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ABSTRACT

The two most fundamental aspects of mathematical finance are; portfolio optimization

and portfolio pricing. Portfolio optimization uses concepts from linear algebra and

ordinary multi-variable calculus. On the other hand, portfolio pricing is modelled by

stochastic calculus. In this work we will focus our interest in the development of

stochastic calculus and how it is applied to finance in Portfolio Pricing.

Keywords: Stochastic and Wiener Processes, Itō calculus, Instantaneous Interest rate

models, Continuous time pricing of the European call option, Black Scholes formula.
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ÖZ

Matematiksel finansın en temel iki yönü; portföy optimizasyonu ve portföy

fiyatlandırmasıdır. Portföy optimizasyonu, doğrusal cebirden ve sıradan çok

değişkenli hesaplardan kavramları kullanır. Öte yandan, portföy fiyatlaması stokastik

hesapla modellenmiştir. Bu çalışmada stokastik analizin gelişimine ve Portföy

Fiyatlandırmasında finansmana nasıl uygulandığına odaklanacağız.

Anahtar Kelimeler: Stokastik ve Wiener Süreçleri, Itō hesabı, Anlık Faiz oranları

modelleri, Avrupa çağrı seçeneğinin sürekli zaman fiyatlandırması, Black Scholes

formülü.
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Chapter 1

INTRODUCTION

The functions we encounter in ordinary (Newtonian) calculus like Polynomials,

Exponentials, Logarithms, Radicals, etc do not capture the zig-zag motion followed

by the graph modelling the prices of a stock in a stock market. To model and be able

to describe the changes and behaviours of a stock in a stock market, there became a

necessity to extend ordinary calculus to be able to describe the derivatives and

integrals of functions that are continuous but have no slope (not differentiable) at any

point. In this work we have introduced the basic concepts from probability and

measure theory which are needed to build up a stochastic process. This part was

written based on Brzeźniak and Zastawniak, Basic Stochastic Processes, with other

references. This is covered in chapter 2 and 3. In chapter 4 we dealt with Stochastic

Calculus and how to use the Itō formula, this chapter was written based on Thomas

Mikosch, Elementary stochastic calculus, with some other reference materials. An

important aspect of stochastic calculus is their differential equations, this has been

taken up in this chapter as well based on Bernt Θksendal, ”Stochastic Differential

Equation with Application in Finance”. Finally at the summit of the thesis, we used

all these tools to model stock-prices, interest rates and pricing the European call

options and the derivations of Black Scholes formula.This is also given in the

differential equation form whose explicit solution is the Black Scholes formula. I

used Karatzas-Shreve, Methods of Mathematical Finance, and several other

1



references to write this part of the thesis and they are mentioned in the bibliography.
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Chapter 2

PRELIMINARIES

To begin with, here are some necessary definitions and concepts to build up to the

subject matter in these thesis.

2.1 Random Experiment

Definition 2.1.1. A mapping that assigns all elements in set D a unique element in C

is a function, this we denote f : D→C. D is the domain and C is co-domain of f . The

subset of C which is mapped to elements in D is the range R which are images of D

under f .

For a function f , the following may happen;

(i) Injective ( one-to-one) if every element in D has a unique image in C.

(ii) Surjective (onto) if C = R.

(iii) Bijective if (i) and (ii) are both satisfied.

Remark 2.1.1. Condition (iii) is necessary for f to posses an inverse.

Definition 2.1.2. Assuming D is finite, the number of elements in D is its cardinality

which we denote |D|. Two sets D and C are of equi-cardinal if there is a bijection from

D to C. All finite or sets having a bijection with N (natural numbers) are countable. Sets

having a bijection with R (real numbers), are uncountable they are termed continuum.

Note there are other forms of uncountable sets.

3



Definition 2.1.3 (Random experiment). Is an experiment where certainty of the

outcomes cannot be predicted: for example we cannot say with certainty that we are

going to have a head as an outcome before tossing a fair coin. An outcome of this

experiment is termed an event. The set where all events are contained is termed the

sample space and we will denote this by Θ.

2.1.1 Sigma Fields

Definition 2.1.4 (field). A group F0 of subsets of Θ is termed a field if it fulfils the

conditions below:

(i) ∅ ∈ F0

(ii) D ∈ F0, then Dc ∈ F0,

(iii) D1,D2, . . . ,Dn ∈ F0, then
n⋃

i=1
Di ∈ F0.

From (i) we see that Θ ∈ F0 since ∅c = Θ. Also from (ii) and (iii) and De-Morgan

principle
n⋂

i=1
Di ∈ F0. Since an field excludes events generated by infinite unions and

intersections, so it is not enough to describe a complete probability theory. To achieve

this, we need a strong field.

Definition 2.1.5 (σ-field). A σ-field F is a field with the additional property,

D1,D2,D3, . . . ∈ F =⇒
∞⋃

i=1

Di ∈ F .

We can similarly show that for

D1,D2,D3, . . . ∈ F =⇒
∞⋂

i=1

Di ∈ F .

Given a σ-field F , the sets found in F are referred to as F -measurable.

Theorem 2.1.1. An intersection of a group of σ-fields of Θ, is also σ-field of Θ.

4



This can be easily shown by verifying the conditions needed for a σ-field .

Theorem 2.1.2 (Generated σ-field). Let F0 be an field , the least σ-field which

contain F0 is a generated σ-field. We denote it as σ(F0).

Note: The existence of σ(F0) is by construction that is adding infinite unions and

intersections. Define:

σ(F0) =
⋂
α

Fα,

where {Fα,α ∈ I}, hence σ(F0), is the least σ-field containing F0.

If Θ is with a σ-field say F , the pair (Θ,F ) is termed measurable space. When Θ is

countable, we take F = 2Θ. When Θ is uncountable, 2Θ becomes too large and thus

we have to settle for a smaller σ-field , hence F ⊂ 2Θ.

2.1.2 Measure Space

Definition 2.1.6. A measure ϑ : F → [0,∞] on F , satisfies;

1. ϑ(∅) = 0,

2. (Countable additivity) Let D1,D2,D3, . . . is a family of countable and disjoint

F −measurable sets,

ϑ

(
∞⋃

i=1

)
Di =

∞

∑
i=1

ϑ(Di)

The triple (Θ,F ,ϑ), is termed measure space. Since Θ ∈ F so ϑ(Θ) is well defined

and therefore in (Θ,F ,ϑ), following may happen.

1. ϑ(Θ)< ∞, ϑ is finite,

2. ϑ(Θ) = ∞, ϑ is infinite,

5



3. ϑ(Θ) = 1, ϑ is a probability.

Note that P, denotes probability measures. Clearly P is finite, (Θ,F ,P), is termed

probability space. We will be working with this kinds of spaces for the rest of the

thesis.

Definition 2.1.7 (Borel Sets). Consider (Θ,F ,P) where Θ = R. Let C0 be a group of

the open intervals of R. Then σ(C0) generated by C0 is termed Borel σ-field on R, and

this we denote as B(R).

All set in B(R) are Borel measurable or simply Borel sets. Since

{b}=
∞⋂

m=1

(
b− 1

m
,b+

1
m

)
∩Θ.

The singleton {b} is Borel, therefore all intervals of R, are Borel. B(R) is a proper

subset of 2R. So not all elements of 2R are Borel. Non Borel sets are very weird and

rare hence they are only of academic interest. So the Borel σ-field contains all sets that

are of probabilistic interest and even more such as the Cantor set. The Vitali sets is an

example of a non Borel set.

Let Θ = (0,1), for any (a,b) ⊂ Θ, define the length of (a,b) as P, This is termed the

Lebesque measure λ and it is a probability.

Definition 2.1.8. Given (Θ,F ,P), all sets in F are events, hence an event is any F -

measurable set.

6



2.2 Conditioning and Independence

Definition 2.2.1. Given (Θ,F ,P), let Γ,Λ be events and P(Λ) > 0 . Since Γ,Λ ∈ F

then we define the probability of Γ given Λ as

P(Γ|Λ) = P(Γ∩Λ)

P(Λ)
.

The equation above is termed, the conditional probabilityof Γ given Λ.

Remark 2.2.1. We cannot condition on an event of zero measure.

Theorem 2.2.1. If Λ ∈ F with P(Λ) > 0, then PΛ is a probability measure, where

PΛ(·) = P( ·|Y ).

Proof is by checking all axioms of measure.

Theorem 2.2.2. Let Λk for k = 1,2,3, . . . form a partition of Θ in (Θ,F ,P), that is,

⋃
k≥1

Λk = Θ and Λk∩Λi =∅, ∀k 6= i. Let Γ ∈ F and suppose ∀k, P(Λk)> 0. Then,

P(Γ) = ∑
k≥1

P(Γ|Λk)P(Λi) (2.1)

Proof. Consider

∑
k≥1

P(Γ∩Λk) = P

(⋃
k≥1

(Γ∩Λk)

)

= P

(
Γ∩

(⋃
k≥1

Λk

))

= P(Γ∩Θ) = P(Γ).

This completes the proof.

7



In particular if Λ ∈ F and 0 < P(Λ)< 1. Then for any Γ ∈ F ,

P(Γ) = P(Γ|Λ)P(Λ)+P(Γ|Λc)P(Λc).

This is an import of the above theorem, since Λ and Λc form a partition of Θ, hence

P(Γ|Λ)P(Λ) = P(Γ∩Λ).

Theorem 2.2.3 (Bayes Rule). Let A ∈ F with P(Γ)> 0, and let Λk’s be as in theorem

2.2.2. For k ∈ N,

P(Λk|Γ) =
P(Γ|Λk)P(Λi)

∑
k≥1

P(Γ|Λk) ·P(Λk)
.

Proof. Notice that

P(Γ|Λk)P(Λk) = P(Γ∩Λk),

using the results of theorem 2.2.2,

∑
k≥1

P(Γ|Λk)P(Λk) = P(Γ).

So Bayes Rule is a consequence of definition 2.2.1 and theorem 2.2.2.

2.2.1 Independence

Definition 2.2.2. Given (Θ,F ,P), Let D,Λ ∈ F . The events Γ and Λ are independent

under P if

P(Γ∩Λ) = P(Γ) ·P(Λ).

If P(Λ) > 0, we have P(Γ|Λ) = P(Γ). If two events are independent, that does not

8



necessarily mean they have nothing to do with each other. The solution of

P(Z) = (P(Z))2 ,

is either P(Z) = 0 or P(Z) = 1. So self independent events are the impossible and the

sure event. Z is not necessarily ∅ or Θ.

2.2.2 Independence of Sigma Fields

Definition 2.2.3. A family Γ1,Γ2,Γ3, . . . ,Γn ∈ F , of events are independent if I ⊆

{1,2,3, . . . ,n} and for all I 6=∅, then

P

(⋂
i∈I

Γi

)
= ∏

i∈I
P(Γi).

Definition 2.2.4. Let {Γi, i ∈ I} be an arbitrary group of events; these are independent

if for every finite group Γi1 ,Γi2, . . . ,Γin of them,

P

( ⋂
1≤k≤n

Γik

)
= ∏

1≤k≤n
P(Γik).

Definition 2.2.5. Let F and G be σ-fields of Θ, They are independent if for every

Γ ∈ F and Λ ∈ G , Γ and Λ are independent.

2.3 Random Variables

Let (Θ,F ,P) be a probability space.

Definition 2.3.1. A mapping Z : Θ→ R is F -measurable when each D ∈ B(R), the

image of the inverse Z−1(D) is an event in F , where

Z−1(D) = {ω ∈Θ : Z(·) ∈ D}.
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Definition 2.3.2. A random variable Z is a F -measurable function, where Z : Θ→R;

here the domain of Z, is Θ and the range is in R.

Definition 2.3.3. Let Z be a random variable, the probability law PZ : B(R)→ [0,1]

of Z for all Borel sets is:

PZ(A) = P(Z−1(A)) = P({ω ∈Θ : Z(·) ∈ A})

Remark 2.3.1. In other words the probability law is PZ = P ◦ Z−1, which is the

composite of P and Z−1.

We generate (R,B(R),PZ), as follows:

σ((−∞,z] : z ∈ R) = B(R).

So PZ((−∞,z]) is well defined for every z ∈ R since (−∞,z] ∈ B(R), then for z ∈ R,

PZ((−∞,z]) = P({ω ∈Θ|Z(·)≤ z}).

This is called the cumulative distribution functions for short CDF, and this we denote

FZ(z) = P({ω ∈Θ|Z(·)≤ z}).

Of the 3 types of random variables, singular random variables are only of academic

interest since they have no real applications. In this thesis we will deal only with

discrete and continuous random variables.
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2.3.1 Discrete and Continuous Random Variables

Definition 2.3.4. A random variable Z is discrete when its domain is countable. in

other words Z assigns values in a countable set almost surely. PZ = P(Z = z), is

termed probability mass function for short PMF of Z and it completely describes its

probability.

Definition 2.3.5. Let ϑ1 and ϑ2 be measures defined on (Θ, B), ϑ1 is with respect to

ϑ2, absolutely continuous if for each B ∈ B with ϑ1(B) = 0, then ϑ2(B) = 0.

Definition 2.3.6. A random variable Z is continuous if with respect to λ (Lebesque),

PZ is absolutely continuous. In other words, if for each B ∈ B(R) of λ(B) = 0, then

PZ(B) = 0.

Theorem 2.3.1 (Radon Nikodym special case). Let Z be a continuous random

variable, there exist fZ : R → [0,∞), a non negative measurable function where

∀B ∈ B(R) with

PZ(B) =
ˆ

B

fZ(z)dz.

Putting B = (−∞,z], in the theorem above

PZ((−∞,z]) = FZ(z) =

zˆ

−∞

fZ(z)dz, ∀z ∈ R.

Here fZ(z), is termed the probabilitydensity function for short PDF of Z.
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2.3.2 Multi-Random Variables

Let Z,Y be random variable’s on Θ where the point (X(·),Y (·))∈R2, the Borel σ-field

on R2, is

B(R2) = σ((−∞,z]× (−∞,y] : z,y ∈ R).

So for B ∈ B(R2) we have,

PZY (B) = P({ω ∈Θ : (Z(·),Y (·)) ∈ B}).

This is termed joint probability law of the random variable’s. In particular,

PZ,Y ((−∞,z]× (−∞,y]) = P({ω ∈Θ : Z ≤ z}∩{Y ≤ y}) = FZY (z,y).

This is the joint cumulative distribution function (CDF) of the random variables. In

short-hand we write,

FZY (z,y) = P(Z ≤ z, Y ≤ y).

When FZY (z,y), is given, we can find the marginal CDFs, that is FZ(z) and FY (y) but

the converse is not necessarily true.

Definition 2.3.7. Let σ(Y ), σ(Z) be independent σ-fields generated by Y , Z, then Y

and Z are independent.

In particular if Y , Z are independent then their joint CDF factors to their individual

CDFs. That is
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FZY (z,y) = FZ(z)FY (y).

Definition 2.3.8. Given Y and Z are discrete random variable’s with PMF PY Z(y,z) on

(Θ,F ,P). We define the conditional PMF as,

PY |Z(y,z) = P(Y = y|Z = z) =
PY Z(y,z)

PZ(z)
where PZ(z)> 0.

Definition 2.3.9. Given Y and Z are continuous random variable’s in (Θ,F ,P), with

joint PDF fY,Z(y,z); then conditional PDF of Y given Z is defined as,

fY |Z(y,z) =
fY Z(y,z)

fZ(z)
where fZ(z)> 0.

Hence for an event D ∈ Y ,

P(D ∈ Y |Z = z) =
ˆ

D

fY |Z(y|z)dy =
ˆ

∞

−∞

ID(Y )
fY Z(y,z)

fY (z)
,

where fZ(z)> 0, and ID (indicator function) is

ID(ω) =


1 ,ω ∈ D,

0 ,ω /∈ D.

2.3.3 The Gaussian

[1] A Gaussian or normal random variable X , has a distribution of the form

PX((a,b]) =
1

σ
√

2π

ˆ b

a
e−

(x−m)2

2σ2 dx,−∞ < a < b < ∞,

where m ∈R and σ2 > 0 are parameters, this is denoted by X ∼N (m,σ2). A constant
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random variable X = m, is Gaussian and is a degenerate. A Gaussian random variable

X , belongs to L2(Θ,F ,P) space and m, σ2 denotes expectation and variance

respectively, that is E[X ] = m and var(X) = σ2.

Theorem 2.3.2. If X ,Y are independent and Gaussian with (m1,σ
2
1), (m2,σ

2
2)

respectively: then

aX +bY ∼N (am1 +bm2,a2
σ

2
1 +b2

σ
2
2),

where a,b ∈ R.

This makes the Gaussian random variable very useful in many applications.

Definition 2.3.10. A family N (Xα : α ∈ A) of Gaussian random variables is a

Gaussian system provided that any linear combinations of random variables from N

are themselves Gaussian.

Theorem 2.3.3. Suppose X ,Z ∈ L2(Θ,F ,P), defines a Gaussian system, X and Z are

independent iff cov(X ,Z) = 0.

An example of a Gaussian system is, the Wiener process.

2.4 Conditional Expectation

Definition 2.4.1. Given Y and Z are discrete random variables with PMF PY Z(y,z).

Suppose the conditional PMF of Y , Z are,

PY |Z(y|z) =
PY,Z(y,z)

PZ(z)
where PZ(z)> 0.

We define,
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E(Y |Z = z) = ∑
Θ

yPY |Z(y|z),

This depends on z, so ∑
Θ

yPY |Z(y,z) is a mapping of z which we may denote Ψ(z) and

therefore

Ψ(z) = E(Y |Z = z).

Note: Ψ(Z) is a random variable and its termed conditional expectation of Y given Z.

Definition 2.4.2. Let Y , Z be jointly continuous with fZ|Y (z|y). We define,

E(Y |Z = z) =
ˆ

Θ

y fY |Z(y|z)dy.

Remark 2.4.1. Here E(Y |Z) is not a number it is a random variable.

In a more general situation we can show that for a measurable function g with E(|g|)<

∞,

E(Y −Ψ(Z)g(Z)) = 0. (2.2)

When g = 1 we have the law of iterated expectation. From equation (2.2),

E(Y g(·)) = E(Ψ(·)g(·)),

so Y−Ψ(·) and g(·) are uncorrelated. This equation forms the basic idea of conditional

expectation in a general measure space. To prove equation (2.2) recall the Correlation

coefficient
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ρy,z =
cov(Y,Z)

σZσY
.

When both Y , Z are of 0 mean, cov(Z,Y ) forms an inner product where σZ and σY

play the role of the norms thus it forms a Hilbert space. Since Y −Ψ(Z) and g(Z) are

uncorrelated so they are independent thus orthogonal on the Hilbert space. That is

E[(Y −Ψ(Z))g(Z)] = 0.

Hence E(Y |Z) is an estimate of Y when Z is known and Y −E(Y |Z) is the Error of

estimation and it is uncorrelated with any function of Z. Since Y −Ψ(Z) and g(Z) are

orthogonal on the Hilbert space, this makes E[Y |Z] the ”minimum mean-squared error

estimator” in short (MMSE) of Y . Meaning for any measurable function ϕ,

E[(Y −E(Y |Z))2]≤ E[(Y − γ(Z)2].

We can verify this by expanding the equation

E[(Y −Ψ(Z)+Ψ(X)−ϕ(Z))2].

If we consider

inf
z∈σ(Z)

E[(Y −Z)2],

this infimum exist since Hilbert spaces are complete so this is the conditional

expectation in general a.s.

16



2.4.1 Conditioning on Event and Sigma Fields

Definition 2.4.3. Given (Θ,F ,P), let B ∈ F and Z be an integrable random variable

with P(B)> 0. Then

E[Z|B] = 1
P(B)

ˆ
A

ZdP.

is conditional expectation of Z given B.

For all events A ∈ σ(Y ),

ˆ
A

E[Z|Y ]dP =

ˆ
A

ZdP.

Since E[Z|Y ], depends only on σ(Y ) and not on the values of Z. So

E[Z|σ(Y )] = E[Z|Y ].

Definition 2.4.4. Given (Θ,F ,P), let Z be an integrable random variable and H be a

σ-field with H ⊂ F , then the random variable E[Z|H ] is conditional expectation of Z

given H and ∀A ∈H ,

ˆ
A

E[Z|H ]dP =

ˆ
A

ZdP.

Remark 2.4.2. Given an event A,

P(A|H ) = E[IA(·)|H ].

Theorem 2.4.1 (Law of iterated expectation). Let Ψ(Z) = E(Y |Z), then E(Ψ(Z)) =
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E(Y ).

Proof. From

E(Ψ(Z)) = ∑
Z

PZ(z)E(Y (·)|Z(·) = z).

Consider

∑
Z

PZ(z)∑
Y

yPy|z(y|z) = ∑
Z

PZ(z)∑
Y

y
PZY (z,y)

PZ(z)
,

= ∑
ZY

yPZY (z,y) = E(Y ).

This completes the proof [7] [2].
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Chapter 3

STOCHASTIC PROCESSES AND BROWNIAN MOTION

3.1 Filtrations and Martingales

Definition 3.1.1. Given (Θ,F ,P), a group {Fµ} of sub-σ-fields is a filtration of F , if

it satisfies

Fr ⊂ Fµ, 0≤ r ≤ t.

A Filtration {Fµ} is complete if each event of zero probability is in F0. Since filtrations

are increasing sequences of σ-fields, then

⋃
r<µ

Fr ⊂ Fµ ⊂
⋂
r>µ

Fr.

For all µ≥ 0, we denote

F −µ =
⋂
r<µ

Fr, and F −0 = F0.

Similarly

F +
µ =

⋂
r>µ

Fr.

So {Fµ} is;

1. Left continuous if Fµ = F −µ .

2. Right continuous if Fµ = F +
µ .
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3. Continuous if Fµ = F +
µ = F −µ .

The natural filtration for some random process Z, is

F Z
µ = σ(Zµ; 0≤ µ≤ T ),

where T ≥ 0. If Z is Fµ−measurable for all µ ≥ 0, then Z is Fµ-adapted. Clearly Z is

F Z
µ −adapted.

Definition 3.1.2. The process Zµ, µ ≥ 0, is termed with respect to the filtration Fµ, a

continuous time martingale if

1. E[Zµ]< ∞, ∀µ≥ 0,

2. Z is F Z
µ −adapted,

3. E[Zµ|Fs] = Zs i.e Zs is best estimation of Zµ knowing Fs.

For k = 0,1, . . . , with respect to {Fk}, {Zk} is a discrete martingale, if

1. E[Zk]< ∞,

2. Zk is Fk−adapted,

3. E[Zk+1|Fk] = Zk.

A constant expectation function, is a remarkable property for martingales. I.e, for r < µ

since E[Zµ|Fr] = Zr, we obtain

E[Zr] = E(E[Zµ|Fr]) = E[Zµ], 0≤ r ≤ µ.
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3.2 Stochastic Processes

Definition 3.2.1. Given (Θ,F ,P), a group {Zµ}µ≥0 of parametrized random variables

is termed stochastic process. For each ω ∈ Θ and µ ∈ [0,∞), Zµ is a random variable

and Zµ(ω) is a path.

A process Zµ is a Gaussian if Zµ, µ ∈ [0,T ] forms a Gaussian system. The process Zµ

is termed a second order process if E[Z2
µ ]< ∞, ∀µ ∈ [0,T ].

Definition 3.2.2 (Stationary increments). A random process Z, have stationery

increments of wide sense provided for each µ,s, where µ,µ+ s ∈ [0,T ], we have

1. E[Zµ+s−Zs] = 0,

2. E[Zµ+s−Zs]
2 = E[Zµ−X0]

2.

Definition 3.2.3 (independent increments). A random process Z have independent

increments, provided we have for each finite number of µ0, . . . ,µk ∈ [0,T ] satisfying

µ0 < · · · < µk. Then Zµ1−Zµ0, . . . ,Zµk−Zµk−1 become independent random variable’s.

3.3 Brownian Motion and Wiener Process

In 1827, R. Brown watched the development of dust grains as they connect with the

atoms of fluids under a magnifying instrument. This development was weird and

exceptionally unpredictable thus it was named Brownian motion. In 1905 physical

thinking for Brownian motion was given by A. Einstain as a movement of a tiny

molecule dictated by its impact with fluid atoms.

To decide the Brownian path of a molecule, we need full data of the atoms of a given

fluid at some fixed moment, their position, speed, and so on. This is certifiably not
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a deterministic methodology. However, a stochastic method was recommended by N.

Wiener to deal with any motion of Brownian nature.

Definition 3.3.1 (Wiener process). [6] Consider a microscopic particle on a liquid

and let Θ be the group of all sample cases leading to unique paths of the particle. Then

its position can be modelled by Wµ,ω,µ≥ 0, ω ∈ Θ, a function of two variables. Since

the particle has continuous paths , one can select Θ =C(0,∞;R) and presume that the

chosen path ω ∈ Θ, leads to Wµ,ω = ωµ, µ ≥ 0. Clearly, different family of paths can

exist at different possibilities. Hence, we may presume a probabilitydistribution PA

on Θ is specifically defined and thus PA(B), manifests the probabilityof the existence

of the particle’s followed path in B⊂ Θ. Hence from this the following import cab be

made, there is a Θ with a distribution on Θ, for which the particle’s motion is a random

process W : [0,∞)×Θ→ R.

To further understand the properties of this process, we need a microscopic particle on

a liquid with the conditions:

1. Homogeneous with a fixed viscosity,

2. No outside force interference.

Lemma 3.3.1. Let the random process Z be stationery in wide sense and has

independent increments. If ψ(µ) = E[Zµ − Z0]
2, µ ∈ [0,T ], is continuous then

ψ(µ) = λµ for some constant λ≥ 0.

Proof. Consider

ψ(µ)−ψ(r) = E[Zµ−Z0]
2−E[Zr−Z0]

2
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= E[Zµ−Zr +Zr−Z0]
2−E[Zr−Z0]

2

= E[Zµ−Zr]
2 +E[(Zµ−Zr)(Zr−Z0)]

= E[Zµ−Zr]
2 ≥ 0.

We have used the fact that Zµ−Zr and Zr−Z0 are independent random variables so

they are uncorrelated thus

E[(Zµ−Zr)(Zr−Z0)] = 0.

Since ψ(µ) is a non-decreasing function; substituting µ = r+ s we have

ψ(r+ s) = ψ(r)+E[Zr+s−Zr]
2

= ψ(r)+E[Zs−Z0]
2

= ψ(r)+ψ(s), ψ(0) = 0.

So a unique continuous and non-decreasing solution for ψ is a solution of Cauchy’s

functional equation. Therefore ψ(µ) = λµ, where λ is a constant.

Thus as a result, for λ≥ 0, we have

E[Wµ−Wr]
2 = λ(µ− r), 0≤ r ≤ µ≤ T.

When λ= 0, then Wµ is constant. This is when there is so much cohesion in the liquid’s

molecules that it behaves like a solid. Hence we can always assume λ > 0.

Here are the fantastic properties of W :

1. As a consequence of condition (i) and (ii) W has stationary increments in the
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wide sense. So we have E(Wr−Ws) = 0, E(Wr−Ws)
2 depends only on |r− s|.

2. W has independent increments, this is because the liquid contains a lot of

molecules and so in different intervals (β,µ], (r,σ], the particle comes into

contact with different molecules. Hence, increment Wµ −Wβ, Wr −Wσ are

formed by independent collisions.

3. Wµ−Wβ is a Gaussian random variable, since Wµ−Wβ, can be considered as

a sum of small increments which are independent and equidistributed. From

lemma (3.3.1), we have E(Wµ−Wβ) = 0 and E(Wµ−Wβ)
2 = λ(µ−β) so Wµ−

Wβ ∼N (0,λ(µ−β)).

4. W has continuous paths.

5. At µ = 0 the position of the particle is selected to be the origin W0 = 0 and

the viscosity of the liquid is such that λ = 1. These two are just normalising

conditions.

A process W : [0,∞)×Θ→ R satisfying all the above properties is termed a standard

Wiener process, the existence of such W was given by N. Wiener in 1923.

Theorem 3.3.1 (Wiener). Given Borel σ-field of C(0,∞);R. There is a precise

probability measure PB, where the coodinate proceşs Wµ,ω = ωµ, ω ∈C(0,∞);R, with

respect to PB, is a standard Wiener process with probability 1.

The paths of a Wiener process have the following interesting properties:

1. They are not monotone.

2. They are continuous.

3. They are nowhere differentiable.
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4. They have infinite variation even on the smallest possible interandom variableal,

that is across every partitions σ : 0 = s0 < · · ·< sk = S of [0,S]. we have

sup
σ

∑
1≤i≤k

|Wµi,ω−Wµi−1,ω|= ∞.

Property 3 and 4, seems to be against the genuine nature of Brownian motion, since

a microscopic particles have limited speed at every instance and goes over a limited

distance for all limited intervals. However the Wiener process is known to be a decent

estimate of the Brownian motion. with respect to its natural filtration, the Wiener

process is martingale and some of its transformations are themselves martingales.

Theorem 3.3.2 ( Levy’s). Suppose {Wµ}µ≥1 is a stochastic process where Wµ is

Fµ-adapted and martingale a.s with respect to Fµ, if [W,W ](µ) = µ, then {Wµ}µ≥1 is

Brownian [1] [6] [7].
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Chapter 4

ITō CALCULUS

The failure of ordinary integration methods with regards to the paths described in

Wiener’s theorem, is an import of their nowhere differentiability and their unbounded

variation and hence the need for stochastic calculus with a totally different approach.

4.1 Riemann Integral

Given a function f on [0,T ] where it is real-valued and

σm : 0 = k0 < s1 < · · ·< km−1 < km = T,

a partition of [0,T ]: and for k = 1, . . . ,m, define

∆k = µk−µk−1.

An intermediate partition ϕm of σm is given by yk where µk−1 ≤ yk ≤ µk, gives. now

for Riemann integral:

Sm = ∑
1≤k≤m

f (yk)(µk−µk−1) = ∑
1≤k≤m

f (yk)∆k.

Here, Sm is an estimate of the area under the curve f , where f takes only non–ve

numbers. Let

mesh(ϕm) = max
k=1,...,m

∆k→ 0.
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As

max
j=k,...,m

∆k→ 0,

if the limit

S = lim
m→∞

Sm,

exist and S is not dependent on choices of ϕm and σm, thus S is termed the Riemann

integral of f in [0,T ]. We write

S =

ˆ T

0
f (µ)dµ.

Note:
´ T

0 f (µ)dµ is known to exist for f continuous or piecewise continuous.

4.2 Riemann Stieltjes Integral

Consider partitions ϕm and σm similar to section 4.1, on [0,T ]. Given f ,h on [0,T ] and

are real-valued, for i = 1, . . . ,m, define

∆kh = h(µk)−h(µk−1).

Corresponding to σm and ϕm, we obtain

Sm = ∑
1≤k≤m

f (yk)[h(µk)−h(µk−1)] = ∑
1≤k≤m

f (yk)∆kh,

which is referred to as Riemann-Stieltjes sum. We can see that when h(ν) = ν we

have a Riemann sum. Thus weighing f (yk), with ∆kh, in [µk−1,µk] of h, gives The

Riemann-Stieltjes sum.
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As mesh (σm)→ 0, if the limit

S = lim
m→∞

Sm

exist and S is not dependent on choices of σm and ϕm, then with respect to g on [0,T ],

S is termed, Riemann-Stieltjes integral of f . i.e

S =

ˆ T

0
f (µ)dh(µ).

If h has bounded-variation, that is

sup
σ

∑
1≤k≤m

|h(µk)−h(µk−1)|< ∞,

and f is continuous where supremum is across all partitions σ of [0,T ], then

´ T
0 f (µ)dh(µ) is known to exist.

Since the Wiener process Wt has an unbounded variation so the above result is not

applicable. Nonetheless, for the existence of
´ T

0 f (µ)dg(µ), it is not necessary for g

to be of bounded variation. Finding relaxed conditions for this existence is an open

question. However, we can state these:

Definition 4.2.1. A function h on [0,T ] with

sup
σ

m

∑
k=1
|h(µk)−h(µk−1)|q < ∞,

for some q > 0, is q−variation bounded. Here h is real-valued and supremum is across

every partition σ of [0,T ].
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So this holds for h when q = 1. If f and g agrees with the conditions below

1. All discontinuities are at different points,

2. For some p,q > 0 and p−1 + q−1 > 1, they are bounded p,q−variation

respectively.

Hence
´ T

0 f (µ)dh(µ) exists. For a particular interval, a Brownian path Wµ, is of

q−variation with the provision that q > 2, and for q≤ 2, its unbounded.

Consider a sample path f (µ, ·), where f is a stochastic process . With respect to the

sample path Wµ, we can define

ˆ T

0
f (µ)dWµ,

provided Wµ is of q−variation with q < 2.

Given f is differentiable, let f ′(µ) be bounded then by the mean-value theorem it

follows:

| f (µ)− f (ν)| ≤ Λ(µ−ν), ν < µ,

where Λ > 0, is some constant. So we have

sup
σ

k

∑
j=1
| f (µ j)− f (µ j−1)| ≤ Λ

k

∑
j=1
|µ j−µ j−1|= Λ < ∞,

hence bounded variation holds for f . As and import the following statement also holds

for f on [0,T ];
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ˆ T

0
f (µ)dWµ,

exist for every Brownian sample path Wµ.

Since Wiener processes are nowhere differentiable so the above results are not

applicable so the integral

ˆ T

0
WµdWµ, (4.1)

does not exist. So with respect to a Brownian motion, path-wise integration does not

give a vast group of integrable functions, hence the need for an integral which is not

define based on a path. The mean-square limit approach is used define Itō stochastic

integral.

4.3 Itō Stochastic Integral

Definition 4.3.1. The stochastic process {C(µ)}T
µ=0 is simple if it agrees with the

condition below: there exist a partition ϕm and a family {Zk}n
k=1 of random variables

with

C(µ) =


Zn, µ = T,

Zk, µ ∈ [µk−1,µk),

where

ϕm : 0 = t0 < t1 < · · ·< tn−1 < tn = T,

here {Zk} is {Fµ-adapted and agrees with E[Z2
k ]< ∞ for all k = 1, . . . ,n.
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Let {Wµ}T
k=1 be a Wiener process adapted to its natural filtration

Fµ = σ(Ws,s < µ), µ > 0.

For a simple process C(µ) on [0,T ], define

ˆ T

0
C(µ)dWµ = ∑

1≤k≤n
C(µk−1)(Wµk−Wµk−1) =

k

∑
j=1

Zk∆kW , (4.2)

is Itō integral. So clearly given simple process C(µ), then expression in 4.2 has a

representation of the Riemann-Steiltjes sum.

To generalise the Itō integral, we assume C(t) agrees with the following additional

conditions:

1. C(µ) is Wµ-adapted and its a function of Ws,0≤ s≤ µ. where Wµ is Brownian.

2.
ˆ T

0
E[C(µ)2]dµ < ∞.

Then we can find {C(n)}, a family of simple processes with

ˆ T

0
E[C(µ)−C(n)(µ)]2dµ→ 0.

Now we define

I
(

C(n)(µ)
)
=

ˆ T

0
C(n)(µ)dWµ.

One can prove that this limit of a family of random variable’s exist, which gives the Itō

stochastic integral of C(µ), we write this as
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I(C) =

ˆ T

0
C(µ)dWµ, µ ∈ [0,T ].

4.3.1 Properties Of Itō Integral

1. The process Iµ(C) has continuous paths.

2. Iµ(C) is {Fµ}-measurable and has zero expectation.

3. with respect to {Fµ},µ ∈ [0,T ], the natural Brownian filtration, Iµ(C) is

martingale.

4.
ˆ T

0
[aC1(µ)+bC2(µ)]dWµ =

ˆ T

0
aC1(µ)dWµ +

ˆ T

0
bC2(µ)dWµ. Where a,b are

constants which is the linearity of Iµ(C).

5.
ˆ T

0
C(µ)dWµ =

ˆ T

0
C(µ)dWµ +

ˆ T

µ
C(µ)dWµ. Linearity on adjacent intervals.

6. E[I2(C)] =

ˆ T

0
C2(µ)dµ, Isometry property.

4.4 Itō Formula

The chain rule from classical calculus is

[Γ(Λ(µ))]′ = Γ
′(Λ(µ))Λ′(µ).

If Γ and Λ are differentiable functions. In integral form

Γ(Λ(µ))−Γ(Λ(0)) =
ˆ t

0
Γ
′(Λ(µ))Λ′(µ)dµ =

ˆ t

0
Γ
′(Λ(µ))dΛ(µ).

The Itō formula’s import is, extending the chain rule to stochastic differentials. Given

Γ(µ,Xµ), assume the differentials Γµ(µ,Xµ), Γν(µ,Xµ) and Γνν(µ,Xµ) exist and are

continuous. If Wµ, is Wiener process, then

Γ(T,WT )−Γ(0,W0) =

ˆ T

0
Γµ(µ,Wµ)dt +

ˆ T

0
Γν(µ,Wµ)+
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1
2

ˆ T

0
Γνν(µ,Wµ)dWµdWµ.

We know dWµdWµ = dµ, so we obtain

Γ(T,WT )−Γ(0,W0) =

ˆ T

0
Γµ(µ,Wµ)dt +

ˆ T

0
Γν(µ,Wµ)+

1
2

ˆ T

0
Γνν(µ,Wµ)dµ.

In differential form, the Itō formula is

dΓ(µ,Wµ) = Γµ(µ,Wµ)dµ+Γν(µ,Wµ)dWµ +
1
2

Γµ(µ,Wµ)dµ.

Theorem 4.4.1. Given Γ(x) is twice differentiable and Wt is a Wiener process.

Applying Itō formula

Γ(Wt)−Γ(Ws) =

ˆ t

s
Γ
′(Wz)dWz +

1
2

ˆ t

s
Γ
′′(Wz)dz.

As an import of the theorem above, we can find

ˆ t

0
WzdWz.

For this choose Γ(µ) = µ2, so that Γ′(µ) = 2µ and Γ′′(µ) = 2. Hence by the above

theorem,

W 2
t −W 2

s = 2
ˆ t

s
WzdWz +

ˆ t

s
dz.

Putting s = 0,

ˆ t

0
WzdWz =

1
2
(W 2

t − t).
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So the integral in (3.1), exist in the Itō sense.

Using integration by parts from ordinary calculus, the Riemann Stieltjes integral yields

ˆ t

0
Λ(ν)dΛ(ν) =

ˆ t

0
Λ(ν)Λ′(ν)dν =

1
2

Λ
2(t).

We have already seen in the Itō integral, we have an additional term 1
2t, which comes

from the quadratic variation of the Wiener process Wt .

4.4.1 Itō Process

Definition 4.4.1. Defined the process;

Xs = X0 +

ˆ s

0
∆(µ)dWµ +

ˆ s

0
ϕ(µ)dµ

Here ∆(s), ϕ(s) are Fµ-adapted stochastic processes associated to {Wµ}. In short-hand

we write this as a stochastic differential equation (SDE).

dXµ = ∆(µ)dWµ +ϕ(µ)dµ.

This SDE is sometimes called Itō’s lemma, and it has the following quadratic variation

dXµdXµ = [∆(µ)dXµ +ϕ(µ)dµ]2 = ∆
2(µ)dµ,

thus

[X ,X ](s) =
ˆ s

0
∆

2(µ)dµ.

This is nothing but the isometry of the Itō integral I(t). Under normal conditions we

assume
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E
[ˆ T

0
∆

2(µ)dµ
]
<+∞,

the variance of I(µ) is

Var(I(µ)) = E[I2(µ)]−E[I(µ)].

Since I(µ) is a martingale, E[I(µ)] = 0; hence

Var(I(µ)) = E[I2(µ)] =
ˆ T

0
∆

2(µ)dµ.

Let Γ(Xµ,Yµ) = Xµ,Yµ the product rule from Itō’s formula is

dΓ(Xµ,Yµ) = YµdXµ +XµdYµ +dXµdYµ.

If Xµ, Yµ is not a Wiener process and is a function of classical calculus, the cross

quadratic variation dXµdYµ becomes zero. So in classical calculus the quadratic

variation dXµdYµ does not appear.

4.4.2 Itō Formula for the Itō Process

Given Γ(µ,Xµ), applying Itō formula to get

dΓ(µ,Xµ) = Γµ(µ,Xµ)dµ+Γν(µ,Xµ)dXµ +
1
2

Γνν(µ,Xµ)dXµdXµ,

= Γµ(µ,Xµ)dµ+Γν(µ,Xµ)dXµ +
1
2

Γνν(µ,Xµ)∆
2(t)dµ,

(4.3)

Substituting the SDE

dXµ = ∆(µ)dWµ +ϕ(µ)dµ,

expression 4.3, becomes

35



dΓ(µ,Xµ) = Γµ(µ,Xµ)dµ+Γν(µ,Xµ)[∆(µ)dWµ +ϕ(µ)dµ]+
1
2

Γνν(µ,Xµ)dXµdXµ

= [Γµ +ϕ(µ)Γν +
1
2

∆
2(µ)Γνν]dµ+∆(µ)ΓνdWµ.

This SDE is the Itō formula for {Xµ}.

4.4.3 Itō Formula for Higher Dimensions

Let

Wt =W1t ,W2t , . . . ,Wnt

be a Brownian vector where {Wkt} is Brownian ∀k, 1 ≤ k ≤ n. Then Wt has the

following quadratic variation.

dWktdW jt =


dt k = j,

0 k 6= j.

Consider the case where n = 2:

Xµ = X0 +

ˆ µ

0
ϕ1(s)ds+

ˆ µ

0
σ11(s)dW1(s)+

ˆ µ

0
σ12(s)dW2(s).

Yµ = Y0 +

ˆ µ

0
ϕ2(s)ds+

ˆ µ

0
σ21(s)dW1(s)+

ˆ µ

0
σ22(s)dW2(s).

These give the following SDEs:

dXµ = ϕ1(µ)dµ+σ11(µ)dW1(µ)+σ12(µ)dW2(µ).

dYµ = ϕ2(µ)dt +σ21(µ)dW1(µ)+σ22(µ)dW2(µ).

From these, we obtain the quadratic variations below.
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[X ,X ](µ) =
ˆ µ

0
(σ2

11(s)+σ
2
12(s))ds (4.4)

[Y,Y ](µ) =
ˆ µ

0
(σ2

21(s)+σ
2
22(s))ds (4.5)

[X ,Y ](µ) =
ˆ µ

0
(σ11(s)σ21(s)+σ12(s)σ22(s))ds (4.6)

For 2 dimensions, let Γ(µ,Xµ,Yµ) be such that Γµ, Γν, Γτ, Γνν, Γντ and Γττ exist and

are continuous, then we have;

dΓ(µ,Xµ,Yµ) = Γµ(µ,Xµ,Yµ)dµ+Γnu(µ,Xµ,Yµ)dXµ +Γτ(µ,Xµ,Yµ)dYµ+

1
2

Γνν(µ,Xµ,Yµ)dXµdXµ +Γντ(µ,Xµ,Yµ)dXµdYµ +
1
2

Γττ(µ,Xµ,Yµ)dYµdYµ.

We can now use this formula and the quadratic variations in (3.1), (3.2) and (3.3) with

their SDEs to find a formula for the Itō process in 2 dimensions.

Remark 4.4.1. So in essence the quadratic variation [W,W ](t) determines if a

stochastic process is Brownian [5] [7] [8].

4.5 Stochastic Differential Equations

Given Wµ, is a Wiener process; A stochastic differential equation (SDE) is an equation

of the form

dXµ = α(µ,Xµ)dµ+σ(µ,Xµ)dWµ, (4.7)

Our goal here is to find a stochastic process Xµ so that, Xµ agrees with the SDE in (4.7),

that is

Xµ = X0 +

ˆ µ

0
α(s,Xs)dt +

ˆ µ

0
σ(s,Xs)dWµ.
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Here Xµ is solution to (4.7), where α(µ,Xµ),σ(µ,Xµ) ∈ R and Xµ(0) = X0.

4.6 Existence and Uniqueness

Given the SDE

dXµ = α(µ,Xµ)dµ+σ(µ,Xµ)dWµ,

where ϕ(,) : [0,S]×Rk→Rk and σ(,) : [0,S]×Rk→Rk×m are measurable for S≥ 0,

satisfying:

1. |ϕ(r,u)|+ |σ(r,u)| ≤ λ(1+ |u|) and |σ|2 = Σ|σi j|2.

2. |ϕ(r,u)−ϕ(r,v)|+ |σ(r,u)−σ(r,v)| ≤ ϒ|u− v|.

Where λ, ϒ are constants, while u,v ∈ Rk and t ∈ [0,T ].

Let Z be an F (m)
∞ independent random variable with E[|Z|2] < ∞ generated by the

Wiener process Ws(·). Then (4.7), possesses unique and continuous solution Xt(·), for

s≤ t and X0 = Z, where

Xµ = X0 +

ˆ µ

0
ϕ(r,Xr)dµ+

ˆ µ

0
σ(r,Xr)dWµ.

The process Xµ is F Z
s - adapted where Wr(·);r ≤ s and

E
[ˆ µ

0
|Xs|2

]
< ∞.

4.7 Solutions to Special Cases

Finding a solution to stochastic differential equations depends mostly on the

application of the Itō formula and our basic knowledge of ordinary differential
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equations. These solutions are sometimes called closed form solution, not all SDEs

have a closed form solution, Here are examples.

4.7.1 Geometric Brownian

This has the following stochastic differential equation;

Xt = µXtdt +σXtdBt .

Let Xt = f (t,Bt), so that

dXt = d f (t,Bt) = ( ft +
1
2

fxx)dt + fxdBt .

By comparison we have

ft +
1
2

fxx = µXt = µ f and

fx = σ f =⇒ f (t,Bt) = eσx+g(t)

From the latter form, we see that ft = g′(t) f and fxx = σ2 f , so we have

γ
′(·) = µ− 1

2
σ

2 =⇒ γ(·) = (µ− 1
2

σ
2)t + k,

so that

f (t,Bt) = eσx+(µ− 1
2 σ2)t+k,

where f (0,0) = ek = X0. So we have

Xt = X0eσx+(µ− 1
2 σ2)t .
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This process is very useful in modelling stock prices since it is a strictly positive

Brownian motion.

4.7.2 Ornstein Uhlenbeck Process

This process is used in the study of the behaviour of certain gasses and it has the

following SDE:

dXt =−αXtdt +σdBt .

We have already seen

d f (Xteαt) = αXteαtdt + eαtdXt

substituting dXt we get

d f (Xteαt) = αXteαtdt + eαt [−αXtdt +σdBt ] = eαt
σdBt .

So by integrating from 0 to t:

Xteαt−X0 = σ

ˆ t

0
eαsdBs =⇒ Xt = X0e−αt +

ˆ t

0
eα(s−t)dBs.

This process has a variation, termed the mean-reverting Ornstein Uhlenbeck process

whose SDE is:

dXt = (c−Xt)dt +σdBt .

Here we make the following guess

Xt = c+ϑ(t)
[

X0 + τc+
ˆ t

0
h(s)dBs

]
.
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Differentiating we get

dXt =
ϑ′(t)
ϑ(t)

(Xt− c)dt +ϑ(t)h(t)dBt .

Hence

−ϑ
′(t) = ϑ(t) =⇒ ϑ(t) = e−t and

ϑ(t)h(t) = σ =⇒ h(t) = σet ,

d(e−t(X0 + τc)) = (c−X0)e−tdt =⇒ τ =−1,

so we have

Xt = c+(X0− c)e−t +

ˆ t

0
es−tdBs.

So we see that

E[Xt ] = c+(X0− c)e−t ,

and since

Var(Xt) := E[(Xt−E[Xt ])
2],

hence as a result:

Var(Xt) =
σ2

2
[1− e−2t ].
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4.7.3 Numerical Solutions

[3] For SDEs without close form solutions, we can make numerical approximations

for the solution. The method is similarly to that of ordinary differential equations. In

ordinary differential equations we use the finite difference from the Taylor series.

Given [a,b], we can make n equal partitions with a step size h. Then following

approximation can be made: for Z′(x), x ∈ [a,b] :

Z((i+1)h) = Z(ih)+hZ′(ih).

This can also be done in two variables.To adapt this method for a SDE, we need to take

a sample Brownian motion or a path, this path can be fixed according to Bt . If we have

a fixed path for Bt then for

dXt = µdt +σdBt

we can make the following approximation:

Z((i+1)h) = Z(ih)+hdX(ih)

= Z(ih)+h[µ(ih,Z(ih))dt +σ(ih,Z(ih))dB(ih)]

From the fixed sample path,

dB(ih) = B((i+1)h)−B(ih)dt = h

To get this fixed path, we use the Monte Carlo simulation.

When numerically solving SDEs by hand where the solution is path dependent, the

42



tree method can be used. Some SDEs can be transformed into the well known heat

PDE,

∂ϕ

∂t
=

∂2ϕ

∂x2 .

In a perfectly insulated infinitely long conductor where at t = 0, the distribution of heat

is known and heat can only travel in the x-axis, after some time t

∂ϕ

∂t
=

∂2ϕ

∂x2 ,

tells us how the distribution of heat will be along the substance. With initial conditions

ϕ(0,x) = ϑ(x). The solution to the above PDE is:

ϕ(t,x) =
ˆ

∞

−∞

1√
2πt

e
−(x−s)2

4t ϑ(s)ds.

The Black Scholes equation can be further studied using this PDE which is well

understood [1] [3] [9].
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Chapter 5

APPLICATIONS OF ITō CALCULUS IN FINANCE

The modelling of instantaneous interest rates and the pricing of the European call

option are made possible by applying Itō calculus, since both of these have a

Brownian behaviour and thus can be represented or approximated by a stochastic

process.

5.1 Stock Prices as Stochastic Processes

[8] Given a stock in a stock market, we want to write its price as a stochastic process

at time t. Let ϕ(t) be the drift term, while ∆(t) is the stock volatility, so that we obtain

dXt = ∆(t)dWt +ϕ(t)dt.

Since prices are always non-negative, we need a strictly positive stochastic process. To

satisfy this restriction we use a geometric Brownian process.

5.1.1 Geometric Brownian Process

Let St be the price for a stock, define an Itō process

Xt =

ˆ t

0
σdWt +

ˆ t

0
(α− 1

2
σ

2)dt,

where X0 = 0, so we have

dXt = σdWt +(α− 1
2

σ
2)dt.
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So we see that

[dXt ]
2 = σ

2dt,

is the quadratic variation. Since σ and α are positive constants, we have

Xt = σWt +(α− 1
2

σ
2)t.

Now we can define St to be

St = S0eXt = S0eσWt+(α− 1
2 σ2)t .

This is called the asset price, Wt makes St random.

Appling the Itō formula to ϕ(Xt) = S0eXt , we have

dϕ(Xt) = dSt = ϕ
′(Xt)dXt +

1
2

ϕ
′′(Xt)[dXt ]

2.

Substituting dXt and the quadratic variation, we have

dSt = S0eXt (σdWt +(α− 1
2

σ
2)dt)+

1
2

S0eXt σ
2dt

= σStdWt +αStdt = St(σdWt +αdt).

This SDE is very useful in describing the change in price of an asset in the future to

some degree of accuracy since St is random.

5.1.2 Analysing Two Stocks

[4] Suppose we have two stocks in a market with the following asset prices S1(µ) and

S2(µ) such that:
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dS1(µ) = α1S1(µ)dµ+σ1S1(µ)dW1(µ) (5.1)

dS2(µ) = α2S2(µ)dµ+σ2S2(µ)[ρdW1(µ)+
√

1−ρ2dW2(µ)]. (5.2)

Where ρ ∈ [0,1] is cov(W1(µ),W2(µ)). For ρ = 0,1 S2(µ) depends only on W1(µ) or

W2(µ) respectively. When W1(µ) and W2(µ) are independent we can define

dW3(µ) = ρdW1(µ)+
√

1−ρ2dW2(µ).

So we see that,

dW3(µ)dW3(µ) = dµ =⇒ [W3,W3](µ) = µ.

So W3(µ) is Brownian as result of Levy’s condition and so we can adapt it to the same

filtration as W1(µ) and W2(µ). Hence from

dS2(µ) = α2S2(µ)dµ+σ2S2(µ)dW3(µ),

we see that the correlation coefficient of W1(µ) and W3(µ) is not zero, in fact

[W1,W3](µ) = ρ =⇒ E[W1(µ)W3(µ)] =
ˆ µ

0
ρdµ = ρµ.

So there is a relation between S1(µ) and S2(t) so in essence a change in the price of

asset S1(µ) will affect the price of asset S2(µ).

5.2 Interest Rate

[5] Suppose we invest some capital say P and after some time t we are paid and added

sum
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P+Pr = P(r+1),

here r is our rate of interest. In banks, r keeps changing with time, we want to know

the instantaneous rate. Let R(s, t) be the rate from s to t, with the condition 0≤ s≤ t.

Then

Rt = lim
s→t

R(s, t),

gives the instantaneous rate of interest. Rt is a random process but we also want it to

be an Itō process.

5.2.1 Vasicek’s Model of Interest Rate

Let σ, α and τ be positive constants, define

dRt = (α− τRt)dt +σdWt .

This model has a closed form solution

Rt = R0e−τt +
α

τ
(1− e−τt)+σe−τt

ˆ t

0
eτsdw(s).

We will verify this using Itō formula, let

Xt =

ˆ t

0
eτtdWu =⇒ dXt = e−τtdWt ,

where X0 = 0 and define:

Γ(t,Xt) = R0e−τt +
α

σ
(1− e−τt)+σe−τtXt

Γt(t,Xt) =−τR0e−τt +αe−τt−σe−τtXt ,
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Γν(t,Xt) = σe−τt ,Γνν(t,Xt) = 0.

Substituting these in

dRt = dΓ(t,Xt) = Γt(t,Xt)dt +Γν(t,Xt)dXt +
1
2

Γνν(t,Xt)dXtdXt ,

we have

dRt = [−τR0e−τt +αe−τt−σe−τtXt ]dt +σe−τtdXt

= [α− τ(R0e−τt +
α

τ
(1− e−τt)+σe−τtXt)]dt +σdWt

= (α− τRt)dt +σdWt .

From

Xt =

ˆ t

0
eτtdWu =⇒ dXt = e−τtdWt ,

it follows E[Xt ] = 0 and

Var(Xt) = [X ,X ](t) =⇒ Var(Xt) =

ˆ t

0
e2τds =

1
2τ

(e2τ−1).

So that Xt ∼N
(
0, 1

2τ
(e2τ−1)

)
.

5.2.2 Cox Ingersoll Ross Model

This model has the representation below,

dRt = α(β−Rt)dt +σ
√

RtdWt .

Where α(β−Rt) is the drift to the mean and σ
√

Rt is the diffusion which presents the

market volatility. The Cox-Ingersoll-Ross model’s properties,
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1. Is a non-negative interest rate model.

2. It is a Wiener process with drift.

3. Mean reverting the long term mean.

This model has no close form solution however an approximation using the Monte

Carlo Simulation can generate a numerical solution.

5.2.3 Compound Interest

Suppose we invest 1 dollar in money market with rate r, for ti = i
nT ∈ [0,T ] so that the

instantaneous interest rate is:

RT = lim
n→∞

(
1+

rT
n

)n

= erT

so for a P dollar investment, we get PerT as our total sum after time T . Now let B0 be

the money to be invested and Bt is the amount after time t then we have.

Bt = B0ert =⇒ B0 = Bte−rt .

So by knowing how much we want to make in a period t for r, we can calculate how

much to invest at 0. This is called the discounted price of the fixed deposit for time 0

at time t. When t = 0, S0 = e−rtSt . Since

dSt = αStdt +σStdWt ,

and thus

dSt = S0ert [αdt +σdWt ].

This is the Geometric Brownian process and we have already seen in the last part of
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the previous chapter its solution. The Black Scholes equation gives the premium

Xt = γ(µ,Sµ) [4].

5.3 Portfolio Pricing

In the study of mathematical finance the two most fundamental aspects are portfolio

pricing and portfolio optimization. In optimizing the portfolio, the mathematical

tools used the most is multi-variable calculus, linear field and the Lagrange multipliers

and the most fundamental results is the Karush-Kuhn-Turker (KKT) condition. The

portfolio pricing on the other hand depends almost entirely on the Itō calculus. For

this write up we will focus more on the Portfolio pricing for a European call option

which directly applies the Itō calculus in the continuous time model.

5.3.1 Pricing in Discrete Time

Definition of some terms used in financial markets:

(i) Call option: a stock is a call option when the holder is ready to sell the stock.

(ii) Put option: is when a buyer is ready to buy a call option.

(iii) Strike price: is the agreed price to sell the option denoted by k.

Suppose I hold an option in a market and let St be the asset price where t ∈ [0,T ] such

that the expiration time for the option is T . Supposed I enter in a contract with a buyer

of my asset St with strike price k. In this contract you are not obligated to buy from me

if the market price is less than k and I am oblige selling you the asset at k, even if the

market price is higher than k. For all scenarios, I am at a disadvantage to avoid this, the

contract for the option will involve a premium price sometimes called the option price.

Black Scholes Equation is used for finding the option price for an asset necessitated

the.
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S1(H)

S0

S1(T )

uS0

dS0

Figure 5.1: One Period Binomial Model

For a stock St with strike price k, the option value denoted by V (t) is:

V (t) = max{St(·)− k,0}.

For T the option value is

V (T ) = max{ST (·)− k,0}.

This is the only time to exercise in European call options. Here finding the value of V0,

gives the option price or premium. So we can use V0 to Hedge the option. A market

where hedging is always possible is called a complete market but this is not always the

case in most markets around the world.

5.3.2 The Binomial (Cox Loss Rubenstein) Model

At t = 0, let S0 stock price. Now toss a fair coin with probabilities P(H) = p and

P(T ) = q. Suppose the prices goes up by u when H shows up and decrease with d

when T shows up, we illustrate this as in Figure 1.
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Suppose we have a simple market, let Z0 be the amount charged for a call option. We

can use some portion of Z0 to buy Λ0S0 amount of stock and invest the rest which

is Z0 −Λ0S0 in banks at rate r, so that for t = 1, With the no arbitrage condition

0 < d < r+1 < u. We obtain

Z1 = Λ0S1 +(r+1)[Z0−Λ0S0] =⇒ Z1 = (r+1)Z0 +Λ0[S1− (r+1)S0].

With the no arbitrage condition 0 < d < i+ r < u and let Z0 =V0 hence Z1(·) =V1(·)

so we have the following from the binomial model presented in Figure 1.

V1(H)

(r+1)
= Z0 +Λ0

[
V1(H)

(r+1)
−S0

]
(5.3)

and

V1(T )
(r+1)

= Z0 +Λ0

[
V1(T )
(r+1)

−S0

]
. (5.4)

Let p̂+ q̂ = 1 multiply equation (5.3) with p̂ and (5.4) with q̂, summing the results to

obtain:

1
r+1

(p̂V1(H)+ q̂V1(T )) = Z0 +Λ0

[
1

r+1
(p̂S1(H)+ q̂S1(T ))−S0

]
.

Let choose p̂ and q̂ such that

1
r+1

(p̂S1(H)+ q̂S1(T )) = S0. (5.5)

Hence it follows

Z0 =
1

r+1
(p̂V1(H)+ q̂V1(T )).
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from equation (5.5), we have

S0 =
1

r+1
(p̂uS0 +(1− p̂)dS0) =⇒ 1 =

1
r+1

[p̂u+(1− p̂)d],

hence,

p̂ =
r+1−d

u−d
, q̂ =

u− r−1
u−d

.

Since 0 < d < r+1 < u, therefore q̂, p̂ > 0. Thus p̂, q̂ are probabilitymeasures but they

are not the market probabilities. If we subtract equation (5.3) and (5.4) we have

Λ0 =:
V1(H)−V1(T )
S1(H)−S1(T )

.

This is called the delta of the hedging. From (5.5) we see that

S0 =
1

r+1
Ê[S1] = Ê

[
S1

r+1

]
.

So St is a martingale Under p̂, q̂, this means the stock market’s growth is the same

as that of the money market. So we can invest only in the money market which is

risk-free. p̂, q̂ are called the risk-neutral probabilities.

5.3.3 Two Period Binomial Model

Assuming we have similar conditions as in the one period binomial model.

Assume at t = 2

V2(·) = max{S2(·)− k,0},

at t = 1 we buy Λ1(·)S1(·) shares and we invest the rest in the money market, so the
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S0

S1(T )

S1(H)

S2(T T )

S2(HT ),S2(T H)

S2(HH)

dS0

uS0

u2 S0

udS0

udS0

d 2S0

Figure 5.2: Two Period Binomial Model

wealth equation becomes

V2(·) = Λ1(·)S1(·)+(r+1)[V1(·)−Λ1(·)S1(·)].

From the figure below, we get the following equations for each possibility.

V1(H) = Λ0S1(H)+(r+1)[V0−Λ0S0].

V1(T ) = Λ0S1(T )+(r+1)[V0−Λ0S0].

V2(HH) = Λ1(H)S(HH)+(r+1)[V1(H)−Λ1S1(H)].

V2(HT ) = Λ1(H)S(HT )+(r+1)[V1(H)−Λ1S1(H)].

V2(T H) = Λ1(T )S(T H)+(r+1)[V1(T )−Λ1S1(T )].

V2(T T ) = Λ1(T )S(T T )+(r+1)[V1(T )−Λ1S1(T )].

Under p̂, q̂,

Λ1(H) =:
V2(HH)−V2(HT )
S2(HH)−S2(HT )

,
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and

V1(H) =
1

r+1
[p̂V2(HH)+ q̂V2(HT )] = Ê

[
V2

r+1

]
.

For the K-period model with no arbitrage condition under p̂, q̂, let VK be the pay-off of

the option at t = K. Then for ω1, . . . ,ωK we can backtrack VK→VK−1→, . . . ,→V0 so

for any 0 < k < K, we have

Λk(ω1, . . . ,ωk) =
Vn+1(ω1, . . . ,ωkH)−Vk+1(ω1, . . . ,ωkT )
Sk+1(ω1, . . . ,ωkH)−Sk+1(ω1, . . . ,ωkT )

.

Vk(ω1, . . . ,ωk) =
1

r+1
[p̂Vk+1(ω1, . . . ,ωkH)+ q̂Vk+1(ω1, . . . ,ωkT )],

=
1

r+1
Ê[Vk+1](ω1, . . . ,ωk).

The discounted price under p̂, q̂ is a martingale that is,

Ê
[

Sk+1

(r+1)k+1

]
=

1
(r+1)k Ê

[
Sk+1

r+1

]
=

Sk

(r+1)k .

5.3.4 Portfolio Wealth Process

Assume F is generated by coin tosses and stochastic process

{Λ0,Λ1, . . . ,Λk, . . . ,ΛK−1} is F −adapted. Let {Z1,Z2, . . . ,Zk, . . . ,ZK−1} be the

wealth process which is also F −adapted then we have following wealth equation.

Zk+1 = ΛkSk+1 +(r+1)[Zk−ΛkSk]. (5.6)

Theorem 5.3.1. Under p̂, q̂, the discounted wealth process Zk
(r+1)k is a martingale for

each k. That is,
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Zk

(r+1)k = Ê
[

Zk+1

(r+1)k+1

]
.

Proof. We will use equation (5.6).

Ê
[

Zk+1

(r+1)1+k

]
= Ê

[
ΛkSk+1

(r+1)1+k +
Zk−ΛkSk

(r+1)k

]
= ΛkÊ

[
Sk+1

(r+1)1+k

]
+

[
Zk−ΛkSk

(r+1)k

]
=

ΛkSk

(r+1)k +

[
Zk−ΛkSk

(r+1)k

]
=

Zk

(r+1)k .

Since Zk =Vk so we have,

Vk

(r+1)k = Ê
[

Vk+1

(r+1)k+1

]
.

This is the discounted portfolio value and its analogue in continuous time is the Black

Scholes formula [4] [7] [8].

5.4 Pricing in Continuous Time

In the last section of Chapter 1 we discussed about conditional expectation, we will

used some of those ideas here.

Given (Θ,H ,P), assume Z > 0 is a random variable with such that ∀A ∈H and for P̂,

P̂(A) =
ˆ

A
Z(·)dP(·).

If E[Z] = 1 then

P̂(Θ) =

ˆ
Θ

Z(·)dP(·).

Here, Z is termed Radon Nikodym derivative and Z =
dP̂
dP

. Suppose X is a random
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variable then Ê[X ] = [XZ] so for P{Z > 0}= 1,

E[X ] = Ê
[

1
Z

X
]
.

If X ∼ N (0,1) and Z = e−(θx+ 1
2 θ2) where θ is a constant, suppose W is a random

variable in P̂ with W = θ+ X , then E[W ] = θ and Ê[W ] = E[WZ] = 0. Let G be

contained in F and E[X |G ]. Then using partial averaging we have

ˆ
A

E[X |G ]dP =

ˆ
A

XdP.

For A = Θ,

ˆ
Θ

E[X |G ]dP =

ˆ
Θ

XdP = E[X ].

So this makes G an unbiased estimator of X .

For t,s∈ [0,T ] with s< t, from tower property we discussed in conditional expectation,

we can proof Z being a martingale that is

E[Zt |Hs] = Zs, and E[Z|Ht ] = Zt ,

and this is the Radon Nikodym process.

Lemma 5.4.1. Given W (·) is Ht-measurable an 0 < t < T we have

Ê[W (·)] = E[W (·)Zt ].

Proof. Consider
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Ê[W (·)] = E[W (·)Z] = E[E[W (·)Z|Ht ]]

= E[W (·)E[Z|Ht ]]

= E[W (·)Zt ],∀Ht ⊂ F

Lemma 5.4.2. Let r and t be such that 0 < r < t < T let Y be Ft-measurable random

variable then

Ê[Y (·)|Hs] =
1
Zs

E[Y (·)Zt |Hs].

Proof. Consider

ˆ
A

Ê[Y (·)|Hs]dP̂ =

ˆ
A

Y (·)dP̂,∀A ∈Hs.

So we need to show that

ˆ
A

1
Z(s)

E[Y (·)Z(t)|Hs]dP̂ =

ˆ
A

Y dP̂.

Since

1
Zs

E[Y (·)Z(t)|Hs]dP̂,

is Hs-measurable so

ˆ
A

1
Zs

E[Y (·)Zt |Hs]dP̂ =

ˆ
Θ

IA
1
Zs

E[Y (·)Zt |Hs]dP̂,

= Ê
[

IA
1
Zs

E[Y (·)Zt |Hs]

]
,

= E[IAE[Y (·)Zt |Hs]].
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Where IA is Hs-measurable and an unbiased estimator, so

E[E[IAY (·)Zt |Hs]] = E[IAY (·)Zt |Hs].

By Lemma (5.4.1)

E[IAY (·)Zt |Hs] = E[IAY (·)Zt ] = Ê[IAY (·)] =
ˆ

A
Y (·)dP̂.

Theorem 5.4.1 (Girsanov). Given (Θ,F ,P), suppose Wµ is a Brownian and Fµ be

associated with it. Assume θ(·) is adapted to Fµ, define:

Zµ = exp
{
−
ˆ µ

0
θ(µ)dWµ−

1
2

ˆ µ

0
θ

2(µ)dµ
}
.

and

Ŵµ =Wµ +

ˆ µ

0
θ(u)du.

Assuming

E
[ˆ µ

0
θ

2(u)du
]
<+∞,

where o < µ < T , set Z = Z(T ). Then E[Z] = 1 and if P̂ is the new probability measure

given by Z then under P̂, Ŵµ is Brownian.

We will prove this, using Levy’s condition.

Proof. Ŵµ must meet the conditions below:

1. Ŵ (0) = 0,

2. [Ŵµ,Ŵµ] = µ quadratic variation,
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3. Under P̂, Ŵµ is a martingale.

From the definition of Ŵµ we see that (i) and (ii) are trivial. For (iii), first we need to

prove the martingale property of Zµ. Lets define,

Xµ =−
ˆ µ

0
θ(ν)dWν−

1
2

ˆ µ

0
θ

2(ν)dν =⇒ dXµ =−θ(µ)dWµ−
1
2

θ
2(µ)dµ

so that

dX2(µ) = θ
2(µ)Dµ.

Let Λ(x) = ex then Λ′(x) = Λ′′(x) = Λ(x) = ex, using Itō formula to get

dZµ = dΛ(Xµ) = Λ
′(Xµ)dXµ +

1
2

Λ
′′(Xµ)dX2

µ .

Hence

dZµ = eXµ [−θ(µ)dWµ−
1
2

θ
2(µ)dt]+

1
2

θ
2(µ)DµeXµ

=−Zµθ(µ)dWµ.

Hence it follows

Zµ = Z0−
ˆ µ

0
Zνθ(ν)dWν.

Zµ is a martingale since it has an Itō representation. Hence

E[Z(·)] = E[ZT ] = E[Z(0)] = 1,

and
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Zµ = E[ZT |Fµ] = E[Z(·)|Fµ].

So Zµ is a Radon Nikodym process. Now we will show the martingale property for

{ŴµZµ}.

d(ŴµZµ) = ŴµZµ +Z(t)dŴt +dŴµZµ

=−ŴµZµθ(µ)dWµ +Zµ[dWµ +θ(µ)dµ]−θ(µ)Z(µ)dµ

=−ŴµZµθ(t)dWµ +ZµdWµ

= [1−Ŵµθ(µ)]Z(µ)dWµ.

So we have

ŴµZµ =

ˆ µ

0
[1−Ŵνθ(ν)]ZνdWν.

So this is an Itō integral, hence {ŴµZµ} is a martingale. Now we need to show that

with respect to Fν, for 0≤ ν≤ µ≤ T , {Ŵµ} is a martingale .

Ê[Ŵµ|Fν] =
1
Zν

E[ŴµZµ|Fν],

by Lemma (5.4.2),

=
1
Zν

ŴνZν = Ŵν,

hence under P̂, Ŵµ is a martingale, thus levy’s condition is meet.

This is all true in the Almost surely sense. Ŵt is used for pricing in continuous time.
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5.4.1 Risk-Neutral Pricing.

Given (Θ,F ,P), let {Wt}, be a Wiener process for µ ∈ [0,T ] and {Fµ} is a filtration

associated with {Wµ}. Recall the following SDE

dSµ = α(t)Sµdt +σ(t)SµdWt ,

where α(t) and σ(t) denotes stock mean return and volatility respectively. This has the

following solution

Sµ = S0 exp
{ˆ t

0
σ(s)w(s)−

ˆ t

0

[
α(s)− 1

2
σ

2(s)ds
]}

.

Assume {Rµ} is the stochastic process denoting the rate of interest adapted to
{

Fµ
}T

t=0.

The discounted process {Dµ} is define as:

Dµ = e−
´ µ

0 Rνdν.

Let Λ(ν) = e−ν then we have Λ′(ν) =−e−ν and Λ′′(ν) = Λ(ν). Now let

I(µ) =
ˆ µ

0
Rνdν,

So that

dI(µ) = Rµdµ =⇒ dDµ =−DµRµdµ.

Appling the product rule

d(DµSµ) = DµdSµ +SµdDµ +dRµdSµ,

= DµSµ[α(µ)−Rµ]dµ+σ(µ)DµSµdWµ.
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Set

θ(µ) =
α(µ)−Rµ

σ(µ)
,

so that

d(DµSµ) = σ(µ)DµSµ[θ(µ)dµ+dWµ],

= σ(µ)DµSµdŴµ.

Hence

DµSµ = S0 +

ˆ µ

0
DνSνσ(ν)dŴν.

So under P̂, DµSµ is martingale. Here

θ(µ) =
α(µ)−Rµ

σ(µ)
,

is the risk-price.

dSt = α(t)Sµd|mu+σ(µ)SµdWµ,

= [θ(µ)σ(µ)+Rµ]Sµdµ+σ(µ)SµdWµ,

= RµSµdµ+σ(µ)Sµ[θ(µ)dµ+dWµ],

= RµSµdµ+σ(µ)SµdŴµ.

This is the risk-neutral SDE for Sµ.

5.4.2 Pricing the European Call Option

Let
{

Sµ
}T

µ=0 be the stock price for call option so at µ = 0 we have a contract so that we

can sell shares of Sµ at some price k, hence the option value is;
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Xµ = max{Sµ− k,0},

and Xµ =V (µ), X0 =V (0). Recall the portfolio wealth equation:

dXµ = Λ(µ)dSµ +Rµ[Xµ−Λ(µ)Sµ]dµ.

Substituting the Geometric Brownian, to get:

dXµ = ∆(t)[α(t)Sµdt +σ(t)SµdWµ]+Rµ[Xµ−∆(t)Sµ]dt

= ∆(t)Sµσ(t)dŴµ +RµXµdt.

By Itō product rule we have

d(DµXµ) = DµdXµ +XµdDµ +dDµdXµ, (5.7)

since Dµ is not Brownian so dDµdXµ = 0. Substituting dXµ in (5.7) gives,

d(DµXµ) = DµΛ(µ)[[α(µ)Sµdµ+σ(µ)SµdWµ]+

Rµ[Xµ−Sµ]dµ]−DµRµXµdµ

= DµΛ(µ)[Λ(µ)dSµ−RµSµdµ]

= DµΛ(µ)[Λ(µ)[α(µ)Sµdµ+σ(t)SµdWµ]−RµSµdµ]

= DµΛ(µ)[Sµ[α(µ)−Rµ]dµ+σ(µ)SµdWµ]

= DµΛ(µ)[σ(µ)θ(µ)Sµdµ+σ(µ)SµdWµ]

= Λ(µ)Dµσ(µ)SµdŴµ.

Hence
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DµXµ = X0 +

ˆ µ

0
DνΛ(ν)σ(ν)SνdŴν.

So under P̂:

1. DµXµ is martingale,

2. The Black Scholes is a continuous time model for pricing European call-options

[4] [5].

5.4.3 Black Scholes

Let T be the expiration time so that the option value at T is

V (T ) = max{ST − k,0},

is a Fµ-measurable random variable and at µ0 = 0 we have the stating price V (µ0) =

V (0). Suppose we have a market with the following conditions:

1. The market has only one stock with a money market (Bank or Bond)

2. Complete market (always possible to hedge option)

3. Free Arbitrage (Same price for same stock in different markets)

4. Risk-neutral pricing (does not matter weather you invest in stock or bond)

This is called a simple market.

The following gives the discounted price:

DµV (µ) = Ê[V (T )DT |Fµ],

so that

V (µ) = Ê
[
V (T )

DT

Dµ
|Fµ

]
,
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= Ê
[
V (T )e−

´ T
µ Rνdν|Fµ

]
.

This is a risk-neutral pricing. Suppose the money market has an interest rate Rµ =

r =⇒ Dµ = e−rµ and the stock volatility σ, is constant. Then the risk-neutral SDE

becomes,

dSµ = rSµdµ+σSµdŴµ.

Define V (µ) = γ(µ,Sµ), then it follows

γ(µ,Sµ) = Ê[e−(T−µ)max{ST − k,0}|Fµ].

Sµ = S0exp{σŴµ +(r− 1
2

σ
2)µ}. (5.8)

ST = S0exp{σŴT +(r− 1
2

σ
2)T}. (5.9)

Dividing equation (5.9) by (5.8), gives

ST = Sµ exp{σ(ŴT −Ŵµ)+(r− 1
2

σ
2)(T −µ)}.

Let λ= T−µ, and Θ=
ŴT−Ŵµ√

λ
, so that ŴT −Ŵµ∼N (0,λ) and therefore Θ∼N (0,1).

So we have,

ST = Sµ exp{−σ

√
λΘ+(r− 1

2
σ

2)λ}.

This is independent of Fµ since λ is beyond µ, hence

γ(µ,z) = Ê
[

e−rλ max{xexp[−σ

√
λΘ+(r− 1

2
σ

2)λ]− k,0}|Fµ

]
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=
1√
2π

ˆ
∞

−∞

e−rλ max{zexp[−σ

√
λΘ+(r− 1

2
σ

2)λ]− k,0}e−
1
2 θ2

dθ.

We need

γ(µ,z)≥ 0 =⇒ zexp[−σ

√
λθ+(r− 1

2
σ

2)λ]≥ k,

ln
( z

k

)
≥ σ

√
λθ− (r− 1

2
σ

2)λ =⇒ ,θ≤ 1

σ
√

λ

[
ln
( z

k

)
+(r− 1

2
σ

2)λ

]
.

Let

ϕ−(λ,z) =
1

σ
√

λ

[
ln
( z

k

)
+(r− 1

2
σ

2)λ

]
,

so that θ≤ ϕ−(λ,z) so this gives,

γ(µ,z) =
1√
2π

ˆ
ϕ−(λ,z)

−∞

e−rτ[zexp{−σ
√

τΘ+(r− 1
2

σ
2)λ}− k]e−

1
2 θ2

dθ,

=
z√
2π

ˆ
ϕ−(λ,z)

−∞

exp
[
−1

2
θ

2−σ

√
λΘ+

1
2

σ
2
λ

]
dθ,

− 1√
2π

ˆ
ϕ−(λ,z)

−∞

e−rλke−
1
2 θ2

dθ,

=
z√
2π

ˆ
ϕ−(λ,z)

−∞

exp
[
−1

2
(θ+σ)2

]
dy− e−rλkΦ(ϕ−(λ,z)).

Let y = θ+σ
√

λ, then Y ≤ ϕ+(λ,z), where

ϕ+(λ,z) = ϕ−(λ,z)+σ

√
λ.

So we have

γ(µ,z) =
z

σ
√

τ

ˆ
ϕ+(τ,x)

−∞

e−
1
2 y2

dy− ke−rλ
Φ(ϕ−(λ,z)),

= zΦ(ϕ+(λ,z))− ke−rλ
Φ(ϕ−(λ,z)).

Replacing z with Sµ we have
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γ(µ,z) = SµΦ(ϕ+(λ,Sµ))− ke−rλ
Φ(ϕ−(λ,Sµ)). (5.10)

Since λ = T −µ, (5.10) becomes

γ(µ,z) = SµΦ(ϕ+(T −µ,Sµ))− ke−r(T−µ)
Φ(ϕ−(T −µ,Sµ)).

This pricing formula is termed the Black Scholes.

Putting µ = 0 then γ(0,S0) =V0, where S0 is the initial stock price, hence

V0 = S0Φ(ϕ+(T,S0))− ke−rT
Φ(ϕ−(T,S0)).

This gives the option price V0 (or premium) for the stock.

To find Λ(µ) we use the representation theorem which says.

Assume {Wµ}T
µ=0 is Wiener process and {Fµ}T

µ=0 be a filtration. If {M(µ)}T
µ=0 is an Fµ

-adapted Brownian and its a martingale then, there exist Γ(ν) an Fµ-adapted process

with

M(µ) = M(0)+
ˆ t

0
Γ(ν)dWν.

In essence every martingale can be represented as an Itō integral. We know

DµV (µ) = Ê[DµV (T )|Fµ],

is a martingale so it must have an Itō integral.
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DµV (µ) =V (0)+
ˆ µ

0
Γ(ν)dŴν (5.11)

Since Xµ =V (µ) and X0 =V (0), hence

DµXµ = X0 +

ˆ µ

0
Λ(ν)σ(ν)SνdŴν, (5.12)

and thus by comparing equation 5.11 and 5.12, we obtain

Λ(µ) =
Γ(µ)

σ(µ)Sµ
.

So this gives the delta for the hedging.

5.5 Black Scholes Stochastic Differential Equation

Let a portfolio in a market have the expiration time T . Then

γ(T,ST ) = max{ST − k,0},

gives option value. For µ = 0, the option price is γ(0,S0), to avoid losses, the holder’s

option price must match the option’s Expiry value XT = γ(T,ST ). Suppose we have a

simple market. At µ = 0, the option price is X0 = γ(0,S0) we can use this money to buy

more stock and invest the rest in banks with rate r. Continue this process such that at

time T we have XT = γ(T,ST ). XT is the option price (premium) while γ(T,ST ) is the

portfolio value. This process is called hedging the option, where ever this is possible

its risk free but in world markets this is not always the case. What is guaranteed is that,

in the money markets investment will always generate interest. Examples of this are

fixed deposits and bonds.
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5.5.1 Black Scholes derivation

Suppose Λ(µ) is the amount of stock held at µ then Λ(µ)Sµ is the total worth of the

stock. Invest Xµ−Λ(µ)Sµ in money market with interest rate r to get r(Xµ−Λ(µ)Sµ)

amount. Then the wealth equation is

Xµ = Λ(µ)Sµ + r(Xµ−Λ(µ)Sµ),

and therefore

dXµ = Λ(µ)dSµ + r(Xµ−Λ(µ)Sµ)dµ.

Substituting

dSµ = αSµdµ+σSµdWµ,

we have

dXµ = Λ(µ)[αStdµ+σSµdWµ]dµ+ r(Xµ−Λ(µ)Sµ)dµ

= [rXµ +(α− r)Λ(µ)Sµ]dµ+σΛ(µ)SµdWµ.

Consider Γ(µ,Y ) = e−rµY . Then Γyy = 0, applying Itō formula gives

dΓ(µ,Y ) = (e−rµY )′ = Γµ(µ,Y )dµ+Γy(µ,Y )dY,

substituting Sµ for Y , yields

(e−rµSµ)
′ =−re−rµSµdµ+ e−rµdSµ =−re−rµSµdµ+ e−rµ[αSµdµ+σSµdWµ],

= (α− r)e−rµSµdµ+σe−rµSµdWµ.
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Similarly

dΓ(µ,Xµ) = d(e−rµXµ) =−re−rµXµdµ+ e−rµdXµ,

we can now substitute

dXµ = [rXµ +(α− r)Λ(µ)Sµ]dµ+σΛ(µ)SµdWµ,

to get

dXµ =−re−rµXµdµ+ e−rµ[rXµdµ+(α− r)Λ(µ)Sµdµ+σΛ(µ)SµdWµ],

= e−rµ[(α− r)Λ(µ)Sµdµ+σΛ(µ)SµdWµ],

= Λ(µ)[(α− r)e−rµSµdµ+σe−rµSµdWµ],

= Λ(µ)d(e−rµSµ).

The above gives the evolution of our portfolio value Xµ. Now we need the evolution of

the option-value (or premium) γ(µ,Sµ). let γ(µ,Sµ)→ γ(µ,z) in continuous time.

Apply Itō formula on γ(µ,Sµ), we have

dγ(µ,Sµ) = [γµ(µ,Sµ)+αSµγν(µ,Sµ)+
1
2

σ
2S2

µγνν(µ,Sµ)]dµ+σSµγν(µ,Sµ)dWµ.

Consider Γ(µ,Z) = e−rµZ, so that Γzz(µ,Z) = 0, hence

d(e−rµ
γ(µ,Sµ)) = d f (γ(µ,Sµ)) = Γµ(γ(µ,Sµ))dµ+Γz(γ(µ,Sµ))dγ(µ,Sµ),

=−re−rµ
γ(µ,Sµ)dµ+ e−rµdγ(µ,Sµ).

So we have,
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d(e−rt
γ(µ,Sµ)) = e−rt [[Cµ(t,Sµ)+αSµCx(t,Sµ)+

1
2

σ
2S2

µCxx(t,Sµ)]dt,

+σSµγz(µ,Sµ)dWµ]− re−rt
γ(µ,Sµ)dt,

= e−rt [−rγ(µ,Sµ)+Cµ(t,Sµ)+αSµCx(t,Sµ)+
1
2

σ
2S2

µCxx(t,Sµ)]dt,

+σSµCx(t,Sµ)dWµ].

Now we need

d(e−rtXµ) = d(e−rt
γ(µ,Sµ)),

where X0 =C(0,S0) and XT = γ(T,ST ) = max{ST − k,0}.

d(e−rtXµ) = e−rt
∆(t)(α− r)Stdt +σe−rt

∆(t)SµdWµ. (5.13)

d(e−rµ
γ(µ,Sµ)) = e−rµ[−rγ(µ,Sµ)+ γµ(µ,Sµ)+αSµγz(µ,Sµ)+

1
2

σ
2S2

µγzz(µ,Sµ)]dµ

+σe−rµSµγz(µ,Sµ)dWµ. (5.14)

Comparing the coefficients of dWµ, in (5.13) and (5.14) to get

Λ(µ) = γz(µ,Sµ),∀µ ∈ [0,T ].

This gives a formula for the hedging and γz(µ,Sµ), is the delta of the option, since it

helps us calculate how much stock to buy given we know the option price Sµ.

Equating the coefficients of dµ,

Λ(µ)(α− r)Sµ =−γ(µ,Sµ)r+ γµ(µ,Sµ)+αSµγz(µ,Sµ)+
1
2

σ
2S2

µγzz(µ,Sµ).
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Rearranging and substituting the delta of the hedging, gives

γ(µ,Sµ)r = γµ(µ,Sµ)+ γz(µ,Sµ)Sµ +
1
2

σ
2S2

µγzz(µ,Sµ) ∀µ ∈ [0,T ].

In continuous time µ we need γ(µ,z), which satisfies the PDE

γ(µ,z)r = γµ(µ,z)+ γz(µ,z)Sµ +
1
2

σ
2S2

µγzz(µ,z). (5.15)

Where z≥ 0 and ∀µ ∈ [0,T ], under the terminal condition

XT = γ(T,z) = max{z− k,0},

where z = ST . The equation in (5.15) is called the Black Scholes equation. This SDE

has no closed form solution so to approximate its solution, we can perform a Monte

Carlo simulation. However, we have already seen an explicit solution for (5.15), i.e

γ(µ,Sµ) = SµΦ(ϕ+(T −µ,Sµ))− ke−r(T−µ)
Φ(ϕ−(T −µ,Sµ)),

and for this, a Nobel price was won in economics [4] [8].
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[2] Brzeźniak Zdzislaw, & Zastawniak Tomasz (1999). Basic Stochastic Processes.

Springer Verlag.

[3] Giham I. I., & Skorohod A. V. (1977). Stochastic Differential Equations. Springer

Verlag, New York.

[4] Karatzas, & I, Shreve, S. E. (1998). Methods of Mathematical Finance. Springer,

Heidelberg.

[5] Klebaner, F. C. (1998). Introduction to Stochastic Calculus with Applications.

Imperial College Press.

[6] Lipster, R. S., & Shiryaev, A. N. (1977). Statistics of Random Processes I.

General Theory. Springer Verlag, New York.

[7] Mikosch Thomas (1998). Elementary Stochastic Calculus with Finance in view.

World Scientific, Singapore New Jersey London.

[8] Neftci, S. N. (2000). Introduction to the Mathematics of Financial Derivatives.

Academic press.

74



[9] Øksendal Bernt (1985). Stochastic Differential Equations an Introduction with

Applications Springer, Berlin.

75


