ B`. Also, the operator S1 is compact and continuous

and the proof was stated in second part of Theorem 3.1.1.

Next step shows that the operator S2 is contraction. We consider (A1) to prove that S2

is contraction:

‖S2x−S2y‖

≤
(

T |β |(2 |ω2 (γ,η)|+T |ω1 (γ,η)|)
|∆|

× ρ Iq Jα | f (s,x(s))− f (s,y(s))|(ξ ))
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+

(
T |γ|(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

|∆|

× ρ Iq Jα−1 | f (s,x(s))− f (s,y(s))|(η)
)

≤
(

L‖x− y‖ T |β |(2 |ω2 (γ,η)|+T |ω1 (γ,η)|)
|∆|

× ρ Iq Jα(1)(ξ ))

+

(
L‖x− y‖ T |γ|(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

|∆|

× ρ Iq Jα−1(1)(η)
)

≤ L
{(

T |β |(2 |ω2 (γ,η)|+T |ω1 (γ,η)|)
|∆|

×
Γ(α+ρ

ρ
)

Γ(α+ρq+ρ

ρ
)

ξ α+ρq

ρq
1

Γ(α +1)

)

+

(
T |γ|(|ω3 (β ,ξ )|+T |ω2 (β ,ξ )|)

|∆|

×
Γ(α−1+ρ

ρ
)

Γ(α−1+ρq+ρ

ρ
)

ηα−1+ρq

ρq
1

Γ(α)

)}
‖x− y‖

= LΩ‖x− y‖ .

Therefore, we get:

‖S2x−S2y‖ ≤ LΩ‖x− y‖

As LΩ < 1 by (A6). Hence the operator S2 is contraction. Therefore, all the assump-

tions of Lemma (2.0.5) are satisfied. On the account of this, the problem (3.0.1) has

at least one solution on [0,T ] .

Theorem 3.1.6 ([56]) Given a continuous function f:[0,T ]×R→ R. Assume that the

condition (A5) holds. If

LΘ < 1

where Θ is defined in (3.1.4). Then the boundary value problem (3.0.2) has at least
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one solution on [0,T ] .

3.2 Applications

Example 1. Following boundary value problem is Caputo type fractional differential

equation with Katugampola fractional integral boundary condition

cD5/2x(t) = sin2(πt)
2(et+9)

(
|x(t)|
|x(t)|+1 +1

)
,

x(0) = 0, x(1) = 1
2

2/3I3 x(3/4),

x′(1) = 1
2

2/3I3 x(2/3), t ∈ [0,1] .

(3.2.1)

Here , α = 5/2, T = 1, β = 1/2, ξ = 3/4, η = 2/3, γ = 1/2, ρ = 2/3, q = 3,

f (t,x) =
sin2(πt)
2(et +9)

(
|x|
|x|+1

+1
)
.

Since | f (t,x)− f (t,y)| ≤ 1
10 ‖x− y‖ . Therefore, (A1) is satisfied. Using the given

values, ω1
(1

2 ,
2
3

)
= −0.8750, ω1

(1
2 ,

3
4

)
= −0.8418, ω2

(1
2 ,

2
3

)
= 0.9873, ω2

(1
2 ,

3
4

)
=

0.9819, ω3
(1

2 ,
3
4

)
= 0.9970. So, it is found that ∆ = 1.0250 and Ω1 = 2.600. Clearly,

LΩ1 ≈ 0.26 < 1. By using Theorem 3.1.1, the boundary value problem (3.2.1) has a

unique solution on [0,1] .

Example 2. Consider the following fractional boundary value problem

cD5/2x(t) =
(

t2+1
10

)(
x2(t)
|x(t)|+1 +

√
|x(t)|

2(1+
√
|x(t)|)

+ 1
2

)
,

x(0) = 0, x(1) = 1
2

2/3I3 x(3/4),

x′(1) = 1
2

2/3I3 x(2/3), t ∈ [0,1] .

(3.2.2)
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Here , α = 5/2, T = 1, β = 1/2, ξ = 3/4, η = 2/3, γ = 1/2, ρ = 2/3, q = 3,

| f (t,u)|=

∣∣∣∣∣
(

t2 +1
10

)(
u2

|u|+1
+

√
|u|

2(1+
√
|u|)

+
1
2

)∣∣∣∣∣
≤
(
t2 +1

)
(|u|+1)

10

So, φ(t) = t2+1
10 and Ψ(|u|) = |u|+1. Now, we need to show that

N
Ψ(N)‖φ‖Ω1

> 1

Therefore, we prove that

1−‖φ‖Ω1 > 0

Here ‖φ‖ = 1
5 and Ω1 = 2.600. So, ‖φ‖Ω1 = 0.52 < 1. Hence, by using Theorem

3.1.3, the boundary value problem (3.2.2) has at least one solution on [0,1] .

Example 3. Consider the following fractional boundary value problem



cD5/2x(t) = sin2(πt)
2(et+1)

(
|x(t)|
|x(t)|+1 +1

)
,

x(0) = 0, x(1) = 1
2

2/3I3 x(3/4),

x′(1) = 1
2

2/3I3 x(2/3), t ∈ [0,1] .

(3.2.3)

Here , α = 5/2, T = 1, β = 1/2, ξ = 3/4, η = 2/3, γ = 1/2, ρ = 2/3, q = 3,

f (t,x) =
sin2(πt)
2(et +1)

(
|x|
|x|+1

+1
)
.

Since | f (t,x)− f (t,y)| ≤ 1
2 ‖x− y‖ . It is clear that (A1) is satisfied but when we con-

sider (A2) which is LΩ1 = 1.3≮ 1. Therefore, (A5) which is

| f (t,u)| ≤ 1
2(et +9)

≤ 1
2
= φ(t)
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is satisfied. By using (3.1.2), Ω= 0.0103 is found. It is obvious that LΩ= 0.0052< 1.

So, (A6) is satisfied. Hence, by using Theorem 3.1.5, the boundary value problem

(3.2.3) has at least one solution on [0,1] .
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Chapter 4

CAPUTO TYPE FRACTIONAL ORDER BOUNDARY

VALUE PROBLEM WITH NONLOCAL INTEGRAL

CONDITIONS

In this chapter, sufficient conditions of existence and uniqueness solutions are investi-

gated for Caputo type fractional differential equations subjected to nonlocal Katugam-

pola fractional integral boundary conditions as follows:



cDαx(t) = f (t,x(t)), t ∈ [0,T ] ,

x(T ) = β ρ Iqx(ε), 0 < ε < T,

x′(T ) = γ ρ Iqx′(η), 0 < η < T,

x′′(T ) = δ ρ Iqx′′(ζ ), 0 < ζ < T,

(4.0.1)

where Dα is the Caputo fractional derivative of order α ∈ (2,3] . ρ Iq is the Katugam-

pola integral of orders q > 0, ρ > 0 and f : [0,T ]×R→ R is a continuous function.

Lemma 4.0.1 ([41]) Let 2 < α ≤ 3 and β ,γ, δ ∈ R. Then, for any y ∈ C ([0,T ] ,R) ,

there exists a solution x for the following fractional differential equation with Katugam-
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pola fractional integral conditions



cDαx(t) = y(t), t ∈ [0,T ] ,

x(T ) = β ρ Iqx(ε), 0 < ε < T,

x′(T ) = γ ρ Iqx′(η), 0 < η < T,

x′′(T ) = δ ρ Iqx′′(ζ ), 0 < ζ < T,

(4.0.2)

if and only if

x(t) = Jαy(t)+
1

ϖ1 (β ,ε)
(β ρ IqJαy(ε)− Jαy(T ))

− 1
ϖ1(γ,η)

(
ϖ2 (β ,ε)

ϖ1 (β ,ε)
− t
)(

γ
ρ IqJα−1y(η)− Jα−1y(T )

)
+

1
ϖ1 (δ ,ζ )

(
ϖ3 (β ,ε)

2ϖ1 (β ,ε)
− ϖ2 (β ,ε)ϖ2(γ,η)

ϖ1 (β ,ε)ϖ1(γ,η)

+
ϖ2(γ,η)t
ϖ1(γ,η)

− t2

2

)(
Jα−2y(T )−δ

ρ IqJα−2y(ζ )
)
, (4.0.3)

where

ϖ1 (α,ξ ) =

(
1−α

ξ ρq

ρq
1

Γ(q+1)

)
6= 0, (4.0.4)

ϖ2 (α,ξ ) =

T −α
ξ ρq+1

ρq

Γ

(
1+ρ

ρ

)
Γ

(
1+ρq+ρ

ρ

)
 , (4.0.5)

ϖ3 (α,ξ ) =

T 2−α
ξ ρq+2

ρq

Γ

(
2+ρ

ρ

)
Γ

(
2+ρq+ρ

ρ

)
 . (4.0.6)

Proof. Using Lemma (2.0.10)-(2.0.11), the general solution of the fractional differen-

tial equation in (4.0.2) can be written as

x(t) = c 0 + c1t + c2t2 + Jαy(t), c0,c1,c2 ∈ R. (4.0.7)

From the first integral condition of the problem (4.0.2) is used and Katugampola inte-
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gral is applied on (4.0.7). Then, we obtain:

c 0 + c1T + c2T 2 + Jαy(T )

= βc 0
ερq

ρq
1

Γ(q+1)
+βc 1

ερq+1

ρq

Γ

(
1+ρ

ρ

)
Γ

(
1+ρq+ρ

ρ

)
+βc 2

ερq+2

ρq

Γ

(
2+ρ

ρ

)
Γ

(
2+ρq+ρ

ρ

) +β
ρ IqJαy(ε).

When the similar terms are collected in one part, we have the following equation:

c0

(
1−β

ερq

ρq
1

Γ(q+1)

)
+ c1

T −βc 1
ερq+1

ρq

Γ

(
1+ρ

ρ

)
Γ

(
1+ρq+ρ

ρ

)


+ c2

T 2−βc 2
ερq+2

ρq

Γ

(
2+ρ

ρ

)
Γ

(
2+ρq+ρ

ρ

)


= β
ρ IqJαy(ε)− Jαy(T ). (4.0.8)

Rewriting the equation (4.0.8) by using (4.0.4), (4.0.5) and (4.0.6) . We obtain:

c0ϖ1 (β ,ε)+ c1ϖ2 (β ,ε)+ c2ϖ3 (β ,ε) = β
ρ IqJαy(ε)− Jαy(T ). (4.0.9)

Then, the derivative of (4.0.7) is taken and second integral condition of (4.0.2) is used.

Therefore, we obtain:

x′(T ) = c1 +2c2T + Jα−1y(T ). (4.0.10)

Now, the Katugampola integral is applied on (4.0.10) and we have:

c1 +2c2T + Jα−1y(T ) = γc 1
ηρq

ρq
1

Γ(q+1)

+2c2γ
ηρq+1

ρq

Γ

(
1+ρ

ρ

)
Γ

(
1+ρq+ρ

ρ

) + γ
ρ IqJα−1y(η). (4.0.11)

The above equation (4.0.11) implies that:
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c1

(
1− γ

ηρq

ρq
1

Γ(q+1)

)
+2c2

T − γ
ηρq+1

ρq

Γ

(
1+ρ

ρ

)
Γ

(
1+ρq+ρ

ρ

)


= γ
ρ IqJα−1y(η)− Jα−1y(T ). (4.0.12)

Also, by using (4.0.4) and (4.0.5), the equation (4.0.12) can be written as

c1ϖ1(γ,η)+2c2ϖ2(γ,η) = γ
ρ IqJα−1y(η)− Jα−1y(T ). (4.0.13)

The last integral condition of (4.0.2) is used and Katugampola integral operator is

applied on the second derivative of (4.0.10) , then we have:

2c2 + Jα−2y(T ) = 2δc2
ζ ρq

ρq
1

Γ(q+1)
+δ

ρ IqJα−2y(ζ ).

Hence, we obtain the following equation:

2c2

(
1−δ

ζ ρq

ρq
1

Γ(q+1)

)
= δ

ρ IqJα−2y(ζ )− Jα−2y(T ). (4.0.14)

By using (4.0.4) , the equation (4.0.14) can be written as

2c2ϖ1 (δ ,ζ ) = δ
ρ IqJα−2y(ζ )− Jα−2y(T ). (4.0.15)

Furthermore, equation (4.0.15) implies that

c2 =
1

2ϖ1 (δ ,ζ )

(
δ

ρ IqJα−2y(ζ )− Jα−2y(T )
)
. (4.0.16)

Substituting the values of (4.0.16) in (4.0.13) , we get:

c1 =
1

ϖ1(γ,η)

(
γ

ρ IqJα−1y(η)− Jα−1y(T )
)

− ϖ2(γ,η)

ϖ1(γ,η)ϖ1 (δ ,ζ )

(
δ

ρ IqJα−2y(ζ )− Jα−2y(T )
)
. (4.0.17)
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Now, substituting the values of (4.0.16) and (4.0.17) in (4.0.9) , we obtain:

c0 =
1

ϖ1 (β ,ε)
(β ρ IqJαy(ε)− Jαy(T ))

− ϖ2 (β ,ε)

ϖ1 (β ,ε)ϖ1(γ,η)

(
γ

ρ IqJα−1y(η)− Jα−1y(T )
)

− ϖ3 (β ,ε)

2ϖ1 (β ,ε)ϖ1 (δ ,ζ )

(
δ

ρ IqJα−2y(ζ )− Jα−2y(T )
)

+
ϖ2 (β ,ε)ϖ2(γ,η)

ϖ1 (β ,ε)ϖ1(γ,η)ϖ1 (δ ,ζ )

(
δ

ρ IqJα−2y(ζ )− Jα−2y(T )
)
. (4.0.18)

Finally, substituting the values of (4.0.18), (4.0.17) and (4.0.16) in the equation (4.0.7) ,

the general solution (4.0.3) of the problem (4.0.2) is obtained. It seems that converse

is also true, when the direct computation is applied.

4.1 Main Results

In this section, several fixed point theorems are used to give sufficient conditions for

existence (uniqueness) of solutions of (4.0.1) such as Banach contraction principle, the

Krasnoselskii fixed point theorem, and the Leray Schauder nonlinear alternative.

An operator H : C→C is defined on the problem (4.0.1) as

(Hx)(t) = Jα f (s,x(s))(t)+
1

ϖ1 (β ,ε)
(β ρ IqJα f (s,x(s))(ε)

−Jα f (s,x(s))(T ))− 1
ϖ1(γ,η)

(
ϖ2 (β ,ε)

ϖ1 (β ,ε)
− t
)

×
(
γ

ρ IqJα−1 f (s,x(s))(η)− Jα−1 f (s,x(s))(T )
)

+
1

ϖ1 (δ ,ζ )

(
ϖ3 (β ,ε)

2ϖ1 (β ,ε)
− ϖ2 (β ,ε)ϖ2(γ,η)

ϖ1 (β ,ε)ϖ1(γ,η)

+
ϖ2(γ,η)t
ϖ1(γ,η)

− t2

2

)(
Jα−2 f (s,x(s))(T )

−δ
ρ IqJα−2 f (s,x(s))(ζ )

)
. (4.1.1)
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Also, the notations are defined as follows:

Φ =
T α

Γ(α +1)
+

1
|ϖ1 (β ,ε)|Γ(α +1)

×

(
|β |

Γ(α+ρ

ρ
)

Γ(α+ρq+ρ

ρ
)

εα+ρq

ρq +T α

)

+
1

|ϖ1(γ,η)|Γ(α)

(
|ϖ2 (β ,ε)|
|ϖ1 (β ,ε)|

+T
)

×

(
|γ|

Γ(α−1+ρ

ρ
)

Γ(α−1+ρq+ρ

ρ
)

ηα−1+ρq

ρq +T
α−1

)

+
1

|ϖ1 (δ ,ζ )|Γ(α−1)

(
|ϖ3 (β ,ε)|

2 |ϖ1 (β ,ε)|

+
|ϖ2 (β ,ε)| |ϖ2(γ,η)|
|ϖ1 (β ,ε)| |ϖ1(γ,η)|

+
|ϖ2(γ,η)|T
|ϖ1(γ,η)|

+
T 2

2

)
×

(
|δ |

Γ(α−2+ρ

ρ
)

Γ(α−2+ρq+ρ

ρ
)

ζ α−2+ρq

ρq +T α−2

)
(4.1.2)

and

Φ1 =
|β |

|ϖ1 (β ,ε)|Γ(α +1)

Γ(α+ρ

ρ
)

Γ(α+ρq+ρ

ρ
)

εα+ρq

ρq

+
|γ|

|ϖ1(γ,η |)Γ(α)

(
|ϖ2 (β ,ε)|
|ϖ1 (β ,ε)|

+T
)

Γ(α−1+ρ

ρ
)

Γ(α−1+ρq+ρ

ρ
)

ηα−1+ρq

ρq

+
|δ |

|ϖ1 (δ ,ζ )|Γ(α−1)

(
|ϖ3 (β ,ε)|

2 |ϖ1 (β ,ε)|
+
|ϖ2 (β ,ε)| |ϖ2(γ,η)|
|ϖ1 (β ,ε)| |ϖ1(γ,η)|

+
|ϖ2(γ,η)|T
|ϖ1(γ,η)|

+
T 2

2

)
Γ(α−2+ρ

ρ
)

Γ(α−2+ρq+ρ

ρ
)

ζ α−2+ρq

ρq . (4.1.3)

The following subsections are involved with existence and uniqueness results of the

boundary value problem (4.0.1) by using Banach fixed point theorem, Leray Schauder

nonlinear alternative, and Krasnoselskii’s fixed point theorem.

4.1.1 Existence and Uniqueness Result:

Theorem 4.1.1 ([41]) Given a continuous function f:[0,T ]×R→ R. Assume that

(S1) | f (t,x)− f (t,y)| ≤ L‖x− y‖ , for all t ∈ [0,T ] , L > 0, x,y ∈ R ;
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(S2) LΦ < 1 where Φ is defined by (4.1.2) . Then there exists a unique solution for

boundary value problem (4.0.1) on the interval [0,T ].

Proof. By using the operator H, which is defined by (4.1.1), we obtain:

|(Hx)(t)− (Hy)(t)| ≤ Jα | f (s,x(s))− f (s,y(s))|(T )

+
|β |

|ϖ1 (β ,ε)|
ρ IqJα | f (s,x(s))− f (s,y(s))|(ε)

+
1

|ϖ1 (β ,ε)|
Jα | f (s,x(s))− f (s,y(s))|(T )

+
|γ|

|ϖ1(γ,η)|

(
|ϖ2 (β ,ε)|
|ϖ1 (β ,ε)|

+T
)

× ρ IqJα−1 | f (s,x(s))− f (s,y(s))|(η)

+
1

|ϖ1(γ,η)|

(
|ϖ2 (β ,ε)|
|ϖ1 (β ,ε)|

+T
)

× Jα−1 | f (s,x(s))− f (s,y(s))|(T )

+
1

|ϖ1 (δ ,ζ )|

(
|ϖ3 (β ,ε)|

2 |ϖ1 (β ,ε)|
+
|ϖ2 (β ,ε)| |ϖ2(γ,η)|
|ϖ1 (β ,ε)| |ϖ1(γ,η)|

+
|ϖ2(γ,η)|T
|ϖ1(γ,η)|

+
T 2

2

)
× Jα−2 | f (s,x(s))− f (s,y(s))|(T )

+
|δ |

|ϖ1 (δ ,ζ )|

(
|ϖ3 (β ,ε)|

2 |ϖ1 (β ,ε)|
+
|ϖ2 (β ,ε)| |ϖ2(γ,η)|
|ϖ1 (β ,ε)| |ϖ1(γ,η)|

+
|ϖ2(γ,η)|T
|ϖ1(γ,η)|

+
T 2

2

)
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× ρ IqJα−2 | f (s,x(s))− f (s,y(s))|(ζ )

≤ L‖x− y‖
{

Jα(1)(T )+
1

|ϖ1 (β ,ε)|
(|β | ρ IqJα(1)(ε)

+Jα(1)(T ))

+
1

|ϖ1(γ,η)|

(
|ϖ2 (β ,ε)|
|ϖ1 (β ,ε)|

+T
)(
|γ| ρ IqJα−1(1)(η)

+Jα−1(1)(T )
)

+
1

|ϖ1 (δ ,ζ )|

(
|ϖ3 (β ,ε)|

2 |ϖ1 (β ,ε)|
+
|ϖ2 (β ,ε)| |ϖ2(γ,η)|
|ϖ1 (β ,ε)| |ϖ1(γ,η)|

+
|ϖ2(γ,η)|T
|ϖ1(γ,η)|

+
T 2

2

)(
|δ | ρ IqJα−2(1)(ζ )

+Jα−2(1)(T )
)}

≤ L
{

T α

Γ(α +1)
+

1
|ϖ1 (β ,ε)|Γ(α +1)

×

(
|β |

Γ(α+ρ

ρ
)

Γ(α+ρq+ρ

ρ
)

εα+ρq

ρq +T α

)

+
1

|ϖ1(γ,η)|Γ(α)

(
|ϖ2 (β ,ε)|
|ϖ1 (β ,ε)|

+T
)

×

(
|γ|

Γ(α−1+ρ

ρ
)

Γ(α−1+ρq+ρ

ρ
)

ηα−1+ρq

ρq +T
α−1

)

+
1

|ϖ1 (δ ,ζ )|Γ(α−1)

(
|ϖ3 (β ,ε)|

2 |ϖ1 (β ,ε)|

+
|ϖ2 (β ,ε)| |ϖ2(γ,η)|
|ϖ1 (β ,ε)| |ϖ1(γ,η)|

+
|ϖ2(γ,η)|T
|ϖ1(γ,η)|

+
T 2

2

)
×

(
|δ |

Γ(α−2+ρ

ρ
)

Γ(α−2+ρq+ρ

ρ
)

ζ α−2+ρq

ρq +T α−2

)}
‖x− y‖

= LΦ‖x− y‖ ,

for any x,y ∈C and for each t ∈ [0,T ]. This shows that ‖Hx−Hy‖ ≤ LΦ‖x− y‖ . As

LΦ < 1, the operator H : C→C is a contraction mapping. That means, the boundary

value problem (4.0.1) has a unique solution on [0,T ] .

34



4.1.2 Existence Results:

Theorem 4.1.2 ([41]) Let f : [0,T ]×R→ R be a continuous function. Assume that

(S3) there exists a nonnegative function Ω ∈ C([0,T ] ,R) and a nondecreasing func-

tion Ψ : [0,∞)→ (0,∞) such that

| f (t,u)| ≤Ω(t)Ψ(|u|) for any (t,u) ∈ [0,T ]×R.

(S4) there exist a constant M > 0 such that

M
Ψ(M)‖Ω‖Φ

> 1,

where Φ in (4.1.2).

Then problem (4.0.1) has at least one solution on [0,T ] .

Proof. Let Bd = {x ∈C : ‖x‖ ≤ d} be a closed bounded subset in C([0,T ] ,R). Notice

that the problem (4.0.1) is equivalent to the problem of finding fixed point of H.

As a first step , we show that the operator H which is defined by (4.1.1) maps bounded

sets into bounded sets in C([0,T ] ,R). Then for t ∈ [0,T ] we have:

|H(x)(t)| ≤ Jα | f (s,x(s))|(T )

+
1

|ϖ1 (β ,ε)|
(|β | ρ IqJα | f (s,x(s))|(ε)

+Jα | f (s,x(s))|(T ))

+
1

|ϖ1(γ,η)|

(
|ϖ2 (β ,ε)|
|ϖ1 (β ,ε)|

+T
)
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×
(
|γ|Jα−1 | f (s,x(s))|(η)+ Jα−1 | f (s,x(s))|(T )

)
+

1
|ϖ1 (δ ,ζ )|

(
|ϖ3 (β ,ε)|

2 |ϖ1 (β ,ε)|
+
|ϖ2 (β ,ε)| |ϖ2(γ,η)|
|ϖ1 (β ,ε)| |ϖ1(γ,η)|

+
|ϖ2(γ,η)|T
|ϖ1(γ,η)|

+
T 2

2

)
×
(
Jα−2 | f (s,x(s))|(T )+ |δ | ρ IqJα−2 | f (s,x(s))|(ζ )

)
≤Ψ(‖x‖)Jα

Ω(s)(T )

+
Ψ(‖x‖)
|ϖ1 (β ,ε)|

(|β | ρ IqJα
Ω(s)(ε)

+Jα
Ω(s)(T ))

+
Ψ(‖x‖)
|ϖ1(γ,η)|

(
|ϖ2 (β ,ε)|
|ϖ1 (β ,ε)|

+T
)

×
(
|γ|ρ IqJα−1

Ω(s)(η)+ Jα−1
Ω(s)(T )

)
+

Ψ(‖x‖)
|ϖ1 (δ ,ζ )|

(
|ϖ3 (β ,ε)|

2 |ϖ1 (β ,ε)|
+
|ϖ2 (β ,ε)| |ϖ2(γ,η)|
|ϖ1 (β ,ε)| |ϖ1(γ,η)|

+
|ϖ2(γ,η)|T
|ϖ1(γ,η)|

+
T 2

2

)
×
(
Jα−2

Ω(s)(T )+ |δ | ρ IqJα−2
Ω(s)(ζ )

)
≤ ‖Ω‖Ψ(d)

{
T α

Γ(α +1)
+

1
|ϖ1 (β ,ε)|Γ(α +1)

×

(
|β |

Γ(α+ρ

ρ
)

Γ(α+ρq+ρ

ρ
)

εα+ρq

ρq +T α

)

+
1

|ϖ1(γ,η)|Γ(α)

(
|ϖ2 (β ,ε)|
|ϖ1 (β ,ε)|

+T
)

×

(
|γ|

Γ(α−1+ρ

ρ
)

Γ(α−1+ρq+ρ

ρ
)

ηα−1+ρq

ρq +T
α−1

)

+
1

|ϖ1 (δ ,ζ )|Γ(α−1)

(
|ϖ3 (β ,ε)|

2 |ϖ1 (β ,ε)|

+
|ϖ2 (β ,ε)| |ϖ2(γ,η)|
|ϖ1 (β ,ε)| |ϖ1(γ,η)|

+
|ϖ2(γ,η)|T
|ϖ1(γ,η)|

+
T 2

2

)
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×

(
|δ |

Γ(α−2+ρ

ρ
)

Γ(α−2+ρq+ρ

ρ
)

ζ α−2+ρq

ρq +T α−2

)}

= ‖Ω‖Ψ(d)Φ

which leads to ‖H(x)‖≤‖Ω‖Ψ(d)Φ. By (S4) there exist d > 0 such that Ψ(d)‖Ω‖Φ<

d.

Next, we show that the map H : C ([0,T ] ,R)→C ([0,T ] ,R) is completely continuous.

Therefore, to prove that the map H is completely continuous, we show that H is a map

from bounded sets into equicontinuous sets of C ([0,T ] ,R) . Let choose t1,t2 from the

interval [0,T ] and also t1 < t2. Then we have:

|(Hx)(t2)− (Hx)(t1)|

≤ |Jα f (s,x(s))(t2)− Jα f (s,x(s))(t1)|

+
|t2− t1|
|ϖ1(γ,η)|

(
|γ|q Jα−1 | f (s,x(s)|(η)+ Jα−1 | f (s,x(s))|(T )

)
+

1
|ϖ1 (δ ,ζ )|

(
|ϖ2(γ,η)|
|ϖ1(γ,η)|

|t2− t1|+
∣∣t2

2 − t2
1

∣∣
2

)

×
(
Jα−2 | f (s,x(s))|(T )+ |δ | ρ IqJα−2 | f (s,x(s))|(ζ )

)
≤ Ψ(‖x‖)Ω(s)

Γ(α)

 t1∫
0

[
(t2− s)α−1− (t1− s)α−1]ds+

t2∫
t1

(t2− s)α−1ds


+ |t2− t1|

Ψ(‖x‖)
|ϖ1(γ,η)|

(
|γ|Jα−1

Ω(s)(η)+ Jα−1
Ω(s)(T )

+

(
|ϖ2(γ,η)|
|ϖ1 (δ ,ζ )|

+
|t2 + t1|

2
|ϖ1(γ,η)|
|ϖ1 (δ ,ζ )|

)(
Jα−2

Ω(s)(T )+ |δ | ρ IqJα−2
Ω(s)(ζ )

))

≤ Ψ(d)‖Ω‖
Γ(α)

 t1∫
0

[
(t2− s)α−1− (t1− s)α−1]ds+

t2∫
t1

(t2− s)α−1ds


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+ |t2− t1|
Ψ(d)‖Ω‖
|ϖ1(γ,η)|

{
1

Γ(α)

(
T

α−1
+ |γ|

Γ(α−1+ρ

ρ
)

Γ(α−1+ρq+ρ

ρ
)

ηα−1+ρq

ρq

)

+
1

Γ(α−1)

(
|ϖ2(γ,η)|
|ϖ1 (δ ,ζ )|

+
|t2 + t1|

2
|ϖ1(γ,η)|
|ϖ1 (δ ,ζ )|

)(
T α−2 + |δ |

Γ(α−2+ρ

ρ
)

Γ(α−2+ρq+ρ

ρ
)

ζ α−2+ρq

ρq

)}
.

It is clear that the right hand side of the previous inequality is independent from x.

Therefore, as t2− t1→ 0, right hand side of the inequality tends to zero . That means,

H is equicontinuous and by the Arzelà-Ascoli Theorem (2.0.12), the operator H :

C([0,T ] ,R)→C([0,T ] ,R) is completely continuous.

In view of (S4), there exist a positive M such that ‖x‖ 6= M. Let us set

U = {x ∈C ([0,T ] ,R) : ‖x‖< M} .

Then the operator H : U → C ([0,T ] ,R) is continuous and completely continuous.

From the choice of U, there is no x ∈ ∂U such that x = µHx for some µ ∈ (0,1) . It

can be proved by using contraction. Assume that there exist x ∈ ∂U such that x = µHx

for some µ ∈ (0,1) . Then,

‖x‖= ‖µHx‖ ≤ ‖Hx‖ ≤Ψ(‖x‖)‖Ω‖Φ

‖x‖
Ψ(‖x‖)‖Ω‖Φ

≤ 1

This is contradict with

‖x‖
Ψ(‖x‖)‖Ω‖Φ

> 1.

Consequently, by the nonlinear alternative of Leray-Schauder type, we conclude that

H has a fixed point x ∈U , which is a solution of the problem (4.0.1) . This completes

the proof.
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Theorem 4.1.3 Let f : [0,T ]×R→ R be a continuous function and condition (S1)

holds. In addition, the function f satisfies the assumptions:

(S5) there exist a nonnegative function Ω ∈C ([0,T ] ,R) such that

| f (t,u)| ≤Ω(t)

for any (t,u) ∈ [0,T ]×R.

(S6) LΦ1 < 1, where Φ1 is defined by (4.1.3) .

Then the boundary value problem (4.0.1) has at least one solution on [0,T ].

Proof. We first define the new operators H1 and H2 as

(H1x)(t) = Jα f (s,x(s))(t)− 1
ϖ1 (β ,ε)

Jα f (s,x(s))(T )

+
1

ϖ1(γ,η)

(
ϖ2 (β ,ε)

ϖ1 (β ,ε)
− t
)

Jα−1 f (s,x(s))(T )

+
1

ϖ1 (δ ,ζ )

(
ϖ3 (β ,ε)

2ϖ1 (β ,ε)
− ϖ2 (β ,ε)ϖ2(γ,η)

ϖ1 (β ,ε)ϖ1(γ,η)

+
ϖ2(γ,η)t
ϖ1(γ,η)

− t2

2

)
Jα−2 f (s,x(s))(T ) (4.1.4)

and

(H2x)(t) =
β

ϖ1 (β ,ε)
ρ IqJα f (s,x(s))(ε)

− γ

ϖ1(γ,η)

(
ϖ2 (β ,ε)

ϖ1 (β ,ε)
− t
)

ρ IqJα−1 f (s,x(s))(η)

− δ

ϖ1 (δ ,ζ )

(
ϖ3 (β ,ε)

2ϖ1 (β ,ε)
− ϖ2 (β ,ε)ϖ2(γ,η)

ϖ1 (β ,ε)ϖ1(γ,η)

+
ϖ2(γ,η)t
ϖ1(γ,η)

− t2

2

)
ρ IqJα−2 f (s,x(s))(ζ ). (4.1.5)

Then, we consider a closed, bounded, convex and nonempty subset of Banach space X

as

Bd = {x ∈C : ‖x‖< d} with ‖Ω‖Φ≤ d,
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where Φ is defined by (4.1.2) . Now, we show that H1x+H2y ∈ Bd for any x,y ∈ Bd ,

where H1 and H2 are denoted by (4.1.4), (4.1.5) respectively.

‖H1x+H2y‖ ≤ Jα | f (s,x(s))|(T )

+
1

|ϖ1 (β ,ε)|
(Jα | f (s,x(s))|(T )+ |β | ρ IqJα | f (s,x(s))|(ε))

+
1

|ϖ1(γ,η)|

(
|ϖ2 (β ,ε)|
|ϖ1 (β ,ε)|

+T
)

×
(
Jα−1 | f (s,x(s))|(T )+ |γ| ρ IqJα−1 f (s,x(s))(η)

)
+

1
|ϖ1 (δ ,ζ )|

(
|ϖ3 (β ,ε)|

2 |ϖ1 (β ,ε)|
+
|ϖ2 (β ,ε)| |ϖ2(γ,η)|
|ϖ1 (β ,ε)| |ϖ1(γ,η)|

+
|ϖ2(γ,η)|T
|ϖ1(γ,η)|

+
T 2

2

)
×
(
Jα−2 | f (s,x(s))|(T )+ |δ | ρ IqJα−2 | f (s,x(s))|(ζ )

)
≤ Jα

Ω(s)(T )

+
1

|ϖ1 (β ,ε)|
(Jα

Ω(s)(T )+ |β | ρ IqJα
Ω(s)(ε))

+
1

|ϖ1(γ,η)|

(
|ϖ2 (β ,ε)|
|ϖ1 (β ,ε)|

+T
)

×
(
Jα−1

Ω(s)(T )+ |γ| ρ IqJα−1
Ω(s)(η)

)
+

1
|ϖ1 (δ ,ζ )|

(
|ϖ3 (β ,ε)|

2 |ϖ1 (β ,ε)|
+
|ϖ2 (β ,ε)| |ϖ2(γ,η)|
|ϖ1 (β ,ε)| |ϖ1(γ,η)|

+
|ϖ2(γ,η)|T
|ϖ1(γ,η)|

+
T 2

2

)
×
(
Jα−2

Ω(s)(T )+ |δ | ρ IqJα−2
Ω(s)(ζ )

)
≤ ‖Ω‖

{
T α

Γ(α +1)
+

1
|ϖ1 (β ,ε)|Γ(α +1)
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×

(
T α + |β |

Γ(α+ρ

ρ
)

Γ(α+ρq+ρ

ρ
)

εα+ρq

ρq +

)

+
1

|ϖ1(γ,η)|Γ(α)

(
|ϖ2 (β ,ε)|
|ϖ1 (β ,ε)|

+T
)

×

(
T

α−1
+ |γ|

Γ(α−1+ρ

ρ
)

Γ(α−1+ρq+ρ

ρ
)

ηα−1+ρq

ρq

)

+
1

|ϖ1 (δ ,ζ )|Γ(α−1)

(
|ϖ3 (β ,ε)|

2 |ϖ1 (β ,ε)|

+
|ϖ2 (β ,ε)| |ϖ2(γ,η)|
|ϖ1 (β ,ε)| |ϖ1(γ,η)|

+
|ϖ2(γ,η)|T
|ϖ1(γ,η)|

+
T 2

2

)
×

(
T α−2 + |δ |

Γ(α−2+ρ

ρ
)

Γ(α−2+ρq+ρ

ρ
)

ζ α−2+ρq

ρq

)}

= ‖Ω‖Φ≤ d.

Therefore, it is clear that ‖H1x+H2y‖ ≤ d. Hence, H1x+H2y ∈ Bd.

The next step is related to the compactness and continuity of the operator H1. The

proof is similar to that of Theorem 4.1.2.

Finally, we show that the operator H2 is contraction. By using assumption (S1),

‖H2x−H2y‖ ≤ |β |
|ϖ1 (β ,ε)|

ρ IqJα | f (s,x(s))− f (s,y(s))|(ε)

+
|γ|

|ϖ1(γ,η |)

(
|ϖ2 (β ,ε)|
|ϖ1 (β ,ε)|

+T
)

× ρ IqJα−1 | f (s,x(s))− f (s,y(s))|(η)

+
|δ |

|ϖ1 (δ ,ζ )|

(
|ϖ3 (β ,ε)|

2 |ϖ1 (β ,ε)|
+
|ϖ2 (β ,ε)| |ϖ2(γ,η)|
|ϖ1 (β ,ε)| |ϖ1(γ,η)|

+
|ϖ2(γ,η)|T
|ϖ1(γ,η)|

+
T 2

2

)
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× ρ IqJα−2 | f (s,x(s))− f (s,y(s))|(ζ )

≤ L‖x− y‖
{

|β |
|ϖ1 (β ,ε)|

ρ IqJα(1)(ε)

+
|γ|

|ϖ1(γ,η |)

(
|ϖ2 (β ,ε)|
|ϖ1 (β ,ε)|

+T
)

ρ IqJα−1(1)(η)

+
|δ |

|ϖ1 (δ ,ζ )|

(
|ϖ3 (β ,ε)|

2 |ϖ1 (β ,ε)|
+
|ϖ2 (β ,ε)| |ϖ2(γ,η)|
|ϖ1 (β ,ε)| |ϖ1(γ,η)|

+
|ϖ2(γ,η)|T
|ϖ1(γ,η)|

+
T 2

2

)
ρ IqJα−2(1)(ζ )

}
≤ L

{
|β |

|ϖ1 (β ,ε)|Γ(α +1)

Γ(α+ρ

ρ
)

Γ(α+ρq+ρ

ρ
)

εα+ρq

ρq

+
|γ|

|ϖ1(γ,η |)Γ(α)

(
|ϖ2 (β ,ε)|
|ϖ1 (β ,ε)|

+T
)

×
Γ(α−1+ρ

ρ
)

Γ(α−1+ρq+ρ

ρ
)

ηα−1+ρq

ρq

+
|δ |

|ϖ1 (δ ,ζ )|Γ(α−1)

(
|ϖ3 (β ,ε)|

2 |ϖ1 (β ,ε)|
+
|ϖ2 (β ,ε)| |ϖ2(γ,η)|
|ϖ1 (β ,ε)| |ϖ1(γ,η)|

+
|ϖ2(γ,η)|T
|ϖ1(γ,η)|

+
T 2

2

)
×

Γ(α−2+ρ

ρ
)

Γ(α−2+ρq+ρ

ρ
)

ζ α−2+ρq

ρq

}
‖x− y‖

= LΦ1 ‖x− y‖ ,

which means ‖H2x−H2y‖ ≤ LΦ1 ‖x− y‖ . As LΦ1 < 1, the operator H2 is contraction.

For this reason, the problem (4.0.1) has at least one solution on [0,T ] .

4.2 Examples

In this section, some examples are illustrated to show our results.

Example 1. Consider the following fractional differential equation with Katugampola
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fractional integral conditions



cD5/2x(t) = sin2(πt)
(et+10)

(
|x(t)|
|x(t)|+1 +1

)
, t ∈

[
0, 1

2

]
,

x(1
2) =

1
2

5I
1
3 x(3/8),x′(1

2) =
1
2

5I
1
3 x(1/3),

x′′(1
2) =

1
2

5I
1
3 x(2/5).

(4.2.1)

Here , α = 5/2, T = 1
2 , β = 1/2, γ = 1/2, δ = 1/2, ε = 3/8, η = 1/3, ζ = 2/5, ρ = 5,

q = 1
3 , and

f (t,x) =
sin2(πt)
(et +10)

(
|x|
|x|+1

+1
)
.

Hence, we have | f (t,x)− f (t,y)| ≤ 1
10 ‖x− y‖. Then, the assumption (S1) is satis-

fied with L = 1
10 . By using Matlab program , ω1

(1
2 ,

3
8

)
= 0.9361, ω1

(1
2 ,

1
3

)
= 0.9475,

ω1
(1

2 ,
2
5

)
= 0.9289,ω2

(1
2 ,

3
8

)
= 0.4779, ω2

(1
2 ,

1
3

)
= 0.4838, ω3

(1
2 ,

3
8

)
= 0.4922. and

Φ = 1.2261 are found. Therefore, LΦ = 0.1226 < 1, which implies that the assump-

tion (S2) holds true. By using Theorem 4.1.1, the boundary value problem (4.2.1) has

a unique solution on
[
0, 1

2

]
.

Example 2. Consider the following fractional differential equation with Katugampola

fractional integral conditions



D5/2x(t) =
(

t2+1
10

)(
x2(t)
|x(t)|+1 +

√
|x(t)|

2(1+
√
|x(t)|)

+ 1
2

)
, t ∈

[
0, 1

2

]
,

x(1
2) =

1
2

5I
1
3 x(3/8),x′(1

2) =
1
2

5I
1
3 x(1/3),

x′′(1
2) =

1
2

5I
1
3 x(2/5).

(4.2.2)

where α = 5/2, T = 1
2 , β = 1/2, γ = 1/2, δ = 1/2, ε = 3/8, η = 1/3, ζ = 2/5, ρ = 5,

q = 1
3 . Moreover,
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| f (t,u)|=

∣∣∣∣∣
(

t2 +1
10

)(
u2

|u|+1
+

√
|u|

2(1+
√
|u|)

+
1
2

)∣∣∣∣∣≤
(
t2 +1

)
(|u|+1)

10
.

By using the assumption (S3) , it is easy to see that Ω(t) = t2+1
10 and Ψ(|u|) = |u|+1.

Moreover, ‖Ω‖= 1
8 and Φ = 1.2261 which was found in previous example. Now, we

need to show that there exist M > 0 such that

M
Ψ(M)‖Ω‖Φ

> 1,

and such M > 0 exists if

1−‖Ω‖Φ > 0.

By using direct computation ‖Ω‖Φ = 0.1533 < 1. That is mean, the assumption (S4)

is satisfied. Hence, by using Theorem 4.1.2, the boundary value problem (4.2.2) has

at least one solution on
[
0, 1

2

]
.

Example 3. Consider the following fractional differential equation with Katugampola

fractional integral conditions



cD5/2x(t) = 9sin2(πt)
(et+10)

(
|x(t)|
|x(t)|+1 +1

)
, t ∈

[
0, 1

2

]
,

x(1
2) =

1
2

5I
1
3 x(3/8),x′(1

2) =
1
2

5I
1
3 x(1/3),

x′′(1
2) =

1
2

5I
1
3 x(2/5).

(4.2.3)

Here , α = 5/2,T = 1
2 ,β = 1/2,γ = 1/2,δ = 1/2,ε = 3/8,η = 1/3,ζ = 2/5,ρ =

5,q = 1
3 , and

f (t,x) =
9sin2(πt)
(et +10)

(
|x|
|x|+1

+1
)
.
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Since | f (t,x)− f (t,y)| ≤ 9
10 |x− y| ,then, it implies that L = 9

10 means (S1) is satisfied

but (S2) which is LΦ < 1 is not satisfied. [LΦ = 1.10358 > 1] . Therefore, we consider

(S5) which is

| f (t,x)| ≤ 9
(et +10)

(
|x|
|x|+1

+1
)
≤ 18

(et +10)
= Ω(t).

By using (4.1.3), Φ1 = 0.0561 is found. It is obvious that LΦ1 = 0.05049 < 1. So,

(S6) is satisfied. Hence, by using Theorem 4.1.3, the boundary value problem (4.2.3)

has at least one solution on
[
0, 1

2

]
.
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Chapter 5

ON THE PARAMETRIZATION OF CAPUTO TYPE

FRACTIONAL DIFFERENTIAL EQUATION WITH

TWO POINT NONLINEAR BOUNDARY

CONDITIONS

We present a new approach of investigation and approximation of solutions of Caputo

type fractional differential equation under nonlinear boundary conditions. By using an

appropriate parametrization technique, the original problem with nonlinear boundary

conditions is reduced to the equivalent parametrized boundary value problem with lin-

ear restrictions. In order to study the transformed problem, we construct a numerical-

analytic scheme which is succesful in relation to different types two-point and mul-

tipoint linear boundary condition and nonlinear boundary conditions. Moreover, we

define sufficient conditions of the uniform convergence of the successive approxima-

tions. Also, it is indicated that these successive approximations uniformly converge

to a parametrized limit function and besides that the relationship of this limit function

and exact solution is stated. Finally, an example is presented to illustrate the mentioned

theory.
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5.1 Statement of Fractional Differential Equation with Nonlinear

Boundary Conditions and Identification of Parametrized Boundary

Value Problem

In this section, we state the Caputo type fractional differential equation equipped with

nonlinear boundary condition and we use vector of parameters to reduce the nonlinear

boundary conditions to the linear boundary condition.

Let us consider Caputo type fractional differential equation with nonlinear boundary

conditions

cDα x(t) = h(t,x(t)), t ∈ [0,T ] , (5.1.1)

Ax(0)+Bx(T )+g(x(0),x(T )) = d, d ∈ Rn, (5.1.2)

where cDα is the Caputo derivative of order α ∈ (0,1] , the functions h : [0,T ]×D→R,

and g : D×D→Rn are continuous and the set D⊂Rn is closed and bounded domain.

A and B are n×n matrices, det B 6= 0 and d is a n−dimensional vector.

By using appropriate parametrization technique [50], the given problem (5.1.1),(5.1.2)

is reduced to certain parametrized two-point boundary conditions. To see that, we

introduce the vectors of parameters

ω := x(0) = (ω1,ω2...ωn)
T ,

φ := x(T ) = (φ1,φ2, ...,φn)
T , (5.1.3)

d(ω,φ) := d−g(ω,φ). (5.1.4)
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By using (5.1.4) , the problem (5.1.1) ,(5.1.2) can be rewritten as follows:

cDα x(t) = h(t,x(t))

Ax(0)+Bx(T ) = d(ω,φ). (5.1.5)

5.2 Conditions for Convergence of Successive Approximation

To study the successive approximations, some conditions are needed. In this study,

parametrized boundary value problem (5.1.5) is studied under the following condi-

tions:

A) The function h : [0,T ]×Rn→ Rn satisfies the Lipschitz condition:

‖h(t,u)−h(t,v)‖ ≤ L‖u− v‖ , (5.2.1)

for all t ∈ [0,T ] , u,v ∈ D, where L is a positive constant.

B) Let

κ(t) =
2tα

Γ(α +1)

(
1− t

T

)α

.

Then , κ(t) takes its maximum value at t = T
2 and

‖κ‖
∞
=

T α

22α−1Γ(α +1)
.

Define,

‖h‖
∞
= max

(t,x)∈[0,T ]×D

√
h2

1 +h2
2,

and a vector function δ : D×D→ Rn is

δ (ω,φ) := ‖κ‖
∞
‖h‖

∞
+
∥∥[B−1d(ω,φ)−

(
B−1A+ In

)
ω
]∥∥ ,

where In is the n× n identity matrix and ω,φ ∈ D of the form (5.1.3). δ is the

radius of a neighbourhood C of the point ω ∈ D is defined as follows:
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B(ω,δ (ω,φ)) := {x ∈ Rn : ‖x−ω‖ ≤ δ (ω,φ) for all φ ∈ D⊂ Rn} .

the set

Dδ := {ω ∈ D : B(ω,δ (ω,φ))⊂ D for all φ ∈ D}

is nonempty.

C) Let

L‖κ‖
∞
< 1,

where L is a positive constant and satisfies the inequality (5.2.1) .

For studying the solution of the parametrized boundary value problem (5.1.5) , we

consider the sequence of functions {xm} which is defined by the iterative formula as

follows:

xm(t,ω,φ) = ω +
1

Γ(α)

 t∫
0

(t− s)α−1 h(s,xm−1 (s,ω,φ))ds

−
( t

T

)α
T∫

0

(T − s)α−1 h(s,xm−1 (s,ω,φ))ds


+
( t

T

)α [
B−1d(ω,φ)−

(
B−1A+ In

)
ω
]
, (5.2.2)

for t ∈ [0,T ], m = 1,2,3... where

x0(t,ω,φ) = (x01,x02, ..,x0n)
T = ω ∈ Dδ ,

xm(t,ω,φ) = (xm,1 (t,z,φ) ,xm,2 (t,z,φ) ...,xm,n (t,z,φ))
T ,

and ω,φ are considered as parameters.In addition, it is easy to see that the sequence

of functions {xm} are satisfied linear parametrized boundary conditions (5.1.5) for all

m≥ 1, ω ∈ Dδ , φ ∈ D.
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Now, we prove that the sequence of the functions (5.2.2) is uniformly convergent and

show the relationship between this sequence of the functions and the limit function.

Theorem 5.2.1 Assume that the parametrized boundary value problem (5.1.5) satisfy

the conditions (A) ,(B) and (C) . Then, for all fixed φ ∈ D and ω ∈ Dδ , the following

assertions are true:

1. All functions of sequence (5.2.2) are continuous and satisfy the parametrized bound-

ary conditions (5.1.5)

Axm(0,ω,φ)+Bxm(T,ω,φ) = d(ω,φ), m = 1,2,3... (5.2.3)

2. The sequence of functions (5.2.2) converges uniformly in t ∈ [0,T ] as m→∞ to the

limit function

x∗(t,ω,φ) = lim
m→∞

xm(t,ω,φ). (5.2.4)

3. The limit function x∗ satisfies the initial conditions

x∗(0,ω,φ) = ω

and

Ax∗(0,ω,φ)+Bx∗(T,ω,φ) = d(ω,φ)

4. The limit function (5.2.4) is the unique continuous solution of the integral equation

x(t) := ω +
1

Γ(α)

 t∫
0

(t− s)α−1 h(s,x(s))ds

−
( t

T

)α
T∫

0

(T − s)α−1 h(s,x(s))ds


+
( t

T

)α [
B−1d(ω,φ)−

(
B−1A+ In

)
ω
]
, (5.2.5)
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or x(t) is the unique solution on [0,T ] of the Cauchy problem:

cDα x(t) = h(t,x(t))+ α
Ω(ω,φ) , x(0) = ω (5.2.6)

where

α
Ω(ω,φ) =− α

T α

 T∫
0

(T − s)α−1 h(s,x∗(t,ω,φ))ds

−Γ(α)
[
B−1d(ω,φ)−

(
B−1A+ In

)
ω
]]
. (5.2.7)

5. Error estimation:

‖x∗(t,ω,φ)− xm(t,ω,φ)‖ ≤ (L‖κ‖
∞
)m (‖h‖

∞
‖κ‖

∞

+
∥∥[B−1d(ω,φ)−

(
B−1A+ In

)
ω
]∥∥) 1

1−L‖κ‖
∞

.

(5.2.8)

Proof.

1. Continuity of the sequence {xm} defined by (5.2.2) follows directly from the con-

struction of sequence and by direct computation, it is easy to show that the se-

quence {xm} satisfies the parametrized boundary conditions (5.1.5) .

2. We prove that the sequence of functions is a Cauchy sequence in the Banach space

C ([a,b] ,Rn) . Therefore, we first need to show that xm(t,ω,φ)∈D for all (t,ω,φ)∈

[0,T ]×Dδ ×D, m ∈ N. We start from the equation (5.2.2) . When m = 1, the

equation (5.2.2) is obtained:
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x1(t,ω,φ) = ω +
1

Γ(α)

 t∫
0

(t− s)α−1 h(s,x0 (s,ω,φ))ds

−
( t

T

)α
T∫

0

(T − s)α−1 h(s,x0 (s,ω,φ))ds


+
( t

T

)α [
B−1d(ω,φ)−

(
B−1A+ In

)
ω
]

(5.2.9)

The equation (5.2.9) can be written as follows:

‖x1(t,ω,φ)−ω‖ ≤ 1
Γ(α)

 t∫
0

∣∣∣∣(t− s)α−1−
( t

T

)α

(T − s)α−1
∣∣∣∣‖h(s,ω)‖ds

+

T∫
t

∣∣∣∣( t
T

)α

(T − s)α−1
∣∣∣∣‖h(s,ω)‖ds


+

∣∣∣∣( t
T

)α [
B−1d(ω,φ)−

(
B−1A+ In

)
ω
]∣∣∣∣ := I1 + I2 + I3

(5.2.10)

We start from the estimation of I1 :

I1 ≤
1

Γ(α)

t∫
0

∣∣∣∣(t− s)α−1−
( t

T

)α

(T − s)α−1
∣∣∣∣‖h‖∞

ds

=
( t

T

)α (T − t)α

Γ(α +1)
‖h‖

∞
, (5.2.11)

where the expression under the absolute value is nonnegative

1

(t− s)1−α
≥
( t

T

)α 1

(t− s)1−α
≥
( t

T

)α 1

(T − s)1−α
.

Then, we estimate I2 and I3:

I2 ≤
1

Γ(α)

T∫
t

∣∣∣∣( t
T

)α

(T − s)α−1
∣∣∣∣‖h(s,ω)‖ds

=
( t

T

)α (T − t)α

Γ(α +1)
‖h‖

∞
(5.2.12)
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and

I3 =
( t

T

)α ∥∥B−1d(ω,φ)−
(
B−1A+ In

)
ω
∥∥ . (5.2.13)

Subsituting (5.2.11) ,(5.2.12) and (5.2.13) into the relation (5.2.10) and we ob-

tain the following result:

‖x1(t,ω,φ)−ω‖ ≤ 2tα

Γ(α +1)

(
1− t

T

)α

‖h‖
∞

+
( t

T

)α ∥∥[B−1d(ω,φ)−
(
B−1A+ In

)
ω
]∥∥

≤ T α

22α−1Γ(α +1)
‖h‖

∞
+
∥∥[B−1d(ω,φ)−

(
B−1A+ In

)
ω
]∥∥

= ‖κ‖
∞
‖h‖

∞
+
∥∥[B−1d(ω,φ)−

(
B−1A+ In

)
ω
]∥∥= δ (ω,φ) .

(5.2.14)

Thus,

x1(t,ω,φ) ∈ D for (t,ω,φ) ∈ [0,T ]×Dδ ×D.

By induction, it can be shown that all functions xm(t,ω,φ) defined by (5.2.2)

also belong to D for all m = 1,2,3, ... t ∈ [0,T ] , ω ∈ Dδ , φ ∈ D. To show that,

we start with the difference between xm+1 and xm:

xm+1(t,ω,φ)− xm(t,ω,φ) =
1

Γ(α)

 t∫
0

(t− s)α−1 [h(s,xm (s,ω,φ))

−h(s,xm−1 (s,ω,φ))]ds−
T∫

0

( t
T

)α

(T − s)α−1

× [h(s,xm (s,ω,φ))−h(s,xm−1 (s,ω,φ))]ds)

(5.2.15)

for m = 1,2, ...

Here, we denote the difference (5.2.15) by rm(t,ω,φ) as follows:

rm(t,ω,φ) := ‖xm(t,ω,φ)− xm−1(t,ω,φ)‖ , for all m = 1,2,3, ... (5.2.16)
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We rewrite the inequality (5.2.14), by using (5.2.16) for m= 1. Then, we obtain:

r1(t,ω,φ) = ‖x1(t,ω,φ)−ω‖

≤ ‖κ‖
∞
‖h‖

∞
+
∥∥[B−1d(ω,φ)−

(
B−1A+ In

)
ω
]∥∥ . (5.2.17)

Taking into account the Lipshitz condition (A) and the relation (5.2.17) for m= 2

into the equation (5.2.16), we get:

r2(t,ω,φ)≤ L
Γ(α)

 t∫
0

[
(t− s)α−1−

( t
T

)α

(T − s)α−1
]

+

T∫
t

( t
T

)α

(T − s)α−1

‖x1(s,ω,φ)−ω‖ds

=
L

Γ(α)

 t∫
0

[
(t− s)α−1−

( t
T

)α

(T − s)α−1
]

+

T∫
t

( t
T

)α

(T − s)α−1 ds

r1(s,ω,φ)

≤ 2Ltα

Γ(α +1)

(
1− t

T

)α [
‖κ‖

∞
‖h‖

∞
+
∥∥[B−1d(ω,φ)−

(
B−1A+ In

)
ω
]∥∥]

≤ L‖κ‖2
∞
‖h‖

∞
+L‖κ‖

∞

∥∥[B−1d(ω,φ)−
(
B−1A+ In

)
ω
]∥∥ .

Hence,

r2(t,ω,φ)≤ L‖κ‖
∞

[
‖κ‖

∞
‖h‖

∞
+
∥∥[B−1d(ω,φ)−

(
B−1A+ In

)
ω
]∥∥] .
(5.2.18)

Therefore, by using mathematical induction we obtain the following inequality:

rm+1(t,ω,φ)≤ (L‖κ‖
∞
)m [‖κ‖

∞
‖h‖

∞
+
∥∥[B−1d(ω,φ)−

(
B−1A+ In

)
ω
]∥∥]

m = 0,1,2.. (5.2.19)
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In view of (5.2.19) and by using triangular inequality we get:

∥∥xm+ j (t,ω,φ)− xm (t,ω,φ)
∥∥

≤
∥∥xm+ j (t,ω,φ)− xm+ j−1 (t,ω,φ)

∥∥+∥∥xm+ j−1 (t,ω,φ)− xm+ j−2 (t,ω,φ)
∥∥

+ ...+‖xm+1 (t,ω,φ)− xm (t,ω,φ)‖

= rm+ j (t,ω,φ)+ rm+ j−1 (t,ω,φ)+ ...+ rm+1 (t,ω,φ)

=
j

∑
i=1

rm+i (t,ω,φ)

≤ (L‖κ‖
∞
)m (‖h‖

∞
‖κ‖

∞
+
∥∥[B−1d(ω,φ)−

(
B−1A+ In

)
ω
]∥∥) ∞

∑
i=1

Li−1 ‖κ‖i−1
∞

.

(5.2.20)

From the assumption (C) , it follows:

lim
m→0

(|L|‖κ‖
∞
)m = 0.

Hence, by (5.2.20) , {xm} is Cauchy sequence and uniformly converges on [0,T ]×

Dδ ×D to a certain limit x∗.

3. Taking limit in (5.2.3) as m→ ∞,we see that x∗ satisfies the boundary conditions

directly.

4. By using contradiction, the uniqueness of solution is shown. Assume that there

are two limit functions such as x∗1(t,ω,φ) and x∗2(t,ω,φ). Then, the difference

between x∗1 and x∗2 is estimated as follows:

‖x∗1(t,ω,φ)− x∗2(t,ω,φ)‖ ≤ L
Γ(α)

 t∫
0

(t− s)α−1 ‖x∗1(s,ω,φ)− x∗2(s,ω,φ)‖ds

+

T∫
0

(T − s)α−1 ‖x∗1(s,ω,φ ,ψ)− x∗2(s,ω,φ)‖ds


≤ L‖κ‖

∞
‖x∗1− x∗2‖∞
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Thus,

‖x∗1− x∗2‖∞
≤ L‖κ‖

∞
‖x∗1− x∗2‖∞

It can be written as:

(1−L‖κ‖
∞
)‖x∗1− x∗2‖∞

≤ 0

So, ‖x∗1− x∗2‖= 0 =⇒ x∗1− x∗2 = 0 =⇒ x∗1 = x∗2.

5. Passing to j→ ∞ in (5.2.20) we get:

‖x∗1(t,ω,φ)− x∗2(t,ω,φ)‖

≤ (L‖κ‖
∞
)m (‖h‖

∞
‖κ‖

∞
+
∥∥[B−1d(ω,φ)−

(
B−1A+ In

)
ω
]∥∥) ∞

∑
i=1

Li−1 ‖κ‖i−1
∞

= (L‖κ‖
∞
)m (‖h‖

∞
‖κ‖

∞
+
∥∥[B−1d(ω,φ)−

(
B−1A+ In

)
ω
]∥∥) 1

1−L‖κ‖
∞

.

Remark 5.2.2 If A= In, B=−In, g(x(0),x(T ))= 0, d = 0, boundary condition (5.1.2)

becomes x(0) = x(T ). Note that, this problem was studied in [50].

5.3 Relationship between the Limit Function and the Solution of

the Nonlinear Boundary-Value Problem

We consider the following equation

cDα x(t) = h(t,x)+ψ, t ∈ [0,T ] (5.3.1)

and

x(0) = ω, (5.3.2)

where ψ = col (ψ1...ψn) is the parameter of control.

Theorem 5.3.1 Let ω ∈ Dδ , φ ∈ D be arbitrarily defined vectors. Suppose that all

conditions of Theorem 5.2.1 are satisfied. The solution x = (t,ω,φ ,ψ) of the initial-

value problem (5.3.1),(5.3.2) satisfies the boundary conditions (5.1.5) if and only
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if x = (t,ω,φ ,ψ) coincides with the limit function x∗ = x∗ (t,ω,φ ,ψ) of sequence

(5.2.2) . Moreover,

ψ = ψω,φ =− α

T α

 T∫
0

(T − s)α−1 h(s,x∗(t,ω,φ))ds

−Γ(α)
[
B−1d(ω,φ)−

(
B−1A+ In

)
ω
]]
. (5.3.3)

Proof. Sufficiency: The proof is similar to the proof of theorem in [31].

Necessity: We fix an arbitrary value
−
ψ ∈ Rn and assume that:

cDαx(t) = h(t,x)+ψ, t ∈ [0,T ] (5.3.4)

with initial condition x(0) =ω. The solution x= x(t) of the problem (5.3.4) satisfying

the two-point boundary conditions (5.1.5) as follows:

Ax(0)+Bx(T ) = d(ω,φ).

Besides that, x is a solution of the following integral equation:

x(t) = ω +
1

Γ(α)

t∫
0

(t− s)α−1 h(s,x(s))ds+
tαψ

Γ(α +1)
. (5.3.5)

When t = T in (5.3.5) , we get the following equation:

−
x(T ) = ω +

1
Γ(α)

T∫
0

(T − s)α−1 h
(

s,
−
x(s)

)
ds+

T αψ

Γ(α +1)
. (5.3.6)

Also,

x(0) = ω.

From the boundary conditions (5.1.5), we have:

x(T ) = B−1 [d(ω,φ)−Aω] . (5.3.7)
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By using (6.2.12) and (5.3.7) , we obtain:

ψ =− α

T α

 T∫
0

(T − s)α−1 h(s,x(s))ds

−Γ(α)
[
B−1d(ω,φ)−

(
B−1A+ In

)
ω
]]
. (5.3.8)

Then, substituting (5.3.8) into the (5.3.5), we have:

x(t) := ω +
1

Γ(α)

 t∫
0

(t− s)α−1 h(s,x(s))ds

−
( t

T

)α
T∫

0

(T − s)α−1 h(s,x(s))ds


+
( t

T

)α [
B−1d(ω,φ)−

(
B−1A+ In

)
ω
]
,

Moreover, the limit function x∗ is a solution of the (5.3.1), (5.3.2) for ψ = ψω,φ of the

form (5.3.3) and satisfies the boundary conditions (5.1.5) .

x∗(t,ω,φ ,ψ) = ω +
1

Γ(α)

t∫
0

(t− s)α−1 h(s,x∗(t,ω,φ ,ψ))ds+
tαψ

Γ(α +1)
. (5.3.9)

Similarly, we start with the solution x∗(T,ω,φ ,ψ) of the integral equation:

x∗(T,ω,φ ,ψ) = ω +
1

Γ(α)

T∫
0

(T − s)α−1 h(s,x∗(T,ω,φ ,ψ))ds+
T αψ

Γ(α +1)
.

(5.3.10)

Then, the limit function x∗ satisfies the following boundary conditions:

Ax∗(0,ω,φ ,ψ)+Bx∗(T,ω,φ ,ψ) = d(ω,φ) (5.3.11)

with the initial condition

x∗(0,ω,φ ,ψ) = ω.

From (5.3.11), we obtain:
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x∗(T,ω,φ ,ψ) = B−1 [d(ω,φ)−Aω] . (5.3.12)

By using relations (5.3.10) and (5.3.12) we get:

ψω,φ =− α

T α

 T∫
0

(T − s)α−1 h(s,x∗(s,ω,φ ,ψ))ds

−Γ(α)
[
B−1d(ω,φ)−

(
B−1A+ In

)
ω
]]
. (5.3.13)

After substituting relation (5.3.13) into (5.3.9) , we have:

x∗(t,ω,φ ,ψ) := ω +
1

Γ(α)

 t∫
0

(t− s)α−1 h(s,x∗(s,ω,φ ,ψ))ds

−
( t

T

)α
T∫

0

(T − s)α−1 h(s,x∗(s,ω,φ ,ψ))ds


+
( t

T

)α [
B−1d(ω,φ)−

(
B−1A+ In

)
ω
]
.

Taking the difference between
−
x and x∗ , we get:

x∗(t,ω,φ ,ψ)−−x(t) = 1
Γ(α)

 t∫
0

(t− s)α−1
[
h(s,x∗(s,ω,φ ,ψ))−h

(
s,
−
x(s)

)]
ds

−
( t

T

)α
T∫

0

(T − s)α−1
[
h(s,x∗ (s,ω,φ ,ψ))−h

(
s,
−
x(s)

)]
ds

 .
Thus, we have the following inequalities:

∥∥∥x∗(t,ω,φ ,ψ)−−x(t)
∥∥∥≤ L

Γ(α)

 t∫
0

(t− s)α−1
∥∥∥x∗(s,ω,φ ,ψ)−−x(s)

∥∥∥ds

+

T∫
0

(T − s)α−1
∥∥∥x∗(s,ω,φ ,ψ)−−x(s)

∥∥∥ds


≤ L‖κ‖

∞

∥∥∥x∗− −x
∥∥∥

∞

.

Thus,

59



∥∥∥x∗− −x
∥∥∥

∞

≤ L‖κ‖
∞

∥∥∥x∗− −x
∥∥∥

∞

.

It can be written:

(1−L‖κ‖
∞
)
∥∥∥x∗− −x

∥∥∥
∞

≤ 0

So, we have:

∥∥∥x∗− −x
∥∥∥

∞

= 0 =⇒ x∗− −x = 0 =⇒ x∗ =
−
x.

This means that the function
−
x coincides with x∗ . Also, by using (5.3.8) and (5.3.13),

we obtain ψω,φ = ψ . The theorem is proved.

Theorem 5.3.2 Assume that the conditons (A) ,(B) and (C) are satisfied for the Ca-

puto type fractional differential equation (5.1.1) with nonlinear boundary conditions

(5.1.2) . Then, (x∗ (·,ω∗,φ∗) ,φ∗) is a solution of the parametrized boundary-value

problem (5.1.1) ,(5.1.5) if and only if ω∗ = (ω∗1 ,ω
∗
2 , ....,ω

∗
n ) and φ∗ = (φ∗1 ,φ

∗
2 , ....,φ

∗
n )

satisfy the system of determining algebraic or transcendental equations

Ω(ω,φ) =− α

T α

 T∫
0

(T − s)α−1 h(s,x∗(s,ω,φ))ds

−Γ(α)
[
B−1d(ω,φ)−

(
B−1A+ In

)
ω
]]

= 0, (5.3.14)

x∗ (T,ω,φ) = φ . (5.3.15)

Proof. The result is obtained from the Theorem 5.3.1 and by observing that the differ-

ential equation (5.2.6) coincides with (5.1.1) if and only if the couple (ω∗,φ∗) satisfies

the equation

Ω(ω∗,φ∗) = 0.
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The following assertion indicates the determining system of equation (5.3.14) ,(5.3.15)

shows all possible solution of the Caputo type differential equation (5.1.1) with non-

linear boundary conditions (5.1.2).

Remark 5.3.3 Assume that all conditions of Theorem 5.2.1 are satisfied and there exist

vectors ω ∈Dδ and φ ∈D satisfying the system of determining equations (5.3.14) ,(5.3.15) .

Then, the Caputo type differential equation (5.1.1) with nonlinear boundary conditions

(5.1.2) have the solution x(·) such that

x(0) = ω,

x(T ) = φ .

Also, this solution has the following form

x(t) = x∗ (t,ω,φ) , t ∈ [0,T ] , (5.3.16)

where x∗ is the limit function of sequence (5.2.2) . Conversely, if the Caputo type differ-

ential equation (5.1.1) with nonlinear boundary conditions (5.1.2) has a solution x(·),

this solution necessarily has the form (5.3.16) and the system of determining equations

(5.3.14) ,(5.3.15) is satisfied for

ω = x(0),

φ = x(T ).
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Remark 5.3.4 For some m≥ 1, a function Ωm : D×D→Rn is defined by the formula

Ωm (ω,φ) :=− α

T α

 T∫
0

(T − s)α−1 h(s,xm(t,ω,φ))ds

−Γ(α)
[
B−1d(ω,φ)−

(
B−1A+ In

)
ω
]]
,

where ω and φ are given by (5.1.3) .To study the solvability of the parametrized

boundary-value problem (5.1.5) , we consider the approximate determining system of

algebraic equations of the form

Ωm (ω,φ) =− α

T α

 T∫
0

(T − s)α−1 h(s,xm(t,ω,φ))ds

−Γ(α)
[
B−1d(ω,φ)−

(
B−1A+ In

)
ω
]]

= 0, (5.3.17)

xm (T,ω,φ) = φ , (5.3.18)

where xm is the vector function specified by the recurrence relation (5.2.2) .

5.4 Example

Motivated by [50] , we consider a system of Caputo type fractional differential equation

cDαx1 = x2 = h1 (t,x1,x2)

cDαx2 =−
1
2

x2
2−

1
2

x1 +
t
8

x2 +
t1−α

4Γ(2−α)
+

2tα+1 +1
16Γ(2+α)

= h2 (t,x1,x2) (5.4.1)

with nonlinear boundary conditions

x1(0)+ x1

(
1
2

)
−
[

x2

(
1
2

)]2

=
2α+1 +1

2α 8 Γ(α +2)
− 1

64
,

x2(0)+ x1

(
1
2

)
− x2

(
1
2

)
=

2α +1
2α8 Γ(α +2)

− 1
8
. (5.4.2)
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The pair of functions

x∗1 =
2tα+1 +1
8Γ(α +2)

,

x∗2 =
t
4

are the exact solution of the Caputo type fractional differential equation (5.4.1) with

nonlinear boundary conditions (5.4.2) . Then, the nonlinear boundary conditions can

be shown by the form of matrix vectors as follows:

Ax(0)+Bx
(

1
2

)
+g
(

x(0),x
(

1
2

))
= d, (5.4.3)

where

A =

 1 0

0 1

 , B =

 1 0

1 −1

 ,

d =

( 2α+1+1
2α 8 Γ(α+2) −

1
64

2α+1
2α 8 Γ(α+2) −

1
8

)
,g
(

x(0),x
(

1
2

))
=

(
−[x2

(1
2

)
]2

0

)
.

Here, det(B) =−1 6= 0.

Then, new parameters are introduced as follows:

x(0) = ω :=
(

ω1

ω2

)
,

x
(

1
2

)
= φ :=

(
φ1

φ2

)
. (5.4.4)

By using the parameters in (5.4.4) , the nonlinear boundary condition (5.4.2) can be

written in the following form:

Ax(0)+Bx
(

1
2

)
= d−g(ω,φ).
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Thus,

d(ω,φ) = d−g(ω,φ) =

( 2α+1+1
2α 8 Γ(α+2) −

1
64 +φ 2

2
2α+1

2α 8 Γ(α+2) −
1
8

)
. (5.4.5)

By using (5.4.5), the nonlinear boundary conditions (5.4.2) are transformed to the

linear conditions as follows:

Ax(0)+Bx
(

1
2

)
= d(ω,φ). (5.4.6)

The stated conditions of convergence of successive approximations (A), (B) and (C)

are checked. First, we begin by defining domain D as follows:

D =

{
(x1,x2) : |x1| ≤ 1, |x2| ≤

3
4

}
. (5.4.7)

Then, the condition (A) which is related with Lipschitz condition is satisfied as follows:

L = max(0,1,1/2,7/8) .

Thus

L = 1.

Then,

‖κ‖
∞
= 0.2143,

and

‖h‖
∞
≤ 1.6207

are obtained for α = 0.9. The vector δ (ω,φ) is stated as follows:

δ (ω,φ) := ‖κ‖
∞
‖h‖

∞
+
∥∥[B−1d(ω,φ)−

(
B−1A+ In

)
ω
]∥∥

≤ 0.3473+
√

0.0565+2φ 4
2 −6φ 2

2 (−0.111833+ω1)−0.9866ω1 +5ω2
1

So, the conditions (B) and (C) are satisfied. Thus, it is verified that all needed con-

ditions are fulfilled. Hence, it can be proceeded with procedure of numerical-analytic
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scheme described above. Therefore, the sequence of approximate solutions are con-

structed. For the Caputo type boundary value problem (5.4.1) , (5.4.6) the successive

approximations (5.2.2) have the following form:

xm,1 (t,ω,φ) := ω1 +
1

Γ(α)

 t∫
0

(t− s)α−1 h1 (s,xm−1,1 (s,ω,φ) ,xm−1,1 (s,ω,φ))ds

−
( t

T

)α
T∫

0

(T − s)α−1 h1 (s,xm−1,1 (s,ω,φ) ,xm−1,1 (s,ω,φ))ds


+
( t

T

)α
[

2α+1 +1
2α 8 Γ(α +2)

− 1
64

+φ
2
2 −2ω1

]
,

xm,2 (t,ω,φ) := ω2 +
1

Γ(α)

 t∫
0

(t− s)α−1 h2 (s,xm−1,1 (s,ω,φ) ,xm−1,1 (s,ω,φ))ds

−
( t

T

)α
T∫

0

(T − s)α−1 h2 (s,xm−1,1 (s,ω,φ) ,xm−1,1 (s,ω,φ))ds


+
( t

T

)α
[

1
8Γ(α +2)

+
7
64

+φ
2
2 −ω1

]
, where α = 0.9.

After that, by using Mathematica, we get following results:

Iteration 1: We start from the approximate system of algebraic equations (5.3.17) and

(5.3.18) for m = 1. Then, the approximate system has the following solutions:

ω1 = ω11 = 0.0656973365195, (5.4.8)

ω2 = ω12 =−0.00219529679272, (5.4.9)

φ1 = φ11 = 0.179133148137, (5.4.10)

φ2 = φ12 = 0.239437851344. (5.4.11)

After substituting (5.4.8), (5.4.9), (5.4.10),(5.4.11) into the equations of x1,1 and x1,2,

we obtain x1,1 (t) and x1,2 (t) . Figure 5.1 shows the graphic of x1,1 (t) and x1 (t). On

the other hand, Figure 5.2 indicates the graphic of x1,2 (t) and x2 (t) .
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Figure 5.1: The first component of the exact solution and its first approximation

Figure 5.2: The second component of the exact solution and its first approximation

Also, for the first iteration, the maximum deviations of the exact solution are given as

follows:

max
t∈[0,1]

∣∣x∗1(t)− x1,1(t)
∣∣≤ 0.02893,

max
t∈[0,1]

∣∣x∗2(t)− x1,2(t)
∣∣≤ 0.01547.

Similarly, we use equations (5.3.17) and (5.3.18) to find the unknown parameters for

each iteration. Moreover, for each iteration the solutions of approximate systems are

relatively same with the solutions (5.4.8), (5.4.9), (5.4.10), (5.4.11) .
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Therefore, for the the next iterations, components of exact and approximate solutions

are shown by figures and with their maximum errors.

Iteration 50: The graphs of the first and second components of the exact and approx-

imate (in the fifth iteration) solutions are shown on Figure 5.3, Figure 5.4 respectively.

Figure 5.3: The first component of the exact solution and its fifth approximation

Figure 5.4: The second component of the exact solution and its fifth approximation
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The following inequalities are related with the maximum deviation of the exact solution

with its fifth approximations:

max
t∈[0,1]

∣∣x∗1(t)− x50,1(t)
∣∣≤ 0.02096,

max
t∈[0,1]

∣∣x∗2(t)− x50,2(t)
∣∣≤ 0.01744.

Iteration 100: The graphs of the first and second components of the exact and ap-

proximate (in the hunderedth iteration) solutions are shown on Figure 5.5, Figure 5.6

respectively.

Figure 5.5: The first component of the exact solution and its hunderedth approximation

For the hunderedth approximation the maximum deviations of the exact solution are

given as follows:

max
t∈[0,1]

∣∣x∗1(t)− x100,1(t)
∣∣≤ 0.01311,

max
t∈[0,1]

∣∣x∗2(t)− x100,2(t)
∣∣≤ 0.01471.
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Figure 5.6: The second component of the exact solution and its hunderedth approxi-
mation

Iteration 150: The graphs of the first and second components of the exact and ap-

proximate (in the one hundredth and fifth iteration) solutions are shown on Figure 5.7,

Figure 5.8 respectively.

Figure 5.7: The first component of the exact solution and its one hundred and fifth
approximation

The following inequalities are related with the maximum deviations of the exact solu-

tion with its one hundred and fifth approximations:

max
t∈[0,1]

∣∣x∗1(t)− x150,1(t)
∣∣≤ 0.008333,

max
t∈[0,1]

∣∣x∗2(t)− x150,2(t)
∣∣≤ 0.01077.
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Figure 5.8: The second component of the exact solution and its one hundred and fifth
approximation

Iteration 200: The graphs of the first and second components of the exact and ap-

proximate (in the two hundredth iteration) solutions are shown on Figure 5.9, Figure

5.10, respectively.

Figure 5.9: The first component of the exact solution and its two hundredth approxi-
mation

For the two hundredth iteration, the maximum deviations of the exact solution are

shown as follows:

max
t∈[0,1]

∣∣x∗1(t)− x200,1(t)
∣∣≤ 0.00487,

max
t∈[0,1]

∣∣x∗2(t)− x200,2(t)
∣∣≤ 0.006097.
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Figure 5.10: The second component of the exact solution and its two hundredth ap-
proximation

Iteration 250: The graphs of the first and second components of the exact and ap-

proximate (in the two hundredth and fifth iteration) solutions are shown on Figure 5.11,

Figure 5.12, respectively.

Figure 5.11: The first component of the exact solution and its two hundredth and fifth
approximation

The following inequalities are related with the maximum deviations of the exact solu-

tion with its two hundredth and fifth approximations:

max
t∈[0,1]

∣∣x∗1(t)− x250,1(t)
∣∣≤ 0.0004704,

max
t∈[0,1]

∣∣x∗2(t)− x250,2(t)
∣∣≤ 0.0006233.
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Figure 5.12: The second component of the exact solution and its two hundredth and
fifth approximation

Iteration 300: The graphs of the first and second components of the exact and ap-

proximate (in the three hundredth iteration) solutions are shown on Figure 5.13, Figure

5.14, respectively.

Figure 5.13: The first component of the exact solution and its three hundredth approx-
imation

The following inequalities are related with the maximum deviations of the exact solu-

tion with its three hundredth approximations.

max
t∈[0,1]

∣∣x∗1(t)− x300,1(t)
∣∣≤ 0.00007809,

max
t∈[0,1]

∣∣x∗2(t)− x300,2(t)
∣∣≤ 0.00006241.
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Figure 5.14: The second component of the exact solution and its three hundredth ap-
proximation

Iteration 364: The graphs of the first and second components of the exact and approx-

imate (in thethree hundred and sixty fourth iteration) solutions are shown on Figure

5.15, Figure 5.16, respectively.

Figure 5.15: The first component of the exact solution and its three hundred and sixty
fourth approximation

The following inequalities are related with the maximum deviations of the exact solu-

tion with its three hundred and sixty fourth approximations:

max
t∈[0,1]

∣∣x∗1(t)− x364,1(t)
∣∣≤ 1.209×10−6,

max
t∈[0,1]

∣∣x∗2(t)− x364,2(t)
∣∣≤ 5.813×10−6.
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Figure 5.16: The second component of the exact solution and its three hundred and
sixty fourth approximation

Lastly, we compare the results of exact and approximate solutions for Iteration 1 and

Iteration 364, with errors in the below Table 5.1, Table 5.2, Table 5.3, Table 5.4 . Here,

t = 0.1 is selected as a time step. Moreover, in this study, the numerical method has

order of accuracy 2.

Table 5.1 shows the values of exact solution x1 and approximate solution x1,1 with

errors. The values of exact solution x2 and approximate solution x1,2 are depicted in

Table 5.2 with errors ( for Iteration 1). In Table 5.3, the values of exact solution x1

and approximate solution x364,1 are given with errors. Similarly, Table 5.4 presents the

values of exact solution x2 and approximate solution x364,2 (for Iteration 364).
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Table 5.1: First component of exact solutions with approximate solutions
t Exact Solution Approximate Solution Error Relative Errors

0.1 0.06375 0.077040 0.01329 0.20850
0.2 0.0675 0.088380 0.02088 0.30930
0.3 0.07375 0.099730 0.02598 0.35230
0.4 0.0825 0.11110 0.02857 0.34670
0.5 0.09375 0.12240 0.02867 0.30560
0.6 0.1075 0.13380 0.02626 0.24470
0.7 0.1238 0.14510 0.02135 0.17201
0.8 0.1425 0.15640 0.01395 0.09750
0.9 0.1638 0.16780 0.00404 0.02440
1 0.1875 0.17910 0.008367 0.04480

Table 5.2: Second component of exact solutions with approximate solutions
t Exact Solution Approximate Solution Error Relative Errors

0.1 0.025 0.01992 0.005082 0.2032
0.2 0.05 0.04215 0.007847 0.1570
0.3 0.075 0.06464 0.01036 0.1381
0.4 0.1 0.08749 0.01251 0.1251
0.5 0.125 0.1108 0.01416 0.1136
0.6 0.15 0.1348 0.01518 0.1013
0.7 0.175 0.1595 0.01546 0.0886
0.8 0.2 0.1851 0.01487 0.0745
0.9 0.225 0.2117 0.01328 0.0591
1 0.25 0.2394 0.01056 0.0424

Table 5.3: First component of exact solutions with approximate solutions
t Exact Solution Approximate Solution Error Relative Errors

0.1 0.06375 0.06375 1.563e-08 2.418e-07
0.2 0.0675 0.0675 6.25e-08 9.2593e-07
0.3 0.07375 0.07375 1.406e-07 1.9064e-06
0.4 0.0825 0.0825 0.00000025 3.0303e-06
0.5 0.09375 0.09375 3.906E-07 4.1664e-06
0.6 0.1075 0.1075 5.625e-07 5.2326e-06
0.7 0.1238 0.1238 7.656e-07 6.1842e-06
0.8 0.1425 0.1425 0.000001 7.0175e-06
0.9 0.1638 0.1638 0.000001266 7.7289e-06
1 0.1875 0.1875 0.000001563 8.3360e-06
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Table 5.4: Second component of exact solutions with approximate solutions
t Exact Solution Approximate Solution Error Relative Errors

0.1 0.025 0.025 0.000000625 2.5000e-05
0.2 0.05 0.05 0.00000125 2.5000e-05
0.3 0.075 0.075 0.000001875 2.5000e-05
0.4 0.1 0.1 0.0000025 2.5000e-05
0.5 0.125 0.125 0.000003125 2.5000e-05
0.6 0.15 0.15 0.00000375 2.5000e-05
0.7 0.175 0.175 0.000004375 2.5000e-05
0.8 0.2 0.2 0.000005 2.5000e-05
0.9 0.225 0.225 0.000005625 2.5000e-05
1 0.25 0.25 0.00000625 2.5000e-05
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Chapter 6

EXISTENCE, UNIQUENESS AND STABILITY OF

CAPUTO TYPE FRACTIONAL DIFFERENTIAL

EQUATIONS WITH BOUNDARY CONDITIONS

In this chapter, we study existence, uniqueness and Ulam-Hyers stability results for the

coupled fixed points of operators on complete metrix space. We consider the operators

on the parametrized Caputo type boundary value problem. The main touch is based on

Perov type fixed point theorem and Ulam-Hyers stability.

6.1 Statement of the Problem

We consider Caputo type fractional differential eqautions with nonlinear boundary

conditions as follows:

c
oDp

t x(t) = f (t,x(t),y(t)),

Ax(0)+Bx(T )+h1(x(0),x(T )) = β1, β1 ∈ Rn, det(B) 6= 0, (6.1.1)

and

c
oDq

t y(t) = g(t,x(t),y(t)),

Cy(0)+Ey(T )+h2(y(0),y(T )) = β2, β2 ∈ Rn, det(E) 6= 0, (6.1.2)

where c
oDp

t and c
oDq

t are Caputo derivative of order p,q ∈ (0,1] for any t ∈ [0,T ] . The

functions f : G f → Rn, g : Gg→ Rn are continuous functions, n ≥ 2, G f := [0,T ]×

D f ×Dg Gg := [0,T ]×D f ×Dg and D f ,Dg ⊂ Rn are closed and bounded domains.
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A,B,C and E are given n−dimensional matrices, and β1, β2 are given n−dimensional

vectors.

We introduce the vectors of parameters:

w := x(0) = (w1,w2...wn)
T ,

φ := x(T ) = (φ1,φ2, ...,φn)
T , (6.1.3)

and

z := y(0) = (z1,z2...zn)
T ,

λ := y(T ) = (λ1,λ2, ...,λn)
T . (6.1.4)

Then, by using (6.1.3),(6.1.4) , nonlinear boundary conditions (6.1.1) , (6.1.2) can be

rewritten as follows:

Ax(0)+Bx(T ) = β1−h1(w,φ) := β1(w,φ). (6.1.5)

and

Cy(0)+Ey(T ) = β2−h2(z,λ ) := β2(z,λ ) (6.1.6)

Therefore, we have Caputo type fractional differential equations with linear boundary

conditions depending on parameters (w,φ) and (z,λ ) :

c
oDp

t x(t) = f (t,x(t),y(t))

Ax(0)+Bx(T ) = β1(w,φ) (6.1.7)

and

c
oDq

t y(t) = g(t,x(t),y(t))

Cy(0)+Ey(T ) = β2(z,λ ) (6.1.8)
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Solutions of the given paremetrized boundary value problems (6.1.7) , (6.1.8) are

given respectively :

x(t) := w+
1

Γ(p)

 t∫
0

(t− s)p−1 f (s,x(s),y(s))ds

−
( t

T

)p
T∫

0

(T − s)p−1 f (s,x(s),y(s))ds


+
( t

T

)p [
B−1

β1(w,φ)−
(
B−1A+ In

)
w
]
,

and

y(t) : = z+
1

Γ(q)

 t∫
0

(t− s)q−1 g(s,x(s),y(s))ds

−
( t

T

)q
T∫

0

(T − s)q−1 g(s,x(s),y(s))ds


+
( t

T

)q [
E−1

β2(z,λ )−
(
E−1C+ In

)
z
]
.

6.2 Existence, Uniqueness and Stability Result:

In this section, we prove the main theorem which depends on Perov’s fixed point theo-

rem and Ulam-Hyers stable. The following definitions and assumptions are needed for

proving the main theorem.

First of all, the functions f ,g in (6.1.7) and (6.1.8) are satisfied the followings:

‖ f‖
∞

= max
(t,x,y)∈[0,T ]×D f×Dg

‖ f (t,x,y)‖

‖g‖
∞

= max
(t,x,y)∈[0,T ]×D f×Dg

‖g(t,x,y)‖

for all t ∈ [0,T ] , (x,y) ∈ D f ×Dg. Also,

Ap(t) =
2t p

Γ(p+1)

(
1− t

T

)p
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and

Aq(t) =
2tq

Γ(q+1)

(
1− t

T

)
q

are defined. Then , Ap(t) and Aq(t) take their maximum values at t = T
2 and

∥∥Ap
∥∥

∞
=

T p

22p−1Γ(p+1)
,∥∥Aq

∥∥
∞

=
T q

22q−1Γ(q+1)
.

Then, parametrized boundary value problems (6.1.7) and (6.1.8) will be studied under

the following conditions:

A) Functions f ,g in (6.1.7) and (6.1.8) satisfy the Lipschitz type conditions

| f (t,x1,x2)− f (t,y1,y2)| ≤ k1 |x1− y1|+ k2 |x2− y2|

|g(t,x1,x2)−g(t,y1,y2)| ≤ k3 |x1− y1|+ k4 |x2− y2|

for all ki > 0, i = 1,2,3,4 and x1,x2 ∈ D f , y1,y2 ∈ Dg.

B) The spectral radius r(K) of the matrix K =

 K1 K2

K3 K4

 is r(K)< 1 where ki
∥∥Ap

∥∥
∞
=

Ki > 0 when i = 1,2 and ki
∥∥Aq
∥∥

∞
= Ki > 0 when i = 3,4.

We define operators (T1,T2) :C([0,T ],Rn)×C([0,T ],Rn)→C([0,T ],Rn)×C([0,T ],Rn)

which depend on w,φ ,z,λ as follows:

T1(x,y)(t) : = w+
1

Γ(p)

 t∫
0

(t− s)p−1 f (s,x(s) ,y(s))ds

−
( t

T

)p
T∫

0

(T − s)p−1 f (s,x(s) ,y(s))ds


+
( t

T

)p [
B−1

β1(w,φ)−
(
B−1A+ In

)
w
]

(6.2.1)

and
80



T2(x,y)(t) : = z+
1

Γ(q)

 t∫
0

(t− s)q−1 g(s,x(s) ,y(s))ds

−
( t

T

)q
T∫

0

(T − s)q−1 g(s,x(s) ,y(s))ds


+
( t

T

)q [
E−1

β2(z,λ )−
(
E−1C+ In

)
z
]
. (6.2.2)

The operators T1 and T2 can be considered as a system of operatorial equations such as

x = T1(x,y)

y = T2(x,y)

where (T1,T2) : C([0,T ],Rn)×C([0,T ],Rn)→C([0,T ],Rn) ×C([0,T ],Rn) .

Let X be a nonempty set. A mapping ḋ : X×X → Rn is called a vector-valued metric

on X if the following properties are satisfied:

d1) d (x,y)≥ 0 for all x,y ∈ X ; if d (x,y) = 0, then x = y.

d2) d (x,y) = d (y,x) for all x,y ∈ X .

d3) d (x,y)≤ d (x,y)+d(z,y) for all x,y,z ∈ X .

The following theorems are also used for the proof of the main result. Following

theorem is about the classical result in matrix analysis. (see [14, 54, 58])

Theorem 6.2.1 Let A ∈Mmm. The following assertions are equivalents:

i) A is convergent towards zero

ii) An→ 0 as n→ ∞

iii) The eigenvalues of A are in the open unit disc,i.e |λ | < 1, for every λ ∈ C with

det(A−λ I) = 0
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iv) The matrix (I−A) is nonsingular and

(I−A)−1 = I +A+ ...+An + ...

v) The matrix (I−A) is nonsingular and ((I−A))−1 has nonnegative elements

vi) Anq→ 0 and qAn→ 0 as n→ ∞, for each q ∈ Rm.

Theorem 6.2.2 [47] (Perov) Let (X ,d) be a complex generalized metric space and the

operator f : X → X with the property that there exists a matrix A ∈ Mmm such that

d ( f (x) , f (y)) ≤ Ad (x,y) for all x,y ∈ X . If A is a matrix convergent towards zero,

then:

i) Fix( f ) = {x∗}

ii) the sequence of successive approximations (xn)n∈N , xn = f n (x0) is convergent and

has the limit x∗, for all x0 ∈ X ;

iii) one has the following estimation

d (xn,x∗)≤ An (I−A)−1 d (x0,x1)

iv) if g : X → X is an operator such that there exist y∗ ∈ Fix(g) and η ∈
(
Rm
+

)∗ with

d ( f (x) ,g(x))≤ η , for each x ∈ X , then

d (x∗,y∗)≤ (I−A)−1
η

v) if g : X→ X is an operator and there exists η ∈
(
Rm
+

)
such that d ( f (x) ,g(x))≤ η ,

for all x∈X ,then for the sequence yn := gn (x0) we have the following estimation

d (yn,x∗)≤ (I−A)−1
η +An (I−A)−1 d (x0,x1) .
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Definition 6.2.3 Let (X ,d) be a metric space and let T1,T2 : X ×X → X be two oper-

ators. Then the operatorial equations system

x = T1 (x,y)

y = T2 (x,y) (6.2.3)

is said to be Ulam-Hyers stable if there exist c1,c2,c3,c4 > 0 such that for each θ1,θ2 >

0 and each pair (u∗,v∗) ∈ X×X such that

d (u∗,T1 (u∗,v∗)) ≤ θ1

d (v∗,T2 (u∗,v∗)) ≤ θ2

there exists a solution (x∗,y∗) ∈ X×X of (6.2.3) such that

d (u∗,x∗) ≤ c1θ1 + c2θ2

d (v∗,y∗) ≤ c3θ1 + c4θ2

Theorem 6.2.4 Let (X ,d) = (C([0,T ],Rn),‖x− y‖
∞
) and T1,T2 : X ×X → X be two

operators. Suppose that

K :=

 K1 K2

K3 K4


satisfies an inequality r(K)< 1 which is defined in the assumption (D) . Then,

i) for all (x,y) ,(u,v) ∈ X×X , the following inequalities are satisfied:

‖T1 (x,y)−T1 (u,v)‖
∞
≤ K1 ‖x−u‖

∞
+K2 ‖y− v‖

∞

‖T2 (x,y)−T2 (u,v)‖
∞
≤ K3 ‖x−u‖

∞
+K4 ‖y− v‖

∞
.

ii) there exists a unique element (x∗,y∗) ∈ X×X such that
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x∗ = T1 (x∗,y∗)

y∗ = T2 (x∗,y∗)

iii) the sequence
(
T n

1 (x,y),T
n

2 (x,y)
)

n∈N converges to (x∗,y∗) as n→ ∞, where

T n+1
1 (x,y) : = T n

1 (T1 (x,y) ,T2 (x,y))

T n+1
2 (x,y) : = T n

2 (T1 (x,y) ,T2 (x,y))

for all n ∈ N.

iv) we have the following estimation:

(∥∥∥T n+ j
1 (x,y)−T n

1 (x,y)
∥∥∥

∞∥∥∥T n+ j
2 (x,y)−T n

2 (x,y)
∥∥∥

∞

)
≤ Kn (I−K)−1

(
‖T1−w‖

∞

‖T2− z‖
∞

)

≤ Kn (I−K)−1
(

N1

N2

)
. (6.2.4)

where

N1 ≥
∥∥Ap

∥∥
∞
‖ f‖

∞
+
∣∣[B−1

β1(w,φ)−
(
B−1A+ In

)
w
]∣∣ , (6.2.5)

N2 ≥
∥∥Aq
∥∥

∞
‖g‖

∞

∣∣+[E−1
β2(z,λ )−

(
E−1C+ In

)
z
]∣∣ . (6.2.6)

v) the operatorial equation system

x = T1 (x,y)

y = T2 (x,y) (6.2.7)

is Ulam-Hyers stable.
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Proof.

i) By using the operators (6.2.1),(6.2.2) and considering (6.2.8),(6.2.9) , we have:

|T1 (x,y)(t)−T1 (u,v)(t)| ≤

∣∣∣∣∣∣ 1
Γ(p)

 t∫
0

(
(t− s)p−1−

( t
T

)p
(T − s)p−1

)
ds

+
( t

T

)p
T∫

t

(T − s)p−1 ds

∣∣∣∣∣∣‖ f (s,x(s) ,y(s))

− f (s,u(s) ,v(s))‖
∞

≤
∥∥Ap

∥∥
∞

(
k1 ‖x−u‖

∞
+ k2 ‖y− v‖

∞

)
≤ K1 ‖x−u‖

∞
+K2 ‖y− v‖

∞
.

where

(t− s)p−1−
( t

T

)p
(T − s)p−1 = (t− s)p−1

(
1−
( t

T

)p
(

t− s
T − s

)1−p
)

≥ (t− s)p−1
(

1−
( t

T

)p( t
T

)1−p
)

= (t− s)p−1
(

1− t
T

)
≥ 0 (6.2.8)

and

|T2 (x,y)(t)−T2 (u,v)(t)| ≤

∣∣∣∣∣∣ 1
Γ(q)

 t∫
0

(
(t− s)q−1−

( t
T

)q
(T − s)q−1

)
ds

+
( t

T

)q
T∫

t

(T − s)q−1 ds

∣∣∣∣∣∣‖ f (s,x(s) ,y(s))

− f (s,u(s) ,v(s))‖
∞

≤
∥∥Ap

∥∥
∞

(
k3 ‖x−u‖

∞
+ k4 ‖y− v‖

∞

)
≤ K3 ‖x−u‖

∞
+K4 ‖y− v‖

∞
.

where

(t− s)q−1−
( t

T

)q
(T − s)q−1 ≥ 0 (6.2.9)
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Therefore, we get:

‖T1 (x,y)−T1 (u,v)‖
∞
≤ K1 ‖x−u‖

∞
+K2 ‖y− v‖

∞

‖T2 (x,y)−T2 (u,v)‖
∞
≤ K3 ‖x−u‖

∞
+K4 ‖y− v‖

∞
.

where ki
∥∥Ap

∥∥
∞
= Ki > 0 when i = 1,2 and ki

∥∥Aq
∥∥

∞
= Ki > 0 when i = 3,4.

ii) We denote Z := X×X and consider d̃ : Z×Z→ R2
+ as follows:

d̃ ((x,y) ,(u,v)) :=
(

d(x,u)
d(y,v)

)
=

(
‖x−u‖

∞

‖y− v‖
∞

)
. (6.2.10)

By using (6.2.10) ,

d̃ (T (x,y) ,T (u,v)) =

( (T1(x,y)
T2(x,y)

) (T1(u,v)
T2(u,v)

) )
=

(
‖T1(x,y)−T1(u,v)‖

∞

‖T2(x,y)−T2(u,v)‖
∞

)
≤

(
K1 ‖x−u‖

∞
+K2 ‖y− v‖

∞

K3 ‖x−u‖
∞
+K4 ‖y− v‖

∞

)

=

 K1 K2

K3 K4

(‖x−u‖
∞

‖y− v‖
∞

)

= Kd̃ ((x,y) ,(u,v)) . (6.2.11)

Here, if (x,y) := l, (u,v) := m, then (6.2.11) can be rewritten as follows:

d̃ (T (l),T (m))≤ K d̃ ((l) ,(m)) ,

where the matrix K is convergent to zero. According to the conclusion (i) of

Perov’s theorem,

Fix(T ) = {l∗}

which means

T (x∗,y∗) = (x∗,y∗). (6.2.12)
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Moreover, (6.2.12) can be rewritten in the following form:

x∗ = T1(x∗,y∗)

y∗ = T2(x∗,y∗).

iii) We define operators T n
1 and T n

2 as follows:

T n
1 (x,y)(t) : = w+

1
Γ(p)

 t∫
0

(t− s)p−1 f
(
s,T n−1

1 (x,y)(s) ,T n−1
2 (x,y)(s)

)
ds

−
( t

T

)p
T∫

0

(T − s)p−1 f
(
s,T n−1

1 (x,y)(s) ,T n−1
2 (x,y)(s)

)
ds


+
( t

T

)p [
B−1

β1(w,φ)−
(
B−1A+ In

)
w
]

(6.2.13)

and

T n
2 (x,y)(t) : = z+

1
Γ(q)

 t∫
0

(t− s)q−1 g
(
s,T n−1

1 (x,y)(s) ,T n−1
2 (x,y)(s)

)
ds

−
( t

T

)q
T∫

0

(T − s)q−1 g
(
s,T n−1

1 (x,y)(s) ,T n−1
2 (x,y)(s)

)
ds


+
( t

T

)q [
E−1

β2(z,λ )−
(
E−1C+ In

)
z
]
. (6.2.14)

In addition, for each (x,y) ∈ X×X , we have:

T n(x,y)(t) = (T n
1 (x,y),T

n
2 (x,y))→ (x∗,y∗)

as n→ ∞, where

T 0
1 (x,y) : = w, T 0

2 (x,y) := z,

T 1
1 (x,y) : = T1(x,y), T 1

2 (x,y) := T2(x,y),

T 2
1 (x,y) : = T1 (T1(x,y),T2(x,y)) ,

T 2
2 (x,y) : = T2 (T1(x,y),T2(x,y)) . (6.2.15)
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Thus, (6.2.15) can be generalized in the following form:

T n+1
1 (x,y) : = T n

1 (T1(x,y),T2(x,y))

T n+1
2 (x,y) : = T n

2 (T1(x,y),T2(x,y)) .

iv) To prove the inequality given in (6.2.4) , at first, we put n = 1 into the equation

(6.2.13) .Then, we have:

T1(x,y)(t) = w+
1

Γ(p)

 t∫
0

(t− s)p−1 f (s,w,z)ds

−
( t

T

)p
T∫

0

(T − s)p−1 f (s,w,z)ds


+
( t

T

)p [
B−1

β1(w,φ)−
(
B−1A+ In

)
w
]

(6.2.16)

So, (6.2.16) can be estimated as follows:

|T1(x,y)(t)−w| ≤ 1
Γ(p)

 t∫
0

∣∣∣∣(t− s)p−1−
( t

T

)p
(T − s)p−1

∣∣∣∣‖ f‖
∞

ds

+

T∫
t

∣∣∣∣( t
T

)p
(T − s)p−1

∣∣∣∣‖ f‖
∞

ds


+

∣∣∣∣( t
T

)p [
B−1

β1(w,φ)−
(
B−1A+ In

)
w
]∣∣∣∣

≤ 2t p

Γ(p+1)

(
1− t

T

)p
‖ f‖

∞

+
( t

T

)p ∣∣[B−1
β1(w,φ)−

(
B−1A+ In

)
w
]∣∣

≤ T p

22p−1Γ(p+1)
‖ f‖

∞
+
∣∣[B−1

β1(w,φ)−
(
B−1A+ In

)
w
]∣∣

=
∥∥Ap

∥∥
∞
‖ f‖

∞
+
∣∣[B−1

β1(w,φ)−
(
B−1A+ In

)
w
]∣∣

≤ N1 (6.2.17)

where N1 is defined in (6.2.5) . Then, we consider the difference (6.2.17) in

general,
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∣∣T n+1
1 (x,y)(t)−T n

1 (x,y)(t)
∣∣

≤

∣∣∣∣∣∣ 1
Γ(p)

 t∫
0

(t− s)p−1−
( t

T

)p
(T − s)p−1 ds

+
( t

T

)p
T∫

t

(T − s)p−1 ds

∣∣∣∣∣∣‖ f (s,T n
1 (x,y) ,T n

2 (x,y))

− f (s,T n−1
1 (x,y) ,T n−1

2 (x,y))
∥∥

∞
(6.2.18)

for n = 1,2, ...

Now, we consider (6.2.14) for n = 1.

|T2(x,y)(t)− z| ≤ 1
Γ(q)

 t∫
0

∣∣∣∣(t− s)q−1−
( t

T

)q
(T − s)q−1

∣∣∣∣‖g(s,w,z)‖∞
ds

+

T∫
t

∣∣∣∣( t
T

)q
(T − s)q−1

∣∣∣∣‖g(s,w,z)‖∞
ds


+

∣∣∣∣( t
T

)q [
E−1

β2(z,λ )−
(
E−1C+ In

)
z
]∣∣∣∣

≤ 2tq

Γ(q+1)

(
1− t

T

)q
‖g‖

∞

+
( t

T

)q ∣∣[E−1
β2(z,λ )−

(
E−1C+ In

)
z
]∣∣

≤ T q

22q−1Γ(q+1)
‖g‖

∞
+
∣∣[E−1

β2(z,λ )−
(
E−1C+ In

)
z
]∣∣

=
∥∥Aq
∥∥

∞
‖g‖

∞
+
∣∣[E−1

β2(z,λ )−
(
E−1C+ In

)
z
]∣∣

≤ N2 (6.2.19)

where N2 is defined in (6.2.6) .

89



Therefore, the difference between T n+1
2 and T n

2 can be generalized as follows:

∣∣T n+1
2 (x,y)(t)−T n

2 (x,y)(t)
∣∣

≤

∣∣∣∣∣∣ 1
Γ(q)

 t∫
0

(t− s)q−1−
( t

T

)q
(T − s)q−1 ds

+
( t

T

)q
T∫

t

(T − s)q ds

∣∣∣∣∣∣‖g(s,T n
1 (x,y) ,T n

2 (x,y))

−g(s,T n−1
1 (x,y) ,T n−1

2 (x,y))
∥∥

∞
(6.2.20)

More generally, the difference (6.2.18) is denoted by rn(t,w,φ ,z,λ ) such as

rn(t,w,φ ,z,λ ) :=
∣∣T n

1 (x,y)(t)−T n−1
1 (x,y)(t)

∣∣ , for all n = 2,3, ... (6.2.21)

and the difference (6.2.20) is indicated by Ωn(t,w,φ ,z,λ ) in the following form:

Ωn(t,w,φ ,z,λ ) :=
∣∣T n

2 (x,y)(t)−T n−1
2 (x,y)(t)

∣∣ , for all n = 2,3, ... (6.2.22)

So, when n = 2 in (6.2.21) , we have:

r2(t,w,φ ,z,λ )≤
1

Γ(p)

 t∫
0

∣∣∣∣[(t− s)p−1−
( t

T

)p
(T − s)p−1

]∣∣∣∣
+

T∫
t

∣∣∣∣( t
T

)p
(T − s)p−1

∣∣∣∣
‖ f (s,T1 (x,y) ,T2 (x,y))− f (s,w,z)‖

∞
ds

≤ 1
Γ(p)

 t∫
0

[
(t− s)p−1−

( t
T

)p
(T − s)p−1

]

+

T∫
t

( t
T

)p
(T − s)p−1 ds

(k1 ‖T1−w‖
∞
+ k2 ‖T2− z‖

∞

)
≤ k1

2t p

Γ(p+1)

(
1− t

T

)p [∥∥Ap
∥∥

∞
‖ f‖

∞
+
∣∣[B−1

β1(w,φ)−
(
B−1A+ In

)
w
]∣∣]

+ k2
2t p

Γ(p+1)

(
1− t

T

)p [∥∥Aq
∥∥

∞
‖g‖

∞

∣∣+[E−1
β2(z,λ )−

(
E−1C+ In

)
z
]∣∣]

≤ k1
∥∥Ap

∥∥
∞

[∥∥Ap
∥∥

∞
‖ f‖

∞
+
∣∣[B−1

β1(ω,φ)−
(
B−1A+ In

)
w
]∣∣]

+ k2
∥∥Ap

∥∥
∞

[∥∥Aq
∥∥

∞
‖g‖

∞

∣∣+[E−1
β2(z,λ )−

(
E−1C+ In

)
z
]∣∣]
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Now, n = 2 in (6.2.22) and we have:

Ω2(t,w,φ ,z,λ )≤
1

Γ(q)

 t∫
0

∣∣∣∣[(t− s)q−1−
( t

T

)q
(T − s)q−1

]∣∣∣∣
+

T∫
t

∣∣∣∣( t
T

)q
(T − s)q−1

∣∣∣∣
‖g(s,T1 (x,y) ,T2 (x,y))−g(s,w,z)‖ds

≤ 1
Γ(q)

 t∫
0

[
(t− s)q−1−

( t
T

)q
(T − s)q−1

]

+

T∫
t

( t
T

)q
(T − s)q−1 ds

(k3 ‖T1−w‖+ k4 ‖T2− z‖)

≤ k3
2tq

Γ(q+1)

(
1− t

T

)q [∥∥Ap
∥∥

∞
‖ f‖

∞
+
∣∣[B−1

β1(w,φ)−
(
B−1A+ In

)
w
]∣∣]

+ k4
2tq

Γ(q+1)

(
1− t

T

)q [∥∥Aq
∥∥

∞
‖g‖

∞

∣∣+[E−1
β2(z,λ )−

(
E−1C+ In

)
z
]∣∣]

≤ k3
∥∥Aq
∥∥

∞

[∥∥Ap
∥∥

∞
‖ f‖

∞
+
∣∣[B−1

β1(w,φ)−
(
B−1A+ In

)
w
]∣∣]

+ k4
∥∥Aq
∥∥

∞

[∥∥Aq
∥∥

∞
‖g‖

∞

∣∣+[E−1
β2(z,λ )−

(
E−1C+ In

)
z
]∣∣]

Therefore, by using the mathematical induction we obtain the following equa-

tions:

rn+1(t,w,φ ,z,λ )≤
(
k1
∥∥Ap

∥∥
∞

)n [∥∥Ap
∥∥

∞
‖ f‖

∞
+
∣∣[B−1

β1(w,φ)−
(
B−1A+ In

)
w
]∣∣]

+
(
k2
∥∥Ap

∥∥
∞

)n [∥∥Aq
∥∥

∞
‖g‖

∞

∣∣+[E−1
β2(z,λ )−

(
E−1C+ In

)
z
]∣∣]

≤ Kn
1 N1 +Kn

2 N2

n = 1,2.. (6.2.23)

Ωn+1(t,w,φ ,z,λ )≤
(
k3
∥∥Aq
∥∥

∞

)n [∥∥Ap
∥∥

∞
‖ f‖

∞
+
∣∣[B−1

β1(w,φ)−
(
B−1A+ In

)
w
]∣∣]

+
(
k4
∥∥Aq
∥∥

∞

)n [∥∥Aq
∥∥

∞
‖g‖

∞

∣∣+[E−1
β2(z,λ )−

(
E−1C+ In

)
z
]∣∣]

≤ Kn
3 N1 +Kn

4 N2

n = 1,2.. (6.2.24)
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In view of (6.2.23) and (6.2.24) we have:

(∥∥∥T n+ j
1 (x,y)−T n

1 (x,y)
∥∥∥

∞∥∥∥T n+ j
2 (x,y)−T n

2 (x,y)
∥∥∥

∞

)
=

( j
∑

i=1
rn+i(t,w,φ ,z,λ )

j
∑

i=1
Ωn+i(t,w,φ ,z,λ )

)

≤ Kn
j−1

∑
i=0

Ki
(
‖T1−w‖

∞

‖T2− z‖
∞

)
≤ Kn

j−1

∑
i=0

Ki
(

N1

N2

)
.

Then, we have

(∥∥∥T n+ j
1 (x,y)−T n

1 (x,y)
∥∥∥

∞∥∥∥T n+ j
2 (x,y)−T n

2 (x,y)
∥∥∥

∞

)
≤ Kn (I−K)−1

(
‖T1−w‖

∞

‖T2− z‖
∞

)

≤ Kn (I−K)−1
(

N1

N2

)
.

v) Let θ1,θ2 > 0 and (u∗,v∗) ∈ X×X such that

‖u∗−T1 (u∗,v∗)‖
∞
≤ θ1

‖v∗−T2 (u∗,v∗)‖
∞
≤ θ2.

Then,

d̃((u∗,v∗) ,(x∗,y∗)) ≤ d̃((u∗,v∗) ,T (x∗,y∗))

≤ d̃((u∗,v∗) ,T (u∗,v∗))+ d̃(T (u∗,v∗) ,T (x∗,y∗))

=

(
d (u∗,T1 (u∗,v∗))
d (v∗,T2 (u∗,v∗))

)
+

(
d(T1 (u∗,v∗) ,T1 (x∗,y∗))
d(T2 (u∗,v∗) ,T2 (x∗,y∗))

)
=

(
‖u−T1 (u∗,v∗)‖

∞
+‖T1 (u∗,v∗)−T1 (x∗,y∗)‖

∞

‖v∗−T2 (u∗,v∗)‖
∞
+‖T2 (u∗,v∗)−T2 (x∗,y∗)‖∞

)
≤

(
θ1

θ2

)
+Kd̃((u∗,v∗) ,(x∗,y∗))

Therefore, there exist

d̃((u∗,v∗) ,(x∗,y∗))≤ (I−K)−1
θ

which is equivalent to
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d̃((u∗,v∗) ,(x∗,y∗)) =
(
‖u∗− x∗‖

∞

‖v∗− y∗‖
∞

)
≤ (I−K)−1

θ (6.2.25)

Then, in (6.2.25) , the matrix (I−K)−1 can be denoted by

(I−K)−1 :=

 c1 c2

c3 c4

 .

Thus, we obtain the system (6.2.7) is Ulam-Hyers stable where

‖u∗− x∗‖
∞
≤ c1θ1 + c2θ2

‖v∗− y∗‖
∞
≤ c3θ1 + c4θ2.
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