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ABSTRACT 

 

   In this thesis, Coevolutionary Memetic Algorithms are used for solving the well-

known Traveling Salesman Problem (TSP). Traveling Salesman Problem is NP-

Complete which means no algorithm can solve this problem in a computing time that 

increases polynomially with respect to the problem size. The proposed solution 

approach to TSP is the combination of Coevolutionary Algorithms and Memetic 

Algorithms. The objective solution to TSP is to find the minimum tour length that the 

Traveling Salesman can make under some restrictions.  

   Coevolutionary Algorithms belong to the class of Evolutionary Algorithms. The 

main difference of Coevolutionary Algorithms from Evolutionary Algorithms is the 

way of interaction of individuals in the population. The individuals of the population 

should interact with each other to form a complete solution to the problem. 

Moreover, Memetic Algorithms are hybridized algorithms which combine the 

Evolutionary Algorithms with a local search method. Local search algorithms are the 

algorithms that refine the solutions by searching within the neighbourhood of 

promising solutions to find the better ones.  

   In experimental results, the proposed algorithm is tested with several test datas by 

different parameter values of the algorithm.  

 

 

 

Keywords: Coevolutionary Algorithms, Memetic Algorithms, Traveling Salesman 

Problem.



 

iv 

 

ÖZ 

 

   Bu tezde, Birlikte Evrimleşen Memetik Algoritmaları iyi bilinen bir problem olan 

Gezici Satıcı Problemi’nin çözümü için kullanılmıştır. Gezici Satıcı Problemi, 

üzerinde çok çalışılan bir problem olması ile birlikte, bu problem hiçbir algoritma 

tarafından belirli bir hesaplama zamanında çözülebilecek bir problem olmaması ile 

de bilinir. Gezici Satıcı Problemi’ni çözme yaklaşımımız Birlikte Evrimleşen 

Algoritmalar ile Memetik Algoritmaları’nın birleşimi ile gerçekleşecektir. Bu 

problemdeki amacımız Gezici Satıcı’nın dolaşacağı şehirlerden oluşacak olan turdan 

bazı sınırlamalara uygun olarak en kısa tur mesafesini bulabilmektir. 

   Birlikte Evrimleşen Algoritmalar, Evrimsel Algoritmaların bir sınıfıdır. Birlikte 

Evrimleşen Algoritmalar ile Evrimsel Algoritmalar arasındaki esas fark, Birlikte 

Evrimleşen Algoritmaların nüfustaki bireylerin arasındaki etkileşim yoludur. Bu 

algoritmalarda üzerinde çalışılan problemde bütün bir çözüm elde edebilmek için, 

nüfustaki bireylerin birbirleriyle bir etkileşim içinde olmaları gerekir. Memetik 

Algoritmaları ise, Evrimsel Algoritmaların ve bir Bölgesel Arama Algoritması’nın 

birlikte kullanımı ile oluşan algoritmalardır. Bölgesel Arama Algoritmaları,  

Evrimsel Algoritmalar tarafından bulunan çözümün etrafında, bu çözümü daha iyi bir 

çözüm haline getirecek aramalar yapan algoritmalardır. 

   Birlikte Evrimleşen Memetik Algoritmaları, algoritma parametrelerinin farklı 

değerlerine göre birkaç test verileri ile test edilmiştir. 

Anahtar Kelimeler: Birlikte Evrimleşen Algoritmalar, Memetik Algoritmaları, 

Gezici Satıcı Problemi. 
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Chapter 1 

 

INTRODUCTION 

 
   Evolutionary Algorithms (EAs) are search algorithms that are based on nature-

inspired or bio-inspired search mechanisms. There are several types of EAs in the 

literature of Evolutionary Computing. Evolutionary Algorithms are population-based 

search algorithms. The aim of EAs is to find a solution to a given problem by 

searching the solution space using an evolving population of potential solutions. EAs 

have been applied to many different kinds of problems belonging to the class of 

combinatorial optimization problems, i.e. Traveling Salesman Problem (TSP), real 

valued optimization problems, and machine learning tasks. 

   Coevolutionary Algorithms (CAs) are one of the types of EAs which were 

introduced by Potter and de Jong [1] in 2000. CAs differ from the EAs in a way of 

evaluation of the candidate solutions that are based on the interaction of the solutions 

with each other. CAs manage two or more populations to evolve and interact 

individuals within populations. That is, the aim of CAs is to reduce the complexity of 

the given problem by decomposing the problem into sub-problems. Moreover, there 

are two types of Coevolutionary Algorithms which are Cooperative Coevolutionary 

Algorithms and Competitive Coevolutionary Algorithms. In this thesis, Cooperative 

Coevolutionary Algorithms are examined. 

   Memetic Algorithms (MAs) are hybrid EAs that are combined with local search 

algorithms to refine the solutions found by the EA. Furthermore, Local Search (LS) 
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Algorithms try to reach an improvement by making small moves around the current 

solution. There are several local search techniques such as Tabu Search [13], 2-Opt 

[16], 3-Opt [16] and etc. In this thesis, Tabu Search and 2-Opt local search 

techniques are used as the two local search procedures. 

   The proposed algorithm for solving TSP is a combination of Coevolutionary 

Algorithms and Memetic Algorithms which belongs to the class of Coevolutionary 

Memetic Algorithm. TSP is an NP-Hard problem which means no known algorithm 

can solve this problem in a polynomial time. In TSP, a salesman starts travelling 

from a city and passes through each city only once by the constraint of returning to 

the starting city. The goal of the salesman is to find the shortest tour all over the 

cities.  

    The experimental evaluations are carried out using several TSP instances that are 

taken from the TSPLIB [14], the library of the TSP instances. Using Coevolutionary 

and Memetic Algorithms over different number of generations, it is observed that 

without local search algorithms, a global search algorithm may not reach the possible 

optimal solution by itself. Therefore, a local search algorithm is generally used 

together with metaheuristics in the combinatorial optimization problems. 

   The arrangements of the remaining chapters are as follows: in Chapter 2, 

Traveling Salesman Problem and the recent research about this problem will be 

discussed. In Chapter 3, Coevolutionary Algorithms, Memetic Algorithms and local 

search methods are presented. Moreover, the proposed work of Coevolutionary 

Memetic Algorithms for solving TSP will be discussed in Chapter 4. The 

experimental results that are found by using the described algorithms are presented in 

Chapter 5. Finally, conclusion and future work are discussed in the Chapter 6. 
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Chapter 2 

 

TRAVELING SALESMAN PROBLEM 

 
2.1 Traveling Salesman Problem (TSP) 

 

   Traveling Salesman Problem is a well-known combinatorial optimization problem 

which is NP-Hard, where no algorithm can solve this problem in a polynomially 

increasing computing time [21]. TSP is one of the problems that is studied most 

widely as a research problem in the field of optimization.  It is handled by many 

heuristics such as Ant Colony Optimization [20], Genetic Algorithms [17], Tabu 

Search [13] and Simulated Annealing [17] as a benchmark problem.  

   The TSP was firstly defined by the mathematicians William Rowan Hamilton and 

Thomas Penyngto Kirkman in the 1800s. The study for the general form of the TSP 

has been done by the mathematicians in the 1930s by Karl Menger in Vienna and 

Harvard [6]. Later, TSP was promoted by Hassler Whitney at Princeton University. 

Also, the name for the problem, Traveling Salesman Problem, was introduced by 

Hassler Whitney [6]. The improvements on solving TSP started to appear in the 

1950s. Since then, TSP became a popular combinatorial optimization problem which 

has been studied by many researchers as benchmark problem for many heuristics. 

The problem became popular for many of the research areas such as computer 

science, mathematics, chemistry, physics and many other research areas. Later on, in 

1991 TSPLIB was introduced [14]. TSPLIB is the library of benchmark sample 

instances for the TSP. Since then, this library has been used to compare the results 
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that researchers found by their algorithms with the ones available in the TSPLIB. 

Therefore, in this thesis, this library is also used to compare our results. 

   In Traveling Salesman Problem, cities and the distances between cities are given. 

Salesman starts travelling from the starting city and passes through each city only 

once and returns to the starting city at the end of the tour. The aim of the salesman is 

to find the shortest possible tour length between the cities. Figure 2.1 and Figure 2.2 

below show a TSP instance and the distances between cities respectively. 

 

Figure 2.1: Sample for initial cities 

 

Cities 1 2 3 4 5 6 7 8 9 10 

1 0 2.6822 4.3577 7.3958 5.2305 6.0597 6.3892 6.9655 4.1359 6.0125 

2 2.6822 0 3.0500 5.3794 7.3350 6.0389 5.0306 8.6914 6.4845 8.2578 

3 4.3577 3.0500 0 3.1930 6.7818 3.3783 2.0778 7.4283 6.4777 7.8220 

4 7.3958 5.3794 3.1930 0 9.7367 5.0776 2.0230 10.0001 9.5926 10.7789 

5 5.2305 7.3350 6.7818 9.7367 0 5.3987 7.8830 2.1012 1.3532 1.0439 

6 6.0597 6.0389 3.3783 5.0776 5.3987 0 3.0554 5.0842 5.8083 6.3644 

7 6.3892 5.0306 2.0778 2.0230 7.8830 3.0554 0 8.0081 7.8862 8.9164 

8 6.9655 8.6914 7.4283 10.0001 2.1012 5.0842 8.0081 0 3.4443 2.2721 

9 4.1359 6.4845 6.4777 9.5926 1.3532 5.8083 7.8862 3.4443 0 1.8917 

10 6.0125 8.2578 7.8220 10.7789 1.0439 6.3644 8.9164 2.2721 1.8917 0 

 

Figure 2.2: A Sample Distance Matrix for 10 cities in TSP 
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This distance matrix is used to calculate the tour length of the visited cities. The 

above distance matrix example is for a TSP instance with 10 cities. The distance 

matrix has NxN dimension which is 10x10 cities in this example. Figure 2.3 

illustrates a possible tour in a TSP with 10 cities. 

 

Figure 2.3: A sample instance and a tour in a TSP with 10 cities 

The tour length for the above instance is the summation of the distances from the 

distance matrix. A possible tour according to the Figure 2.3 could be as 

(1,6,4,8,3,7,10,5,9,2,1). The tour length of this possible tour is the summation of 

distances between cities which results as 51,1237.  

   TSP instances are classified into groups based on the arrangement of distances and 

the types of the graph. These classified groups are called Symmetric TSP and 

Asymmetric TSP which are explained below. 

 Symmetric TSP: In Symmetric TSP, the distance between two cities is 

symmetric. Meaning, the distance from city A to city B and the distance from 

city B to city A is the same [18]. 
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Figure 2.4: A Symmetric TSP instance 

 

 Asymmetric TSP: In Asymmetric TSP, the distance between two cities is 

asymmetric. That is, the distance from city A to city B and the distance from 

city B to city A may be different. Also, the path between cities may not exist 

[19].  

 

Figure 2.5: An Asymmetric TSP instance 

   However, in this thesis, only the Symmetric TSP instances are handled which are 

collected from the symmetric sample instances in TSPLIB. 
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2.1.1 Related work on TSP: 

   Since TSP is very popular combinatorial optimization problem, it has been 

considered to many heuristics as a benchmark problem. It is modelled as a single and 

multi-objective optimization problem and here are some of the researches that have 

been done on the TSP with different heuristics. 

   Haibin Duan and Xiufen Yu [2] have showed a way of applying memetic 

algorithms on TSP. They used a Hybrid Ant Colony Optimization with Memetic 

Algorithms.  This approach combines the global and local search techniques.  Here, 

memetic algorithm is used to optimize the adjustable parameters of the ant colony 

optimization. Results have showed that this approach is helpful to improve solutions 

that are stuck at the local minima of the search space. 

   Zar Chi Su Su Hlaing and May Aye Khine [7] presented an approach for solving 

TSP which is Improved Ant Colony Optimization Algorithm. This algorithm is 

another version of the Ant Colony Optimization (ACO) which is based on the 

candidate list strategy. Also, the authors proposed a dynamic heuristic parameter 

update by local search.  

   Mohd. Junedul Haque and Khalid. W. Maghld [8] presented an Evolutionary, 

Memetic Algorithm and Edge Assembly Crossover for solving TSP. In this 

approach, Genetic and Memetic Algorithms are combined and a local search 

technique helped to improve the results for the TSP.  

   Another solution approach to TSP is presented using An Immune Coevolutionary 

Algorithm for N-th Agent’s Traveling Salesman Problem by Naruaki Toma, Satoshi 

Endo and Koji Yamada [4]. An immune optimization algorithm is proposed, which is 

based on a biological immune coevolutionary phenomenon and cell-cooperation to 
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solve n-th agents’ TSP that is a kind of division-of-labour problems. In this approach, 

it is focused on the issues of distribution of work for agents. The coevolutionary 

model searched for a solution with three kinds of distribution; equaling work 

assignment, optimizing a work-cost individually and optimizing all amount of work-

costs. These distributions can be done through interactions between two kinds of 

agents, one of them is called immune agent and the other one is called antigen agent. 

This method solves the problem through combination of division, integration and 

coevolutionary approach. These functions are based on local interactions. These 

interactions are between agents and also between agents and environment. 

   These researches and works show that there are various ways of applying different 

algorithms and different local search techniques for solution of TSP. Moreover, local 

search techniques were used to improve the results in the most of the research that 

are mentioned above. This shows us the effect of local search in combinatorial 

optimization problems.  

2.1.2 Description and Formulation of TSP 

   In order to have a complete solution for the TSP, the constraint for the problem 

must be considered to obtain a feasible solution. Therefore, the objective, feasibility 

and formulation of the TSP are explained below.  

 Objective: The objective of TSP is to minimize the total distance travelled. 

At the end of a tour, the result, which is the cost of the tour, is the total 

distance travelled. As mentioned before, single-objective optimization is 

applied for TSP. 
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 Feasibility: A feasible solution of a TSP is a tour which satisfies all problem 

constraints. That is, each city is visited once and only once, and the tour ends 

with the starting city.  

 Formulation: Since, the objective is to find the shortest tour from the given 

cities; we can calculate the distance between the cities by the following 

formula which is the Euclidean Distance. The Euclidean Distance between 

two cities can be given as follows: 

            x = (x1, x2, x3,…, xd) and y = (y1, y2, y3, …, yd) 

 

       √(∑(     ) 
 

   

)   

 

             

 

 

Eq. 2.1 
   

where Dxy is the distance between x and y, and d represents the d-dimensional 

space, xi and yi are the locations of two cities which are used to find the 

distances between them. The Euclidean distance formula is used in 

optimization problems to compare the distances and to find the length of a tour 

in TSP. 

Let C= {c1, c2, …, cn} be the feasible tour for n cities of a TSP problem. A 

Tour Length can be defined as: 

 

   (∑         

   

   

)             

 

             

 

Eq. 2.2 
   

Objective is to find: 

min TLi, ∀ i=1,…, k where k is the number of feasible solutions found by the 

proposed method. 
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Chapter 3 

 

COEVOLUTIONARY MEMETIC ALGORITHMS AND 

LOCAL SEARCH ALGORITHMS 

 
3.1 Evolutionary Algorithms 

    In the literature, there are many variants of Evolutionary Algorithms (EAs). EAs 

are population-based and generally stochastic algorithms. The main idea behind them 

is the same: a population of individuals is affected by the environmental pressure 

causing natural selection and this natural selection causes increase in fitness of the 

population [9]. Fitness of the population is measured by the quality function either to 

be maximized or minimized, it depends on the problem. 

   In EAs, the initial candidate solutions are created randomly and these candidate 

solutions are measured by the quality function resulting as the fitness of the 

candidate solution. Candidates that have better fitness values are selected to seed the 

next generation by applying variation operators which are crossover and mutation 

operators. Applying both of the variation operators, result in a set of new candidates 

that are called offspring. This process iterates until a good solution is found or the 

iteration limit is reached. Furthermore, this evolutionary process leads the population 

to better candidate solutions in each generation. The Figure 3.1 shows how EAs 

work.  
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Figure 3.1: General Algorithm for Evolutionary Algorithm [9] 

3.1.1 Components of Evolutionary Algorithms 

There are some components for the EAs which are explained as follows: 

3.1.1.1 Representation  

   This is the first step of an EA. Representation is where the real world problem is 

transformed into the EA world. This relation is explained with the phenotype and 

genotype where phenotype is the feature of an individual resulting from the 

interactions of its environment and genotype. In addition, genotype is the encoded 

version of the phenotype as the individuals (possible solution also called 

chromosome) in EAs. For example, 5 would represent the phenotype and 0101 

would represent the genotype of the problem. Designing a chromosome 

representation for a problem should consider the structure of the problem. For 

example, for the TSP, which is a permutation problem, a representation for 10 cities 

can be seen as follows: 

2 6 3 1 10 5 7 9 4 8 2 

 

Figure 3.2: An individual (chromosome) representation for TSP with 10 cities 

 

 

BEGIN 

    INITIALIZE population with random candidate solutions; 

    EVALUATE each candidate; 

          REPEAT UNTIL (Termination Condition is satisfied) DO 

 SELECT parents; 

 RECOMBINE pairs of parents; 

 MUTATE the resulting offspring; 

 EVALUATE new candidates; 

 UPDATE new population for the next generation; 

         END REPEAT 

END 
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3.1.1.2 Population  

   Initial population is the set of individuals created randomly for a given problem 

with a given population size. The initial population for TSP is formed by random 

permutations of the cities. 

3.1.1.3 Evaluation Function (Fitness Function) 

   Evaluation function is also known as fitness function. The role of the fitness 

function is to measure the fitter individuals that adapt themselves to their 

environments. Fitness function measures the quality of individuals of the population. 

Fitness function for TSP measures the total length of the tour travelled which was 

explained in section 2.1.2. 

3.1.1.4 Selection Mechanism 

   Selection is the operator to select the fitter or better individuals to seed the next 

generations. It helps to improve the individuals of the next generation by allowing 

the better ones to become their parents. There are some operators for the selection 

mechanisms. The mostly used ones in the EAs are the Tournament Selection and 

Roulette Wheel Selection.  

3.1.1.4.1 Tournament Selection  

   In tournament selection, there is a parameter k, called tournament size, which is 

less than the population size. Steps for tournament selection are shown below. 

 

 

 

 

Figure 3.3: The steps of Tournament Selection  

1. Pick a random spot within the population, 

2. Get as many individuals as specified by 

tournament size=k, 

3. Sort the population by fitness, 

4. Return the best two as parents. 
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      The selected individuals of the tournament are the individuals with the highest 

fitness values of the k tournament competitors. Tournament selection gives several 

chances for the non-selected individuals to be selected.  

3.1.1.4.2 Roulette Wheel Selection 

   In Roulette Wheel Selection (RWS) the probability of being selected is computed 

by the following formula: 

For each individual i, with fitness value fi, 

   
  

∑   
 
   

 
 

 Eq. 3.1 
 

where N = Population Size. 

Roulette Wheel Selection is also named as fitness proportional selection. In RWS, all 

individuals are sorted in decreasing order of Pi values. Then, in order to implement a 

distribution with respect to Pi values, 

- A uniformly random value is generated, 

- A partial sum over the list of sorted Pi values is started, 

- The first individual in which the partial sum exceeds, the random value is the 

selected individual. 

3.1.1.5 Recombination (Crossover) and Mutation 

   Crossover is a variation operator that merges the information from two parents and 

creates two offsprings from them. They are usually seen as the main search operator 

in EAs. There are many different types of crossover operators which are usually 

designed in a problem-specific way. 

   Mutation operator is another variation operator which is applied to one individual 

resulting in one offspring. Mutation operator is usually designed in a problem-
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specific manner. This operator generally brings the new information to the problem 

by mutating one or more genes of the individual (chromosome). Some of the 

Crossover and Mutation operators are explained below. 

3.1.1.5.1 One-Point Crossover 

In one-point crossover, a randomly selected crossover-point from the chromosome 

sets the division point. The selected crossover-point divides the chromosomes into 

two parts as shown below. 

 

Parent1: 

Parent2: 

 

Child1: 

Child2: 

               Figure 3.4: One-Point Crossover 

The first part of the Parent1 is directly copied to Child1, and second part of the 

Parent2 is appended to Child1. For Child2, the first part of the Parent2 is copied 

directly to Child2, and the second part of Parent1 is appended to Child2. By this way, 

two offspring are created. 

3.1.1.5.2 Two-Point Crossover 

   In this crossover operator, two crossover-points are randomly selected from the 

chromosomes dividing them into three parts. Figure 3.5 below shows how this is 

done. 

 

1 0 1 1 1 0 0 1 1 0 

0 0 1 1 0 1 0 1 0 1 

1 0 1 1 0 1 0 1 0 1 

0 0 1 1 1 0 0 1 1 0 

Crossover-point 
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Parent1: 

Parent2: 

 

Child1: 

Child2: 

                        Figure 3.5: Two-Point Crossover 

   Two-Point crossover is the same as one-point crossover but in this crossover 

operator there are two crossover-points. First and third parts of Parent1 and Parent2 

are directly copied to the same positions of Child1 and Child2 respectively. Then, 

second parts of Parent1 and Parent2 are swapped with each other and second part of 

Parent1 is copied to the second part of Child2 and second part of Parent2 is copied to 

the second part of Child1. 

3.1.1.5.3 Partially Matched Crossover (PMX) 

   PMX takes a sub path between two random cut points from one parent, and 

completes the tour by preserving the order and position of as many cities as possible 

from the other parent [15]. So, illegal tours are avoided by a mapping. The PMX is 

illustrated below: 

 

 

Parent1: 

Parent2: 

 

1 0 1 1 1 0 0 1 1 0 

0 0 1 1 0 1 0 1 0 1 

1 0 1 1 0 1 0 1 1 0 

0 0 1 1 1 0 0 1 0 1 

2 5 0 3 6 1 4 7 

3 4 0 7 2 5 1 6 

Crossover 

Point1 

Crossover 

Point2 

Crossover-point1 Crossover-point2 
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In this example, 3 in Parent1 is mapped to 7 in Parent2. Moreover, 6 in Parent1 is 

mapped to 2 in Parent2. Also, 1 in Parent1 is mapped to 5 in Parent2. So, here steps 

of creating offsprings can be seen. 

Step 1: Swapping 3 and 7. 

 

Child1: 

Child2: 

 

Step 2: Swapping 6 and 2. 

 

 

Child1: 

Child2: 

 

Step 3: Swapping 1 and 5. 

 

Child1: 

Child2: 

Figure 3.6: Partially Matched Crossover 

 

    So, the resulting offsprings are the ones that are found in Step 3. This crossover 

operator is problem-specific which is designed for permutation problems. As shown, 

there is no repetition in the permutation which ensures not having infeasible 

solutions for the TSP. 

3.1.1.5.4 One-Point Mutation 

   For one-point mutation, a point in the chromosome is selected randomly and 

mutated. Moreover, in this operator one parent is selected and one offspring is 

created from this parent. This mutation operator causes the replacement of a gene 

2 5 0 7 6 1 4 3 

7 4 0 3 2 5 1 6 

6 5 0 7 2 1 4 3 

7 4 0 3 6 5 1 2 

6 1 0 7 2 5 4 3 

7 4 0 3 6 1 5 2 
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with another gene in the chromosome. Also, it is very easy to implement.  Figure 3.7 

illustrates one-point mutation. 

 

Parent1 

 

Child1 

Figure 3.7: One-Point Mutation Operator 

Selected gene which is in grey colour is mutated from 0 to 1. A new offspring is 

created by one-point mutation. 

3.1.1.5.5 Swap Mutation 

   In this mutation operator two points are randomly selected to be swapped. 

Moreover, it is very easy to implement this operator. Illustration of this operator is 

given below in Figure 3.8. 

 

 

 

Before 

 

After 

Figure 3.8: Swap Mutation 

 

3.1.1.5.6 Shift Mutation 

   In shift mutation, two points are randomly selected as point1 and point2. Then, 

point2 replaces the position of point1 and the genes between the points shift forward 

until the position of point2 is reached. Illustration of the shift mutation is shown 

below in Figure 3.9. 

1 1 0 1 0 1 0 1 

1 1 0 1 1 1 0 1 

1 4 2 6 3 7 5 8 

1 5 2 6 3 7 4 8 

Swap point1 Swap point2 

Selected Gene 
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Before 

 

After 

            Figure 3.9: Shift Mutation 

 

3.2 Coevolutionary Algorithms  

   Coevolutionary Algorithms are the collection of Evolutionary Algorithms in which 

evaluation of individuals is based on interactions between individuals. Therefore, 

these algorithms try to manage two or more populations simultaneously, by evolving 

populations and allowing interactions between individuals of the populations. That 

is, an individual can be evaluated by having an interaction with other individuals of 

other populations.  

   The goal of Coevolutionary Algorithms is to improve the results from each 

population separately. The interactions of individuals with other individuals can be 

done with individuals in all other population or by random pairings. The populations 

that work separately on a problem reduce the complexity of the problem by giving 

separate results for the problem. Therefore, in order to have a complete solution for a 

problem, the results from each sub-population are merged together in a 

coevolutionary algorithm.  

    There are two types of coevolutionary algorithms which are called Cooperative 

Coevolutionary Algorithms and Competitive Coevolutionary Algorithms. In this 

thesis, it has only been dealt with the Cooperative Coevolutionary Algorithms. In the 

literature, coevolutionary algorithms have been applied to many different problems 

1 4 2 6 3 7 5 8 

1 5 4 2 6 3 7 8 

Point1 Point2 
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such as function optimization [12], instance selection [5], large scale optimization [3] 

and many others. 

3.2.1 Cooperative Coevolutionary Algorithms 

   Cooperative coevolution means the co-existence of some interacting populations 

that are evolving simultaneously [22]. Cooperative coevolution was introduced by 

Potter and de Jong in 2000 [1]. They solved a complex problem by decomposing it 

into sub-problems and coevolving the solutions of each sub-problem. In cooperative 

coevolutionary algorithms, the given problem is decomposed into sub-problems 

which this technique is called divide and conquer. Each sub-problem represents sub-

populations. Sub-populations have individuals (collaborators) that are parts of the 

complete solution. These collaborators of the sub-problems merge within each other 

and cooperatively form the complete solution for the problem. Then, the complete 

solution is evaluated by the fitness function. Moreover, merging of individuals 

between sub-populations can be made by one of the following ways: 

 Evaluate an individual against every single individual in the other population, 

 Use random individual, 

 Use the best individual of last generation. 

   The cooperative coevolutionary algorithms work in the following way: first of all, 

the given problem is decomposed into sub-problems meaning that the population of 

the problem is divided into sub-populations. Each sub-population may have the same 

or different population size for the problem. For the initial generation, the individuals 

of each sub-population are matched with randomly chosen individuals from other 

sub-populations. Then individuals of each sub-population are evaluated by the fitness 

function and the best individual from each sub-population is found. The actual 

cooperation starts with the next generation. In order to have cooperation between 
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individuals, the algorithm should cycle in a repeated phase. This phase includes the 

active and frozen sub-populations. In a cycle there should be only one active sub-

population, while other sub-populations are frozen. In order to combine these active 

and frozen sub-populations, all individuals from active sub-population are matched 

with the best found individuals from frozen sub-populations. By this way, the 

complete global form of the solution can be found for the problem. Moreover, for the 

next generation, the formerly active sub-population becomes the frozen sub-

population this time, and the formerly frozen sub-population becomes the active sub-

population. That is, turns are taken by these sub-populations in the run of the 

algorithm. This cycling continues until the condition of termination is reached. For 

better understanding of the cooperation between individuals the pseudo-code for the 

algorithm is given in Figure 3.10.  

 

 

 

 

 

 

Figure 3.10: Cooperative Coevolutionary Algorithm  

3.3 Memetic Algorithms 

   Memetic Algorithms (MAs) are usually called hybrid EAs which combines an EA 

as global search to perform exploration and local search method as local search to 

perform exploitation for the given problem [11]. MAs are population-based 

metaheuristics that include much hybridization of EAs, Simulated Annealing (SA) 

1. Divide Population into two or more sub-populations, 

2. Match individuals randomly from all other sub-populations, 

3. Evaluate fitness of each individual in sub-populations, 

4. Find the best individual of each sub-populations, 

5. Coevolution starts here; 

a) Set active and frozen sub-populations, 

b) Match all individuals in active sub-population with the best 

individuals of frozen sub-populations, 

c) Composition of the best individuals represents the solution to 

the problem. 

d) End of evolution. 
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and Tabu Search. Moreover, MAs are a way of understanding how population-based 

and local search algorithms work together to achieve hybridization. Therefore, the 

key issue of a memetic algorithm is to have a local search method with a 

metaheuristic algorithm. Furthermore, MAs are popular in some of the areas such as 

Combinatorial Optimization, Biochemistry, Networking and Communication. Figure 

3.11 below is the basic memetic algorithm flowchart. 

 

Figure 3.11: Basic Memetic Algorithm Flowchart 
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   As it can be seen, MA is composed of mainly three components which are 

selection of parents, reproduction on selected parents and resulting new population. 

The first component which is the selection operator can be any of the selection 

mechanism depending on the problem space. Second component which is the 

reproduction consists of crossover, mutation operators and individual improvement. 

Crossover and mutation operators can be any of them which are suitable for the 

problem. Moreover, local search aims to improve the quality of the current solution. 

Lastly, the new population is the updated version of the current population after local 

search procedure of the algorithm. As a result, while this cycle continues, local 

search algorithms improve the solutions by searching around the current solution 

space. Since the memetic algorithms are hybrid algorithms combined with local 

search algorithms. 

 3.3.1 Local Search Algorithms 

   A local search algorithm [11] is a metaheuristic method that iteratively tries to 

improve a candidate solution for optimizing. Local search is also called exploitation, 

meaning the ability of an algorithm to move into an improved direction. Local search 

algorithms try to solve a given problem by moving from solution to solution in the 

search space of the problem. By moving in the search space, they try to make local 

changes to the solution to refine it. Local search algorithms continue to search for 

better solutions until a certain amount of iteration is reached or the best solution is 

found. Pseudo-code for local search algorithm is illustrated in Figure 3.12. 
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Figure 3.12: A Local Search Algorithm  

   They are used in many optimization problems and in many other areas. Examples 

of local search algorithms can be 2-Opt and Tabu searches which are explained in the 

next sections. 

3.3.1.1 2-Opt Local Search Algorithm 

   2-Opt local search algorithm is also called Pairwise Exchange. It removes two 

edges iteratively and replaces them with two different edges, then reconnects the 

edges resulting in a new shorter tour. This method is in the group of k-opt method. In 

k-opt method, k is the size for the edges. K-opt method deletes the k disjoint edges 

from the given tour [15]. This method is very suitable for the TSP that is why it is 

used as the local search method in this thesis. Figure 3.13 shows a tour before 

applying 2-Opt local search method. 

7 6 8 10 9 5 1 2 3 4 7 

Figure 3.13: A TSP Tour without 2-Opt Local Search Method 

 

7 6 8 10 5 9 1 2 3 4 7 

Figure 3.14: A TSP Tour after 2-Opt Local Search Method 

Local Search Procedure (current solution) 

BEGIN 

    REPEAT 

 new = GenerateNeighbour (current solution); 

 if (FitnessEvaluation(new) < FitnessEvaluation (current)) 

 current = new; 

 end if 

    until TerminationCondition; 

 return current 

END 
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After applying 2-Opt local search method to the tour in Figure 3.13, two edges are 

replaced with two different edges which is shown in Figure 3.14. The edges that are 

exchanged with each other are shown in bold, which are 5 and 9, in Figure 3.14. 

3.3.1.2 Tabu Search Algorithm 

   Tabu search is another local search algorithm. It is widely used in many problems. 

The main idea behind tabu search is to move recently visited solution, which is called 

tabu, into a tabu list. A tabu list is the list that contains the visited solutions which are 

tabus. This process is done to make the exploration of new solutions easily. 

Tabu search is also used in this thesis. Figure 3.15 below illustrates the pseudo-code 

for tabu search. 

 

 

 

 

 

Figure 3.15: Pseudo-code for Tabu Search [13] 

 

In this algorithm, S is the current solution, S * is the best-known solution,  f * is the 

value of S *, N(S) is the neighbourhood of S,  (S) is the subset of N(S) that is non-

tabu and T is the tabu list. When a tabu move results in a solution better than any 

visited so far, then its tabu classification may be overriden. A condition that allows 

such an override is called an aspiration criterion. 

 

 

 

1. Choose (construct) an initial solution S0, 

2. Set S:= S0,  f *:= f (S0), S *:= S0, T:= 0, 

3. while termination condition not satisfied do 

            Select S in f (S’),  S’  (S) 

 if f (S) < f *, then set f *:= f (S), S *:= S; 

 Record tabu for the current move in T (delete oldest entry if  

 necessary) 

 Update tabu and aspiration conditions 

4. end while 
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Chapter 4 

 

SOLVING TRAVELING SALESMAN PROBLEM BY 

COEVOLUTIONARY MEMETIC ALGORITHMS  

 
4.1 Cooperative Coevolutionary Memetic Algorithms for TSP 

   In this chapter, the proposed work for the solution of TSP by Coevolutionary 

Memetic Algorithms is discussed. Combination of Cooperative Coevolutionary and 

Memetic Algorithms employing genetic operators and local search algorithms are 

presented. The proposed algorithm is described in detail in the following sections. 

4.1.1 Chromosome Representation 

   A complete individual for the TSP is represented in the following way. If we are 

given n within a set C, a tour of n cities is represented by a permutation of cities from 

C1 to Cn. In order to have a complete tour, salesman has to return to the starting city. 

Therefore, to represent a complete tour the starting city of the tour is put to the 

(n+1)
st
 position of the chromosome. Moreover, the fitness value of the tour is stored 

in the (n+2)
nd

 position of the chromosome. The following Figure 4.1 illustrates the 

chromosome representation of a generic TSP.  

 

C1 C2 C3 … C1(n+1) Fitnessn+2 

Figure 4.1: Complete Chromosome Representation for TSP 
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The above representation is for a complete individual of the TSP. However, we have 

one more representation in our algorithm.  

   As it was mentioned before, our main algorithm is Cooperative Coevolutionary 

Algorithm which is based on divide and conquer approach [10]. Therefore, the 

population is divided into two sub-populations. The sub-populations’ representation 

is as follows. The division of the population is made equally, that is, two sub-

populations have the same amount of cities. So, if we have n/2 amount of cities in 

each sub-population, representation of cities starts from C1 to Cn/2. Also, the fitness 

value of the partial individual is represented in the n+1 position of the chromosome. 

This representation of chromosome is applied to both sub-populations. It should be 

noticed that, in the sub-populations’ representation, there is no complete tour. That 

is, we don’t use the ending city which was the starting city in the complete individual 

representation. Moreover, for the fitness of each sub-population, it is represented in 

the (n/2) +1 position of the chromosome. Figure 4.2 below illustrates the 

chromosome representation for the sub-populations. 

 

Sub-Population 1 

 

Sub-Population 2 

 

Figure 4.2: Chromosome Representation for Sub-Populations 

4.1.2 Construction of the Initial Population 

   The initial population is constructed randomly in which each of the individual is 

different permutations of the given cities. Initially, the problem has complete 

individuals meaning it has complete tours. Later in the algorithm, when the 

cooperation starts the population of the problem is divided into sub-populations. 

C1 C2 C3 … Cn/2 Fitness(n/2)+1 

C1 C2 C3 … Cn/2 Fitness(n/2)+1 
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4.1.3 Fitness Value Calculation 

   Fitness value of each tour is calculated by Euclidean Distance formula which is 

given in Eq.2.1 and Eq.2.2. This formula uses the distances between cities to 

calculate the distance travelled by the salesman. In order to form a distance matrix 

for the cities, the x and y coordinates of the cities are given in advance. So, by using 

these coordinates in Euclidean Distance Formula, it is easy to calculate the total 

distance travelled by the salesman.  

4.1.4 Genetic Operators 

   In this algorithm, tournament selection has been used for the selection of parents. 

The details of tournament selection have been explained in section 3.1.1.4.1. 

Moreover, for the crossover operator Partially Matched Crossover has been used and 

it has been explained in section 3.1.1.5.3. Lastly, swap mutation and shift mutation 

have been used as the mutation operators which have been discussed in sections 

3.1.1.5.5 and 3.1.1.5.6 respectively.  

4.1.5 Local Search Algorithm 

   In addition to cooperative coevolutionary algorithms, local search algorithm has 

been used to form a memetic algorithm. In this algorithm, 2-Opt local search 

algorithm has been used which has been explained in section 3.3.1.1. Furthermore, 

local search algorithm is applied after cooperation evolution was completed. It is 

applied to the best individual found by the cooperative coevolutionary algorithm. 

The further explanations for the general structure of the algorithm are discussed in 

the next section. 
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4.1.6 Algorithm Description 

   This section combines all the algorithms, methods and genetic operators that were 

discussed in the previous sections. The study of these algorithms, methods and 

genetic operators helped us to form our algorithm which is called Cooperative 

Coevolutionary Memetic Algorithm. In this section, the information is explained in 

detail for our algorithm answering the questions of how these algorithms are 

combined and how they are applied to TSP. The Figure 4.3 below shows the 

flowchart of the Cooperative Coevolutionary Memetic Algorithm for TSP. 
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                    Figure 4.3: Flowchart of the Proposed Algorithm 
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   In this algorithm, we have two different loops as you can see in the Figure 4.3. In 

the first loop of the algorithm which is outer loop, the initial population is randomly 

constructed in Figure 4.4. The proposed algorithm is explained by the figures below. 

i=1, N=10;   

 pop(i) 

 

 

 

                    

pop(N) 

Figure 4.4: Initial Population for First Loop 

Then each of the individuals, pop(i), is evaluated by the fitness function for their 

fitness values. Each individual in the population pop(i) is divided into two sub-

populations by the division point and sent to the second loop (inner loop) where 

cooperation occurs. If we consider the division point as the middle of the 

chromosome which has 10 cities, then division point would be 5. Division of an 

individual is shown in Figure 4.5. 

2 10 5 7 3 4 1 9 8 6 

 

 

 

                         Partial Individual 1                     Partial Individual 2 

Figure 4.5: Division of an Individual into two Partial Solutions 

If we consider the example in Figure 4.5, after dividing the individual into two 

partial solutions, each partial solution constructs its own population by random 

permutations of cities that belong to Partial Individual1 and Partial Individual2 

2 10 5 7 3 4 1 9 8 6 2 

8 3 9 1 7 2 5 4 6 10 8 

. 

. 

. 

    …      

10 6 7 4 5 1 9 8 3 2 10 

2 10 5 7 3 4 1 9 8 6 
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without mixing both Partial Individuals’ cities. By this way, feasible solutions are 

constructed for the sub-populations. The population size of sub-populations is set in 

the cooperation loop. The combination process of sub-populations is shown in Figure 

4.6 below. 

k=1, M=100;                                                                           

    pop(k) 

 

 

 

   pop(M) 

2 10 5 7 3 

10 5 2 7 3 

3 2 7 10 5 

. 

. 

. 

 

 …   

5 7 10 2 3 

     pop(k) 

 

 

 

    pop(M) 

4 1 9 8 6 

1 9 4 6 8 

8 4 6 9 1 

. 

. 

. 

 

 …   

6 9 1 4 8 

                             sub-population1                                             sub-population2 

Figure 4.6: Construction of Initial Sub-Populations 

   After constructing the sub-populations, individuals of each sub-population are 

evaluated by the fitness function and each sub-population is sorted by their fitness 

values. After that, active and frozen sub-populations are set for interacting 

individuals to cooperate and form a complete individual. The cooperation of 

individuals between sub-populations is made in the following way. The best 

individual from the frozen sub-population, Fbest, is matched with all the individuals 

of the active sub-population, Aall. By this way, a population of combined individuals 

is created.  

     

 

Aall 

 

 

             Active Sub-population 

2 10 5 7 3 F1 

10 5 2 7 3 F2 

3 2 7 10 5 F3 

. 

. 

. 

 

 …    

5 7 10 2 3 FM 

         Fbest 

 

 

 

 

                Frozen Sub-Population 

4 1 9 8 6 F1 

1 9 4 6 8 F2 

8 4 6 9 1  

. 

. 

. 

 

 …    

6 9 1 4 8 FM 

 Figure 4.7: Combining Active-Frozen Sub-Populations 
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The resulting combined population will be as shown in the Figure 4.8 below. 

2 10 5 7 3 4 1 9 8 6 

10 5 2 7 3 4 1 9 8 6 

3 2 7 10 5 4 1 9 8 6 

. 

. 

. 

 

 …   . 

. 

. 

 

 …   

5 7 10 2 3 4 1 9 8 6 

 

Figure 4.8: Combined Population of Sub-Populations 

As it is shown in the Figure 4.8, all individuals from the active sub-population are 

combined with the best individual from frozen sub-population. Then, a swap 

mutation is applied to the combined individuals and they are evaluated by the fitness 

function. These processes are made to construct the initial population for the loop 

where main cooperation is made between sub-populations. The initial population 

could be constructed randomly but the reason for constructing the initial population 

by this way is to start evolution of cooperation by good individuals.  

   At the beginning of the innermost loop which is generations loop, swap mutation is 

applied to the combined individuals in every, for example, 5 generations to search for 

the new complete tours. The innermost loop is where the main cooperation occurs, in 

each run of the generations one of the sub-population is set as active while the other 

is set as frozen sub-population. For example, when the sub-population1 is active and 

sub-population2 is frozen in a generation, sub-population1 will be frozen and sub-

population2 will be active in the next generation. This is where cooperation occurs 

between individuals of different sub-populations.  

   In addition, tournament selection is applied to select the parents. Then, crossover 

operator is applied to the active sub-population and mutation operator to the frozen 

sub-population. The reason that we used recombination operators in this way is the 
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following. After some number of generations the frozen sub-population’s individuals 

become the same. For this purpose, to prevent repetition of partial solutions in the 

frozen sub-population, the shift mutation operator was used. Moreover, the reason 

why that mutation operator was used instead of a crossover operator in the frozen 

sub-population is that mutation operator is an exploitation operator which brings the 

new information and jumps out the boundaries for the solution of the problem. 

However, with the crossover operator we can only search for the solution in the 

boundaries. 

   Furthermore, after applying genetic operators, the sub-populations are combined to 

form a global complete solution. This combination process of two sub-populations is 

made in the same way that was explained above in Figure 4.7. Then, the combined 

population’s individuals are evaluated by the fitness function and the best of the 

individuals, bestTour, is sent back to the first loop of the algorithm as the result of 

cooperation algorithm. Here is where local search is applied to the best solution.  

2-Opt or tabu search local search algorithms are applied to the bestTour to refine it. 

Finally, the resulting solution from the local search algorithm is compared with the 

pop(i), if the local search result is better than the pop(i) solution, pop(i) is replaced 

with the bestTour. This way of comparing helps to reach better solutions in each 

generation of the algorithm.  

   The experimental results of this algorithm are discussed in the next chapter. 
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Chapter 5 

 

EXPERIMENTAL RESULTS 

 
5.1 TSP Instances 

 

   In this chapter, experimental results for TSP are discussed. In this thesis, 

experiments for the TSP are made by six symmetric TSP datas that are taken from 

TSPLIB. These symmetric TSP datas that are used for experimenting are berlin52, 

eil76, st70, kroA100, kroA150, kroA200, kroB100, kroB150 and kroB200. 

Moreover, the algorithm is also evaluated with Coordina10, Coordina30 and 

Coordina50 test datas. 

   The data structures of these symmetric datas are the same. In the first line, the 

name for the problem is given, for example, kroA100. Second line is the type of the 

problem which is in this case, tsp and followed by the comment line of the problem. 

Next line gives the information for the dimension of the problem, in this example it 

is 100. Then, the edge weight size is given, which is EUC_2D. Lastly, the x and y 

coordinates of the cities are given. In Coordina test datas the numbers 10, 30 and 50 

are the number of cities and only x and y coordinates of the cities are given. 

5.2 Experimental Results for TSP 

   Experimental results are evaluated by some components of the algorithm which are 

initial population size and iteration size, cooperation population size, and the local 

search effect on the algorithm. These components are discussed in the following 

sections. 
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5.2.1 The Effect of Increased Population Size, Iteration Size 

   As it was discussed before, the algorithm has initial loop for the initial population 

construction. Initial loop has population size and iteration size. In the initial loop, we 

aimed to have different permutations of cities by constructing them randomly. In 

each iteration of the initial loop, an individual is sent to the cooperation loop and in 

return a local search is applied and the result is compared with the initial solution that 

was sent. Therefore, in order to see the effects of population size and iteration size of 

the algorithm, population size and iteration size are increased in the initial loop.  

   Furthermore, the algorithm has another loop which is cooperation loop. This is the 

main algorithm that applies cooperation between sub-populations. In addition, this 

algorithm has population size and generation size. Here, the population size is for the 

cooperation population and generation size is the normal generations for the 

algorithm. Therefore, their sizes are also increased to see the results with different 

sizes of the algorithm components.  

First of all, the algorithm was applied with different parameter values without the 

local search algorithm for some of the problems. The results without the local search 

algorithm are shown in tables below.    

 

 

Table 5.1: Results-1 for the Cooperative Coevolutionary Algorithm without local 

search algorithm 
 

 

TEST DATA 

InitialPop=10 

IterSize=10    

PopSize=100  

MaxGen=1000 

InitialPop=10 

IterSize =20    

PopSize=100  

MaxGen=1000 

InitialPop=10 

IterSize =30    

PopSize=100  

MaxGen=1000 

kroA100 Opt=21282 46019 86107 46522 

kroA150 Opt=26524 68719 66486 66458 

kroA200 Opt=29368 86817 84011 81803 
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   Table 5.1 shows the results of Cooperative Coevolutionary Algorithm without local 

search algorithm. It is applied to three of the test datas. In each row of the table, 

name of the test data and its optimal solution is given with the variable named as 

Opt.  

Table 5.2: Results-2 for the Cooperative Coevolutionary Algorithm without local 

search algorithm with increased PopSize 
 

 

TEST DATA 

InitialPop=20 

IterSize=10    

PopSize=100  

MaxGen=1000 

InitialPop=20 

IterSize =20    

PopSize=100  

MaxGen=1000 

InitialPop=20 

IterSize =30    

PopSize=100  

MaxGen=1000 

kroA100 Opt=21282 47485 45929 46585 

kroA150 Opt=26524 64903 67636 65530 

kroA200 Opt=29368 85418 79523 82919 

 

   In Table 5.2, initial population size is increased for each test data. It is aimed to see 

how initial population size affects the algorithm results. In comparison with the 

results of Table 5.1 and Table 5.2, increasing initial population size resulted in better 

solutions. 

5.2.2 The Effect of Local Search Algorithm 

   In combinatorial optimization problems, the need for local search methods is 

observed by the results shown in the above tables in section 5.2.1. In our algorithm, 

the best found individual from the cooperative coevolutionary algorithm became 

better by applying local search algorithm which was 2-Opt local search or tabu 

search algorithm. Because, the local search makes small moves around the given 

solution and tries to find the better version of the given solution. Therefore, it is 

observed that without the local search algorithms in any of the combinatorial 

optimization problems, it is not easy to find a good solution by an EA itself. As a 
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result, our solution approach to TSP proves the need for the local search algorithms 

in combinatorial optimization. The tables below show the results that are found by 

cooperative coevolutionary algorithm combined with the local search algorithm 

which is 2-Opt. 

 

Table 5.3: Results-1 for the Cooperative Coevolutionary Algorithm with 2-Opt local 

search algorithm with small test datas 
 

 

TEST DATA 

InitialPop=10 

IterSize=10    

PopSize=100  

MaxGen=1000 

InitialPop=10 

IterSize =20    

PopSize=100  

MaxGen=1000 

InitialPop=10 

IterSize =30    

PopSize=100  

MaxGen=1000 

Coordina10 Opt=27.8929 27.8929 27.8929 27.8929 

Coordina30 Opt=46.6474 46.6474 46.6474 46.6474 

Coordina50 Opt=58.1261 58.4555 58.2331 58.2280 

 

 

Table 5.4: Results-2 for the Cooperative Coevolutionary Algorithm with 2-Opt local 

search algorithm with increased initial population size in small test datas 
 

 

TEST DATA 

InitialPop=20 

IterSize=10    

PopSize=100  

MaxGen=1000 

InitialPop=20 

IterSize =20    

PopSize=100  

MaxGen=1000 

InitialPop=20 

IterSize =30    

PopSize=100  

MaxGen=1000 

Coordina10 Opt=27.8929 27.8929 27.8929 27.8929 

Coordina30 Opt=46.6474 46.6474 46.6474 46.6474 

Coordina50 Opt=58.1261 58.1261 58.1261 58.1261 

 

   Table 5.3 and Table 5.4 show the results for the Cooperative Coevolutionary 

Algorithm with 2-Opt local search algorithm. In Table 5.3 only the iteration size is 

increased by 10. As the iteration size was increased, the algorithm found the optimal 

solutions or got nearly optimal solutions for some of the test datas. In Table 5.4 only 
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the initial population size and the iteration sizes are increased. The results for 

Coordina50 got better than the results in Table 5.3.  

 

 

Table 5.5: Results-3 for Cooperative Coevolutionary Algorithm with 2-Opt local 

search algorithm 

  

 

 

Table 5.6: Results-4 for Cooperative Coevolutionary Algorithm including 2-Opt with 

increased initial population size 
 

 

TEST DATA 

InitialPop=20 

IterSize=10    

PopSize=100  

MaxGen=1000 

InitialPop=20 

IterSize =20    

PopSize=100  

MaxGen=1000 

InitialPop=20 

IterSize =30    

PopSize=100  

MaxGen=1000 

berlin52 opt=7542 7578 7578 7578 

eil76    opt=538 616 608 610 

st70    opt=675 723 722 722 

 

  

The proposed algorithm along with the 2-Opt local search algorithm is firstly tested 

by small test datas which their results are shown in Table 5.3, Table 5.4, Table 5.5 

and Table 5.6. These results from each table are near to the optimal solutions. Next 

table shows the results from the bigger test datas. 

 

 

 

 

 

TEST DATA 

InitialPop=10 

IterSize=10    

PopSize=100  

MaxGen=1000 

InitialPop=10 

IterSize =20    

PopSize=100  

MaxGen=1000 

InitialPop=10 

IterSize =30    

PopSize=100  

MaxGen=1000 

berlin52 opt=7542 7578 7578 7578 

eil76    opt=538 614 613 613 

st70    opt=675 724 730 723 
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Table 5.7: Results-5 for Cooperative Coevolutionary Algorithm with 2-Opt local 

search algorithm 
 

TEST DATA 

 

InitialPop=10;   IterSize=10;   PopSize=100;  

MaxGen=100; 

kroA100 Opt=21282 21360 

kroA150 Opt=26524 27077 

kroA200 Opt=29368 30444 

kroB100 Opt=22141 22413 

kroB150 Opt=26130 26794 

kroB200 Opt=29437 30487 

 

 

   Table 5.7 shows the evaluation results of bigger test datas that are applied to the 

proposed algorithm with 2-Opt local search algorithm. The datas are evaluated with 

100 maximum generation size. The proposed algorithm with 2-Opt local search 

algorithm found the nearest optimal solutions even with the small number of 

generation size. These results show the effect of a local search algorithm. 

Table 5.8: Results-6 for Cooperative Coevolutionary Algorithm with 2-Opt local 

search algorithm 
 

 

TEST DATA 

InitialPop=10 

IterSize=10    

PopSize=100  

MaxGen=200 

InitialPop=10 

IterSize =20    

PopSize=100  

MaxGen=200 

InitialPop=10 

IterSize =30    

PopSize=100  

MaxGen=200 

kroA100 Opt=21282 21554 21375 21404 

 

kroA150 Opt=26524 27124 27283 27124 

 

kroA200 Opt=29368 30643 30261 30312 

 

kroB100 Opt=22141 22491 22487 22319 

 

kroB150 Opt=26130 26808 26887 26771 

 

kroB200 Opt=29437 30487 30897 30748 
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Table 5.8 shows the results that are found by increasing only the maximum 

generation size which is set to 200. 

 

Table 5.9: Results-7 for Cooperative Coevolutionary Algorithm with 2-Opt local 

search algorithm 

 

 

 

Table 5.10: Results-8 for Cooperative Coevolutionary Algorithm with 2-Opt local 

search algorithm 

 

 

 

TEST DATA 

InitialPop=10 

IterSize=10    

PopSize=100  

MaxGen=600 

InitialPop=10 

IterSize =20    

PopSize=100  

MaxGen=600 

InitialPop=10 

IterSize =30    

PopSize=100  

MaxGen=600 

kroA100 Opt=21282 21513 21455 21449 

 

kroA150 Opt=26524 27075 27051 27221 

 

kroA200 Opt=29368 30770 30750 30248 

 

kroB100 Opt=22141 22713 22354 22568 

 

kroB150 Opt=26130 27057 26836 26817 

 

kroB200 Opt=29437 31172 27018 30720 

 

 

 

 

TEST DATA 

 

InitialPop=10 

IterSize=10    

PopSize=100  

MaxGen=1000 

 

InitialPop=10 

IterSize =20    

PopSize=100  

MaxGen=1000 

 

InitialPop=10 

IterSize =30    

PopSize=100  

MaxGen=1000 

kroA100 Opt=21282 21537 21630 21355 

 

kroA150 Opt=26524 27104 27306 27027 

 

kroA200 Opt=29368 30701 30005 30202 

 

kroB100 Opt=22141 22716 22398 22283 

 

kroB150 Opt=26130 26785 26566 26696 

 

kroB200 Opt=29437 30590 30264 30489 
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      In Table 5.9 and Table 5.10, only the maximum generation sizes are increased to 

600 and 1000 respectively. Increasing maximum generation sizes let the algorithm to 

find better results in comparison with previous results of the other tables. 

   In the above tables, the results for the different parameters with different values are 

examined. It is observed that when the iteration size of the initial population and 

maximum generation size are increased, the algorithm gives better solutions 

compared to the other results that the iteration size and maximum generation size are 

small. The following table shows the results that are found by increasing the 

population size of the initial loop. In the previous tables many of the good results 

were found when the maximum generation size was 1000. That is why; increased 

initial population size is only tested with maximum generation size of 1000.  

 

 

Table 5.11: Results-9 for Cooperative Coevolutionary Algorithm including 2-Opt  

with increased initial population size 
 

 

 

TEST DATA 

InitialPop=20 

IterSize=10    

PopSize=100  

MaxGen=1000 

InitialPop=20 

IterSize =20    

PopSize=100  

MaxGen=1000 

InitialPop=20 

IterSize =30    

PopSize=100  

MaxGen=1000 

kroA100 Opt=21282 21448 21375 

 

21449 

 

kroA150 Opt=26524 27372 

 

27041 

 

27051 

 

kroA200 Opt=29368 30131 

 

30097 

 

29895 

kroB100 Opt=22141 22502 22326 

 

22226 

kroB150 Opt=26130 26668 

 

26628 26444 

kroB200 Opt=29437 30567 

 

30564 30281 

 

 

   In Table 5.11, only the initial population size is increased to 20 and the other 

parameters are set as the same. Increased population size makes the solution space of 
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the problem bigger. Therefore, possibility of finding the optimal or nearly optimal 

solutions becomes higher. 

   The previous results showed us the effect of 2-Opt local search algorithm along 

with the cooperative coevolutionary algorithm to TSP with increased population size, 

iteration size and generation size. In the next table, the effect of tabu search 

algorithm along with the cooperative coevolutionary algorithm is shown. 

 

Table 5.12: Results-1 for Cooperative Coevolutionary Algorithm with Tabu Search  
 

 

 

TEST DATA 

InitialPop=10 

IterSize=10    

PopSize=100  

MaxGen=1000 

InitialPop=10 

IterSize =20    

PopSize=100  

MaxGen=1000 

InitialPop=10 

IterSize =30    

PopSize=100  

MaxGen=1000 

kroA100 Opt=21282 29888 32302 30810 

kroA150 Opt=26524 40340 44360 40661 

kroA200 Opt=29368 54891 53584 54264 

 

   Besides 2-Opt local search algorithm, the proposed algorithm is evaluated with 

Tabu search algorithm. The results for Tabu search algorithm are shown in Table 

5.12. Tabu search algorithm can also reach the optimal or nearest optimal solutions 

but 2-Opt local search algorithm reached better solutions compared with Tabu search 

algorithm. However, the results in Table 5.12 can be improved by increasing the 

iteration size and maximum generation size of the test datas. 
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Chapter 6 

 
CONCLUSION 

 
   In this thesis, the implementation and results for our solution approach to TSP are 

presented by using Cooperative Coevolutionary Memetic Algorithms. Our solution 

approach is mainly based on the population-based algorithms along with the local 

search algorithms where combination of these algorithms represents the idea of the 

memetic algorithms. Recently, there are many algorithms that use population-based 

and local search algorithms to find better solutions for the problems. Furthermore, 

from the experimental results we can conclude that memetic algorithms are 

successful algorithms on the combinatorial optimization problems. Also, they can 

find the optimal solution by increasing the number of iterations for the problem. 

   Furthermore, in this thesis, cooperative coevolutionary algorithms are examined by 

interactions between two sub-populations which were active and frozen sub-

populations. The future work related to cooperative evolution would be done by 

applying two active sub-populations instead of active-frozen sub-populations. In 

addition to this, an archive for positions of cities, which shortens the tour length, can 

be formed. This archive could store the positions of cities in order to improve finding 

shorter tours for TSP. 
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