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ABSTRACT 

Industries are going through the fourth industrial revolution (Industry 4.0), where 

technologies like the Industrial Internet of Things (IIoT), Big Data Analytics and 

Machine Learning (ML) are being extensively employed for improving the 

productivity and efficiency of manufacturing systems. Recently, many researchers 

have demonstrated the ability of ML algorithms to meet various challenges presented 

by the next generation Smart Manufacturing Systems (SMSs). This work aims to 

investigate the applicability of several machine learning techniques for early fault 

diagnosis towards smart manufacturing process. Thus, in this thesis, we propose 

several fault diagnosis ML models for SMSs applications. A case study has been 

conducted on a dataset from a semiconductor manufacturing process. However, this 

dataset contains missing values, redundant and noisy features, and class imbalance 

problem. This imbalance problem makes it so difficult to accurately predict the 

minority class, due to the majority class size difference. Therefore, this work proposes 

and compares the effects of three synthetic data generation techniques to handle such 

class imbalance problem. To handle issues related to missing values and redundant 

features, we implemented and compared the performance of two missing values 

imputation techniques and two feature selection techniques using three adopted data 

synthetic generation techniques. We then developed and compared the performance of 

ten predictive machine learning models against the abovementioned proposed 

approaches. Experimental results across seven evaluation metrics of performance 

obtained from these models were significant. These results and a comparative analysis 

show the feasibility and validate the effectiveness of these proposed synthetic data 

generation techniques and the proposed methodologies. Some among the proposed 
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methodologies could produce an accuracy in the range of 99.9% to 100%. 

Furthermore, a comparative analysis has been conducted with similar models proposed 

in the literature. Based on the results, our proposed models outpace those proposed in 

the literature. 

Keywords: Semiconductor Manufacturing Process, Fault Diagnosis, Imbalance 

Dataset, Synthetic Data Generation, Machine Learning.  
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ÖZ 

Endüstriler, Endüstriyel Nesnelerin İnterneti (IIoT), Büyük Veri Analitiği ve Makine 

Öğrenimi (ML) gibi teknolojilerin üretim sistemlerinin üretkenliğini ve verimliliğini 

artırmak için yoğun bir şekilde kullanıldığı dördüncü endüstriyel devrimden (Endüstri 

4.0) geçiyor. Son zamanlarda, birçok araştırmacı, ML algoritmalarının yeni nesil 

Akıllı Üretim Sistemleri (SMS'ler) tarafından sunulan çeşitli zorlukları karşılama 

becerisini göstermiştir. Bu çalışma, akıllı üretim sürecine yönelik erken arıza teşhisi 

için çeşitli makine öğrenme tekniklerinin uygulanabilirliğini araştırmayı 

amaçlamaktadır. Bu nedenle, bu tezde, SMS uygulamaları için çeşitli arıza teşhis ML 

modelleri öneriyoruz. Yarı iletken üretim sürecinden bir veri seti üzerinde bir vaka 

çalışması yapılmıştır. Bununla birlikte, bu veri kümesi eksik değerler, fazlalık ve 

gürültülü özellikler ve sınıf dengesizliği problemini içermektedir. Bu dengesizlik 

sorunu, çoğunluk sınıf büyüklüğü farkı nedeniyle azınlık sınıfını doğru bir şekilde 

tahmin etmeyi çok zorlaştırıyor. Bu nedenle, bu çalışma, bu tür bir sınıf dengesizliği 

sorununu ele almak için üç sentetik veri oluşturma tekniğinin etkilerini önermekte ve 

karşılaştırmaktadır. Eksik değerler ve gereksiz özelliklerle ilgili sorunları ele almak 

için, benimsenmiş üç veri sentetik oluşturma tekniğini kullanarak iki eksik değer 

atama tekniğinin ve iki özellik seçim tekniğinin performansını uygulayıp 

karşılaştırdık. Daha sonra on tahmine dayalı makine öğrenimi modelinin 

performansını yukarıda belirtilen önerilen yaklaşımlarla geliştirip karşılaştırdık. Bu 

modellerden elde edilen performansın yedi değerlendirme metriğine ilişkin deneysel 

sonuçlar anlamlıydı. Bu sonuçlar ve karşılaştırmalı bir analiz, bu önerilen sentetik veri 

oluşturma tekniklerinin ve önerilen metodolojilerin uygulanabilirliğini gösterir ve 

etkililiğini doğrular. Önerilen metodolojilerden bazıları, % 99,9 ila% 100 aralığında 
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bir doğruluk sağlayabilir. Ayrıca, literatürde önerilen benzer modellerle karşılaştırmalı 

bir analiz yapılmıştır. Sonuçlara göre, önerilen modellerimiz literatürde önerilenleri 

geride bırakıyor. 

Anahtar Kelimeler: Yarıiletken Üretim Süreci, Hata Teşhisi, Dengesizlik Veri Seti, 

Sentetik Veri Üretimi, Makine Öğrenimi. 
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Chapter 1 

1 INTRODUCTION 

1.1 Background 

Due to the advancement in manufacturing and manufacturing technologies plus the 

change of the global economic landscape, Smart Manufacturing Systems (SMSs) have 

become a general solution for both developed and developing countries to upgrade 

their manufacturing industries. Also, with the emergence of Industry 4.0 (I4.0), smart 

systems, Machine Learning (ML), predictive model are being applied extensively in 

manufacturing areas for monitoring the equipment status of industrial systems [1]. 

Moreover, the concept of prognostics and health management have become 

unavoidable trends in the framework of industrial big data and SMSs. I4.0 gives a 

reliable solution for monitoring equipment health status in industries. 

Recent, many manufacturing systems are equipped with sensors, algorithms, 

technologies, and advanced methods in order to facilitate real-time monitoring of the 

production processes and to collect and extract data because they cannot anymore be 

processed using traditional technologies. I4.0 and its key technologies play an essential 

role in making industrial systems autonomous, hence enabling automatized big data 

collection from industrial machines/components [1]. Production-state and equipment-

state sensors collect data that provides opportunity for efficient control and 

optimization. Unfortunately, such measurements of variables data formats from 

multiple sensors can be so overwhelming and poses a challenge for manufacturing data 
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analysis, and timely detection of any fault during the production process can be 

difficult [2]–[4]. 

Big data collected for ML contains very useful information and valuable knowledge 

that can improve the whole productivity of manufacturing processes and system 

dynamics. It can also be applied into decision support in several areas, such as 

manufacturing, maintenance and health monitoring [5]. Based on a collected data, a 

suitable ML models can be developed and be applied for automatic fault detection and 

diagnosis. The enormously available data generated from industries, ML techniques 

have been broadly applied in areas such as computer science, smart manufacturing 

systems and processes, and predictive maintenance of industrial systems [5], [6]. 

These advancements facilitate the development of manufacturing contexts into 

integrated networks of automation devices and allow the smart characteristics of being 

self-sensing, self-adaptive, and self-organizing. However, obtaining such 

advancements require addressing numerous challenges including data mining, data 

quality, data volume and merging [7]. 

1.2 Problem statement 

Due to the recent technological advancements, the manufacturing process of 

semiconductor is becoming more complex, costly, and extremely interdisciplinary 

processes that involve several of stages [7]–[10]. Therefore, the yield in a 

semiconductor manufacturing process is affected greatly by several factors, most of 

which are being monitored using sensors and quality inspections. Managing these 

factors to enhance the yield has been an endless challenge in this manufacturing 

process [8], [11]–[13]. Moreover, sensory datasets acquired from semiconductor 

manufacturing process domain usually might contain outliers, missing values, 
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redundant and noisy features, and class imbalance problem. This imbalance problem 

makes it so difficult to accurately predict the minority class, due to the majority class 

size difference. This imbalance exists as a result of very low rate of finding defective 

products in manufacturing processes in practice. Also, handling and predicting the 

quality of a product in a semiconductor manufacturing process is an imbalanced 

problem. To handle such issue of imbalance, a suitable technique for handling 

imbalanced dataset needs to be considered to enhance the predictive model 

performance. To address the issues related to missing values and redundant features, 

we implement and compare the performance of two missing values imputation 

techniques and two feature selection techniques versus three propose data synthetic 

generation techniques. 

1.3 Scope and aim of the thesis 

The scope of this thesis is within manufacturing systems that uses predictive models 

for fault detection and diagnosis using machine learning algorithms. Also, this work 

tends to investigate and improve the efficiency and effectiveness of the predictive 

models within semiconductor manufacturing processes. The evaluation of the ML 

algorithms has been conducted by using a case study from a distinctive manufacturing 

domain using a real-world dataset from a semiconductor manufacturing process. The 

performance of the developed predictive models has been compared with the existing 

models in the literature to further analyze their accuracy and reliability. The outcomes 

of the research have contributed in developing efficient and effective ML prediction 

models for smart manufacturing processes. 

Further exploration towards the applicability of ML algorithms in smart manufacturing 

systems/processes is the main objective of this study. We achieved this by developing 
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predictive models based on machine learning algorithms with special focus on 

manufacturing process. 

First, detailed literature review of the relevant studies describing the applications of 

ML techniques in the field of smart semiconductor manufacturing process has been 

conducted, to get a more profound knowledge in the analyzed contexts, and to examine 

and highlight the gap in the existing studies, thus, create a firm foundation for further 

research. 

1.4 Thesis contributions 

The semiconductor manufacturing processes are complex, costly, and extremely 

interdisciplinary processes that involve several stages. Failures in the manufacturing 

stages may result in faulty products [7]. Consequently, feature extraction and early 

fault diagnosis are of great importance which can only be achieved through fully 

investigating the production stages and mining significant manufacturing features 

involved in the production line. Moreover, early fault diagnosis involves implementing 

predictive ML model within the manufacturing process for feature extraction and 

classification to improve the manufacturing process and productivity. 

The key contributions of this thesis are as follows: 

• Reviewing the applications of ML techniques towards semiconductor 

manufacturing processes with a special focus on studies reported that utilized 

the UCI machine learning repository semiconductor manufacturing process 

dataset. 

• Proposal of a methodology for ML predictive models’ development that 

comprises data cleaning, missing datapoints imputation techniques, most 



 5 

potential features selection techniques, features normalizing technique, 

synthetic data generation techniques, model training and validation techniques, 

model development, and model performance evaluation. 

• Adoption and comparison of two different missing datapoint imputation 

techniques including mean and k-NN imputation techniques. 

• Adoption and comparison of two different features selection techniques 

including PCA and univariate features selection. 

• Adoption and comparison of synthetic data generation techniques including 

SMOTE, BSMOTE-SVM and ADASYN for synthetic data generation to 

handle the class imbalance distribution of the dataset. 

• Implementation and comparison of two different validation techniques for 

evaluating the performance of the developed predictive models. 

• An extensive comparisons analysis between the results obtained in this thesis 

with those similar studies reported in the literature. 

• Proposed methodologies and models evaluation on the UCI machine learning 

repository SECOM dataset. 

1.5 Thesis outline 

The remainder of the thesis is organized as bellow: 

Firstly, in  Chapter 2, the state-of-the-art theories and general information behind each 

topic considered in this thesis are presented. Focus is mainly on providing the state-

of-the-art definitions, of Smart Manufacturing; various techniques and types of ML, 

alongside, their classifications and applications towards manufacturing systems.  

Moreover, the chapter emphasizes the semiconductor manufacturing dataset issues and 

descriptions used in developing and validating the developed classifier models. 
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Secondly, Chapter 3 focuses on presenting some related works done in this field of 

study. Moreover, the section is aimed at providing recent advancements of ML 

techniques applied to SMSs found in literature from ample perspectives. The literature 

studies have been conducted in those areas of interest to further determine and define 

the current state-of-the-art knowledge, determine the feasibility of the research 

questions, and the research methodologies that have been applied in this thesis. 

Thirdly, Chapter 4 presents the research methodology for ML models selection, 

development, and evaluation. Moreover, it emphasizes the descriptions of the datasets 

used, the methodology for data cleaning, features selection techniques, and synthetic 

data generation method. Then, in Chapter 5 discussions on the results obtained from 

experimentation performed in this study are presented while highlighting main 

contributions of this work. Finally, Chapter 6 presents the conclusions and future 

outlooks. 

1.6 Summary of the chapter 

To conclude, in this chapter a brief background in the advancements within smart 

manufacturing is presented followed by problem statements. Moreover, the main 

objective, aims of this work, and the thesis contributions are outlined. Finally, thesis 

structure is presented. 

In the following section, the theories and general information regarding machine 

learning, smart manufacturing, and semiconductor manufacturing process are 

presented. Similarly, the issues and challenges within smart semiconductor 

manufacturing process are drawn. Then, the chapter reports the issues and description 

of the semiconductor manufacturing process dataset used in developing and validating 

the proposed methodologies and models in this thesis.
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Chapter 2 

2 BACKGROUND INFORMATION 

This section provides the theories and general information regarding learning 

algorithms, smart manufacturing, and semiconductor manufacturing process. 

Furthermore, the issues and challenges within semiconductor manufacturing process 

are described. 

2.1 Machine learning (ML) 

Lately, ML within the contexts of AI [14] has appeared to be one of the most powerful 

tools that can be applied in several applications to develop intelligent predictive 

algorithms. It has been developed into a wide field of research over the past decades. 

ML can be defined as a technology by which the outcomes can be forecasted based on 

a model prepared and trained on past or historical input data and its output behavior 

[15]. ML approaches are known to have tremendous advantages, as they have the 

ability in handling multivariate, high dimensional data and can extract hidden 

relationships within data in complex, dynamic, and chaotic environments [6], [16], 

[17]. Selecting the most appropriate, simple and the most efficient ML algorithm could 

be of a great concern when building the predictive model. Similarly, when selecting 

the algorithm to use for a particular problem, it is significant to know the difference 

amongst ML categories and their types as well as their way of training and validation 

techniques in order to be able to investigate and prepare the data of choice correctly. 
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2.1.1 Machine learning types and classifications 

ML algorithms are characterised into three different types including supervised, 

unsupervised, and reinforcement learning [6], [18], [19]. As stated in [6], different 

algorithms can be combined together in order to maximize the classification power. 

To add on, some among the ML algorithms are both applicable to unsupervised and 

supervised learning. Figure 1 shows the types and categorisation within ML 

algorithms. Also, they are categorized into three categories including classification, 

regression, and clustering. 

 
Figure 1: Classifications within Machine Learning Techniques. 

ML algorithms usually require collecting huge amount of data of the failure status 

scenarios and the health conditions scenarios for model training. ML algorithm 

development covers the historical dataset selection, dataset preprocessing, model 

selection, training and validation, as shown in Figure 2. 
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Figure 2: Main steps involved for ML model development. 

2.1.1.1 Multi-layer perceptron (MLP) 

MLP network is a supervised learning algorithm and a common type of ANN. MLP is 

one of the most common examples of feed-forward neural networks that has been 

applied in several practical applications [20], [21] MLP is considered as an efficient 

method of capturing non-linear relationships between the model parameters [21]. MLP 

consists of three layers as can be seen from Figure 3. These layers include; Input layer, 

Hidden layer, and Output layer [22]. MLP parameters including weight and bias values 

determine its outputs. Training process of MLP has to do with the creation of 

relationships between outputs the corresponding to inputs [23]. 
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Figure 3: Multi hidden layer MLP [24]. 

2.1.1.2 Support vector machine (SVM) 

SVM is a well-known ML technique which is widely used for both classification and 

regression analysis, due to its high accuracy [17], [25], [26]. SVM is defined as a 

statistical learning concept with an adaptive computational learning method. SVM 

learning algorithm is presented in Figure 4. SVM learning technique employs input 

vectors to map nonlinearly into a feature space whose dimension is high [27]–[29]. 

SVM is a supervised ML technique that can perform pattern recognition, classification, 

and regression analysis. 
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Figure 4: Support vector machine algorithm. 

2.1.1.3 Random forest (RF) 

RF was developed by Breiman, L. [30]. This is an ensemble learning algorithm made 

up of several DT classifiers, and the output category is determined collectively by 

these individual trees. When the number of trees in the forest increases, the fallacy in 

generalization error for forests converges. There are also important benefits of the RF. 

For example, it can manage high-dimensional data without choosing a feature; trees 

are independent of each other during the training process, and implementation is fairly 

simple; however, the training speed is generally fast and, at the same time, the 

generalization functionality is good enough [5]. Random forest algorithm for machine 

learning has tree predictions, and based on tree predictions, the RF provides random 

forest predictions [31]. The RF model is visualized in Figure 5. 
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Figure 5: Random forest. 

2.1.1.4 Logistic regression (LR) 

LR can be used to estimate the categorical variations with a given set of independent 

variables [32]. Figure 6 graphically illustrates the working principal of LR. 

 
Figure 6: Linear and logistic regression. 

2.1.1.5 Extreme gradient boosted trees (XGBoost) 

XGBoost was developed by Chen, T. & Guestrin, C. [33], a scalable tree boosting 

system that is widely used by data scientists and provides state-of-the-art results on 
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many problems. Figure 7 presents the XGBoost model tree. XGB classification trees 

can be able to not only reveal the significant of dataset features but to also develop a 

robust classification model. XGBoost involves the development of multiple ensemble 

of weaker trees (small trees) [2]. 

 
Figure 7: XGBoost algorithm tree. 

2.1.1.6 Gradient boosting trees (GBT)  

Boosting algorithms are methods that repetitively add several simple classification 

models known as weak learners to build a complex classification model with higher 

accuracy [34][35]. GBM achieves this by using a gradient optimization algorithm to 

reduce the loss function or extent of error [36]. The regression tree and the gradient 

boosting are combined into decision trees, with appropriate trimming. The algorithm 

consists of multiple decision trees, with each tree gradient down by learning from the 

n – 1 number of trees [36]. 

2.1.1.7 Decision tree (DT) 

Decision Tree is a network system composed primarily of nodes and branches, and 

nodes comprising root nodes and intermediate nodes. The intermediate nodes are used 
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to represent a feature, and the leaf nodes are used to represent a class label [27]. DT 

can be used for feature selection [37]. DT algorithm is presented in Figure 8. 

 
Figure 8: Decision tree algorithm. 

DT classifiers have gained considerable popularity in a number of areas, such as 

character identification, medical diagnosis, and voice recognition. More notably, the 

DT model has the potential to decompose a complicated decision-making mechanism 

into a series of simplified decisions by recursively splitting covariate space into 

subspaces, thereby offering a solution that is sensitive to interpretation [39]. 

2.1.1.8 Linear discriminant analysis (LDA) 

Linear discriminant analysis (LDA) is a generalization of Fisher’s discriminant 

method used in statistics, pattern recognition and machine learning to find a linear 

combination of features that separates two or more classes of objects or events [40]. 

The resulting combination may be used as a linear classifier, or, more commonly, for 

dimension reduction before classification. LDA is also closely related to principal 

component analysis (PCA) and factor analysis in that they both look for linear 

combinations of variables which best explain the data according to a defined objective 

[41]. Linear Discriminate Analysis (LDA) is one of the robust machine learning 

algorithms among the popular classifiers. The LDA projects the feature in the most 

discriminative ways for identification process [42]. LDA is a pattern recognition 
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method providing a classification model based on the combination of variables that 

best predicts the category or group to which a given compounds belongs. The basic 

theory of LDA is to classify the dependent by dividing an n-dimensional descriptor 

space into two regions that are separated by a hyperplane defined by a linear 

discriminant function [43]. The problem of finding the optimal be mathematically 

represented as the following maximization problem [44]. 

2.1.1.9 Adaptive boosting (AdaBoost) 

AdaBoost, short for "Adaptive Boosting", is one of the ensembles boosting classifiers. 

AdaBoost is an iterative ensemble ML technique can that combine several ML 

classifiers to increase the classifier prediction accuracy and performance (see Figure 

9). Also, it produces a prediction model in the form of an ensemble of weak prediction 

models, typically decision trees, with each new model attempting to correct for the 

deficiencies in the previous model [45]. It has been widely used in classification and 

regression for its capability to improve learning quality of weak learning algorithms 

[46][47][48]. 

 
Figure 9: AdaBoost [49]. 



 16 

2.1.1.10 Naïve bayes (NB) 

Naïve Bayes (NB) is among the simplest classifiers. It is based on the Bayes’ theorem 

with independence prediction [42], [50]. It estimates the most likely anticipated class 

by analysing the probability of test features and it performs well at measuring the 

density a dataset [42]. Mathematically Bayes’ theorem is stated as [51]; 

 𝑃(𝐴|𝐵) = 
𝑃(𝐵|𝐴) × 𝑃(𝐴)

𝑃(𝐵)
 (1) 

Where, P(A) is the probability of A, P(B) is the probability of B, P(A|B) is the 

conditional probability of A given B, and P(B|A) is the conational probability of B 

given A. When training naïve Bayes algorithm, the Bayes theorem provides a way of 

determining the posterior probability, P(c|x), from P(c), P(x), and P(x|c). Naive Bayes 

classifier assume that the effect of the value of a predictor (x) on a given class (c) is 

independent of the values of other predictors. This assumption is called class 

conditional independence [49]. 

 𝑃(𝐶|𝑥) = 
𝑃(𝑥|𝐶)× 𝑃 (𝐶)

𝑃(𝑥)
 (2) 

Where, P(c|x) is the posterior probability of class (target) 

given predictor (attribute). P(c) is the prior probability of class. P(x|c) is the 

likelihood which is the probability of predictor given class. P(x) is the prior 

probability of predictor. 

2.2 Smart manufacturing and machine learning 

In most of the manufacturing processes, product quality, cost and the time to deliver 

are the main key features for enterprises to attain long-term competition. Process 

engineers must be able to point out abnormalities in peculiar products features during 

the processes of manufacturing [4]. Nowadays, modern technologies in manufacturing 

and smart manufacturing systems enable to collect data measurements from the 

equipment sensors in real time process control, as it is very hard using traditional 
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process control techniques to control or monitor hundreds of processing stages within 

the manufacturing systems. With such high volume of data collected throughout the 

manufacturing processes or systems, effective monitoring and optimal process control 

can be carried-out by the process engineers by investigating and analyzing these 

datasets so that the monitoring would be much easier. 

SMSs are defined as fully-integrated systems and as collaborative manufacturing 

systems that can respond in real-time to meet customers need, changing demands, and 

conditions in the factory and supply network [52]. SMSs aim at integrating big data, 

Industrial Internet of Things (IIoT), advanced analytics, and high-performance 

computing, into conventional manufacturing processes and systems to produce highly 

customizable products at very low cost and with higher quality, [53]. Moreover, the 

synthesis of those advanced technologies and the manufacturing capabilities can 

increase the he agility, productivity, and sustainability of SMSs [54]. The rapid 

developing AI technologies, ML and DL in particular, are one of the promising tools 

that further boost these SMSs industries [55]. In the environment of Internet of Things 

(IoT), Industry 4.0, Big Data, cloud computing, and other advanced technology 

provides great support in the growth of intelligent manufacturing [56]. Several 

algorithms and techniques have been developed such as ML algorithms to learn 

valuable information from the data produced in manufacturing sectors and to make the 

manufacturing smarter [57]. 

2.2.1 Semiconductor manufacturing process 

With no intention of completeness, this section describes the fabrication process of 

semiconductor wafer. Interested reader is directed to [58] and a PhD thesis [59] for a 

detailed description. 
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The semiconductor industry is arguably at the forefront of the most cost intensive 

technological advanced industries. The pervasive nature of the semiconductor devices 

implies that they are widely used in every segment of our lives. With ever increasing 

demand of semiconductor devices, addressing production related problems and 

increasing output in the industry is getting more complex [60]. Over the past decades, 

developments in semiconductor technology have made electronic devices smaller, 

faster, cheaper, reliable and more advanced to handle huge amount of data with higher 

degree of complexity[61]. Semiconductor is often referred to as integrated 

circuit/microchip that is made from silicon/germanium. Semiconductor is a basic 

building blocks that is used to make electronic devices [61]. Figure 10 shows a typical 

silicon semiconductor wafer. 

 
Figure 10: A typical silicon semiconductor wafer [62] 

In the manufacturing of semiconductors, it entails numerous simultaneous processes 

involving several inter-operating machineries [63], [64]. Typically, more than 500-

steps are required to fabricate each semiconductor wafer [65]. The sequence of 
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semiconductor manufacturing process involves the following main steps (Figure 11): 

the production of silicon wafers, integrated circuits fabrication onto the silicon wafers, 

assembly by putting the integrated circuit inside a package to form a ready-to-use 

product, and testing of the finished products/yield [4], [8], [12]. Semiconductor wafer 

fabrication process involves numerous complicated processes, such as oxidation, 

photolithography, cleaning, etching, and planarization, many among these processes 

are executed repeatedly. These basic concepts of semiconductor wafer fabrication are 

shown and explained in Figure 12. 

 
Figure 11: Overview of the main steps involved in the SECOM process [61]. 
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Figure 12: Overview of the detailed and explanation of SECOM fabrication process, 

adapted from [66]. 

2.2.1.1 SECOM dataset description 

Equipment embedded with production sensors used in semiconductor fabrication 

process generates immense amounts of data in real-time. The amount of generated data 

is so overwhelming such that it makes preemptive detection of production faults is 

difficult to achieve [60]. The SECOM dataset analyzed in this study is gotten from the 

UCI machine learning repository [67]. The data has been analyzed with the 

methodology proposed in the previous section. 

Semiconductor Manufacturing (SECOM) dataset is a public dataset [68] that is 

acquired from semiconductor manufacturing process. Hence, it has been used as a 

benchmarking dataset for assessing predictive ML models in the context of smart 
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manufacturing [2]. The data contains both semiconductor quality and manufacturing 

operations datasets. The dataset represents a selection of process related data taken 

from a production line. Within the production line there are several major checks 

points for in house line testing to ensure product functionality [64]. 

The dataset contains 591 features, among these attributes/features there is one response 

attribute that classifies the product as if it pass or fail the quality test. The data is 

composed of 1567 instances, each instance is recorded after the product has been tested 

as if it pass or fail the quality test using 590-sensor measurements, i.e., 1567 x 591 

matrix. Amongst these 1567 instances, 104 where been classified as ‘fail class’ 

encoded as 1, whereas the rest have been classified as ‘pass class’ encoded as -1, see 

Table 1 and Figure 13A. 

Table 1: SECOM dataset description. 

# Raw data 

Number of Features  590 

Number of classes (pass and fail)  2  

Number of ‘pass’ instances   1463 

Number of ‘fail’ instances  104 

Total number of instances  1567 

The following insights have been drawn after analyzing the SECOM dataset: 

• The class imbalance distribution among the two classes with a ratio of 1:14 

(failed to passed classes) is of a great concern. Because, the imbalance is a big 

issue when it comes to classification algorithms as some algorithms cannot 

handle such issue, thus, this issue of data imbalance has to be dealt with in 

order to develop a model that can classify the two classes without miss 

classifying the minority class as the majority class. 
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• Feature selection has to be carried out, because some of the recorded features 

might not be useful in developing the predictive model as some recorded no 

values and some have unique values.  

•  Approximately, 6.64% of the dataset are missing (see Figure 13B, the yellow 

shaded parts). We could say this missingness in the dataset is unknown. It could 

be due to the sensors or they were never measured. However, this missingness 

has to be dealt with using appropriate methods as some of the algorithms do 

not efficiently work with missing values. 

 
Figure 13: SECOM dataset description: (A) Instances distribution within the two 

classes. (B) Missing vs observed datapoint values. 

2.3 Summary of the chapter 

This chapter reports the general background info on machine learning, smart 

manufacturing and semiconductor manufacturing processes. The definition of 

machine learning, its types and the categories are discussed. Moreover, issues and 

challenges in the semiconductor manufacturing processes are detailed. Lastly, the 

chapter reported the issues and description of the semiconductor manufacturing 

(A) (B) 
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process dataset used in developing and validating the proposed methodologies and 

models in this thesis. 

The next chapter reports the recent advancements in smart manufacturing with a main 

focus on semiconductor manufacturing processes. In the chapter, applications of 

numerous different techniques of machine learning within smart semiconductor 

manufacturing processes are reported and discussed. The chapter categorized the ML 

algorithms based on the ML technique considered, data preprocessing technique 

considered, feature selection technique considered, synthetic data generation 

technique considered, the model validation technique considered, model evaluation 

metrics considered, and the respective study key findings. The literature studies have 

been conducted in those areas of interest to further determine and define the current 

state-of-the-art knowledge, determine the feasibility of the research questions, and the 

research methodologies that have been applied in this thesis. 
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Chapter 3 

3 LITERATURE REVIEW 

From a comprehensive perspective, this thesis pinpointed and categorized the ML 

algorithms based on the ML technique considered, data preprocessing technique 

considered, feature selection technique considered, synthetic data generation 

technique considered, the model validation technique considered, model evaluation 

metrics considered, and the respective study key findings. 

3.1 ML techniques applied to SMSs 

SMSs, makes available of operational performance data that was previously not 

available for performance management. At one time, such data when collected, was 

used mostly for production control, or not collected at all [69]. Machine learning 

techniques, as emerging techniques, are been explored for a broad range of SMSs 

recently. They are been investigated widely in different stages of manufacturing 

including concept, design, operation, production, evolution, and sustainment  [70] as 

shown in Figure 14. In this work, we have investigated the application of ML 

techniques applied to ‘materials, processing and manufacturing’. 

Many manufacturing problems belong to the class of classification problems where 

the industrial domain experts are requested to assign a class to an object or dataset 

according to the state of the parameters of that object. Based on the experience made 

in this field, faults happen quite often in the process of production of any kind. Not 

being able to detect and correct those faults means increase of production costs and it 
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could even be a reason for production delay or complete standstill. These reasons led 

to in-creased interest of industry for machine learning techniques as a most efficient 

way to develop an expert knowledge-based system. 

 
Figure 14: Application scenarios of ML applied to SMS  [70]. 

In [71], data mining techniques and their applications to manufacturing are 

investigated. The review covers the different categories of production processes, 

operations, fault detection, maintenance, decision sup-port, and product quality 

improvement [70]. Application schemes of ML in manufacturing are identified and 

summarized in [72], where they introduce the data quality problem in the context of 

supply chain management (SCM) and propose methods for monitoring and controlling 

data quality. Evolution and future of manufacturing are reviewed in [73], where in the 

study they highlighted the significance of data modelling and analysis in 

manufacturing intelligence. A study on big data analytics modeling in metal cutting 

industry has been reported in [74]. Major key technologies, overall concept of Smart 

Manufacturing, the key system structure, and each key technology were investigated 
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and reported in [75]. Moreover, the work identified and predicted the trends and future 

of Smart Manufacturing by conducting various analyses on the application areas and 

technology development levels. The advancements and development of machine 

learning in smart manufacturing is reviewed in [76].A comparative study was reported 

by [77] on ML algorithms for smart manufacturing (SM) of tool wear prediction using 

RF. The study introduced a RF-based prognostic technique for prediction of a tool 

wear, then the performance of the RF algorithms with feed-forward back propagation 

(FFBP) were compared to the SVR and ANN algorithms. Results from the conducted 

experiment have shown that, RF-algorithms outperformed SVR and FFBP ANNs with 

single-hidden layer in tool wear prediction. The algorithms were evaluated with 

experimental dataset collected from 315 milling tests, R-squared, training time, and 

mean squared error were measures of the performance.  

[78] reported a comprehensive review of machine learning techniques used in 

manufacturing diagnosis. The study considered 20 articles published within the range 

of 2007 to 2017. Moreover, they only focused on the applications of four machine 

learning techniques applied to manufacturing diagnosis namely; ANN, Bayesian 

networks, SVM, and hidden Markov model. 

Anomaly detection algorithm was proposed by [79] that can be used successfully to 

detect defects in nanofibrous materials.  Conducted experiments on a sizable dataset 

of scanning electron microscope (SEM) images confirmed that, effectively tiny defects 

can be detected by the proposed algorithm, similarly, in a reasonable time the 

algorithm can processes images. Therefore, the proposed algorithm can be applied in 

SMS for nanofibrous material production, to control the quality of the produced 

material by spot checks. These checks allow to adjust the production process 
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parameters and, when regularly performed, to raise alerts when the production quality 

falls below a desired standard, yielding both economic and environmental advantages. 

The proposed method has been validated successfully over 45 images acquired from 

samples produced by a prototype electrospinning machine [80] proposed a framework 

for prognostics and health management applications toward SMS. In the study a 

detailed survey was carried out to gather the existing studies that deal with 

maintenance strategies and system failures in the field of SMS. Multi-agent 

reinforcement learning, and Deep Q-network (DQN) a new reinforcement-learning 

technique, have been proposed by [81] which can accommodate the characteristics of 

SM marketplace. 

A comparative study was reported by [82] on Deep Learning (DL) method of H20 ML 

framework and another ML methods from Microsoft Azure where Letter Recognition 

Data Set from UCI Machine Learning Repository was utilized. The aim was to present 

the possibilities of DL algorithms and their applications in industrial environment. 

Moreover, [83] reported a comprehensive review survey in SM of commonly used DL 

algorithms and discussed their applications in that area. The evolvement of DL 

technologies and their advantages over conventional ML algorithms was discussed.  

Consequently, computational techniques based on DL are presented, particularly those 

that aim to improve the system performance in SM sectors. They concluded that DL 

provides advanced analytics and offers great potentials to SM in the age of big data. 

Cost-sensitive CNN model was proposed by  [84] for CCPR problem. The architecture 

of the proposed model was tuned for several abnormal pattern recognition problems. 

The model was compared with the standard/traditional and existing CNN models and 
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discover the robustness of cost-sensitive CNN for highly-imbalanced problem. 

Experimental studies were conducted using both real-world and simulated datasets. 

A cost-effective SVM-based model has been developed by [85] for automated QMC 

system and was installed at the door-trim manufacturing process using the kiosk. A 

case study was performed and shows that the proposed methodology using the cost-

effective SVM-based model can efficiently evaluate the real-time product quality with 

minimum number of defective parts by type-II errors. The proposed model can be 

applied as a complementary or an alternative tool for the conventional/semi-

automated/manual QMC systems. 

The effectiveness of application of the Statistical Learning Theory (SLT) to MS is 

illustrated by aiming to develop a predictive model for quality forecasting of products 

on an assembly line [86]. In their work they targeted to deliver a summary of the pros 

and cons of the SLT framework. The proposed SVM with a linear formulation was 

applied to a case study on an assembly line, where the model functions to provide a 

binary value, in the smallest-time possible, which then gives an alert if the final 

product fails to reach the required quality constraints. They concluded that SLT model 

has proven to be an effective method in several other applications such as density 

estimation, regression, multi-class classification, etc. Similarly, the proposed SLT 

model can be applied to other settings of MS. 

An extensive review on ML applications in manufacturing has been reported by [60]. 

Where in the study the main focused was on reviewing ML applications towards 

SECOM production processes and assembly lines. In their paper relevant studies 
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describing the applications of machine learning techniques in these fields of 

manufacturing have been studied and reported. 

3.1.1 ML techniques applied to the semiconductor manufacturing process dataset 

Recently, modern technology in SECOM allows real time process control with the 

measured data gained from the equipment sensors installed in the production line. This 

recorded data of the entire manufacturing process, effective monitoring and optimal 

process control by investigating and analyzing these data are difficult work for process 

engineers. Traditional process control methodology like univariate and multivariate 

control charts is no longer an efficient method to control manufacturing systems with 

hundreds of processing stages. Instead, automatic and advanced process control 

method are required, for instance machine learning and deep learning techniques. 

SECOM dataset is one of the most applied datasets in the context of manufacturing 

systems, as it has been applied for the purpose of benchmarking the machine learning 

algorithms developed in several fields of studies. Similarly, in this work, this dataset 

is used as a benchmarking data in validating the performance of our proposed models.  

A new data analytics frameworks model has been proposed in [2] for faults prediction 

in a large-scale manufacturing process, and SECOM dataset was used in validating the 

model. Where in their work the main focus is mainly on the approaches for identifying 

the important features from the dataset, feature selection, and an updated framework 

methodology and description. Two feature selection methods were used in the study 

including embedded and wrapper methods. XGBoost algorithm for prediction was 

developed and its performance has been compared with a RF-tree-based algorithm. 

The framework developed was able to effectively recognized the key features 

associated with product failure in each production line data. 
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An experimental study has been proposed [87] that evaluates different approaches 

including different levels for data imputation, data imbalance, feature selection, and 

classification techniques for the SECOM dataset. Moreover, the study proposed a 

novel process for data imputation that were inspired by image in-painting. Based on 

the obtained results, they were able to identify the suitable tools and stages for 

classifying the SECOM dataset. Results show that LR outperform the other 

classification algorithms and “In-painting KNN-Imputation” for data imputation, for 

synthetic data generation SMOTE was found to be the best and estimated false 

discovery rate for feature selection. Munirathinam and Ramadoss [3] proposed ML 

models including ANN, SVM, LR, NB, DT, and k-NN to automatically develop a 

predictive model that can predict equipment failures during SECOM process. Also, 

they constructed a decision model that helps in detecting equipment faults for 

maintaining higher process yields in manufacturing. Four feature selection techniques 

were considered including variable selection, correlation analysis, PCA, and average 

Diff method. 

Kerdprasop and Kerdprasop [4] proposed models including k-NN, LR, NB, and DT 

that can automatically detect faults during wafer fabrication process. PCA, Gain ratio, 

and MeanDiff feature selection techniques were compared. Rare Case Boosting 

oversampling technique was used to handle the issue of imbalance in the dataset. The 

developed models were evaluated using TPR, TNR, precision, and F1 score metrics of 

performance. Experimental results show that right features selection and rare class 

oversampling enhance the model performance accuracy. They added, Oversampling 

technique applied to DT increase the performance of the model in terms of TPR. 
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Lee et al. [65] proposed critical process steps selection for SECOM process. Where in 

their work three data mining techniques were investigated under three missing value 

rates deletion. They applied meanDiff technique for feature selection and 75% dataset 

for training with the remaining 25 for testing the model. DR, LR, k-NN, and SVM 

were the considered algorithms, in where they have been evaluated across five metrics 

of performance including accuracy, precision, true positive rate (TPR), true negative 

rate (TNR), and F1_score. 

Performance of six machine learning models including k-NN, RF, LR, DT, MLP, and 

AdaBoost is compared [88]. In the study, the algorithms were trained using dataset 

with and without dimensionality reduction, where three different feature selection 

techniques are considered including PCA, LDA, and SELECTFDR. They used 

SMOTE to address the issue of class imbalance in the dataset. Mean cross validation 

(CV) was used in training the algorithms with accuracy and ROC curve as the measure 

of performance. Based on their experimental results obtained, LR gave best 

performance with features selected using PCA. 

Anghel et al. [89] proposed ML and DL techniques for error prediction in 

manufacturing process. Where MARS and SVM feature selection techniques are 

analyzed. The work developed and compares the performance of MARS + GBT and 

SVM + NN models. In comparison, SVM + NN deep learning technique outperforms 

MARS + GBT ML technique 

A priori algorithm has been applied to SECOM dataset for mining the relations 

between operation parameters and quality outcomes [90]. In the data preprocessing 

stage, redundant features were discarded, PCA was used for important features 
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selection, a boosting technique was considered in sampling the minority class of the 

dataset. Some number of models are trained using 3:1 data split and their performance 

was evaluated using five metrics of performance. 

Moldovan et al. [91] applied PCA, MARS and Boruta feature selection techniques 

while developing three machine learning models including RF, LR and GBT for fault 

detection and diagnosis. Several dataset cleaning techniques were considered 

involving removal of features with at least 55% missing values rates, missing values 

replacement with mean; mean heuristic; nearest neighbor heuristic; and numerical 

value. The performance of the models is analyzed under; unsampled dataset, 

oversampled and under sampled using SMOTE. k-Fold CV technique was used while 

training the models and five metrics of performance were considered to score the 

models. ANN, RF, LR, and DT prediction classification models are developed using 

30% dataset holdout for testing [92]. Performance of SMOTE and ransom under-

sampling techniques was compared using features selected from PCA. the models are 

evaluated using several metrics of performance. 

Ko and Fujita [93] proposed an evidential analytics to disclose buried information in 

big data samples where UCI SECOM dataset is used as a case study. A framework 

model is proposed for model search using machine learning [94]. The proposed 

framework model was evaluated using two different datasets including SECOM 

dataset. An MLP model is proposed [95] that can be used to classify products as faulty 

or nonfaulty, the nodes of the algorithm were determined using Chicken Swarm 

Optimization (CSP) algorithm. Two different datasets were considered including 

SECOM and SETFI datasets to validate the proposed MLP+CSP model. Kim et al. 

[96] proposed a particle swarm optimization–deep belief network (PSO-DBN) for 
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minority classification where SECOM dataset was used in validating the model. Two 

feature selection techniques including standard deviation and Euclidean distance were 

used for selecting the most influential features from the dataset. 

Table 2 gives a comprehensive summary of the most recent studies applied on the 

SECOM dataset. While reviewing the literature it has been pointed out that, SECOM 

dataset is one of the most widely explored public datasets in manufacturing domain, 

as it has been used in benchmarking several studies in the literature. Therefore, in this 

work, the aforementioned dataset has been implemented and trained ML algorithms 

for faults diagnosis in semiconductor manufacturing process. 

3.2 Summary of the chapter 

This chapter reports the literature review on the applications of machine learning 

techniques for smart semiconductor manufacturing processes. A special attention was 

on reviewing the recent advancements of machine learning techniques for 

semiconductor manufacturing processes, in where the reviewed studies are classified 

and reported in Table 2. The studies are categorized based on on the ML technique 

considered, data preprocessing technique considered, feature selection technique 

considered, synthetic data generation technique considered, the model validation 

technique considered, model evaluation metrics considered, and the respective study 

key findings. Next chapter presents the research methodology. 

 



 34 

Table 2: Summary of the recent ML algorithms applied to SECOM dataset. 
ML Algorithms Data Cleaning/Preprocessing Feature Selection Sampling Technique Validation 

Technique 

Metrics of 

Evaluation 

Key Findings  Reference 

k-NN, RF, LR, 

DT, MLP and 

AdaBoost 

• With and without 

dimensionality reduction  

• PCA 

• LDA 

• SELECTFDR 

• SMOTE • mean CV • ROC curve 

• accuracy 

• RF performs poorly due to the data 

imbalance 

• LR + PCA performs better 

• LR + SELECTFDR is best suited for the 

dataset 

• Imbalance causes the models to deliver 

worse performance  

• SMOTE helps in RF performance 

enhancement  

• k-NN gave the highest mean-CV score 

[88] 

DT, LR, k-NN, 

SVM 

EM imputation. 

3 σ rule 

• 80%, 

• 50%, and  

• 20% deletion of the 

dataset 

• MeanDiff • SMOTE • 75|25 split • accuracy 

• precision 

• TPR 

• FPR 

• f-measure 

• proposed critical process steps selection for 

SECOM 

• Implemented three data mining techniques 

• Investigated the SECOM dataset under 

three missing value rates 

• proposed methods show good classification 

performance 

[65] 

GBT and NN • Removal of features with 

0 standard deviation 

• Features with at least 

55% missing values are 

removed 

• MARS 

• SVM 

• - • 80|20 split • Accuracy 

• TPR 

• FPR 

• Precision 

• F - measure 

• Proposed ML and DL techniques for error 

prediction in manufacturing process 

• MARS and SVM features selection 

techniques are analyzed  

• MARS + GBT and SVM + NN models are 

developed 

• In comparison, SVM + NN deep learning 

technique outperforms MARS + GBT ML 

technique  

[89] 

Rough Set, SVM, 

NB, ID3, CART, 

C5.0, and A Priori 

• Remove redundant 

features  

• PCA • Boosting • 3:1 split • Accuracy 

• TPR 

• Geometric 

mean 

• Balanced 

error rate 

• F1_score 

• Introduced quality prediction modeling 

framework for MMS environment 

• A priori algorithm has been applied to 

SECOM dataset for mining the relations 

between operation parameters and quality 

outcomes 

• The methodology can help manufacturers to 

obtain real time quality info of 

manufacturing lines 

• The framework can help in manufacturing 

processes optimization 

[90] 
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SVM, KNN, RF 

and LR 

• Data pruning 

• In-painting k-NN-

imputation 

• UFS 

• selecting from a model 

• RFE 

• PCA 

• SMOTE • k-Fold CV • AUC 

• TNR 

• Proposed in-painting k-NN imputation 

• Analyzed feature importance from the best 

methodology perspective 

• LR outperforms all other algorithms 

• SMOTE was found to be the best for data 

generation 

• SELECTFDR features selection found to be 

the best 

• Proposed in-painting imputation technique 

shows good performance  

[87] 

RF, LR, and GBT Features with at least 55% 

missing values are removed. 

Missing values replacement 

with: 

• mean 

• mean heuristic 

• nearest neighbor 

heuristic  

• numerical value 

• Boruta 

• MARS 

• PCA  

• SMOTE; 

under-sampling and 

oversampling 

• Unsampled 

• k-Fold CV • false positive 

rate 

• accuracy  

• precision 

• recall 

• f-measure 

• applied MARS and Boruta features 

selection techniques 

• results show that, best model performance 

was obtained when the majority class are 

under-sampled; under-sampled + Boruta + 

RF 

• better precision is obtained with Boruta and 

MARS 

• better accuracy is obtained with unsampled 

data using RF and LR 

[91] 

ANN, RF, LR and 

DT 

Missing values removal. • PCA • SMOTE 

• RUS (ransom 

under-sampling) 

• 70|30 split • accuracy 

•  precision 

• sensitivity  

• specificity  

• f-measure 

• applied SMOTE for data imbalance solving 

• proposed methodology manages to solve 

the imbalance between the two classes 

[92] 

RF and XGBoost • assign missing instances 

with independent group 

missing value replacement 

with a unique value 

• wrapper 

• embedded 

• SMOTE • k-Fold CV • accuracy  

• sensitivity  

• specificity  

• f-measure 

• proposed a new data analytics framework 

for faults prediction 

• focused on features selection and important 

features identification 

• XGBoost performance was compared with 

RF’s 

• Proposed framework identified influential 

features successfully 

[2] 

ANN, SVM, LR, 

NB, DT and KNN 

Cleansing procedures to 

discard missing values. 

• variable selection 

• correlation analysis  

• PCA 

• Average Diff method 

• - • k-Fold CV • TPR 

• FPR 

• precision 

• f-measure 

• MCC, ROC-

area, PRC, 

PRC-area 

• recall  

• proposed ML techniques to automatically 

develop a predictive model that can predict 

equipment failures during SECOM process 

• constructed a decision model that helps in 

detecting equipment faults for maintaining 

higher process yields in manufacturing  

[3] 

k-NN, LR, NB, 

and DT 

• Features with single 

values are removed 

• PCA 

• Gain ratio 

• MeanDiff 

• Rare Case 

Boosting: 

oversampling 

• k-Fold CV • TPR 

• FPR 

• Precision 

• Proposed models that can automatically 

detect faults during wafer fabrication 

process 

[4] 
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• Features with no value 

entry are removed 

• Features with at least 

55% missing values are 

removed 

 

•  • F1_score • Proposed methods of features selection and 

oversampling 

• Results show that right features selection 

and rare class oversampling enhance the 

model performance accuracy 

• Developed NB model can classify the fault 

cases with a high rate, similarly false alarm 

rate 

• Oversampling technique applied to DT 

increase the performance of the model in 

terms of TPR. 

PCA: Principal component analysis; SELECTFDR: False discovery rate; SMOTE: Synthetic minority oversampling technique; CV: Cross validation; MARS: Multivariate adaptive regression spline; UFS: Univariate 

feature selection; RFE: recursive feature elimination; EM: expectation Maximization; 
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Chapter 4 

4 RESEARCH METHODOLOGY 

This section describes the thesis methodology and the stages that were followed in 

detail for the prediction model development, and how each amongst these stages was 

carried-out explicitly. As seen in Chapter 2, literature studies have been carried-out in 

the areas of interest to determine and define the current state-of-the-art knowledge, 

determine the feasibility of the research questions and the research methodologies that 

have been applied in this thesis. This chapter comprises of three sections. First, section 

4.1 presents the methodology for machine learning techniques development for 

classification. Then, section 4.2 presents the process of model selection, the followed 

model training and validation techniques. Finally, the concluding remarks of this 

chapter are reported in section 4.3. 

4.1 ML techniques development for classification 

The proposed methodology for classification model’s development in this thesis is 

summarized. The following summarizes the sequence of the methodology followed:  

A. Data identification and collection. 

B. Data preprocessing stage; this is the step that clean and process the data for 

model training by performing:  

a) Data cleaning 

b) Feature selection 

c) Feature scaling  

C. Data sampling: oversampling the data if it’s imbalanced or highly imbalanced. 
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D. Model selection and training 

E. Model validation and performance metrics: 

a) Confusion metrics. 

b) Accuracy 

c) Recall  

d) Precision  

e) Specificity  

f) F1_score 

4.1.1 Proposed methodology  

All the steps in model development are implemented in Google Colab Environment 

using Python Programming Language. Figure 15  shows the methodology framework 

followed while training the predictive models for SECOM dataset classifier models 

development. 

The classification ML algorithms as mentioned in the previous subsection, namely; 

MLP (ANN), XGBoost, LR, DT, NB, LDA, RF, SVC, AdaBoost and GBT have been 

selected, trained and validated, and their performance metrics have been evaluated and 

compared. Moreover, while training the models, two approaches have been considered 

as follows: 

1. model training with training/testing data split (80|20 split) validation approach. 

This technique of model training has been applied in [89], and [90]. 

2. model training with k-Fold cross validation approach. This methodology of 

validation has been applied in [2], [3], [4], [87] and [91]. 
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Each of the approaches mentioned above has been considered in order to explore the 

applicability of the two methods, and also to discover which among the algorithms 

performs better against the two methods. 

Firstly, for the model training, the dataset has been divided into training and testing 

sets, 80% for training and 20% for testing as the first validation technique. Throughout 

this work, all the algorithms considered are trained with the same ratio of data split. 

Then, the models are trained using CV as the second validation technique. Six among 

the trained models are trained with 7-Fold, namely, MLP, NB, LDA, RF, AdaBoost 

and GBT. Two are trained with 3-Fold including LR and SVC. XGBoost is trained 

with 13-Fold, and DT with 10-Fold. For each model, the different number of k-Fold is 

selected because the model performs better with the selected number of k. 
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Figure 15: Overall framework of the proposed methodology for predictive ML development.
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4.1.2 Dataset 

As this work aims at further exploring the machine learning technologies applicable 

to smart manufacturing domains. It is important to find the suitable and available 

dataset to explore. While reviewing the literature, it has been pointed out that SECOM 

dataset is one of the most widely explored public datasets in manufacturing process, 

as it has been used in benchmarking several studies in the literature. Table 2 

summarizes some of these studies that have utilized UCI SECOM dataset in 

benchmarking their proposed models. Therefore, in this work, the SECOOM dataset 

has been used to validate the proposed methodologies and to train ten ML algorithms 

for faults diagnosis in semiconductor manufacturing process. 

4.1.3 Dataset preprocessing  

Dataset obtained from manufacturing domain can contain little or large amount of 

redundant information that, if fed to the predictive ML model, can affect the 

performance of the model and result in an unreliable result [2]. Similarly, it is of great 

importance finding a suitable way on how to process the data or the dataset at hand 

(data preprocessing) when developing a ML model. Thus, the ML predictive model 

can be developed with that preprocessed data and evaluated. 

4.1.3.1 Data cleaning  

Data cleaning helps in handling data features like outliers and missing values so that a 

faultlessly organized dataset could be obtained. The following steps were followed in 

this work for the imbalanced datasets cleaning: 

I. all features with empty/no values have been removed. Considered in [3]. 

II. all features with unique values have been removed. This method has been 

implemented in [2] and [4]. 
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III. all features with less than half of their values have been removed. Applied in 

[4] and [89]. 

4.1.3.2 Data imputation 

After data cleaning, there were still some number of cells with missing data points, 

thus, the cells with missing values had to be replaced and needed to be processed for 

ML development. From the literature there are several different techniques proposed 

that can be implemented to handle such cases of missingness. Removal of any feature 

with a missing value is one of the techniques that could be used and as proposed in 

some of the literatures. However, this approach will for certain remove some features 

from the dataset that may have the highest impact on the predictive model performance 

outcome. As a result, the efficiency of the model may be rendered. Similarly, 

substitution of the missing values with ‘mean’ is one of the proposed approaches for 

data imputation [87]. In this thesis, we adopted and applied mean and k-NN data 

imputation techniques, as they have been implemented for the missing values 

substitution. 

4.1.3.2.1 Mean data imputation 

Mean imputation is one of the most often used method for missing values imputation 

[97]. For a given instance or attribute, the method uses mean to replace the missing 

datapoint. This technique has been considered in [91]. 

4.1.3.2.2 k-NN data imputation 

k-NN imputation [97]–[99]  uses k-NN algorithm to estimate and substitute the 

required missing attribute. The importance of k-NN imputation include the creation of 

predictive model for each attribute with missing datapoints is not required, k-NN can 

handle instances with several missing datapoints, and it can also predict both continues 
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and discrete attributes. Moreover, k-NN algorithm can be used to get weighted vectors 

for attributes in a dataset [99]. 

4.1.3.3 Feature scaling or normalizing 

Feature scaling is a method that can be applied to dataset in order to normalize it. The 

main goal of normalizing the data with the help of feature scaling is to transform the 

continuous input and output data to a linear scale values that ranges from -1 to 1 or 0 

to 1. -1 to 1 scaling method is considered in this work. Feature scaling help the model 

to easily learn the important features from the data. This means that all the features are 

normalized to the values ranging from -1 to 1. The standard scaling using mean and 

standard deviation is implemented in this work. The standard score of a sample feature 

is calculated using equation: 

 𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  = 
𝑋− 𝑋𝑚𝑒𝑎𝑛 

𝑋𝑠𝑡𝑑
 (3) 

where x is the feature data to be normalized, xmean is the mean of the feature data or 0 

if the data has no mean value, and xstd is the standard deviation of the training feature 

data sample or 1 if it has no standard deviation. 

4.1.3.4 Feature selection 

Selection of the most crucial features is what helps the most when developing ML 

predictive model. Therefore, it is important to use the most appropriate and best 

method in selecting the features for model development as those features influence the 

performance of the model having no features with missing data points as they have 

been filled from the data imputation using ‘mean’ substitution of the feature columns. 

The lack of missingness in the dataset allows us to proceed with feature selection. 

Feature selection techniques applied in this work is Principal Component Analysis and 

Univariate feature selection (SELECTFDR). 
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4.1.3.4.1 Principal component analysis (PCA)  

PCA is a multivariate technique that analyzes a data table in which observations are 

described by several inter-correlated quantitative dependent variables. Its goal is to 

extract the important information from the table, to represent it as a set of new 

orthogonal variables called principal components, and to display the pattern of 

similarity of the observations and of the variables as points in maps [100]. 

Mathematically, PCA relies upon the singular value decomposition of rectangular and 

the eigen-decomposition of positive semi-definite matrices. Similarly, the technique 

lessens the dimension of dataset by calculating the covariance and then perform eigen 

value decomposition of the covariance matrix. In this work, the method of selecting 

all the features with eigen values of at least greater than 1 is applied. This technique 

has been applied in [3], [4], [88], [90], [87], [91] and [92]. 

4.1.3.4.2 Univariate feature selection (UFS) 

This feature selection technique selects the best features with the highest score after 

performing univariate statistical tests on the input dataset  [87]. In this thesis the 

scoring function used is estimated false discovery rate (SELECTFDR). This technique 

is considered because it has been applied in [87] and has shown promising results. In 

fact, it performed better than the other UFS selection techniques they considered in 

their work. 

4.1.3.5 Synthetic data generation techniques (SDGT) 

In a dataset if there is any class or group with small or very large number of instances 

compared to another class, that data is referred to as imbalanced dataset, and it is a 

common problem in real data and data mining [65]. Most classification algorithms 

provide poor metrics of performance when trained with an imbalanced dataset. 
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Synthetic sampling data generation methods are applied in a wide range of studies to 

solve such type of problem. 

When a dataset has passed preprocessing - the stages of cleaning, data points 

imputation (if it has missing values) and feature scaling and selection, then, if there is 

an imbalance or a high imbalance between the desired output classes, the synthetic 

data sampling generation method can be applied in order to generate synthetic data to 

balance the imbalance within the two classes, so that the model could learn better from 

the dataset. 

Sampling method help in creating a synthetic data by oversampling the minority of the 

desired output class. Synthetic Minority Oversampling Technique (SMOTE) [101] and 

SMOTE with Selective Synthetic Sampling Generation are among the techniques used 

in generating synthetic data for imbalanced classification problems. SMOTE has been 

considered in several studies including [2], [65], [87], [88], [91] and [92]. To the best 

of our knowledge, no one has reported a study on BSMOTE-SVM and ADASYN 

using SECOM dataset. 

Implementation of the aforementioned sampling techniques was applied to balance the 

minority class, and to ensure that the minority class is as sufficient as the majority 

class for the classification model to learn from, and to be able to classify the two 

classes easily without misclassifying the minority class. 

4.1.3.5.1 Synthetic minority oversampling technique (SMOTE) 

SMOTE [101] uses k-NN to create new instances in order to maintain the balance 

between the two classes [96]. Based upon the amount of data required to be over-

sampled randomly, neighbors from the k nearest neighbors are selected [101]. The 

class with minority instances is oversampled by taking or considering each class in the 
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minority sample and introducing synthetic examples along the line segments joining 

any or all of the k minority class nearest neighbors. Figure 16 illustrates the procedure 

involved in SMOTE data generation. SMOTE data generation consists of the 

following steps: 

a. A sample from the minority class will be selected at random 

b. k number of nearest neighbors near to that selected minority sample will be 

selected. Usually, k is set at 5. 

c. Generation of the synthetic samples between the selected minority sample and 

that 5 nearest neighbors’ samples. These steps will be repeated till the number 

of minority samples equal to that of the majority samples. 

Creating the synthetic data by oversampling the minority class helps in making the 

minority class equal to the majority class, so that any classification algorithm that may 

have difficulty handling the imbalanced class and learning from the data could easily 

and efficiently classify the two classes. SMOTE increases the amount of data without 

altering the variation or information of the data, or feeding new information or 

variation to the learning model [102]. 

4.1.3.5.2 Borderline-SMOTE SVM (BSMOTE-SVM) 

BSMOTE-SVM [103] uses a decision boundary to generate the synthetic data between 

the two classes, unlike SMOTE that creates synthetic data at random. Also, BSMOTE-

SVM uses ensemble SVM algorithm to identify the misclassification and generate 

more samples in the minority class. The technique uses SVMs to generate the samples 

near the decision boundary. As shown in Figure 17, samples near decision boundary 

can be roughly characterized from support hyperplane learned by the first SVM [103]. 

The generated synthetic minority sample tend to correct the skewness distribution 
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within the two class samples finely, as the decision boundary skew towards the 

minority. Simply put, it gives more attention to where the dataset is separated. 

 
Figure 16: Illustration of SMOTE data generation technique [65]. 

 
Figure 17: Illustration of BSMOTE-SVM data generation technique [103]. 

4.1.3.5.3 Adaptive synthetic oversampling (ADASYN) 

ADASYN [104] is an extension of SMOTE that generates synthetic data samples in 

the minority class according to their weighted difference distribution. In regard to that, 
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ADASYN focuses more on the minority class samples that are harder to learn than 

those minority samples that are easier to learn. It helps in reducing the learning bias 

introduced by the imbalance amongst the classes, and also it adaptively shifts the 

decision boundary to focus on those minority samples that are difficult to learn. 

4.2 Predictive model selection, training and validation 

The selected algorithms to be trained are listed in the previous section (section 4.1.1). 

These classifiers are selected, trained and validated in the Google Colab Environment 

using Python Programming Language. 

The technique for validating the selected classifiers used in this work is Cross 

validation (CV) technique. Among  the methods of cross validation, the one used in 

this thesis is k-Fold cross validation [105] as it is the most commonly used method and 

it is used for validating most of the classifier models. The main objective of applying 

CV is to let the model learn from all the training data by dividing the dataset into a 

number of k-subsets as k-Fold subsets. One subset is used for validation and the 

remaining k-1 subsets are used in training the model [106], [107]. Moreover, CV helps 

in increasing the performance of classifiers. 

Note: Sometimes, k-Fold method is used in a situation where the training dataset 

seems to be small or the number of attributes is insufficient for the classifier model to 

learn from. Thus, k-Fold can be applied to divide the dataset into k number of subsets 

and the model will take one subset from the k-number of subsets with which to test 

itself after training from the rest of (k-1)-subsets. It will keep doing so until it train and 

test itself on the k-number of divided subsets. For instance, say the number of k is 3. 

This means 3-Fold. So, the classifier will be trained with 2 data subsets from the 3 
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subsets and be tested on the remaining 1 data subset. Similarly, the same will be done 

with the other two subsets, until it is done three times, with each subset being used as 

a testing data and the rest for training. 

4.2.1 Predictive model evaluation metrics 

The classifiers have to be evaluated with the right evaluation metrics in order to avoid 

bias in the model performance. Thus, if you choose the wrong metric in evaluating the 

classifier models, it is most likely that you could be misled about the expected 

performance of your classifier model. Figure 15 shows the schematic process of the 

classifier models development. 

Selecting an appropriate classifier for your model could be challenging in in general. 

Similarly, when dealing with an imbalanced dataset, problems, particularly 

classification problems involving imbalanced dataset, tend to be tedious to handle in 

terms of evaluating the classifier. Because most of the standard metrics used assume a 

balanced class distribution, and of course not all the classes are distributed equally, not 

all the performance metrics for evaluation could be useful for imbalanced 

classification. Classification accuracy and error are among the most widely applied 

standard metrics for evaluating classification models. However, these metrics evaluate 

the classifiers considering the classes as equally important. If the dataset is 

imbalanced, then the accuracy matric will not be used for evaluation. Hence, precision 

and recall metrics must be used in this case in order to have non bias evaluation. 

Such metrics might be needed as give a focus on the minority class, because it is from 

the minority class that we lack enough features required to train and get an effective 

predictive model. There are tens of evaluation metrics from which to choose in order 

to evaluate or measure the performance of the classifier model. To mention a few, 
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classifier models can be assessed with the use of standard statistical metrics including 

accuracy, specificity, sensitivity,  precision, etc. [2]. 

4.2.1.1 Confusion matrix 

These performance measure evaluation metrics would best understand with the help 

of a confusion matrix. Confusion matrix gives more insight into the performance of a 

predictive ML model. Similarly, the matrix identifies and tells which classes are being 

correctly and incorrectly predicted and classified. Table 3 below shows the summary 

on how confusion matrix is and how each cell in the table has a specific and well-

understood name. 

Table 3: Confusion Matrix for Predictive Model Evaluation. 
  Predicted Class 

Positive Prediction Negative Prediction 

True Class Positive Class (Pass) True Positive (TP) False Negative (FN) 

Negative Class (Fail) False Positive (FP) True Negative (TN) 

The cells in the confusion matrix could be defined as follows; TP refers to true positive 

or the number of fail classes that are identified accurately as fail classes, FP refers to 

false positive or the number of pass class that are identified incorrectly as fail class, 

FN refers to false negative or the number of fail classes that are misclassified as pass 

classes, and TN refers to true negative or the number of pass classes that are classified 

correctly as pass classes. 

4.2.1.2 Accuracy performance metric 

Accuracy is the most widely used threshold metric. However, this metric may not 

generally be appropriate for imbalanced classification. Because, a high accuracy from 

a model could be achieved by only predicting the majority class without being able to 

predict the minority class. Accuracy is defined as correct predictions divide by the total 

number of predictions. 
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 Accuracy =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

4.2.1.3 Sensitivity and specificity performance metrics 

Sensitivity-Specificity and Precision-Recall metrics are the two metrics groups that 

are considered in this work plus the accuracy of the predictive model. Sensitivity 

means the true positive rate and states how well the positive class is predicted; 

whereas, specificity is the true negative rate, and it summarizes how well the negative 

class is predicted. Note that sensitivity is more preferred over specificity for 

imbalanced problems classification. 

 Specificity =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (5) 

 Sensitivity =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

4.2.1.4 Precision, recall and F1_score performance metrics 

Precision gives summary of the fraction between examples of the positive class that 

belong to the positive class. Recall tells how well the examples of the positive class 

were predicted. Sensitivity gives the same measurements as recall. On the other hand, 

F1_score incorporates both precision and recall to balance the tradeoff [108]. 

 Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

 Recall =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 (8) 

 F1_score =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (9) 

4.3 Summary of the chapter 

Throughout this chapter, methodologies followed in this thesis have been presented. 

These methodologies comprise data cleaning, missing datapoints imputation 

techniques, most potential features selection techniques, features normalizing 
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technique, synthetic data generation techniques, model training and validation 

techniques, model development, and model performance evaluation. 

Firstly, two missing datapoints imputation techniques were presented: missing 

datapoints imputation using mean and using k-NN, followed with a feature 

normalizing technique. Secondly, two feature selection known as dimensionality 

reduction techniques were presented: principal component analysis and univariate 

feature selection. Thirdly, three synthetic data oversampling techniques were proposed 

including SMOTE and its two variants: Borderline-SMOTE SVM and ADASYN. 

These techniques were proposed so as to handle the issue of class imbalance in the 

semiconductor manufacturing dataset, investigate their feasibility, and compare their 

performance in the semiconductor manufacturing processes. Then, two model 

validation techniques were considered; 80|20 split and k-Fold cross validation. Finally, 

seven metrics of performance evaluation were presented so as to measure the 

performance of the proposed methodologies using the proposed algorithms. The next 

chapter reports the experimental results. In the chapter, a case study has been 

conducted using dataset from a semiconductor manufacturing process.  
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Chapter 5 

5 EXPERIMENTAL RESULTS  

The experimental results using the proposed methodologies are reported in this 

chapter. The chapter contains two sections, section 5.1 and 5.2. 

Section 5.1 reports the experimental results on a case study conducted using a dataset 

from semiconductor manufacturing process. The section is divided into six 

subsections. First, section 5.1.1 presents the analysis, results, and influence of the main 

steps from the proposed methodologies on the considered predictive models using the 

SECOM dataset. These steps include the investigation of: starting from the effect of 

data cleaning, the effect of datapoints imputation techniques, the effect of datapoints 

imputation techniques with feature selection, the effect of mean imputation technique 

and feature normalizing and selection using PCA, then the effect of synthetic minority 

oversampling technique on the SECOM modified raw dataset. Second, section 5.1.2 

presents the experimental results obtained using the overall proposed methodologies 

using SMOTE. Third, section 5.1.3 reports the general experimental results obtained 

using Borderline-SMOTE SVM on the proposed methodologies. Fourth, section 5.1.4 

reports ADASYN experimental results using the proposed methodologies. Then, 

section 5.1.5 reports the experimental results general comparison analysis considering 

several perfectives.  Lastly, section 5.1.6 gives the comparative analysis between our 

experimental results obtained and similar studies reported experimental results. 

Section 5.2 reports the concluding remarks of this chapter. 
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5.1 A case study on semiconductor manufacturing process 

This section analyzes the semiconductor manufacturing process dataset by applying 

the proposed methodologies from the previous chapter using ten machine learning 

algorithms for fault detection in the semiconductor manufacturing processes. 

5.1.1 ML development using SECOM dataset 

5.1.1.1 SECOM dataset cleaning 

Dataset obtained from manufacturing domain can contain some amount of redundant 

information, that if fed to the predictive ML model, can affect the performance of the 

model and result in an unreliable outcome, as stated above. At first, we explore the 

dataset, thus, some features have been removed, because some of them contain no 

data-points, unique value, or little number of data-points. Amongst 590 features about 

140 were deleted, see Table 4. 

Table 4: Dataset description before and after each step. 

#number of: Raw data   MRD MRD + MI + PCA MI+ S + PCA MRD + MI + SMOTE 

features  590 450 17 221 450 

‘pass’ instances   1463 1463 1463 1463 1463 

‘fail’ instances  104 104 104 104 1463 

instances  1567 1567 1567 1567 2926 

MRD: Modified raw dataset; MI: Mean imputation; S: Scaling;  

5.1.1.1.1 Model development using (MRD) modified raw dataset 

In this section, ten machine learning algorithms are selected for the predictive models’ 

development. 80|2 split validation technique was used for training and building the 

models. That is, 80% of the dataset is used for model development and the remaining 

is used to validate the performance of the proposed models. Confusion matrix of the 

experimental results obtained is shown in Table 10. Only XGBoost was able to 

generate results whereas, rest of the models failed to generate any. This happens 

because the dataset is noisy as it contains missing values. Similarly, Table 5 shows the 
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performance measures obtained when the four models are trained with raw and 

modified dataset. 

5.1.1.1.2 Effect of datapoints imputation  

This section analyzes the effect of data points imputation on the modified raw data. 

Two imputation methods have been adopted and their effect on the prediction models’ 

performance has been evaluated. These imputation techniques include mean and k-NN 

missing datapoints imputation techniques, and their experimental results are shown in 

Table 10 and Table 5. Note that, the same number of features from previous section is 

used to train the models, that is 450 features. 

As clearly seen from the results, all the developed models were able to generate some 

results when the missing datapoints in the dataset are substituted using those 

imputation techniques, unlike in the previous section. However, most of the models 

(including XGBoost, LR, RF, SVC, and GBT) were not able to classify the fail class 

with an exception of MLP, DT, NB, LDA, and AdaBoost, each of which managed to 

classify few when trained using dataset with missing datapoints mean imputation. 

XGBoost, RF, and SVC produce similar performance using both techniques of 

imputation. GBT managed to classify the fail class correctly 2 times when trained with 

dataset using k-NN imputation. 

5.1.1.1.3 Effect of datapoints imputation and features selection without scaling 

Then, we tried to analyze the effect of features selection (using PCA) on the modified 

raw dataset in this section, but we did not perform any normalizing on the features. 

Also, only mean imputation is considered in this section. After PCA, 17 features were 

selected from 450, see Table 4. The parameter setting of PCA are set to select features 

with 0.99 variance. As a result, 17 features were selected from those 450 features. That 
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happened because the dataset is noisy and had missing values and it had not been 

normalized. Table 5 shows the experimental results obtained when the models were 

trained with the 17 features selected using PCA. Results obtained clearly show that 

feature selection has no or has little effect on the models’ performance, because similar 

results are obtained in the previous section (5.1.1.1.2), but slightly different. 

5.1.1.1.4 Effect of mean imputation, features scaling and selection  

To increase the efficiency and accuracy of the proposed classifier models, in this 

section we analyzed the effect of features scaling and feature selection. Moreover, 

these features are real values and the feature interval values differ from one another. 

Thus, there is a need for feature normalization called feature scaling. Standard scaler 

is used to normalize the features to a range of around -1 to 1. All the features are 

normalized by subtracting the mean of the feature value and dividing it by standard 

deviation of the feature values, and thus, they range between -1 to 1. PCA was used 

for features selection. As a result, 221 features were selected by PCA as the most 

important features. Refer to Table 4 to see the description of the dataset used in this 

section. Moreover, features with 0.99 variance are selected (using PCA). Normalizing 

increases the number of features selected by PCA technique when compared with 17 

features that are selected when the dataset has not been normalized. Then, these 

features with mean imputation are considered in developing the ML models. 

The results obtained are shown in Table 10 and Table 5. Similar results were obtained 

as in previous sections (5.1.1.1.2 and 5.1.1.1.3). This shows that, features scaling has 

no or little impact on the models’ performance. However, features normalizing helps 

PCA to select a greater number of features for the model trained. 
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5.1.1.1.5 Effect of SMOTE, without features scaling and selection 

In this section, SMOTE has been applied in order to generate more synthetic data 

within the minority class to equal the distribution between the two classes as they have 

a ratio of 1:14. This technique has been applied in order to solve this problem of 

imbalance between the two classes and to determine its effect on the model’s 

performance. Also, it has been applied to the whole dataset, not just the training subset 

as what many researchers have considered. After implementing SMOTE, the two 

classes are balanced and now the models training stage can be carried out. See Table 

4 for the dataset description used in this section. 

Table 10 and Table 5 report the results of the performance metrics obtained when the 

algorithms are trained using the modified raw dataset with SMOTE synthetic data 

generation, and shows the confusion matrix results obtained. The tables clearly show 

how the performance of the models is improved as they were able to classify the fail 

class. RF outperforms all the developed models followed by XGBoost. SVC delivers 

least metrics of performance in comparison to the other models, because it is sensitive 

to unnormalized data. 

5.1.1.1.6 Discussion on the results obtained 

This section discusses and compares the results obtained from the previous sections 

(5.1.1.1.1 to 5.1.1.1.5). First, we tried to analyze the effect of each step in the 

preprocessing stage. We did so in order to verify and figure out the step that has the 

main impact on the performance of the proposed models. It has been clearly seen from 

this analysis that, most of the steps have no or little impact on the model development 

when trained with imbalanced dataset. However, the performance of the algorithms 

significantly increases when trained with dataset after SMOTE implementation. 
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Consequently, the imbalance of the dataset has the greatest impact on the models’ 

performance. Table 5 reports the comparison amongst the experimental results 

obtained in this section. 
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Table 5: Metrics of performance results obtained before and after each step. 
Methods: Accuracy  Recall  Precision  Specificity F1_score 

MRD MRD 

+ MI 

MRD 

+ k-

NNI 

MRD 

+ MI 

+ PCA 

MRD 

+ MI 

+ FS + 

PCA 

MRD + 

MI + 

SMOTE 

MRD MRD 

+ MI 

MRD 

+ k-

NNI 

MRD 

+ MI 

+ PCA 

MRD 

+ MI 

+ FS + 

PCA 

MRD + 

MI + 

SMOTE 

MRD MRD 

+ MI 

MRD 

+ k-

NNI 

MRD 

+ MI 

+ PCA 

MRD 

+ MI 

+ FS + 

PCA 

MRD + 

MI + 

SMOTE 

MRD MRD 

+ MI 

MRD 

+ k-

NNI 

MRD 

+ MI 

+ PCA 

MRD 

+ MI 

+ FS + 

PCA 

MRD + 

MI + 

SMOTE 

MRD MRD 

+ MI 

MRD 

+ k-

NNI 

MRD 

+ MI 

+ PCA 

MRD 

+ MI 

+ FS + 

PCA 

MRD + 

MI + 

SMOTE 

MLP NAN 0.7293 0.9140 0.9268 0.9268 0.9215 NAN 0.2500 0.0000 0.0000 0.0500 0.9486 NAN 0.0667 0.0000 0.0000 0.3333 0.8994 NAN 0.7619 0.9762 0.9898 0.9932 0.8946 NAN 0.1053 0.0000 0.0000 0.0870 0.9233 

XGBoost 0.9363 0.9363 0.9363 0.9299 0.9299 0.9676 0.0000 0.0000 0.0000 0.0000 0.0000 0.9589 NAN NAN NAN 0.0000 NAN 0.9756 1.0000 1.0000 1.0000 0.9932 1.0000 0.9762 0.0000 0.0000 0.0000 0.0000 0.0000 0.9672 

LR NAN 0.9299 0.9299 0.9363 0.9363 0.7235 NAN 0.0000 0.0000 0.0000 0.2500 0.7329 NAN 0.0000 0.0000 NAN 0.2500 0.7181 NAN 0.9932 0.9932 1.0000 0.9490 0.7143 NAN 0.0000 0.0000 0.0000 0.2500 0.7254 

DT NAN 0.8885 0.8949 0.8503 0.8503 0.9078 NAN 0.1500 0.2500 0.0000 0.1500 0.9589 NAN 0.1429 0.2174 0.0000 0.1364 0.8696 NAN 0.9388 0.9388 0.9082 0.9354 0.8571 NAN 0.1463 0.2326 0.0000 0.1429 0.9121 

NB NAN 0.2070 0.1815 0.9013 0.9013 0.5734 NAN 0.7000 0.7500 0.0500 0.0500 0.9623 NAN 0.0545 0.0562 0.0769 0.0588 0.5404 NAN 0.1735 0.1429 0.9592 0.9456 0.1871 NAN 0.1011 0.1045 0.0606 0.0541 0.6921 

LDA NAN 0.9108 0.9204 0.9236 0.9236 0.9147 NAN 0.4500 0.4000 0.0000 0.2000 1.0000 NAN 0.3462 0.3810 0.0000 0.3333 0.5838 NAN 0.6422 0.9558 0.9864 0.9728 0.8299 NAN 0.3913 0.3902 0.0000 0.2500 0.9211 

RF NAN 0.9363 0.9363 0.9363 0.9363 0.9846 NAN 0.0000 0.0000 0.0000 0.0000 0.9726 NAN NAN NAN NAN NAN 0.9965 NAN 1.0000 1.0000 1.0000 1.0000 0.9966 NAN 0.0000 0.0000 0.0000 0.0000 0.9844 

SVC NAN 0.9363 0.9363 0.9363 0.9363 0.6775 NAN 0.0000 0.0000 0.0000 0.0000 0.7979 NAN NAN NAN NAN NAN 0.6419 NAN 1.0000 1.0000 1.0000 1.0000 0.5578 NAN 0.0000 0.0000 0.0000 0.0000 0.7115 

AdaBoost NAN 0.9236 0.9299 0.9236 0.9236 0.9266 NAN 0.0500 0.2000 0.0000 0.0000 0.9349 NAN 0.1667 0.4000 0.0000 0.0000 0.9192 NAN 0.9830 0.9796 0.9864 0.9762 0.9184 NAN 0.0769 0.2667 0.0000 0.0000 0.9270 

GBT NAN 0.9331 0.9299 0.9331 0.9331 0.9642 NAN 0.0000 0.1000 0.0000 0.0000 0.9589 NAN 0.0000 0.3333 0.0000 0.0000 0.9689 NAN 0.9966 0.9864 0.9966 0.9898 0.9694 NAN 0.0000 0.1538 0.0000 0.0000 0.9639 

MRD: Modified raw data; MI: Mean imputation; FS: Features scaling; 
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5.1.2 Proposed methodology with SMOTE 

In this section, the overall proposed methodology is analyzed considering the 

implementation of SMOTE synthetic data generation technique. Refer back to 

RESEARCH METHODOLOGY and Figure 15 to see the overall methodology. 

Moreover, the effect of mean (5.1.2.1) and k-NN (5.1.2.2) imputation techniques are 

considered separately in the following subsections. Table 6 reports the description of 

the dataset used while training the models. Two validation techniques are considered 

including 80|20 split and k-Fold cross validation. All the ten models are trained using 

80|20 split validation technique. However, different number of k is considered while 

training using k-Fold cross validation technique. 7-Fold is considered for MLP, NB, 

LDA, RF, SVC, AdaBoost, and GBT; 13-Fold for XGBoost; 3-Fold for LR and 10-

Fold for DT. 

Table 6: Datasets characteristic used for ML model development after preprocessing 

with and without SDGT. 

#number of: 

Methods: 

MI + PCA - 

without SDGT 

UFS - without 

SDGT 

MI + PCA - with 

SDGT 

k-NNI + PCA - 

with SDGT 

k-NNI + UFS - 

with SDGT 

features  221 38 221 219 38 

‘pass’ instances   1463 1463 1463 1463 1463 

‘fail’ instances  104 104 1463 1463 1463 

instances  1567 1567 2926 2926 2926 

SDGT: Synthetic data generation technique; MI: Mean imputation; k-NNI: k-NN imputation;  

Six methodologies are proposed including MI + PCA + SMOTE + 80|20 split, MI + 

PCA + SMOTE + CV, k-NNI + PCA + SMOTE + 80|20 split, k-NNI + UFS + SMOTE 

+80|20 split, k-NNI + PCA + SMOTE + CV, and k-NNI + UFS + SMOTE +CV. Ten 

machine learning for fault diagnosis models are trained using these proposed 

methodologies. The respective results obtained from the experimentation are reported 

in the following subsections. 
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5.1.2.1 Mean imputation with SMOTE 

First, we consider training the models by substituting the missing datapoints using 

mean imputation technique together with selecting the most important features using 

PCA. The experimental results obtained are shown in Table 11 (confusion metric 

results) and Table 7 (metrics of performance). These tables report the results obtained 

when the models are trained with 80|20 – split validation technique and the results 

obtained when the models are trained with CV technique. Moreover, Figure 18 A and 

B graphically illustrate the summary of the experimental results. 

5.1.2.2 k-NN imputation with SMOTE 

Then, we consider training the models by substituting the missing datapoints using k-

NN imputation technique together with selecting the most important features using 

PCA and UFS. Table 6 shows the characteristic of the dataset used after preprocessing 

and feature selection.  

Table 7 summarizes the results obtained when the models are trained with PCA and 

UFS features selection techniques when the models are trained with 80|20 – split 

validation technique. Similarly, the same table reports the results obtained when the 

models are trained with CV technique. Figure 18 C, D, E, and F show the results 

obtained using this method versus two considered feature selection techniques and two 

considered validation techniques. As can be seen from Table 11 and Table 7, the 

models performed better when trained with features selected using PCA because, PCA 

selects 219 as important features, whereas UFS selects 38. Thus, the reduction of the 

features selected caused a huge impact on the performance of the models. Possibly 

most important features that the models learn from are discarded when UFS is applied.  

From the classifiers considered, almost all the models performed better when validated 

with k-Fold cross validation technique. For instance, XGBoost plus PCA features 
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selection, where the model classifies the two classes (pass and fail) way better than it 

performed when trained with 80|20 split validation technique. 

5.1.2.3 Discussion on the results obtained using SMOTE 

Table 11 and Table 7 summarize the results obtained using two different features 

selection techniques as well as the comparison between the two validation techniques. 

Likewise, the comparison of these models has been reported based on which model 

among the models handled the dataset well in giving better performance. Figure 18 

shows the summary of the achieved results from the developed classifier models using 

six proposed methodologies: MI + PCA + SMOTE + 80|20 split, MI + PCA + SMOTE 

+ CV, k-NNI + PCA + SMOTE + 80|20 split, k-NNI + UFS + SMOTE +80|20 split, 

k-NNI + PCA + SMOTE + CV, and k-NNI + UFS + SMOTE +CV. 

Based on the results obtained, a drastic performance decrement was observed when 

the models are trained with the features selected using UFS (SELECTFDR) (Figure 

18 D and F), with the exception of MLP, in which the model performs equally in terms 

of recall using 80|20 split technique, and in terms of specificity and precision using 

CV technique. SVC and RF performed really well considering both validation 

techniques with a slight difference in their metrics of performance.  

Amongst all the models trained, NB failed to deliver good performance metrics when 

the model is trained using features selected from PCA features selection plus 80|20 

split technique. Similarly, it failed to deliver good results when trained with features 

selected from UFS, but with a better performance only in terms of specificity of 

0.9422.  
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It is observed that, SVC and RF are the best performing models developed from both 

validation techniques considered when features are selected using PCA features 

selection technique. GBT and AdaBoost gave an approximate similar trend 

performance in all the four approaches examined (PCA + 80|20 split PCA + CV, UFS 

+ 80|20 split UFS + CV). However, GBT outperforms AdaBoost in all the cases. 

Moreover, Figure 18  shows the results comparison. From the figure it can be clearly 

seen that almost all the models performed when trained with features selected from 

PCA. RF, MLP XGBoost and GBT. RF and MLP outperformed all the other models 

trained than any other model on the four techniques considered. This shows that the 

two models can be trained with features selected from both PCA and UFS. Since there 

is no much differences in their performance metrics measures. 

However, SVC, LR, LDA and NB tend to show differences in their metrics of 

performance as the models are trained with different features selected from the two 

features selection techniques. Similarly, the performance metrics of SVC + PCA 

excelled the performance of SVC + UFS in both two validation techniques. Thus, we 

could conclude that SVC is more compatible with the features selected using PCA, as 

it performs better with those features selected than with the features selected using 

UFS. DT and AdaBoost models performed moderately better on the four techniques 

followed. 

Table 7 reports the overall summary of the results obtained using SMOTE synthetic 

data generation technique against six different methodologies. These methodologies 

include MI + PCA + SMOTE + 80|20 split; MI + PCA + SMOTE + CV; k-NNI + PCA 

+ SMOTE + 80|20 split; k-NNI + UFS + SMOTE + 80|20 split; k-NNI + PCA + 
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SMOTE + CV; and k-NNI + UFS + SMOTE + CV. Th accuracy metric of performance 

tells the overall score of a developed classification model. From Table 7, in terms of 

accuracy, RF outpaces all the other developed models considering all the six 

methodologies considered. However, with an exception of ‘k-NNI + PCA + SMOTE 

+ 80|20 split’ technique, where SVC slightly performs better than RF with a score of 

0.9983. NB records the least performance in all cases (all six methodologies). 

MLP, XGBoost RF, and GBT performed best with MI + PCA + SMOTE + 80|20 split 

technique and least with k-NNI + UFS + SMOTE + CV. A reduction in performance 

is experienced the moment CV validation technique was applied in all the case rather 

than with 80|20 split validation technique, and a further reduction when UFS features 

selections was used. In contrast to MI, k-NN produces worse results when MLP was 

trained. This shows that, MLP learns better with features that are preprocessed with 

mean imputation. 

LR, DT, NB, LDA, SVC, and AdaBoost performed best with k-NNI + PCA + SMOTE 

+ 80|20 split technique and least with k-NNI + UFS + SMOTE + CV technique. This 

means that, these models learn better from the features preprocessed using k-NN 

imputation and selected using PCA and when trained with 80|20 split validation 

technique rather with CV. k-NN imputation works better for these models, 80|20 split 

works better compared to CV and PCA for features selection. 
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Figure 18: Results summary - (A) MI + PCA + SMOTE + 80|20 split. (B) MI + PCA + SMOTE + CV. (C) k-NNI + PCA + SMOTE + 80|20 

split. (D) k-NNI + UFS + SMOTE +80|20 split. (E) k-NNI + PCA + SMOTE + CV. (F) k-NNI + UFS + SMOTE +CV.
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5.1.3 Proposed methodology with Borderline-SMOTE SVM  

In this section, the overall proposed methodology is analyzed considering the 

implementation of Borderline SMOTE SVM synthetic data generation technique. 

Also, the effect of mean and k-NN imputation techniques are discussed separately in 

the following subsections. Table 6 reports the dataset descriptions used in this section. 

Similarly, like from the previous section (section 5.1.2), in this section too, two 

validation techniques are considered including 80|20 split and k-Fold cross validation. 

All the ten models are trained using 80|20 split validation technique. However, 

different number of k is considered while training using k-Fold cross validation 

technique. 7-Fold is considered for MLP, NB, LDA, RF, AdaBoost, and GBT; 13-Fold 

for XGBoost; 3-Fold for LR and SVC using PCA; 7-Fold using UFS and 10-Fold for 

DT. The methodologies proposed and studied in this section involve MI + PCA + 

BSMOTE-SVM + 80|20 split, MI + PCA + BSMOTE-SVM + CV, k-NNI + PCA + 

BSMOTE-SVM + 80|20 split, k-NNI + UFS + BSMOTE-SVM + 80|20 split, k-NNI 

+ PCA + BSMOTE-SVM + CV, and k-NNI + UFS + BSMOTE-SVM + CV. 

5.1.3.1 BSMOTE-SVM with mean imputation  

First, we used mean imputation to replace the missing values then applied the proposed 

methodologies and then, trained the models. Table 6 reports the dataset descriptions 

used. PCA is used in selecting the most important features and for synthetic data 

generation within the minority class, borderline SMOTE-SVM is used. The models 

are using 80|20 slip validation technique and k-Fold CV technique. Confusion matrix 

and performance metrics of the results obtained are shown in Table 11and Table 7, 

respectively. Figure 19 A and B illustrate the models’ metrics of performance results 

using mean imputation. 
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5.1.3.2 BSMOTE-SVM with k-NN imputation  

Then, the effects of k-NN missing datapoints imputation is analyzed alongside 

BSMOTE-SVM, and PCA and UFS features selection techniques using both two 

validation techniques involving 80|20 split and k-Fold CV. The dataset characteristics 

used is reported in Table 6. Ten classifier models were developed and analyzed 

including MLP, XGBoost, LR, DT, NB, LDA, RF, SVC, AdaBoost, and GBT. 

Confusion matrix obtained from the experiments are given in Table 11 and Table 7 

report the experimental results of 80|20 – split validation technique and k-Fold CV. 

Figure 19 C – F graphically show the experimental results obtained using k-NNI and 

BSMOTE-SVM synthetic datapoints generation technique. 

5.1.3.3 Discussion on the results obtained using BSMOTE-SVM 

Table 7 and Figure 19 report the overall summary of the results obtained using 

BSMOTE-SVM synthetic data generation technique against five different 

methodologies. These methodologies include MI + PCA + BSMOTE-SVM + 80|20 

split; k-NNI + PCA + BSMOTE-SVM + 80|20 split; k-NNI + UFS + BSMOTE-SVM 

+ 80|20 split; k-NNI + PCA + BSMOTE-SVM + CV; and k-NNI + UFS + BSMOTE-

SVM + CV. Contrary to the performance of the developed models, NB failed to deliver 

good performance in all five considered techniques, as it gave worst performance in 

all cases, like from the previous section. 

SVC was found to be the best performing algorithm with overall accuracy score of 

1.0000 when trained using k-NNI + UFS + BSMOTE-SVM + CV technique. It also 

outpaces all other algorithms in terms of accuracy when ‘MI + PCA + BSMOTE-SVM 

+ 80|20 split’ and ‘k-NNI + PCA + BSMOTE-SVM + 80|20 split’ techniques are 

considered. RF outperformed all other algorithms when k-NNI + UFS + BSMOTE-

SVM + 80|20 split technique was applied. MLP and RF performed equally with an 
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overall accuracy score of 0.9639 using k-NNI + UFS + BSMOTE-SVM + CV 

technique. Similarly, they outperformed the other algorithms. MLP, XGBoost, LR, 

LDA, RF, and GBT produced worse performance when trained with k-NNI + UFS + 

BSMOTE-SVM + CV technique. NB, SVC, and AdaBoost deliver worst performance 

with k-NNI + UFS + BSMOTE-SVM + 80|20 split, and DT with k-NNI + PCA + 

BSMOTE-SVM + 80|20 split. 
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Figure 19: Results summary – (A) MI + PCA + BSMOTE-SVM + 80|20 split. (B) MI + PCA + BSMOTE-SVM + CV. (C) k-NNI + PCA + 

BSMOTE-SVM + 80|20 split. (D) k-NNI + UFS + BSMOTE-SVM + 80|20 split. (E) k-NNI + PCA + BSMOTE-SVM + CV. (F) k-NNI + UFS + 

BSMOTE-SVM + CV.
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5.1.4 Proposed methodology with ADASYN 

In this section the effects of ADASYN synthetic data generation are investigated. 

Similarly, the effects of two different features selection techniques on this method of 

synthetic data generation are investigated as in the previous sections. Table 6 shows 

the dataset characteristics used in training the classifier models in this section. 

Similarly, the same approach was followed as in the previous sections (section 

5.1.2and 5.1.3). Two validation techniques are considered including 80|20 split and k-

Fold cross validation. All the ten models are trained using 80|20 split validation 

technique. For k-Fold CV, different number of k is considered while training the 

models. 7-Fold is considered for MLP, NB, LDA, RF, SVC, AdaBoost, and GBT. 13-

Fold for XGBoost, 3-Fold for LR, and 10-Fold for DT. These algorithms are trained 

using six proposed methodologies including MI + PCA + ADASYN + 80|20 split, MI 

+ PCA + ADASYN + CV, k-NNI + PCA + ADASYN + 80|20 split, k-NNI + UFS + 

ADASYN + 80|20 split, k-NNI + PCA + ADASYN + CV, and k-NNI + UFS + 

ADASYN + CV. 

5.1.4.1 ADASYN with mean imputation 

First, the effects of ADASYN are investigated using mean imputation technique. Table 

6 shows the dataset characteristic used in training the classifier models. Moreover, 

PCA was used to select the most important features. Table 11 shows results of the 

confusion matrix obtained. Table 7 reports the performance metrics of the developed 

models. It is clearly shown that, the models performed well with ADASYN synthetic 

data generation. Where, SVC and RF performed significantly well and equally, and 

then followed by MLP, XGBoost, and GBT. Figure 20 A and B graphically compare 

and show how these three models and the other seven performed. 
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5.1.4.2 ADASYN with k-NN imputation 

Lastly, the effects of k-NN missing datapoints imputation were analyzed alongside 

ADASYN synthetic data generation, and PCA and UFS features selection techniques 

using 80|20 split and CV validation techniques. The dataset characteristics used is 

reported in Table 6. Ten classifier models were developed and analyzed including 

MLP, XGBoost, LR, DT, NB, LDA, RF, SVC, AdaBoost, and GBT. Experimental 

results are reported in Table 11 and Table 7, including the confusion matrix and the 

performance metrics of the developed models. Figure 20 C to F graphically illustrate 

the comparison of the results obtained from the developed models using these 

techniques. 

5.1.4.3 Discussion on the results obtained using ADASYN 

Table 7 reports the overall summary of the results obtained using ADASYN synthetic 

data generation technique against six different methodologies proposed in this section. 

From Table 7, SVC reports an overall accuracy of 1.000 when trained with k-NNI + 

PCA + ADASYN + 80|20 split technique followed by RF with k-NNI + UFS + 

ADASYN + 80|20 split technique. Similarly, in this section NB fails to deliver good 

performance. 
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Figure 20: Results summary – (A) MI + PCA + ADASYN + 80|20 split. (B) MI + PCA + ADASYN + CV. (C) k-NNI + PCA + ADASYN + 

80|20 split. (D) k-NNI + UFS + ADASYN + 80|20 split. (E) k-NNI + PCA + ADASYN + CV. (F) k-NNI + UFS + ADASYN + CV.  
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Table 7: Metrics of performance overall experimental results obtained using three different SDGT. 
  Accuracy Recall Precision Specificity F1_score 

SDGT Models 

MI + 

PCA + 

80|20 

split 

MI + 

PCA + 

CV 

k-NNI 

+ PCA 

+ 

80|20 

split 

k-NNI 

+ UFS 

+ 

80|20 

split 

k-NNI 

+ PCA 

+ CV 

k-NNI 

+ UFS 

+ CV 

MI + 

PCA + 

80|20 

split 

MI + 

PCA + 

CV 

k-NNI 

+ PCA 

+ 

80|20 

split 

k-NNI 

+ UFS 

+ 

80|20 

split 

k-NNI 

+ PCA 

+ CV 

k-NNI 

+ UFS 

+ CV 

MI + 

PCA + 

80|20 

split 

MI + 

PCA + 

CV 

k-NNI 

+ PCA 

+ 

80|20 

split 

k-NNI 

+ UFS 

+ 

80|20 

split 

k-NNI 

+ PCA 

+ CV 

k-NNI 

+ UFS 

+ CV 

MI + 

PCA + 

80|20 

split 

MI + 

PCA + 

CV 

k-NNI 

+ PCA 

+ 

80|20 

split 

k-NNI 

+ UFS 

+ 

80|20 

split 

k-NNI 

+ PCA 

+ CV 

k-NNI 

+ UFS 

+ CV 

MI + 

PCA + 

80|20 

split 

MI + 

PCA + 

CV 

k-NNI 

+ PCA 

+ 

80|20 

split 

k-NNI 

+ UFS 

+ 

80|20 

split 

k-NNI 

+ PCA 

+ CV 

k-NNI 

+ UFS 

+ CV 

SMOTE MLP 0.9829 0.9808 0.9812 0.9710 0.9760 0.9639 1.0000 0.9615 1.0000 1.0000 0.9519 0.9279 0.9669 1.0000 0.9637 0.9450 1.0000 1.0000 0.9660 1.0000 0.9626 0.9422 1.0000 1.0000 0.9832 0.9804 0.9815 0.9717 0.9754 0.9626 

XGBoost 0.9744 0.9688 0.9625 0.9164 0.9775 0.9148 0.9795 0.9464 0.9829 0.9486 0.9640 0.8661 0.9695 0.9907 0.9441 0.8907 0.9907 0.9604 0.9694 0.9911 0.9422 0.8844 0.9910 0.9640 0.9744 0.9680 0.9631 0.9187 0.9772 0.9108 

LR 0.8976 0.9107 0.9164 0.7901 0.9117 0.7669 0.9726 0.8419 0.9795 0.7877 0.8419 0.7639 0.8452 0.9762 0.8693 0.7904 0.9785 0.7686 0.8231 0.9795 0.8537 0.7925 0.9815 0.7700 0.9045 0.9041 0.9211 0.7890 0.9051 0.7662 

DT 0.8532 0.8767 0.9061 0.8976 0.8767 0.8801 0.9110 0.8356 0.9555 0.9247 0.8356 0.8425 0.8160 0.9104 0.8692 0.8766 0.9104 0.9111 0.7959 0.9178 0.8571 0.8707 0.9178 0.9178 0.8608 0.8714 0.9103 0.9000 0.8714 0.8754 

NB 0.7696 0.7938 0.8106 0.5631 0.7861 0.5444 0.7979 0.7500 0.8151 0.1815 0.7692 0.9426 0.7540 0.8211 0.8068 0.7571 0.7960 0.5253 0.7415 0.8373 0.8061 0.9422 0.8029 0.1442 0.7754 0.7839 0.8109 0.2928 0.7824 0.6747 

LDA 0.8771 0.8822 0.8942 0.7901 0.8846 0.7572 0.9623 0.8077 0.9795 0.8014 0.8029 0.7596 0.8216 0.9492 0.8363 0.7826 0.9598 0.7560 0.7925 0.9567 0.8095 0.7789 0.9663 0.7548 0.8864 0.8727 0.9022 0.7919 0.8743 0.7578 

RF 0.9983 0.9976 0.9949 0.9744 0.9976 0.9663 0.9966 1.0000 0.9897 0.9863 1.0000 0.9567 1.0000 0.9952 1.0000 0.9632 0.9952 0.9755 1.0000 0.9952 1.0000 0.9626 0.9952 0.9760 0.9983 0.9976 0.9948 0.9746 0.9976 0.9660 

SVC 0.9966 0.9949 0.9983 0.8686 0.9959 0.8347 1.0000 0.9918 1.0000 0.9144 0.9938 0.8049 0.9932 0.9979 0.9966 0.8370 0.9979 0.8559 0.9932 0.9979 0.9966 0.8231 0.9979 0.8645 0.9966 0.9949 0.9983 0.8740 0.9959 0.8296 

AdaBoost 0.8720 0.8822 0.8925 0.8669 0.8801 0.8438 0.8733 0.8558 0.9075 0.8938 0.8702 0.8221 0.8703 0.9036 0.8804 0.8474 0.8873 0.8593 0.8707 0.9087 0.8776 0.8401 0.8900 0.8654 0.8718 0.8790 0.8938 0.8700 0.8786 0.8403 

GBT 0.9761 0.9736 0.9795 0.9232 0.9760 0.9161 0.9932 0.9567 0.9829 0.9452 0.9615 0.8750 0.9603 0.9900 0.9762 0.9049 0.9901 0.9529 0.9592 0.9904 0.9762 0.9014 0.9904 0.9569 0.9764 0.9731 0.9795 0.9246 0.9756 0.9123 

BSMOTE-

SVM 

MLP 0.9710 0.9736 0.9812 0.9676 0.9808 0.9639 0.9760 0.9712 1.0000 0.9932 0.9615 0.9279 0.9661 0.9758 0.9637 0.9446 1.0000 1.0000 0.9660 0.9760 0.9626 0.9422 1.0000 1.0000 0.9710 0.9735 0.9815 0.9683 0.9804 0.9626 

XGBoost 0.9744 0.9732 0.9744 0.9215 0.9775 0.9148 0.9555 0.9911 0.9795 0.9521 0.9640 0.8661 0.9929 0.9569 0.9695 0.8968 0.9907 0.9604 0.9932 0.9554 0.9694 0.8912 0.9910 0.964 0.9738 0.9737 0.9744 0.9236 0.9772 0.9108 

LR 0.9181 0.9158 0.9147 0.7577 0.9159 0.7668 0.9623 0.8706 0.9863 0.7295 0.8510 0.7692 0.8836 0.9571 0.8623 0.7717 0.9779 0.7656 0.8741 0.9610 0.8435 0.7857 0.9808 0.7644 0.9213 0.9118 0.9201 0.7500 0.9100 0.7674 

DT 0.8874 0.9031 0.8669 0.8993 0.8763 0.8801 0.9041 0.8828 0.9178 0.9178 0.8425 0.8425 0.8742 0.9209 0.8323 0.8845 0.9044 0.9111 0.8707 0.9236 0.8163 0.8810 0.9103 0.9178 0.8889 0.9014 0.8730 0.9008 0.8723 0.8754 

NB 0.8123 0.8702 0.7765 0.5410 0.7861 0.5444 0.6233 0.9808 0.7568 0.1370 0.7692 0.9426 1.0000 0.8031 0.7565 0.7018 0.7960 0.5253 1.0000 0.7596 0.7959 0.9422 0.8029 0.1442 0.7679 0.8831 0.7714 0.2292 0.7824 0.6747 

LDA 0.9078 0.9161 0.9778 0.9625 0.8846 0.7572 0.9281 0.8852 1.0000 0.9863 0.8029 0.7596 0.8914 0.9439 0.9574 0.9412 0.9598 0.7560 0.8878 0.9471 0.9558 0.9388 0.9663 0.7548 0.9094 0.9136 0.9782 0.9632 0.8743 0.7578 

RF 0.9710 0.9784 0.9898 0.9727 0.9976 0.9639 0.9418 1.0000 0.9795 0.9760 1.0000 0.9519 1.0000 0.9587 1.0000 0.9694 0.9952 0.9754 1.0000 0.9567 1.0000 0.9694 0.9952 0.9760 0.9700 0.9789 0.9896 0.9727 0.9976 0.9635 

SVC 0.9846 0.9805 0.9983 0.8208 1.0000 0.8465 0.9692 0.9959 1.0000 0.8288 1.0000 0.8125 1.0000 0.9661 0.9966 0.8148 1.0000 0.8711 1.0000 0.9651 0.9966 0.8129 1.0000 0.8804 0.9843 0.9808 0.9983 0.8217 1.0000 0.8408 

AdaBoost 0.8993 0.9159 0.8771 0.8276 0.8801 0.8438 0.9178 0.9087 0.8836 0.8082 0.8702 0.8221 0.8845 0.9220 0.8716 0.8399 0.8873 0.8593 0.8810 0.9231 0.8707 0.8469 0.8900 0.8654 0.9008 0.9153 0.8776 0.8237 0.8786 0.8403 

GBT 0.9727 0.9760 0.9659 0.9215 0.9736 0.9161 0.9486 0.9856 0.9726 0.9452 0.9615 0.8750 0.9964 0.9670 0.9595 0.9020 0.9852 0.9529 0.9966 0.9663 0.9592 0.8980 0.9856 0.9569 0.9719 0.9762 0.9660 0.9231 0.9732 0.9123 

ADASYN MLP 0.9815 0.9787 0.9812 0.9659 0.9762 0.9617 1.0000 0.9567 1.0000 0.9897 0.9519 0.9231 0.9645 1.0000 0.9637 0.9444 1.0000 1.0000 0.9628 1.0000 0.9626 0.9422 1.0000 1.0000 0.9819 0.9779 0.9815 0.9666 0.9754 0.9600 

XGBoost 0.9782 0.9693 0.9746 0.9215 0.9777 0.9022 0.9967 0.9464 0.9931 0.9521 0.9550 0.8571 0.9613 0.9907 0.9565 0.8968 1.0000 0.9412 0.9595 0.9914 0.9571 0.8912 1.0000 0.9469 0.9787 0.9680 0.9744 0.9236 0.9770 0.8972 

LR 0.9345 0.9100 0.9171 0.7577 0.9134 0.7646 0.9900 0.8378 0.9757 0.7295 0.8419 0.7577 0.8916 0.9761 0.8700 0.7717 0.9809 0.7672 0.8784 0.9801 0.8614 0.7857 0.9838 0.7714 0.9382 0.9017 0.9198 0.7500 0.9061 0.7624 

DT 0.8840 0.8847 0.8646 0.8959 0.8776 0.8836 0.9231 0.8414 0.9201 0.9144 0.8356 0.8552 0.8571 0.9173 0.8230 0.8812 0.9104 0.9051 0.8446 0.9267 0.8119 0.8776 0.9189 0.9116 0.8889 0.8777 0.8689 0.8975 0.8714 0.8794 

NB 0.7966 0.7825 0.7902 0.5410 0.7976 0.5431 0.8395 0.7308 0.7986 0.1370 0.7596 0.9471 0.7747 0.8085 0.7770 0.7018 0.8187 0.5225 0.7534 0.8326 0.7822 0.9422 0.8349 0.1429 0.8058 0.7677 0.7877 0.2292 0.7880 0.6735 

LDA 0.8941 0.8863 0.8985 0.7543 0.8860 0.7530 0.9732 0.7933 0.9861 0.7329 0.7990 0.7308 0.8410 0.9706 0.8353 0.7643 0.9653 0.7638 0.8142 0.9766 0.8152 0.7755 0.9717 0.7751 0.9023 0.8730 0.9045 0.7483 0.8743 0.7469 

RF 0.9966 0.9976 0.9932 0.9693 0.9976 0.9617 0.9967 1.0000 0.9861 0.9726 1.0000 0.9471 0.9967 0.9952 1.0000 0.9660 0.9952 0.9752 0.9966 0.9953 1.0000 0.9660 0.9953 0.9762 0.9967 0.9976 0.9930 0.9693 0.9976 0.9610 

SVC 0.9966 0.9960 1.0000 0.8208 0.9969 0.8311 1.0000 0.9918 1.0000 0.8288 0.9938 0.7741 0.9934 1.0000 1.0000 0.8148 1.0000 0.8727 0.9932 1.0000 1.0000 0.8129 1.0000 0.8878 0.9967 0.9959 1.0000 0.8217 0.9969 0.8205 

AdaBoost 0.8807 0.8771 0.8646 0.8276 0.8857 0.8489 0.8863 0.8558 0.8646 0.8086 0.8612 0.8173 0.8775 0.8900 0.8586 0.8399 0.9045 0.8718 0.8750 0.8977 0.8647 0.8469 0.9100 0.8804 0.8819 0.8725 0.8616 0.8237 0.8824 0.8437 

GBT 0.9748 0.9740 0.9763 0.9232 0.9762 0.9019 0.9933 0.9519 0.9896 0.9452 0.9569 0.8558 0.9581 0.9950 0.9628 0.9049 0.9950 0.9418 0.9561 0.9953 0.9637 0.9014 0.9953 0.9476 0.9754 0.9730 0.9760 0.9246 0.9756 0.8967 

SDGT: Synthetic data generation technique; MI: Mean imputation; k-NNI: k-NN imputation; PCA: Principal component analysis; UFS: Univariate features selection; 80|20 split: 80|20 split validation technique; CV: k-Fold cross validation technique; 
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5.1.5 Discussion and comparison on the overall experimental results 

In this work, ten prediction machine learning classifiers have been developed, namely; 

MLP (ANN), XGBoost, LR, DT, NB, LDA, RF, SVC, AdaBoost, and GBT. 

Semiconductor manufacturing process dataset was used to evaluate and validate the 

proposed diagnosis models. Moreover, this section discusses and compares the results 

obtained from different perspectives. Note that, this section discusses and compares 

the performance of the developed models only based on their accuracy. This is 

because, accuracy tells the overall performance of a prediction classifier. 

5.1.5.1 Effects of MRD, dataset preprocessing and SMOTE-based proposed 

methodology 

Table 9 reports an accuracy-based results comparison amongst MRD, MRD with main 

steps effects of dataset preprocessing, and proposed methodology using SMOTE and 

80|20 split validation technique. For better visualization, Figure 21 graphically shows 

how the performance of the models is affected with each and every step of data 

preprocessing starting from when trained with modified raw data. At first, when the 

algorithms were trained with raw and modified raw datasets, they failed to deliver any 

result, as the dataset contained missing values, however, with exception of XGBoost 

that managed to deliver some performance. Second, all the algorithms managed to 

deliver some performance when the missing values were substituted using missing 

values imputation methods. Third, the effect of features selection technique using PCA 

was analyzed on the modified raw dataset. However, the results obtained were similar 

with those obtained from previous steps. That is, at this moment PCA has no 

significant effect on the developed models’ performance. This is due to the dataset 

containing imbalanced classes. Consequently, the trained algorithms in the 

aforementioned steps failed to classify the minority classes. Later, the effect of 
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synthetic data generation was analyzed. SMOTE was applied in order to generate 

synthetic data within the minority class, so as to balance this problem of imbalance. 

As a result, changes were observed in the models’ performance. Refer to section 

5.1.1.1.1 through 5.1.1.1.5 to see the overall results and analysis. In terms of accuracy 

(Table 9 and Figure 21), MLP, XGBoost, SVC, and RF are the best examples that 

clearly show the effect of each and every step together with their accuracy metric of 

performance. 

 
Figure 21: Results comparison – MRD, MRD + effects of data preprocessing steps, 

and proposed methodology with SMOTE using 80|2-split. 

5.1.5.2 Overall results comparison within the proposed methodologies 

Table 7 and Table 11 report the comparison summary of the experimental results 

obtained using SMOTE, BSMOTE-SVM and ADASYN respectively. Based on the 

results obtained from these tables (Table 7 and Table 11), Figure 22 was developed. 

The figure reports the overall comparison amongst six considered methodologies 
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versus three adopted synthetic data generation techniques (including SMOTE, 

BSMOTE-SVM, and ADASYN) on ten ML models. 

The overall results of MLP are shown in Figure 22A. The model performs best with 

MI + PCA + 80|20 split using SMOTE followed by ADASYN. However, with the 

same training technique, a drastic performance decrement was seen when BSMOTE-

SVM technique was applied. All the three synthetic data generation techniques 

performed equally with ‘k-NNI + PCA + 80|20 split’ that produced an accuracy score 

of 0.9812. With k-NNI + UFS + 80|20 split technique, ADASYN produced least score 

of 0.9659 followed by BSMOTE-SVM. SMOTE gave the best performance with the 

same technique. Surprisingly, BSMOTE-SVM outpaces SMOTE with k-NNI + PCA 

+ CV by producing an accuracy score of 0.9808 and 0.976 for SMOTE. SMOTE and 

BSMOTE-SVM performed equally with k-NNI + UFS + CV. 

As illustrated in Figure 22B, k-NNI + PCA + 80|20 split with SMOTE reported least 

result when XGBoost was trained, where, with the same technique, BSMOTE-SVM 

and ADASYN reported a score of 0.9744 and 0.9746, respectively, in where they 

outperformed SMOTE. BSMOTE-SVM and ADASYN performed equally and 

outpaced SMOTE with k-NNI + UFS + 80|20 split. SMOTE and BSMOTE-SVM 

performed equally with k-NNI + PCA + CV and k-NNI + UFS + CV techniques. In 

contrast, XGBoost performed best with k-NNI + PCA + CV technique using both 

SMOTE and BSMOTE-SVM. 

Figure 22C shows the overall experimental results comparison for LR. The algorithm 

performed best with k-NNI + PCA + 80|20 split technique, in where all the three 

synthetic data generation techniques produced excellent performance with a slight 
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difference in their overall accuracy score. SMOTE reports best score with k-NNI + 

UFS + 80|20 split, while BSMOTE-SVM and ADASYN produced lower results and 

performed equally with the same technique. Similarly, similar results were produced 

with k-NNI + UFS + CV using SMOTE and BSMOTE-SVM. 

The overall results of DT are shown in Figure 22D. Best score was obtained when 

SMOTE was applied using k-NNI + PCA + 80|20 split. When DT was trained with k-

NNI + UFS + 80|20 split, BSMOTE-SVM performed best, then SMOTE, followed by 

ADASYN. With k-NNI + PCA + CV, both SMOTE and BSMOTE-SVM slightly 

performed differently, and performed equally with k-NNI + UFS + CV. 

Figure 22E shows the overall results of NB. SMOTE with k-NNI + PCA + 80|20 split 

gave the best performance, while k-NNI + UFS + 80|20 split with BSMOTE-SVM and 

ADASYN gave the least performance. BSMOTE-SVM and ADASYN produced equal 

result with k-NNI + PCA + CV, and also with k-NNI + UFS + CV. However, in 

comparison with k-NNI + PCA + CV, both synthetic data generation techniques 

produce lower accuracy with k-NNI + UFS + CV technique. In summary, SMOTE 

gave better performance when the algorithm was trained with these techniques of 

synthetic data generation. Moreover, BSOMTE-SVM performed equally with 

SMOTE using k-NNI + PCA + CV. NB experienced an increase in its performance 

when trained with features selected from UFS. 

Figure 22F illustrates the overall experimental results obtained when LDA was trained. 

Amazingly, with LDA, BSMOTE-SVM outpaces SMOTE and ADASYN using k-

NNI + PCA + 80|20 split and k-NNI + UFS + 80|20 split techniques. Least 

performance was obtained when ADASYN was used with k-NNI + UFS + 80|20 split. 
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With k-NNI + PCA + CV technique, both SMOTE and BSMOTE-SVM performed 

equally with an accuracy overall score of 0.8846. Likewise, they performed equally 

with k-NNI + UFS + CV, but, with lower accuracy score of 0.7572. based on the 

results, BSMOTE-SVM works better for LDA and managed to outpace all the other 

techniques considered while training the algorithm for fault diagnosis using SECOM 

dataset. 

Comparison of the results illustration of RF is shown in Figure 22G. From the figure, 

it is clearly shown that, MI + PCA + 80|20 split with SMOTE works best for RF, 

followed by k-NNI + PCA + CV with SMOTE and BSMOTE-SVM where both 

techniques performed the same. With the implementation of MI + PCA + 80|20 split, 

BSMOTE-SVM produced least accuracy score. Similarly, BSMOTE-SVM produced 

lower score with k-NNI + UFS + CV technique compared to SMOTE. 

Figure 22H shows the results comparison of SVC. SMOTE and ADASYN performed 

the dame with MI + PCA + 80|20 split followed by BSMOTE-SVM. Using k-NNI + 

PCA + 80|20 split technique provides the highest accuracy score, with a slight 

difference in the overall accuracy score of the three synthetic data generation 

technique. ADASYN produced the best performance with k-NNI + PCA + 80|20 split 

and BSMOTE-SVM with k-NNI + PCA + CV, where they generate an accuracy of 

1.0000. Both BSMOTE-SVM and ADSYN produced least performance with k-NNI + 

UFS + 80|20 split. With k-NNI + UFS + CV, BSMOTE-SMOTE generates better 

performance compared to SMOTE. 

Least performance was generated when AdaBoost was trained with k-NNI + UFS + 

80|20 split using BSMOTE-SVM and ADASYN, see Figure 22I. The best accuracy 
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score was achieved when k-NNI + PCA + 80|20 split was applied using SMOTE. 

Equal performance was achieved from both SMOTE and BSMOTE-SVM using k-

NNI + PCA + CV and k-NNI + UFS + CV techniques. 

Lastly, Figure 22J shows GBT experimental results. Best performance was achieved 

with k-NNI + PCA + 80|20 split using SMOTE, and least using BSMOTE-SVM. 

Considering k-NNI + PCA + CV, SMOTE slightly performs better than BSMOTE-

SVM. Worse results were obtained with k-NNI + UFS + CV suing SMOTE and 

BSMOTE-SVM, where both synthetic data generation techniques performed equally. 

5.1.6 Experimental results comparison with similar studies from the literature 

Comparison between results obtained from this work with similar works from the 

literature has been summarized, tabulated and reported in Table 8. Best models with 

highest performance metrics were selected from the literature and are compared with 

similar models from this thesis. It can clearly be seen that, from the table, our proposed 

models outsmart the proposed classifiers from the literature in terms of accuracy 

metric of performance. Based on the comparative analysis, RF and SVC turned out to 

be the best developed classifiers models, as they beat all the proposed models in this 

work and also when compared with recent studies from the literature.
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Figure 22: Overall comparison of the experimental results; (A) MLP; (B) XGBoost; (C) LR; (D) DT; (E) NB; (F) LDA; (G) RF; (H) SVC; (I) AdaBoost; (J) GBT. 
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Table 8: Results comparison with recent similar works form the literature. 
Classifier Model Reference Validation 

Technique 

Imputation Features Selection SDGT Accuracy Recall Precision Specificity  F1_score 

LR [87] 10-Fold  In-painting SELECTFDR SMOTE 0.7441 0.6538 0.1570 0.7505 - 

[88] 5-Fold - - SMOTE 0.8469 - - - - 

[3] 3-Fold - PCA - 0.7100 0.3100 1.0000 1.0000 0.4600 

[4] 10-Fold - PCA Rare case boosting - 1.0000 0.3010 0.3350 0.4630 

this work 3-Fold  k-NN PCA SMOTE 0.9117 0.8419 0.9785 0.9815 0.9051 

this work 80|20 split k-NN PCA SMOTE 0.9164 0.9795 0.8693 0.8537 0.9211 

this work 80|20 split k-NN PCA BSMOTE-SVM 0.9147 0.9863 0.8623 0.8435 0.9201 

this work 7-Fold  k-NN PCA BSMOTE-SVM 0.9159 0.8510 0.9779 0.9808 0.9100 

this work 80|20 split k-NN PCA ADASYN 0.9171 0.9757 0.8700 0.8614 0.9198 

this work 80|20 split k-NN SELECTFDR ADASYN 0.7577 0.7295 0.7717 0.7857 0.7500 

SVM [87] 10-Fold  In-painting SELECTFDR SMOTE - 0.6442 0.1572 0.7546 - 

[3] 3-Fold - PCA - 0.4400 0.2300 0.6200 0.7700 0.3400 

[90] train|test split - PCA Boosting 0.6830 0.7120 - - 0.6590 

this work 80|20 split k-NN PCA SMOTE 0.9983 1.0000 0.9966 0.9966 0.9983 

this work 3-Fold k-NN PCA SMOTE 0.9959 0.9938 0.9979 0.9979 0.9959 

this work 80|20 split k-NN PCA BSMOTE-SVM 0.9983 1.0000 0.9966 0.9966 0.9983 

this work 7-Fold k-NN PCA BSMOTE-SVM 1.0000 1.0000 1.0000 1.0000 1.0000 

this work 80|20 split k-NN PCA ADASYN 1.0000 1.0000 1.0000 1.0000 1.0000 

this work 80|20 split k-NN SELECTFDR ADASYN 0.8208 0.8288 0.8148 0.8129 0.8217 

RF [87] 10-Fold  In-painting SELECTFWE SMOTE - 0.4615 0.1337 0.7874 - 

[92] 70|30 split - - SMOTE 0.8930 0.2330 0.2060 0.9380 0.2190 

[88] 5-Fold - - SMOTE 0.9439 - - - - 

this work 80|20 split k-NN PCA SMOTE 0.9949 0.9897 1.0000 1.0000 0.9948 

this work 7-Fold k-NN PCA SMOTE 0.9976 1.0000 0.9952 0.9952 0.9976 

this work 80|20 split mean PCA BSMOTE-SVM 0.9710 0.9418 1.0000 1.0000 0.9700 

this work 7-Fold k-NN PCA BSMOTE-SVM 0.9976 1.0000 0.9952 0.9952 0.9976 

this work 80|20 split k-NN PCA ADASYN 0.9932 0.9861 1.0000 1.0000 0.9930 

this work 80|20 split mean PCA ADASYN 0.9966 0.9967 0.9967 0.9966 0.9967 

DT [3] 3-Fold - PCA - 0.8600 0.4700 1.0000 1.0000 0.6400 

[4] 10-Fold - PCA Rare case boosting - 1.0000 0.4720 0.1610 0.6410 

this work 10-Fold k-NN PCA SMOTE 0.8767 0.8356 0.9104 0.9178 0.8714 

this work 80|20 split k-NN PCA SMOTE 0.9061 0.9555 0.8692 0.8571 0.9103 

this work 80|20 split k-NN PCA BSMOTE-SVM 0.8669 0.9178 0.8323 0.8163 0.8730 

this work 80|20 split k-NN SELECTFDR BSMOTE-SVM 0.8993 0.9178 0.8845 0.8810 0.9008 

this work 80|20 split k-NN PCA ADASYN 0.8646 0.9201 0.8230 0.8119 0.8689 

this work 80|20 split k-NN SELECTFDR ADASYN 0.8959 0.9144 0.8812 0.8776 0.8975 

NB [3] 3-Fold - PCA - 0.6600 0.2300 0.7500 0.9500 0.3600 

[90] train|test split - PCA Boosting 0.6810 0.6970 - - 0.6650 

[4] 10-Fold - PCA Rare case boosting - 0.7460 0.2340 0.3520 0.3560 
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this work 80|20 split k-NN PCA SMOTE 0.8106 0.8151 0.8068 0.8061 0.8109 

this work 7-Fold k-NN PCA SMOTE 0.7861 0.7692 0.7960 0.8029 0.7824 

this work 80|20 split k-NN PCA BSMOTE-SVM 0.7765 0.7568 0.7565 0.7959 0.7714 

this work 7-Fold k-NN PCA BSMOTE-SVM 0.7861 0.7692 0.7960 0.8029 0.7824 

this work 80|20 split k-NN PCA ADASYN 0.7902 0.7986 0.7770 0.7822 0.7877 

this work 80|20 split k-NN SELECTFDR ADASYN 0.5410 0.1370 0.7018 0.9422 0.2292 

MLP (ANN) [88] 5-Fold - - SMOTE 0.8893 - - - - 

this work 80|20 split k-NN PCA SMOTE 0.9812 1.0000 0.9637 0.9626 0.9815 

this work 7-Fold k-NN PCA SMOTE 0.9760 0.9519 1.0000 1.0000 0.9754 

this work 80|20 split mean PCA BSMOTE-SVM 0.9710 0.9760 0.9661 0.9660 0.9710 

this work 80|20 split k-NN PCA BSMOTE-SVM 0.9812 1.0000 0.9637 0.9626 0.9815 

this work 80|20 split k-NN PCA ADASYN 0.9812 1.0000 0.9637 0.9626 0.9815 

this work 80|20 split k-NN SELECTFDR ADASYN 0.9659 0.9897 0.9444 0.9422 0.9666 

NN [109] 80|20 split - SVM - 0.9360 0.9180 0.9970 0.0810 0.957 

GBT [109] 80|20 split - MARS - 0.9000 0.9000 0.8840 0.7080 0.8910 

this work 80|20 split k-NN PCA SMOTE 0.9795 0.9829 0.9762 0.9762 0.9795 

this work 7-Fold k-NN PCA SMOTE 0.9760 0.9615 0.9901 0.9904 0.9756 

this work 80|20 split k-NN PCA BSMOTE-SVM 0.9659 0.9726 0.9595 0.9592 0.9660 

this work 7-Fold k-NN SELECTFDR BSMOTE-SVM 0.9161 0.8750 0.9529 0.9569 0.9123 

this work 80|20 split k-NN PCA ADASYN 0.9763 0.9896 0.9628 0.9637 0.9760 

this work 80|20 split k-NN SELECTFDR ADASYN 0.9232 0.9452 0.9049 0.9014 0.9246 

PSO-DBN [96] 70|30 split - MEDSD SMOTE 0.8659 0.9831 - 0.8485 - 

SDGT: Synthetic data generation technique;  
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5.2 Summary of the chapter 

The experimental results obtained in this work using 18 proposed methodologies are 

reported in this chapter. The proposed methodologies are: MI + PCA + 80|20 split, MI 

+ PCA + CV, k-NNI + PCA + 80|20 split, k-NNI + UFS + 80|20 split, k-NNI + PCA 

+ CV, and k-NNI + UFS +CV versus three SDGT (including SMOTE, BSMOTE-

SVM, and ADASYN). Before the ML predictive models’ development, the dataset has 

gone through stages of preprocessing, missing data points imputation, feature 

selection, feature normalization and data sampling technique of oversampling the 

minority class (fail class). Moreover, 80|20 holdout-split and k-Fold cross validation 

were applied to evaluate the performance of the developed models. 

Firstly, the effect of each proposed data preprocessing step is analyzed. Section 5.1.1 

reported the experimental results. Table 5 showed the detailed results obtained in that 

section. Secondly, section 5.1.2 presented the experimental results obtained using 

SMOTE on the six proposed methodologies. Thirdly, section 5.1.3 reported the general 

experimental results obtained using Borderline-SMOTE SVM on the six proposed 

methodologies. Fourthly, section 5.1.4 reported ADASYN experimental results using 

the proposed methodologies. Then, section 5.1.5 reported the experimental results 

general comparison analysis considering several perfectives. Lastly, section 5.1.6 gave 

the extensive comparative analysis between our obtained experimental results and 

similar studies reported experimental results (Table 8). 

Overall, this work shows the feasibility of the two variants of synthetic minority 

oversampling technique (SMOTE) using 18 different methodologies on ten fault 

diagnosis machine learning models in the semiconductor manufacturing processes. 
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Moreover, the performance of these models developed using both SDGT techniques 

(BSMOTE-SVM and ADASYN) has been compared with the models developed using 

6 different methodologies with the utilization of SMOTE. See Table 7 and Figure 22. 

From the extensive results obtained and the models’ performance, similar trends have 

been observed within these three adopted minority oversampling techniques, however 

with some little differences from some of the proposed models and methodologies. 

The next chapter presents the conclusions and the future directions of this work. 
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Chapter 6 

6 CONCLUSIONS and FUTURE WORKS 

6.1 Conclusions 

In this work, machine learning-based methodologies for fault diagnosis towards noisy, 

and imbalanced dataset within smart manufacturing systems for the semiconductor 

manufacturing process were proposed. These proposed methodologies consider the 

effects of missing values, redundant and noisy features, and class imbalance problem. 

The key contribution of this work relies on the implementation and comparison of two 

different missing datapoint imputation techniques including mean and k-NN 

imputation techniques; implementation and comparison of two different features 

selection techniques including PCA and univariate feature selection; and; 

implementation and comparison of three synthetic data generation techniques 

including SMOTE, BSMOTE-SVM, and ADASYN for synthetic data generation to 

handle the class imbalance distribution of the dataset. Ten prediction machine learning 

classifiers have been developed, namely; MLP (ANN), XGBoost, LR, DT, NB, LDA, 

RF, SVC, AdaBoost, and GBT. Their performance has been validated and compared 

on 18 different proposed methodologies using two different validation techniques 

involving 80|20-split and k-Fold cross-validation. 

SECOM dataset was used as a case study to investigate the influence of these proposed 

methodologies and models. Experimental results across seven evaluation metrics of 

performance obtained from these models and methodologies were significant. 
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Moreover, the extensive experimental results obtained from this work were compared 

with recent similar studies reported from the literature to further validate the feasibility 

of these proposed models and methodologies. Based on the extensive results obtained 

and the analysis of the comparison, it has been proven that the methodologies and 

models proposed in this work outperformed the methodologies and models proposed 

from similar studies. 

6.2 Future works 

For future research directions, the following are suggested: 

• Some of the developed machine learning models require hyperparameters 

tuning based on the results obtained from these models, as they produced very 

low performance. However, we could not do so due to some limitations 

regarding computational resources. To improve the performance of some of 

the models proposed like DT and NB, etc. Hyperparameter-tuning could be 

implemented using optimization-based techniques like random and grid search 

algorithms, genetic algorithm, particle swamp optimization, and simulated 

annealing. 

• The influence of some other different techniques of datapoint imputation and 

feature selection techniques on both BSMMOTE-SVM and ADASYN could 

be investigated to further validate the robustness of these synthetic data 

generation techniques on the SECOM dataset, similarly, on any dataset from 

any domain with similar problem. 

• These suggested methodologies could be extended further to analyze their 

feasibility on various redundant, noisy, and imbalanced datasets from any 

domain, particularly, smart manufacturing domains.
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Appendix A: Tabular supplementary experimental results 

Table 9: Accuracy-based results comparison amongst MRD, MRD with main data preprocessing step effects, and PM using SMOTE. 

 Methods: 

Accuracy: 

MRD + 

80|20 split 

MRD + MI + 80|20 

split 

MRD + MI + FS+ 

PCA+ 80|20 split 

MRD + MI + SMOTE + 

80|20 split 

PM: - MI + PCA + SMOTE + 

80|20 split 

PM: - k-NNI + PCA + SMOTE + 

80|20 split 

PM: - k-NNI + UFS + SMOTE + 

80|20 split 

MLP NAN 0.7293 0.9268 0.9215 0.9829 0.9812 0.9710 

XGBoost 0.9363 0.9363 0.9299 0.9676 0.9744 0.9625 0.9164 

LR NAN 0.9299 0.9363 0.7235 0.8976 0.9164 0.7901 

DT NAN 0.8885 0.8503 0.9078 0.8532 0.9061 0.8976 

NB NAN 0.2070 0.9013 0.5734 0.7696 0.8106 0.5631 

LDA NAN 0.9108 0.9236 0.9147 0.8771 0.8942 0.7901 

RF NAN 0.9363 0.9363 0.9846 0.9983 0.9949 0.9744 

SVC NAN 0.9363 0.9363 0.6775 0.9966 0.9983 0.8686 

AdaBoost NAN 0.9236 0.9236 0.9266 0.8720 0.8925 0.8669 

GBT NAN 0.9331 0.9331 0.9642 0.9761 0.9795 0.9232 

MRD: Modified raw dataset; MI: Mean imputation; k-NNI: k-NN imputation; PCA: Principal component analysis; 80|20 split: 80|20 split validation technique; PM: Proposed methodology;  

 

Table 10: Confusion matrix results obtained before and after each step. 
 MRD MRD + MI MRD + k-NNI MRD + MI + PCA MRD + MI + FS + PCA MRD + MI + SMOTE 

TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN 

MLP - - - - 224 5 70 15 287 0 7 20 291 0 3 20 292 1 2 19 263 277 31 15 

XGBoost 294 0 0 20 294 0 0 20 294 0 0 20 292 0 2 20 294 0 0 20 287 280 7 12 

LR - - - - 292 0 2 20 292 0 2 20 294 0 0 20 279 5 15 15 210 214 84 78 

DT - - - - 276 3 18 17 276 5 18 15 267 0 27 20 275 3 19 17 252 280 42 12 

NB - - - - 51 14 243 6 42 15 252 5 282 1 12 19 278 1 16 19 55 281 239 11 

LDA - - - - 277 9 17 11 281 8 13 12 290 4 0 20 286 4 8 16 244 292 50 0 

RF - - - - 294 0 0 20 294 0 0 20 294 0 0 20 294 0 0 20 293 284 1 8 

SVC - - - - 294 0 0 20 294 0 0 20 294 0 0 20 294 0 0 20 164 233 130 59 

AdaBoost - - - - 289 1 5 19 288 4 6 16 290 0 4 20 287 0 7 20 270 273 24 19 

GBT - - - - 293 0 1 20 290 2 4 18 293 0 1 20 291 0 3 20 285 280 9 12 

MRD: Modified raw dataset; MI: Mean imputation; k-NNI: k-NN imputation; PCA: Principal component analysis; TP: True positive; TN: True negative; FP: False positive; FN: False negative;  
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Table 11: Confusion matrix of the overall experimental results obtained. 
  MI + PCA + 80|20-split MI + PCA + CV k-NNI + PCA + 80|20-split k-NNI + UFS + 80|20-split k-NNI + PCA + CV k-NNI + UFS + CV 

SDGT Model TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN 

SMOTE MLP 284 292 10 0 200 209 0 8 283 292 11 0 277 292 17 0 198 209 0 10 193 208 0 15 

XGBoost 285 286 9 6 106 111 1 6 277 287 17 5 260 277 34 15 107 110 1 4 97 107 4 15 

LR 242 284 52 8 410 477 10 77 251 286 43 6 233 230 61 62 410 478 9 77 372 375 112 115 

DT 234 266 60 26 125 133 12 21 252 279 42 13 256 270 38 22 122 134 12 24  123 134 12 23 

NB 218 233 76 59 156 175 34 52 237 238 57 54 277 53 17 239 160 167 41 48 197 30 178 12 

LDA 233 281 61 11 168 199 9 40 238 286 56 6 229 234 65 58 167 201 7 41 158 157 51 50 

RF 294 291 0 1 208 207 1 0 294 289 0 3 283 288 11 4 208 207 1 0 199 203 5 9 

SVC 292 292 2 0 483 486 1 4 293 292 1 0 242 267 52 25 484 486 1 3 392 421 66 95 

AdaBoost 256 255 38 37 178 189 19 30 258 265 36 27 247 261 47 31 181 186 23 27 171 180 28 37 

GBT 282 290 12 2 199 206 2 9 287 287 7 5 265 276 23 16 200 206 2 8 182 200 9 26 

BSMOTE-SVM MLP 284 285 10 7 202 203 5 6 283 292 11 0 277 290 17 2 200 209 0 8 193 203 0 15 

XGBoost 292 279 2 13 111 107 5 1 285 286 9 6 262 278 32 14 107 110 1 4 97 107 4 15 

LR 257 281 37 11 424 468 19 63 248 288 46 4 231 213 63 79 177 204 4 31 160 159 49 48 

DT 256 264 38 28 128 133 11 17 240 268 54 24 259 268 35 24 123 132 13 23 123 134 12 23 

NB 294 182 0 110 204 158 50 4 234 221 60 71 277 40 17 252 160 167 41 48 197 30 178 12 

LDA 261 271 33 21 185 197 11 24 281 292 13 0 276 288 18 4 167 201 7 41 158 157 51 50 

RF 294 275 0 17 209 199 9 0 294 286 0 6 285 285 9 7 208 207 1 0 198 203 5 10 

SVC 294 283 0 9 485 470 17 2 293 292 1 0 239 242 455 50 208 208 0 0 169 184 25 39 

AdaBoost 259 268 35 24 189 192 16 19 256 258 38 34 249 236 45 56 181 186 23 27 171 180 28 37 

GBT 293 277 1 15 205 201 7 3 282 284 12 8 264 276 30 16 200 205 3 8 182 200 9 26 

ADASYN MLP 285 299 11 0 199 215 0 9 283 292 11 0 277 289 17 3 198 212 0 10 192 210 0 16 

XGBoost 284 298 12 1 106 115 1 6 290 286 13 2 262 278 32 14 106 113 0 5 96 107 6 16 

LR 260 296 36 3 408 492 10 79 261 281 42 7 231 213 63 79 410 487 8 77 369 378 112 118 

DT 250 276 46 23 122 139 11 23 246 265 57 23 258 267 36 25 122 136 12 24 124 134 13 21 

NB 223 251 73 48 152 179 36 56 237 230 66 58 277 40 252 17 158 177 35 50 197 30 180 11 

LDA 241 291 55 8 165 209 5 43 247 284 56 4 228 214 66 78 167 206 6 42 152 162 47 56 

RF 295 298 1 1 208 214 1 0 303 284 0 4 284 284 10 8 208 211 1 0 197 205 5 11 

SVC 294 299 2 0 483 502 0 4 302 288 1 0 239 242 55 50 484 495 0 3 377 435 55 110 

AdaBoost 259 265 37 34 178 193 22 30 262 249 41 39 249 236 45 56 180 192 19 29 170 184 25 38 

GBT 283 297 13 2 198 214 1 10 292 285 11 3 265 276 29 16 200 210 1 9 178 199 11 30 

SDGT: Synthetic data generation technique; MI: Mean imputation; k-NNI: k-NN imputation; PCA: Principal component analysis; UFS: Univariate features selection; 80|20 split: 80|20 split validation technique; CV: k-Fold cross validation technique; TP: 

True positive; TN: True negative; FP: False positive; FN: False negative; 
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Appendix B: Codes 

Libraries used 
from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.linear_model import SGDClassifier 

from sklearn.metrics import accuracy_score, confusion_matrix, precision_

score, recall_score 

import matplotlib.pyplot as plt 

from sklearn.preprocessing import StandardScaler 

from xgboost import XGBClassifier 

import pandas as pd 

from tensorflow import keras 

import numpy as np # linear algebra 

import seaborn as sns 

from sklearn.decomposition import PCA 

from sklearn.impute import SimpleImputer 

from sklearn.preprocessing import OneHotEncoder 

from sklearn.preprocessing import LabelEncoder 

from sklearn.model_selection import cross_val_score, cross_val_predict 

from mlxtend.plotting import plot_confusion_matrix 

from sklearn.metrics import confusion_matrix, accuracy_score, f1_score, 

precision_score, recall_score, classification_report 

from keras.utils import to_categorical 

 

Secom Data Exploration  
Data = pd.read_csv('/content/uci-secom_v2.csv') 

# displaying the dataset  

Data.head() 

#checking for any missing datapoints 

Data.isnull().any().any() 

#reclassifying the classes with 0 and 1, pass and fail class respectivel

y 

Data = Data.drop(['Time'], axis=1) 

Data.loc[(Data['Pass/Fail'] == -1),'Pass/Fail'] = 0 

Data.head() 

#Dropping the output column 

features = Data.drop(['Pass/Fail'],axis=1) 

features_labels = Data['Pass/Fail'] 

features.shape 

# Get the counts for each class 

alabel_count = Data['Pass/Fail'].value_counts() 

print(alabel_count) 

# Plot the results  

plt.figure(figsize=(10,8)) 

sns.barplot(x=alabel_count.index, y= alabel_count.values) 

plt.title('Number of labels', fontsize=14) 

plt.xlabel('label type', fontsize=12) 

plt.ylabel('Count', fontsize=12) 

plt.xticks(range(len(alabel_count.index)), ['Fail', 'Pass']) 

plt.show() 

# Missing datapoints vs Observed  

import seaborn as sns 
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import matplotlib.pyplot as plt 

sns.heatmap(Data.isnull(),yticklabels=False,cbar=False,cmap='viridis') 

 

plt.title('Observed vs Missing datapoints', fontsize=12) 

plt.xlabel('Features', fontsize=12) 

plt.ylabel('Instances', fontsize=12) 

#plt.xticks(range(len(alabel_count.index)), ['Features']) 

plt.show() 

 

SECOM Data Preprocessing 
# finding missing and categorical values 

col_missing_values = [col for col in features.columns 

                     if features[col].isnull().any() and features[col].d

type] 

# col wit numerical values which is null in this project 

col_numerical_values = [col for col in features.columns if features[col]

.dtype in ['int64', 'float64']] 

# col with categorical values 

col_categorical_values = [col for col in features.columns  

                         if features[col].dtype == 'object'] 

#missing values cout per col 

missing_val_count_by_column = (features.isnull().sum()) 

print(missing_val_count_by_column[missing_val_count_by_column > 0]) 

print(col_categorical_values) 

print(col_numerical_values) 

 

Imputation 
#Data imputation using KNN 

from sklearn.impute import KNNImputer  

imputer = KNNImputer() 

imputed_features = pd.DataFrame(imputer.fit_transform(features)) 

# Fill in the lines below: imputation removed column names; put them bac

k 

imputed_features.columns = features.columns 

 

features = imputed_features 

features.head() 

#Checking for any missing cell value 

features.isnull().any().any() 

#Importing features to csv file  

features.to_csv('features.csv') 

features_labels.to_csv('features_labels.csv') 

 

Feature scaling and selection 

 

PCA 
# Feature scaling using mean 

Scaler =StandardScaler() 

features =Scaler.fit_transform(features) 

# Feature selection using Principal Component Analysis (PCA) 

pca = PCA(n_components=0.99, whiten=True) 

# Conduct PCA 

features = pca.fit_transform(features) 
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# Show results 

print("Original number of features:", Data.shape[1]) 

print("Reduced number of features:", features.shape[1]) 

# Dataset dimension visualization 

features.shape 

features 

 

UFS 
# Feature selection using UFS 

from sklearn.feature_selection import SelectFdr 

from sklearn.feature_selection import f_classif , chi2 

# Create a UFS  

UFS = SelectFdr(score_func=f_classif) 

features = UFS.fit_transform(features, features_labels) 

# Show results 

print("Original number of features:", Data.shape[1]) 

print("Reduced number of features:", features.shape[1]) 

# Feature scaling using mean 

Scaler = StandardScaler() 

features = Scaler.fit_transform(features) 

 

Model evaluation 
def get_Evaluation_matrics(preds, orig_test_labels): 

  # Get the confusion matrix 

  cm  = confusion_matrix(orig_test_labels, preds) 

  plt.figure() 

  plot_confusion_matrix(cm,figsize=(12,8), hide_ticks=True,cmap=plt.cm.B

lues) 

  plt.xticks(range(2), ['Fail', 'Pass'], fontsize=16) 

  plt.yticks(range(2), ['Fail', 'Pass'], fontsize=16) 

  plt.show() 

 

  # Calculate the metrics 

  tn, fp, fn, tp = cm.ravel() 

  Accuracy = (tp+tn)/(tp+tn+fp+fn) 

  precision = tp/(tp+fp) 

  recall = tp/(tp+fn) 

  specificity = tn/(tn+fp) 

  F1_score = 2*tp/(2*tp+fp+fn) 

 

  print("Accuracy of the model is {:.4f}".format(Accuracy)) 

  print("Recall of the model is {:.4f}".format(recall)) 

  print("Precision of the model is {:.4f}".format(precision)) 

  print("specificity of the model is {:.4f}".format(specificity)) 

  print("F1_score of the model is {:.4f}".format(F1_score)) 

 

Model prediction 
def get_Model_prediction(model, test_data, test_labels): 

  import numpy as np 

  # # Evaluation on test dataset 

  # test_loss, test_score = model.evaluate(test_data, test_labels, batch

_size=32) 

  # print("Loss on test set: ", test_loss) 



 112 

  # print("Accuracy on test set: ", test_score) 

   

  preds = model.predict(test_data, batch_size=16) 

  preds = np.argmax(preds, axis=-1) 

  # orig_test_labels = np.argmax(test_labels, axis=-1) 

  print(test_labels) 

  print(preds) 

  return preds, test_labels 

 

Plotting model accuracy 
def plot_Model_Accuracy(History, epoch): 

  history_dict2 = History.history 

  acc_values2 = history_dict2['accuracy'] 

  val_acc_values2 = history_dict2['val_accuracy'] 

  epochs = range(1, epoch + 1) 

  plt.plot(epochs, acc_values2, 'b-', label='training Accuracy') 

  plt.plot(epochs, val_acc_values2, 'r-', label='validation Accuracy') 

  plt.title('trainin/validation Accuracy') 

  plt.xlabel('Epochs') 

  plt.ylabel('Accuracy') 

  plt.legend() 

  plt.rcParams['axes.facecolor'] = 'white' 

  plt.rcParams['axes.edgecolor'] = 'white' 

  plt.rcParams['axes.grid'] = True 

  plt.rcParams['grid.alpha'] = 1 

  plt.rcParams['grid.color'] = "#cccccc" 

  plt.show() 

 

Model building using SMOTE data generation technique 

80|20 - split validation technique 

ANN 
early_stopping_cb = keras.callbacks.EarlyStopping(patience=5, 

                                                  restore_best_weights=T

rue) 

 

 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

X, y = oversample.fit_sample(features, features_labels) 

 

X = pd.DataFrame(X) 

y = pd.DataFrame(y) 

 

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123) 

train_data, valid_data, train_labels, valid_labels = train_test_split(tr

ain_data, train_labels, train_size = 0.85, random_state = 123) 

 

train_data = np.array(train_data) 

valid_data = np.array(valid_data) 

test_data = np.array(test_data) 

train_labels = np.array(train_labels) 

valid_labels = np.array(valid_labels) 
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test_labels = np.array(test_labels) 

 

y.iloc[:,0].value_counts() 

 

 

from tensorflow.keras import models 

from tensorflow.keras import layers 

from imblearn.over_sampling import SMOTE 

model = models.Sequential() 

model.add(layers.Dense(1024, input_shape = (219,), activation='relu')) 

# model.add(layers.Dense(128, activation='relu')) 

# model.add(layers.Dense(512, activation='relu')) 

# model.add(layers.BatchNormalization()) 

model.add(layers.Dense(64, activation='relu')) 

# model.add(layers.Dropout(0.5)) 

model.add(layers.Dense(2, activation='softmax')) 

 

model.compile(optimizer='rmsprop', 

              loss='binary_crossentropy', 

              metrics=['accuracy']) 

model_history = model.fit(train_data, 

                          train_labels, 

                          epochs=30, 

                          batch_size=16, 

                          validation_data=(valid_data, valid_labels), 

                          callbacks=None 

                          ) 

# Evaluating my model using CM, precsion, and recal 

preds, original_test_labels = get_Model_prediction(model, test_data, tes

t_labels) 

get_Evaluation_matrics(preds, original_test_labels) 

 

KNN 
from sklearn.neighbors import KNeighborsClassifier as kNN 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

X, y = oversample.fit_sample(features, features_labels) 

X = pd.DataFrame(X) 

y = pd.DataFrame(y) 

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123) 

model = kNN(leaf_size=10) 

model.fit(train_data, train_labels) 

preds = model.predict(test_data) 

get_Evaluation_matrics(preds, test_labels) 

 

# plotting the AUC for all my classes 

get_model_ROC_AUC_curve(preds, test_labels) 

 

MLP 
from sklearn.neural_network import MLPClassifier as MLP 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

X, y = oversample.fit_sample(features, features_labels) 
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X = pd.DataFrame(X) 

y = pd.DataFrame(y) 

 

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123) 

model = MLP() 

model.fit(train_data, train_labels) 

preds = model.predict(test_data) 

get_Evaluation_matrics(preds, test_labels) 

# plotting the AUC for all my classes 

get_model_ROC_AUC_curve(preds, test_labels) 

 

XGBOOST 
from xgboost.sklearn import XGBClassifier 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

X, y = oversample.fit_sample(features, features_labels) 

X = pd.DataFrame(X) 

y = pd.DataFrame(y) 

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123) 

model = XGBClassifier() 

model.fit(train_data, train_labels) 

preds = model.predict(test_data) 

get_Evaluation_matrics(preds, test_labels) 

# plotting the AUC for all my classes 

get_model_ROC_AUC_curve(preds, test_labels) 

 

LR 
from sklearn.linear_model import LogisticRegression as LR 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

X, y = oversample.fit_sample(features, features_labels) 

X = pd.DataFrame(X) 

y = pd.DataFrame(y) 

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123) 

model = LR(max_iter=100) 

model.fit(train_data, train_labels) 

preds = model.predict(test_data) 

get_Evaluation_matrics(preds, test_labels) 

# plotting the AUC for all my classes 

get_model_ROC_AUC_curve(preds, test_labels) 

 

DT 
from sklearn.tree import DecisionTreeClassifier as DT 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

X, y = oversample.fit_sample(features, features_labels) 

X = pd.DataFrame(X) 

y = pd.DataFrame(y) 

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123) 
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model = DT() 

model.fit(train_data, train_labels) 

preds = model.predict(test_data) 

get_Evaluation_matrics(preds, test_labels) 

# plotting the AUC for all my classes 

get_model_ROC_AUC_curve(preds, test_labels) 

 

NB 
from sklearn.naive_bayes import GaussianNB as NB 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

X, y = oversample.fit_sample(features, features_labels) 

X = pd.DataFrame(X) 

y = pd.DataFrame(y) 

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123) 

model = NB() 

model.fit(train_data, train_labels) 

preds = model.predict(test_data) 

get_Evaluation_matrics(preds, test_labels) 

# plotting the AUC for all my classes 

get_model_ROC_AUC_curve(preds, test_labels) 

 

LDA 
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as 

LDA 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

X, y = oversample.fit_sample(features, features_labels) 

X = pd.DataFrame(X) 

y = pd.DataFrame(y) 

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123) 

model = LDA() 

model.fit(train_data, train_labels) 

preds = model.predict(test_data) 

get_Evaluation_matrics(preds, test_labels) 

# plotting the AUC for all my classes 

get_model_ROC_AUC_curve(preds, test_labels) 

 

RF 
from sklearn.ensemble import RandomForestClassifier as RF 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

X, y = oversample.fit_sample(features, features_labels) 

X = pd.DataFrame(X) 

y = pd.DataFrame(y) 

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123) 

model = RF() 

model.fit(train_data, train_labels) 

preds = model.predict(test_data) 

get_Evaluation_matrics(preds, test_labels) 
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# plotting the AUC for all my classes 

get_model_ROC_AUC_curve(preds, test_labels) 

 

SVC 
from sklearn.svm import SVC 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

X, y = oversample.fit_sample(features, features_labels) 

X = pd.DataFrame(X) 

y = pd.DataFrame(y) 

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123) 

model = SVC() 

model.fit(train_data, train_labels) 

preds = model.predict(test_data) 

get_Evaluation_matrics(preds, test_labels) 

 

# plotting the AUC for all my classes 

get_model_ROC_AUC_curve(preds, test_labels) 

 

ADABOOST 
from sklearn.ensemble import AdaBoostClassifier as ADB 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

X, y = oversample.fit_sample(features, features_labels) 

X = pd.DataFrame(X) 

y = pd.DataFrame(y) 

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123) 

model = ADB() 

model.fit(train_data, train_labels) 

preds = model.predict(test_data) 

get_Evaluation_matrics(preds, test_labels) 

# plotting the AUC for all my classes 

get_model_ROC_AUC_curve(preds, test_labels) 

 

GBT 
from sklearn.ensemble import GradientBoostingClassifier as GBT 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

X, y = oversample.fit_sample(features, features_labels) 

X = pd.DataFrame(X) 

y = pd.DataFrame(y) 

train_data, test_data, train_labels, test_labels = train_test_split(X, y

, test_size = 0.20, random_state = 123) 

model = GBT() 

model.fit(train_data, train_labels) 

preds = model.predict(test_data) 

get_Evaluation_matrics(preds, test_labels) 

# plotting the AUC for all my classes 

get_model_ROC_AUC_curve(preds, test_labels) 

 

k-FOLD cross validation (CV) 
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from sklearn.model_selection import KFold, cross_val_score, cross_val_pr

edict, cross_validate 

from sklearn.pipeline import make_pipeline 

features, features_labels = oversample.fit_resample(features, features_l

abels) 

# Create standardizer 

standardizer = StandardScaler() 

# Create logistic regression object 

from sklearn.svm import SVC 

logit = SVC() 

# Create a pipeline that standardizes, then runs logistic regression 

pipeline = make_pipeline(standardizer, logit) 

# Create k-Fold cross-validation 

kf = KFold(n_splits=7, shuffle=True, random_state=1) 

# Conduct k-fold cross-validation 

cv_results = cross_val_score(logit, # Pipeline 

                              features, # Feature matrix 

                              features_labels, # Target vector 

                              cv=kf, # Cross-validation technique 

                              scoring="precision", # Loss function 

                              n_jobs=-1) # Use all CPU scores 

# Calculate mean 

cv_results.mean() 

 

k-Fold CV metrics of performance  
tp = 0 

tn = 162 

fp = 0 

fn = 162 

 

Accuracy = (tp+tn)/(tp+tn+fp+fn) 

#precision = tp/(tp+fp) 

recall = tp/(tp+fn) 

specificity = tn/(tn+fp) 

F1_score = 2*tp/(2*tp+fp+fn) 

 

print("Accuracy of the model is {:.4f}".format(Accuracy)) 

print("Recall of the model is {:.4f}".format(recall)) 

#print("Precision of the model is {:.4f}".format(precision)) 

print("specificity of the model is {:.4f}".format(specificity)) 

print("F1_score of the model is {:.4f}".format(F1_score)) 

print("") 

 

MLP 
from sklearn.neural_network import MLPClassifier as MLP 

from sklearn.model_selection import KFold 

from museotoolbox.charts import PlotConfusionMatrix 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

train_data, train_labels = oversample.fit_resample(features, features_la

bels) 

#Create algorithm object 

model = MLP() 

conf_matrix_list_of_arrays = [] 
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kf = KFold(7, shuffle=True, random_state=123) 

 

for train_index, test_index  in kf.split(train_data): 

 

   train_data1, test_data1 = train_data[train_index], train_data[test_in

dex] 

   train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index] 

 

   model.fit(train_data1, train_labels1) 

   conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

)) 

   conf_matrix_list_of_arrays .append(conf_matrix) 

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16) 

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth 

pltCM.add_text() 

# pltCM.add_f1() 

pltCM.color_diagonal() 

mean_of_conf_matrix_arrays.T 

 

XGBOOST 
from xgboost.sklearn import XGBClassifier 

from sklearn.model_selection import KFold 

from museotoolbox.charts import PlotConfusionMatrix 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

 

train_data, train_labels = oversample.fit_resample(features, features_la

bels) 

#Create algorithm object 

model = XGBClassifier() 

conf_matrix_list_of_arrays = [] 

kf = KFold(13, shuffle=True, random_state=123) 

for train_index, test_index  in kf.split(train_data): 

   train_data1, test_data1 = train_data[train_index], train_data[test_in

dex] 

   train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index] 

 

   model.fit(train_data1, train_labels1) 

   conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

)) 

   conf_matrix_list_of_arrays .append(conf_matrix) 

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16) 

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth 

pltCM.add_text() 

# pltCM.add_f1() 

pltCM.color_diagonal() 

mean_of_conf_matrix_arrays.T 
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LR 
from sklearn.linear_model import LogisticRegression as LR 

from sklearn.model_selection import KFold 

from museotoolbox.charts import PlotConfusionMatrix 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

train_data, train_labels = oversample.fit_resample(features, features_la

bels) 

#Create algorithm object 

model = LR(max_iter=200) 

conf_matrix_list_of_arrays = [] 

kf = KFold(3, shuffle=True, random_state=123) 

 

for train_index, test_index  in kf.split(train_data): 

   train_data1, test_data1 = train_data[train_index], train_data[test_in

dex] 

   train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index] 

 

   model.fit(train_data1, train_labels1) 

   conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

)) 

   conf_matrix_list_of_arrays .append(conf_matrix) 

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16) 

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth 

pltCM.add_text() 

# pltCM.add_f1() 

pltCM.color_diagonal( 

mean_of_conf_matrix_arrays.T 

 

DT 
from sklearn.tree import DecisionTreeClassifier as DT 

from sklearn.model_selection import KFold 

from museotoolbox.charts import PlotConfusionMatrix 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

train_data, train_labels = oversample.fit_resample(features, features_la

bels) 

#Create algorithm object 

model = DT() 

conf_matrix_list_of_arrays = [] 

kf = KFold(10, shuffle=True, random_state=123) 

for train_index, test_index  in kf.split(train_data): 

   train_data1, test_data1 = train_data[train_index], train_data[test_in

dex] 

   train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index] 

 

   model.fit(train_data1, train_labels1) 

   conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

)) 

   conf_matrix_list_of_arrays .append(conf_matrix) 
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mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16) 

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth 

pltCM.add_text() 

# pltCM.add_f1() 

pltCM.color_diagonal() 

mean_of_conf_matrix_arrays.T 

 

NB 
from sklearn.naive_bayes import GaussianNB as NB 

from sklearn.model_selection import KFold 

from museotoolbox.charts import PlotConfusionMatrix 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

train_data, train_labels = oversample.fit_resample(features, features_la

bels) 

#Create algorithm object 

model = NB() 

conf_matrix_list_of_arrays = [] 

kf = KFold(7, shuffle=True, random_state=123) 

for train_index, test_index  in kf.split(train_data): 

 

   train_data1, test_data1 = train_data[train_index], train_data[test_in

dex] 

   train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index] 

 

   model.fit(train_data1, train_labels1) 

   conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

)) 

   conf_matrix_list_of_arrays .append(conf_matrix) 

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16) 

 

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth 

pltCM.add_text() 

# pltCM.add_f1() 

pltCM.color_diagonal() 

mean_of_conf_matrix_arrays.T 

 

LDA 
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as 

LDA 

from sklearn.model_selection import KFold 

from museotoolbox.charts import PlotConfusionMatrix 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

train_data, train_labels = oversample.fit_resample(features, features_la

bels) 

#Create algorithm object 

model = LDA() 
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conf_matrix_list_of_arrays = [] 

kf = KFold(7, shuffle=True, random_state=123) 

for train_index, test_index  in kf.split(train_data): 

   train_data1, test_data1 = train_data[train_index], train_data[test_in

dex] 

   train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index] 

 

   model.fit(train_data1, train_labels1) 

   conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

)) 

   conf_matrix_list_of_arrays .append(conf_matrix) 

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16) 

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth 

pltCM.add_text() 

# pltCM.add_f1() 

pltCM.color_diagonal() 

mean_of_conf_matrix_arrays.T 

 

RF 
from sklearn.ensemble import RandomForestClassifier as RF 

from sklearn.model_selection import KFold 

from museotoolbox.charts import PlotConfusionMatrix 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

train_data, train_labels = oversample.fit_resample(features, features_la

bels) 

#Create algorithm object 

model = RF() 

conf_matrix_list_of_arrays = [] 

kf = KFold(7, shuffle=True, random_state=123) 

for train_index, test_index  in kf.split(train_data): 

 

   train_data1, test_data1 = train_data[train_index], train_data[test_in

dex] 

   train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index] 

 

   model.fit(train_data1, train_labels1) 

   conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

)) 

   conf_matrix_list_of_arrays .append(conf_matrix) 

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16) 

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth 

pltCM.add_text() 

# pltCM.add_f1() 

pltCM.color_diagonal() 

mean_of_conf_matrix_arrays.T 

 

SVC 
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from sklearn.svm import SVC 

from sklearn.model_selection import KFold 

from museotoolbox.charts import PlotConfusionMatrix 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

train_data, train_labels = oversample.fit_resample(features, features_la

bels) 

#Create algorithm object 

model = SVC() 

conf_matrix_list_of_arrays = [] 

kf = KFold(3, shuffle=True, random_state=123) 

 

for train_index, test_index  in kf.split(train_data): 

 

   train_data1, test_data1 = train_data[train_index], train_data[test_in

dex] 

   train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index] 

 

   model.fit(train_data1, train_labels1) 

   conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

)) 

   conf_matrix_list_of_arrays .append(conf_matrix) 

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16) 

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth 

pltCM.add_text() 

# pltCM.add_f1() 

pltCM.color_diagonal()   

mean_of_conf_matrix_arrays.T 

 

ADBOOST 
from sklearn.ensemble import AdaBoostClassifier as ADB 

from sklearn.model_selection import KFold 

from museotoolbox.charts import PlotConfusionMatrix 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

train_data, train_labels = oversample.fit_resample(features, features_la

bels) 

 

#Create algorithm object 

model = ADB() 

conf_matrix_list_of_arrays = [] 

kf = KFold(7, shuffle=True, random_state=123) 

for train_index, test_index  in kf.split(train_data): 

   train_data1, test_data1 = train_data[train_index], train_data[test_in

dex] 

   train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index] 

 

   model.fit(train_data1, train_labels1) 

   conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

)) 



 123 

   conf_matrix_list_of_arrays .append(conf_matrix) 

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16) 

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth 

pltCM.add_text() 

# pltCM.add_f1() 

pltCM.color_diagonal() 

mean_of_conf_matrix_arrays.T 

 

GBT 
from sklearn.ensemble import GradientBoostingClassifier as GBT 

from sklearn.model_selection import KFold 

from museotoolbox.charts import PlotConfusionMatrix 

 

from imblearn.over_sampling import SMOTE 

oversample = SMOTE() 

train_data, train_labels = oversample.fit_resample(features, features_la

bels) 

#Create algorithm object 

model = GBT() 

conf_matrix_list_of_arrays = [] 

kf = KFold(7, shuffle=True, random_state=123) 

 

for train_index, test_index  in kf.split(train_data): 

 

   train_data1, test_data1 = train_data[train_index], train_data[test_in

dex] 

   train_labels1, test_labels1 = train_labels[train_index], train_labels

[test_index] 

 

   model.fit(train_data1, train_labels1) 

   conf_matrix = confusion_matrix(test_labels1, model.predict(test_data1

)) 

   conf_matrix_list_of_arrays .append(conf_matrix) 

mean_of_conf_matrix_arrays = np.mean(conf_matrix_list_of_arrays, axis=0)

.astype(np.int16) 

pltCM = PlotConfusionMatrix(mean_of_conf_matrix_arrays.T) # Translate fo

r Y = prediction and X = truth 

pltCM.add_text() 

# pltCM.add_f1() 

pltCM.color_diagonal() 

mean_of_conf_matrix_arrays.T 
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